WorldWideScience

Sample records for two-stage bioreactor system

  1. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Logan, Bruce E

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  2. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  3. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  4. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  5. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and alpha-pinene.

    Science.gov (United States)

    Rene, Eldon R; Jin, Yaomin; Veiga, María C; Kennes, Christian

    2009-11-01

    Biological treatment systems have emerged as cost-effective and eco-friendly techniques for treating waste gases from process industries at moderately high gas flow rates and low pollutant concentrations. In this study, we have assessed the performance of a two-stage bioreactor, namely a biotrickling filter packed with pall rings (BTF, 1st stage) and a perlite + pall ring mixed biofilter (BF, 2nd stage) operated in series, for handling a complex mixture of hydrogen sulphide (H2S), methanol (CH3OH) and alpha-pinene (C10H16). It has been reported that the presence of H2S can reduce the biofiltration efficiency of volatile organic compounds (VOCs) when both are present in the gas mixture. Hydrogen sulphide and methanol were removed in the first stage BTF, previously inoculated with H2S-adapted populations and a culture containing Candida boidinii, an acid-tolerant yeast, whereas, in the second stage, alpha-pinene was removed predominantly by the fungus Ophiostoma stenoceras. Experiments were conducted in five different phases, corresponding to inlet loading rates varying between 2.1 and 93.5 g m(-3) h(-1) for H2S, 55.3 and 1260.2 g m(-3) h(-1) for methanol, and 2.8 and 161.1 g m(-3) h(-1) for alpha-pinene. Empty bed residence times were varied between 83.4 and 10 s in the first stage and 146.4 and 17.6 s in the second stage. The BTF, working at a pH as low as 2.7 as a result of H2S degradation, removed most of the H2S and methanol but only very little alpha-pinene. On the other hand, the BF, at a pH around 6.0, removed the rest of the H2S, the non-degraded methanol and most of the alpha-pinene vapours. Attempts were originally made to remove the three pollutants in a single acidophilic bioreactor, but the Ophiostoma strain was hardly active at pH elimination capacities (ECs) reached by the two-stage bioreactor for individual pollutants were 894.4 g m(-3) h(-1) for methanol, 45.1 g m(-3) h(-1) for H2S and 138.1 g m(-3) h(-1) for alpha-pinene. The results from this

  6. Two-Stage Variable Sample-Rate Conversion System

    Science.gov (United States)

    Tkacenko, Andre

    2009-01-01

    A two-stage variable sample-rate conversion (SRC) system has been pro posed as part of a digital signal-processing system in a digital com munication radio receiver that utilizes a variety of data rates. The proposed system would be used as an interface between (1) an analog- todigital converter used in the front end of the receiver to sample an intermediatefrequency signal at a fixed input rate and (2) digita lly implemented tracking loops in subsequent stages that operate at v arious sample rates that are generally lower than the input sample r ate. This Two-Stage System would be capable of converting from an input sample rate to a desired lower output sample rate that could be var iable and not necessarily a rational fraction of the input rate.

  7. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System

    Energy Technology Data Exchange (ETDEWEB)

    Narala, Rakesh R.; Garg, Sourabh; Sharma, Kalpesh K.; Thomas-Hall, Skye R.; Deme, Miklos; Li, Yan; Schenk, Peer M., E-mail: p.schenk@uq.edu.au [Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD (Australia)

    2016-08-02

    In the wake of intensive fossil fuel usage and CO{sub 2} accumulation in the environment, research is targeted toward sustainable alternate bioenergy that can suffice the growing need for fuel and also that leaves a minimal carbon footprint. Oil production from microalgae can potentially be carried out more efficiently, leaving a smaller footprint and without competing for arable land or biodiverse landscapes. However, current algae cultivation systems and lipid induction processes must be significantly improved and are threatened by contamination with other algae or algal grazers. To address this issue, we have developed an efficient two-stage cultivation system using the marine microalga Tetraselmis sp. M8. This hybrid system combines exponential biomass production in positive pressure air lift-driven bioreactors with a separate synchronized high-lipid induction phase in nutrient deplete open raceway ponds. A comparison to either bioreactor or open raceway pond cultivation system suggests that this process potentially leads to significantly higher productivity of algal lipids. Nutrients are only added to the closed bioreactors, while open raceway ponds have turnovers of only a few days, thus reducing the issue of microalgal grazers.

  8. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system

    Directory of Open Access Journals (Sweden)

    Rakesh R Narala

    2016-08-01

    Full Text Available In the wake of intensive fossil fuel usage and CO2 accumulation in the environment, research is targeted towards sustainable alternate bioenergy that can suffice the growing need for fuel and also that leaves a minimal carbon footprint. Oil production from microalgae can potentially be carried out more efficiently, leaving a smaller footprint and without competing for arable land or biodiverse landscapes. However, current algae cultivation systems and lipid induction processes must be significantly improved and are threatened by contamination with other algae or algal grazers. To address this issue, we have developed an efficient two-stage cultivation system using the marine microalga Tetraselmis sp. M8. This hybrid system combines exponential biomass production in positive pressure air lift-driven bioreactors with a separate synchronized high-lipid induction phase in nutrient deplete open raceway ponds. A comparison to either bioreactor or open raceway pond cultivation system suggests that this process potentially leads to significantly higher productivity of algal lipids. Nutrients are only added to the closed bioreactors while open raceway ponds have turnovers of only a few days, thus reducing the issue of microalgal grazers.

  9. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System

    International Nuclear Information System (INIS)

    Narala, Rakesh R.; Garg, Sourabh; Sharma, Kalpesh K.; Thomas-Hall, Skye R.; Deme, Miklos; Li, Yan; Schenk, Peer M.

    2016-01-01

    In the wake of intensive fossil fuel usage and CO 2 accumulation in the environment, research is targeted toward sustainable alternate bioenergy that can suffice the growing need for fuel and also that leaves a minimal carbon footprint. Oil production from microalgae can potentially be carried out more efficiently, leaving a smaller footprint and without competing for arable land or biodiverse landscapes. However, current algae cultivation systems and lipid induction processes must be significantly improved and are threatened by contamination with other algae or algal grazers. To address this issue, we have developed an efficient two-stage cultivation system using the marine microalga Tetraselmis sp. M8. This hybrid system combines exponential biomass production in positive pressure air lift-driven bioreactors with a separate synchronized high-lipid induction phase in nutrient deplete open raceway ponds. A comparison to either bioreactor or open raceway pond cultivation system suggests that this process potentially leads to significantly higher productivity of algal lipids. Nutrients are only added to the closed bioreactors, while open raceway ponds have turnovers of only a few days, thus reducing the issue of microalgal grazers.

  10. Single-stage versus two-stage anaerobic fluidized bed bioreactors in treating municipal wastewater: Performance, foulant characteristics, and microbial community.

    Science.gov (United States)

    Wu, Bing; Li, Yifei; Lim, Weikang; Lee, Shi Lin; Guo, Qiming; Fane, Anthony G; Liu, Yu

    2017-03-01

    This study examined the receptive performance, membrane foulant characteristics, and microbial community in the single-stage and two-stage anaerobic fluidized membrane bioreactor (AFMBR) treating settled raw municipal wastewater with the aims to explore fouling mechanisms and microbial community structure in both systems. Both AFMBRs exhibited comparable organic removal efficiency and membrane performances. In the single-stage AFMBR, less soluble organic substances were removed through biosorption by GAC and biodegradation than those in the two-stage AFMBR. Compared to the two-stage AFMBR, the formation of cake layer was the main cause of the observed membrane fouling in the single-stage AFMBR at the same employed flux. The accumulation rate of the biopolymers was linearly correlated with the membrane fouling rate. In the chemical-cleaned foulants, humic acid-like substances and silicon were identified as the predominant organic and inorganic fouants respectively. As such, the fluidized GAC particles might not be effective in removing these substances from the membrane surfaces. High-throughout pyrosequencing analysis further revealed that beta-Proteobacteria were predominant members in both AFMBRs, which contributed to the development of biofilms on the fluidized GAC and membrane surfaces. However, it was also noted that the abundance of the identified dominant in the membrane surface-associated biofilm seemed to be related to the permeate flux and reactor configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate.

    Science.gov (United States)

    Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2016-06-01

    Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Two-stage model of development of heterogeneous uranium-lead systems in zircon

    International Nuclear Information System (INIS)

    Mel'nikov, N.N.; Zevchenkov, O.A.

    1985-01-01

    Behaviour of isotope systems of multiphase zircons at their two-stage distortion is considered. The results of calculations testify to the fact that linear correlations on the diagram with concordance can be explained including two-stage discovery of U-Pb systems of cogenetic zircons if zircon is considered physically heterogeneous and losing in its different part different ratios of accumulated radiogenic lead. ''Metamorphism ages'' obtained by these two-stage opening zircons are intermediate, and they not have geochronological significance while ''crystallization ages'' remain rather close to real ones. Two-stage opening zircons in some cases can be diagnosed by discordance of their crystal component

  13. Optimisation of Refrigeration System with Two-Stage and Intercooler Using Fuzzy Logic and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Bayram Kılıç

    2017-04-01

    Full Text Available Two-stage compression operation prevents excessive compressor outlet pressure and temperature and this operation provides more efficient working condition in low-temperature refrigeration applications. Vapor compression refrigeration system with two-stage and intercooler is very good solution for low-temperature refrigeration applications. In this study, refrigeration system with two-stage and intercooler were optimized using fuzzy logic and genetic algorithm. The necessary thermodynamic characteristics for optimization were estimated with Fuzzy Logic and liquid phase enthalpy, vapour phase enthalpy, liquid phase entropy, vapour phase entropy values were compared with actual values. As a result, optimum working condition of system was estimated by the Genetic Algorithm as -6.0449 oC for evaporator temperature, 25.0115 oC for condenser temperature and 5.9666 for COP. Morever, irreversibility values of the refrigeration system are calculated.

  14. A two-stage stochastic programming approach for operating multi-energy systems

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Chen, Zhe

    2017-01-01

    This paper provides a two-stage stochastic programming approach for joint operating multi-energy systems under uncertainty. Simulation is carried out in a test system to demonstrate the feasibility and efficiency of the proposed approach. The test energy system includes a gas subsystem with a gas...

  15. Wide-bandwidth bilateral control using two-stage actuator system

    International Nuclear Information System (INIS)

    Kokuryu, Saori; Izutsu, Masaki; Kamamichi, Norihiro; Ishikawa, Jun

    2015-01-01

    This paper proposes a two-stage actuator system that consists of a coarse actuator driven by a ball screw with an AC motor (the first stage) and a fine actuator driven by a voice coil motor (the second stage). The proposed two-stage actuator system is applied to make a wide-bandwidth bilateral control system without needing expensive high-performance actuators. In the proposed system, the first stage has a wide moving range with a narrow control bandwidth, and the second stage has a narrow moving range with a wide control bandwidth. By consolidating these two inexpensive actuators with different control bandwidths in a complementary manner, a wide bandwidth bilateral control system can be constructed based on a mechanical impedance control. To show the validity of the proposed method, a prototype of the two-stage actuator system has been developed and basic performance was evaluated by experiment. The experimental results showed that a light mechanical impedance with a mass of 10 g and a damping coefficient of 2.5 N/(m/s) that is an important factor to establish good transparency in bilateral control has been successfully achieved and also showed that a better force and position responses between a master and slave is achieved by using the proposed two-stage actuator system compared with a narrow bandwidth case using a single ball screw system. (author)

  16. A Two-Stage Queue Model to Optimize Layout of Urban Drainage System considering Extreme Rainstorms

    OpenAIRE

    He, Xinhua; Hu, Wenfa

    2017-01-01

    Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total c...

  17. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.

  18. Target tracking system based on preliminary and precise two-stage compound cameras

    Science.gov (United States)

    Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie

    2018-02-01

    Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.

  19. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Track...

  20. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard

    2007-01-01

    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hardly...... of systems like this. Contrary to the common sense in operations management, the LPT rule is able to maximize the total production volume per day. Furthermore, we show that adding one tank has considerable effects. Finally, we conclude that the optimal setup frequency for batches in the first stage...... pays any attention to this. In this paper, we show how various capacity and time constraints influence the performance of a specific two-stage system. We study the effects of several basic scheduling and sequencing rules in the presence of these constraints in order to learn the characteristics...

  1. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... performed on a 3-kW two-stage single-phase grid-connected PV system, where the power reserve control is achieved upon demands....

  2. Two-stage commercial evaluation of engineering systems production projects for high-rise buildings

    Science.gov (United States)

    Bril, Aleksander; Kalinina, Olga; Levina, Anastasia

    2018-03-01

    The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.

  3. Two-stage commercial evaluation of engineering systems production projects for high-rise buildings

    Directory of Open Access Journals (Sweden)

    Bril Aleksander

    2018-01-01

    Full Text Available The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.

  4. Application of two-stage biofilter system for the removal of odorous compounds.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee; Lee, Gwang-Yeon; Cha, Jin-Myeong

    2006-01-01

    Biofiltration is a biological process which is considered to be one of the more successful examples of biotechnological applications to environmental engineering, and is most commonly used in the removal of odoriferous compounds. In this study, we have attempted to assess the efficiency with which both single and complex odoriferous compounds could be removed, using one- or two-stage biofiltration systems. The tested single odor gases, limonene, alpha-pinene, and iso-butyl alcohol, were separately evaluated in the biofilters. Both limonene and alpha-pinene were removed by 90% or more EC (elimination capacity), 364 g/m3/h and 321 g/m3/h, respectively, at an input concentration of 50 ppm and a retention time of 30 s. The iso-butyl alcohol was maintained with an effective removal yield of more than 90% (EC 375 g/m3/h) at an input concentration of 100 ppm. The complex gas removal scheme was applied with a 200 ppm inlet concentration of ethanol, 70 ppm of acetaldehyde, and 70 ppm of toluene with residence time of 45 s in a one- or two-stage biofiltration system. The removal yield of toluene was determined to be lower than that of the other gases in the one-stage biofilter. Otherwise, the complex gases were sufficiently eliminated by the two-stage biofiltration system.

  5. A Two Stage Solution Procedure for Production Planning System with Advance Demand Information

    Science.gov (United States)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Hasuike, Takashi; Okuhara, Koji

    We model for ‘Naiji System’ which is a unique corporation technique between a manufacturer and suppliers in Japan. We propose a two stage solution procedure for a production planning problem with advance demand information, which is called ‘Naiji’. Under demand uncertainty, this model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to a probabilistic constraint and some linear production constraints. By the convexity and the special structure of correlation matrix in the problem where inventory for different periods is not independent, we propose a solution procedure with two stages which are named Mass Customization Production Planning & Management System (MCPS) and Variable Mesh Neighborhood Search (VMNS) based on meta-heuristics. It is shown that the proposed solution procedure is available to get a near optimal solution efficiently and practical for making a good master production schedule in the suppliers.

  6. The global stability of a delayed predator-prey system with two stage-structure

    International Nuclear Information System (INIS)

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  7. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  8. A two-stage stochastic programming model for the optimal design of distributed energy systems

    International Nuclear Information System (INIS)

    Zhou, Zhe; Zhang, Jianyun; Liu, Pei; Li, Zheng; Georgiadis, Michael C.; Pistikopoulos, Efstratios N.

    2013-01-01

    Highlights: ► The optimal design of distributed energy systems under uncertainty is studied. ► A stochastic model is developed using genetic algorithm and Monte Carlo method. ► The proposed system possesses inherent robustness under uncertainty. ► The inherent robustness is due to energy storage facilities and grid connection. -- Abstract: A distributed energy system is a multi-input and multi-output energy system with substantial energy, economic and environmental benefits. The optimal design of such a complex system under energy demand and supply uncertainty poses significant challenges in terms of both modelling and corresponding solution strategies. This paper proposes a two-stage stochastic programming model for the optimal design of distributed energy systems. A two-stage decomposition based solution strategy is used to solve the optimization problem with genetic algorithm performing the search on the first stage variables and a Monte Carlo method dealing with uncertainty in the second stage. The model is applied to the planning of a distributed energy system in a hotel. Detailed computational results are presented and compared with those generated by a deterministic model. The impacts of demand and supply uncertainty on the optimal design of distributed energy systems are systematically investigated using proposed modelling framework and solution approach.

  9. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  10. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  11. Artificial immune system and sheep flock algorithms for two-stage fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Kannan, Devika; Govindan, Kannan; Soleimani, Hamed

    2014-01-01

    In this paper, we cope with a two-stage distribution planning problem of supply chain regarding fixed charges. The focus of the paper is on developing efficient solution methodologies of the selected NP-hard problem. Based on computational limitations, common exact and approximation solution...... approaches are unable to solve real-world instances of such NP-hard problems in a reasonable time. These approaches involve cumbersome computational steps in real-size cases. In order to solve the mixed integer linear programming model, we develop an artificial immune system and a sheep flock algorithm...

  12. Integrated Circuit Design of 3 Electrode Sensing System Using Two-Stage Operational Amplifier

    Science.gov (United States)

    Rani, S.; Abdullah, W. F. H.; Zain, Z. M.; N, Aqmar N. Z.

    2018-03-01

    This paper presents the design of a two-stage operational amplifier(op amp) for 3-electrode sensing system readout circuits. The designs have been simulated using 0.13μm CMOS technology from Silterra (Malaysia) with Mentor graphics tools. The purpose of this projects is mainly to design a miniature interfacing circuit to detect the redox reaction in the form of current using standard analog modules. The potentiostat consists of several op amps combined together in order to analyse the signal coming from the 3-electrode sensing system. This op amp design will be used in potentiostat circuit device and to analyse the functionality for each module of the system.

  13. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system.......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...

  14. Many-Objective Particle Swarm Optimization Using Two-Stage Strategy and Parallel Cell Coordinate System.

    Science.gov (United States)

    Hu, Wang; Yen, Gary G; Luo, Guangchun

    2017-06-01

    It is a daunting challenge to balance the convergence and diversity of an approximate Pareto front in a many-objective optimization evolutionary algorithm. A novel algorithm, named many-objective particle swarm optimization with the two-stage strategy and parallel cell coordinate system (PCCS), is proposed in this paper to improve the comprehensive performance in terms of the convergence and diversity. In the proposed two-stage strategy, the convergence and diversity are separately emphasized at different stages by a single-objective optimizer and a many-objective optimizer, respectively. A PCCS is exploited to manage the diversity, such as maintaining a diverse archive, identifying the dominance resistant solutions, and selecting the diversified solutions. In addition, a leader group is used for selecting the global best solutions to balance the exploitation and exploration of a population. The experimental results illustrate that the proposed algorithm outperforms six chosen state-of-the-art designs in terms of the inverted generational distance and hypervolume over the DTLZ test suite.

  15. Optimal design of distributed energy resource systems based on two-stage stochastic programming

    International Nuclear Information System (INIS)

    Yang, Yun; Zhang, Shijie; Xiao, Yunhan

    2017-01-01

    Highlights: • A two-stage stochastic programming model is built to design DER systems under uncertainties. • Uncertain energy demands have a significant effect on the optimal design. • Uncertain energy prices and renewable energy intensity have little effect on the optimal design. • The economy is overestimated if the system is designed without considering the uncertainties. • The uncertainty in energy prices has the significant and greatest effect on the economy. - Abstract: Multiple uncertainties exist in the optimal design of distributed energy resource (DER) systems. The expected energy, economic, and environmental benefits may not be achieved and a deficit in energy supply may occur if the uncertainties are not handled properly. This study focuses on the optimal design of DER systems with consideration of the uncertainties. A two-stage stochastic programming model is built in consideration of the discreteness of equipment capacities, equipment partial load operation and output bounds as well as of the influence of ambient temperature on gas turbine performance. The stochastic model is then transformed into its deterministic equivalent and solved. For an illustrative example, the model is applied to a hospital in Lianyungang, China. Comparative studies are performed to evaluate the effect of the uncertainties in load demands, energy prices, and renewable energy intensity separately and simultaneously on the system’s economy and optimal design. Results show that the uncertainties in load demands have a significant effect on the optimal system design, whereas the uncertainties in energy prices and renewable energy intensity have almost no effect. Results regarding economy show that it is obviously overestimated if the system is designed without considering the uncertainties.

  16. On the optimal use of a slow server in two-stage queueing systems

    Science.gov (United States)

    Papachristos, Ioannis; Pandelis, Dimitrios G.

    2017-07-01

    We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.

  17. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Due to still increasing penetration level of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A reserved power control, where the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the reserved power control for grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... to achieve the power reserve. In this method, the irradiance measurements that have been used in conventional control schemes to estimate the available PV power are not required, and thereby being a sensorless solution. Simulations and experimental tests have been performed on a 3-kW two-stage single...

  18. Product prioritization in a two-stage food production system with intermediate storage

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter

    2007-01-01

    In the food-processing industry, usually a limited number of storage tanks for intermediate storage is available, which are used for different products. The market sometimes requires extremely short lead times for some products, leading to prioritization of these products, partly through...... the performance improvements for the prioritized product, as well as the negative effects for the other products. We also show how the effect decreases with more storage tanks, and increases with more products....... the dedication of a storage tank. This type of situation has hardly been investigated, although planners struggle with it in practice. This paper aims at investigating the fundamental effect of prioritization and dedicated storage in a two-stage production system, for various product mixes. We show...

  19. Two-stage SQUID systems and transducers development for MiniGRAIL

    International Nuclear Information System (INIS)

    Gottardi, L; Podt, M; Bassan, M; Flokstra, J; Karbalai-Sadegh, A; Minenkov, Y; Reinke, W; Shumack, A; Srinivas, S; Waard, A de; Frossati, G

    2004-01-01

    We present measurements on a two-stage SQUID system based on a dc-SQUID as a sensor and a DROS as an amplifier. We measured the intrinsic noise of the dc-SQUID at 4.2 K. A new dc-SQUID has been fabricated. It was specially designed to be used with MiniGRAIL transducers. Cooling fins have been added in order to improve the cooling of the SQUID and the design is optimized to achieve the quantum limit of the sensor SQUID at temperatures above 100 mK. In this paper we also report the effect of the deposition of a Nb film on the quality factor of a small mass Al5056 resonator. Finally, the results of Q-factor measurements on a capacitive transducer for the current MiniGRAIL run are presented

  20. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum.

    Science.gov (United States)

    Chen, Yun; Li, Qian; Wu, Qingsheng

    2014-01-01

    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded.

  1. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  2. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  3. A Two-Stage Queue Model to Optimize Layout of Urban Drainage System considering Extreme Rainstorms

    Directory of Open Access Journals (Sweden)

    Xinhua He

    2017-01-01

    Full Text Available Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total cost of construction and operation and overall sojourn time of stormwater. An improved genetic algorithm is redesigned to solve this complex nondeterministic problem, which incorporates with stochastic and fuzzy characteristics in whole drainage process. A numerical example in Shanghai illustrates how to implement the model, and comparisons with alternative algorithms show its performance in computational flexibility and efficiency. Discussions on sensitivity of four main parameters, that is, quantity of pump stations, drainage pipe diameter, rainstorm precipitation intensity, and confidence levels, are also presented to provide guidance for designing urban drainage system.

  4. Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System

    Science.gov (United States)

    Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.

    2008-03-01

    Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design

  5. A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2016-01-01

    Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.

  6. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum

    Directory of Open Access Journals (Sweden)

    Chen Y

    2014-06-01

    Full Text Available Yun Chen,1,* Qian Li,1,2,* Qingsheng Wu1 1Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai; 2Shanghai Institute of Quality Inspection and Technical Research, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: cis-Diamminediiodoplatinum (cis-DIDP is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4 at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. Keywords: stearic acid, emulsion solvent evaporation method, drug delivery, cis-DIDP, in vitro

  7. Two-Stage orders sequencing system for mixed-model assembly

    Science.gov (United States)

    Zemczak, M.; Skolud, B.; Krenczyk, D.

    2015-11-01

    In the paper, the authors focus on the NP-hard problem of orders sequencing, formulated similarly to Car Sequencing Problem (CSP). The object of the research is the assembly line in an automotive industry company, on which few different models of products, each in a certain number of versions, are assembled on the shared resources, set in a line. Such production type is usually determined as a mixed-model production, and arose from the necessity of manufacturing customized products on the basis of very specific orders from single clients. The producers are nowadays obliged to provide each client the possibility to determine a huge amount of the features of the product they are willing to buy, as the competition in the automotive market is large. Due to the previously mentioned nature of the problem (NP-hard), in the given time period only satisfactory solutions are sought, as the optimal solution method has not yet been found. Most of the researchers that implemented inaccurate methods (e.g. evolutionary algorithms) to solving sequencing problems dropped the research after testing phase, as they were not able to obtain reproducible results, and met problems while determining the quality of the received solutions. Therefore a new approach to solving the problem, presented in this paper as a sequencing system is being developed. The sequencing system consists of a set of determined rules, implemented into computer environment. The system itself works in two stages. First of them is connected with the determination of a place in the storage buffer to which certain production orders should be sent. In the second stage of functioning, precise sets of sequences are determined and evaluated for certain parts of the storage buffer under certain criteria.

  8. Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jamaleddine, E. [McGill Univ., Montreal, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Composting is once again gaining interest among ecological engineers in view of greener industrial and residential activities. Uniform composting is needed to ensure decomposition and to keep the whole system at the same composting stage. A homogeneous temperature must be maintained throughout the media. A bioreactor design consisting of a heater core made of copper tubing was designed and tested. Two four-inch holes were made at the top and bottom of the barrel to allow air to flow through the system and promote aerobic composting. Once composting began and temperature increased, the water began to flow through the copper piping and the core heat was distributed throughout the medium. Three thermocouples were inserted at different heights on a 200 litre plastic barrel fitted with the aforementioned apparatus. Temperature variations were found to be considerably lower when the apparatus was operated with the heat redistribution system, enabling uniform composting, accelerating the process and reducing the risks of pathogenic or other contaminants remaining active in the barrels.

  9. METHODOLOGY AND RESULTS OF MOBILE OBJECT PURSUIT PROBLEM SOLUTION WITH TWO-STAGE DYNAMIC SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Kiselev Mikhail

    2017-01-01

    Full Text Available The experience of developing unmanned fighting vehicles indicates that the main challenge in this field reduces itself to creating the systems which can replace the pilot both as a sensor and as the operator of the flight. This problem can be partial- ly solved by introducing remote control, but there are certain flight segments where it can only be executed under fully inde- pendent control and data support due to various reasons, such as tight time, short duration, lack of robust communication, etc. Such stages also include close-range air combat maneuvering (CRACM - a key flight segment as far as the fighter's purpose is concerned, which also places the highest demands on the fighter's design. Until recently the creation of an unmanned fighter airplane has been a fundamentally impossible task due to the absence of sensors able to provide the necessary data support to control the fighter during CRACM. However, the development prospects of aircraft hardware (passive type flush antennae, op- tico-locating panoramic view stations are indicative of producing possible solutions to this problem in the nearest future. There- fore, presently the only fundamental impediment on the way to developing an unmanned fighting aircraft is the problem of cre- ating algorithms for automatic trajectory control during CRACM. This paper presents the strategy of automatic trajectory con- trol synthesis by a two-stage dynamic system aiming to reach the conditions specified with respect to an object in pursuit. It contains certain results of control algorithm parameters impact assessment in regards to the pursuit mission effectiveness. Based on the obtained results a deduction is drawn pertaining to the efficiency of the offered method and its possible utilization in au- tomated control of an unmanned fighting aerial vehicle as well as organizing group interaction during CRACM.

  10. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System

    Science.gov (United States)

    Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup

    2018-04-01

    Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.

  12. Design of a Scalable Modular Production System for a Two-stage Food Service Franchise System

    OpenAIRE

    Matt,; T., D.; Rauch,; E.,

    2012-01-01

    The geographically distributed production of fresh food poses unique challenges to the production system design because of their stringent industry and logistics requirements. The purpose of this research is to examine the case of a European fresh food manufacturer’s approach to introduce a scalable modular production concept for an international two‐stage gastronomy franchise system in order to identify best practice guidelines and to derive a framework for the design of distributed producti...

  13. Experimental study on an innovative multifunction heat pipe type heat recovery two-stage sorption refrigeration system

    International Nuclear Information System (INIS)

    Li, T.X.; Wang, R.Z.; Wang, L.W.; Lu, Z.S.

    2008-01-01

    An innovative multifunction heat pipe type sorption refrigeration system is designed, in which a two-stage sorption thermodynamic cycle based on two heat recovery processes was employed to reduce the driving heat source temperature, and the composite sorbent of CaCl 2 and activated carbon was used to improve the mass and heat transfer performances. For this test unit, the heating, cooling and heat recovery processes between two reactive beds are performed by multifunction heat pipes. The aim of this paper is to investigate the cycled characteristics of two-stage sorption refrigeration system with heat recovery processes. The two sub-cycles of a two-stage cycle have different sorption platforms though the adsorption and desorption temperatures are equivalent. The experimental results showed that the pressure evolutions of two beds are nearly equivalent during the first stage, and desorption pressure during the second stage is large higher than that in the first stage while the desorption temperatures are same during the two operation stages. In comparison with conventional two-stage cycle, the two-stage cycle with heat recovery processes can reduce the heating load for desorber and cooling load for adsorber, the coefficient of performance (COP) has been improved more than 23% when both cycles have the same regeneration temperature of 103 deg. C and the cooling water temperature of 30 deg. C. The advanced two-stage cycle provides an effective method for application of sorption refrigeration technology under the condition of low-grade temperature heat source or utilization of renewable energy

  14. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator

    International Nuclear Information System (INIS)

    Yeh, Naichia

    2016-01-01

    This paper illustrates details about the solar radiation distribution on the target of a two-stage solar concentrator that combines the Fresnel lens (FL) and the compound flat concentrator (CFC). The paper starts with a review of some FL development milestones such as the two-stage systems and the comparisons of flat vs. curved lenses in addition to the most noteworthy FL-based solar energy application, concentration photovoltaic (CPV). Through the review of the FL based CPV and two-stage concentrators, this study leads to the development of an algorithm to explore the spectrum distribution insight on the receiver of a two-stage (FL plus CFC) solar concentration system. It established the potential for using a correctly positioned 2nd stage reflector of right dimension to selectively redirect the desired spectrum on the target area so as to enhance the concentration flux intensity and uniformity at the same time. The study also helped to chart out the approximate locations of certain spectrum segments on the FL's target area, which is useful for exploring the spectrum control mechanism via the Fresnel lenses. - Highlights: • Map out the approximate locations of spectrum segments on FL's focal area. • Use the 2nd stage reflector to selectively reflect the desired spectrum on target. • Explore the spectrum distribution insight on FL solar concentrators' target area.

  16. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system

    International Nuclear Information System (INIS)

    Guo, Li; Liu, Wenjian; Cai, Jiejin; Hong, Bowen; Wang, Chengshan

    2013-01-01

    Highlights: • A two-stage optimal method is presented for CCHP microgrid system. • Economic and environmental performance are considered as assessment indicators. • Application case demonstrates its good economic and environmental performance. - Abstract: In this paper, a two-stage optimal planning and design method for combined cooling, heat and power (CCHP) microgrid system was presented. The optimal objective was to simultaneously minimize the total net present cost and carbon dioxide emission in life circle. On the first stage, multi-objective genetic algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) was applied to solve the optimal design problem including the optimization of equipment type and capacity. On the second stage, mixed-integer linear programming (MILP) algorithm was used to solve the optimal dispatch problem. The approach was applied to a typical CCHP microgrid system in a hospital as a case study, and the effectiveness of the proposed method was verified

  17. Two stage catalytic converter system to reduce exhaust emissions of HC, CO and NO in a motor vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nagalingam, B; Gopalakrishnan, K V; Murthy, B S

    1978-09-01

    Two-stage catalytic converter system is currently receiving considerable attention as a means to control the primary pollutants, namely, HC, CO and NO in the automobile exhaust. In order to explore the possibility of developing catalysts from indigenous and inexpensive sources of materials, sponge iron for NO reduction and manganese ore pebbles for HC/CO oxidation were tested as candidate-catalysts in an engine dynamometer test bed to study their catalytic activity. The results of these experiments are reported.

