WorldWideScience

Sample records for two-stage bioreactor system

  1. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  2. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  3. Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks.

    Science.gov (United States)

    López, M Estefanía; Rene, Eldon R; Boger, Zvi; Veiga, María C; Kennes, Christian

    2017-02-15

    A two-stage biological waste gas treatment system consisting of a first stage biotrickling filter (BTF) and second stage biofilter (BF) was tested for the removal of a gas-phase methanol (M), hydrogen sulphide (HS) and α-pinene (P) mixture. The bioreactors were tested with two types of shock loads, i.e., long-term (66h) low to medium concentration loads, and short-term (12h) low to high concentration loads. M and HS were removed in the BTF, reaching maximum elimination capacities (ECmax) of 684 and 33 gm(-3)h(-1), respectively. P was removed better in the second stage BF with an ECmax of 130 gm(-3)h(-1). The performance was modelled using two multi-layer perceptrons (MLPs) that employed the error backpropagation with momentum algorithm, in order to predict the removal efficiencies (RE, %) of methanol (REM), hydrogen sulphide (REHS) and α-pinene (REP), respectively. It was observed that, a MLP with the topology 3-4-2 was able to predict REM and REHS in the BTF, while a topology of 3-3-1 was able to approximate REP in the BF. The results show that artificial neural network (ANN) based models can effectively be used to model the transient-state performance of bioprocesses treating gas-phase pollutants.

  4. Field-scale testing of a two-stage bioreactor for removal of creosote and pentachlorophenol from ground water: Chemical and biological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Middaugh, D.P.; Lantz, S.E.; Heard, C.S.; Mueller, J.G.

    1993-11-15

    A two-stage, field-scale bioreactor system was used to determine the efficacy of bioremediation of creosote- and pentachlorophenol (PCP)- contaminated ground water at the abandoned American Creosote Works (ACW) site in Pensacola, Florida. In separate 15-day runs of the field-scale (454L) system, bioreactor performance in the presence of specially-selected microbial inoculants was compared to that observed using non-specific biomass. Results obtained with specialty organisms in the first run of the field-scale bioreactor showed that, on average, 70.6% of polycyclic aromatic hydrocarbons (PAHs) and heterocycles were degraded. Only 36.9% of the pentachlorophenol (PCP) present was biodegraded. In the second run, microorganisms from an industrial waste water treatment facility averaged 51.0% biodegradation of PAHs and heterocycles. Degradaton of PCP was 81.0%, a value substantially higher than in the first run. Reductions in toxicity/teratogenicity were also observed for effluent from the second run of the field-scale bioreactor but the magnitude of toxicity reduction was less than in the first run.

  5. NASA Bioreactor Demonstration System

    Science.gov (United States)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  6. Two stage sorption type cryogenic refrigerator including heat regeneration system

    Science.gov (United States)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  7. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system

    Directory of Open Access Journals (Sweden)

    Rakesh R Narala

    2016-08-01

    Full Text Available In the wake of intensive fossil fuel usage and CO2 accumulation in the environment, research is targeted towards sustainable alternate bioenergy that can suffice the growing need for fuel and also that leaves a minimal carbon footprint. Oil production from microalgae can potentially be carried out more efficiently, leaving a smaller footprint and without competing for arable land or biodiverse landscapes. However, current algae cultivation systems and lipid induction processes must be significantly improved and are threatened by contamination with other algae or algal grazers. To address this issue, we have developed an efficient two-stage cultivation system using the marine microalga Tetraselmis sp. M8. This hybrid system combines exponential biomass production in positive pressure air lift-driven bioreactors with a separate synchronized high-lipid induction phase in nutrient deplete open raceway ponds. A comparison to either bioreactor or open raceway pond cultivation system suggests that this process potentially leads to significantly higher productivity of algal lipids. Nutrients are only added to the closed bioreactors while open raceway ponds have turnovers of only a few days, thus reducing the issue of microalgal grazers.

  8. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate.

    Science.gov (United States)

    Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2016-06-01

    Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased.

  9. Gas loading system for LANL two-stage gas guns

    Science.gov (United States)

    Gibson, Lee; Bartram, Brian; Dattelbaum, Dana; Lang, John; Morris, John

    2015-06-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez and Teflon. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system, and example data from the plate impact experiments will be shown. LA-UR-15-20521

  10. PERFORMANCE STUDY OF A TWO STAGE SOLAR ADSORPTION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    BAIJU. V

    2011-07-01

    Full Text Available The present study deals with the performance of a two stage solar adsorption refrigeration system with activated carbon-methanol pair investigated experimentally. Such a system was fabricated and tested under the conditions of National Institute of Technology Calicut, Kerala, India. The system consists of a parabolic solar concentrator,two water tanks, two adsorbent beds, condenser, expansion device, evaporator and accumulator. In this particular system the second water tank is act as a sensible heat storage device so that the system can be used during night time also. The system has been designed for heating 50 litres of water from 25oC to 90oC as well ascooling 10 litres of water from 30oC to 10oC within one hour. The performance parameters such as specific cooling power (SCP, coefficient of performance, solar COP and exergetic efficiency are studied. The dependency between the exergetic efficiency and cycle COP with the driving heat source temperature is also studied. The optimum heat source temperature for this system is determined as 72.4oC. The results show that the system has better performance during night time as compared to the day time. The system has a mean cycle COP of 0.196 during day time and 0.335 for night time. The mean SCP values during day time and night time are 47.83 and 68.2, respectively. The experimental results also demonstrate that the refrigerator has cooling capacity of 47 to 78 W during day time and 57.6 W to 104.4W during night time.

  11. A continuous two stage solar coal gasification system

    Science.gov (United States)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  12. Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica.

    Science.gov (United States)

    Vásquez-Rivera, Andrés; Chicaiza-Finley, Diego; Hoyos, Rodrigo A; Orozco-Sánchez, Fernando

    2015-09-01

    Neem tree (Azadirachta indica) cell suspension culture is an alternative for the production of limonoids for insect control that overcomes limitations related to the supply of neem seeds. To establish conditions for cell growth and azadiracthin-related limonoid production, the effect of different sucrose concentrations, nitrate and phosphate in Murashige and Skoog (MS) medium, and the addition of one precursor and three elicitors was evaluated in shake flasks. The process was scaled up to a 3-l stirred tank bioreactor in one- and two-stage batch cultivation. In shake flasks, more than fivefold increase in the production of limonoids with the modified MS medium was observed (increase from 0.77 to 4.52 mg limonoids/g dry cell weight, DCW), while an increase of more than fourfold was achieved by adding the elicitors chitosan, salicylic acid, and jasmonic acid together (increase from 1.03 to 4.32 mg limonoids/g DCW). In the bioreactor, the volumetric production of limonoids was increased more than threefold with a two-stage culture in day 18 (13.82 mg limonoids/l in control single-stage process and 41.44 mg/l in two-stage process). The cultivation and operating mode of the bioreactor reported in this study may be adapted and used in optimization and process plant development for production of insect antifeedant limonoids with A. indica cell suspension cultures.

  13. Two-stage anaerobic digestion of biodegradable municipal solid waste using a rotating drum mesh filter bioreactor and anaerobic filter.

    Science.gov (United States)

    Walker, M; Banks, C J; Heaven, S

    2009-09-01

    A rotating drum mesh filter bioreactor (RDMFBR) with a 100 microm mesh coupled to an anaerobic filter was used for the anaerobic digestion of biodegradable municipal solid waste (BMW). Duplicate systems were operated for 72 days at an organic loading rate (OLR) of 7.5 g VS l(-1) d(-1). Early in the experiment most of the methane was produced in the 2nd stage. This situation gradually reversed as methanogenesis became established in the 1st stage digester, which eventually produced 86-87% of the total system methane. The total methane production was 0.2 l g(-1) VS(added) with 60-62% volatile solids destruction. No fouling was experienced during the experiment at a transmembrane flux rate of 3.5 l m(-2) h(-1). The system proved to be robust and stably adjusted to a shock loading increase to 15 g VS l(-1) d(-1), although this reduced the overall methane production to 0.15 l g(-1) VS(added).

  14. Two Stage Battery System for the ROSETTA Lander

    Science.gov (United States)

    Debus, André

    2002-01-01

    The ROSETTA mission, lead by ESA, will be launched by Ariane V from Kourou in January 2003 and after a long trip, the spacecraft will reach the comet Wirtanen 46P in 2011. The mission includes a lander, built under the leadership of DLR, on which CNES has a large participation and is concerned by providing a part of the payload and some lander systems. Among these, CNES delivers a specific battery system in order to comply with the mission environment and the mission scenario, avoiding particularly the use of radio-isotopic heaters and radio-isotopic electrical generators usually used for such missions far from the Sun. The battery system includes : - a pack of primary batteries of lithium/thionyl chloride cells, this kind of generator - a secondary stage, including rechargeable lithium-ion cells, used as redundancy for the - a specific electronic system dedicated to the battery handling and to secondary battery - a mechanical and thermal (insulation, and heating devices) structures permitting the The complete battery system has been designed, built and qualified in order to comply with the trip and mission requirements, keeping within low mass and low volume limits. This battery system is presently integrated into the Rosetta Lander flight model and will leave the Earth at the beginning of next year. Such a development and experience could be re-used in the frame of cometary and planetary missions.

  15. A new multi-motor drive system based on two-stage direct power converter

    OpenAIRE

    Kumar, Dinesh

    2011-01-01

    The two-stage AC to AC direct power converter is an alternative matrix converter topology, which offers the benefits of sinusoidal input currents and output voltages, bidirectional power flow and controllable input power factor. The absence of any energy storage devices, such as electrolytic capacitors, has increased the potential lifetime of the converter. In this research work, a new multi-motor drive system based on a two-stage direct power converter has been proposed, with two motors c...

  16. An intracooling system for a novel two-stage sliding-vane air compressor

    Science.gov (United States)

    Murgia, Stefano; Valenti, Gianluca; Costanzo, Ida; Colletta, Daniele; Contaldi, Giulio

    2017-08-01

    Lube-oil injection is used in positive-displacement compressors and, among them, in sliding-vane machines to guarantee the correct lubrication of the moving parts and as sealing to prevent air leakage. Furthermore, lube-oil injection allows to exploit lubricant also as thermal ballast with a great thermal capacity to minimize the temperature increase during the compression. This study presents the design of a two-stage sliding-vane rotary compressor in which the air cooling is operated by high-pressure cold oil injection into a connection duct between the two stages. The heat exchange between the atomized oil jet and the air results in a decrease of the air temperature before the second stage, improving the overall system efficiency. This cooling system is named here intracooling, as opposed to intercooling. The oil injection is realized via pressure-swirl nozzles, both within the compressors and inside the intracooling duct. The design of the two-stage sliding-vane compressor is accomplished by way of a lumped parameter model. The model predicts an input power reduction as large as 10% for intercooled and intracooled two-stage compressors, the latter being slightly better, with respect to a conventional single-stage compressor for compressed air applications. An experimental campaign is conducted on a first prototype that comprises the low-pressure compressor and the intracooling duct, indicating that a significant temperature reduction is achieved in the duct.

  17. Experiment and surge analysis of centrifugal two-stage turbocharging system

    Institute of Scientific and Technical Information of China (English)

    Yituan HE; Chaochen MA

    2008-01-01

    To study a centrifugal two-stage turbocharging system's surge and influencing factors, a special test bench was set up and the system surge test was performed. The test results indicate that the measured parameters such as air mass flow and rotation speed of a high pressure (HP) stage compressor can be converted into corrected para-meters under a standard condition according to the Mach number similarity criterion, because the air flow in a HP stage compressor has entered the Reynolds number (Re) auto-modeling range. Accordingly, the reasons leading to a two-stage turbocharging system's surge can be analyzed according to the corrected mass flow characteristic maps and actual operating conditions of HP and low pressure (LP) stage compressors.

  18. Continuous removal of endocrine disruptors by versatile peroxidase using a two-stage system.

    Science.gov (United States)

    Taboada-Puig, Roberto; Lu-Chau, Thelmo A; Eibes, Gemma; Feijoo, Gumersindo; Moreira, Maria T; Lema, Juan M

    2015-01-01

    The oxidant Mn(3+) -malonate, generated by the ligninolytic enzyme versatile peroxidase in a two-stage system, was used for the continuous removal of endocrine disrupting compounds (EDCs) from synthetic and real wastewaters. One plasticizer (bisphenol-A), one bactericide (triclosan) and three estrogenic compounds (estrone, 17β-estradiol, and 17α-ethinylestradiol) were removed from wastewater at degradation rates in the range of 28-58 µg/L·min, with low enzyme inactivation. First, the optimization of three main parameters affecting the generation of Mn(3+) -malonate (hydraulic retention time as well as Na-malonate and H2 O2 feeding rates) was conducted following a response surface methodology (RSM). Under optimal conditions, the degradation of the EDCs was proven at high (1.3-8.8 mg/L) and environmental (1.2-6.1 µg/L) concentrations. Finally, when the two-stage system was compared with a conventional enzymatic membrane reactor (EMR) using the same enzyme, a 14-fold increase of the removal efficiency was observed. At the same time, operational problems found during EDCs removal in the EMR system (e.g., clogging of the membrane and enzyme inactivation) were avoided by physically separating the stages of complex formation and pollutant oxidation, allowing the system to be operated for a longer period (∼8 h). This study demonstrates the feasibility of the two-stage enzymatic system for removing EDCs both at high and environmental concentrations.

  19. Power Frequency Oscillation Suppression Using Two-Stage Optimized Fuzzy Logic Controller for Multigeneration System

    Directory of Open Access Journals (Sweden)

    Y. K. Bhateshvar

    2016-01-01

    Full Text Available This paper attempts to develop a linearized model of automatic generation control (AGC for an interconnected two-area reheat type thermal power system in deregulated environment. A comparison between genetic algorithm optimized PID controller (GA-PID, particle swarm optimized PID controller (PSO-PID, and proposed two-stage based PSO optimized fuzzy logic controller (TSO-FLC is presented. The proposed fuzzy based controller is optimized at two stages: one is rule base optimization and other is scaling factor and gain factor optimization. This shows the best dynamic response following a step load change with different cases of bilateral contracts in deregulated environment. In addition, performance of proposed TSO-FLC is also examined for ±30% changes in system parameters with different type of contractual demands between control areas and compared with GA-PID and PSO-PID. MATLAB/Simulink® is used for all simulations.

  20. The global stability of a delayed predator-prey system with two stage-structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengyan [College of Science, Jimei University, Xiamen Fujian 361021 (China)], E-mail: wangfy68@163.com; Pang Guoping [Department of Mathematics and Computer Science, Yulin Normal University, Yulin Guangxi 537000 (China)

    2009-04-30

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  1. Generalized Yule-walker and two-stage identification algorithms for dual-rate systems

    Institute of Scientific and Technical Information of China (English)

    Feng DING

    2006-01-01

    In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given.

  2. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard

    2007-01-01

    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hardly...... of systems like this. Contrary to the common sense in operations management, the LPT rule is able to maximize the total production volume per day. Furthermore, we show that adding one tank has considerable effects. Finally, we conclude that the optimal setup frequency for batches in the first stage...

  3. Structural requirements and basic design concepts for a two-stage winged launcher system (Saenger)

    Science.gov (United States)

    Kuczera, H.; Keller, K.; Kunz, R.

    1988-10-01

    An evaluation is made of materials and structures technologies deemed capable of increasing the mass fraction-to-orbit of the Saenger two-stage launcher system while adequately addressing thermal-control and cryogenic fuel storage insulation problems. Except in its leading edges, nose cone, and airbreathing propulsion system air intakes, Ti alloy-based materials will be the basis of the airframe primary structure. Lightweight metallic thermal-protection measures will be employed. Attention is given to the design of the large lower stage element of Saenger.

  4. Planning an Agricultural Water Resources Management System: A Two-Stage Stochastic Fractional Programming Model

    Directory of Open Access Journals (Sweden)

    Liang Cui

    2015-07-01

    Full Text Available Irrigation water management is crucial for agricultural production and livelihood security in many regions and countries throughout the world. In this study, a two-stage stochastic fractional programming (TSFP method is developed for planning an agricultural water resources management system under uncertainty. TSFP can provide an effective linkage between conflicting economic benefits and the associated penalties; it can also balance conflicting objectives and maximize the system marginal benefit with per unit of input under uncertainty. The developed TSFP method is applied to a real case of agricultural water resources management of the Zhangweinan River Basin China, which is one of the main food and cotton producing regions in north China and faces serious water shortage. The results demonstrate that the TSFP model is advantageous in balancing conflicting objectives and reflecting complicated relationships among multiple system factors. Results also indicate that, under the optimized irrigation target, the optimized water allocation rate of Minyou Channel and Zhangnan Channel are 57.3% and 42.7%, respectively, which adapts the changes in the actual agricultural water resources management problem. Compared with the inexact two-stage water management (ITSP method, TSFP could more effectively address the sustainable water management problem, provide more information regarding tradeoffs between multiple input factors and system benefits, and help the water managers maintain sustainable water resources development of the Zhangweinan River Basin.

  5. STOCHASTIC DISCRETE MODEL OF TWO-STAGE ISOLATION SYSTEM WITH RIGID LIMITERS

    Institute of Scientific and Technical Information of China (English)

    HE Hua; FENG Qi; SHEN Rong-ying; WANG Yu

    2006-01-01

    The possible intermittent impacts of a two-stage isolation system with rigid limiters have been investigated. The isolation system is under periodic external excitation disturbed by small stationary Gaussian white noise after shock. The maximal impact Then in the period after shock, the zero order approximate stochastic discrete model and the first order approximate stochastic model are developed. The real isolation system of an MTU diesel engine is used to evaluate the established model. After calculating of the numerical example, the effects of noise excitation on the isolation system are discussed.The results show that the property of the system is complicated due to intermittent impact. The difference between zero order model and the first order model may be great.The effect of small noise is obvious. The results may be expected useful to the naval designers.

  6. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    Science.gov (United States)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  7. Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system.

    Science.gov (United States)

    Yu, Liang; Zhao, Quanbao; Ma, Jingwei; Frear, Craig; Chen, Shulin

    2012-11-01

    This study established a comprehensive model to configure a new two-stage high solid anaerobic digester (HSAD) system designed for highly degradable organic fraction of municipal solid wastes (OFMSW). The HSAD reactor as the first stage was naturally separated into two zones due to biogas floatation and low specific gravity of solid waste. The solid waste was retained in the upper zone while only the liquid leachate resided in the lower zone of the HSAD reactor. Continuous stirred-tank reactor (CSTR) and advective-diffusive reactor (ADR) models were constructed in series to describe the whole system. Anaerobic digestion model No. 1 (ADM1) was used as reaction kinetics and incorporated into each reactor module. Compared with the experimental data, the simulation results indicated that the model was able to well predict the pH, volatile fatty acid (VFA) and biogas production.

  8. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... to achieve the power reserve. In this method, the solar irradiance and temperature measurements that have been used in conventional power reserve control schemes to estimate the available PV power are not required, and thereby being a sensorless approach with reduced cost. Experimental tests have been...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...

  9. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Due to still increasing penetration level of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A reserved power control, where the active power from the PV panels is reserved during operation, is required for grid...... to achieve the power reserve. In this method, the irradiance measurements that have been used in conventional control schemes to estimate the available PV power are not required, and thereby being a sensorless solution. Simulations and experimental tests have been performed on a 3-kW two-stage single...... support. In this paper, a cost-effective solution to realize the reserved power control for grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...

  10. a Remote Liquid Target Loading System for a Two-Stage Gas Gun

    Science.gov (United States)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-12-01

    A Remote Liquid Loading System (RLLS) was designed and tested for the application of loading high-hazard liquid materials into instrumented target cells for gas gun-driven plate impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target immediately prior to gun firing provides the most stable and reliable target fielding approach. We present the design and evaluation of an RLLS built for the LANL two-stage gas gun. The system has been used successfully to interrogate the shock initiation behavior of ˜98 wt% percent hydrogen peroxide (H2O2) solutions, using embedded electromagnetic gauges for measurement of shock wave profiles in-situ.

  11. Condition monitoring of distributed systems using two-stage Bayesian inference data fusion

    Science.gov (United States)

    Jaramillo, Víctor H.; Ottewill, James R.; Dudek, Rafał; Lepiarczyk, Dariusz; Pawlik, Paweł

    2017-03-01

    In industrial practice, condition monitoring is typically applied to critical machinery. A particular piece of machinery may have its own condition monitoring system that allows the health condition of said piece of equipment to be assessed independently of any connected assets. However, industrial machines are typically complex sets of components that continuously interact with one another. In some cases, dynamics resulting from the inception and development of a fault can propagate between individual components. For example, a fault in one component may lead to an increased vibration level in both the faulty component, as well as in connected healthy components. In such cases, a condition monitoring system focusing on a specific element in a connected set of components may either incorrectly indicate a fault, or conversely, a fault might be missed or masked due to the interaction of a piece of equipment with neighboring machines. In such cases, a more holistic condition monitoring approach that can not only account for such interactions, but utilize them to provide a more complete and definitive diagnostic picture of the health of the machinery is highly desirable. In this paper, a Two-Stage Bayesian Inference approach allowing data from separate condition monitoring systems to be combined is presented. Data from distributed condition monitoring systems are combined in two stages, the first data fusion occurring at a local, or component, level, and the second fusion combining data at a global level. Data obtained from an experimental rig consisting of an electric motor, two gearboxes, and a load, operating under a range of different fault conditions is used to illustrate the efficacy of the method at pinpointing the root cause of a problem. The obtained results suggest that the approach is adept at refining the diagnostic information obtained from each of the different machine components monitored, therefore improving the reliability of the health assessment of

  12. Thermodynamic Investigation of Two-Stage Absorption Refrigeration System Connected by a Compressor

    Directory of Open Access Journals (Sweden)

    L. Kairouani

    2005-01-01

    Full Text Available The present work is to analyze a two-stage cycle based on the ammonia-water absorption system, with intermediate compression. The two generators of the system are heated by geothermal energy at low temperature. The study shows that this system makes it possible at lower generator temperature, under the limits permitted by the systems suggested up to now. For Tg = 335 K, Tc = Ta = 308 K and Te = 263 K, based on the electric consumption, the system efficiency is 8.2. The comparative study of the hybrid system and vapor compression systems shows the superiority of the proposed system. Supplied by the geothermal sources of the Tunisian south, the system makes it possible to obtain for a pilot geothermal station, a production of 75 tons of ice per day. The greenhouse gas emissions should thus be reduced by about 2.38 tons of CO2 per day. Therefore, based on the typical geothermal energy sources in Tunisia which present a global refrigeration potential of 4.4 MW, the daily quantity of ice that could be produced is about 865 tons. The greenhouse gas emissions should thus be reduced by about 10,000 tons of CO2 per year.

  13. Product prioritization in a two-stage food production system with intermediate storage

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter

    2007-01-01

    In the food-processing industry, usually a limited number of storage tanks for intermediate storage is available, which are used for different products. The market sometimes requires extremely short lead times for some products, leading to prioritization of these products, partly through the dedi......In the food-processing industry, usually a limited number of storage tanks for intermediate storage is available, which are used for different products. The market sometimes requires extremely short lead times for some products, leading to prioritization of these products, partly through...... the dedication of a storage tank. This type of situation has hardly been investigated, although planners struggle with it in practice. This paper aims at investigating the fundamental effect of prioritization and dedicated storage in a two-stage production system, for various product mixes. We show...

  14. Biodegradation of 2,4-dinitrotoluene in a two stage system

    Energy Technology Data Exchange (ETDEWEB)

    VanderLoop, S.L.; Suidan, M.T.; Moteleb, M.A. [Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering; Maloney, S.W. [Army Construction Engineering Research Labs., Champaign, IL (United States)

    1994-12-31

    An anaerobic/anoxic fluidized-bed GAC bioreactor in series with an activated sludge reactor was used to treat 2,4-Dinitrotoluene (2,4-DNT). A Simulated high strength wastewater solution of 2,4-DNT, ethanol, and ethyl ether as well as carbonate buffer and nutrient solutions were fed to the anaerobic/anoxic reactor. The environment in the fluidized-bed reactor was varied to determine its effect on 2,4-DNT biodegradation. The effluent from this reactor was treated further in an activated sludge system. Methanogenic operation of the fluidized-bed resulted in stoichiometric transformation of 2,4-DNT to 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT was completely mineralized by the activated sludge. The system failed to transform the 2,4-DNT under anaerobic conditions without addition of a primary substrate. The effects of operating the first stage under nitrate reducing conditions with a primary substrate is currently being investigated.