  18. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    Science.gov (United States)

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  20. Two-stage maintenance of a production system with exponentially distributed on and off-periods

    NARCIS (Netherlands)

    van Dijkhuizen, G.C.; van Harten, Aart

    1998-01-01

    We consider an on–off production system which is subject to failure during on-periods. In case of a failure, the production system is maintained correctively. In addition, preventive maintenance is carried out to prevent failures. The costs of both preventive and corrective maintenance are modelled

  1. Two-stage open-loop velocity compensating method applied to multi-mass elastic transmission system

    Directory of Open Access Journals (Sweden)

    Zhang Deli

    2014-02-01

    Full Text Available In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P controller. This compensating method is based on model-based control theory in order to provide a damping effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is calculated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed velocity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.

  2. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Ranjbar, Ali Akbar; Rezaniakolaei, Alireza

    2017-01-01

    this amount of voltage just for 2100 s. Therefore, the proposed design makes TEG systems more suitable for wireless sensor applications when the heat source does not provide steady thermal energy. In this study, four different patterns of thermal power applied to the TTEG system are considered. These patterns...... experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source...

  3. Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system

    International Nuclear Information System (INIS)

    Lai, Chyh-Ming; Yeh, Wei-Chang

    2016-01-01

    The redundancy allocation problem involves configuring an optimal system structure with high reliability and low cost, either by alternating the elements with more reliable elements and/or by forming them redundantly. The multi-state bridge system is a special redundancy allocation problem and is commonly used in various engineering systems for load balancing and control. Traditional methods for redundancy allocation problem cannot solve multi-state bridge systems efficiently because it is impossible to transfer and reduce a multi-state bridge system to series and parallel combinations. Hence, a swarm-based approach called two-stage simplified swarm optimization is proposed in this work to effectively and efficiently solve the redundancy allocation problem in a multi-state bridge system. For validating the proposed method, two experiments are implemented. The computational results indicate the advantages of the proposed method in terms of solution quality and computational efficiency. - Highlights: • Propose two-stage SSO (SSO_T_S) to deal with RAP in multi-state bridge system. • Dynamic upper bound enhances the efficiency of searching near-optimal solution. • Vector-update stages reduces the problem dimensions. • Statistical results indicate SSO_T_S is robust both in solution quality and runtime.

  4. Two-stage single-phase grid-connected photovoltaic system with reduced complexity

    Science.gov (United States)

    da Silva, Cintia S.; Motta, Filipe R.; Tofoli, Fernando L.

    2011-06-01

    This article presents a grid-connected photovoltaic (PV) system using the classical DC-DC buck converter, which is responsible for stepping down the resulting voltage from several series-connected panels. Besides, the structure provides high power factor operation by injecting a quasi-sinusoidal current into the grid, with near no displacement in relation to the line voltage at the point of common coupling among the PV system and the loads. A CSI employing thyristors is cascaded with the DC-DC stage so that AC voltage results. The inverter output voltage level is adjusted by using a low-frequency transformer, which also provides galvanic isolation. The proposed system is described as mathematical approach and design guidelines are presented, providing an overview of the topology. An experimental prototype is also implemented, and relevant results to validate the proposal are discussed.

  5. Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System

    Directory of Open Access Journals (Sweden)

    Paulina Pianko-Oprych

    2017-12-01

    Full Text Available The main purpose of this paper was to develop a complete dynamic model of a power generation system based on two serially connected solid oxide fuel cell stacks. The uniqueness of this study lies in a different number of fuel cells in the stacks. The model consists of the electrochemical model, mass and energy balance equations implemented in MATLAB Simulink environment. Particular attention has been paid to the analysis of the transient response of the reformers, fuel cells and the burner. The dynamic behavior of the system during transient conditions was investigated by load step changing. The model evaluates electrical and thermal responses of the system at variable drawn current. It was found that a decrease of 40% in the 1st stage and 2nd solid oxide fuel cell (SOFC stacks drawn current caused both stacks temperature to drop by 2%. An increase of the cell voltage for the 1st and 2nd SOFC stacks led to very fast steam reformer response combined with a slight decrease in reformer temperature, while a considerable burner temperature increase of 70 K can be observed. Predictions of the model provide the basic insight into the operation of the power generation-based SOFC system during various transients and support its further design modifications.

  6. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  7. Optimal analysis of gas cooler and intercooler for two-stage CO2 trans-critical refrigeration system

    International Nuclear Information System (INIS)

    Li, Wenhua

    2013-01-01

    Highlights: • Simplified model for tube-fin gas cooler for CO 2 refrigeration system was presented and validated. • Several parameters were investigated using 1st law and 2nd law in component and system level. • Practical guidelines of optimum for tube-fin gas cooler and intercooler were proposed. - Abstract: Energy-based 1st law and exergy-based 2nd law are both employed in the paper to assess the optimal design of gas cooler and intercooler for two-stage CO 2 refrigeration system. A simplified mathematical model of the air-cooled coil is presented and validated against experimental data with good accuracy. The optimum circuit length under the influence of frontal air velocity and deep rows is investigated first. Thereafter, designed coil with optimum circuit length is further evaluated within the two-stage refrigeration system. It is found out the optimum point using 1st law does not coincide with the point using 2nd law in isolated component and the simulation results from isolated component by 2nd law are closer to system analysis. Results show optimum circuit length is much bigger for gas cooler than intercooler and the influence on the length from variation of frontal air velocity and deep rows may be neglected. There does exist optimum frontal air velocity which will decrease with more number of deep rows

  8. Experimental study on two-stage air supply downdraft gasifier and dual fuel engine system

    Energy Technology Data Exchange (ETDEWEB)

    Nhuchhen, Daya Ram; Salam, P.A. [Asian Institute of Technology, Energy Field of Study, School of Environment Resource and Development, P. O. Box 4, Klong Luang, Pathumthani (Thailand)

    2012-06-15

    Biomass is a widely used renewable energy resource with net balanced carbon dioxide absorptions and emissions. An inefficient use of solid biomass in combustion process emits more gaseous pollutants, increasing the pollution level. Biomass gasification is one of the techniques to support efficient use of biomass. Multistage gasification is a method of gasification to improve quality of the producer gas in which two separate reactors are designed for separating gasification reactions. This study presents experimental results of gasification using Eucalyptus wood in a single long cylindrical reactor with two air supply ports, i.e., primary and secondary. The effect of different air supply rates on the heating values of the producer gas was studied. Optimum primary and secondary air supply rate of 100 and 80 l/min at equivalence ratio of 0.38 was observed with producer gas lower heating value of 4.72 MJ Nm{sup -3}. The performance of a diesel engine in the dual fuel mode was also evaluated. The overall gasifier engine system efficiency was 13.86 % at an electrical load of 10.54 kW{sub e} with specific energy consumption of 16.22 MJ kWh{sup -1}. The heat recovery system was designed and tested to recover heat from producer gas in the form of hot water. (orig.)

  9. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level

    International Nuclear Information System (INIS)

    Lin, Q.G.; Huang, G.H.

    2010-01-01

    Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).

  10. Two-stage absorber systems - Economically viable combined heat and cold generation; Wirtschaftlicher Kraft-Waerme-Kaelte-Verbund

    Energy Technology Data Exchange (ETDEWEB)

    Biniossek, H. [Giesecke und Devrient, Muenchen (Germany); Schmid, W. [Technische Gebaeudeausruestung, Muenchen (Germany)

    2008-07-01

    This article takes a look at how the possibilities of optimising power, heat and cold generation for the German Giesecke and Devrient company were examined and implemented. The company, which produces banknotes and chip-cards, chose the combination of a Combined Heat and Power (CHP) Unit and a two-stage absorber refrigeration system. The company's old system is briefly described and the reasons for replacing it are discussed. The careful dimensioning of the new system and the search for appropriate equipment are described. Intelligent power flows and a cooling system with two different temperature levels are described. Costs saved and emergency power generation are also looked at, as are the complex demands placed on the control of the system. The system's functioning is briefly described.

  11. Research on the Power Recovery of Diesel Engines with Regulated Two-Stage Turbocharging System at Different Altitudes

    Directory of Open Access Journals (Sweden)

    Hualei Li

    2014-01-01

    Full Text Available Recovering the boost pressure is very important in improving the dynamic performance of diesel engines at high altitudes. A regulated two-stage turbocharging system is an adequate solution for power recovery of diesel engines. In the present study, the change of boost pressure and engine power at different altitudes was investigated, and a regulated two-stage turbocharging system was constructed with an original turbocharger and a matched low pressure turbocharger. The valve control strategies for boost pressure recovery, which formed the basis of the power recovery method, are presented here. The simulation results showed that this system was effective in recovering the boost pressure at different speeds and various altitudes. The turbine bypass valve and compressor bypass valve had different modes to adapt to changes in operating conditions. The boost pressure recovery could not ensure power recovery over the entire operating range of the diesel engine, because of variation in overall turbocharger efficiency. The fuel-injection compensation method along with the valve control strategies for boost pressure recovery was able to reach the power recovery target.

  12. A Study of a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions

    Science.gov (United States)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio

    A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.

  13. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    Science.gov (United States)

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor

    International Nuclear Information System (INIS)

    Shuxue, Xu; Guoyuan, Ma

    2014-01-01

    A thermodynamically analytical model on the two-stage compression refrigeration/heat pump system with vapor injection was derived. The optimal volume ratio of the high-pressure cylinder to the low-pressure one has been discussed under both cooling and heating conditions. Based on the above research, the prototype was developed and its experimental setup established. A comprehensive experiments for the prototype have been conducted, and the results show that, compared with the single-stage compression heat pump system, the cooling capacity and cooling COP can increase 5%–15% and 10–12%, respectively. Also, the heating capacity with the evaporating temperature ranging from 0.3 to 3 °C is 92–95% of that under the rate condition with the evaporating temperature of 7 °C, and 58% when the evaporation temperature is between −28 °C and −24 °C. -- Highlights: • The volume ratio of the compressor is between 0.65 and 0.78 and the relative vapor injection mass ranges from 15% to 20%. • The cooling capacity and COP of the two-stage compression system can improve 5%–15% and 10%–12%. • The heating capacity can also be improved under low temperature condition

  15. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    Science.gov (United States)

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  17. A Decision-making Model for a Two-stage Production-delivery System in SCM Environment

    Science.gov (United States)

    Feng, Ding-Zhong; Yamashiro, Mitsuo

    A decision-making model is developed for an optimal production policy in a two-stage production-delivery system that incorporates a fixed quantity supply of finished goods to a buyer at a fixed interval of time. First, a general cost model is formulated considering both supplier (of raw materials) and buyer (of finished products) sides. Then an optimal solution to the problem is derived on basis of the cost model. Using the proposed model and its optimal solution, one can determine optimal production lot size for each stage, optimal number of transportation for semi-finished goods, and optimal quantity of semi-finished goods transported each time to meet the lumpy demand of consumers. Also, we examine the sensitivity of raw materials ordering and production lot size to changes in ordering cost, transportation cost and manufacturing setup cost. A pragmatic computation approach for operational situations is proposed to solve integer approximation solution. Finally, we give some numerical examples.

  18. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    Science.gov (United States)

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  19. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  20. Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300x

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, A.

    2005-06-15

    In this work a rear contacted silicon concentrator cell was developed for an application in a two stage concentrator photovoltaic system. This system was developed at Fraunhofer ISE some years ago. The innovation of this one-axis tracked system is that it enables a high geometrical concentration of 300x in combination with a high optical efficiency (around 78%) and a large acceptance angle of {+-}23.5 all year through. For this, the system uses a parabolic mirror (40.4x) and a three dimensional second stage consisting of compound parabolic concentrators (CPCs, 7.7x). For the concentrator concept and particularly for an easy cell integration, the rear line contacted concentrator (RLCC) cells with a maximum efficiency of 25% were developed and a hybrid mounting concept for the RLCC cells is presented. The optical performance of different CPC materials was tested and analysed in this work. Finally, small modules consisting of six series interconnected RLCC cells and six CPCs were integrated into the concentrator system and tested outdoor. A system efficiency of 16.2% was reached at around 800 W/m2 direct irradiance under realistic outdoor conditions. (orig.)

  1. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors

    International Nuclear Information System (INIS)

    Li, H.; Dai, Y.J.; Köhler, M.; Wang, R.Z.

    2013-01-01

    Highlights: ► A solar desiccant cooling/heating system is simulation studied. ► The mean deviation is about 10.5% for temperature and 9.6% for humidity ratio. ► The 51.7% of humidity load and 76% of the total cooling can be handled. ► About 49.0% of heating load can be handled by solar energy. ► An optimization of solar air collector has been investigated. - Abstract: To increase the fraction of solar energy might be used in supplying energy for the operation of a building, a solar desiccant cooling and heating system was modeled in Simulink. First, base case performance models were programmed according to the configuration of the installed solar desiccant system and verified by the experimental data. Then, the year-round performance about the system was simulated. Last, design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. Comparison between numerical and experimental results shows good agreement. During the simulation, the humidity load for 63 days (51.7%) can be totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% can be handled by solar energy. Based on optimized results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage

  2. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio [Kogakuin University, Tokyo 163-8677 (Japan)

    2006-11-23

    A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current-voltage (I-V) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current-power (I-P) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. (author)

  3. Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli.

    Science.gov (United States)

    Nunoshiba, T

    1996-01-01

    All organisms have adapted to environmental changes by acquiring various functions controlled by gene regulation. In bacteria, a number of specific responses have been found to confer cell survival in various nutrient-limited conditions, and under physiological stresses such as high or low temperature, extreme pH, radiation, and oxidation (for review, see Neidhardt et al., 1987). In this article, I introduce an Escherichia coli (E. coli) global response induced by superoxide stress, the soxRS regulon. The functions controlled by this system consist of a wide variety of enzymes such as manganese-containing SOD (Mn-SOD); glucose 6-phosphate dehydrogenase (G6PD), the DNA repair enzyme endonuclease IV, fumarase C, NADPH:ferredoxin oxidoreductase, and aconitase. This response is positively regulated by a two-stage control system in which SoxR iron-sulfur protein senses exposure to superoxide and nitric oxide, and then activates transcription of the soxS gene, whose product stimulates the expression of the regulon genes. Our recent finding indicates that soxS transcription is initiated in a manner dependent on the rpoS gene encoding RNA polymerase sigma factor, theta s, in response to entering the stationary phase of growth. With this information, mechanisms for prokaryotic coordinating gene expression in response to superoxide stress and in stationary phase are discussed.

  4. A two-stage compound parabolic concentrator system with a large entrance over the exit aperture ratio

    International Nuclear Information System (INIS)

    Angelescu, Tatiana; Radu, A. A.

    2000-01-01

    Certain optical designs in the field of high energy gamma ray astronomy components of the Cherenkov light, collected by the mirror of telescope, be concentrated on the photo-cathodes of the photomultiplier tubes, with the help of the light collectors having large entrance and small exit apertures. Mathematical restrictions imposed by the design of the compound parabolic concentrator (CPC) implied that for a given cut-off angle and an entrance aperture, the exit aperture of the CPC should not exceed a limit value. If this value is larger than the active diameter of the photocathode, an additional concentrator must be added to the system in order to transfer the light collected, from the exit aperture of the compound parabolic concentrator to the photocathode of the photomultiplier tube. Different designs of a two-stage system composed by a a hollow compound parabolic concentrator and a solid, dielectric filled concentrator are evaluated in this paper, from the point of view of optical efficiency and manufacturability. (authors)

  5. Vibration characteristics of two-stage planetary transmission system with thin-walled ring gear on elastic supports

    Science.gov (United States)

    Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing

    2018-03-01

    A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.

  6. A two-stage approach for multi-objective decision making with applications to system reliability optimization

    International Nuclear Information System (INIS)

    Li Zhaojun; Liao Haitao; Coit, David W.

    2009-01-01

    This paper proposes a two-stage approach for solving multi-objective system reliability optimization problems. In this approach, a Pareto optimal solution set is initially identified at the first stage by applying a multiple objective evolutionary algorithm (MOEA). Quite often there are a large number of Pareto optimal solutions, and it is difficult, if not impossible, to effectively choose the representative solutions for the overall problem. To overcome this challenge, an integrated multiple objective selection optimization (MOSO) method is utilized at the second stage. Specifically, a self-organizing map (SOM), with the capability of preserving the topology of the data, is applied first to classify those Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the data envelopment analysis (DEA) is performed, by comparing the relative efficiency of those solutions, to determine the final representative solutions for the overall problem. Through this sequential solution identification and pruning process, the final recommended solutions to the multi-objective system reliability optimization problem can be easily determined in a more systematic and meaningful way.

  7. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  8. Two-stage approach for risk estimation of fetal trisomy 21 and other aneuploidies using computational intelligence systems.

    Science.gov (United States)

    Neocleous, A C; Syngelaki, A; Nicolaides, K H; Schizas, C N

    2018-04-01

    To estimate the risk of fetal trisomy 21 (T21) and other chromosomal abnormalities (OCA) at 11-13 weeks' gestation using computational intelligence classification methods. As a first step, a training dataset consisting of 72 054 euploid pregnancies, 295 cases of T21 and 305 cases of OCA was used to train an artificial neural network. Then, a two-stage approach was used for stratification of risk and diagnosis of cases of aneuploidy in the blind set. In Stage 1, using four markers, pregnancies in the blind set were classified into no risk and risk. No-risk pregnancies were not examined further, whereas the risk pregnancies were forwarded to Stage 2 for further examination. In Stage 2, using seven markers, pregnancies were classified into three types of risk, namely no risk, moderate risk and high risk. Of 36 328 unknown to the system pregnancies (blind set), 17 512 euploid, two T21 and 18 OCA were classified as no risk in Stage 1. The remaining 18 796 cases were forwarded to Stage 2, of which 7895 euploid, two T21 and two OCA cases were classified as no risk, 10 464 euploid, 83 T21 and 61 OCA as moderate risk and 187 euploid, 50 T21 and 52 OCA as high risk. The sensitivity and the specificity for T21 in Stage 2 were 97.1% and 99.5%, respectively, and the false-positive rate from Stage 1 to Stage 2 was reduced from 51.4% to ∼1%, assuming that the cell-free DNA test could identify all euploid and aneuploid cases. We propose a method for early diagnosis of chromosomal abnormalities that ensures that most T21 cases are classified as high risk at any stage. At the same time, the number of euploid cases subjected to invasive or cell-free DNA examinations was minimized through a routine procedure offered in two stages. Our method is minimally invasive and of relatively low cost, highly effective at T21 identification and it performs better than do other existing statistical methods. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright

  9. Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems

    Directory of Open Access Journals (Sweden)

    Jaime Rodrigo Navarro

    2016-06-01

    Full Text Available A novel two-stage n-PSK partitioning carrier phase recovery (CPR scheme for circular multilevel quadrature amplitude modulation (C-mQAM constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 × 10−3 and 1 × 10−2 and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product (ΔνTs tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the ΔνTs tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C-16QAM back-to-back transmission system. The computational complexity of the proposed CPR scheme is studied, and reduction factors of 24.5 | 30.1 and 59.1 | 63.3 are achieved for C-16QAM and C-64QAM, respectively, compared to single-stage BPS in the form of multipliers | adders.

  10. Two-stage cross-talk mitigation in an orbital-angular-momentum-based free-space optical communication system.

    Science.gov (United States)

    Qu, Zhen; Djordjevic, Ivan B

    2017-08-15

    We propose and experimentally demonstrate a two-stage cross-talk mitigation method in an orbital-angular-momentum (OAM)-based free-space optical communication system, which is enabled by combining spatial offset and low-density parity-check (LDPC) coded nonuniform signaling. Different from traditional OAM multiplexing, where the OAM modes are centrally aligned for copropagation, the adjacent OAM modes (OAM states 2 and -6 and OAM states -2 and 6) in our proposed scheme are spatially offset to mitigate the mode cross talk. Different from traditional rectangular modulation formats, which transmit equidistant signal points with uniform probability, the 5-quadrature amplitude modulation (5-QAM) and 9-QAM are introduced to relieve cross-talk-induced performance degradation. The 5-QAM and 9-QAM formats are based on the Huffman coding technique, which can potentially achieve great cross-talk tolerance by combining them with corresponding nonbinary LDPC codes. We demonstrate that cross talk can be reduced by 1.6 dB and 1 dB via spatial offset for OAM states ±2 and ±6, respectively. Compared to quadrature phase shift keying and 8-QAM formats, the LDPC-coded 5-QAM and 9-QAM are able to bring 1.1 dB and 5.4 dB performance improvements in the presence of atmospheric turbulence, respectively.

  11. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  12. High performance work systems and employee well-being: a two stage study of a rural Australian hospital.

    Science.gov (United States)

    Young, Suzanne; Bartram, Timothy; Stanton, Pauline; Leggat, Sandra G

    2010-01-01

    This paper aims to explore the attitudes of managers and employees to high performance work practices (HPWS) in a medium sized rural Australian hospital. The study consists of two stages. Stage one involved a qualitative investigation consisting of interviews and focus group sessions with senior, middle and line management at the hospital. Bowen and Ostroffs framework was used to examine how strategic HRM was understood, interpreted and operationalised across the management hierarchy. Stage one investigates the views of managers concerning the implementation of strategic HRM/HPWS. Stage two consisted of a questionnaire administered to all hospital employees. The mediation effects of social identification on the relationship between high performance work systems and affective commitment and job satisfaction are examined. The purpose of stage two was to investigate the views and effects of SHRM/HPWS on employees. It should be noted that HPWS and strategic HRM are used inter-changeably in this paper. At the management level the importance of distinctiveness, consistency and consensus in the interpretation of strategic HRM/HPWS practices across the organization was discovered. Findings indicate that social identification mediates the relationship between HPWS and affective commitment and also mediates the relationship between HPWS and job satisfaction. High performance work systems may play a crucial role facilitating social identification at the unit level. Such practices and management support is likely to provide benefits in terms of high performing committed employees. The paper argues that team leaders and managers play a key role in building social identification within the team and that organizations need to understand this role and provide recognition, reward, education and support to their middle and lower managers.

  13. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Grigoras, Ionela; Jensen, Claus Uhrenholt

    2017-01-01

    unit. In total, 100 kg of wood paste with 25% dry matter is processed at 400 °C and 30 MPa, demonstrating the usefulness of this two-stage liquefaction strategy. An additional advantage liquefaction of such pretreated wood shows increased biocrude yields with approximately 10% compared to the case...

  14. An anaerobic bioreactor system for biobutanol production

    Energy Technology Data Exchange (ETDEWEB)

    Paekkilae, J.; Hillukkala, T.; Myllykoski, L.; Keiski, R.L. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: johanna.pakkila@oulu.fi

    2009-07-01

    Concerns about the greenhouse effect, as well as legislation to reduce CO{sub 2} emissions and to increase the use of renewable energy have been the main reasons for the increased production and use of biofuels. In addition to bioethanol and biodiesel production, the research on biobutanol production has also increased during the past years. Butanol can be produced by chemical or biochemical routes. Fuel properties of butanol are considered to be superior to ethanol because of higher energy content, and better air-to-fuel ratio. Butanol is also less volatile and explosive than ethanol, has higher flash point and lower vapour pressure which makes it safer to handle. Biobutanol production is an anaerobic two-stage fermentation process where acetic and butyric acids, carbon dioxide and hydrogen are first produced in the acidogenic phase. Then the culture undergoes metabolic shift to solventogenic phase and acids are converted into acetone, ethanol and butanol. At the end of the fermentation, products are recovered from the cell mass, other suspended solids, and by-products. Several species of Clostridium bacteria are capable to metabolize different sugars, amino and organic acids, polyalcohols and other organic compounds to butanol and other solvents. Feedstock materials for biobutanol are diverse, including different kind of by-products, wastes and residues of agriculture and industry. Optimal fermentation conditions (pH, temperature, nutrients), products and their ratio vary with strains and substrates used. Biobutanol production has still some limitations including butanol toxicity to culture leading to low butanol yields. The product inhibition hinders the yield of butanol and acids, making integrated product separation process highly favorable. Butanol recovery from fermentation broth is expensive because of the low butanol concentration and high boiling point (118 degC). Several different recovery methods are available. Membrane-based methods such as membrane

  15. Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios.

    Science.gov (United States)

    Lei, Zhongfang; Wu, Ting; Zhang, Yi; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong; Tay, Joo-Hwa

    2013-01-01

    Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l(-1). This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN>100 mg l(-1) and of chemical oxygen demand (COD)/TN ratio of 3.2-8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m(3) m(-2) d(-1) for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m(3) m(-2) d(-1) of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  17. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    Science.gov (United States)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  18. Two-Stage Battery Energy Storage System (BESS in AC Microgrids with Balanced State-of-Charge and Guaranteed Small-Signal Stability

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2018-02-01

    Full Text Available In this paper, a two-stage battery energy storage system (BESS is implemented to enhance the operation condition of conventional battery storage systems in a microgrid. Particularly, the designed BESS is composed of two stages, i.e., Stage I: integration of dispersed energy storage units (ESUs using parallel DC/DC converters, and Stage II: aggregated ESUs in grid-connected operation. Different from a conventional BESS consisting of a battery management system (BMS and power conditioning system (PCS, the developed two-stage architecture enables additional operation and control flexibility in balancing the state-of-charge (SoC of each ESU and ensures the guaranteed small-signal stability, especially in extremely weak grid conditions. The above benefits are achieved by separating the control functions between the two stages. In Stage I, a localized power sharing scheme based on the SoC of each particular ESU is developed to manage the SoC and avoid over-charge or over-discharge issues; on the other hand, in Stage II, an additional virtual impedance loop is implemented in the grid-interactive DC/AC inverters to enhance the stability margin with multiple parallel-connected inverters integrating at the point of common coupling (PCC simultaneously. A simulation model based on MATLAB/Simulink is established, and simulation results verify the effectiveness of the proposed BESS architecture and the corresponding control diagram.

  19. Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems

    DEFF Research Database (Denmark)

    Rodrigo Navarro, Jaime; Kakkar, Aditya; Pang, Xiaodan

    2016-01-01

    (ΔνTs) tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the ΔνTs tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C......A novel two-stage n-PSK partitioning carrier phase recovery (CPR) scheme for circular multilevel quadrature amplitude modulation (C-mQAM) constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second...... stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 × 10−3 and 1 × 10−2 and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product...

  20. Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach.

    Science.gov (United States)

    Wang, Mingming; Sun, Yuanxiang; Sweetapple, Chris

    2017-12-15

    Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes.

    Science.gov (United States)

    Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2017-10-01

    The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.

  2. Bioremediation of storage tank bottom sludge by using a two-stage composting system: Effect of mixing ratio and nutrients addition.

    Science.gov (United States)

    Koolivand, Ali; Rajaei, Mohammad Sadegh; Ghanadzadeh, Mohammad Javad; Saeedi, Reza; Abtahi, Hamid; Godini, Kazem

    2017-07-01

    The effect of mixing ratio and nutrients addition on the efficiency of a two-stage composting system in removal of total petroleum hydrocarbons (TPH) from storage tank bottom sludge (STBS) was investigated. The system consisted of ten windrow piles as primary composting (PC) followed by four in-vessel reactors as secondary composting (SC). Various initial C/N/P and mixing ratios of STBS to immature compost (IC) were examined in the PC and SC for 12 and 6weeks, respectively. The removal rates of TPH in the two-stage system (93.72-95.24%) were higher than those in the single-stage one. Depending on the experiments, TPH biodegradation fitted to the first- and second-order kinetics with the rate constants of 0.051-0.334d -1 and 0.002-0.165gkg -1 d -1 , respectively. The bacteria identified were Pseudomonas sp., Bacillus sp., Klebsiella sp., Staphylococcus sp., and Proteus sp. The study verified that a two-stage composting system is effective in treating the STBS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PERIODIC REVIEW SYSTEM FOR INVENTORY REPLENISHMENT CONTROL FOR A TWO-ECHELON LOGISTICS NETWORK UNDER DEMAND UNCERTAINTY: A TWO-STAGE STOCHASTIC PROGRAMING APPROACH

    OpenAIRE

    Cunha, P.S.A.; Oliveira, F.; Raupp, Fernanda M.P.

    2017-01-01

    ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which a...

  4. Production of acids and alcohols from syngas in a two-stage continuous fermentation process.

    Science.gov (United States)

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian

    2018-04-01

    A two-stage continuous system with two stirred tank reactors in series was utilized to perform syngas fermentation using Clostridium carboxidivorans. The first bioreactor (bioreactor 1) was maintained at pH 6 to promote acidogenesis and the second one (bioreactor 2) at pH 5 to stimulate solventogenesis. Both reactors were operated in continuous mode by feeding syngas (CO:CO 2 :H 2 :N 2 ; 30:10:20:40; vol%) at a constant flow rate while supplying a nutrient medium at different flow rates of 8.1, 15, 22 and 30 ml/h. A cell recycling unit was added to bioreactor 2 in order to recycle the cells back to the reactor, maintaining the OD 600 around 1 in bioreactor 2 throughout the experimental run. When comparing the flow rates, the best results in terms of solvent production were obtained with a flow rate of 22 ml/h, reaching the highest average outlet concentration for alcohols (1.51 g/L) and the most favorable alcohol/acid ratio of 0.32. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Cost-Effective Power Ramp-Rate Control Strategy for Single-Phase Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    In the case of a wide-scale adoption of grid-connected Photovoltaic (PV) systems, more fluctuated power will be injected into the grid due to the intermittency of solar PV energy. A sudden change in the PV power can potentially induce grid voltage fluctuations, and thus challenge the stability......-point. Experiments conducted on a 3-kW single-phase two-stage grid-connected PV system have verified that the proposed solution can accomplish fast dynamics, high accuracy, and high robustness in the power ramp-rate control for PV systems....

  6. An Enhanced Droop Control Scheme for Resilient Active Power Sharing in Paralleled Two-Stage PV Inverter Systems

    DEFF Research Database (Denmark)

    Liu, Hongpeng; Yang, Yongheng; Wang, Xiongfei

    2016-01-01

    Traditional droop-controlled systems assume that the generators are able to provide sufficient power as required. This is however not always true, especially in renewable systems, where the energy sources (e.g., photovoltaic source) may not be able to provide enough power (or even loss of power...... generation) due to the intermittency. In that case, unbalance in active power generation may occur among the paralleled systems. Additionally, most droop-controlled systems have been assumed to be a single dc-ac inverter with a fixed dc input source. The dc-dc converter as the front-end of a two...

  7. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    Science.gov (United States)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  8. Oil flooded compression cycle enhancement for two-stage heat pump in cold climate region: System design and theoretical analysis

    International Nuclear Information System (INIS)

    Luo, Baojun

    2016-01-01

    Highlights: • COP of proposed system improves up to 17.2% compared with vapor injection cycle. • Discharge temperature of proposed system is largely decreased. • Proposed system is beneficial for refrigerant with high compression heat. • Proposed system has potential for applications in cold climate heat pump. - Abstract: In order to improve the performance of air source heat pump in cold climate region, a combined oil flooded compression with regenerator and vapor injection cycle system is suggested in this paper, which integrates oil flooded compression with regenerator into a conventional vapor injection cycle. A mathematical model is developed and parametric studies on this cycle are conducted to evaluate the benefits of the novel system. The performances of the novel system using R410A and R32 are compared with those of vapor injection cycle system. The improvement of coefficient of performance (COP) can reach up to nearly 9% based on the same isentropic efficiency, while 17.2% based on assumption that there is a 10% rise in isentropic efficiency brought by oil flooded compression cycle. The heating capacity is reduced by 8–18% based on the same volumetric efficiency, while could be less than 10% in a practical system. The discharge temperature is largely decreased and can be below 100 °C at −40 °C T_e and 50 °C T_c condition for R32. The theoretical results demonstrate this novel heat pump has a high potential for improving the performance of air source heat pump in cold climate region.