  15. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  16. Two-stage scheduling algorithm based on priority table for clusters with inaccurate system parameters

    Institute of Scientific and Technical Information of China (English)

    LIU An-feng; CHEN Zhi-gang; XIONG Ce

    2006-01-01

    A new two-stage soft real-time scheduling algorithm based on priority table was proposed for task dispatch and selection in cluster systems with inaccurate parameters. The inaccurate characteristics of the system were modeled through probability analysis. By taking into account the multiple important system parameters, including task deadline, priority, session integrity and memory access locality, the algorithm is expected to achieve high quality of service. Lots of simulation results collected under different load conditions demonstrate that the algorithm can not only effectively overcome the inaccuracy of the system state, but also optimize the task rejected ratio, value realized ratio, differentiated service guaranteed ratio, and session integrity ensured ratio with the average improvement of 3.5%, 5.8%, 7.6% and 5.5%, respectively. Compared with many existing schemes that cannot deal with the inaccurate parameters of the system, the proposed scheme can achieve the best system performance by carefully adjusting scheduling probability. The algorithm is expected to be promising in systems with soft real-time scheduling requirement such as E-commerce applications.

  17. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  18. Mineral chemistry of the Tissint meteorite: Indications of two-stage crystallization in a closed system

    Science.gov (United States)

    Liu, Yang; Baziotis, Ioannis P.; Asimow, Paul D.; Bodnar, Robert J.; Taylor, Lawrence A.

    2016-12-01

    The Tissint meteorite is a geochemically depleted, olivine-phyric shergottite. Olivine megacrysts contain 300-600 μm cores with uniform Mg# ( 80 ± 1) followed by concentric zones of Fe-enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg-rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg-rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P Kα intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine-phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 ± 1) → olivine (Mg# 76) + chromite → olivine (Mg# 74) + Ti-chromite → olivine (Mg# 74-63) + pyroxene (Mg# 76-65) + Cr-ulvöspinel → olivine (Mg# 63-35) + pyroxene (Mg# 65-60) + plagioclase, followed by late-stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two-stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust.

  19. A Two-Stage Queue Model to Optimize Layout of Urban Drainage System considering Extreme Rainstorms

    Directory of Open Access Journals (Sweden)

    Xinhua He

    2017-01-01

    Full Text Available Extreme rainstorm is a main factor to cause urban floods when urban drainage system cannot discharge stormwater successfully. This paper investigates distribution feature of rainstorms and draining process of urban drainage systems and uses a two-stage single-counter queue method M/M/1→M/D/1 to model urban drainage system. The model emphasizes randomness of extreme rainstorms, fuzziness of draining process, and construction and operation cost of drainage system. Its two objectives are total cost of construction and operation and overall sojourn time of stormwater. An improved genetic algorithm is redesigned to solve this complex nondeterministic problem, which incorporates with stochastic and fuzzy characteristics in whole drainage process. A numerical example in Shanghai illustrates how to implement the model, and comparisons with alternative algorithms show its performance in computational flexibility and efficiency. Discussions on sensitivity of four main parameters, that is, quantity of pump stations, drainage pipe diameter, rainstorm precipitation intensity, and confidence levels, are also presented to provide guidance for designing urban drainage system.

  20. A gas-loading system for LANL two-stage gas guns

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Lloyd Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bartram, Brian Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana Mcgraw [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lang, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, John Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  1. A gas-loading system for LANL two-stage gas guns

    Science.gov (United States)

    Gibson, L. L.; Bartram, B. D.; Dattelbaum, D. M.; Lang, J. M.; Morris, J. S.

    2017-01-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  2. A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2016-01-01

    Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.

  3. Remote liquid target loading system for LANL two-stage gas gun

    Science.gov (United States)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-06-01

    A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.

  4. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum

    Directory of Open Access Journals (Sweden)

    Chen Y

    2014-06-01

    Full Text Available Yun Chen,1,* Qian Li,1,2,* Qingsheng Wu1 1Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai; 2Shanghai Institute of Quality Inspection and Technical Research, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: cis-Diamminediiodoplatinum (cis-DIDP is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4 at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. Keywords: stearic acid, emulsion solvent evaporation method, drug delivery, cis-DIDP, in vitro

  5. Two-Stage orders sequencing system for mixed-model assembly

    Science.gov (United States)

    Zemczak, M.; Skolud, B.; Krenczyk, D.

    2015-11-01

    In the paper, the authors focus on the NP-hard problem of orders sequencing, formulated similarly to Car Sequencing Problem (CSP). The object of the research is the assembly line in an automotive industry company, on which few different models of products, each in a certain number of versions, are assembled on the shared resources, set in a line. Such production type is usually determined as a mixed-model production, and arose from the necessity of manufacturing customized products on the basis of very specific orders from single clients. The producers are nowadays obliged to provide each client the possibility to determine a huge amount of the features of the product they are willing to buy, as the competition in the automotive market is large. Due to the previously mentioned nature of the problem (NP-hard), in the given time period only satisfactory solutions are sought, as the optimal solution method has not yet been found. Most of the researchers that implemented inaccurate methods (e.g. evolutionary algorithms) to solving sequencing problems dropped the research after testing phase, as they were not able to obtain reproducible results, and met problems while determining the quality of the received solutions. Therefore a new approach to solving the problem, presented in this paper as a sequencing system is being developed. The sequencing system consists of a set of determined rules, implemented into computer environment. The system itself works in two stages. First of them is connected with the determination of a place in the storage buffer to which certain production orders should be sent. In the second stage of functioning, precise sets of sequences are determined and evaluated for certain parts of the storage buffer under certain criteria.

  6. METHODOLOGY AND RESULTS OF MOBILE OBJECT PURSUIT PROBLEM SOLUTION WITH TWO-STAGE DYNAMIC SYSTEM

    Directory of Open Access Journals (Sweden)

    A. Kiselev Mikhail

    2017-01-01

    Full Text Available The experience of developing unmanned fighting vehicles indicates that the main challenge in this field reduces itself to creating the systems which can replace the pilot both as a sensor and as the operator of the flight. This problem can be partial- ly solved by introducing remote control, but there are certain flight segments where it can only be executed under fully inde- pendent control and data support due to various reasons, such as tight time, short duration, lack of robust communication, etc. Such stages also include close-range air combat maneuvering (CRACM - a key flight segment as far as the fighter's purpose is concerned, which also places the highest demands on the fighter's design. Until recently the creation of an unmanned fighter airplane has been a fundamentally impossible task due to the absence of sensors able to provide the necessary data support to control the fighter during CRACM. However, the development prospects of aircraft hardware (passive type flush antennae, op- tico-locating panoramic view stations are indicative of producing possible solutions to this problem in the nearest future. There- fore, presently the only fundamental impediment on the way to developing an unmanned fighting aircraft is the problem of cre- ating algorithms for automatic trajectory control during CRACM. This paper presents the strategy of automatic trajectory con- trol synthesis by a two-stage dynamic system aiming to reach the conditions specified with respect to an object in pursuit. It contains certain results of control algorithm parameters impact assessment in regards to the pursuit mission effectiveness. Based on the obtained results a deduction is drawn pertaining to the efficiency of the offered method and its possible utilization in au- tomated control of an unmanned fighting aerial vehicle as well as organizing group interaction during CRACM.

  7. Immobilized yeast bioreactor systems for continuous beer fermentation

    Science.gov (United States)

    Tata; Bower; Bromberg; Duncombe; Fehring; Lau; Ryder; Stassi

    1999-01-01

    Two different types of immobilized yeast bioreactors were examined for continuous fermentation of high-gravity worts. One of these is a fluidized bed reactor (FBR) that employs porous glass beads for yeast immobilization. The second system is a loop reactor containing a porous silicon carbide cartridge (SCCR) for immobilizing the yeast cells. Although there was some residual fermentable sugar in the SCCR system product, nearly complete attenuation of the wort sugars was achieved in either of the systems when operated as a two-stage process. Fermentation could be completed in these systems in only half the time required for a conventional batch process. Both the systems showed similar kinetics of extract consumption, and therefore similar volumetric productivity. As compared to the batch fermentation, total fusel alcohols were lower; total esters, while variable, were generally higher. The yeast biomass production was similar to that in a conventional fermentation process. As would be expected in an accelerated fermentation system, the levels of vicinal diketones (VDKs) were higher. To remove the VDKs, the young beer was heat-treated to convert the VDK precursors and processed through a packed bed immobilized yeast bioreactor for VDK assimilation. The finished product from the FBR system was found to be quite acceptable from a flavor perspective, albeit different from the product from a conventional batch process. Significantly shortened fermentation times demonstrate the feasibility of this technology for beer production.

  8. Combustion of coked sand in a two-stage fluidized bed system

    Energy Technology Data Exchange (ETDEWEB)

    Coronella, C.J.; Seader, J.D. (University of Utah, Salt Lake City, UT (USA). Dept. of Chemical Engineering)

    1992-02-01

    An advanced multiple-stage fluidized bed reactor system has been devised for the energy-efficient extraction and conversion, from tar sand, of bitumen into synthetic crude oil. The reactor consists of four fluidized beds arranged as stages in series with respect to flow of sand. In the first stage, tar sands are heated, causing the bitumen to pyrolyse into coke, which is deposited on the sand, and gas, which is mostly condensed into oil. The coke is partially combusted with air or enriched oxygen in the second stage, which is thermally coupled to the first stage by multiple vertical heat pipes. Combustion is completed adiabatically in the third stage and heat recovery from the sand is carried out in the fourth stage. By conducting the coke combustion in two stages in this manner, the overall reactor residence time to produce clean sand is greatly reduced from that for a single combustion stage. Laboratory experimental studies have confirmed the ability to operate and control the two thermally coupled stages. The two-phase bubbling bed model of Grace, amended to account for bubble growth in the axial direction, has been adopted to model the mass transfer and fluid mechanics of the fluidized beds. The model for the first and second combustion stages is complete. Predictions for exit reactor conditions at various operating conditions are in reasonable agreement with experimental observations. The operating parameters have been found to exert a much greater influence on the predictions of the model than do the values of the physical parameters, indicating a desirable degree of reactor stability. Extension of the model to the pyrolysis and heat recovery stages will permit the optimization of the reactor configuration and operating conditions. 26 refs., 6 figs.

  9. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  10. Bioreactor

    Science.gov (United States)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  11. Waste-gasification efficiency of a two-stage fluidized-bed gasification system.

    Science.gov (United States)

    Liu, Zhen-Shu; Lin, Chiou-Liang; Chang, Tsung-Jen; Weng, Wang-Chang

    2016-02-01

    This study employed a two-stage fluidized-bed gasifier as a gasification reactor and two additives (CaO and activated carbon) as the Stage-II bed material to investigate the effects of the operating temperature (700°C, 800°C, and 900°C) on the syngas composition, total gas yield, and gas-heating value during simulated waste gasification. The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the additive, the molar percentage of CO2 in the syngas decreased, and the molar percentage of H2 increased. When activated carbon was used, the molar percentage of CH4 in the syngas increased, and the total gas yield and gas-heating value increased. Overall, CaO had better effects on the production of H2, whereas activated carbon clearly enhanced the total gas yield and gas-heating value. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Comparative evaluation of the intermediate systems employed in two-stage refrigeration cycles driven by compound compressors

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, R.; Llopis, R.; Sanchez, D. [Jaume I University, Dep. of Mechanical Engineering and Construction, Campus de Riu Sec s/n, E-12071 Castellon (Spain); Torrella, E. [Polytechnic University of Valencia, Dep. of Applied Thermodynamics, Camino de Vera 14, E-46022 Valencia (Spain)

    2010-03-15

    This work presents an experimental evaluation, from an energy analysis point of view, for two of the most used inter-stage systems in two-stage vapour compression cycles driven by compound compressors: the direct liquid injection and subcooler systems. The evaluation considers the two-stage cycle with no intermediate systems as reference cycle, and was performed on a plant driven by a compound compressor using the refrigerant R404A for an evaporating temperature range of -36 to -20 C and for a condensing temperature range of 30-47 C. The analysis of the results shows that the inter-stage systems determine the performance of the energy parameters, which are discussed in the paper. The configuration yielding the best results was the two-stage compression cycle with subcooler, since the cooling capacity and COP values for this configuration were the highest. Conversely, the two-stage compression cycle working with direct liquid injection showed lower performance from an energy point of view, though this configuration allows a substantial reduction of the discharge temperature. (author)

  13. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors.

    Science.gov (United States)

    Hsu, Wei-Ting; Aulakh, Rigzen P S; Traul, Donald L; Yuk, Inn H

    2012-12-01

    In recent years, several automated scale-down bioreactor systems have been developed to increase efficiency in cell culture process development. ambr™ is an automated workstation that provides individual monitoring and control of culture dissolved oxygen and pH in single-use, stirred-tank bioreactors at a working volume of 10-15 mL. To evaluate the ambr™ system, we compared the performance of four recombinant Chinese hamster ovary cell lines in a fed-batch process in parallel ambr™, 2-L bench-top bioreactors, and shake flasks. Cultures in ambr™ matched 2-L bioreactors in controlling the environment (temperature, dissolved oxygen, and pH) and in culture performance (growth, viability, glucose, lactate, Na(+), osmolality, titer, and product quality). However, cultures in shake flasks did not show comparable performance to the ambr™ and 2-L bioreactors.

  14. Replaceable Sensor System for Bioreactor Monitoring

    Science.gov (United States)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  15. Comparison of single-stage and a two-stage vertical flow constructed wetland systems for different load scenarios.

    Science.gov (United States)

    Langergraber, Guenter; Pressl, Alexander; Leroch, Klaus; Rohrhofer, Roland; Haberl, Raimund

    2010-01-01

    Constructed wetlands (CWs) are known to be robust wastewater treatment systems and are therefore very suitable for small villages and single households. When nitrification is required, vertical flow (VF) CWs are widely used. This contribution compares the behaviour and treatment efficiencies of a single-stage VF CW and a two-stage VF CW system under varying operating and loading conditions according to standardized testing procedures for small wastewater treatment plants as described in the European standard EN 12566-3. The single-stage VF CW is designed and operated according to the Austrian design standards with an organic load of 20 g COD m(-2) d(-1) (i.e. 4 m(2) per person equivalent (PE)) The two-stage VF CW system is operated with 40 g COD m(-2) d(-1) (i.e. 2 m(2) per PE). During the 48 week testing period the Austrian threshold effluent concentrations have not been exceeded in either system. The two-stage VF CW system showed to be more robust as compared to the single-stage VF CW especially during highly fluctuating loads at low temperatures.

  16. A Two-Stage State Recognition Method for Asynchronous SSVEP-Based Brain-Computer Interface System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zimu; DENG Zhidong

    2013-01-01

    A two-stage state recognition method is proposed for asynchronous SSVEP (steady-state visual evoked potential) based brain-computer interface (SBCI) system.The two-stage method is composed of the idle state (IS) detection and control state (CS) discrimination modules.Based on blind source separation and continuous wavelet transform techniques,the proposed method integrates functions of multi-electrode spatial filtering and feature extraction.In IS detection module,a method using the ensemble IS feature is proposed.In CS discrimination module,the ensemble CS feature is designed as feature vector for control intent classification.Further,performance comparisons are investigated among our IS detection module and other existing ones.Also the experimental results validate the satisfactory performance of our CS discrimination module.

  17. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished.

  18. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  19. Expression Systems and Species Used for Transgenic Animal Bioreactors

    OpenAIRE

    Yanli Wang; Sihai Zhao; Liang Bai; Jianglin Fan; Enqi Liu

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm ...

  20. Two-stage open-loop velocity compensating method applied to multi-mass elastic transmission system

    Directory of Open Access Journals (Sweden)

    Zhang Deli

    2014-02-01

    Full Text Available In this paper, a novel vibration-suppression open-loop control method for multi-mass system is proposed, which uses two-stage velocity compensating algorithm and fuzzy I + P controller. This compensating method is based on model-based control theory in order to provide a damping effect on the system mechanical part. The mathematical model of multi-mass system is built and reduced to estimate the velocities of masses. The velocity difference between adjacent masses is calculated dynamically. A 3-mass system is regarded as the composition of two 2-mass systems in order to realize the two-stage compensating algorithm. Instead of using a typical PI controller in the velocity compensating loop, a fuzzy I + P controller is designed and its input variables are decided according to their impact on the system, which is different from the conventional fuzzy PID controller designing rules. Simulations and experimental results show that the proposed velocity compensating method is effective in suppressing vibration on a 3-mass system and it has a better performance when the designed fuzzy I + P controller is utilized in the control system.

  1. A Two-Stage Combining Classifier Model for the Development of Adaptive Dialog Systems.

    Science.gov (United States)

    Griol, David; Iglesias, José Antonio; Ledezma, Agapito; Sanchis, Araceli

    2016-02-01

    This paper proposes a statistical framework to develop user-adapted spoken dialog systems. The proposed framework integrates two main models. The first model is used to predict the user's intention during the dialog. The second model uses this prediction and the history of dialog up to the current moment to predict the next system response. This prediction is performed with an ensemble-based classifier trained for each of the tasks considered, so that a better selection of the next system can be attained weighting the outputs of these specialized classifiers. The codification of the information and the definition of data structures to store the data supplied by the user throughout the dialog makes the estimation of the models from the training data and practical domains manageable. We describe our proposal and its application and detailed evaluation in a practical spoken dialog system.

  2. A two-stage approach to relaxation in billiard systems of locally confined hard spheres.

    Science.gov (United States)

    Gaspard, Pierre; Gilbert, Thomas

    2012-06-01

    We consider the three-dimensional dynamics of systems of many interacting hard spheres, each individually confined to a dispersive environment, and show that the macroscopic limit of such systems is characterized by a coefficient of heat conduction whose value reduces to a dimensional formula in the limit of vanishingly small rate of interaction. It is argued that this limit arises from an effective loss of memory. Similarities with the diffusion of a tagged particle in binary mixtures are emphasized.

  3. Amyotrophic lateral sclerosis: a comparison of two staging systems in a population-based study.

    Science.gov (United States)

    Ferraro, D; Consonni, D; Fini, N; Fasano, A; Del Giovane, C; Mandrioli, J

    2016-09-01

    To compare two recently developed staging systems for amyotrophic lateral sclerosis (ALS) [King's College and Milano-Torino staging (MITOS) systems] in an incident, population-based cohort of patients with ALS. Since 2009, a prospective registry has been recording all incident cases of ALS in the Emilia Romagna region in Italy. For each patient, detailed clinical information, including the ALS functional rating scale score, is collected at each follow-up. Our study on 545 incident cases confirmed that King's College stages occurred at predictable times and were quite evenly spaced out throughout the disease course (occurring at approximately 40%, 60% and 80% of the disease course), whereas MITOS stages were mostly skewed towards later phases of the disease. In the King's College system there was a decrease in survival and an increase in deaths with escalating stages, whereas in the MITOS system survival curves pertaining to intermediate stages overlapped and the number of deaths was fairly homogenous throughout most stages. The King's College staging system had a higher homogeneity (i.e. smaller differences in survival among patients in the same stage) and a higher discriminatory ability (i.e. greater differences in survival among patients in different stages), being more suitable for individualized prognosis and for measuring efficacy of therapeutic interventions. © 2016 EAN.

  4. Experimental analysis of vehicle-bridge interaction using a wireless monitoring system and a two-stage system identification technique

    Science.gov (United States)

    Kim, Junhee; Lynch, Jerome P.

    2012-04-01

    Deterioration of bridges under repeated traffic loading has called attention to the need for improvements in the understanding of vehicle-bridge interaction. While analytical and numerical models have been previously explored to describe the interaction that exists between a sprung mass (i.e., a moving vehicle) and an elastic beam (i.e., bridge), comparatively less research has been focused on the experimental observation of vehicle-bridge interaction. A wireless monitoring system with wireless sensors installed on both the bridge and moving vehicle is proposed to record the dynamic interaction between the bridge and vehicle. Time-synchronized vehicle-bridge response data is used within a two-stage system identification methodology. In the first stage, the free-vibration response of the bridge is used to identify the dynamic characteristics of the bridge. In the second stage, the vehicle-bridge response data is used to identify the time varying load imposed on the bridge from the vehicle. To test the proposed monitoring and system identification strategy, the 180 m long Yeondae Bridge (Icheon, Korea) was selected. A dense network of wireless sensors was installed on the bridge while wireless sensors were installed on a multi-axle truck. The truck was driven across the bridge at constant velocity with bridge and vehicle responses measured. Excellent agreement between the measured Yeondae Bridge response and that predicted by an estimated vehicle-bridge interaction model validates the proposed strategy.

  5. OMR of early plainchant manuscripts in square notation: a two-stage system

    Science.gov (United States)

    Ramirez, Carolina; Ohya, Jun

    2011-01-01

    While Optical Music Recognition (OMR) of modern printed and handwritten documents is considered a solved problem, with many commercial systems available today, the OMR of ancient musical manuscripts still remains an open problem. In this paper we present a system for the OMR of degraded western plainchant manuscripts in square notation from the XIV to XVI centuries. The system has two main blocks, the first one deals with symbol extraction and recognition, while the second one acts as an error detection stage for the first block outputs. For symbol extraction we use widely known image-processing techniques, such as Sobel filtering and Hough Transform, and SVM for classification. The error detection stage is implemented with a hidden Markov model (HMM), which takes advantage of a priori knowledge for this specific kind of music.

  6. Two-stage single-phase grid-connected photovoltaic system with reduced complexity

    Science.gov (United States)

    da Silva, Cintia S.; Motta, Filipe R.; Tofoli, Fernando L.

    2011-06-01

    This article presents a grid-connected photovoltaic (PV) system using the classical DC-DC buck converter, which is responsible for stepping down the resulting voltage from several series-connected panels. Besides, the structure provides high power factor operation by injecting a quasi-sinusoidal current into the grid, with near no displacement in relation to the line voltage at the point of common coupling among the PV system and the loads. A CSI employing thyristors is cascaded with the DC-DC stage so that AC voltage results. The inverter output voltage level is adjusted by using a low-frequency transformer, which also provides galvanic isolation. The proposed system is described as mathematical approach and design guidelines are presented, providing an overview of the topology. An experimental prototype is also implemented, and relevant results to validate the proposal are discussed.

  7. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...

  8. The Measurement and Dimensionality of Mobile Learning Systems Success: Two-Stage Development and Validation

    Science.gov (United States)

    Lin, Hsin-Hui; Wang, Yi-Shun; Li, Ci-Rong; Shih, Ying-Wei; Lin, Shin-Jeng

    2017-01-01

    The main purpose of this study is to develop and validate a multidimensional instrument for measuring mobile learning systems success (MLSS) based on the previous research. This study defines the construct of MLSS, develops a generic MLSS instrument with desirable psychometric properties, and explores the instrument's theoretical and practical…

  9. Artificial immune system and sheep flock algorithms for two-stage fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Kannan, Devika; Govindan, Kannan; Soleimani, Hamed

    2014-01-01

    approaches are unable to solve real-world instances of such NP-hard problems in a reasonable time. These approaches involve cumbersome computational steps in real-size cases. In order to solve the mixed integer linear programming model, we develop an artificial immune system and a sheep flock algorithm...

  10. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  11. A New Soil Infiltration Technology for Decentralized Sewage Treatment: Two-Stage Anaerobic Tank and Soil Trench System

    Institute of Scientific and Technical Information of China (English)

    YE Chun; HU Zhan-Bo; KONG Hai-Nan; WANG Xin-Ze; HE Sheng-Bing

    2008-01-01

    The low removal efficiency of total nitrogen (TN) is one of the main disadvantages of traditional single stage subsurface infiltration system,which combines an anaerobic tank and a soil filter field.In this study,a full-scale,two-stage anaerobic tank and soil trench system was designed and operated to evaluate the feasibility and performances in treating sewage from a school campus for over a one-year monitoring period.The raw sewage was prepared and fed into the first anaerobic tank and second tank by 60% and 40%,respectively.This novel process could decrease chemical oxygen demand with the dichromate method by 89%-96%,suspended solids by 91%-97%,and total phosphorus by 91%-97%.The denitrification was satisfactory in the second stage soil trench,so the removals of TN as well as ammonia nitrogen (NH+4-N) reached 68%-75% and 96%-99%,respectively.It appeared that the removal efficiency of TN in this two-stage anaerobic tank and soil trench system was more effective than that in the single stage soil infiltration system.The effluent met the discharge standard for the sewage treatment plant (GB18918-2002) of China.

  12. A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system.

    Science.gov (United States)

    Anastasio, Thomas J; Patton, Paul E

    2003-07-30

    Multisensory enhancement (MSE) is the augmentation of the response to sensory stimulation of one modality by stimulation of a different modality. It has been described for multisensory neurons in the deep superior colliculus (DSC) of mammals, which function to detect, and direct orienting movements toward, the sources of stimulation (targets). MSE would seem to improve the ability of DSC neurons to detect targets, but many mammalian DSC neurons are unimodal. MSE requires descending input to DSC from certain regions of parietal cortex. Paradoxically, the descending projections necessary for MSE originate from unimodal cortical neurons. MSE, and the puzzling findings associated with it, can be simulated using a model of the corticotectal system. In the model, a network of DSC units receives primary sensory input that can be augmented by modulatory cortical input. Connection weights from primary and modulatory inputs are trained in stages one (Hebb) and two (Hebb-anti-Hebb), respectively, of an unsupervised two-stage algorithm. Two-stage training causes DSC units to extract information concerning simulated targets from their inputs. It also causes the DSC to develop a mixture of unimodal and multisensory units. The percentage of DSC multisensory units is determined by the proportion of cross-modal targets and by primary input ambiguity. Multisensory DSC units develop MSE, which depends on unimodal modulatory connections. Removal of the modulatory influence greatly reduces MSE but has little effect on DSC unit responses to stimuli of a single modality. The correspondence between model and data suggests that two-stage training captures important features of self-organization in the real corticotectal system.