  9. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  10. A thermal packed-bed reactor and a silent discharge plasma cell for a two-stage treatment system

    International Nuclear Information System (INIS)

    Godoy-Cabrera, O G; Lopez-Callejas, R; Mercado-Cabrera, A; Barocio, S R; Valencia, R; Munoz-Castro, A; Eguiluz, R Pena; Piedad-Beneitez, A de la

    2006-01-01

    Dielectric barrier discharge cells (DBDCs) have proved their efficiency in the generation of cold plasmas for hazardous organic compound degradation. Here, we describe the design and construction of a dual thermal packed-bed reactor and DBDC-based system to carry out the degradation of hazardous organic compounds in both liquid and gas phases. The main components of this system are: (i) the thermal treatment system (ii) DBDC and (iii) resonant inverters of low (3.3 kHz) and high (100 kHz) calculated frequencies. The definition of the cell physical parameters considers: (a) a first-order degradation ratio of the compound and (b) the air breakdown at atmospheric pressure as a function of the transport carrier gas. The power consumed by the cells during the discharges was computed theoretically and experimentally. Using the dual system along with a gas chromatography diagnostic system, highly efficient degradations of a test compound (benzene) have been obtained, reaching 99.950% in the case of a cell experimentally operated at 3.3 kHz and up to 99.996% in another one at 94.3 kHz. An additional 3.7 times reduction in the latter case residence time with respect to the low frequency cell has been found

  11. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    International Nuclear Information System (INIS)

    Vergara-Fernandez, Alberto; Vargas, Gisela; Alarcon, Nelson; Velasco, Antonio

    2008-01-01

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g -1 dry algae d -1 , with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system

  12. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  13. Ultra-micro aqua bioreactor systems for modifying edible oils and fats; Shokuyo yushi kaishitsuyo chobisuikei bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. [Ajinomoto Co. Inc., Tokyo (Japan)

    1995-10-20

    Practical solvent-free bioreactor systems using immobilized lipases have been constructed to convert palm oil to high quality foodstuff oil without quality deterioration through hydrolysis of triglycerides in oil. To avoid hydrolysis, moisture level of substrate oil has to be maintained at less than the solubility level of water in oil, which we call ultra-micro aqueous level. On the other hand, lipase is well known to manifest its activities mostly at the interface between oil and water phases. To make lipase manifest its activities at the ultra-micro aqueous oil phase, the novel bioreactor systems with the new immobilizing method of lipase together with activator on-to hydrophylic carriers, and without a drying procedure have been developed. These biochemical accomplishments show high promises for efficient convention of edible fats and oils to highly valuable foodstuff, which can not be attained by means of chemical or physical methods. 29 refs., 9 figs., 4 tabs.

  14. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  16. Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura

    An innovative method for biogas upgrading (i.e. CH4 content more than 90%) combines the coupling of H2, which could be produced by water electrolysis using surplus renewable electricity produced from wind mills, with the CO2 of the biogas. CO2 is biologically converted to CH4 by hydrogenotrophic....... It was shown that after the H2 addition, the CH4 rate increased by 45%, resulting in an average CH4 content of approximately 85%, with a maximum of 93.9%. The increase of the pH to 8.5, due to the CO2 conversion, was not an inhibitory factor, demonstrating the adaptation of microorganisms to these pH levels...... methanogens. In this study, a novel serial biogas reactor system is presented, in which the produced biogas from the first stage reactor was introduced in the second stage, where also H2 was injected. The effects of the H2 addition on the process performance and on the microbial community were investigated...

  17. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  18. Two stages of economic development

    OpenAIRE

    Gong, Gang

    2016-01-01

    This study suggests that the development process of a less-developed country can be divided into two stages, which demonstrate significantly different properties in areas such as structural endowments, production modes, income distribution, and the forces that drive economic growth. The two stages of economic development have been indicated in the growth theory of macroeconomics and in the various "turning point" theories in development economics, including Lewis's dual economy theory, Kuznet...

  19. Production of poly-beta-hydroxybutyric acid by microorganisms accumulated from river water using a two-stage perfusion culture system.

    Science.gov (United States)

    Morimoto, T; Tashiro, F; Nagashima, H; Nishizawa, K; Nagata, F; Yokogawa, Y; Suzuki, T

    2000-01-01

    The perfusion culture system using a shaken ceramic membrane flask (SCMF) was employed to accumulate microorganisms separated from river water and to produce poly-beta-hydroxybutyric acid (PHB). Using a two-step culture method with a single SCMF, river microorganisms were cultured by separately feeding four representative carbon sources, n-propanol, lactic acid, methanol, and formic acid. After 140 h culture, the cell concentration and PHB content respectively reached 43 g/l and 35% when a propanol medium was fed. Using a two-stage perfusion culture with twin SCMFs, the seed cell mass was increased in the first SCMF and then supplied to the second flask for PHB production. As a consequence, the cellular PHB content rose to 51% in the second SCMF, while the cell concentration gradually increased to 25 g/l after 175 h perfusion culture. These results demonstrated the utility of the two-stage perfusion culture system for developing a cheap means of producing PHB coincident with wastewater treatment.

  20. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... point tracking controller without significant hardware or software modifications. In this way, the PV system will not operate at the maximum power point, whereas the inverter will not face any over-current challenge but can provide reactive power support in response to the grid voltage fault...

  1. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system

    International Nuclear Information System (INIS)

    Bao, Junjiang; Lin, Yan; Zhang, Ruixiang; Zhang, Ning; He, Gaohong

    2017-01-01

    Highlights: • A two-stage condensation Rankine cycle (TCRC) system is proposed. • Net power output and thermal efficiency increases by 45.27% and 42.91%. • The effects of the condensation temperatures are analyzed. • 14 working fluids (such as propane, butane etc.) are compared. - Abstract: For the low efficiency of the traditional power generation system with liquefied natural gas (LNG) cold energy utilization, by improving the heat transfer characteristic between the working fluid and LNG, this paper has proposed a two-stage condensation Rankine cycle (TCRC) system. Using propane as working fluid, compared with the combined cycle in the conventional LNG cold energy power generation method, the net power output, thermal efficiency and exergy efficiency of the TCRC system are respectively increased by 45.27%, 42.91% and 52.31%. Meanwhile, the effects of the first-stage and second-stage condensation temperature and LNG vaporization pressure on the performance and cost index of the TCRC system (net power output, thermal efficiency, exergy efficiency and UA) are analyzed. Finally, using the net power output as the objective function, with 14 organic fluids (such as propane, butane etc.) as working fluids, the first-stage and second-stage condensation temperature at different LNG vaporization pressures are optimized. The results show that there exists a first-stage and second-stage condensation temperature making the performance of the TCRC system optimal. When LNG vaporization pressure is supercritical pressure, R116 has the best economy among all the investigated working fluids, and while R150 and R23 are better when the vaporization pressure of LNG is subcritical.

  2. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  3. Two-Stage Control Design of a Buck Converter/DC Motor System without Velocity Measurements via a Σ−Δ-Modulator

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2013-01-01

    differential flatness property of the DC-motor model is exploited in order to propose a first-stage controller, which is designed to achieve the desired angular velocity trajectory. This controller provides the voltage profiles that must be tracked by the Buck converter. Then, a second-stage controller is meant to assure the aforementioned. This controller is based on flatness property of the Buck power converter model, which provides the input voltage to the DC motor. Due to the fact that the two-stage controller proposed uses the average model of the system, as a practical and effective implementation of this controller, a Σ − Δ-modulator is employed. Finally, in order to verify the control performance of this approach, numerical simulations are included.

  4. PERIODIC REVIEW SYSTEM FOR INVENTORY REPLENISHMENT CONTROL FOR A TWO-ECHELON LOGISTICS NETWORK UNDER DEMAND UNCERTAINTY: A TWO-STAGE STOCHASTIC PROGRAMING APPROACH

    Directory of Open Access Journals (Sweden)

    P.S.A. Cunha

    Full Text Available ABSTRACT Here, we propose a novel methodology for replenishment and control systems for inventories of two-echelon logistics networks using a two-stage stochastic programming, considering periodic review and uncertain demands. In addition, to achieve better customer services, we introduce a variable rationing rule to address quantities of the item in short. The devised models are reformulated into their deterministic equivalent, resulting in nonlinear mixed-integer programming models, which are then approximately linearized. To deal with the uncertain nature of the item demand levels, we apply a Monte Carlo simulation-based method to generate finite and discrete sets of scenarios. Moreover, the proposed approach does not require restricted assumptions to the behavior of the probabilistic phenomena, as does several existing methods in the literature. Numerical experiments with the proposed approach for randomly generated instances of the problem show results with errors around 1%.

  5. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2018-01-01

    Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H 2 and CH 4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H 2 and 15d for CH 4 . Overall, around 59% of the total COD in FW was converted into H 2 (4%) and into CH 4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H 2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.

  6. A novel two-stage evaluation system based on a Group-G1 approach to identify appropriate emergency treatment technology schemes in sudden water source pollution accidents.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; Hu, Qi; You, Hong

    2016-02-01

    Sudden water source pollution resulting from hazardous materials has gradually become a major threat to the safety of the urban water supply. Over the past years, various treatment techniques have been proposed for the removal of the pollutants to minimize the threat of such pollutions. Given the diversity of techniques available, the current challenge is how to scientifically select the most desirable alternative for different threat degrees. Therefore, a novel two-stage evaluation system was developed based on a circulation-correction improved Group-G1 method to determine the optimal emergency treatment technology scheme, considering the areas of contaminant elimination in both drinking water sources and water treatment plants. In stage 1, the threat degree caused by the pollution was predicted using a threat evaluation index system and was subdivided into four levels. Then, a technique evaluation index system containing four sets of criteria weights was constructed in stage 2 to obtain the optimum treatment schemes corresponding to the different threat levels. The applicability of the established evaluation system was tested by a practical cadmium-contaminated accident that occurred in 2012. The results show this system capable of facilitating scientific analysis in the evaluation and selection of emergency treatment technologies for drinking water source security.

  7. Experimental evaluation of desuperheating and oil cooling process through liquid injection in two-staged ammonia refrigeration systems with screw compressors

    International Nuclear Information System (INIS)

    Zlatanović, Ivan; Rudonja, Nedžad

    2012-01-01

    This paper examines the problem of achieving desuperheating through liquid injection in two-staged refrigeration systems based on screw compressors. The oil cooling process by refrigerant injection is also included. The basic thermodynamic principles of desuperheating and compressor cooling as well as short comparison with traditional method with a thermosyphon system have also been presented. Finally, the collected data referring to a big refrigeration plant are analyzed in the paper. Specific ammonia system concept applied in this refrigeration plant has demonstrated its advantages and disadvantages. - Highlights: ► An experiment was setup during a frozen food factory refrigeration system reconstruction and adaptation. ► Desuperheating and low-stage compressors oil cooling process were investigated. ► Efficiency of compression process and high-stage compressors functioning were examined. ► Evaporation temperature reduction has great influence on the need for injected liquid refrigerant. ► Several cases in which desuperheating and oil cooling process application are justified were determined.

  8. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge.

    Science.gov (United States)

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi

    2017-11-30

    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.

  9. Investigation on a two-stage solar liquid-desiccant (LiBr) dehumidification system assisted by CaCl2 solution

    International Nuclear Information System (INIS)

    Xiong, Z.Q.; Dai, Y.J.; Wang, R.Z.

    2009-01-01

    A two-stage solar powered liquid-desiccant dehumidification system, for which two kinds of desiccant solution (lithium chloride and calcium bromide) are fed to the two dehumidification stages separately, has been studied. In the studied system air moisture (latent) load is separately removed by a pre-dehumidifier using cheap calcium chloride (CaCl 2 ) and a main dehumidifier using stable lithium bromide (LiBr). Side-effect of mixing heat rejected during dehumidification process is considerably alleviated by an indirect evaporative cooling unit added between the two dehumidification stages. The feasibility of high-desiccant concentration difference achieved by reusing desiccant solution to dehumidify air and regenerating desiccant repeatedly is analyzed. By increasing desiccant concentration difference, desiccant storage capacity is effectively explored. It is found that the pre-dehumidification effect of CaCl 2 solution is significant in high ambient humidity condition. Also seen is that the desiccant investment can be decreased by 53%, though the cost of equipments is somewhat increased, and the Tcop and COP of the proposed system can reach 0.97 and 2.13, respectively

  10. Two-stage precipitation of plutonium trifluoride

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1984-04-01

    Plutonium trifluoride was precipitated using a two-stage precipitation system. A series of precipitation experiments identified the significant process variables affecting precipitate characteristics. A mathematical precipitation model was developed which was based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter that can be used to control particle characteristics

  11. Two-Stage Series-Resonant Inverter

    Science.gov (United States)

    Stuart, Thomas A.

    1994-01-01

    Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.

  12. Control scheme towards enhancing power quality and operational efficiency of single-phase two-stage grid-connected photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Salem

    2015-12-01

    Full Text Available Achieving high reliable grid-connected photovoltaic (PV systems with high power quality and high operation efficiency is highly required for distributed generation units. A double grid-frequency voltage ripple is found on the dc-link voltage in single-phase photovoltaic grid-connected systems due to the unbalance of the instantaneous dc input and ac output powers. This voltage ripple has undesirable effects on the power quality and operational efficiency of the whole system. Harmonic distortion in the injected current to the grid is one of the problems caused by this double grid-frequency voltage ripple. The double grid frequency ripple propagates to the PV voltage and current which disturb the extracted maximum power from the PV array. This paper introduces intelligent solutions towards mitigate the side effects of the double grid-frequency voltage ripple on the transferred power quality and the operational efficiency of single-phase two-stage grid-connected PV system. The proposed system has three control loops: MPPT control loop, dc-link voltage control loop and inverter current control loop. Solutions are introduced for all the three control loops in the system. The current controller cancels the dc-link voltage effect on the total harmonic distortion of the output current. The dc-link voltage controller is designed to generate a ripple free reference current signal that leads to enhance the quality of the output power. Also a modified MPPT controller is proposed to optimize the extracted power from the PV array. Simulation results show that higher injected power quality is achieved and higher efficiency of the overall system is realized.

  13. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2014-09-01

    A two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophilic conditions (37°C) were used to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production. The acidogenic reactor was fed with a mixture consisting of olive mill wastewater, cheese whey and liquid cow manure (in a ratio 55:40:5, v/v/v) and operated at five different HRTs (5, 3, 2, 1 and 0.75 d) aiming to evaluate hydrogen productivity and operational stability. The highest system efficiency was achieved at HRT 0.75 d with a maximum hydrogen production rate of 1.72 L/LRd and hydrogen yield of 0.54 mol H2/mol carbohydrates consumed. The methanogenic reactor was operated at HRTs 20 and 25 d with better stability observed at HRT 25 d, whereas accumulation of volatile fatty acids took place at HRT 20 d. The methane production rate at the steady state of HRT 25 d reached 0.33 L CH4/LRd. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  15. Two-stage nonrecursive filter/decimator

    International Nuclear Information System (INIS)

    Yoder, J.R.; Richard, B.D.

    1980-08-01

    A two-stage digital filter/decimator has been designed and implemented to reduce the sampling rate associated with the long-term computer storage of certain digital waveforms. This report describes the design selection and implementation process and serves as documentation for the system actually installed. A filter design with finite-impulse response (nonrecursive) was chosen for implementation via direct convolution. A newly-developed system-test statistic validates the system under different computer-operating environments

  16. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Yen Tzu-Hsiang; Chen Bao-Dong [Refining and Manufacturing Research Institute, CPC Corporation, Chia-Yi City 60036, Taiwan (China); Hong Wen-Tang; Tsai Yu-Ching; Wang Hung-Yu; Huang Cheng-Nan; Lee Chien-Hsiung [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546, Taiwan (China)

    2010-07-01

    Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC) system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2--6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively), but increases to 2--9 kW and 2.6--11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5--16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  17. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  18. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system

    International Nuclear Information System (INIS)

    Johnson, D. Barrie; Hallberg, Kevin B.

    2005-01-01

    The compost bioreactor ('anaerobic cell') components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  19. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    Science.gov (United States)

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    The compost bioreactor ("anaerobic cell") components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  20. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  1. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  2. A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system

    International Nuclear Information System (INIS)

    Azadeh, A.; Maleki Shoja, B.; Ghanei, S.; Sheikhalishahi, M.

    2015-01-01

    This research investigates a redundancy-scheduling optimization problem for a multi-state series parallel system. The system is a flow shop manufacturing system with multi-state machines. Each manufacturing machine may have different performance rates including perfect performance, decreased performance and complete failure. Moreover, warm standby redundancy is considered for the redundancy allocation problem. Three objectives are considered for the problem: (1) minimizing system purchasing cost, (2) minimizing makespan, and (3) maximizing system reliability. Universal generating function is employed to evaluate system performance and overall reliability of the system. Since the problem is in the NP-hard class of combinatorial problems, genetic algorithm (GA) is used to find optimal/near optimal solutions. Different test problems are generated to evaluate the effectiveness and efficiency of proposed approach and compared to simulated annealing optimization method. The results show the proposed approach is capable of finding optimal/near optimal solution within a very reasonable time. - Highlights: • A redundancy-scheduling optimization problem for a multi-state series parallel system. • A flow shop with multi-state machines and warm standby redundancy. • Objectives are to optimize system purchasing cost, makespan and reliability. • Different test problems are generated and evaluated by a unique genetic algorithm. • It locates optimal/near optimal solution within a very reasonable time

  3. Model system studies with a phase separated membrane bioreactor

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  4. Phase separated membrane bioreactor - Results from model system studies

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.

  5. Phase separated membrane bioreactor: Results from model system studies

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  6. Recovery and biological oxidation of dissolved methane in effluent from UASB treatment of municipal sewage using a two-stage closed downflow hanging sponge system.

    Science.gov (United States)

    Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi

    2015-03-15

    A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Two stage turbine for rockets

    Science.gov (United States)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  9. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  10. Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes

    Directory of Open Access Journals (Sweden)

    Maria Crespo

    2017-08-01

    Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

  11. Micro propagation of Stevia rebaudiana Bertoni through temporary immersion bioreactor system

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim; Nur Hidayah Sajahan; Siti Maryam Mohd Nahar; Siti Hajar Mohd Nahar

    2012-01-01

    Stevia rebaudiana Bertoni is a perennial herb that belongs to the family of Asteraceae. It is a natural sweetener plant known as sweet leaf, which is estimated to be 300 times sweeter than cane sugar. In this study, micro propagation of this natural herb via temporary immersion bioreactor system was successfully conducted. Shoot tips and nodal segment were used as explants to induce multiply shoots. It was found that shoot tips on MS medium supplemented with 1 mg/l Kinetin showed the highest shoot multiplication after 3 weeks of culture. Shoot elongation and rooting was successfully optimized in MS basal medium 2 weeks later. Mass propagation of stevia shoots were carried out in temporary immersion bioreactor and this system showed promising potential as an alternative approach for rapid and continuous production of in vitro stevia plantlets. (author)

  12. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  13. Low-cost sensor system for non-invasive monitoring of cell growth in disposable bioreactors

    OpenAIRE

    Reinecke, Tobias; Biechele, Philipp; Schulte, V.; Scheper, Thomas; Zimmermann, Stefan

    2015-01-01

    To ensure productivity and product quality, the parameters of biotechnological processes need to be monitored. Along temperature or pH, one important parameter is the cell density in the culture medium. In this work, we present a low-cost sensor system for online cell growth monitoring in bioreactors via permittivity measurements based on coplanar transmission lines. To evaluate the sensor, E. coli cultivations are performed. We found a good correlation between optical density of the culture ...

  14. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. A two-stage planning and control model toward Economically Adapted Power Distribution Systems using analytical hierarchy processes and fuzzy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schweickardt, Gustavo [Instituto de Economia Energetica, Fundacion Bariloche, Centro Atomico Bariloche - Pabellon 7, Av. Bustillo km 9500, 8400 Bariloche (Argentina); Miranda, Vladimiro [INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto and FEUP, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 378, 4200-465 Porto (Portugal)

    2009-07-15

    This work presents a model to evaluate the Distribution System Dynamic De-adaptation respecting its planning for a given period of Tariff Control. The starting point for modeling is brought about by the results from a multi-criteria method based on Fuzzy Dynamic Programming and on Analytic Hierarchy Processes applied in a mid/short-term horizon (stage 1). Then, the decision-making activities using the Hierarchy Analytical Processes will allow defining, for a Control of System De-adaptation (stage 2), a Vector to evaluate the System Dynamic Adaptation. It is directly associated to an eventual series of inbalances that take place during its evolution. (author)

  16. Massive parallel optical pattern recognition and retrieval via a two-stage high-capacity multichannel holographic random access memory system

    International Nuclear Information System (INIS)

    Cai, Luzhong; Liu, Hua-Kuang

    2000-01-01

    The multistage holographic optical random access memory (HORAM) system reported recently by Liu et al. provides a new degree of freedom for improving storage capacity. We further present a theoretical and practical analysis of the HORAM system with experimental results. Our discussions include the system design and geometrical requirements, its applications for multichannel pattern recognition and associative memory, the 2-D and 3-D information storage capacity, and multichannel image storage and retrieval via VanderLugt correlator (VLC) filters and joint transform holograms. A series of experiments are performed to demonstrate the feasibility of the multichannel pattern recognition and image retrieval with both the VLC and joint transform correlator (JTC) architectures. The experimental results with as many as 2025 channels show good agreement with the theoretical analysis. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  17. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  18. The implementation of two stages clustering (k-means clustering and adaptive neuro fuzzy inference system) for prediction of medicine need based on medical data

    Science.gov (United States)

    Husein, A. M.; Harahap, M.; Aisyah, S.; Purba, W.; Muhazir, A.

    2018-03-01

    Medication planning aim to get types, amount of medicine according to needs, and avoid the emptiness medicine based on patterns of disease. In making the medicine planning is still rely on ability and leadership experience, this is due to take a long time, skill, difficult to obtain a definite disease data, need a good record keeping and reporting, and the dependence of the budget resulted in planning is not going well, and lead to frequent lack and excess of medicines. In this research, we propose Adaptive Neuro Fuzzy Inference System (ANFIS) method to predict medication needs in 2016 and 2017 based on medical data in 2015 and 2016 from two source of hospital. The framework of analysis using two approaches. The first phase is implementing ANFIS to a data source, while the second approach we keep using ANFIS, but after the process of clustering from K-Means algorithm, both approaches are calculated values of Root Mean Square Error (RMSE) for training and testing. From the testing result, the proposed method with better prediction rates based on the evaluation analysis of quantitative and qualitative compared with existing systems, however the implementation of K-Means Algorithm against ANFIS have an effect on the timing of the training process and provide a classification accuracy significantly better without clustering.

  19. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    Directory of Open Access Journals (Sweden)

    Martin Čížek

    2014-01-01

    Full Text Available A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more with the relative stability better than 1.6 × 10−11.

  20. Sensitivity Analysis in Two-Stage DEA

    Directory of Open Access Journals (Sweden)

    Athena Forghani

    2015-07-01

    Full Text Available Data envelopment analysis (DEA is a method for measuring the efficiency of peer decision making units (DMUs which uses a set of inputs to produce a set of outputs. In some cases, DMUs have a two-stage structure, in which the first stage utilizes inputs to produce outputs used as the inputs of the second stage to produce final outputs. One important issue in two-stage DEA is the sensitivity of the results of an analysis to perturbations in the data. The current paper looks into combined model for two-stage DEA and applies the sensitivity analysis to DMUs on the entire frontier. In fact, necessary and sufficient conditions for preserving a DMU's efficiency classiffication are developed when various data changes are applied to all DMUs.

  1. Sensitivity Analysis in Two-Stage DEA

    Directory of Open Access Journals (Sweden)

    Athena Forghani

    2015-12-01

    Full Text Available Data envelopment analysis (DEA is a method for measuring the efficiency of peer decision making units (DMUs which uses a set of inputs to produce a set of outputs. In some cases, DMUs have a two-stage structure, in which the first stage utilizes inputs to produce outputs used as the inputs of the second stage to produce final outputs. One important issue in two-stage DEA is the sensitivity of the results of an analysis to perturbations in the data. The current paper looks into combined model for two-stage DEA and applies the sensitivity analysis to DMUs on the entire frontier. In fact, necessary and sufficient conditions for preserving a DMU's efficiency classiffication are developed when various data changes are applied to all DMUs.

  2. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    Science.gov (United States)

    Lu, Jue [Okemos, MI; Okeke, Benedict [Montgomery, AL

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  3. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  4. Development of advanced heat pump (2). Prelimirary test of two-stage compression heat pump. Koseino onreinetsu kyokyu heat pump system no kaihatsu. Dai 2 ho 2dan attsusyuku system shisakuki no yobi jikken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Iwatsubo, Tetsushiro; Saikawa, Michinori; Hamamatsu, Teruhide

    1988-03-01

    A heat pump driven by electricity is one of the excellent electricity utilization systems and is promoted to be widely used. An advanced heat pump has been investigated to enlarge its applications in the field of hot water supply for domestic use which will be competitive with city gas and air conditioning in large scale buildings. An experimental unit with two-stage compression system was designed, which has the multi-function of air conditioning and hot water supply, and the trial system was fabricated. In the design, followings were considered; cooperative operations of two compressors by inverter driving, the temperature conditions of both the air for the air conditioning and the heat source, additional setting of the intermediate heat exchanger. The test operation was carried out with checking the start up procedure, the control sequence and so on. The probability of five operation modes: cooling, heating, hot water supply, cooling/hot water supply, and heating/hot water supply, were confirmed. In the mode of heating/hot water supply the hot water temperature was increased to 65/sup 0/C, the excellent performance in hot water supply was demonstrated. (21 figs, 8 tabs, 1 photo, 5 refs)

  5. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System.

    Science.gov (United States)

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-04-16

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  6. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    Directory of Open Access Journals (Sweden)

    Fanny Knöspel

    2016-04-01

    Full Text Available Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR, while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  7. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  8. Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.

    Science.gov (United States)

    Wang, Tao; Lin, Zhen; Ni, Ming; Thien, Christine; Day, Robert E; Gardiner, Bruce; Rubenson, Jonas; Kirk, Thomas B; Smith, David W; Wang, Allan; Lloyd, David G; Wang, Yan; Zheng, Qiujian; Zheng, Ming H

    2015-12-01

    Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    Science.gov (United States)

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  10. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  11. Two stage-type railgun accelerator

    International Nuclear Information System (INIS)

    Ogino, Mutsuo; Azuma, Kingo.

    1995-01-01

    The present invention provides a two stage-type railgun accelerator capable of spiking a flying body (ice pellet) formed by solidifying a gaseous hydrogen isotope as a fuel to a thermonuclear reactor at a higher speed into a central portion of plasmas. Namely, the two stage-type railgun accelerator accelerates the flying body spiked from a initial stage accelerator to a portion between rails by Lorentz force generated when electric current is supplied to the two rails by way of a plasma armature. In this case, two sets of solenoids are disposed for compressing the plasma armature in the longitudinal direction of the rails. The first and the second sets of solenoid coils are previously supplied with electric current. After passing of the flying body, the armature formed into plasmas by a gas laser disposed at the back of the flying body is compressed in the longitudinal direction of the rails by a magnetic force of the first and the second sets of solenoid coils to increase the plasma density. A current density is also increased simultaneously. Then, the first solenoid coil current is turned OFF to accelerate the flying body in two stages by the compressed plasma armature. (I.S.)

  12. Development of a Mechanically Versatile Bioreactor System as a Cellular Microgravity Countermeasure for Regenerative Medicine Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective of this research project is to develop a compact, mechanically versatile bioreactor capable of producing desired local mechanical environments...

  13. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle.

    Science.gov (United States)

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo

    2015-03-01

    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  14. A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation.

    Science.gov (United States)

    Hülsmann, Jörn; Aubin, Hug; Kranz, Alexander; Godehardt, Erhardt; Munakata, Hiroshi; Kamiya, Hiroyuki; Barth, Mareike; Lichtenberg, Artur; Akhyari, Payam

    2013-09-01

    In the last decade, cardiovascular tissue engineering has made great progress developing new strategies for regenerative medicine applications. However, while tissue engineered heart valves are already entering the clinical routine, tissue engineered myocardial substitutes are still restrained to experimental approaches. In contrast to the heart valves, tissue engineered myocardium cannot be repopulated in vivo because of its biological complexity, requiring elaborate cultivation conditions ex vivo. Although new promising approaches-like the whole-heart decellularization concept-have entered the myocardial tissue engineering field, bioreactor technology needed for the generation of functional myocardial tissue still lags behind in the sense of user-friendly, flexible and low cost systems. Here, we present a novel customizable modular bioreactor system that can be used for whole-heart cultivation. Out of a commercially obtainable original equipment manufacturer platform we constructed a modular bioreactor system specifically aimed at the cultivation of decellularized whole-hearts through perfusion and controlled 3D biomechanical stimulation with a simple but highly flexible operation platform based on LabVIEW. The modular setup not only allows a wide range of variance regarding medium conditioning under controlled 3D myocardial stretching but can also easily be upgraded for e.g. electrophysiological monitoring or stimulation, allowing for a tailor-made low-cost myocardial bioreactor system.

  15. Evaluation of a membrane bioreactor system as post-treatment waste water treatment for better removal of micropollutants

    DEFF Research Database (Denmark)

    Arriaga, Sonia; de Jonge, Nadieh; Lund Nielsen, Marc

    2016-01-01

    Organic micropollutants such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants...

  16. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions.

    Science.gov (United States)

    Kato, Shingo; Miyazaki, Masayuki; Kikuchi, Sakiko; Kashiwabara, Teruhiko; Saito, Yumi; Tasumi, Eiji; Suzuki, Katsuhiko; Takai, Ken; Cao, Linh Thi Thuy; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2017-10-01

    Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L -1 day -1 . An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.

  18. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  19. Reduction of the divergence angle of an incident beam to enhance the demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system of several tens of keV

    Science.gov (United States)

    Ishii, Yasuyuki; Kojima, Takuji

    2018-04-01

    The demagnification factor of a two-stage acceleration lens in a gas ion nanobeam system that produces ion beams with energies in the order of 10 keV was enhanced in this study so that a hydrogen ion beam with a diameter of 115 nm could be produced. The reduction of the divergence angle of the incident beam into the two-stage acceleration lens is the effective method for enhancing the demagnification factor. The divergence angle has been gradually reduced by firstly introducing the preacceleration electrodes to control the divergence angle, namely divergence-angle-control electrodes, and secondly replacing an anode with a modified anode that possesses a Pierce electrode, both of which were in an ion source directly connected to the lens. In this study, the divergence angle of less than 3.6 × 10-4 rad that was previously used to produce a 160-nm hydrogen ion beam with the energy of 46 keV by the above procedure was numerically determined using an ion beam extraction simulation code. The determined minimum divergence angle of the incident ion beam was calculated to be 2.0 × 10-4 rad, which was about half of the previously obtained divergence angle; this was used to experimentally form a hydrogen beam with a diameter of 115 ± 10 nm and the energy of 47 keV. The demagnification factor was estimated to be 1,739 using the newly formed hydrogen beam, which was similar to the simulation result.

  20. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    Science.gov (United States)

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  1. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    Science.gov (United States)

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  2. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-03-11

    This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter

  3. Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-01-01

    Full Text Available Membrane bioreactors (MBRs are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.

  4. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  5. Hypospadias repair: Byar's two stage operation revisited.

    Science.gov (United States)

    Arshad, A R

    2005-06-01

    Hypospadias is a congenital deformity characterised by an abnormally located urethral opening, that could occur anywhere proximal to its normal location on the ventral surface of glans penis to the perineum. Many operations had been described for the management of this deformity. One hundred and fifteen patients with hypospadias were treated at the Department of Plastic Surgery, Hospital Kuala Lumpur, Malaysia between September 1987 and December 2002, of which 100 had Byar's procedure performed on them. The age of the patients ranged from neonates to 26 years old. Sixty-seven patients had penoscrotal (58%), 20 had proximal penile (18%), 13 had distal penile (11%) and 15 had subcoronal hypospadias (13%). Operations performed were Byar's two-staged (100), Bracka's two-staged (11), flip-flap (2) and MAGPI operation (2). The most common complication encountered following hypospadias surgery was urethral fistula at a rate of 18%. There is a higher incidence of proximal hypospadias in the Malaysian community. Byar's procedure is a very versatile technique and can be used for all types of hypospadias. Fistula rate is 18% in this series.

  6. Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki

    2010-01-01

    Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 μF two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

  7. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems.

    Science.gov (United States)

    Ayyildiz-Tamis, Duygu; Nalbantsoy, Ayse; Elibol, Murat; Deliloglu-Gurhan, Saime Ismet

    2014-01-01

    In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.

  8. Effect of Filmless Imaging on Utilization of Radiologic Services with a Two-stage, Hospital-Wide Implementation of a Picture Archiving and Communication System: Initial Experience of a Fee-for-Service Model

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kuo

    2003-02-01

    Full Text Available A medium-sized general hospital using a fee-for-service model implemented a hospital-wide picture archiving and communication system (PACS in two stages. This study evaluated the reporting time with filmless operation and the effect of filmless imaging on referring physicians' use of the radiologic service before and after completion of the second stage of PACS implementation. The relationship between the total number of hospital patients and the number of radiologic department patients was also evaluated. All sample images were retrieved from the PACS. All corresponding reports except for one for a computerized tomography study were available. The median reporting time for different studies performed during working hours was less than 2 hours. There was a significantly positive and linear relationship (p < 0.01 between the total number of hospital patients and the number of radiologic department patients after hospital-wide implementation of PACS. We conclude that the fee-for-service model had no negative impact on referring physicians' use of radiologic services in a filmless hospital.

  9. A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment

    International Nuclear Information System (INIS)

    Wang, Yong-Peng; Liu, Xian-Wei; Li, Wen-Wei; Li, Feng; Wang, Yun-Kun; Sheng, Guo-Ping; Zeng, Raymond J.; Yu, Han-Qing

    2012-01-01

    Highlights: ► An MFC–MBR integrated system for wastewater treatment and electricity generation. ► Stable electricity generation during 1000-h continuous operation. ► Low-cost electrode, separator and filter materials were adopted. -- Abstract: Microbial fuel cell (MFC) and membrane bioreactor (MBR) are both promising technologies for wastewater treatment, but both with limitations. In this study, a novel MFC–MBR integrated system, which combines the advantages of the individual systems, was proposed for simultaneous wastewater treatment and energy recovery. The system favored a better utilization of the oxygen in the aeration tank of MBR by the MFC biocathode, and enabled a high effluent quality. Continuous and stable electricity generation, with the average current of 1.9 ± 0.4 mA, was achieved over a long period of about 40 days. The maximum power density reached 6.0 W m −3 . Moreover, low-cost materials were used for the reactor construction. This integrated system shows great promise for practical wastewater treatment application.

  10. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  11. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  12. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  13. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    Science.gov (United States)

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  14. Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage?

    Science.gov (United States)

    Morris, Tim P; Fisher, David J; Kenward, Michael G; Carpenter, James R

    2018-04-30

    Quantitative evidence synthesis through meta-analysis is central to evidence-based medicine. For well-documented reasons, the meta-analysis of individual patient data is held in higher regard than aggregate data. With access to individual patient data, the analysis is not restricted to a "two-stage" approach (combining estimates and standard errors) but can estimate parameters of interest by fitting a single model to all of the data, a so-called "one-stage" analysis. There has been debate about the merits of one- and two-stage analysis. Arguments for one-stage analysis have typically noted that a wider range of models can be fitted and overall estimates may be more precise. The two-stage side has emphasised that the models that can be fitted in two stages are sufficient to answer the relevant questions, with less scope for mistakes because there are fewer modelling choices to be made in the two-stage approach. For Gaussian data, we consider the statistical arguments for flexibility and precision in small-sample settings. Regarding flexibility, several of the models that can be fitted only in one stage may not be of serious interest to most meta-analysis practitioners. Regarding precision, we consider fixed- and random-effects meta-analysis and see that, for a model making certain assumptions, the number of stages used to fit this model is irrelevant; the precision will be approximately equal. Meta-analysts should choose modelling assumptions carefully. Sometimes relevant models can only be fitted in one stage. Otherwise, meta-analysts are free to use whichever procedure is most convenient to fit the identified model. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  15. Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z RP platform.

    Science.gov (United States)

    Diederichs, Solvig; Röker, Stefanie; Marten, Dana; Peterbauer, Anja; Scheper, Thomas; van Griensven, Martijn; Kasper, Cornelia

    2009-01-01

    Because the regeneration of large bone defects is limited by quantitative restrictions and risks of infections, the development of bioartificial bone substitutes is of great importance. To obtain a three-dimensional functional tissue-like graft, static cultivation is inexpedient due to limitations in cell density, nutrition and oxygen support. Dynamic cultivation in a bioreactor system can overcome these restrictions and furthermore provide the possibility to control the environment with regard to pH, oxygen content, and temperature. In this study, a three-dimensional bone construct was engineered by the use of dynamic bioreactor technology. Human adipose tissue derived mesenchymal stem cells were cultivated on a macroporous zirconium dioxide based ceramic disc called Sponceram. Furthermore, hydroxyapatite coated Sponceram was used. The cells were cultivated under dynamic conditions and compared with statically cultivated cells. The differentiation into osteoblasts was initiated by osteogenic supplements. Cellular proliferation during static and dynamic cultivation was compared measuring glucose and lactate concentration. The differentiation process was analysed determining AP-expression and using different specific staining methods. Our results demonstrate much higher proliferation rates during dynamic conditions in the bioreactor system compared to static cultivation measured by glucose consumption and lactate production. Cell densities on the scaffolds indicated higher proliferation on native Sponceram compared to hydroxyapatite coated Sponceram. With this study, we present an excellent method to enhance cellular proliferation and bone lineage specific growth of tissue like structures comprising fibrous (collagen) and globular (mineral) extracellular components. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  16. Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater

    International Nuclear Information System (INIS)

    Pauwels, B.; Ngwa, F.; Deconinck, S.; Verstraete, W.

    2005-01-01

    Two lab scale wastewater treatment plants treating hospital wastewater in parallel were compared in terms of performance characteristics. One plant consisted of a conventional activated sludge system (CAS) and comprised In anoxic and aerobic compartment followed by a settling tank with recycle loop. The second pilot plant was a -late membrane bioreactor (MBR). The wastewater as obtained from the hospital had a variable COD (Chemical Oxygen Demand) ranging from 250 to 2300 mg/L. Both systems were operated at a similar hydraulic residence time of 12 hours. The reference conventional activated sludge system did not meet the regulatory standard for effluent COD of 125 mg /L most of the time. Its COD removal efficiency was 88%. The plate MBR delivered an effluent with a COD value of 50 mg/L or less, and attained an efficiency of 93%. The effluent contained no suspended particles. In addition, the MBR resulted in consistent operational parameters with a flux remaining around 8 -10 L/m/sup 2/.h and a trans membrane pressure <0.1 bar without the need for backwash or chemical cleaning. The CAS and the MBR system performed equally good in terms of TAN removal and EE2 removal. The CAS system typically decreased bacterial groups for about 1 log unit, whereas the MBR decreased these groups for about 3 log units. Enterococci were decreased below the detection limit in the MBR and indicator organisms such as fecal coliforms were decreased for 1.4 log units in the CAS system compared to a 3.6 log removal in the MBR. (author)

  17. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    Science.gov (United States)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  18. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    Science.gov (United States)

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  19. Evaluating damping elements for two-stage suspension vehicles

    Directory of Open Access Journals (Sweden)

    Ronald M. Martinod R.

    2012-01-01

    Full Text Available The technical state of the damping elements for a vehicle having two-stage suspension was evaluated by using numerical models based on the multi-body system theory; a set of virtual tests used the eigenproblem mathematical method. A test was developed based on experimental modal analysis (EMA applied to a physical system as the basis for validating the numerical models. The study focused on evaluating vehicle dynamics to determine the influence of the dampers’ technical state in each suspension state.

  20. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  1. Optics of two-stage photovoltaic concentrators with dielectric second stages

    Science.gov (United States)

    Ning, Xiaohui; O'Gallagher, Joseph; Winston, Roland

    1987-04-01

    Two-stage photovoltaic concentrators with Fresnel lenses as primaries and dielectric totally internally reflecting nonimaging concentrators as secondaries are discussed. The general design principles of such two-stage systems are given. Their optical properties are studied and analyzed in detail using computer ray trace procedures. It is found that the two-stage concentrator offers not only a higher concentration or increased acceptance angle, but also a more uniform flux distribution on the photovoltaic cell than the point focusing Fresnel lens alone. Experimental measurements with a two-stage prototype module are presented and compared to the analytical predictions.

  2. Optics of two-stage photovoltaic concentrators with dielectric second stages.

    Science.gov (United States)

    Ning, X; O'Gallagher, J; Winston, R

    1987-04-01

    Two-stage photovoltaic concentrators with Fresnel lenses as primaries and dielectric totally internally reflecting nonimaging concentrators as secondaries are discussed. The general design principles of such two-stage systems are given. Their optical properties are studied and analyzed in detail using computer ray trace procedures. It is found that the two-stage concentrator offers not only a higher concentration or increased acceptance angle, but also a more uniform flux distribution on the photovoltaic cell than the point focusing Fresnel lens alone. Experimental measurements with a two-stage prototype module are presented and compared to the analytical predictions.

  3. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail

    2012-04-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general two-stage M-estimator, and provide their interpretations. We illustrate our results in the case of the two-stage maximum likelihood estimator and the two-stage least squares estimator. © 2011.

  4. Two-stage decision approach to material accounting

    International Nuclear Information System (INIS)

    Opelka, J.H.; Sutton, W.B.

    1982-01-01

    The validity of the alarm threshold 4sigma has been checked for hypothetical large and small facilities using a two-stage decision model in which the diverter's strategic variable is the quantity diverted, and the defender's strategic variables are the alarm threshold and the effectiveness of the physical security and material control systems in the possible presence of a diverter. For large facilities, the material accounting system inherently appears not to be a particularly useful system for the deterrence of diversions, and essentially no improvement can be made by lowering the alarm threshold below 4sigma. For small facilities, reduction of the threshold to 2sigma or 3sigma is a cost effective change for the accounting system, but is probably less cost effective than making improvements in the material control and physical security systems

  5. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    Science.gov (United States)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  6. TWO-STAGE HEAT PUMPS FOR ENERGY SAVING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. E. Denysova

    2017-09-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources have essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two stages heat pump installation operating as heat source at ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of groundwater energy. Calculated are the values of electric energy consumption by the compressors’ drive, and the heat supply system transformation coefficient µ for a low-potential source of heat from ground waters allowing to estimate high efficiency of two stages heat pump installations.

  7. Two stage approach to dynamic soil structure interaction

    International Nuclear Information System (INIS)

    Nelson, I.

    1981-01-01

    A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)

  8. Two-stage Security Controls Selection

    NARCIS (Netherlands)

    Yevseyeva, I.; Basto, Fernandes V.; Moorsel, van A.; Janicke, H.; Michael, Emmerich T. M.

    2016-01-01

    To protect a system from potential cyber security breaches and attacks, one needs to select efficient security controls, taking into account technical and institutional goals and constraints, such as available budget, enterprise activity, internal and external environment. Here we model the security

  9. Fluidized pellet bed bioreactor system for SS, COD, nitrogen and phosphorus; Ryudoso zoryu bio reactor system ni yoru SS, COD, chisso oyobi rin jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Tanbo, N.; Kudo, K. [Hokkaido University, Sapporo (Japan). Faculty of Engineering; Hamaguchi, T.; Nakabayashi, A. [Tsukishima Kikai Co. Ltd., Tokyo (Japan)

    1995-02-10

    An examination was carried out on a treatment system which was constituted of an aerobic fluidized pellet bed (AFRB) bioreactor and the two steps comprising a contact aeration process and a sand filtration process for sewage/drainage treatment. The following data were obtained from the experiment by a pilot plant installed in a sewage plant. The removal ratios were the same as or above 95% in SS, 95% in total phosphorus, 85% in COD and 80% in total nitrogen. The highly dense sludge pellets formed in the AFPB bioreactor in summer contained aerobic filamentous bacteria that were capable of multiplying. The sludge retention time of this bioreactor was 2.2 to 8.1 days which were sufficient for the multiplication of denitrifiers, whose number and activity were also satisfactory for dinitrification. Further, other microorganisms existed in the bioreactor such as sulfate reducers and methanation bacteria. The role of a contact aeration tank was the oxidized decomposition and nitration of soluble BOD, and the biofilm had niterite and nitrate bacteria adhered to it. Assuming the retention time of the tank was two hours, the nitration ratio was 90% or more at the water temperature of 15{degree}C or higher. 29 refs., 12 figs., 2 tabs.

  10. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    Science.gov (United States)

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  11. Two-Stage Part-Based Pedestrian Detection

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Prioletti, Antonio; Trivedi, Mohan M.

    2012-01-01

    Detecting pedestrians is still a challenging task for automotive vision system due the extreme variability of targets, lighting conditions, occlusions, and high speed vehicle motion. A lot of research has been focused on this problem in the last 10 years and detectors based on classifiers has...... gained a special place among the different approaches presented. This work presents a state-of-the-art pedestrian detection system based on a two stages classifier. Candidates are extracted with a Haar cascade classifier trained with the DaimlerDB dataset and then validated through part-based HOG...... of several metrics, such as detection rate, false positives per hour, and frame rate. The novelty of this system rely in the combination of HOG part-based approach, tracking based on specific optimized feature and porting on a real prototype....

  12. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    Science.gov (United States)

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.

  13. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-09-11

    supply and EBCT on compost biofilter performance were also investigated. The bioreactor maintained greater than 95% removal efficiency for over 40 days without an additional supply of nutrients when a 10X concentrated HCMM was mixed with the compost packing at the beginning of the experiments. Results also suggest that an EBCT greater than 30 seconds is required to maintain high BTEX removal efficiencies in the compost biofilter system.

  14. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  15. It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.

    Science.gov (United States)

    Morgan, Kathy Ye; Black, Lauren Deems

    2014-01-01

    This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.

  16. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  17. Determination of the kinetic and stoichiometric constant in a conventional bioreactor of activated sludge, to scale

    International Nuclear Information System (INIS)

    Rodriguez Chaparro, Tatiana; Perez Navarrete, Eddie Albert; Vivas Mora, Eneydi

    2003-01-01

    The activated sludge process is the one of the most efficient process, when it comes to removal of organic matter. Implementing in the lab is quite easy, economic technically feasible, and simultaneously offers the possibility of using the results obtained in the lab to be applied in field by determining the kinetic and stoichiometric constants. The activated sludge system was designed, built and operated in the water quality lab, at the Military University in Bogota, Colombia. The bioreactor has an aeration chamber, a sedimentation tank and a feeding source with wastewater taken from a meat packing plant in Bogota. The research was carried out for 3 months, in two stages as follows: in the first stage and in order to obtain a high concentration of biomass the acclimatizing process was carried out. This step allows the bioreactor to run in a continuous flow. In the second stage, the bioreactor was taken in to operation and fed with the acclimated sludge at different sludge ages. This would allow us to determine the kinetics, and the stoichiometric constants. The bioreactor was run with a hydraulic retention time of 8 hours and for different sludge ages (5, 10, and 15 days). The system was monitored with a daily grab samples, and pH, temperature as well as the DBO 5 and suspended volatile solids were terminated

  18. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  19. Spikes Filtering with Neural Networks: a Two-Stage Detection System Filtrage des pics par des réseaux neuronaux : un système de détection à deux étages

    Directory of Open Access Journals (Sweden)

    Mousset E.

    2006-11-01

    Full Text Available A two-stage system for detecting spikes in seismic data has been developed, each stage using neural networks (NN techniques. The first stage is trained and used on a running preprocessing window over traces ; its goal is to satisfy the three following criteria (by decreasing priority :(a Maximize the number of detections. (b Minimize the CPU-cost. (c Minimize the number of false alarms. The second stage processes the first stage's alarms in order to discriminate between true and false ones. Several preprocessing techniques, and especially their discriminatory power (to separate noise and signal were tested :(a Based on energy criteria. (b Based on frequency spectrum. (c Based on signal attributes, as Hilbert attributes, or other signal features. Several NN architectures, with global, local and constrained connections were compared. NN behavior at neighborhood of decision area was observed in order to determine a selection method of relevant decision thresholds. The first stage was tested on raw traces issued from 250 shots of a real twodimensional onshore seismic campaign. Three different migrated sections (Dip Moveout were compared. The first was obtained by applying on the latter raw traces a conventional processing sequence including an equalization phase, the second by omitting the equalization phase and the third by both including a prior NN filtering of raw traces and omitting the equalization phase. Afin de détecter les spikes au sein des traces sismiques brutes, nous avons développé un système composé de deux étages, chacun d'eux faisant intervenir un réseau de neurones artificiels dans ses calculs. Le premier réseau est entraîné pour traiter chaque trace au moyen d'une fenêtre glissante et doit satisfaire les trois critères suivants (par ordre décroissant de priorité : - maximiser le nombre de détections; - minimiser la consommation CPU; - minimiser le nombre de fausses alarmes. Le second étage est entraîné à partir

  20. Two-stage anaerobic digestion of cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A two-stage digestion of cheese whey was studied using two anaerobic rotating biological contact reactors. The second-stage reactor receiving partially treated effluent from the first-stage reactor could be operated at a hydraulic retention time of one day. The results indicated that two-stage digestion is a feasible alternative for treating whey. 6 references.

  1. Mathematical modeling of continuous ethanol fermentation in a membrane bioreactor by pervaporation compared to conventional system: Genetic algorithm.

    Science.gov (United States)

    Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam

    2016-07-01

    In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.

    Science.gov (United States)

    Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli

    2018-01-01

    High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  4. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems.

    Science.gov (United States)

    Yeatts, Andrew B; Choquette, Daniel T; Fisher, John P

    2013-02-01

    Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  6. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Comparison of membrane bioreactor technology and conventional ...

    African Journals Online (AJOL)

    The purpose of this paper was to review the use of membrane bioreactor technology as an alternative for treating the discharged effluent from a bleached kraft mill by comparing and contrasting membrane bioreactors with conventional activated sludge systems for wastewater treatment. There are many water shortage ...

  8. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems.

    Science.gov (United States)

    Brinques, Graziela Brusch; do Carmo Peralba, Maria; Ayub, Marco Antônio Záchia

    2010-02-01

    Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett-Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l(-1) (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l(-1) (dw), with conversion rates of 0.10 g of cell g(-1) lactose and 1.08 g lactic acid g(-1) lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.

  9. Two-stage nuclear refrigeration with enhanced nuclear moments

    International Nuclear Information System (INIS)

    Hunik, R.

    1979-01-01

    Experiments are described in which an enhanced nuclear system is used as a precoolant for a nuclear demagnetisation stage. The results show the promising advantages of such a system in those circumstances for which a large cooling power is required at extremely low temperatures. A theoretical review of nuclear enhancement at the microscopic level and its macroscopic thermodynamical consequences is given. The experimental equipment for the implementation of the nuclear enhanced refrigeration method is described and the experiments on two-stage nuclear demagnetisation are discussed. With the nuclear enhanced system PrCu 6 the author could precool a nuclear stage of indium in a magnetic field of 6 T down to temperatures below 10 mK; this resulted in temperature below 1 mK after demagnetisation of the indium. It is demonstrated that the interaction energy between the nuclear moments in an enhanced nuclear system can exceed the nuclear dipolar interaction. Several experiments are described on pulsed nuclear magnetic resonance, as utilised for thermometry purposes. It is shown that platinum NMR-thermometry gives very satisfactory results around 1 mK. The results of experiments on nuclear orientation of radioactive nuclei, e.g. the brute force polarisation of 95 NbPt and 60 CoCu, are presented, some of which are of major importance for the thermometry in the milli-Kelvin region. (Auth.)

  10. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  11. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system

    KAUST Repository

    Pathak, Nirenkumar

    2018-04-14

    A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxic–anoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100 %) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100 %) revealed highest removal followed by atenolol (89-96 %) and atrazine (16-40 %) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.

  12. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  13. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system

    KAUST Repository

    Pathak, Nirenkumar; Li, Sheng; Kim, Youngjin; Chekli, Laura; Phuntsho, Sherub; Jang, Am; Ghaffour, NorEddine; Leiknes, TorOve; Shon, Ho Kyong

    2018-01-01

    A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxic–anoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100 %) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100 %) revealed highest removal followed by atenolol (89-96 %) and atrazine (16-40 %) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.

  14. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  15. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi; Jin, Bangti; Zou, Jun

    2013-01-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer

  16. Evidence of two-stage melting of Wigner solids

    Science.gov (United States)

    Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.

    2018-02-01

    Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.

  17. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    Science.gov (United States)

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  18. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production.

    Science.gov (United States)

    Flórez-Miranda, Liliana; Cañizares-Villanueva, Rosa Olivia; Melchy-Antonio, Orlando; Martínez-Jerónimo, Fernando; Flores-Ortíz, Cesar Mateo

    2017-11-20

    A biomass production process including two stages, heterotrophy/photoinduction (TSHP), was developed to improve biomass and lutein production by the green microalgae Scenedesmus incrassatulus. To determine the effects of different nitrogen sources (yeast extract and urea) and temperature in the heterotrophic stage, experiments using shake flask cultures with glucose as the carbon source were carried out. The highest biomass productivity and specific pigment concentrations were reached using urea+vitamins (U+V) at 30°C. The first stage of the TSHP process was done in a 6L bioreactor, and the inductions in a 3L airlift photobioreactor. At the end of the heterotrophic stage, S. incrassatulus achieved the maximal biomass concentration, increasing from 7.22gL -1 to 17.98gL -1 with an increase in initial glucose concentration from 10.6gL -1 to 30.3gL -1 . However, the higher initial glucose concentration resulted in a lower specific growth rate (μ) and lower cell yield (Y x/s ), possibly due to substrate inhibition. After 24h of photoinduction, lutein content in S. incrassatulus biomass was 7 times higher than that obtained at the end of heterotrophic cultivation, and the lutein productivity was 1.6 times higher compared with autotrophic culture of this microalga. Hence, the two-stage heterotrophy/photoinduction culture is an effective strategy for high cell density and lutein production in S. incrassatulus. Copyright © 2017. Published by Elsevier B.V.

  19. Design modification and optimisation of the perfusion system of a tri-axial bioreactor for tissue engineering.

    Science.gov (United States)

    Hussein, Husnah; Williams, David J; Liu, Yang

    2015-07-01

    A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.

  20. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  1. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bioreactor technology for herbal plants

    International Nuclear Information System (INIS)

    Sobri Hussein; Rusli Ibrahim; Abdul Rahim Harun; Azhar Mohamad; Hawa Abdul Aziz; Wan Nazirah Wan Ali

    2010-01-01

    Plants have been an important source of medicine for thousands of years and herbs are hot currency in the world today. During the last decade, popularity of alternative medicine increased significantly worldwide with noticeable trend. This in turn accelerated the global trade of herbal raw materials and herbal products and created greater scope for Asian countries that possess the major supply of herbal raw materials within their highly diversified tropical rain forest. As such, advanced bioreactor culture system possesses a great potential for large scale production than the traditional tissue culture system. Bioreactor cultures have many advantages over conventional cultures. Plant cells in bioreactors can grow fast and vigorously in shorter period as the culture conditions in bioreactor such as temperature, pH, concentrations of dissolved oxygen, carbon dioxide and nutrients can be optimised by on-line manipulation. Nutrient uptake can also be enhanced by continuous medium circulation, which ultimately increased cell proliferation rate. Consequently, production period and cost are substantially reduced, product quality is controlled and standardized as well as free of pesticide contamination and production of raw material can be conducted all year round. Taking all these into consideration, current research efforts were focused on varying several parameters such as inoculation density, air flow, medium formulation, PGRs etc. for increased production of cell and organ cultures of high market demand herbal and medicinal plants, particularly Eurycoma longifolia, Panax ginseng and Labisia pumila. At present, the production of cell and organ culture of these medicinal plants have also been applied in airlift bioreactor with different working volumes. It is hope that the investment of research efforts into this advanced bioreactor technology will open up a bright future for the modernization of agriculture and commercialisation of natural product. (author)

  3. Two-stage electrolysis to enrich tritium in environmental water

    International Nuclear Information System (INIS)

    Shima, Nagayoshi; Muranaka, Takeshi

    2007-01-01

    We present a two-stage electrolyzing procedure to enrich tritium in environmental waters. Tritium is first enriched rapidly through a commercially-available electrolyser with a large 50A current, and then through a newly-designed electrolyser that avoids the memory effect, with a 6A current. Tritium recovery factor obtained by such a two-stage electrolysis was greater than that obtained when using the commercially-available device solely. Water samples collected in 2006 in lakes and along the Pacific coast of Aomori prefecture, Japan, were electrolyzed using the two-stage method. Tritium concentrations in these samples ranged from 0.2 to 0.9 Bq/L and were half or less, that in samples collected at the same sites in 1992. (author)

  4. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  5. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate

  6. Two-stage thermal/nonthermal waste treatment process

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kang, M.; Tennant, R.A.; Wantuck, P.J.

    1993-01-01

    An innovative waste treatment technology is being developed in Los Alamos to address the destruction of hazardous organic wastes. The technology described in this report uses two stages: a packed bed reactor (PBR) in the first stage to volatilize and/or combust liquid organics and a silent discharge plasma (SDP) reactor to remove entrained hazardous compounds in the off-gas to even lower levels. We have constructed pre-pilot-scale PBR-SDP apparatus and tested the two stages separately and in combined modes. These tests are described in the report

  7. Development and Testing of a Fully Adaptable Membrane Bioreactor Fouling Model for a Sidestream Configuration System

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2013-04-01

    Full Text Available A dead-end filtration model that includes the three main fouling mechanisms mentioned in Hermia (i.e., cake build-up, complete pore blocking, and pore constriction and that was based on a constant trans-membrane pressure (TMP operation was extensively modified so it could be used for a sidestream configuration membrane bioreactor (MBR situation. Modifications and add-ons to this basic model included: alteration so that it could be used for varying flux and varying TMP operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling in relation to the concentration of soluble microbial products (SMP in the liquor; and, it could be used in a cross flow scenario by the addition of scouring terms in the model formulation. The additional terms in this modified model were checked against an already published model to see if they made sense, physically speaking. Next this modified model was calibrated and validated in Matlab© using data collected by carrying out flux stepping tests on both a pilot sidestream MBR plant, and then a pilot membrane filtration unit. The model fit proved good, especially for the pilot filtration unit data. In conclusion, this model formulation is of the right level of complexity to be used for most practical MBR situations.

  8. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study.

    Science.gov (United States)

    Harb, Moustapha; Hong, Pei-Ying

    2017-02-01

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents' microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  9. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study

    KAUST Repository

    Harb, Moustapha

    2016-12-24

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents’ microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (< 2 to >5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  10. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid; Smith, Edward

    2012-01-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without

  11. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system

    KAUST Repository

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, NorEddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-01-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further

  12. Causes for the two stages of the disruption energy quench

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, F.C.; Donne, A.J.H.; Heijnen, S.H.; Rommers, J.R.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Vries, P.C. de; Waidmann, G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik

    1994-12-31

    It is a well-established fact that the energy quench of tokamak disruptions takes place in two stages separated by a plateau period. The total quench duration of typically a few hundred {mu}s is thought to be a combination of Alfven and magnetic diffusion times: Phase 1: a large cold m=1 bubble eats out the hot core within the q=1 surface. Since the normal thermal isolation of the outer layers is still intact this phase means an adiabatic flattening of the inner temperature distribution. Phase 2: after a plateau period the second quench occurs when the edge thermal barrier collapses and a major part of the plasma energy is lost in conjunction with a negative surface voltage spike and a positive spike of the plasma current. In the experimental and theoretical literature on this subject not much attention is given to the evolution of the density distribution during these two phases. This may be caused by the great difficulties one has to keep the fringe counters of multichannel interferometers on track during the very fast changing evolution. The interferometer at TEXTOR can follow this evolution. The spatial resolution after inversion is limited because of the modest number of interferometer channels. In RTP an 18-channel fast interferometer is available next to a 4-channel pulse radar reflectometer which makes it possible to investigate the density profile evolution with both good time (2 {mu}s)- and spatial (0.1a)-resolution. A fast 20-channel ECE-heterodyne radiometer and a 5-camera SXR system allows to follow the temperature profile evolution as well. In this paper theoretical models will be revisited and compared to the new experimental evidence. (author) 9 refs., 3 figs.

  13. Causes for the two stages of the disruption energy quench

    International Nuclear Information System (INIS)

    Schueller, F.C.; Donne, A.J.H.; Heijnen, S.H.; Rommers, J.R.; Tanzi, C.P.; Vries, P.C. de; Waidmann, G.

    1994-01-01

    It is a well-established fact that the energy quench of tokamak disruptions takes place in two stages separated by a plateau period. The total quench duration of typically a few hundred μs is thought to be a combination of Alfven and magnetic diffusion times: Phase 1: a large cold m=1 bubble eats out the hot core within the q=1 surface. Since the normal thermal isolation of the outer layers is still intact this phase means an adiabatic flattening of the inner temperature distribution. Phase 2: after a plateau period the second quench occurs when the edge thermal barrier collapses and a major part of the plasma energy is lost in conjunction with a negative surface voltage spike and a positive spike of the plasma current. In the experimental and theoretical literature on this subject not much attention is given to the evolution of the density distribution during these two phases. This may be caused by the great difficulties one has to keep the fringe counters of multichannel interferometers on track during the very fast changing evolution. The interferometer at TEXTOR can follow this evolution. The spatial resolution after inversion is limited because of the modest number of interferometer channels. In RTP an 18-channel fast interferometer is available next to a 4-channel pulse radar reflectometer which makes it possible to investigate the density profile evolution with both good time (2 μs)- and spatial (0.1a)-resolution. A fast 20-channel ECE-heterodyne radiometer and a 5-camera SXR system allows to follow the temperature profile evolution as well. In this paper theoretical models will be revisited and compared to the new experimental evidence. (author) 9 refs., 3 figs

  14. Development of Explosive Ripper with Two-Stage Combustion

    Science.gov (United States)

    1974-10-01

    inch pipe duct work, the width of this duct proved to be detrimental in marginally rippable material; the duct, instead of the penetrator tip, was...marginally rippable rock. ID. Operating Requirements 2. Fuel The two-stage combustion device is designed to operate using S A 42. the same diesel

  15. Engineering analysis of the two-stage trifluoride precipitation process

    International Nuclear Information System (INIS)

    Luerkens, D.w.W.

    1984-06-01

    An engineering analysis of two-stage trifluoride precipitation processes is developed. Precipitation kinetics are modeled using consecutive reactions to represent fluoride complexation. Material balances across the precipitators are used to model the time dependent concentration profiles of the main chemical species. The results of the engineering analysis are correlated with previous experimental work on plutonium trifluoride and cerium trifluoride

  16. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2004-01-01

    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...

  17. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail; Genton, Marc G.; Ronchetti, Elvezio

    2012-01-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general

  18. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Yanju Chen

    2015-01-01

    Full Text Available This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem is derived. As a result, the proposed two-stage model is equivalent to a single-stage model, and the analytical optimal solution of the two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the proposed two-stage model are larger than those provided by the single-stage model.

  19. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Madhu

    1Laboratory for Cell Culture Technology and Biotransformations, 2Laboratory for ... A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring ... consisted of 95% of air + 5% of CO2 using gas mixing module.

  20. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    Science.gov (United States)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  1. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  2. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  3. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer's spent grains in two types of continuous bioreactor systems

    International Nuclear Information System (INIS)

    Kopsahelis, Nikolaos; Bosnea, Loulouda; Bekatorou, Argyro; Tzia, Constantina; Kanellaki, Maria

    2012-01-01

    In this work an integrated cost effective system for continuous alcoholic fermentation of a cheap raw material (molasses) is described, involving yeast immobilized by a simple method on brewer's spent grains, able to ferment in the temperature range 30–40 °C, and two types of bioreactors, a Multistage Fixed Bed Tower (MFBT) and a Packed Bed reactor (PB). The MFBT bioreactor gave better results regarding ethanol concentration, productivity and conversion. Furthermore, the use of sterilized and non-sterilized molasses, fed in two similar MFBT bioreactors, showed that ethanol concentration (kg m −3 ) was significantly (p −3 at 35 °C and 44.2–48.2 kg m −3 at 40 °C), compared to sterilized molasses, where ethanol concentration ranged from 35.6 to 46.6 kg m −3 at 35 °C and 30.8–44.2 kg m −3 at 40 °C. During 32 days of continuous operation using non-sterilized molasses no contamination was observed. Industrialization of the proposed system seems to have a potential, mainly due to its high fermentation efficiency and the obtained high operational stability. -- Highlights: ► An integrated cost effective system for continuous alcoholic fermentation. ► Efficient conversion of non-sterilized molasses to ethanol. ► No need for additional treatments to prevent contamination. ► Results showed high fermentation efficiency and high operational stability.