  13. Research on Operation Strategy for Bundled Wind-thermal Generation Power Systems Based on Two-Stage Optimization Model

    Science.gov (United States)

    Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu

    2017-05-01

    Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.

  14. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    Science.gov (United States)

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties.

  15. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  16. A Decision-making Model for a Two-stage Production-delivery System in SCM Environment

    Science.gov (United States)

    Feng, Ding-Zhong; Yamashiro, Mitsuo

    A decision-making model is developed for an optimal production policy in a two-stage production-delivery system that incorporates a fixed quantity supply of finished goods to a buyer at a fixed interval of time. First, a general cost model is formulated considering both supplier (of raw materials) and buyer (of finished products) sides. Then an optimal solution to the problem is derived on basis of the cost model. Using the proposed model and its optimal solution, one can determine optimal production lot size for each stage, optimal number of transportation for semi-finished goods, and optimal quantity of semi-finished goods transported each time to meet the lumpy demand of consumers. Also, we examine the sensitivity of raw materials ordering and production lot size to changes in ordering cost, transportation cost and manufacturing setup cost. A pragmatic computation approach for operational situations is proposed to solve integer approximation solution. Finally, we give some numerical examples.

  17. Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300x

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, A.

    2005-06-15

    In this work a rear contacted silicon concentrator cell was developed for an application in a two stage concentrator photovoltaic system. This system was developed at Fraunhofer ISE some years ago. The innovation of this one-axis tracked system is that it enables a high geometrical concentration of 300x in combination with a high optical efficiency (around 78%) and a large acceptance angle of {+-}23.5 all year through. For this, the system uses a parabolic mirror (40.4x) and a three dimensional second stage consisting of compound parabolic concentrators (CPCs, 7.7x). For the concentrator concept and particularly for an easy cell integration, the rear line contacted concentrator (RLCC) cells with a maximum efficiency of 25% were developed and a hybrid mounting concept for the RLCC cells is presented. The optical performance of different CPC materials was tested and analysed in this work. Finally, small modules consisting of six series interconnected RLCC cells and six CPCs were integrated into the concentrator system and tested outdoor. A system efficiency of 16.2% was reached at around 800 W/m2 direct irradiance under realistic outdoor conditions. (orig.)

  18. Optimization of two-stage production/inventory systems under order base stock policy with advance demand information

    Science.gov (United States)

    Nakade, Koichi; Yokozawa, Shiori

    2016-08-01

    It is important to share demand information among the members in supply chains. In recent years, production and inventory systems with advance demand information (ADI) have been discussed, where advance demand information means the information of demand which the decision maker obtains before the corresponding actual demand arrives. Appropriate production and inventory control using demand information leads to the decrease of inventory and backlog costs. For a single stage system, the optimal base stock and release lead time have been discussed in the literature. In practical production systems the manufacturing system has multiple processes. The multiple stage production and inventory system with ADI, however, has been analyzed by simulation or assuming exponential processing time. That is, their theoretical analysis and optimization of release lead time and base stock level have little been obtained because of its difficulty. In this paper, theoretical analysis of a two-stage production inventory system with advance demand information is developed, where the processing time is assumed deterministic and identical; demand arrival process is Poisson, and an order base stock policy is adopted. Using the analytical results, optimal release lead time and optimal base stock levels for minimizing the average cost on the holding and backlog costs are explicitly derived.

  19. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    Science.gov (United States)

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (malaria in low-resource settings.

  20. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system.

    Science.gov (United States)

    Dalkılıc, Kenan; Ugurlu, Aysenur

    2015-09-01

    This study investigates the biogas production from chicken manure at different organic loading rates (OLRs), in a mesophilic-thermophilic two stage anaerobic system. The system was operated on semi continuous mode under different OLRs [1.9 g volatile solids (VS)/L·d - 4.7 g VS/L·d] and total solid (TS) contents (3.0-8.25%). It was observed that the anaerobic bacteria acclimatized to high total ammonia nitrogen concentration (>3000 mg/L) originated as a result of the degradation of chicken manure. High volatile fatty acid concentrations were tolerated by the system due to high pH in the reactors. The maximum average biogas production rate was found as 554 mL/g VSfeed while feeding 2.2 g VS/L-d (2.3% VS - 3.8% TS) to the system. Average methane content of produced biogas was 74% during the study.

  1. A two-stage anaerobic system for biodegrading wastewater containing terephthalic acid and high strength easily degradable pollutants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high strength easily biodegradable pollutants(represented by CODE) are strong inhibitors of terephthalic acid(TA) anaerobic biodegradation. At the same time, TA can inhibiteasily biodegradable pollutants removal under anaerobic conditionsto a limited extent. This mutual inhibition could happen and causea low removal efficiency of both TA and CODE, when the effluentfrom TA workshops containing TA and easily biodegradable pollutantsare treated by a single anaerobic reactor system. Based upon thetreatment kinetics analysis of both TA degradation and CODEremoval, a two-stage up-flow anaerobic sludge blanket and up-flowfixed film reactor(UASB-UAFF) system for dealing with this kind ofwastewater was developed and run successfully at laboratory scale.An UASB reactor with the methanogenic consortium as the first stageremoves the easily biodegradable pollutants(CODE). An UAFF reactor as the second stage is mainly in charge of TA degradation. At aHRT 18.5h, the CODE and TA removal rate of the system reached 89.2% and 71.6%, respectively.

  2. Hydrogen pellet acceleration with a two-stage system consisting of a gas gun and a fuseless electromagnetic railgun

    Energy Technology Data Exchange (ETDEWEB)

    Honig, J.; Kim, K.; Wedge, S.W.

    1986-05-01

    Hydrogen pellets are successfully accelerated for the first time using a two-stage system consisting of a pneumatic gun and an electromagnetic railgun. The pneumatic gun preaccelerator forms cylindrical hydrogen ice pellets (1.6-mm diam x 2.15-mm long) and accelerates them with high-pressure helium gas to velocities in excess of 500 m/s. The booster accelerator, which is a fuseless, circular-bore electromagnetic railgun, derives its propulsive force from a plasma arc armature. The plasma arc armature is formed by electrically breaking down the propellant gas which follows the pellet from the gas gun into the railgun. The diagnostics are for the monitoring of the main capacitor bank and rail currents, for the pellet detection and velocity measurements at the breech and muzzle ends of the railgun, for the recording of the plasma-arc-armature movement inside the railgun bore, and for the photographing of the hydrogen pellet exiting the railgun. Using the system, which is a 60-cm long proof-of-principle machine for refueling magnetic fusion devices, hyrogen pellet velocities exceeding 1 km/s have been achieved for pellets exiting the gas gun at velocities of approx.500 m/s.

  3. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  4. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  5. Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems

    Directory of Open Access Journals (Sweden)

    Jaime Rodrigo Navarro

    2016-06-01

    Full Text Available A novel two-stage n-PSK partitioning carrier phase recovery (CPR scheme for circular multilevel quadrature amplitude modulation (C-mQAM constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 × 10−3 and 1 × 10−2 and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product (ΔνTs tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the ΔνTs tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C-16QAM back-to-back transmission system. The computational complexity of the proposed CPR scheme is studied, and reduction factors of 24.5 | 30.1 and 59.1 | 63.3 are achieved for C-16QAM and C-64QAM, respectively, compared to single-stage BPS in the form of multipliers | adders.

  6. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  7. Advanced nitrogen removal via nitrite from municipal landfill leachate using a two-stage UASB-A/O system

    Institute of Scientific and Technical Information of China (English)

    Lina Wu; Yongzhen Peng; Xiao Shi; Chengyao Peng; Jie Zhang

    2015-01-01

    A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) reactor and an anoxic/aerobic (A/O) reactor was used to treat municipal landfill leachate. Denitrification took place in the first stage of the UASB re-actor (UASB1). The chemical oxygen demand of the UASB1 effluent was further decreased in the second stage (UASB2). Nitrification was accomplished in the A/O reactor. When diluted with tap water at a ratio of 1:1, the ammonia nitrogen concentration of the influent leachate was approximately 1200 mg·L−1, whereas that of the system effluent was approximately 8–11 mg·L−1, and the corresponding removal efficiency is about 99.08%. Stable partial nitrification was achieved in the A/O reactor with 88.61%–91.58%of the nitrite accumula-tion ratio, even at comparatively low temperature (16 °C). The results demonstrate that free ammonia (FA) con-centrations within a suitable range exhibit a positive effect on partial nitrification. In this experiment when FA was within the 1–30 mg·L−1 range, partial nitrification could be achieved, whereas when FA exceeded 280 mg·L−1, the nitrification process was entirely inhibited. Temperature was not the key factor leading to par-tial nitrification within the 16–29 °C range. The inhibitory influence of free nitrous acid (FNA) on nitrification was also minimal when pH was greater than 8.5. Thus, FA concentration was a major factor in achieving partial nitrification.

  8. Two-stage approach for risk estimation of fetal Trisomy 21 and other aneuploidies using computational intelligence systems.

    Science.gov (United States)

    Neocleous, A C; Syngelaki, A; Nicolaides, K H; Schizas, C N

    2017-06-22

    To estimate the risk for fetal trisomy 21 (T21) and other chromosomal abnormalities at 11-13 week's gestation using computational intelligence classification methods. As a first step, we train the artificial neural networks with 72054 euploid pregnancies, 295 cases of T21 and 305 of other chromosomal abnormalities (OCA). Then, we sort the cases into two categories of "no-risk" and "risk". The cases of "no-risk" are no further examined, while the cases with "risk" are forwarded in Stage 2 for further examination where we classify them in three types of risk, namely "no-risk", "moderate-risk" and "high-risk". Of a total of 36328 unknown to the system pregnancies, in the first Stage, 17512 euploid, 2 T21 and 18 other chromosomal abnormalities are classified as "no-risk". The remaining 18796 (51.4% FPR) cases are reassigned in Stage 2 where 7895 euploid, 2 T21 and 2 OCA are classified as "no-risk", 10464 euploid, 83 T21 and 61 OCA as "moderate-risk" and 187 euploid, 50 T21 and 52 OCA as "high-risk". The sensitivity and the specificity for T21 in Stage 2 are 97.1% and 99.5% respectively, assuming that cell-free DNA test can identify all the euploid and aneuploid cases. We propose a method for the early diagnosis of chromosomal abnormalities, which ensures that most of the T21 are classified as "high-risk" at any Stage. At the same time, we minimize the euploid cases that have to undergo invasive or cell-free DNA examinations through a routine procedure offered in two Stages. Our method is minimally invasive and of relatively low cost, highly effective on T21 identification and it performs better than other existing statistical methods. This article is protected by copyright. All rights reserved.

  9. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system.

    Science.gov (United States)

    Gao, Li; Liu, Xingzhong

    2010-12-01

    The development of fungal biopesticides requires the efficient production of large numbers spores or other propagules. The current study used published information concerning carbon concentrations and C:N ratios to evaluate the effects of carbon and nitrogen sources on sporulation of Paecilomyces lilacinus (IPC-P and M-14) and Metarhizium anisopliae (SQZ-1-21 and RS-4-1) in a two-stage cultivation system. For P. lilacinus IPCP, the optimal sporulation medium contained urea as the nitrogen source, dextrin as the carbon source at 1 g/L, a C:N ratio of 5:1, with ZnSO(4)·7H(2)O at 10 mg/L and CaCl(2) at 3 g/L. The optimal sporulation medium for P. lilacinus M-14 contained soy peptone as the nitrogen source and maltose as the carbon source at 2 g/L, a C:N ratio of 10:1, with ZnSO(4)·7H(2)O at 250 mg/L, CuSO(4)·5H(2)O at 10 mg/L, H(3)BO(4) at 5 mg/L, and Na(2)MoO(4)·2H(2)O at 5 mg/L. The optimum sporulation medium for M. anisopliae SQZ-1-21 contained urea as the nitrogen source, sucrose as the carbon source at 16 g/ L, a C:N ratio of 80:1, with ZnSO(4)·7H(2)O at 50 mg/L, CuSO(4)·5H(2)O at 50 mg/L, H(3)BO(4) at 5 mg/L, and MnSO(4)·H(2)O at 10 mg/L. The optimum sporulation medium for M. anisopliae RS-4-1 contained soy peptone as the nitrogen source, sucrose as the carbon source at 4 g/L, a C:N ratio of 5:1, with ZnSO(4)·7H(2)O at 50 mg/L and H(3)BO(4) at 50 mg/L. All sporulation media contained 17 g/L agar. While these results were empirically derived, they provide a first step toward low-cost mass production of these biocontrol agents.