  5. A novel bioreactor system for simultaneous mutli-metal leaching from industrial pyrite ash: Effect of agitation and sulphur dosage.

    Science.gov (United States)

    Panda, Sandeep; Akcil, Ata; Mishra, Srabani; Erust, Ceren

    2018-01-15

    Simultaneous multi-metal leaching from industrial pyrite ash is reported for the first time using a novel bioreactor system that allows natural diffusion of atmospheric O 2 and CO 2 along with the required temperature maintenance. The waste containing economically important metals (Cu, Co, Zn & As) was leached using an adapted consortium of meso-acidophilic Fe 2+ and S oxidising bacteria. The unique property of the sample supported adequate growth and activity of the acidophiles, thereby, driving the (bio) chemical reactions. Oxido-reductive potentials were seen to improve with time and the system's pH lowered as a result of active S oxidation. Increase in sulphur dosage (>1g/L) and agitation speed (>150rpm) did not bear any significant effect on metal dissolution. The consortium was able to leach 94.01% Cu (11.75% dissolution/d), 98.54% Co (12.3% dissolution/d), 75.95% Zn (9.49% dissolution/d) and 60.80% As (7.6% dissolution/d) at 150rpm, 1g/L sulphur, 30°C in 8days. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2012-06-01

    The removal of trace organics by a membrane bioreactor-granular activated carbon (MBR-GAC) integrated system were investigated. The results confirmed that MBR treatment can be effective for the removal of hydrophobic (log D>3.2) and readily biodegradable trace organics. The data also highlighted the limitation of MBR in removing hydrophilic and persistent compounds (e.g. carbamazepine, diclofenac, and fenoprop) and that GAC could complement MBR very well as a post-treatment process. The MBR-GAC system showed high removal of all selected trace organics including those that are hydrophilic and persistent to biological degradation at up to 406 bed volumes (BV). However, over an extended period, breakthrough of diclofenac was observed after 7320 BV. This suggests that strict monitoring should be applied over the lifetime of the GAC column to detect the breakthrough of hydrophilic and persistent compounds which have low removal by MBR treatment. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Energy demand in Portuguese manufacturing: a two-stage model

    International Nuclear Information System (INIS)

    Borges, A.M.; Pereira, A.M.

    1992-01-01

    We use a two-stage model of factor demand to estimate the parameters determining energy demand in Portuguese manufacturing. In the first stage, a capital-labor-energy-materials framework is used to analyze the substitutability between energy as a whole and other factors of production. In the second stage, total energy demand is decomposed into oil, coal and electricity demands. The two stages are fully integrated since the energy composite used in the first stage and its price are obtained from the second stage energy sub-model. The estimates obtained indicate that energy demand in manufacturing responds significantly to price changes. In addition, estimation results suggest that there are important substitution possibilities among energy forms and between energy and other factors of production. The role of price changes in energy-demand forecasting, as well as in energy policy in general, is clearly established. (author)

  8. Two-step two-stage fission gas release model

    International Nuclear Information System (INIS)

    Kim, Yong-soo; Lee, Chan-bock

    2006-01-01

    Based on the recent theoretical model, two-step two-stage model is developed which incorporates two stage diffusion processes, grain lattice and grain boundary diffusion, coupled with the two step burn-up factor in the low and high burn-up regime. FRAPCON-3 code and its in-pile data sets have been used for the benchmarking and validation of this model. Results reveals that its prediction is in better agreement with the experimental measurements than that by any model contained in the FRAPCON-3 code such as ANS 5.4, modified ANS5.4, and Forsberg-Massih model over whole burn-up range up to 70,000 MWd/MTU. (author)

  9. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    OpenAIRE

    Chen, Yanju; Wang, Ye

    2015-01-01

    This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the s...

  10. A two-stage decentralised system combining high rate activated ...

    African Journals Online (AJOL)

    Total ammonium nitrogen (TAN) and total phosphates (TP) were largely retained in the effluent with average removal percentages of 19.5 and 27.5%, respectively, encouraging reuse for plant growth. Key words: A-stage, sustainable wastewater treatment, resource recovery, developing countries, water reuse, nutrient ...

  11. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste

    International Nuclear Information System (INIS)

    Wu, Li-Jie; Kobayashi, Takuro; Li, Yu-You; Xu, Kai-Qin

    2015-01-01

    Highlights: • A single-stage and two two-stage anaerobic systems were synchronously operated. • Similar methane production 0.44 L/g VS_a_d_d_e_d from oily food waste was achieved. • The first stage of the two-stage process became inefficient due to serious pH drop. • Recycle favored the hythan production in the two-stage digestion. • The conversion of unsaturated fatty acids was enhanced by recycle introduction. - Abstract: Anaerobic digestion is an effective technology to recover energy from oily food waste. A single-stage system and temperature-phased two-stage systems with and without recycle for anaerobic digestion of oily food waste were constructed to compare the operation performances. The synchronous operation indicated the similar ability to produce methane in the three systems, with a methane yield of 0.44 L/g VS_a_d_d_e_d. The pH drop to less than 4.0 in the first stage of two-stage system without recycle resulted in poor hydrolysis, and methane or hydrogen was not produced in this stage. Alkalinity supplement from the second stage of two-stage system with recycle improved pH in the first stage to 5.4. Consequently, 35.3% of the particulate COD in the influent was reduced in the first stage of two-stage system with recycle according to a COD mass balance, and hydrogen was produced with a percentage of 31.7%, accordingly. Similar solids and organic matter were removed in the single-stage system and two-stage system without recycle. More lipid degradation and the conversion of long-chain fatty acids were achieved in the single-stage system. Recycling was proved to be effective in promoting the conversion of unsaturated long-chain fatty acids into saturated fatty acids in the two-stage system.

  12. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    Directory of Open Access Journals (Sweden)

    Andrea Polo

    2014-05-01

    Full Text Available This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97% and thickness (−50%, and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition.

  13. Development of two-stage compression heat pump for hot water supply in commercial use. Establishment of design method for water and air heat source system; Gyomuyo nidan asshukushiki kyuto heat pump no kaihatsu. Suinetguen oyobi kuki netsugen sytem no sekkei hoho no kakuritsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Hashimoto, K; Saikawa, M; Iwatsubo, T; Mimaki, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-07-01

    The two-stage compression cascade heating heat pump cycle was devised for hot water supply in business use such as hotel and store use which allows hot water supply less in primary energy consumption than gas boilers, and higher in temperature than conventional heat pumps. This cycle heats water in cascade manner by two-stage compression using two compressors in both low- and high-stage refrigerant circuits, and two condensers different in condensation temperature (intermediate heat exchanger and condenser) to achieve higher hot water temperature and higher COP. For cost reduction, the new system design method was established which is possible to cope with conventional compressors such as screw and scroll ones with different theoretical suction volume for every one. System design parameters such as thermal output and COP of hot water supply were largely affected by theoretical suction volume ratio of low- and high-stage compressors dependent on combination of the compressors, and refrigerant condensing temperature in an intermediate heat exchanger as proper parameter. 4 refs., 17 figs., 13 tabs.

  14. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  15. Effects of high-intensity static magnetic fields on a root-based bioreactor system for space applications

    Science.gov (United States)

    Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola

    2017-11-01

    Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space missions.

  16. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  17. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  18. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa

    Science.gov (United States)

    2013-01-01

    Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Results Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. Conclusions We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer. PMID:24355316

  19. Experimental studies of two-stage centrifugal dust concentrator

    Science.gov (United States)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  20. Two-Stage Fan I: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Messenger, H. E.; Kennedy, E. E.

    1972-01-01

    A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.

  1. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  2. Two-stage, high power X-band amplifier experiment

    International Nuclear Information System (INIS)

    Kuang, E.; Davis, T.J.; Ivers, J.D.; Kerslick, G.S.; Nation, J.A.; Schaechter, L.

    1993-01-01

    At output powers in excess of 100 MW the authors have noted the development of sidebands in many TWT structures. To address this problem an experiment using a narrow bandwidth, two-stage TWT is in progress. The TWT amplifier consists of a dielectric (e = 5) slow-wave structure, a 30 dB sever section and a 8.8-9.0 GHz passband periodic, metallic structure. The electron beam used in this experiment is a 950 kV, 1 kA, 50 ns pencil beam propagating along an applied axial field of 9 kG. The dielectric first stage has a maximum gain of 30 dB measured at 8.87 GHz, with output powers of up to 50 MW in the TM 01 mode. In these experiments the dielectric amplifier output power is about 3-5 MW and the output power of the complete two-stage device is ∼160 MW at the input frequency. The sidebands detected in earlier experiments have been eliminated. The authors also report measurements of the energy spread of the electron beam resulting from the amplification process. These experimental results are compared with MAGIC code simulations and analytic work they have carried out on such devices

  3. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  4. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  5. Runway Operations Planning: A Two-Stage Heuristic Algorithm

    Science.gov (United States)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.

  6. Repetitive, small-bore two-stage light gas gun

    International Nuclear Information System (INIS)

    Combs, S.K.; Foust, C.R.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1991-01-01

    A repetitive two-stage light gas gun for high-speed pellet injection has been developed at Oak Ridge National Laboratory. In general, applications of the two-stage light gas gun have been limited to only single shots, with a finite time (at least minutes) needed for recovery and preparation for the next shot. The new device overcomes problems associated with repetitive operation, including rapidly evacuating the propellant gases, reloading the gun breech with a new projectile, returning the piston to its initial position, and refilling the first- and second-stage gas volumes to the appropriate pressure levels. In addition, some components are subjected to and must survive severe operating conditions, which include rapid cycling to high pressures and temperatures (up to thousands of bars and thousands of kelvins) and significant mechanical shocks. Small plastic projectiles (4-mm nominal size) and helium gas have been used in the prototype device, which was equipped with a 1-m-long pump tube and a 1-m-long gun barrel, to demonstrate repetitive operation (up to 1 Hz) at relatively high pellet velocities (up to 3000 m/s). The equipment is described, and experimental results are presented. 124 refs., 6 figs., 5 tabs

  7. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.

    Science.gov (United States)

    McCoy, Ryan J; O'Brien, Fergal J

    2012-12-01

    Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.

  8. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2, and selected organic and metal co-pollutants.

    Science.gov (United States)

    Rocha, Andrea A; Wilde, Christian; Hu, Zhenzhong; Nepotchatykh, Oleg; Nazarenko, Yevgen; Ariya, Parisa A

    2017-07-01

    Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO 2 ) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO 2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO 2 with a conversion rate of approximately 4% CO 2 per hour, generating a steady supply of oxygen (6mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO 2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO 2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups. Copyright © 2016. Published by Elsevier B.V.

  9. On the prior probabilities for two-stage Bayesian estimates

    International Nuclear Information System (INIS)

    Kohut, P.

    1992-01-01

    The method of Bayesian inference is reexamined for its applicability and for the required underlying assumptions in obtaining and using prior probability estimates. Two different approaches are suggested to determine the first-stage priors in the two-stage Bayesian analysis which avoid certain assumptions required for other techniques. In the first scheme, the prior is obtained through a true frequency based distribution generated at selected intervals utilizing actual sampling of the failure rate distributions. The population variability distribution is generated as the weighed average of the frequency distributions. The second method is based on a non-parametric Bayesian approach using the Maximum Entropy Principle. Specific features such as integral properties or selected parameters of prior distributions may be obtained with minimal assumptions. It is indicated how various quantiles may also be generated with a least square technique

  10. Two-stage hydroprocessing of synthetic crude gas oil

    Energy Technology Data Exchange (ETDEWEB)

    Mahay, A.; Chmielowiec, J.; Fisher, I.P.; Monnier, J. (Petro-Canada Products, Missisauga, ON (Canada). Research and Development Centre)

    1992-02-01

    The hydrocracking of synthetic crude gas oils (SGO), which are commercially produced from Canadian oil sands, is strongly inhibited by nitrogen-containing species. To alleviate the pronounced effect of these nitrogenous compounds, SGO was hydrotreated at severe conditions prior to hydrocracking to reduce its N content from 1665 to about 390 ppm (by weight). Hydrocracking was then performed using a commercial nickel-tungsten catalyst supported on silica-alumina. Two-stage hydroprocessing of SGO was assessed in terms of product yields and quality. As expected, higher gas oil conversion were achieved mostly from an increase in naphtha yield. The middle distillate product quality was also clearly improved as the diesel fuel cetane number increased by 13%. Diesel engine tests indicated that particulate emissions in exhaust gases were lowered by 20%. Finally, pseudo first-order kinetic equations were derived for the overall conversion of the major gas oil components. 17 refs., 2 figs., 8 tabs.

  11. Quick pace of property acquisitions requires two-stage evaluations

    International Nuclear Information System (INIS)

    Hollo, R.; Lockwood, S.

    1994-01-01

    The traditional method of evaluating oil and gas reserves may be too cumbersome for the quick pace of oil and gas property acquisition. An acquisition evaluator must decide quickly if a property meets basic purchase criteria. The current business climate requires a two-stage approach. First, the evaluator makes a quick assessment of the property and submits a bid. If the bid is accepted then the evaluator goes on with a detailed analysis, which represents the second stage. Acquisition of producing properties has become an important activity for many independent oil and gas producers, who must be able to evaluate reserves quickly enough to make effective business decisions yet accurately enough to avoid costly mistakes. Independent thus must be familiar with how transactions usually progress as well as with the basic methods of property evaluation. The paper discusses acquisition activity, the initial offer, the final offer, property evaluation, and fair market value

  12. Hybrid biogas upgrading in a two-stage thermophilic reactor

    DEFF Research Database (Denmark)

    Corbellini, Viola; Kougias, Panagiotis; Treu, Laura

    2018-01-01

    The aim of this study is to propose a hybrid biogas upgrading configuration composed of two-stage thermophilic reactors. Hydrogen is directly injected in the first stage reactor. The output gas from the first reactor (in-situ biogas upgrade) is subsequently transferred to a second upflow reactor...... (ex-situ upgrade), in which enriched hydrogenotrophic culture is responsible for the hydrogenation of carbon dioxide to methane. The overall objective of the work was to perform an initial methane enrichment in the in-situ reactor, avoiding deterioration of the process due to elevated pH levels......, and subsequently, to complete the biogas upgrading process in the ex-situ chamber. The methane content in the first stage reactor reached on average 87% and the corresponding value in the second stage was 91%, with a maximum of 95%. A remarkable accumulation of volatile fatty acids was observed in the first...

  13. GENERALISED MODEL BASED CONFIDENCE INTERVALS IN TWO STAGE CLUSTER SAMPLING

    Directory of Open Access Journals (Sweden)

    Christopher Ouma Onyango

    2010-09-01

    Full Text Available Chambers and Dorfman (2002 constructed bootstrap confidence intervals in model based estimation for finite population totals assuming that auxiliary values are available throughout a target population and that the auxiliary values are independent. They also assumed that the cluster sizes are known throughout the target population. We now extend to two stage sampling in which the cluster sizes are known only for the sampled clusters, and we therefore predict the unobserved part of the population total. Jan and Elinor (2008 have done similar work, but unlike them, we use a general model, in which the auxiliary values are not necessarily independent. We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates are better than those constructed under the model assisted local polynomial regression model.

  14. Device for two-stage cementing of casing

    Energy Technology Data Exchange (ETDEWEB)

    Kudimov, D A; Goncharevskiy, Ye N; Luneva, L G; Shchelochkov, S N; Shil' nikova, L N; Tereshchenko, V G; Vasiliev, V A; Volkova, V V; Zhdokov, K I

    1981-01-01

    A device is claimed for two-stage cementing of casing. It consists of a body with lateral plugging vents, upper and lower movable sleeves, a check valve with axial channels that's situated in the lower sleeve, and a displacement limiting device for the lower sleeve. To improve the cementing process of the casing by preventing overflow of cementing fluids from the annular space into the first stage casing, the limiter is equipped with a spring rod that is capable of covering the axial channels of the check valve while it's in an operating mode. In addition, the rod in the upper part is equipped with a reinforced area under the axial channels of the check valve.

  15. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    , air preheating and pyrolysis, hereby very high energy efficiencies can be achieved. Encouraging results are obtained at a 100 kWth laboratory facility. The tar content in the raw gas is measured to be below 25 mg/Nm3 and around 5 mg/Nm3 after gas cleaning with traditional baghouse filter. Furthermore...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...... fuels, and is a suitable design for medium size gasifiers....

  16. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-03-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  17. Runway Operations Planning: A Two-Stage Solution Methodology

    Science.gov (United States)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. Thus, Runway Operations Planning (ROP) is a critical component of airport operations planning in general and surface operations planning in particular. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, may be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. Generating optimal runway operations plans was approached in with a 'one-stage' optimization routine that considered all the desired objectives and constraints, and the characteristics of each aircraft (weight class, destination, Air Traffic Control (ATC) constraints) at the same time. Since, however, at any given point in time, there is less uncertainty in the predicted demand for departure resources in terms of weight class than in terms of specific aircraft, the ROP problem can be parsed into two stages. In the context of the Departure Planner (OP) research project, this paper introduces Runway Operations Planning (ROP) as part of the wider Surface Operations Optimization (SOO) and describes a proposed 'two stage' heuristic algorithm for solving the Runway Operations Planning (ROP) problem. Focus is specifically given on including runway crossings in the planning process of runway operations. In the first stage, sequences of departure class slots and runwy crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the

  18. Comparison of Four Types of Membrane Bioreactor Systems in Terms of Shear Stress over the Membrane Surface using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby

    2013-01-01

    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement...... and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop...

  19. A simple two stage optimization algorithm for constrained power economic dispatch

    International Nuclear Information System (INIS)

    Huang, G.; Song, K.

    1994-01-01

    A simple two stage optimization algorithm is proposed and investigated for fast computation of constrained power economic dispatch control problems. The method is a simple demonstration of the hierarchical aggregation-disaggregation (HAD) concept. The algorithm first solves an aggregated problem to obtain an initial solution. This aggregated problem turns out to be classical economic dispatch formulation, and it can be solved in 1% of overall computation time. In the second stage, linear programming method finds optimal solution which satisfies power balance constraints, generation and transmission inequality constraints and security constraints. Implementation of the algorithm for IEEE systems and EPRI Scenario systems shows that the two stage method obtains average speedup ratio 10.64 as compared to classical LP-based method

  20. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system

    KAUST Repository

    Kim, Youngjin

    2016-02-09

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulphate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulphate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.

  1. Is the continuous two-stage anaerobic digestion process well suited for all substrates?

    Science.gov (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2016-01-01

    Two-stage anaerobic digestion systems are often considered to be advantageous compared to one-stage processes. Although process conditions and fermenter setups are well examined, overall substrate degradation in these systems is controversially discussed. Therefore, the aim of this study was to investigate how substrates with different fibre and sugar contents (hay/straw, maize silage, sugar beet) influence the degradation rate and methane production. Intermediates and gas compositions, as well as methane yields and VS-degradation degrees were recorded. The sugar beet substrate lead to a higher pH-value drop 5.67 in the acidification reactor, which resulted in a six time higher hydrogen production in comparison to the hay/straw substrate (pH-value drop 5.34). As the achieved yields in the two-stage system showed a difference of 70.6% for the hay/straw substrate, and only 7.8% for the sugar beet substrate. Therefore two-stage systems seem to be only recommendable for digesting sugar rich substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Membrane Bioreactor (MBR) as Alternative to a Conventional Activated Sludge System Followed by Ultrafiltration (CAS-UF) for the Treatment of Fischer-Tropsch Reaction Water from Gas-to-Liquids Industries

    NARCIS (Netherlands)

    Laurinonyte, Judita; Meulepas, Roel J.W.; Brink, van den Paula; Temmink, Hardy

    2017-01-01

    The potential of a membrane bioreactor (MBR) system to treat Fischer-Tropsch (FT) reaction water from gas-to-liquids (GTL) industries was investigated and compared with the current treatment system: a conventional activated sludge system followed by an ultrafiltration (CAS-UF) unit. The MBR and

  3. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram [Mehmet Akif Ersoy University, Bucak Emin Guelmez Vocational School, Bucak, Burdur (Turkey)

    2012-07-15

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared. (orig.)

  4. A Two-Stage Rural Household Demand Analysis: Microdata Evidence from Jiangsu Province, China

    OpenAIRE

    X.M. Gao; Eric J. Wailes; Gail L. Cramer

    1996-01-01

    In this paper we evaluate economic and demographic effects on China's rural household demand for nine food commodities: vegetables, pork, beef and lamb, poultry, eggs, fish, sugar, fruit, and grain; and five nonfood commodity groups: clothing, fuel, stimulants, housing, and durables. A two-stage budgeting allocation procedure is used to obtain an empirically tractable amalgamative demand system for food commodities which combine an upper-level AIDS model and a lower-level GLES as a modeling f...

  5. Actuator Fault Diagnosis in a Boeing 747 Model via Adaptive Modified Two-Stage Kalman Filter

    Directory of Open Access Journals (Sweden)

    Fikret Caliskan

    2014-01-01

    Full Text Available An adaptive modified two-stage linear Kalman filtering algorithm is utilized to identify the loss of control effectiveness and the magnitude of low degree of stuck faults in a closed-loop nonlinear B747 aircraft. Control effectiveness factors and stuck magnitudes are used to quantify faults entering control systems through actuators. Pseudorandom excitation inputs are used to help distinguish partial loss and stuck faults. The partial loss and stuck faults in the stabilizer are isolated and identified successfully.

  6. Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jackson, Dennis G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dickson, John O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eddy-Dilek, Carol A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-12

    A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that address the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.

  7. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  8. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  9. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    Directory of Open Access Journals (Sweden)

    Rong Fan

    2016-03-01

    Full Text Available Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1. The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1, showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems.

  10. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  11. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  12. Pharmaceutical proteins produced in plant bioreactor in recent years ...

    African Journals Online (AJOL)

    Plant bioreactor, also called molecular farming, has enormous potential to produce recombinant proteins infinitely. Products expressed in plants have natural physico-chemical properties and bioactivities. Plant bioreactor could be a safe, economic and convenient production system, and can been widely applied in ...

  13. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Eliminating Survivor Bias in Two-stage Instrumental Variable Estimators.

    Science.gov (United States)

    Vansteelandt, Stijn; Walter, Stefan; Tchetgen Tchetgen, Eric

    2018-07-01

    Mendelian randomization studies commonly focus on elderly populations. This makes the instrumental variables analysis of such studies sensitive to survivor bias, a type of selection bias. A particular concern is that the instrumental variable conditions, even when valid for the source population, may be violated for the selective population of individuals who survive the onset of the study. This is potentially very damaging because Mendelian randomization studies are known to be sensitive to bias due to even minor violations of the instrumental variable conditions. Interestingly, the instrumental variable conditions continue to hold within certain risk sets of individuals who are still alive at a given age when the instrument and unmeasured confounders exert additive effects on the exposure, and moreover, the exposure and unmeasured confounders exert additive effects on the hazard of death. In this article, we will exploit this property to derive a two-stage instrumental variable estimator for the effect of exposure on mortality, which is insulated against the above described selection bias under these additivity assumptions.

  15. Two-stage image denoising considering interscale and intrascale dependencies

    Science.gov (United States)

    Shahdoosti, Hamid Reza

    2017-11-01

    A solution to the problem of reducing the noise of grayscale images is presented. To consider the intrascale and interscale dependencies, this study makes use of a model. It is shown that the dependency between a wavelet coefficient and its predecessors can be modeled by the first-order Markov chain, which means that the parent conveys all of the information necessary for efficient estimation. Using this fact, the proposed method employs the Kalman filter in the wavelet domain for image denoising. The proposed method has two stages. The first stage employs a simple denoising algorithm to provide the noise-free image, by which the parameters of the model such as state transition matrix, variance of the process noise, the observation model, and the covariance of the observation noise are estimated. In the second stage, the Kalman filter is applied to the wavelet coefficients of the noisy image to estimate the noise-free coefficients. In fact, the Kalman filter is used to estimate the coefficients of high-frequency subbands from the coefficients of coarser scales and noisy observations of neighboring coefficients. In this way, both the interscale and intrascale dependencies are taken into account. Results are presented and discussed on a set of standard 8-bit grayscale images. The experimental results demonstrate that the proposed method achieves performances competitive with the state-of-the-art denoising methods in terms of both peak-signal-to-noise ratio and subjective visual quality.

  16. FIRST DIRECT EVIDENCE OF TWO STAGES IN FREE RECALL

    Directory of Open Access Journals (Sweden)

    Eugen Tarnow

    2015-12-01

    Full Text Available I find that exactly two stages can be seen directly in sequential free recall distributions. These distributions show that the first three recalls come from the emptying of working memory, recalls 6 and above come from a second stage and the 4th and 5th recalls are mixtures of the two.A discontinuity, a rounded step function, is shown to exist in the fitted linear slope of the recall distributions as the recall shifts from the emptying of working memory (positive slope to the second stage (negative slope. The discontinuity leads to a first estimate of the capacity of working memory at 4-4.5 items. The total recall is shown to be a linear combination of the content of working memory and items recalled in the second stage with 3.0-3.9 items coming from working memory, a second estimate of the capacity of working memory. A third, separate upper limit on the capacity of working memory is found (3.06 items, corresponding to the requirement that the content of working memory cannot exceed the total recall, item by item. This third limit is presumably the best limit on the average capacity of unchunked working memory.The second stage of recall is shown to be reactivation: The average times to retrieve additional items in free recall obey a linear relationship as a function of the recall probability which mimics recognition and cued recall, both mechanisms using reactivation (Tarnow, 2008.

  17. A two-stage DEA approach for environmental efficiency measurement.

    Science.gov (United States)

    Song, Malin; Wang, Shuhong; Liu, Wei

    2014-05-01

    The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.

  18. A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    Science.gov (United States)

    He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.

    2018-03-01

    As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

  19. A two staged condensation of vapors of an isobutane tower in installations for sulfuric acid alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N.P.; Feyzkhanov, R.I.; Idrisov, A.D.; Navalikhin, P.G.; Sakharov, V.D.

    1983-01-01

    In order to increase the concentration of isobutane to greater than 72 to 76 percent in an installation for sulfuric acid alkylation, a system of two staged condensation of vapors from an isobutane tower is placed into operation. The first stage condenses the heavier part of the upper distillate of the tower, which is achieved through somewhat of an increase in the condensate temperature. The product which is condensed in the first stage is completely returned to the tower as a live irrigation. The vapors of the isobutane fraction which did not condense in the first stage are sent to two newly installed condensers, from which the product after condensation passes through intermediate tanks to further depropanization. The two staged condensation of vapors of the isobutane tower reduces the content of the inert diluents, the propane and n-butane in the upper distillate of the isobutane tower and creates more favorable conditions for the operation of the isobutane and propane tower.

  20. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yan, Gang; Yu, Jianlin

    2015-01-01

    In this paper, a modified dual-evaporator CO 2 transcritical refrigeration cycle with two-stage ejector (MDRC) is proposed. In MDRC, the two-stage ejector are employed to recover the expansion work from cycle throttling processes and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analyses. The simulation results for the modified cycle show that two-stage ejector exhibits more effective system performance improvement than the single ejector in CO 2 dual-temperature refrigeration cycle, and the improvements of the maximum system COP (coefficient of performance) and system exergy efficiency could reach 37.61% and 31.9% over those of the conventional dual-evaporator cycle under the given operating conditions. The exergetic analysis for each component at optimum discharge pressure indicates that the gas cooler, compressor, two-stage ejector and expansion valves contribute main portion to the total system exergy destruction, and the exergy destruction caused by the two-stage ejector could amount to 16.91% of the exergy input. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system. - Highlights: • Two-stage ejector is used in dual-evaporator CO 2 transcritical refrigeration cycle. • Energetic and exergetic methods are carried out to analyze the system performance. • The modified cycle could obtain dual-temperature refrigeration simultaneously. • Two-stage ejector could effectively improve system COP and exergy efficiency

  1. CFD simulations of compressed air two stage rotary Wankel expander – Parametric analysis

    International Nuclear Information System (INIS)

    Sadiq, Ghada A.; Tozer, Gavin; Al-Dadah, Raya; Mahmoud, Saad

    2017-01-01

    Highlights: • CFD ANSYS-Fluent 3D simulation of Wankel expander is developed. • Single and two-stage expander’s performance is compared. • Inlet and outlet ports shape and configurations are investigated. • Isentropic efficiency of two stage Wankel expander of 91% is achieved. - Abstract: A small scale volumetric Wankel expander is a powerful device for small-scale power generation in compressed air energy storage (CAES) systems and Organic Rankine cycles powered by different heat sources such as, biomass, low temperature geothermal, solar and waste heat leading to significant reduction in CO_2 emissions. Wankel expanders outperform other types of expander due to their ability to produce two power pulses per revolution per chamber additional to higher compactness, lower noise and vibration and lower cost. In this paper, a computational fluid dynamics (CFD) model was developed using ANSYS 16.2 to simulate the flow dynamics for a single and two stage Wankel expanders and to investigate the effect of port configurations, including size and spacing, on the expander’s power output and isentropic efficiency. Also, single-stage and two-stage expanders were analysed with different operating conditions. Single-stage 3D CFD results were compared to published work showing close agreement. The CFD modelling was used to investigate the performance of the rotary device using air as an ideal gas with various port diameters ranging from 15 mm to 50 mm; port spacing varying from 28 mm to 66 mm; different Wankel expander sizes (r = 48, e = 6.6, b = 32) mm and (r = 58, e = 8, b = 40) mm both as single-stage and as two-stage expanders with different configurations and various operating conditions. Results showed that the best Wankel expander design for a single-stage was (r = 48, e = 6.6, b = 32) mm, with the port diameters 20 mm and port spacing equal to 50 mm. Moreover, combining two Wankel expanders horizontally, with a larger one at front, produced 8.52 kW compared

  2. Bioreactor systems for tissue engineering II. Strategies for the expansion and directed differentiation of stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Cornelia [Hannover Univ. (Germany). Inst. fuer Technische Chemie; Griensven, Martijn van [Ludwig Boltzmann Institut fuer Klinische und Experimentelle Traumatologie, Wien (Austria); Poertner, Ralf (eds.) [Technische Univ. Hamburg-Harburg (Germany). Inst. Biotechnologie und Verfahrenstechnik

    2010-07-01

    Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; - Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; - Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; - Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; - Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; - Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; - Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; - Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; - Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geissler, C. Gittel, H. Juelke, W. Brehm; - Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; - Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi. (orig.)

  3. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  4. Two-Stage Performance Engineering of Container-based Virtualization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2018-02-01

    Full Text Available Cloud computing has become a compelling paradigm built on compute and storage virtualization technologies. The current virtualization solution in the Cloud widely relies on hypervisor-based technologies. Given the recent booming of the container ecosystem, the container-based virtualization starts receiving more attention for being a promising alternative. Although the container technologies are generally considered to be lightweight, no virtualization solution is ideally resource-free, and the corresponding performance overheads will lead to negative impacts on the quality of Cloud services. To facilitate understanding container technologies from the performance engineering’s perspective, we conducted two-stage performance investigations into Docker containers as a concrete example. At the first stage, we used a physical machine with “just-enough” resource as a baseline to investigate the performance overhead of a standalone Docker container against a standalone virtual machine (VM. With findings contrary to the related work, our evaluation results show that the virtualization’s performance overhead could vary not only on a feature-by-feature basis but also on a job-to-job basis. Moreover, the hypervisor-based technology does not come with higher performance overhead in every case. For example, Docker containers particularly exhibit lower QoS in terms of storage transaction speed. At the ongoing second stage, we employed a physical machine with “fair-enough” resource to implement a container-based MapReduce application and try to optimize its performance. In fact, this machine failed in affording VM-based MapReduce clusters in the same scale. The performance tuning results show that the effects of different optimization strategies could largely be related to the data characteristics. For example, LZO compression can bring the most significant performance improvement when dealing with text data in our case.

  5. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    KAUST Repository

    Pathak, Nirenkumar

    2017-03-14

    The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612-1434 mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48 to 6.98 LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor–forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively.

  6. Assessing efficiency and effectiveness of Malaysian Islamic banks: A two stage DEA analysis

    Science.gov (United States)

    Kamarudin, Norbaizura; Ismail, Wan Rosmanira; Mohd, Muhammad Azri

    2014-06-01

    Islamic banks in Malaysia are indispensable players in the financial industry with the growing needs for syariah compliance system. In the banking industry, most recent studies concerned only on operational efficiency. However rarely on the operational effectiveness. Since the production process of banking industry can be described as a two-stage process, two-stage Data Envelopment Analysis (DEA) can be applied to measure the bank performance. This study was designed to measure the overall performance in terms of efficiency and effectiveness of Islamic banks in Malaysia using Two-Stage DEA approach. This paper presents analysis of a DEA model which split the efficiency and effectiveness in order to evaluate the performance of ten selected Islamic Banks in Malaysia for the financial year period ended 2011. The analysis shows average efficient score is more than average effectiveness score thus we can say that Malaysian Islamic banks were more efficient rather than effective. Furthermore, none of the bank exhibit best practice in both stages as we can say that a bank with better efficiency does not always mean having better effectiveness at the same time.

  7. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    International Nuclear Information System (INIS)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.; Park, T. K.; Deng, P.; Yang, G.; Jung, Y. S.; Kim, T. K.; Stauff, N. E.

    2016-01-01

    This report presents the performance characteristics of two ''two-stage'' fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  8. A novel flow sensor based on resonant sensing with two-stage microleverage mechanism

    Science.gov (United States)

    Yang, B.; Guo, X.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-04-01

    The design, simulation, fabrication, and experiments of a novel flow sensor based on resonant sensing with a two-stage microleverage mechanism are presented in this paper. Different from the conventional detection methods for flow sensors, two differential resonators are adopted to implement air flow rate transformation through two-stage leverage magnification. The proposed flow sensor has a high sensitivity since the adopted two-stage microleverage mechanism possesses a higher amplification factor than a single-stage microleverage mechanism. The modal distribution and geometric dimension of the two-stage leverage mechanism and hair are analyzed and optimized by Ansys simulation. A digital closed-loop driving technique with a phase frequency detector-based coordinate rotation digital computer algorithm is implemented for the detection and locking of resonance frequency. The sensor fabricated by the standard deep dry silicon on a glass process has a device dimension of 5100 μm (length) × 5100 μm (width) × 100 μm (height) with a hair diameter of 1000 μm. The preliminary experimental results demonstrate that the maximal mechanical sensitivity of the flow sensor is approximately 7.41 Hz/(m/s)2 at a resonant frequency of 22 kHz for the hair height of 9 mm and increases by 2.42 times as hair height extends from 3 mm to 9 mm. Simultaneously, a detection-limit of 3.23 mm/s air flow amplitude at 60 Hz is confirmed. The proposed flow sensor has great application prospects in the micro-autonomous system and technology, self-stabilizing micro-air vehicles, and environmental monitoring.

  9. Modelling of an air-cooled two-stage Rankine cycle for electricity production

    International Nuclear Information System (INIS)

    Liu, Bo

    2014-01-01

    This work considers a two stage Rankine cycle architecture slightly different from a standard Rankine cycle for electricity generation. Instead of expanding the steam to extremely low pressure, the vapor leaves the turbine at a higher pressure then having a much smaller specific volume. It is thus possible to greatly reduce the size of the steam turbine. The remaining energy is recovered by a bottoming cycle using a working fluid which has a much higher density than the water steam. Thus, the turbines and heat exchangers are more compact; the turbine exhaust velocity loss is lower. This configuration enables to largely reduce the global size of the steam water turbine and facilitate the use of a dry cooling system. The main advantage of such an air cooled two stage Rankine cycle is the possibility to choose the installation site of a large or medium power plant without the need of a large and constantly available water source; in addition, as compared to water cooled cycles, the risk regarding future operations is reduced (climate conditions may affect water availability or temperature, and imply changes in the water supply regulatory rules). The concept has been investigated by EDF R and D. A 22 MW prototype was developed in the 1970's using ammonia as the working fluid of the bottoming cycle for its high density and high latent heat. However, this fluid is toxic. In order to search more suitable working fluids for the two stage Rankine cycle application and to identify the optimal cycle configuration, we have established a working fluid selection methodology. Some potential candidates have been identified. We have evaluated the performances of the two stage Rankine cycles operating with different working fluids in both design and off design conditions. For the most acceptable working fluids, components of the cycle have been sized. The power plant concept can then be evaluated on a life cycle cost basis. (author)

  10. Development and testing of a two stage granular filter to improve collection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rangan, R.S.; Prakash, S.G.; Chakravarti, S.; Rao, S.R.

    1999-07-01

    A circulating bed granular filter (CBGF) with a single filtration stage was tested with a PFB combustor in the Coal Research Facility of BHEL R and D in Hyderabad during the years 1993--95. Filter outlet dust loading varied between 20--50 mg/Nm{sup 3} for an inlet dust loading of 5--8 gms/Nm{sup 3}. The results were reported in Fluidized Bed Combustion-Volume 2, ASME 1995. Though the outlet consists of predominantly fine particulates below 2 microns, it is still beyond present day gas turbine specifications for particulate concentration. In order to enhance the collection efficiency, a two-stage granular filtration concept was evolved, wherein the filter depth is divided between two stages, accommodated in two separate vertically mounted units. The design also incorporates BHEL's scale-up concept of multiple parallel stages. The two-stage concept minimizes reentrainment of captured dust by providing clean granules in the upper stage, from where gases finally exit the filter. The design ensures that dusty gases come in contact with granules having a higher dust concentration at the bottom of the two-stage unit, where most of the cleaning is completed. A second filtration stage of cleaned granules is provided in the top unit (where the granules are returned to the system after dedusting) minimizing reentrainment. Tests were conducted to determine the optimum granule to dust ratio (G/D ratio) which decides the granule circulation rate required for the desired collection efficiency. The data brings out the importance of pre-separation and the limitation on inlet dust loading for any continuous system of granular filtration. Collection efficiencies obtained were much higher (outlet dust being 3--9 mg/Nm{sub 3}) than in the single stage filter tested earlier for similar dust loading at the inlet. The results indicate that two-stage granular filtration has a high potential for HTHT application with fewer risks as compared to other systems under development.

  11. Two-Stage Maximum Likelihood Estimation (TSMLE for MT-CDMA Signals in the Indoor Environment

    Directory of Open Access Journals (Sweden)

    Sesay Abu B

    2004-01-01

    Full Text Available This paper proposes a two-stage maximum likelihood estimation (TSMLE technique suited for multitone code division multiple access (MT-CDMA system. Here, an analytical framework is presented in the indoor environment for determining the average bit error rate (BER of the system, over Rayleigh and Ricean fading channels. The analytical model is derived for quadrature phase shift keying (QPSK modulation technique by taking into account the number of tones, signal bandwidth (BW, bit rate, and transmission power. Numerical results are presented to validate the analysis, and to justify the approximations made therein. Moreover, these results are shown to agree completely with those obtained by simulation.

  12. A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Kuppam, Chandrasekhar; Mudhoo, Ackmez; Saratale, Ganesh D; Kadier, Abudukeremu; Zhen, Guangyin; Chatellard, Lucile; Trably, Eric; Kumar, Gopalakrishnan

    2017-12-21

    This review provides the alternative routes towards the valorization of dark H 2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.

  13. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    Science.gov (United States)

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir

    Directory of Open Access Journals (Sweden)

    Edward Businge

    2017-06-01

    Full Text Available The use of liquid instead of solid culture medium for the micropropagation of plants offers advantages such as better access to medium components and scalability through possible automation of the processes. The objective of this work was to compare a new temporary immersion bioreactor (TIB to solid medium culture for the micropropagation of a selection of tree species micropropagated for commercial use: Nordmann fir (Abies nordmanniana (Steven Spach, Eucalyptus (E. grandis x E. urophylla, Downy birch (Betula pubescens Ehrh, and Curly birch (Betula pendula var. carelica. Cultivation of explants in the TIB resulted in a significant increase of multiplication rate and fresh weight of Eucalyptus and B. pendula, but not Betula pubescens. In addition, the fresh weight of embryogenic tissue and the maturation frequency of somatic embryos increased significantly when an embryogenic cell line of A. nordmanniana was cultivated in the TIB compared to solid culture medium. These results demonstrate the potential for scaling up and automating micropropagation by shoot multiplication and somatic embryogenesis in commercial tree species using a temporary immersion bioreactor.

  15. The Two-stage Constrained Equal Awards and Losses Rules for Multi-Issue Allocation Situation

    NARCIS (Netherlands)

    Lorenzo-Freire, S.; Casas-Mendez, B.; Hendrickx, R.L.P.

    2005-01-01

    This paper considers two-stage solutions for multi-issue allocation situations.Characterisations are provided for the two-stage constrained equal awards and constrained equal losses rules, based on the properties of composition and path independence.

  16. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  17. A preventive maintenance policy based on dependent two-stage deterioration and external shocks

    International Nuclear Information System (INIS)

    Yang, Li; Ma, Xiaobing; Peng, Rui; Zhai, Qingqing; Zhao, Yu

    2017-01-01

    This paper proposes a preventive maintenance policy for a single-unit system whose failure has two competing and dependent causes, i.e., internal deterioration and sudden shocks. The internal failure process is divided into two stages, i.e. normal and defective. Shocks arrive according to a non-homogeneous Poisson process (NHPP), leading to the failure of the system immediately. The occurrence rate of a shock is affected by the state of the system. Both an age-based replacement and finite number of periodic inspections are schemed simultaneously to deal with the competing failures. The objective of this study is to determine the optimal preventive replacement interval, inspection interval and number of inspections such that the expected cost per unit time is minimized. A case study on oil pipeline maintenance is presented to illustrate the maintenance policy. - Highlights: • A maintenance model based on two-stage deterioration and sudden shocks is developed. • The impact of internal system state on external shock process is studied. • A new preventive maintenance strategy combining age-based replacements and periodic inspections is proposed. • Postponed replacement of a defective system is provided by restricting the number of inspections.

  18. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Ariunbaatar, Javkhlan, E-mail: jaka@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Scotto Di Perta, Ester [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy); Panico, Antonio [Telematic University PEGASO, Piazza Trieste e Trento, 48, 80132 Naples (Italy); Frunzo, Luigi [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Claudio, 21, 80125 Naples (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Lens, Piet N.L. [UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Pirozzi, Francesco [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy)

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  19. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    International Nuclear Information System (INIS)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N.L.; Pirozzi, Francesco

    2015-01-01

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC 50 of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid

  20. Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass

    Science.gov (United States)

    Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.

    2018-04-01

    Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

  1. A Novel Two-Stage Dynamic Spectrum Sharing Scheme in Cognitive Radio Networks

    Institute of Scientific and Technical Information of China (English)

    Guodong Zhang; Wei Heng; Tian Liang; Chao Meng; Jinming Hu

    2016-01-01

    In order to enhance the efficiency of spectrum utilization and reduce communication overhead in spectrum sharing process,we propose a two-stage dynamic spectrum sharing scheme in which cooperative and noncooperative modes are analyzed in both stages.In particular,the existence and the uniqueness of Nash Equilibrium (NE) strategies for noncooperative mode are proved.In addition,a distributed iterative algorithm is proposed to obtain the optimal solutions of the scheme.Simulation studies are carried out to show the performance comparison between two modes as well as the system revenue improvement of the proposed scheme compared with a conventional scheme without a virtual price control factor.

  2. The Design, Construction and Operation of a 75 kW Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk; Ahrenfeldt, Jesper; Jensen, Torben Kvist

    2003-01-01

    The Two-Stage Gasifier was operated for several weeks (465 hours) and of these 190 hours continuously. The gasifier is operated automatically unattended day and night, and only small adjustments of the feeding rate were necessary once or twice a day. The operation was successful, and the output...... as expected. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. The bag house filter was an excellent and well operating gas cleaning system. Small amounts of deposits consisting of salts and carbonates were observed in the hot gas heat exchangers. The top...

  3. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    Science.gov (United States)

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.

  4. Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingmei Sun; Jiangxiu Rong; Lifeng Dai; Baoshan Liu; Wenting Zhu

    2011-01-01

    Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR).Control of membrane foulin can extend the membrane life and reduce water treatment cost effectively.A pilot scale anoxic/aerobic-membrane bioreactor (A/O MBR,40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin,China.Impact factors including mixed liquid sludge suspension (MLSS),sludge viscosity (μ),microorganisms,extracellular polymeric substances (EPS),aeration intensity and suction/suspended time on membrane fouling and pollution control were studied.The relationships among various factors associated with membrane fouling were analyzed.Results showed that there was a positive correlation among MLSS,sludge viscosity and trans-membrane pressure (TMP).Considering water treatment efficiency and stable operation of the membrane module,MLSS of 5 g/L was suggested for the process.There was a same trend among EPS,sludge viscosity and TMP.Numbers and species of microorganisms affected membrane fouling.Either too high or too low aeration intensity was not conducive to membrane fouling control.Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process.A long suction time caused a rapid increase in membrane resistance.However,long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface.The suction/suspended time of 12 min/3 min was selected for the process.The interaction of various environmental factors and operation conditions must be considered synthetically.

  5. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    Science.gov (United States)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  6. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty.

    Science.gov (United States)

    Lv, Y; Huang, G H; Li, Y P; Yang, Z F; Sun, W

    2011-03-01

    A two-stage inexact joint-probabilistic programming (TIJP) method is developed for planning a regional air quality management system with multiple pollutants and multiple sources. The TIJP method incorporates the techniques of two-stage stochastic programming, joint-probabilistic constraint programming and interval mathematical programming, where uncertainties expressed as probability distributions and interval values can be addressed. Moreover, it can not only examine the risk of violating joint-probability constraints, but also account for economic penalties as corrective measures against any infeasibility. The developed TIJP method is applied to a case study of a regional air pollution control problem, where the air quality index (AQI) is introduced for evaluation of the integrated air quality management system associated with multiple pollutants. The joint-probability exists in the environmental constraints for AQI, such that individual probabilistic constraints for each pollutant can be efficiently incorporated within the TIJP model. The results indicate that useful solutions for air quality management practices have been generated; they can help decision makers to identify desired pollution abatement strategies with minimized system cost and maximized environmental efficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    Science.gov (United States)

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  8. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.

    Science.gov (United States)

    Zheng, Yubin; Chi, Zhanyou; Lucker, Ben; Chen, Shulin

    2012-01-01

    A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    International Nuclear Information System (INIS)

    Wade, J.F.; Williams, P.M.

    1995-01-01

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550 degrees C and 650 degrees C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s

  10. A two-stage heating scheme for heat assisted magnetic recording

    Science.gov (United States)

    Xiong, Shaomin; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang; Bogy, David

    2014-05-01

    Heat Assisted Magnetic Recording (HAMR) has been proposed to extend the storage areal density beyond 1 Tb/in.2 for the next generation magnetic storage. A near field transducer (NFT) is widely used in HAMR systems to locally heat the magnetic disk during the writing process. However, much of the laser power is absorbed around the NFT, which causes overheating of the NFT and reduces its reliability. In this work, a two-stage heating scheme is proposed to reduce the thermal load by separating the NFT heating process into two individual heating stages from an optical waveguide and a NFT, respectively. As the first stage, the optical waveguide is placed in front of the NFT and delivers part of laser energy directly onto the disk surface to heat it up to a peak temperature somewhat lower than the Curie temperature of the magnetic material. Then, the NFT works as the second heating stage to heat a smaller area inside the waveguide heated area further to reach the Curie point. The energy applied to the NFT in the second heating stage is reduced compared with a typical single stage NFT heating system. With this reduced thermal load to the NFT by the two-stage heating scheme, the lifetime of the NFT can be extended orders longer under the cyclic load condition.

  11. Determination Bounds for Intermediate Products in a Two-Stage Network DEA

    Directory of Open Access Journals (Sweden)

    Hadi Bagherzadeh Valami

    2016-03-01

    Full Text Available The internal structure of decision making unit (DMU is the key element at extension of network DEA. In general considering internal performance evaluation of system is a better criterion than the conventional DEA-models, essentially based on the initial inputs and final outputs of the system. The internal performance of a system is dependent on the relation between sub-DMUs and intermediate products. Since the intermediate measures are consumed by some sub-DMUs produced by the others, it is possible to produce systems; the role of intermediate production is twice output and input. That's why they can be analyzed based on conventional mathematical modeling. In this paper we introduce a new method for determining bounds for intermediate product in a two stage network DEA structure.

  12. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  13. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what......Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...

  14. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  15. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  16. Properties of a two stage adiabatic demagnetization refrigerator

    International Nuclear Information System (INIS)

    Fukuda, H; Ueda, S; Arai, R; Numazawa, T; Li, J; Saito, A T; Nakagome, H

    2015-01-01

    Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units. (paper)

  17. Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K

    Science.gov (United States)

    Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang

    The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.

  18. Development and Testing of a Two-Stage Hybrid Launcher.

    Science.gov (United States)

    1979-10-31

    more unitorm properties thorough the tuicK section by quencning in a salt batn, thereby minimizing the cooling gradient but pruuucing a bainitic steel ...to to 1990 psig with H2 , then 6 capture (embed) steel diaphragm fragments S-1, 11/28/77 Diaphragm To devise a method to seal drivers without * Built...driver along with nyloi S-2, and (plug) using steel diaphragms, which add significant release system, and plug cato S-3 11/29/77 tests amounts of

  19. Two-stage dental implants inserted in a one-stage procedure : a prospective comparative clinical study

    NARCIS (Netherlands)

    Heijdenrijk, Kees

    2002-01-01

    The results of this study indicate that dental implants designed for a submerged implantation procedure can be used in a single-stage procedure and may be as predictable as one-stage implants. Although one-stage implant systems and two-stage.

  20. A Two-Stage Multi-Agent Based Assessment Approach to Enhance Students' Learning Motivation through Negotiated Skills Assessment

    Science.gov (United States)

    Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan

    2015-01-01

    In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…

  1. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  2. QUICKGUN: An algorithm for estimating the performance of two-stage light gas guns

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Gouge, M.J.; Kincaid, R.W.

    1990-09-01

    An approximate method is described for solving the equation of motion of a projectile accelerated by a two-stage light gas gun that uses high-pressure (<100-bar) gas from a storage reservoir to drive a piston to moderate speed (<400 m/s) for the purpose of compressing the low molecular weight propellant gas (hydrogen or helium) to high pressure (1000 to 10,000 bar) and temperature (1000 to 10,000 K). Zero-dimensional, adiabatic (isentropic) processes are used to describe the time dependence of the ideal gas thermodynamic properties of the storage reservoir and the first and second stages of the system. A one-dimensional model based on an approximate method of characteristics, or wave diagram analysis, for flow with friction (nonisentropic) is used to describe the nonsteady compressible flow processes in the launch tube. Linear approximations are used for the characteristic and fluid particle trajectories by averaging the values of the flow parameters at the breech and at the base of the projectile. An assumed functional form for the Mach number at the breech provides the necessary boundary condition. Results of the calculation are compared with data obtained from two-stage light gas gun experiments at Oak Ridge National Laboratory for solid deuterium and nylon projectiles with masses ranging from 10 to 35 mg and for projectile speeds between 1.6 and 4.5 km/s. The predicted and measured velocities generally agree to within 15%. 19 refs., 3 figs., 2 tabs

  3. Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua; Hsu, Yu-Ju

    2016-01-01

    Traditional electricity supply planning models regard the electricity demand as a deterministic parameter and require the total power output to satisfy the aggregate electricity demand. But in today's world, the electric system planners are facing tremendously complex environments full of uncertainties, where electricity demand is a key source of uncertainty. In addition, electricity demand patterns are considerably different for different regions. This paper developed a multi-region optimization model based on two-stage stochastic programming framework to incorporate the demand uncertainty. Furthermore, the decision tree method and Monte Carlo simulation approach are integrated into the model to simplify electricity demands in the form of nodes and determine the values and probabilities. The proposed model was successfully applied to a real case study (i.e. Taiwan's electricity sector) to show its applicability. Detail simulation results were presented and compared with those generated by a deterministic model. Finally, the long-term electricity development roadmap at a regional level could be provided on the basis of our simulation results. - Highlights: • A multi-region, two-stage stochastic programming model has been developed. • The decision tree and Monte Carlo simulation are integrated into the framework. • Taiwan's electricity sector is used to illustrate the applicability of the model. • The results under deterministic and stochastic cases are shown for comparison. • Optimal portfolios of regional generation technologies can be identified.

  4. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  5. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks

    Science.gov (United States)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming

    2015-01-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  6. Two-Stage Classification Approach for Human Detection in Camera Video in Bulk Ports

    Directory of Open Access Journals (Sweden)

    Mi Chao

    2015-09-01

    Full Text Available With the development of automation in ports, the video surveillance systems with automated human detection begun to be applied in open-air handling operation areas for safety and security. The accuracy of traditional human detection based on the video camera is not high enough to meet the requirements of operation surveillance. One of the key reasons is that Histograms of Oriented Gradients (HOG features of the human body will show great different between front & back standing (F&B and side standing (Side human body. Therefore, the final training for classifier will only gain a few useful specific features which have contribution to classification and are insufficient to support effective classification, while using the HOG features directly extracted by the samples from different human postures. This paper proposes a two-stage classification method to improve the accuracy of human detection. In the first stage, during preprocessing classification, images is mainly divided into possible F&B human body and not F&B human body, and then they were put into the second-stage classification among side human and non-human recognition. The experimental results in Tianjin port show that the two-stage classifier can improve the classification accuracy of human detection obviously.

  7. Fuse Selection for the Two-Stage Explosive Type Switches

    Science.gov (United States)

    Muravlev, I. O.; Surkov, M. A.; Tarasov, E. V.; Uvarov, N. F.

    2017-04-01

    In the two-level explosive switch destruction of a delay happens in the form of electric explosion. Criteria of similarity of electric explosion in transformer oil are defined. The challenge of protecting the power electrical equipment from short circuit currents is still urgent, especially with the growth of unit capacity. Is required to reduce the tripping time as much as possible, and limit the amplitude of the fault current, that is very important for saving of working capacity of life-support systems. This is particularly important when operating in remote stand-alone power supply systems with a high share of renewable energy, working through the inverter transducers, as well as inverter-type diesel generators. The explosive breakers copes well with these requirements. High-speed flow of transformer oil and high pressure provides formation rate of a contact gap of 20 - 100 m/s. In these conditions there is as a rapid increase in voltage on the discontinuity, and recovery of electric strength (Ures) after current interruption.

  8. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Bad data detection in two stage estimation using phasor measurements

    Science.gov (United States)

    Tarali, Aditya

    The ability of the Phasor Measurement Unit (PMU) to directly measure the system state, has led to steady increase in the use of PMU in the past decade. However, in spite of its high accuracy and the ability to measure the states directly, they cannot completely replace the conventional measurement units due to high cost. Hence it is necessary for the modern estimators to use both conventional and phasor measurements together. This thesis presents an alternative method to incorporate the new PMU measurements into the existing state estimator in a systematic manner such that no major modification is necessary to the existing algorithm. It is also shown that if PMUs are placed appropriately, the phasor measurements can be used to detect and identify the bad data associated with critical measurements by using this model, which cannot be detected by conventional state estimation algorithm. The developed model is tested on IEEE 14, IEEE 30 and IEEE 118 bus under various conditions.

  10. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid

    2012-08-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.

  11. Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Climent, H.; Varnier, O.

    2010-01-01

    Present work presents an analytical study of two-stage turbocharging configuration performance. The aim of this work is to understand the influence of different two-stage-architecture parameters to optimize the use of exhaust manifold gases energy and to aid decision making process. An analytical model giving the relationship between global compression ratio and global expansion ratio is developed as a function of basic engine and turbocharging system parameters. Having an analytical solution, the influence of different variables, such as expansion ratio between HP and LP turbine, intercooler efficiency, turbochargers efficiency, cooling fluid temperature and exhaust temperature are studied independently. Engine simulations with proposed analytical model have been performed to analyze the influence of these different parameters on brake thermal efficiency and pumping mean effective pressure. The results obtained show the overall performance of the two-stage system for the whole operative range and characterize the optimum control of the elements for each operative condition. The model was also used to compare single-stage and two-stage architectures performance for the same engine operative conditions. Benefits and limits in terms of breathing capabilities and brake thermal efficiency of each type of system have been presented and analyzed.

  12. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    KAUST Repository

    Pathak, Nirenkumar; Chekli, Laura; Wang, Jin; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, NorEddine; Leiknes, TorOve; Shon, Hokyong

    2017-01-01

    in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using

  13. A Two-Stage Composition Method for Danger-Aware Services Based on Context Similarity

    Science.gov (United States)

    Wang, Junbo; Cheng, Zixue; Jing, Lei; Ota, Kaoru; Kansen, Mizuo

    Context-aware systems detect user's physical and social contexts based on sensor networks, and provide services that adapt to the user accordingly. Representing, detecting, and managing the contexts are important issues in context-aware systems. Composition of contexts is a useful method for these works, since it can detect a context by automatically composing small pieces of information to discover service. Danger-aware services are a kind of context-aware services which need description of relations between a user and his/her surrounding objects and between users. However when applying the existing composition methods to danger-aware services, they show the following shortcomings that (1) they have not provided an explicit method for representing composition of multi-user' contexts, (2) there is no flexible reasoning mechanism based on similarity of contexts, so that they can just provide services exactly following the predefined context reasoning rules. Therefore, in this paper, we propose a two-stage composition method based on context similarity to solve the above problems. The first stage is composition of the useful information to represent the context for a single user. The second stage is composition of multi-users' contexts to provide services by considering the relation of users. Finally the danger degree of the detected context is computed by using context similarity between the detected context and the predefined context. Context is dynamically represented based on two-stage composition rules and a Situation theory based Ontology, which combines the advantages of Ontology and Situation theory. We implement the system in an indoor ubiquitous environment, and evaluate the system through two experiments with the support of subjects. The experiment results show the method is effective, and the accuracy of danger detection is acceptable to a danger-aware system.

  14. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    Science.gov (United States)

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  15. Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents.

    Science.gov (United States)

    Atkinson, Sov; Thomas, Simon F; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Oak, Ajeet; Bansode, Anand; Patankar, Rohit; Gleason, Zachary D; Sim, Marissa K; Whitesell, Andrew; Allen, Michael J

    2015-05-21

    It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%).

  16. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  17. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    Science.gov (United States)

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  18. An X-ray Experiment with Two-Stage Korean Sounding Rocket

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    1998-12-01

    Full Text Available The test result of the X-ray observation system is presented which have been developed at Korea Astronomy Observatory for 3 years (1995-1997. The instrument, which is composed of detector and signal processing parts, is designed for the future observations of compact X-ray sources. The performance of the instrument was tested by mounting on the two-stage Korean Sounding Rocket, which was launched from Taean rocket flight center on June 11 at 10:00 KST 1998. Telemetry data were received from individual parts of the instrument for 32 and 55.7 sec, respectively, since the launch of the rocket. In this paper, the result of the data analysis based on the telemetry data and discussion about the performance of the instrument is reported.

  19. A Two-Stage Foot Repair in a 55-Year-Old Man with Poliomyelitis.

    Science.gov (United States)

    Pollack, Daniel

    2018-01-01

    A 55-year-old man with poliomyelitis presented with a plantarflexed foot and painful ulceration of the sub-first metatarsophalangeal joint present for many years. A two-stage procedure was performed to bring the foot to 90°, perpendicular to the leg, and resolve the ulceration. The first stage corrected only soft-tissue components. It involved using a hydrosurgery system to debride and prepare the ulcer, a unilobed rotational skin plasty to close the ulcer, and a tendo Achillis lengthening to decrease forefoot pressure. The second stage corrected the osseous deformity with a dorsiflexory wedge osteotomy of the first metatarsal. The ulceration has remained closed since the procedures, with complete resolution of pain.

  20. Discrete time population dynamics of a two-stage species with recruitment and capture

    International Nuclear Information System (INIS)

    Ladino, Lilia M.; Mammana, Cristiana; Michetti, Elisabetta; Valverde, Jose C.

    2016-01-01

    This work models and analyzes the dynamics of a two-stage species with recruitment and capture factors. It arises from the discretization of a previous model developed by Ladino and Valverde (2013), which represents a progress in the knowledge of the dynamics of exploited populations. Although the methods used here are related to the study of discrete-time systems and are different from those related to continuous version, the results are similar in both the discrete and the continuous case what confirm the skill in the selection of the factors to design the model. Unlike for the continuous-time case, for the discrete-time one some (non-negative) parametric constraints are derived from the biological significance of the model and become fundamental for the proofs of such results. Finally, numerical simulations show different scenarios of dynamics related to the analytical results which confirm the validity of the model.

  1. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  2. A two-stage metal valorisation process from electric arc furnace dust (EAFD

    Directory of Open Access Journals (Sweden)

    H. Issa

    2016-04-01

    Full Text Available This paper demonstrates possibility of separate zinc and lead recovery from coal composite pellets, composed of EAFD with other synergetic iron-bearing wastes and by-products (mill scale, pyrite-cinder, magnetite concentrate, through a two-stage process. The results show that in the first, low temp erature stage performed in electro-resistant furnace, removal of lead is enabled due to presence of chlorides in the system. In the second stage, performed at higher temperatures in Direct Current (DC plasma furnace, valorisation of zinc is conducted. Using this process, several final products were obtained, including a higher purity zinc oxide, which, by its properties, corresponds washed Waelz oxide.

  3. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    Science.gov (United States)

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  4. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  5. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    Science.gov (United States)

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  6. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  7. Two-stage exchange knee arthroplasty: does resistance of the infecting organism influence the outcome?

    Science.gov (United States)

    Kurd, Mark F; Ghanem, Elie; Steinbrecher, Jill; Parvizi, Javad

    2010-08-01

    Periprosthetic joint infection after TKA is a challenging complication. Two-stage exchange arthroplasty is the accepted standard of care, but reported failure rates are increasing. It has been suggested this is due to the increased prevalence of methicillin-resistant infections. We asked the following questions: (1) What is the reinfection rate after two-stage exchange arthroplasty? (2) Which risk factors predict failure? (3) Which variables are associated with acquiring a resistant organism periprosthetic joint infection? This was a case-control study of 102 patients with infected TKA who underwent a two-stage exchange arthroplasty. Ninety-six patients were followed for a minimum of 2 years (mean, 34.5 months; range, 24-90.1 months). Cases were defined as failures of two-stage exchange arthroplasty. Two-stage exchange arthroplasty was successful in controlling the infection in 70 patients (73%). Patients who failed two-stage exchange arthroplasty were 3.37 times more likely to have been originally infected with a methicillin-resistant organism. Older age, higher body mass index, and history of thyroid disease were predisposing factors to infection with a methicillin-resistant organism. Innovative interventions are needed to improve the effectiveness of two-stage exchange arthroplasty for TKA infection with a methicillin-resistant organism as current treatment protocols may not be adequate for control of these virulent pathogens. Level IV, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

  8. Maximally efficient two-stage screening: Determining intellectual disability in Taiwanese military conscripts.

    Science.gov (United States)

    Chien, Chia-Chang; Huang, Shu-Fen; Lung, For-Wey

    2009-01-27

    The purpose of this study was to apply a two-stage screening method for the large-scale intelligence screening of military conscripts. We collected 99 conscripted soldiers whose educational levels were senior high school level or lower to be the participants. Every participant was required to take the Wisconsin Card Sorting Test (WCST) and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) assessments. Logistic regression analysis showed the conceptual level responses (CLR) index of the WCST was the most significant index for determining intellectual disability (ID; FIQ ≤ 84). We used the receiver operating characteristic curve to determine the optimum cut-off point of CLR. The optimum one cut-off point of CLR was 66; the two cut-off points were 49 and 66. Comparing the two-stage window screening with the two-stage positive screening, the area under the curve and the positive predictive value increased. Moreover, the cost of the two-stage window screening decreased by 59%. The two-stage window screening is more accurate and economical than the two-stage positive screening. Our results provide an example for the use of two-stage screening and the possibility of the WCST to replace WAIS-R in large-scale screenings for ID in the future.