  10. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    Science.gov (United States)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  11. Expression systems and species used for transgenic animal bioreactors.

    Science.gov (United States)

    Wang, Yanli; Zhao, Sihai; Bai, Liang; Fan, Jianglin; Liu, Enqi

    2013-01-01

    Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  12. Expression Systems and Species Used for Transgenic Animal Bioreactors

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2013-01-01

    Full Text Available Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon, the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.

  13. An expert system based intelligent control scheme for space bioreactors

    Science.gov (United States)

    San, Ka-Yiu

    1988-01-01

    An expert system based intelligent control scheme is being developed for the effective control and full automation of bioreactor systems in space. The scheme developed will have the capability to capture information from various resources including heuristic information from process researchers and operators. The knowledge base of the expert system should contain enough expertise to perform on-line system identification and thus be able to adapt the controllers accordingly with minimal human supervision.

  14. Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems

    DEFF Research Database (Denmark)

    Rodrigo Navarro, Jaime; Kakkar, Aditya; Pang, Xiaodan

    2016-01-01

    A novel two-stage n-PSK partitioning carrier phase recovery (CPR) scheme for circular multilevel quadrature amplitude modulation (C-mQAM) constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second...... stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 × 10−3 and 1 × 10−2 and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product...... (ΔνTs) tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the ΔνTs tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C...

  15. Economically efficient operation of two-stage fluidized-bed combustion systems; Wirtschaftliche Betriebsweise von zweistufigen Wirbelschicht-Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E. [Hoelter-ABT GmbH, Essen (Germany)

    1996-11-01

    Two-stage stationary fluidized-bed combustion is an efficient technology for thermal treatment of residues. This includes, e.g. sorted residues from industrial processes, materials soiled with coatings, varnishes or glues, biomass (wood, straw, hay) and packaging materials. A simple and robust design of the plant with few mobile parts ensures high availability, good performance, and low investment and operation cost. The modular structure contributes to this. (orig.) [Deutsch] Mit der gestuften stationaeren Wirbelschichtverbrennung stellt eine Technologie zur thermischen Verwertung von Reststoffen fuer vielfaeltige Einsatzbereiche zur Verfuegung. Dazu zaehlten zum Beispiel sortenreine Reststoffe aus der Industrieproduktion, durch Beschichtungen, Anstriche oder Klebstoffe verunreinigte Materialien, Biomassen (Holz, Stroh, Heu) und Verpackungsmittelrueckstaende. Ein einfacher und robuster Anlagenaufbau mit wenigen beweglichen Teilen gewaehrleistet eine hohe Betriebssicherheit sowie die Anlagenverfuegbarkeit und verringert gleichzeitig die Investitions- und Betriebskosten. Hierzu traegt auch der Aufbau aus verschiedenen, immer gleichartigen Funktionsmodulen bei. (orig.)

  16. Evaluation of a membrane bioreactor system as post-treatment waste water treatment for better removal of micropollutants

    DEFF Research Database (Denmark)

    Arriaga, Sonia; de Jonge, Nadieh; Lund Nielsen, Marc

    2016-01-01

    Organic micropollutants such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants...... was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous organic micropollutants. Ibuprofen and naproxen had the highest degradation rates with values....... Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed....

  17. Infinite horizon optimal control of affine nonlinear discrete switched systems using two-stage approximate dynamic programming

    Science.gov (United States)

    Cao, Ning; Zhang, Huaguang; Luo, Yanhong; Feng, Dezhi

    2012-09-01

    In this article, a novel iteration algorithm named two-stage approximate dynamic programming (TSADP) is proposed to seek the solution of nonlinear switched optimal control problem. At each iteration of TSADP, a multivariate optimal control problem is transformed to be a certain number of univariate optimal control problems. It is shown that the value function at each iteration can be characterised pointwisely by a set of smooth functions recursively obtained from TSADP, and the associated control policy, continuous control and switching control law included, is explicitly provided in a state-feedback form. Moreover, the convergence and optimality of TSADP is strictly proven. To implement this algorithm efficiently, neural networks, critic and action networks, are utilised to approximate the value function and continuous control law, respectively. Thus, the value function is expressed by the weights of critic networks pointwise. Besides, redundant weights are ruled out at each iteration to simplify the exponentially increasing computation burden. Finally, a simulation example is provided to demonstrate its effectiveness.

  18. Design, Modelling and Simulation of Two-Phase Two-Stage Electronic System with Orthogonal Output for Supplying of Two-Phase ASM

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.

  19. Investigation on the removal of H2S from microwave pyrolysis of sewage sludge by an integrated two-stage system.

    Science.gov (United States)

    Zhang, Jun; Tian, Yu; Yin, Linlin; Zuo, Wei; Gong, Zhenlong; Zhang, Jie

    2017-07-08

    In this study, an integrated two-stage system, including the in-situ catalytic microwave pyrolysis (ICMP) and subsequent catalytic wet oxidation (CWO) processes, was proposed to remove H2S released from microwave-induced pyrolysis of sewage sludge. The emission profile and H2S removal from the pyrolysis of raw sewage sludge (SS) and sewage sludge spiked with conditioner CaO (SS-CaO) were investigated. The results showed that CaO played a positive role on sulfur fixation during the pyrolysis process. It was found that SS-CaO (10 wt.%) contributed to about 35% of H2S removal at the first stage (ICMP process). Additionally, the CWO process was demonstrated to have promising potential for posttreatment of remaining H2S gas. At the Fe(3+) concentration of 30 g/L, the maximum H2S removal efficiency of 94.8% was obtained for a single Fe(3+)/Cu(2+) solution. Finally, at the pyrolysis temperature of 800 °C, 99.7% of H2S was eliminated by the integrated two-stage system meeting the discharge standard of China. Therefore, the integrated two-stage system of ICMP + CWO may provide a promising strategy to remove H2S dramatically for the biomass pyrolysis industry.

  20. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    Science.gov (United States)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  1. An Enhanced Droop Control Scheme for Resilient Active Power Sharing in Paralleled Two-Stage PV Inverter Systems

    DEFF Research Database (Denmark)

    Liu, Hongpeng; Yang, Yongheng; Wang, Xiongfei

    2016-01-01

    generation) due to the intermittency. In that case, unbalance in active power generation may occur among the paralleled systems. Additionally, most droop-controlled systems have been assumed to be a single dc-ac inverter with a fixed dc input source. The dc-dc converter as the front-end of a two......Traditional droop-controlled systems assume that the generators are able to provide sufficient power as required. This is however not always true, especially in renewable systems, where the energy sources (e.g., photovoltaic source) may not be able to provide enough power (or even loss of power...... strategy is carried out. Experiments have verified the effectiveness of the proposed droop control scheme....

  2. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  3. Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system.

    Science.gov (United States)

    Xia, Lei; Arooz, Talha; Zhang, Shufang; Tuo, Xiaoye; Xiao, Guangfa; Susanto, Thomas Adi Kurnia; Sundararajan, Janani; Cheng, Tianming; Kang, Yuzhan; Poh, Hee Joo; Leo, Hwa Liang; Yu, Hanry

    2012-11-01

    Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7 cm of height and 5.5 cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.

  4. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  5. Two-Stage Control Design of a Buck Converter/DC Motor System without Velocity Measurements via a Σ−Δ-Modulator

    OpenAIRE

    R. Silva-Ortigoza; García-Sánchez, J. R.; J. M. Alba-Martínez; Hernández-Guzmán, V. M.; Marcelino-Aranda, M.; Taud, H.; Bautista-Quintero, R.

    2013-01-01

    This paper presents a two-stage control design for the “Buck power converter/DC motor” system, which allows to perform the sensorless angular velocity trajectory tracking task. The differential flatness property of the DC-motor model is exploited in order to propose a first-stage controller, which is designed to achieve the desired angular velocity trajectory. This controller provides the voltage profiles that must be tracked by the Buck converter. Then, a second-stage controller is meant to ...

  6. Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura;

    An innovative method for biogas upgrading (i.e. CH4 content more than 90%) combines the coupling of H2, which could be produced by water electrolysis using surplus renewable electricity produced from wind mills, with the CO2 of the biogas. CO2 is biologically converted to CH4 by hydrogenotrophic...... methanogens. In this study, a novel serial biogas reactor system is presented, in which the produced biogas from the first stage reactor was introduced in the second stage, where also H2 was injected. The effects of the H2 addition on the process performance and on the microbial community were investigated...

  7. Fluidized-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  8. Fixed-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  9. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ishii, K.; Kitajima, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Baba, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Sasao, M. [Organization for Research Initiatives and Development, Doshisha University, Kyoto 602-8580 (Japan)

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  10. Cultivation of mammalian cells using a single-use pneumatic bioreactor system.

    Science.gov (United States)

    Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel

    2014-10-10

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.

  11. Two-stage fungal pre-treatment for improved biogas production from sisal leaf decortication residues

    National Research Council Canada - National Science Library

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo

    2009-01-01

    .... Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors...

  12. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds

    NARCIS (Netherlands)

    Yeatts, A.B.; Both, S.K.; Yang, W.; Alghamdi, H.S.A.; Yang, F.; Fisher, J.P.; Jansen, J.A.

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human

  13. Two-way fiber-wireless convergence systems based on two-stage injection-locked VCSELs transmitter and optical interleaver.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Zheng, Jun-Ren; Lin, Che-Yu; Wan, Zhi-Wei

    2015-02-23

    A two-way fiber-wireless convergence system based on a two-stage injection-locked 1.55-μm vertical-cavity surface-emitting lasers (VCSELs) transmitter and an optical interleaver (IL) to deliver intensity-modulated and phase-remodulated millimeter-wave (MMW) data signals over a 40-km single-mode fiber (SMF) and a 5-m radio frequency (RF) wireless transport is proposed and experimentally demonstrated. Bit error rate (BER) and eye diagram perform brilliantly through a serious investigation in systems. Such a two-way fiber-wireless convergence system is a promising option, it reveals a prominent one to present its advancement in integration of distribute fiber and in-house network.

  14. The Presentation of a Two Stages Model for an Optimum Operation of a Hybrid System of Wind-Pumped Storage Power Plant in the Power Market Environment

    Directory of Open Access Journals (Sweden)

    Mehdi Akbarpour

    2012-11-01

    Full Text Available In this study we present a new method in power market environment. One of the weaknesses in the utilization of wind units is severe dependence of output power level on wind. However, considering the high uncertainty in the prediction of wind speed and wind forecast unit production capacity is also having an error. Also, regarding to the uncontrollable generators of this type, it is better to use combined systems for utilization. This study presents a new model based on the a two stage for an optimum operation of a hybrid system of windpumped storage power plant in the power market environment that causes to provide a successful presentation condition in market environments for the producers of wind power. In the suggestive hybrid system of windpumped storage power plant of this study the modeling is done in two stages for the optimum presence in power market environment with the a most possible benefit. At first, the suggestive model is optimized regarding to uncertainty in the prediction of power price and producing the wind power, for presenting the suggestion of power to market, in order to gain the most benefit. At the second stage, the suggestive model is optimized regarding to uncertainty in producing wind power, in order to gain the most benefit and paying the least penalty for unbalancing in market for operation of the system. In this study, the Particle Swarm Optimization algorithm (PSO is used for optimization. At the end of a model example for applying the results of the proposed model will be examined and analyzes the results. Results show that the model is an appropriate method for the operation of this combined system in market environment.

  15. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    Science.gov (United States)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  16. Sustainable bioreactor systems for producing hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A. [Univ. of Hawaii, Honolulu, HI (United States); Benemann, J.R. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Molecular Biology; Tredici, M.R. [Univ. of Florence (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiogiche

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  17. Low Voltage Ride-Through of Two-Stage Grid-Connected Photovoltaic Systems Through the Inherent Linear Power-Voltage Characteristic

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Liu, Hongpeng

    2017-01-01

    In this paper, a cost-effective control scheme for two-stage grid-connected PhotoVoltaic (PV) systems in Low Voltage Ride-Through (LVRT) operation is proposed. In the case of LVRT, the active power injection by PV panels should be limited to prevent from inverter over-current and also energy...... aggregation at the dc-link, which will challenge the dc-link capacitor lifetime if remains uncontrolled. At the same time, reactive currents should be injected upon any demand imposed by the system operators. In the proposed scheme, the two objectives can be feasibly achieved. The active power is regulated...... automatically through a proportional controller according to the voltage sag level and PV inherent characteristics (i.e., the voltage and power droop). Compared to prior-art LVRT schemes, the proposed method is cost-effective, as it is achieved by simply plugging the proportional controller into a maximum power...