  9. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  10. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.

    Science.gov (United States)

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao

    2018-04-05

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  11. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar

    Directory of Open Access Journals (Sweden)

    Kuei-Chi Tsao

    2018-04-01

    Full Text Available Complementary metal-oxide-semiconductor (CMOS radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA. The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  12. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  13. A two-stage storage routing model for green roof runoff detention.

    Science.gov (United States)

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  14. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

    KAUST Repository

    Lalaurette, Elodie; Thammannagowda, Shivegowda; Mohagheghi, Ali; Maness, Pin-Ching; Logan, Bruce E.

    2009-01-01

    A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol

  15. Lingual mucosal graft two-stage Bracka technique for redo hypospadias repair

    Directory of Open Access Journals (Sweden)

    Ahmed Sakr

    2017-09-01

    Conclusion: Lingual mucosa is a reliable and versatile graft material in the armamentarium of two-stage Bracka hypospadias repair with the merits of easy harvesting and minor donor-site complications.

  16. Comparative effectiveness of one-stage versus two-stage basilic vein transposition arteriovenous fistulas.

    Science.gov (United States)

    Ghaffarian, Amir A; Griffin, Claire L; Kraiss, Larry W; Sarfati, Mark R; Brooke, Benjamin S

    2018-02-01

    Basilic vein transposition (BVT) fistulas may be performed as either a one-stage or two-stage operation, although there is debate as to which technique is superior. This study was designed to evaluate the comparative clinical efficacy and cost-effectiveness of one-stage vs two-stage BVT. We identified all patients at a single large academic hospital who had undergone creation of either a one-stage or two-stage BVT between January 2007 and January 2015. Data evaluated included patient demographics, comorbidities, medication use, reasons for abandonment, and interventions performed to maintain patency. Costs were derived from the literature, and effectiveness was expressed in quality-adjusted life-years (QALYs). We analyzed primary and secondary functional patency outcomes as well as survival during follow-up between one-stage and two-stage BVT procedures using multivariate Cox proportional hazards models and Kaplan-Meier analysis with log-rank tests. The incremental cost-effectiveness ratio was used to determine cost savings. We identified 131 patients in whom 57 (44%) one-stage BVT and 74 (56%) two-stage BVT fistulas were created among 8 different vascular surgeons during the study period that each performed both procedures. There was no significant difference in the mean age, male gender, white race, diabetes, coronary disease, or medication profile among patients undergoing one- vs two-stage BVT. After fistula transposition, the median follow-up time was 8.3 months (interquartile range, 3-21 months). Primary patency rates of one-stage BVT were 56% at 12-month follow-up, whereas primary patency rates of two-stage BVT were 72% at 12-month follow-up. Patients undergoing two-stage BVT also had significantly higher rates of secondary functional patency at 12 months (57% for one-stage BVT vs 80% for two-stage BVT) and 24 months (44% for one-stage BVT vs 73% for two-stage BVT) of follow-up (P < .001 using log-rank test). However, there was no significant difference

  17. TWO-STAGE CHARACTER CLASSIFICATION : A COMBINED APPROACH OF CLUSTERING AND SUPPORT VECTOR CLASSIFIERS

    NARCIS (Netherlands)

    Vuurpijl, L.; Schomaker, L.

    2000-01-01

    This paper describes a two-stage classification method for (1) classification of isolated characters and (2) verification of the classification result. Character prototypes are generated using hierarchical clustering. For those prototypes known to sometimes produce wrong classification results, a

  18. Cost-effectiveness Analysis of a Two-stage Screening Intervention for Hepatocellular Carcinoma in Taiwan

    Directory of Open Access Journals (Sweden)

    Sophy Ting-Fang Shih

    2010-01-01

    Conclusion: Screening the population of high-risk individuals for HCC with the two-stage screening intervention in Taiwan is considered potentially cost-effective compared with opportunistic screening in the target population of an HCC endemic area.

  19. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    Science.gov (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  20. Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing.

    Science.gov (United States)

    Brecht, René

    2009-01-01

    Modern biopharmaceutical development is characterised by deep understanding of the structure activity relationship of biological drugs. Therefore, the production process has to be tailored more to the product requirements than to the existing equipment in a certain facility. In addition, the major challenges for the industry are to lower the high production costs of biologics and to shorten the overall development time. The flexibility for providing different modes of operation using disposable bioreactors in the same facility can fulfil these demands and support tailor-made processes.Over the last 10 years, a huge and still increasing number of disposable bioreactors have entered the market. Bioreactor volumes of up to 2,000 L can be handled by using disposable bag systems. Each individual technology has been made available for different purposes up to the GMP compliant production of therapeutic drugs, even for market supply. This chapter summarises disposable technology development over the last decade by comparing the different technologies and showing trends and concepts for the future.

  1. A Two-Stage Fuzzy Logic Control Method of Traffic Signal Based on Traffic Urgency Degree

    OpenAIRE

    Yan Ge

    2014-01-01

    City intersection traffic signal control is an important method to improve the efficiency of road network and alleviate traffic congestion. This paper researches traffic signal fuzzy control method on a single intersection. A two-stage traffic signal control method based on traffic urgency degree is proposed according to two-stage fuzzy inference on single intersection. At the first stage, calculate traffic urgency degree for all red phases using traffic urgency evaluation module and select t...

  2. Noncausal two-stage image filtration at presence of observations with anomalous errors

    OpenAIRE

    S. V. Vishnevyy; S. Ya. Zhuk; A. N. Pavliuchenkova

    2013-01-01

    Introduction. It is necessary to develop adaptive algorithms, which allow to detect such regions and to apply filter with respective parameters for suppression of anomalous noises for the purposes of image filtration, which consist of regions with anomalous errors. Development of adaptive algorithm for non-causal two-stage images filtration at pres-ence of observations with anomalous errors. The adaptive algorithm for noncausal two-stage filtration is developed. On the first stage the adaptiv...

  3. Maximally efficient two-stage screening: Determining intellectual disability in Taiwanese military conscripts

    Directory of Open Access Journals (Sweden)

    Chia-Chang Chien

    2009-01-01

    Full Text Available Chia-Chang Chien1, Shu-Fen Huang1,2,3,4, For-Wey Lung1,2,3,41Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; 2Graduate Institute of Behavioral Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan; 4Calo Psychiatric Center, Pingtung County, TaiwanObjective: The purpose of this study was to apply a two-stage screening method for the large-scale intelligence screening of military conscripts.Methods: We collected 99 conscripted soldiers whose educational levels were senior high school level or lower to be the participants. Every participant was required to take the Wisconsin Card Sorting Test (WCST and the Wechsler Adult Intelligence Scale-Revised (WAIS-R assessments.Results: Logistic regression analysis showed the conceptual level responses (CLR index of the WCST was the most significant index for determining intellectual disability (ID; FIQ ≤ 84. We used the receiver operating characteristic curve to determine the optimum cut-off point of CLR. The optimum one cut-off point of CLR was 66; the two cut-off points were 49 and 66. Comparing the two-stage window screening with the two-stage positive screening, the area under the curve and the positive predictive value increased. Moreover, the cost of the two-stage window screening decreased by 59%.Conclusion: The two-stage window screening is more accurate and economical than the two-stage positive screening. Our results provide an example for the use of two-stage screening and the possibility of the WCST to replace WAIS-R in large-scale screenings for ID in the future.Keywords: intellectual disability, intelligence screening, two-stage positive screening, Wisconsin Card Sorting Test, Wechsler Adult Intelligence Scale-Revised

  4. [Study on supply and demand relation based on two stages division of market of Chinese materia medica].

    Science.gov (United States)

    Yang, Guang; Guo, Lan-Ping; Wang, Nuo; Zeng, Yan; Huang, Lu-Qi

    2014-01-01

    The complex production processes and long industrial chain in traditional Chinese medicine (TCM) market result in difficulty in Chinese market microstructure research. Based on the defining the logical relationships among different concepts. This paper divides TCM market into two stages as Chinese materia medica resource market and traditional Chinese Patent Medicines market. Under this foundation, we investigated the supply capacity, approaching rules and motivation system of suppliers in TCM market, analyzed the demand situation in the perspective of demand side, and evaluated the purchasing power in terms of population profile, income, and insurance. Furthermore we also analyzed the price formation mechanism in two stages of TCM market. We hope this study can make a positive and promotion effect on TCM market related research.

  5. Studies on quantitative physiology of Trichoderma reesei with two-stage continuous culture for cellulase production

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D; Andreotti, R; Mandels, M; Gallo, B; Reese, E T

    1979-11-01

    By employing a two-stage continuous-culture system, some of the more important physiological parameters involved in cellulase biosynthesis have been evaluated with an ultimate objective of designing an optimally controlled cellulase process. The two-stage continuous-culture system was run for a period of 1350 hr with Trichoderma reesei strain MCG-77. The temperature and pH were controlled at 32/sup 0/C and pH 4.5 for the first stage (growth) and 28/sup 0/C and pH 3.5 for the second stage (enzyme production). Lactose was the only carbon source for both stages. The ratio of specific uptake rate of carbon to that of nitrogen, Q(C)/Q(N), that supported good cell growth ranged from 11 to 15, and the ratio for maximum specific enzyme productivity ranged from 5 to 13. The maintenance coefficients determined for oxygen, M/sub 0/, and for carbon source, M/sub c/, are 0.85 mmol O/sub 2//g biomass/hr and 0.14 mmol hexose/g biomass/hr, respectively. The yield constants determined are: Y/sub X/O/ = 32.3 g biomass/mol O/sub 2/, Y/sub X/C/ = 1.1 g biomass/g C or Y/sub X/C/ = 0.44 g biomass/g hexose, Y/sub X/N/ = 12.5 g biomass/g nitrogen for the cell growth stage, and Y/sub X/N/ = 16.6 g biomass/g nitrogen for the enzyme production stage. Enzyme was produced only in the second stage. Volumetric and specific enzyme productivities obtained were 90 IU/liter/hrand 8 IU/g biomass/hr, respectively. The maximum specific enzyme productivity observed was 14.8 IU/g biomass/hr. The optimal dilution rate in the second stage that corresponded to the maximum enzyme productivity was 0.026 approx. 0.028 hr/sup -1/, and the specific growth rate in the second stage that supported maximum specific enzyme productivity was equal to or slightly less than zero.

  6. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    Science.gov (United States)

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Design of Korean nuclear reliability data-base network using a two-stage Bayesian concept

    International Nuclear Information System (INIS)

    Kim, T.W.; Jeong, K.S.; Chae, S.K.

    1987-01-01

    In an analysis of probabilistic risk, safety, and reliability of a nuclear power plant, the reliability data base (DB) must be established first. As the importance of the reliability data base increases, event reporting systems such as the US Nuclear Regulatory Commission's Licensee Event Report and the International Atomic Energy Agency's Incident Reporting System have been developed. In Korea, however, the systematic reliability data base is not yet available. Therefore, foreign data bases have been directly quoted in reliability analyses of Korean plants. In order to develop a reliability data base for Korean plants, the problem is which methodology is to be used, and the application limits of the selected method must be solved and clarified. After starting the commercial operation of Korea Nuclear Unit-1 (KNU-1) in 1978, six nuclear power plants have begun operation. Of these, only KNU-3 is a Canada Deuterium Uranium pressurized heavy-water reactor, and the others are all pressurized water reactors. This paper describes the proposed reliability data-base network (KNRDS) for Korean nuclear power plants in the context of two-stage Bayesian (TSB) procedure of Kaplan. It describes the concept of TSB to obtain the Korean-specific plant reliability data base, which is updated with the incorporation of both the reported generic reliability data and the operation experiences of similar plants

  8. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    Science.gov (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  9. HOUSEHOLD FOOD DEMAND IN INDONESIA: A TWO-STAGE BUDGETING APPROACH

    Directory of Open Access Journals (Sweden)

    Agus Widarjono

    2016-05-01

    Full Text Available A two-stage budgeting approach was applied to analyze the food demand in urban areas separated by geographical areas and classified by income groups. The demographically augmented Quadratic Almost Ideal Demand System (QUAIDS was employed to estimate the demand elasticity. Data from the National Social and Economic Survey of Households (SUSENAS in 2011 were used. The demand system is a censored model because the data contains zero expenditures and is estimated by employing the consistent two-step estimation procedure to solve biased estimation. The results show that price and income elasticities become less elastic from poor households to rich households. Demand by urban households in Java is more responsive to price but less responsive to income than urban households outside of Java. Simulation policies indicate that an increase in food prices would have more adverse impacts than a decrease in income levels. Poor families would suffer more than rich families from rising food prices and/or decreasing incomes. More importantly, urban households on Java are more vulnerable to an economic crisis, and would respond by reducing their food consumption. Economic policies to stabilize food prices are better than income policies, such as the cash transfer, to maintain the well-being of the population in Indonesia

  10. New Grapheme Generation Rules for Two-Stage Modelbased Grapheme-to-Phoneme Conversion

    Directory of Open Access Journals (Sweden)

    Seng Kheang

    2015-01-01

    Full Text Available The precise conversion of arbitrary text into its  corresponding phoneme sequence (grapheme-to-phoneme or G2P conversion is implemented in speech synthesis and recognition, pronunciation learning software, spoken term detection and spoken document retrieval systems. Because the quality of this module plays an important role in the performance of such systems and many problems regarding G2P conversion have been reported, we propose a novel two-stage model-based approach, which is implemented using an existing weighted finite-state transducer-based G2P conversion framework, to improve the performance of the G2P conversion model. The first-stage model is built for automatic conversion of words  to phonemes, while  the second-stage  model utilizes the input graphemes and output phonemes obtained from the first stage to determine the best final output phoneme sequence. Additionally, we designed new grapheme generation rules, which enable extra detail for the vowel and consonant graphemes appearing within a word. When compared with previous approaches, the evaluation results indicate that our approach using rules focusing on the vowel graphemes slightly improved the accuracy of the out-of-vocabulary dataset and consistently increased the accuracy of the in-vocabulary dataset.

  11. Dissipation of atrazine, enrofloxacin, and sulfamethazine in wood chip bioreactors and impact on denitrification

    Science.gov (United States)

    Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...

  12. Purification and characterization of enterovirus 71 viral particles produced from vero cells grown in a serum-free microcarrier bioreactor system.

    Directory of Open Access Journals (Sweden)

    Chia-Chyi Liu

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD and can cause neurological disease during acute infection. PRINCIPAL FINDING: In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >10(6 TCID(50/mL by 6 days post infection when a MOI of 10(-5 was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24-28% sucrose fractions had an icosahedral structure 30-31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3 were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35-38% sucrose were 33-35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4, as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211-225. CONCLUSION: These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification.

  13. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep.

    Science.gov (United States)

    Ma, Teng; Tao, Jingli; Yang, Minghui; He, Changjiu; Tian, Xiuzhi; Zhang, Xiaosheng; Zhang, Jinlong; Deng, Shoulong; Feng, Jianzhong; Zhang, Zhenzhen; Wang, Jing; Ji, Pengyun; Song, Yukun; He, Pingli; Han, Hongbing; Fu, Juncai; Lian, Zhengxing; Liu, Guoshi

    2017-08-01

    Melatonin as a potent antioxidant exhibits important nutritional and medicinal values. To produce melatonin-enriched milk will benefit the consumers. In this study, a sheep bioreactor which generates melatonin-enriched milk has been successfully developed by the technology that combined CRISPR/Cas9 system and microinjection. The AANAT and ASMT were cloned from pineal gland of Dorper sheep (Ovis aries). The in vitro studies found that AANAT and ASMT were successfully transferred to the mammary epithelial cell lines and significantly increased melatonin production in the culture medium compared to the nontransgenic cell lines. In addition, the Cas9 mRNA, sgRNA, and the linearized vectors pBC1-AANAT and pBC1-ASMT were co-injected into the cytoplasm of pronuclear embryos which were implanted into ewes by oviducts transferring. Thirty-four transgenic sheep were generated with the transgenic positive rate being roughly 35% which were identified by Southern blot and sequencing. Seven carried transgenic AANAT, two carried ASMT, and 25 carried both of AANAT and ASMT genes. RT-PCR and Western blot demonstrated that the lambs expressed these genes in their mammary epithelial cells and these animals produced melatonin-enriched milk. This is the first report to show a functional AANAT and ASMT transgenic animal model which produce significantly high levels of melatonin milk compared to their wild-type counterparts. The advanced technologies used in the study laid a foundation for generating large transgenic livestock, for example, the cows, which can produce high level of melatonin milk. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Membrane bioreactors for enzymatic hydrolysis of lactose; Idrolisi enzimatica del lattosio con bioreattori a membrana

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M; Pilloton, R [ENEA, Casaccia (Italy). Area Energia e Innovazione; Pontecorvo, M; Mignogna, G; Fortunato, A; Beone, F

    1993-03-01

    Bioreactor systems obtained by cell or enzyme immobilization offer many advantages compared with native enzyme, intact cell systems or other biocatalysts. Thus, many attempts have been made to design and use new types of bioreactor systems in order to improve performance, enhance productivity and reduce environmental impacts. Membrane bioreactors, obtained by physical immobilization of biocatalysts, in polymeric membrane support, offer such practical advantages as: a continuous separation and transformation process with low product inhibition and suitable hydraulic configuration (backflushing recycling, ultrafiltrating). Specific membrane modules (Amicon VitaFiber), for bioreactor applications are being commercialized. Beta-galctosidase enzyme has successfully been immobilized in a hollow fiber and in ceramic modules to hydrolyze lactose in waste whey. This technical report presents the general properties and performances (permeability, washing procedures, hydraulic configurations, physical and chemical properties) of both, polymeric and ceramic supports, enzyme kinetics, physical and covalent immobilization, mathematical model of the bioreactor and on-line process monitoring.

  15. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  16. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    Full Text Available Hydrogen is considered one of the possible main energy carriers for the future, thanks to its unique environmental properties. Indeed, its energy content (120 MJ/kg can be exploited virtually without emitting any exhaust in the atmosphere except for water. Renewable production of hydrogen can be obtained through common biological processes on which relies anaerobic digestion, a well-established technology in use at farm-scale for treating different biomass and residues. Despite two-stage hydrogen and methane producing fermentation is a simple variant of the traditional anaerobic digestion, it is a relatively new approach mainly studied at laboratory scale. It is based on biomass fermentation in two separate, seuqential stages, each maintaining conditions optimized to promote specific bacterial consortia: in the first acidophilic reactorhydrogen is produced production, while volatile fatty acids-rich effluent is sent to the second reactor where traditional methane rich biogas production is accomplished. A two-stage pilot-scale plant was designed, manufactured and installed at the experimental farm of the University of Milano and operated using a biomass mixture of livestock effluents mixed with sugar/starch-rich residues (rotten fruits and potatoes and expired fruit juices, afeedstock mixture based on waste biomasses directly available in the rural area where plant is installed. The hydrogenic and the methanogenic reactors, both CSTR type, had a total volume of 0.7m3 and 3.8 m3 respectively, and were operated in thermophilic conditions (55 2 °C without any external pH control, and were fully automated. After a brief description of the requirements of the system, this contribution gives a detailed description of its components and of engineering solutions to the problems encountered during the plant realization and start-up. The paper also discusses the results obtained in a first experimental run which lead to production in the range of previous

  17. Neuroscience and approach/avoidance personality traits: a two stage (valuation-motivation) approach.

    Science.gov (United States)

    Corr, Philip J; McNaughton, Neil

    2012-11-01

    Many personality theories link specific traits to the sensitivities of the neural systems that control approach and avoidance. But there is no consensus on the nature of these systems. Here we combine recent advances in economics and neuroscience to provide a more solid foundation for a neuroscience of approach/avoidance personality. We propose a two-stage integration of valuation (loss/gain) sensitivities with motivational (approach/avoidance/conflict) sensitivities. Our key conclusions are: (1) that valuation of appetitive and aversive events (e.g. gain and loss as studied by behavioural economists) is an independent perceptual input stage--with the economic phenomenon of loss aversion resulting from greater negative valuation sensitivity compared to positive valuation sensitivity; (2) that valuation of an appetitive stimulus then interacts with a contingency of presentation or omission to generate a motivational 'attractor' or 'repulsor', respectively (vice versa for an aversive stimulus); (3) the resultant behavioural tendencies to approach or avoid have distinct sensitivities to those of the valuation systems; (4) while attractors and repulsors can reinforce new responses they also, more usually, elicit innate or previously conditioned responses and so the perception/valuation-motivation/action complex is best characterised as acting as a 'reinforcer' not a 'reinforcement'; and (5) approach-avoidance conflict must be viewed as activating a third motivation system that is distinct from the basic approach and avoidance systems. We provide examples of methods of assessing each of the constructs within approach-avoidance theories and of linking these constructs to personality measures. We sketch a preliminary five-element reinforcer sensitivity theory (RST-5) as a first step in the integration of existing specific approach-avoidance theories into a coherent neuroscience of personality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  19. Two-Stage Robust Security-Constrained Unit Commitment with Optimizable Interval of Uncertain Wind Power Output

    Directory of Open Access Journals (Sweden)

    Dayan Sun

    2017-01-01

    Full Text Available Because wind power spillage is barely considered, the existing robust unit commitment cannot accurately analyze the impacts of wind power accommodation on on/off schedules and spinning reserve requirements of conventional generators and cannot consider the network security limits. In this regard, a novel double-level robust security-constrained unit commitment formulation with optimizable interval of uncertain wind power output is firstly proposed in this paper to obtain allowable interval solutions for wind power generation and provide the optimal schedules for conventional generators to cope with the uncertainty in wind power generation. The proposed double-level model is difficult to be solved because of the invalid dual transform in solution process caused by the coupling relation between the discrete and continuous variables. Therefore, a two-stage iterative solution method based on Benders Decomposition is also presented. The proposed double-level model is transformed into a single-level and two-stage robust interval unit commitment model by eliminating the coupling relation, and then this two-stage model can be solved by Benders Decomposition iteratively. Simulation studies on a modified IEEE 26-generator reliability test system connected to a wind farm are conducted to verify the effectiveness and advantages of the proposed model and solution method.

  20. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    Parawira, W.; Read, J.S.; Mattiasson, B.; Bjoernsson, L.

    2008-01-01

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-stage process. The results of this pilot-scale study show that the two-stage anaerobic digestion system is suitable for effective conversion of semi-solid agricultural residues as potato waste and sugar beet leaves

  1. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  2. Study on the effect of mutated bacillus megaterium in two-stage fermentation of vitamin C

    International Nuclear Information System (INIS)

    Lv Shujuan; Wang Jun; Yao Jianming; Yu Zengliang

    2003-01-01

    Bacillus megaterium as a companion strain in two-stage fermentation of vitamin C could secrete some active substances to spur growth of Gluconobacter oxydans to produce 2-KLG. In the fermenting system where Gluconobacter oxydans was combined with GB82-a mutated strain of B. megaterium by ion implantation, the amount of 2-KLG harvested was larger than that produced by the original B. megaterium BP52 being substituted for GB82. In this paper, authors studied the effect of the active substances secreted by GB82 to enhance the capability of Gluconobacter oxydans to produce 2-KLG. The supernate of GB82 sampled at different cultivation times all had much more activity to spur Gluconobacter oxydans to yield 2-KLG than that of the original B. megaterium, which might be due to the genetic changes in the active components caused by ion implantation. Furthermore, the active substances of GB82's supernate would lose a part of its activity in extreme environments, which is typical of some proteins

  3. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  4. Spectral Characteristic Based on Fabry—Pérot Laser Diode with Two-Stage Optical Feedback

    International Nuclear Information System (INIS)

    Wu Jian-Wei; Nakarmi Bikash

    2013-01-01

    An optical device, consisting of a multi-mode Fabry—Pérot laser diode (MMFP-LD) with two-stage optical feedback, is proposed and experimentally demonstrated. The results show that the single-mode output with side-mode suppression ratio (SMSR) of ∼21.7 dB is attained by using the first-stage feedback. By using the second-stage feedback, the SMSR of single-mode operation could be increased to ∼28.5 dB while injection feedback power of −29 dBm is introduced into the laser diode. In the case of up to −29 dBm feedback power, the outcome SMSR is rapidly decayed to a very low level so that an obvious multi-mode operation in the output spectrum could be achieved at the feedback power level of −15.5 dBm. Thus, a transition between single- and multi-mode operations could be flexibly controlled by adjusting the injected power in the second-stage feedback system. Additionally, in the case of injection locking, the outcome SMSR and output power at the locked wavelength are as high as ∼50 dB and ∼5.8 dBm, respectively

  5. Two-stage collaborative global optimization design model of the CHPG microgrid

    Science.gov (United States)

    Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng

    2017-06-01

    With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.

  6. Modeling two-stage bunch compression with wakefields: Macroscopic properties and microbunching instability

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2008-09-01

    Full Text Available In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in the bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.

  7. A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

    Directory of Open Access Journals (Sweden)

    RAMKRISHNA KUNDU

    2017-03-01

    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  8. Two-Stage Chaos Optimization Search Application in Maximum Power Point Tracking of PV Array

    Directory of Open Access Journals (Sweden)

    Lihua Wang

    2014-01-01

    Full Text Available In order to deliver the maximum available power to the load under the condition of varying solar irradiation and environment temperature, maximum power point tracking (MPPT technologies have been used widely in PV systems. Among all the MPPT schemes, the chaos method is one of the hot topics in recent years. In this paper, a novel two-stage chaos optimization method is presented which can make search faster and more effective. In the process of proposed chaos search, the improved logistic mapping with the better ergodic is used as the first carrier process. After finding the current optimal solution in a certain guarantee, the power function carrier as the secondary carrier process is used to reduce the search space of optimized variables and eventually find the maximum power point. Comparing with the traditional chaos search method, the proposed method can track the change quickly and accurately and also has better optimization results. The proposed method provides a new efficient way to track the maximum power point of PV array.

  9. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  10. Two-Stage Multi-Objective Collaborative Scheduling for Wind Farm and Battery Switch Station

    Directory of Open Access Journals (Sweden)

    Zhe Jiang

    2016-10-01

    Full Text Available In order to deal with the uncertainties of wind power, wind farm and electric vehicle (EV battery switch station (BSS were proposed to work together as an integrated system. In this paper, the collaborative scheduling problems of such a system were studied. Considering the features of the integrated system, three indices, which include battery swapping demand curtailment of BSS, wind curtailment of wind farm, and generation schedule tracking of the integrated system are proposed. In addition, a two-stage multi-objective collaborative scheduling model was designed. In the first stage, a day-ahead model was built based on the theory of dependent chance programming. With the aim of maximizing the realization probabilities of these three operating indices, random fluctuations of wind power and battery switch demand were taken into account simultaneously. In order to explore the capability of BSS as reserve, the readjustment process of the BSS within each hour was considered in this stage. In addition, the stored energy rather than the charging/discharging power of BSS during each period was optimized, which will provide basis for hour-ahead further correction of BSS. In the second stage, an hour-ahead model was established. In order to cope with the randomness of wind power and battery swapping demand, the proposed hour-ahead model utilized ultra-short term prediction of the wind power and the battery switch demand to schedule the charging/discharging power of BSS in a rolling manner. Finally, the effectiveness of the proposed models was validated by case studies. The simulation results indicated that the proposed model could realize complement between wind farm and BSS, reduce the dependence on power grid, and facilitate the accommodation of wind power.

  11. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis.

    Science.gov (United States)

    Jamshidy, Ladan; Mozaffari, Hamid Reza; Faraji, Payam; Sharifi, Roohollah

    2016-01-01

    Introduction . One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods . A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL) regions by a stereomicroscope using a standard method. Results . The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion . The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  12. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy

    2016-01-01

    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  13. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Critical Review of Membrane Bioreactor Models

    DEFF Research Database (Denmark)

    Naessens, W.; Maere, T.; Ratkovich, Nicolas Rios

    2012-01-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical...... modelling. In this paper, the vast literature on hydrodynamic and integrated modelling in MBR is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones...

  15. LCA and Cost Analysis of Membrane Bioreactor Systems: Influence of Scale, Population Density, Climate, and Methane Recovery

    Science.gov (United States)

    Future changes in drinking and waste water infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated...

  16. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Hancher, C.W.; Taylor, P.A.; Napier, J.M.

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m 3 ; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO 3 - )/day-m 3 using feed with a nitrate concentration of 1800 g/m 3 . Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30 0 C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  17. Investigation of Power Losses of Two-Stage Two-Phase Converter with Two-Phase Motor

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available The paper deals with determination of losses of two-stage power electronic system with two-phase variable orthogonal output. The simulation is focused on the investigation of losses in the converter during one period in steady-state operation. Modeling and simulation of two matrix converters with R-L load is shown in the paper. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and in application with high frequency voltage sources.

  18. Frequency analysis of a two-stage planetary gearbox using two different methodologies

    Science.gov (United States)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed

    2017-12-01

    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  19. Design and construction of the X-2 two-stage free piston driven expansion tube

    Science.gov (United States)

    Doolan, Con

    1995-01-01

    This report outlines the design and construction of the X-2 two-stage free piston driven expansion tube. The project has completed its construction phase and the facility has been installed in the new impulsive research laboratory where commissioning is about to take place. The X-2 uses a unique, two-stage driver design which allows a more compact and lower overall cost free piston compressor. The new facility has been constructed in order to examine the performance envelope of the two-stage driver and how well it couple to sub-orbital and super-orbital expansion tubes. Data obtained from these experiments will be used for the design of a much larger facility, X-3, utilizing the same free piston driver concept.

  20. Bias due to two-stage residual-outcome regression analysis in genetic association studies.

    Science.gov (United States)

    Demissie, Serkalem; Cupples, L Adrienne

    2011-11-01

    Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.

  1. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...... that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  2. One-stage and two-stage penile buccal mucosa urethroplasty

    Directory of Open Access Journals (Sweden)

    G. Barbagli

    2016-03-01

    Full Text Available The paper provides the reader with the detailed description of current techniques of one-stage and two-stage penile buccal mucosa urethroplasty. The paper provides the reader with the preoperative patient evaluation paying attention to the use of diagnostic tools. The one-stage penile urethroplasty using buccal mucosa graft with the application of glue is preliminary showed and discussed. Two-stage penile urethroplasty is then reported. A detailed description of first-stage urethroplasty according Johanson technique is reported. A second-stage urethroplasty using buccal mucosa graft and glue is presented. Finally postoperative course and follow-up are addressed.

  3. Holistic Evaluation of Decentralized Water Reuse: Life Cycle Assessment and Cost Analysis of Membrane Bioreactor Systems in Water Reuse Implementation

    Science.gov (United States)

    Understand environmental and cost impacts of transitional decentralized MBR systems with sewer mining Assess aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR) Use LCA and life cycle cost (LCC) analysis to quantify impacts Investigate LCA and LCC performance of MBRs under various re...

  4. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study

    KAUST Repository

    Harb, Moustapha; Hong, Pei-Ying

    2016-01-01

    than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  5. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  6. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  7. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems

    Directory of Open Access Journals (Sweden)

    Musoni, M.

    2015-01-01

    Full Text Available The production of fungal metabolites and conidia at an industrial scale requires an adequate yield at relatively low cost. To this end, many factors are examined and the design of the bioreactor to be used for the selected product takes a predominant place in the analysis. One approach to addressing the issue is to integrate the scaling-up procedure according to the biological characteristics of the microorganism considered, i.e. in our case filamentous fungi. Indeed, the scaling-up procedure is considered as one of the major bottlenecks in fermentation technology, mainly due to the near impossibility of reproducing the ideal conditions obtained in small reactors designed for research purposes when transposing them to a much larger production scale. The present review seeks to make the point regarding the bioreactor design and its implementation for cultivation of filamentous fungi and the production of fungal metabolites according to different developmental stages of fungi of industrial interest. Solid-state (semi-solid, submerged, fermentation and biofilm reactors are analyzed. The different bioreactor designs used for these three processes are also described at the technological level.