  18. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    Science.gov (United States)

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  19. Two-Stage Control Design of a Buck Converter/DC Motor System without Velocity Measurements via a Σ−Δ-Modulator

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2013-01-01

    differential flatness property of the DC-motor model is exploited in order to propose a first-stage controller, which is designed to achieve the desired angular velocity trajectory. This controller provides the voltage profiles that must be tracked by the Buck converter. Then, a second-stage controller is meant to assure the aforementioned. This controller is based on flatness property of the Buck power converter model, which provides the input voltage to the DC motor. Due to the fact that the two-stage controller proposed uses the average model of the system, as a practical and effective implementation of this controller, a Σ − Δ-modulator is employed. Finally, in order to verify the control performance of this approach, numerical simulations are included.

  20. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate.

    Science.gov (United States)

    Lin, Jun; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2010-01-01

    Pseudomonas sp. strain L1 capable of degrading the azo textile dye Reactive blue 13, was isolated from activated sludge in a sequencing batch reactor. A continuous two-stage anaerobic/aerobic biological fluidized bed system was used to decolorize and mineralize Reactive blue 13. The key factors affecting decolorization were investigated and the efficiency of degradation was also optimized. An overall color removal of 83.2% and COD removal of 90.7% was achieved at pH 7, a residence time of 70 h and a glucose concentration of 2 g/L, HRT=70 h and C(glucose)=2000 mg/L. Oxygen was contributing to blocking the azo bond cleavage. Consequently, decolorization occurred in the anaerobic reactor while partial mineralization was achieved in the aerobic reactor. A possible degradation pathway based on the analysis of intermediates and involving azoreduction, desulfonation, deamination and further oxidation reactions is presented.

  1. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2017-05-29

    Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H2 and CH4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H2 and 15d for CH4. Overall, around 59% of the total COD in FW was converted into H2 (4%) and into CH4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.

  2. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Huang, Q.; Sui, M.; Yan, Y.; Wang, F. [Research Center for Biomass Energy, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2008-12-15

    Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH{sub 4}), and material space velocity (W{sub B}HSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH{sub 4} conversion as well as purity of desirable gas product were investigated. High temperature (> 850 C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low W{sub B}HSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH{sub 4} can be obtained under the conditions of S/CH{sub 4} no less than 2 and temperature no less than 800 C. Low GHSV favors the CH{sub 4} conversion and the maximum CH{sub 4} conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 C provided that GHSV is no more than 3600 h{sup -} {sup 1}. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant. (author)

  3. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  4. Integrated airlift bioreactor system for on-site small wastewater treatment.

    Science.gov (United States)

    Chen, S L; Li, F; Qiao, Y; Yang, H G; Ding, F X

    2005-01-01

    An integrated airlift bioreactor system was developed, which mainly consists of a multi-stage loop reactor and a gas-liquid-solid separation baffle and possesses dual functions as bioreactor and settler. This integrated system was used for on-site treatment of industrial glycol wastewater in lab-scale. The strategy of gradually increasing practical wastewater concentration while maintaining the co-substrate glucose wastewater concentration helped to accelerate the microbial acclimation process. Investigation of microbial acclimation, operation parameters evaluation and microbial observation has demonstrated the economical and technical feasibility of this integrated airlift bioreactor system for on-site small industrial wastewater treatment.

  5. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation.

    Science.gov (United States)

    Jung, Kyung-Won; Moon, Chungman; Cho, Si-Kyung; Kim, Sang-Hyoun; Shin, Hang-Sik; Kim, Dong-Hoon

    2013-07-01

    In this study, a two-stage system converting organic solid waste (food waste+sewage sludge) to H2 and CH4 was operated. In the first stage of dark fermentative hydrogen production (DFHP), a recently proposed method that does not require external inoculum, was applied. In the second stage, anaerobic sequencing batch reactor (ASBR) and an up-flow anaerobic sludge blanket reactor (UASBr) were followed to treat H2 fermenter effluent. (H2+CH4-ASBR) system showed better performance in terms of total biogas conversion (78.6%), while higher biogas production rate (2.03 L H2/Lsystem/d, 1.96 L CH4/Lsystem/d) was achieved in (H2+CH4-UASBr) system. To reduce the alkali addition requirement in DFHP process, CH4 fermenter effluent was tested as a diluting water. Both the ASBR and UASBr effluent was effective to keep the pH above 6 without CH4 production. In case of using ASBR effluent, H2 production dropped by 15%, but alkali addition requirement was reduced by 50%.

  6. Two-stage baculovirus production in insect-cell bioreactors.

    NARCIS (Netherlands)

    Lier, van F.L.J.

    1995-01-01

    Baculoviruses are insect-pathogenic viruses with a narrow host range. The viruses can be an alternative to chemical insecticides. From research aimed at improving the efficacy of the viruses in insect control another application evolved: the use of the baculovirus to express foreign proteins in inse

  7. Two-stage baculovirus production in insect-cell bioreactors

    NARCIS (Netherlands)

    Lier, van F.

    1995-01-01

    Baculoviruses are insect-pathogenic viruses with a narrow host range. The viruses can be an alternative to chemical insecticides. From research aimed at improving the efficacy of the viruses in insect control another application evolved: the use of the baculovirus to express foreign protein

  8. Control scheme towards enhancing power quality and operational efficiency of single-phase two-stage grid-connected photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Salem

    2015-12-01

    Full Text Available Achieving high reliable grid-connected photovoltaic (PV systems with high power quality and high operation efficiency is highly required for distributed generation units. A double grid-frequency voltage ripple is found on the dc-link voltage in single-phase photovoltaic grid-connected systems due to the unbalance of the instantaneous dc input and ac output powers. This voltage ripple has undesirable effects on the power quality and operational efficiency of the whole system. Harmonic distortion in the injected current to the grid is one of the problems caused by this double grid-frequency voltage ripple. The double grid frequency ripple propagates to the PV voltage and current which disturb the extracted maximum power from the PV array. This paper introduces intelligent solutions towards mitigate the side effects of the double grid-frequency voltage ripple on the transferred power quality and the operational efficiency of single-phase two-stage grid-connected PV system. The proposed system has three control loops: MPPT control loop, dc-link voltage control loop and inverter current control loop. Solutions are introduced for all the three control loops in the system. The current controller cancels the dc-link voltage effect on the total harmonic distortion of the output current. The dc-link voltage controller is designed to generate a ripple free reference current signal that leads to enhance the quality of the output power. Also a modified MPPT controller is proposed to optimize the extracted power from the PV array. Simulation results show that higher injected power quality is achieved and higher efficiency of the overall system is realized.

  9. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2014-09-01

    A two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophilic conditions (37°C) were used to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production. The acidogenic reactor was fed with a mixture consisting of olive mill wastewater, cheese whey and liquid cow manure (in a ratio 55:40:5, v/v/v) and operated at five different HRTs (5, 3, 2, 1 and 0.75 d) aiming to evaluate hydrogen productivity and operational stability. The highest system efficiency was achieved at HRT 0.75 d with a maximum hydrogen production rate of 1.72 L/LRd and hydrogen yield of 0.54 mol H2/mol carbohydrates consumed. The methanogenic reactor was operated at HRTs 20 and 25 d with better stability observed at HRT 25 d, whereas accumulation of volatile fatty acids took place at HRT 20 d. The methane production rate at the steady state of HRT 25 d reached 0.33 L CH4/LRd.

  10. Two-stage transjugular intrahepatic porta-systemic shunt for patients with cirrhosis and a high risk of portal-systemic encephalopathy patients as a bridge to orthotopic liver transplantation: A preliminary report

    NARCIS (Netherlands)

    T. Wroblewski; O. Rowinski; B. Ziarkiewicz-Wroblewska; B. Gornicka; J. Albrecht; E.A. Jones; M. Krawczyk

    2006-01-01

    Aim. Placement of a transjugular intrahepatic porta-systemic shunt (TIPS) is a therapeutic option for the management of bleeding esophageal varices. However, the procedure is associated with an increased risk of portal-systemic encephalopathy (PSE). In this study, a two-stage modification of the sta

  11. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  12. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  13. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Wen-Tang Hong, Yu-Ching Tsai, Hung-Yu Wang, Cheng-Nan Huang, Chien-Hsiung Lee, Bao-Dong Chen

    2010-07-01

    Full Text Available Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2~6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively, but increases to 2~9 kW and 2.6~11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5~16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  14. Two-stage evolution of the Cenozoic Kunbei fault system and its control of deposition in the SW Qaidam Basin, China

    Science.gov (United States)

    Zhu, Wen; Wu, Chaodong; Wang, Jialin; Fang, Ya'nan; Wang, Chuanwu; Chen, Qilin; Liu, Huaqing

    2017-09-01

    The structural relationship between the Qaidam Basin and Qimen Tagh-Eastern Kunlun Range holds important implications for evaluating the formation mechanism of the Tibetan Plateau. Various models have been proposed to reveal the structural relationship, although controversies remain. To address these issues, we analysed the seismic and lithologic data of the Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults), which lies to the north of the Qimen Tagh-Eastern Kunlun Range within the SW Qaidam Basin. Based on the regional geological framework and our kinematic analyses, we propose that the Cenozoic tectonic evolution of the Kunbei fault system can be divided into two stages. From the Early Eocene to the Middle Miocene, the system was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the flower structure in the seismic section, which is an apparent strike-slip deformation that was identified in the -1510-ms time slice and the root-mean-square amplitude attribute slice. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the Kunbei fault system has undergone intense south-dipping thrusting, and a nearly 2.2-km uplift has been observed in the hanging wall in the Arlar fault. The south-dipping thrusting is the far-field effect of the full collision that occurred between the Indian-Eurasian plates. The lake area in the SW Qaidam Basin has been shrinking since the Middle Miocene and presents widespread delta and fluvial deposits, which are consistent with the proposed tectonic evolution.

  15. Two-stage evolution of the Cenozoic Kunbei fault system and its control of deposition in the SW Qaidam Basin, China

    Science.gov (United States)

    Zhu, Wen; Wu, Chaodong; Wang, Jialin; Fang, Ya'nan; Wang, Chuanwu; Chen, Qilin; Liu, Huaqing

    2016-09-01

    The structural relationship between the Qaidam Basin and Qimen Tagh-Eastern Kunlun Range holds important implications for evaluating the formation mechanism of the Tibetan Plateau. Various models have been proposed to reveal the structural relationship, although controversies remain. To address these issues, we analysed the seismic and lithologic data of the Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults), which lies to the north of the Qimen Tagh-Eastern Kunlun Range within the SW Qaidam Basin. Based on the regional geological framework and our kinematic analyses, we propose that the Cenozoic tectonic evolution of the Kunbei fault system can be divided into two stages. From the Early Eocene to the Middle Miocene, the system was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the flower structure in the seismic section, which is an apparent strike-slip deformation that was identified in the -1510-ms time slice and the root-mean-square amplitude attribute slice. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the Kunbei fault system has undergone intense south-dipping thrusting, and a nearly 2.2-km uplift has been observed in the hanging wall in the Arlar fault. The south-dipping thrusting is the far-field effect of the full collision that occurred between the Indian-Eurasian plates. The lake area in the SW Qaidam Basin has been shrinking since the Middle Miocene and presents widespread delta and fluvial deposits, which are consistent with the proposed tectonic evolution.

  16. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.

    Science.gov (United States)

    Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung

    2015-05-01

    Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types.

  17. Application of wireless sensor network based on ZigBee technology in photo-bioreactors system

    Science.gov (United States)

    Liu, Bo; Chen, Ming; Chi, Tao

    2013-03-01

    A photo-bioreactor is a bioreactor that incorporates some types of light source to provide photonic energy input into the reactor[1][2]. In the situation of Large-scale industrialization production of micro-algae, hundreds of photo-bioreactors will be deployed in a factory, thus the design of entire system is based on the distribution theory and the remote monitoring must be deployed. So the communication in the entire photo-bioreactors system is very important. However, the recent solution of communication is based on RS-485 data bus, and the twisted-pair cable is used as the communication medium, so the flexibility and scalability of entire system reduce. In this paper, the wireless sensor network (WSN) based on ZigBee technology is applied to this photo-bioreactors system, and the related key problems include the architecture of entire system and the design of wireless sensor network nodes[3]~[6]. The application of this technology will also reduce the cost and effectively raise the intelligence level of the large-scale industrialization photo-bioreactors system.