  8. Plantform Bioreactor for Mass Micropropagation of Date Palm.

    Science.gov (United States)

    Almusawi, Abdulminam H A; Sayegh, Abdullah J; Alshanaw, Ansam M S; Griffis, John L

    2017-01-01

    A novel protocol for the commercial production of date palm through micropropagation is presented. This protocol includes the use of a semisolid medium alternation or in combination with a temporary immersion system (TIS, Plantform bioreactor) in date palm micropropagation. The use of the Plantform bioreactor for date palm results in an improved multiplication rate, reduced micropropagation time, and improved weaning success. It also reduces the cost of saleable units and thus improves economic return for commercial micropropagation. The use of the Plantform bioreactor successfully addresses other hindrances that can occur during the scale-up of date palm micropropagation, including asynchrony of somatic embryos, limited maturation of somatic embryos, and highly variable germination frequencies of embryos.

  9. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  10. Application of semifluidized bed bioreactor as novel bioreactor ...

    African Journals Online (AJOL)

    The conventional bioreactors such as pond digester, anaerobic filtration, up-flow anaerobic sludge blanket (UASB), up-flow anaerobic sludge fixed-film (UASFF), continuous stirred tank reactor (CSTR), anaerobic contact digestion and fluidized bed, used over the past decades are largely operated anaerobically. They have ...

  11. Efficiency of primary care in rural Burkina Faso. A two-stage DEA analysis.

    Science.gov (United States)

    Marschall, Paul; Flessa, Steffen

    2011-07-20

    Providing health care services in Africa is hampered by severe scarcity of personnel, medical supplies and financial funds. Consequently, managers of health care institutions are called to measure and improve the efficiency of their facilities in order to provide the best possible services with their resources. However, very little is known about the efficiency of health care facilities in Africa and instruments of performance measurement are hardly applied in this context. This study determines the relative efficiency of primary care facilities in Nouna, a rural health district in Burkina Faso. Furthermore, it analyses the factors influencing the efficiency of these institutions. We apply a two-stage Data Envelopment Analysis (DEA) based on data from a comprehensive provider and household information system. In the first stage, the relative efficiency of each institution is calculated by a traditional DEA model. In the second stage, we identify the reasons for being inefficient by regression technique. The DEA projections suggest that inefficiency is mainly a result of poor utilization of health care facilities as they were either too big or the demand was too low. Regression results showed that distance is an important factor influencing the efficiency of a health care institution Compared to the findings of existing one-stage DEA analyses of health facilities in Africa, the share of relatively efficient units is slightly higher. The difference might be explained by a rather homogenous structure of the primary care facilities in the Burkina Faso sample. The study also indicates that improving the accessibility of primary care facilities will have a major impact on the efficiency of these institutions. Thus, health decision-makers are called to overcome the demand-side barriers in accessing health care.

  12. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  13. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  14. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    Science.gov (United States)

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.

  15. On response time and cycle time distributions in a two-stage cyclic queue

    NARCIS (Netherlands)

    Boxma, O.J.; Donk, P.

    1982-01-01

    We consider a two-stage closed cyclic queueing model. For the case of an exponential server at each queue we derive the joint distribution of the successive response times of a custumer at both queues, using a reversibility argument. This joint distribution turns out to have a product form. The

  16. Simultaneous versus sequential pharmacokinetic-pharmacodynamic population analysis using an iterative two-stage Bayesian technique

    NARCIS (Netherlands)

    Proost, Johannes H.; Schiere, Sjouke; Eleveld, Douglas J.; Wierda, J. Mark K. H.

    A method for simultaneous pharmacokinetic-pharmacodynamic (PK-PD) population analysis using an Iterative Two-Stage Bayesian (ITSB) algorithm was developed. The method was evaluated using clinical data and Monte Carlo simulations. Data from a clinical study with rocuronium in nine anesthetized

  17. One-stage and two-stage penile buccal mucosa urethroplasty

    African Journals Online (AJOL)

    G. Barbagli

    2015-12-02

    Dec 2, 2015 ... there also seems to be a trend of decreasing urethritis and an increase of instrumentation and catheter related strictures in these countries as well [4–6]. The repair of penile urethral strictures may require one- or two- stage urethroplasty [7–10]. Certainly, sexual function can be placed at risk by any surgery ...

  18. Numerical simulation of brain tumor growth model using two-stage ...

    African Journals Online (AJOL)

    In the recent years, the study of glioma growth to be an active field of research Mathematical models that describe the proliferation and diffusion properties of the growth have been developed by many researchers. In this work, the performance analysis of two-stage Gauss-Seidel (TSGS) method to solve the glioma growth ...

  19. An Efficient Robust Solution to the Two-Stage Stochastic Unit Commitment Problem

    DEFF Research Database (Denmark)

    Blanco, Ignacio; Morales González, Juan Miguel

    2017-01-01

    This paper proposes a reformulation of the scenario-based two-stage unitcommitment problem under uncertainty that allows finding unit-commitment plansthat perform reasonably well both in expectation and for the worst caserealization of the uncertainties. The proposed reformulation is based onpart...

  20. Two-stage bargaining with coverage extension in a dual labour market

    DEFF Research Database (Denmark)

    Roberts, Mark A.; Stæhr, Karsten; Tranæs, Torben

    2000-01-01

    This paper studies coverage extension in a simple general equilibrium model with a dual labour market. The union sector is characterized by two-stage bargaining whereas the firms set wages in the non-union sector. In this model firms and unions of the union sector have a commonality of interest...

  1. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  2. Some design aspects of a two-stage rail-to-rail CMOS op amp

    NARCIS (Netherlands)

    Gierkink, Sander L.J.; Holzmann, Peter J.; Wiegerink, Remco J.; Wassenaar, R.F.

    1999-01-01

    A two-stage low-voltage CMOS op amp with rail-to-rail input and output voltage ranges is presented. The circuit uses complementary differential input pairs to achieve the rail-to-rail common-mode input voltage range. The differential pairs operate in strong inversion, and the constant

  3. Insufficient sensitivity of joint aspiration during the two-stage exchange of the hip with spacers.

    Science.gov (United States)

    Boelch, Sebastian Philipp; Weissenberger, Manuel; Spohn, Frederik; Rudert, Maximilian; Luedemann, Martin

    2018-01-10

    Evaluation of infection persistence during the two-stage exchange of the hip is challenging. Joint aspiration before reconstruction is supposed to rule out infection persistence. Sensitivity and specificity of synovial fluid culture and synovial leucocyte count for detecting infection persistence during the two-stage exchange of the hip were evaluated. Ninety-two aspirations before planned joint reconstruction during the two-stage exchange with spacers of the hip were retrospectively analyzed. The sensitivity and specificity of synovial fluid culture was 4.6 and 94.3%. The sensitivity and specificity of synovial leucocyte count at a cut-off value of 2000 cells/μl was 25.0 and 96.9%. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were significantly higher before prosthesis removal and reconstruction or spacer exchange (p = 0.00; p = 0.013 and p = 0.039; p = 0.002) in the infection persistence group. Receiver operating characteristic area under the curve values before prosthesis removal and reconstruction or spacer exchange for ESR were lower (0.516 and 0.635) than for CRP (0.720 and 0.671). Synovial fluid culture and leucocyte count cannot rule out infection persistence during the two-stage exchange of the hip.

  4. Two-Stage Power Factor Corrected Power Supplies: The Low Component-Stress Approach

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.

    2002-01-01

    The discussion concerning the use of single-stage contra two-stage PFC solutions has been going on for the last decade and it continues. The purpose of this paper is to direct the focus back on how the power is processed and not so much as to the number of stages or the amount of power processed...

  5. EVALUATION OF A TWO-STAGE PASSIVE TREATMENT APPROACH FOR MINING INFLUENCE WATERS

    Science.gov (United States)

    A two-stage passive treatment approach was assessed at bench-scale using two Colorado Mining Influenced Waters (MIWs). The first-stage was a limestone drain with the purpose of removing iron and aluminum and mitigating the potential effects of mineral acidity. The second stage w...

  6. The RTD measurement of two stage anaerobic digester using radiotracer in WWTP

    International Nuclear Information System (INIS)

    Jin-Seop, Kim; Jong-Bum, Kim; Sung-Hee, Jung

    2006-01-01

    The aims of this study are to assess the existence and location of the stagnant zone by estimating the MRT (mean residence time) on the two stage anaerobic digester, with the results to be used as informative clue for its better operation

  7. A two-stage meta-analysis identifies several new loci for Parkinson's disease.

    NARCIS (Netherlands)

    Plagnol, V.; Nalls, M.A.; Bras, J.M.; Hernandez, D.; Sharma, M.; Sheerin, U.M.; Saad, M.; Simon-Sanchez, J.; Schulte, C.; Lesage, S.; Sveinbjornsdottir, S.; Amouyel, P.; Arepalli, S.; Band, G.; Barker, R.A.; Bellinguez, C.; Ben-Shlomo, Y.; Berendse, H.W.; Berg, D; Bhatia, K.P.; Bie, R.M. de; Biffi, A.; Bloem, B.R.; Bochdanovits, Z.; Bonin, M.; Brockmann, K.; Brooks, J.; Burn, D.J.; Charlesworth, G.; Chen, H.; Chinnery, P.F.; Chong, S.; Clarke, C.E.; Cookson, M.R.; Cooper, J.M.; Corvol, J.C.; Counsell, J.; Damier, P.; Dartigues, J.F.; Deloukas, P.; Deuschl, G.; Dexter, D.T.; Dijk, K.D. van; Dillman, A.; Durif, F.; Durr, A.; Edkins, S.; Evans, J.R.; Foltynie, T.; Freeman, C.; Gao, J.; Gardner, M.; Gibbs, J.R.; Goate, A.; Gray, E.; Guerreiro, R.; Gustafsson, O.; Harris, C.; Hellenthal, G.; Hilten, J.J. van; Hofman, A.; Hollenbeck, A.; Holton, J.L.; Hu, M.; Huang, X.; Huber, H; Hudson, G.; Hunt, S.E.; Huttenlocher, J.; Illig, T.; Jonsson, P.V.; Langford, C.; Lees, A.J.; Lichtner, P.; Limousin, P.; Lopez, G.; McNeill, A.; Moorby, C.; Moore, M.; Morris, H.A.; Morrison, K.E.; Mudanohwo, E.; O'Sullivan, S.S; Pearson, J.; Pearson, R.; Perlmutter, J.; Petursson, H.; Pirinen, M.; Polnak, P.; Post, B.; Potter, S.C.; Ravina, B.; Revesz, T.; Riess, O.; Rivadeneira, F.; Rizzu, P.; Ryten, M.; Sawcer, S.J.; Schapira, A.; Scheffer, H.; Shaw, K.; Shoulson, I.; Sidransky, E.; Silva, R. de; Smith, C.; Spencer, C.C.; Stefansson, H.; Steinberg, S.; Stockton, J.D.; Strange, A.; Su, Z.; Talbot, K.; Tanner, C.M.; Tashakkori-Ghanbaria, A.; Tison, F.; Trabzuni, D.; Traynor, B.J.; Uitterlinden, A.G.; Vandrovcova, J.; Velseboer, D.; Vidailhet, M.; Vukcevic, D.; Walker, R.; Warrenburg, B.P.C. van de; Weale, M.E.; Wickremaratchi, M.; Williams, N.; Williams-Gray, C.H.; Winder-Rhodes, S.; Stefansson, K.; Martinez, M.; Donnelly, P.; Singleton, A.B.; Hardy, J.; Heutink, P.; Brice, A.; Gasser, T.; Wood, N.W.

    2011-01-01

    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study

  8. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...

  9. A Two-Stage Approach to Civil Conflict: Contested Incompatibilities and Armed Violence

    DEFF Research Database (Denmark)

    Bartusevicius, Henrikas; Gleditsch, Kristian Skrede

    2017-01-01

    conflict origination but have no clear effect on militarization, whereas other features emphasized as shaping the risk of civil war, such as refugee flows and soft state power, strongly influence militarization but not incompatibilities. We posit that a two-stage approach to conflict analysis can help...

  10. Advancing early detection of autism spectrum disorder by applying an integrated two-stage screening approach

    NARCIS (Netherlands)

    Oosterling, Iris J.; Wensing, Michel; Swinkels, Sophie H.; van der Gaag, Rutger Jan; Visser, Janne C.; Woudenberg, Tim; Minderaa, Ruud; Steenhuis, Mark-Peter; Buitelaar, Jan K.

    Background: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of

  11. A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease

    NARCIS (Netherlands)

    Plagnol, Vincent; Nalls, Michael A.; Bras, Jose M.; Hernandez, Dena G.; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simon-Sanchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjornsdottir, Sigurlaug; Amouyel, Philippe; Arepalli, Sampath; Band, Gavin; Barker, Roger A.; Bellinguez, Celine; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-Francois; Deloukas, Panos; Deuschl, Guenther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Duerr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Freeman, Colin; Gao, Jianjun; Gardner, Michelle; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Gustafsson, Omar; Harris, Clare; Hellenthal, Garrett; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jonsson, Palmi V.; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw; Morrison, Karen E.; Mudanohwo, Ese; O'Sullivan, Sean S.; Pearson, Justin; Pearson, Richard; Perlmutter, Joel S.; Petursson, Hjoervar; Pirinen, Matti; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; de Silva, Rohan; Smith, Colin; Spencer, Chris C. A.; Stefansson, Hreinn; Steinberg, Stacy; Stockton, Joanna D.; Strange, Amy; Su, Zhan; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, Francois; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, Andre G.; Vandrovcova, Jana; Velseboer, Daan; Vidailhet, Marie; Vukcevic, Damjan; Walker, Robert; van de Warrenburg, Bart; Weale, Michael E.; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefansson, Kari; Martinez, Maria; Donnelly, Peter; Singleton, Andrew B.; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Wood, Nicholas W.

    2011-01-01

    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set

  12. On A Two-Stage Supply Chain Model In The Manufacturing Industry ...

    African Journals Online (AJOL)

    We model a two-stage supply chain where the upstream stage (stage 2) always meet demand from the downstream stage (stage 1).Demand is stochastic hence shortages will occasionally occur at stage 2. Stage 2 must fill these shortages by expediting using overtime production and/or backordering. We derive optimal ...

  13. Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner.

    Science.gov (United States)

    Kino-Oka, Masahiro; Ogawa, Natsuki; Umegaki, Ryota; Taya, Masahito

    2005-01-01

    A novel bioreactor system was designed to perform a series of batchwise cultures of anchorage-dependent cells by means of automated operations of medium change and passage for cell transfer. The experimental data on contamination frequency ensured the biological cleanliness in the bioreactor system, which facilitated the operations in a closed environment, as compared with that in flask culture system with manual handlings. In addition, the tools for growth prediction (based on growth kinetics) and real-time growth monitoring by measurement of medium components (based on small-volume analyzing machinery) were installed into the bioreactor system to schedule the operations of medium change and passage and to confirm that culture proceeds as scheduled, respectively. The successive culture of anchorage-dependent cells was conducted with the bioreactor running in an automated way. The automated bioreactor gave a successful culture performance with fair accordance to preset scheduling based on the information in the latest subculture, realizing 79- fold cell expansion for 169 h. In addition, the correlation factor between experimental data and scheduled values through the bioreactor performance was 0.998. It was concluded that the proposed bioreactor with the integration of the prediction and monitoring tools could offer a feasible system for the manufacturing process of cultured tissue products.

  14. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  15. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-01-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10 9 cm -3 at an operating gas pressure in the vacuum chamber of less than 2x10 -2 Pa. The device features high power efficiency, design simplicity, and compactness.

  16. Design of a Scalable Modular Production System for a Two-stage Food Service Franchise System

    Directory of Open Access Journals (Sweden)

    Matt

    2012-11-01

    industrial case. Information was collected through multiple site visits, workshops and semi‐structured interviews with the company’s key staff of the project, as well as examination of relevant company documentations. By means of a scenario for the Central European market, the model was reviewed in terms of its development potential and finally approved for implementation. However, research through case survey requires further empirical investigation to fully establish this approach as a valid and reliable design tool.

  17. Fiscal 1996 report on the results of the R and D under a consignment from NEDO of the environment friendly type production technology. High-functional chemical synthesis bioreactor (for public); 1996 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Kankyo chowagata seisan gijutsu (kokino kagaku gosei bioreactor) kenkyu kaihatsu seika hokokusho (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the purpose of developing production technology of chemical substances which are resource conservative, energy saving and less in environmental loads, a R and D was conducted of a high-functional chemical synthesis bioreactor. The paper reported the results of fiscal 1996. As for proliferation control breeding technology, relating to the switch control technology of proliferation related genes by regulatory factors, the effectiveness on an incubator level was demonstrated, and at the same time improvement of reactor performance in using this technology was studied on paper. As to the manifestation control breeding technology, the actual design of the development of manifestation promotion technology by bent DNA, etc. was proceeded with, and at the same time the following were commenced: selection of bent DNA, confirmation of bent characteristics, and work of vector construction using candidate bent DNA. Further, the simple assessment system of manifestation vectors was constructed. In the development of bioreactor system technology, the actual design was started of the two-stage culture continuance system which separated proliferation and enzyme production. 48 refs., 41 figs., 6 tabs.

  18. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  19. A two-stage approach for improved prediction of residue contact maps

    Directory of Open Access Journals (Sweden)

    Pollastri Gianluca

    2006-03-01

    Full Text Available Abstract Background Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts, the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps. In order to alleviate these problems and achieve improved contact map predictions, in this paper we split the task into two stages: the prediction of a map's principal eigenvector (PE from the primary sequence; the reconstruction of the contact map from the PE and primary sequence. Predicting the PE from the primary sequence consists in mapping a vector into a vector. This task is less complex than mapping vectors directly into two-dimensional matrices since the size of the problem is drastically reduced and so is the scale length of interactions that need to be learned. Results We develop architectures composed of ensembles of two-layered bidirectional recurrent neural networks to classify the components of the PE in 2, 3 and 4 classes from protein primary sequence, predicted secondary structure, and hydrophobicity interaction scales. Our predictor, tested on a non redundant set of 2171 proteins, achieves classification performances of up to 72.6%, 16% above a base-line statistical predictor. We design a system for the prediction of contact maps from the predicted PE. Our results show that predicting maps through the PE yields sizeable gains especially for long-range contacts which are particularly critical for accurate protein 3D reconstruction. The final predictor's accuracy on a non-redundant set of 327 targets is 35

  20. Hydraulic Behavior in The Downflow Hanging Sponge Bioreactor

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-12-01

    Full Text Available Performance efficiency in a Downflow Hanging Sponge (DHS bioreactor is associated with the amount of time that a wastewater remains in the bioreactor. The bioreactor is considered as a plug flow reactor and its hydraulic residence time (HRT depends on the void volume of packing material and the flow rate. In this study, hydraulic behavior of DHS bioreactor was investigated by using tracer method. Two types of sponge module covers, cylindrical plastic frame (module-1 and plastic hair roller (module-2, were investigated and compared. A concentrated NaCl solution used as an inert tracer and input as a pulse at the inlet of DHS bioreactor. Analysis of the residence time distribution (RTD curves provided interpretation of the index distribution or holdup water (active volume, the degree of short-circuiting, number of tanks in series (the plug flow characteristic, and the dispersion number. It was found that the actual HRT was primarily shorter than theoretical HRT of each test. Holdup water of the DHS bioreactor ranged from 60% to 97% and 36% to 60% of module-1 and module-2, respectively. Eventhough module-1 has higher effective volume than module-2, result showed that the dispersion numbers of the two modules were not significant difference. Furthermore, N-values were found larger at a higher flow rate. It was concluded that a DHS bioreactor design should incorporated a combination of water distributor system, higher loading rate at startup process to generate a hydraulic behavior closer to an ideal plug flow.ABSTRAKEfisiensi unjuk kerja bioreactor Downflow Hanging Sponge (DHS berkaitan dengan lamanya waktu tinggal limbah berada di dalam bioreaktor tersebut. Bioreaktor DHS dianggap sebagai seuatu reaktor aliran sumbat (plug flow dimana waktu tinggal hidraulik (HRT tergantung pada volume pori material isian dan laju alir. Dua jenis modul digunakan dalam penelitian ini, yang diberi nama dengan module-1 dan module-2 untuk melihat pengaruh jenis modul

  1. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  2. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  3. An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand

    International Nuclear Information System (INIS)

    Ji, L.; Niu, D.X.; Huang, G.H.

    2014-01-01

    In this paper a stochastic robust optimization problem of residential micro-grid energy management is presented. Combined cooling, heating and electricity technology (CCHP) is introduced to satisfy various energy demands. Two-stage programming is utilized to find the optimal installed capacity investment and operation control of CCHP (combined cooling heating and power). Moreover, interval programming and robust stochastic optimization methods are exploited to gain interval robust solutions under different robustness levels which are feasible for uncertain data. The obtained results can help micro-grid managers minimizing the investment and operation cost with lower system failure risk when facing fluctuant energy market and uncertain technology parameters. The different robustness levels reflect the risk preference of micro-grid manager. The proposed approach is applied to residential area energy management in North China. Detailed computational results under different robustness level are presented and analyzed for providing investment decision and operation strategies. - Highlights: • An inexact two-stage stochastic robust programming model for CCHP management. • The energy market and technical parameters uncertainties were considered. • Investment decision, operation cost, and system safety were analyzed. • Uncertainties expressed as discrete intervals and probability distributions

  4. An adaptive two-stage dose-response design method for establishing proof of concept.

    Science.gov (United States)

    Franchetti, Yoko; Anderson, Stewart J; Sampson, Allan R

    2013-01-01

    We propose an adaptive two-stage dose-response design where a prespecified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish "global" PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs.

  5. Sample size reassessment for a two-stage design controlling the false discovery rate.

    Science.gov (United States)

    Zehetmayer, Sonja; Graf, Alexandra C; Posch, Martin

    2015-11-01

    Sample size calculations for gene expression microarray and NGS-RNA-Seq experiments are challenging because the overall power depends on unknown quantities as the proportion of true null hypotheses and the distribution of the effect sizes under the alternative. We propose a two-stage design with an adaptive interim analysis where these quantities are estimated from the interim data. The second stage sample size is chosen based on these estimates to achieve a specific overall power. The proposed procedure controls the power in all considered scenarios except for very low first stage sample sizes. The false discovery rate (FDR) is controlled despite of the data dependent choice of sample size. The two-stage design can be a useful tool to determine the sample size of high-dimensional studies if in the planning phase there is high uncertainty regarding the expected effect sizes and variability.

  6. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.

    Science.gov (United States)

    Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier

    2002-03-29

    The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.

  7. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    Science.gov (United States)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  8. Optimising the refrigeration cycle with a two-stage centrifugal compressor and a flash intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Roeyttae, Pekka; Turunen-Saaresti, Teemu; Honkatukia, Juha [Lappeenranta University of Technology, Laboratory of Energy and Environmental Technology, PO Box 20, 53851 Lappeenranta (Finland)

    2009-09-15

    The optimisation of a refrigeration process with a two-stage centrifugal compressor and flash intercooler is presented in this paper. The two-stage centrifugal compressor stages are on the same shaft and the electric motor is cooled with the refrigerant. The performance of the centrifugal compressor is evaluated based on semi-empirical specific-speed curves and the effect of the Reynolds number, surface roughness and tip clearance have also been taken into account. The thermodynamic and transport properties of the working fluids are modelled with a real-gas model. The condensing and evaporation temperatures, the temperature after the flash intercooler, and cooling power have been chosen as fixed values in the process. The aim is to gain a maximum coefficient of performance (COP). The method of optimisation, the operation of the compressor and flash intercooler, and the method for estimating the electric motor cooling are also discussed in the article. (author)

  9. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  10. Generation of dense, pulsed beams of refractory metal atoms using two-stage laser ablation

    International Nuclear Information System (INIS)

    Kadar-Kallen, M.A.; Bonin, K.D.

    1994-01-01

    We report a technique for generating a dense, pulsed beam of refractory metal atoms using two-stage laser ablation. An atomic beam of uranium was produced with a peak, ground-state number density of 1x10 12 cm -3 at a distance of z=27 cm from the source. This density can be scaled as 1/z 3 to estimate the density at other distances which are also far from the source

  11. Two-stage hepatectomy: who will not jump over the second hurdle?

    Science.gov (United States)

    Turrini, O; Ewald, J; Viret, F; Sarran, A; Goncalves, A; Delpero, J-R

    2012-03-01

    Two-stage hepatectomy uses compensatory liver regeneration after a first noncurative hepatectomy to enable a second curative resection in patients with bilobar colorectal liver metastasis (CLM). To determine the predictive factors of failure of two-stage hepatectomy. Between 2000 and 2010, 48 patients with irresectable CLM were eligible for two-stage hepatectomy. The planned strategy was a) cleaning of the left hepatic lobe (first hepatectomy), b) right portal vein embolisation and c) right hepatectomy (second hepatectomy). Six patients had occult CLM (n = 5) or extra-hepatic disease (n = 1), which was discovered during the first hepatectomy. Thus, 42 patients completed the first hepatectomy and underwent portal vein embolisation in order to receive the second hepatectomy. Eight patients did not undergo a second hepatectomy due to disease progression. Upon univariate analysis, two factors were identified that precluded patients from having the second hepatectomy: the combined resection of a primary tumour during the first hepatectomy (p = 0.01) and administration of chemotherapy between the two hepatectomies (p = 0.03). An independent association with impairment to perform the two-stage strategy was demonstrated by multivariate analysis for only the combined resection of the primary colorectal cancer during the first hepatectomy (p = 0.04). Due to the small number of patients and the absence of equivalent conclusions in other studies, we cannot recommend performance of an isolated colorectal resection prior to chemotherapy. However, resection of an asymptomatic primary tumour before chemotherapy should not be considered as an outdated procedure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective

    Science.gov (United States)

    Hamaker, Joseph W.

    1996-03-01

    This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.

  13. Control strategy research of two stage topology for pulsed power supply

    International Nuclear Information System (INIS)

    Shi Chunfeng; Wang Rongkun; Huang Yuzhen; Chen Youxin; Yan Hongbin; Gao Daqing

    2013-01-01

    A kind of pulsed power supply of HIRFL-CSR was introduced, the ripple and the current error of the topological structure of the power in the operation process were analyzed, and two stage topology of pulsed power supply was given. The control strategy was simulated and the experiment was done in digital power platform. The results show that the main circuit structure and control method are feasible. (authors)

  14. Two Stage Fuzzy Methodology to Evaluate the Credit Risks of Investment Projects

    OpenAIRE

    O. Badagadze; G. Sirbiladze; I. Khutsishvili

    2014-01-01

    The work proposes a decision support methodology for the credit risk minimization in selection of investment projects. The methodology provides two stages of projects’ evaluation. Preliminary selection of projects with minor credit risks is made using the Expertons Method. The second stage makes ranking of chosen projects using the Possibilistic Discrimination Analysis Method. The latter is a new modification of a well-known Method of Fuzzy Discrimination Analysis.

  15. Latent Inhibition as a Function of US Intensity in a Two-Stage CER Procedure

    Science.gov (United States)

    Rodriguez, Gabriel; Alonso, Gumersinda

    2004-01-01

    An experiment is reported in which the effect of unconditioned stimulus (US) intensity on latent inhibition (LI) was examined, using a two-stage conditioned emotional response (CER) procedure in rats. A tone was used as the pre-exposed and conditioned stimulus (CS), and a foot-shock of either a low (0.3 mA) or high (0.7 mA) intensity was used as…

  16. Two-stage meta-analysis of survival data from individual participants using percentile ratios

    Science.gov (United States)

    Barrett, Jessica K; Farewell, Vern T; Siannis, Fotios; Tierney, Jayne; Higgins, Julian P T

    2012-01-01

    Methods for individual participant data meta-analysis of survival outcomes commonly focus on the hazard ratio as a measure of treatment effect. Recently, Siannis et al. (2010, Statistics in Medicine 29:3030–3045) proposed the use of percentile ratios as an alternative to hazard ratios. We describe a novel two-stage method for the meta-analysis of percentile ratios that avoids distributional assumptions at the study level. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22825835

  17. Two-staged management for all types of congenital pouch colon

    Directory of Open Access Journals (Sweden)

    Rajendra K Ghritlaharey

    2013-01-01

    Full Text Available Background: The aim of this study was to review our experience with two-staged management for all types of congenital pouch colon (CPC. Patients and Methods: This retrospective study included CPC cases that were managed with two-staged procedures in the Department of Paediatric Surgery, over a period of 12 years from 1 January 2000 to 31 December 2011. Results: CPC comprised of 13.71% (97 of 707 of all anorectal malformations (ARM and 28.19% (97 of 344 of high ARM. Eleven CPC cases (all males were managed with two-staged procedures. Distribution of cases (Narsimha Rao et al.′s classification into types I, II, III, and IV were 1, 2, 6, and 2, respectively. Initial operative procedures performed were window colostomy (n = 6, colostomy proximal to pouch (n = 4, and ligation of colovesical fistula and end colostomy (n = 1. As definitive procedures, pouch excision with abdomino-perineal pull through (APPT of colon in eight, and pouch excision with APPT of ileum in three were performed. The mean age at the time of definitive procedures was 15.6 months (ranges from 3 to 53 months and the mean weight was 7.5 kg (ranges from 4 to 11 kg. Good fecal continence was observed in six and fair in two cases in follow-up periods, while three of our cases lost to follow up. There was no mortality following definitive procedures amongst above 11 cases. Conclusions: Two-staged procedures for all types of CPC can also be performed safely with good results. The most important fact that the definitive procedure is being done without protective stoma and therefore, it avoids stoma closure, stoma-related complications, related cost of stoma closure and hospital stay.

  18. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling.

    Science.gov (United States)

    Terza, Joseph V; Basu, Anirban; Rathouz, Paul J

    2008-05-01

    The paper focuses on two estimation methods that have been widely used to address endogeneity in empirical research in health economics and health services research-two-stage predictor substitution (2SPS) and two-stage residual inclusion (2SRI). 2SPS is the rote extension (to nonlinear models) of the popular linear two-stage least squares estimator. The 2SRI estimator is similar except that in the second-stage regression, the endogenous variables are not replaced by first-stage predictors. Instead, first-stage residuals are included as additional regressors. In a generic parametric framework, we show that 2SRI is consistent and 2SPS is not. Results from a simulation study and an illustrative example also recommend against 2SPS and favor 2SRI. Our findings are important given that there are many prominent examples of the application of inconsistent 2SPS in the recent literature. This study can be used as a guide by future researchers in health economics who are confronted with endogeneity in their empirical work.

  19. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  20. A two-stage extraction procedure for insensitive munition (IM) explosive compounds in soils.

    Science.gov (United States)

    Felt, Deborah; Gurtowski, Luke; Nestler, Catherine C; Johnson, Jared; Larson, Steven

    2016-12-01

    The Department of Defense (DoD) is developing a new category of insensitive munitions (IMs) that are more resistant to detonation or promulgation from external stimuli than traditional munition formulations. The new explosive constituent compounds are 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and nitrotriazolone (NTO). The production and use of IM formulations may result in interaction of IM component compounds with soil. The chemical properties of these IM compounds present unique challenges for extraction from environmental matrices such as soil. A two-stage extraction procedure was developed and tested using several soil types amended with known concentrations of IM compounds. This procedure incorporates both an acidified phase and an organic phase to account for the chemical properties of the IM compounds. The method detection limits (MDLs) for all IM compounds in all soil types were regulatory risk-based Regional Screening Level (RSL) criteria for soil proposed by the U.S. Army Public Health Center. At defined environmentally relevant concentrations, the average recovery of each IM compound in each soil type was consistent and greater than 85%. The two-stage extraction method decreased the influence of soil composition on IM compound recovery. UV analysis of NTO established an isosbestic point based on varied pH at a detection wavelength of 341 nm. The two-stage soil extraction method is equally effective for traditional munition compounds, a potentially important point when examining soils exposed to both traditional and insensitive munitions. Copyright © 2016 Elsevier Ltd. All rights reserved.