  18. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  19. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  20. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    Science.gov (United States)

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    The compost bioreactor ("anaerobic cell") components of three composite passive remediation systems constructed to treat acid mine drainage (AMD) at the former Wheal Jane tin mine, Cornwall, UK were studied over a period of 16 months. While there was some amelioration of the preprocessed AMD in each of the three compost bioreactors, as evidenced by pH increase and decrease in metal concentrations, only one of the cells showed effective removal of the two dominant heavy metals (iron and zinc) present. With two of the compost bioreactors, concentrations of soluble (ferrous) iron draining the cells were significantly greater than those entering the reactors, indicating that there was net mobilisation (by reductive dissolution) of colloidal and/or solid-phase ferric iron compounds within the cells. Soluble sulfide was also detected in waters draining all three compost bioreactors which was rapidly oxidised, in contrast to ferrous iron. Oxidation and hydrolysis of iron, together with sulfide oxidation, resulted in reacidification of processed AMD downstream of the compost bioreactors in two of the passive treatment systems. The dominant cultivatable microorganism in waters draining the compost bioreactors was identified, via analysis of its 16S rRNA gene, as a Thiomonas sp. and was capable of accelerating the dissimilatory oxidation of both ferrous iron and reduced sulfur compounds. Sulfate-reducing bacteria (SRB) were also detected, although only in the bioreactor that was performing well were these present in significant numbers. This particular compost bioreactor had been shut down for 10 months prior to the monitoring period due to operational problems. This unforeseen event appears to have allowed more successful development of AMD-tolerant and other microbial populations with critical roles in AMD bioremediation, including neutrophilic SRB (nSRB), in this compost bioreactor than in the other two, where the throughput of AMD was not interrupted. This study has

  1. Two Stage Sibling Cycle Compressor/Expander.

    Science.gov (United States)

    1994-02-01

    vol. 5, p. 424. 11. L. Bauwens and M.P. Mitchell, " Regenerator Analysis: Validation of the MS*2 Stirling Cycle Code," Proc. XVIIIth International...PL-TR--94-1051 PL-TR-- 94-1051 TWO STAGE SIBLING CYCLE COMPRESSOR/EXPANDER Matthew P. Mitchell . Mitchell/ Stirling Machines/Systems, Inc. No\\ 1995...ty. THIS PAGE IS UNCLASSIFIED PL-TR-94-1051 This final report was prepared byMitchell/ Stirling Machines/Systems, Inc., Berkeley, CA under Contract

  2. Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    A new two-stage multi-drive direct power conversion (DPC) topology suited for multi-drive application is proposed, having an input port for a three-phase power supply and several output ports to connect three-phase loads, which are independently controlled and allow for sine wave in-sine wave out...... patterns of the inversion stages, which have to form two groups, allowing for size reduction of the input current filter. This is validated by experiments on a realistic laboratory prototype, while its limitations are determined by simulations....

  3. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    Science.gov (United States)

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds.

    Science.gov (United States)

    Yeatts, Andrew B; Both, Sanne K; Yang, Wanxun; Alghamdi, Hamdan S; Yang, Fang; Fisher, John P; Jansen, John A

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ε-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23 ± 0.35 mm(2) at 21 days compared to 0.99 ± 0.43 mm(2) and 0.50 ± 0.29 mm(2) in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (pbioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering.

  5. In Vivo Bone Regeneration Using Tubular Perfusion System Bioreactor Cultured Nanofibrous Scaffolds

    Science.gov (United States)

    Yeatts, Andrew B.; Both, Sanne K.; Yang, Wanxun; Alghamdi, Hamdan S.; Yang, Fang; Jansen, John A.

    2014-01-01

    The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23±0.35 mm2 at 21 days compared to 0.99±0.43 mm2 and 0.50±0.29 mm2 in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (pbioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering. PMID:23865551

  6. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems

    Science.gov (United States)

    Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases. PMID:26840840

  7. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems.

    Directory of Open Access Journals (Sweden)

    Juan Lu

    Full Text Available A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB. The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.

  8. A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems.

    Science.gov (United States)

    Lu, Juan; Zhang, Xiaoqian; Li, Jianzhou; Yu, Liang; Chen, Ermei; Zhu, Danhua; Zhang, Yimin; Li, LanJuan

    2016-01-01

    A fluidized bed bioreactor containing encapsulated hepatocytes may be a valuable alternative to a hollow fiber bioreactor for achieving the improved mass transfer and scale-up potential necessary for clinical use. However, a conventional fluidized bed bioreactor (FBB) operating under high perfusion velocity is incapable of providing the desired performance due to the resulting damage to cell-containing microcapsules and large void volume. In this study, we developed a novel diversion-type microcapsule-suspension fluidized bed bioreactor (DMFBB). The void volume in the bioreactor and stability of alginate/chitosan microcapsules were investigated under different flow rates. Cell viability, synthesis and metabolism functions, and expression of metabolizing enzymes at transcriptional levels in an encapsulated hepatocyte line (C3A cells) were determined. The void volume was significantly less in the novel bioreactor than in the conventional FBB. In addition, the microcapsules were less damaged in the DMFBB during the fluidization process as reflected by the results for microcapsule retention rates, swelling, and breakage. Encapsulated C3A cells exhibited greater viability and CYP1A2 and CYP3A4 activity in the DMFBB than in the FBB, although the increases in albumin and urea synthesis were less prominent. The transcription levels of several CYP450-related genes and an albumin-related gene were dramatically greater in cells in the DMFBB than in those in the FBB. Taken together, our results suggest that the DMFBB is a promising alternative for the design of a bioartificial liver system based on a fluidized bed bioreactor with encapsulated hepatocytes for treating patients with acute hepatic failure or other severe liver diseases.

  9. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  10. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  11. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  12. Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactors System

    Science.gov (United States)

    The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena, MT. The system consists of a wetland pretreatment fo...

  13. Microbial Activity In The Peerless Jenny King Sulfate Reducing Bioreactor System (Presentation)

    Science.gov (United States)

    The Peerless Jenny King treatment system is a series of four sulfate reducing bioreactor cells installed to treat acid mine drainage in the Upper Tenmile Creek Superfund Site located in the Rimini Mining District, near Helena MT. The system consists of a wetland pretreatment fol...

  14. Mesofluidic two stage digital valve

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, John F; Love, Lonnie J; Lind, Randall F; Richardson, Bradley S

    2013-12-31

    A mesofluidic scale digital valve system includes a first mesofluidic scale valve having a valve body including a bore, wherein the valve body is configured to cooperate with a solenoid disposed substantially adjacent to the valve body to translate a poppet carried within the bore. The mesofluidic scale digital valve system also includes a second mesofluidic scale valve disposed substantially perpendicular to the first mesofluidic scale valve. The mesofluidic scale digital valve system further includes a control element in communication with the solenoid, wherein the control element is configured to maintain the solenoid in an energized state for a fixed period of time to provide a desired flow rate through an orifice of the second mesofluidic valve.

  15. Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine.

    Science.gov (United States)

    Coppens, Joeri; Lindeboom, Ralph; Muys, Maarten; Coessens, Wout; Alloul, Abbas; Meerbergen, Ken; Lievens, Bart; Clauwaert, Peter; Boon, Nico; Vlaeminck, Siegfried E

    2016-07-01

    Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75mScm(-1) and loading rate above 450mgNL(-1)d(-1). The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.

  16. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were...

  17. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded.

  18. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    Science.gov (United States)

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control.

  19. 两阶段库存问题的最优补货策略%Optimal Replenishment Strategy for Two-stage Inventory System

    Institute of Scientific and Technical Information of China (English)

    马慧慧

    2012-01-01

    In this paper, we study the two-stage inventory replenishment threshold problem with a major supplier and an emergency supplier. According to the surplus inventory levels of the end of the first stage,we determine to use which kind of suppliers and the replenishment threshold of the next stage to make the retailer get maximum benefits. We identify respectively replenishment threshold of two sup- ply modes through analysis of the profit functions ' properties, and establish a simple algorithm to choose which kind of suppliers. In the end, we give the simulation experiment and determine different replenish- ment strategy to the different of surplus inventory levels.%主要研究带有普通供应商和紧急供应商的两阶段库存问题的补货阀值问题.即根据运行周期中第一阶段结束后的剩余库存量,确定下一阶段调用哪种供应商进行供货以及补货阀值来使零售商取得最大的收益.通过利润函数性质分析确定两种供应商供货时分别的补货阀值,并建立了简单的算法来决策调用哪种供应商.最后给出仿真模拟实验,确定不同剩余量的不同补货策略.

  20. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach

    Science.gov (United States)

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  1. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.

  2. LOGISTICS SCHEDULING: ANALYSIS OF TWO-STAGE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Yung-Chia CHANG; Chung-Yee LEE

    2003-01-01

    This paper studies the coordination effects between stages for scheduling problems where decision-making is a two-stage process. Two stages are considered as one system. The system can be a supply chain that links two stages, one stage representing a manufacturer; and the other, a distributor.It also can represent a single manufacturer, while each stage represents a different department responsible for a part of operations. A problem that jointly considers both stages in order to achieve ideal overall system performance is defined as a system problem. In practice, at times, it might not be feasible for the two stages to make coordinated decisions due to (i) the lack of channels that allow decision makers at the two stages to cooperate, and/or (ii) the optimal solution to the system problem is too difficult (or costly) to achieve.Two practical approaches are applied to solve a variant of two-stage logistic scheduling problems. The Forward Approach is defined as a solution procedure by which the first stage of the system problem is solved first, followed by the second stage. Similarly, the Backward Approach is defined as a solution procedure by which the second stage of the system problem is solved prior to solving the first stage. In each approach, two stages are solved sequentially and the solution generated is treated as a heuristic solution with respect to the corresponding system problem. When decision makers at two stages make decisions locally without considering consequences to the entire system,ineffectiveness may result - even when each stage optimally solves its own problem. The trade-off between the time complexity and the solution quality is the main concern. This paper provides the worst-case performance analysis for each approach.

  3. Two stage gear tooth dynamics program

    Science.gov (United States)

    Boyd, Linda S.

    1989-01-01

    The epicyclic gear dynamics program was expanded to add the option of evaluating the tooth pair dynamics for two epicyclic gear stages with peripheral components. This was a practical extension to the program as multiple gear stages are often used for speed reduction, space, weight, and/or auxiliary units. The option was developed for either stage to be a basic planetary, star, single external-external mesh, or single external-internal mesh. The two stage system allows for modeling of the peripherals with an input mass and shaft, an output mass and shaft, and a connecting shaft. Execution of the initial test case indicated an instability in the solution with the tooth paid loads growing to excessive magnitudes. A procedure to trace the instability is recommended as well as a method of reducing the program's computation time by reducing the number of boundary condition iterations.

  4. Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants.

    Science.gov (United States)

    Arriaga, Sonia; de Jonge, Nadieh; Nielsen, Marc Lund; Andersen, Henrik Rasmus; Borregaard, Vibeke; Jewel, Kevin; Ternes, Thomas A; Nielsen, Jeppe Lund

    2016-12-15

    Organic micropollutants (OMPs) such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous OMPs. Ibuprofen and naproxen had the highest degradation rates with values of 248 μg/gVSS·h and 71 μg/gVSS·h, whereas diclofenac was a more persistent OMP (7.28 μg/gVSS·h). Mineralization of (14)C-labeled OMPs in batch kinetic experiments indicates that higher removal rates (∼0.8 ng/mgTSS·h) with a short lag phase can be obtained when artificial addition of organic micropollutants was performed. Similar microbial populations dominated S1 and S2, despite the independent operations. Hydrogenophaga, Nitrospira, p55-a5, the actinobacterial Tetrasphaera, Propionicimonas, Fodinicola, and Candidatus Microthrix were the most abundant groups in the polishing MBR. Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Super-Twisting-Algorithm-Based Terminal Sliding Mode Control for a Bioreactor System

    Directory of Open Access Journals (Sweden)

    Sendren Sheng-Dong Xu

    2014-01-01

    control (TSMC for a bioreactor system with second-order type dynamics. TSMC not only can retain the advantages of conventional sliding mode control (CSMC, including easy implementation, robustness to disturbances, and fast response, but also can make the system states converge to the equivalent point in a finite amount of time after the system states intersect the sliding surface. The chattering phenomena in TSMC will originally exist on the sliding surface after the system states achieve the sliding surface and before the system states reach the equivalent point. However, by using the super twisting algorithm (STA, the chattering phenomena can be obviously reduced. The proposed method is also compared with two other methods: (1 CSMC without STA and (2 TSMC without STA. Finally, the control schemes are applied to the control of a bioreactor system to illustrate the effectiveness and applicability. Simulation results show that it can achieve better performance by using the proposed method.

  6. The construction of two-stage tests

    NARCIS (Netherlands)

    Adema, Jos J.

    1988-01-01

    Although two-stage testing is not the most efficient form of adaptive testing, it has some advantages. In this paper, linear programming models are given for the construction of two-stage tests. In these models, practical constraints with respect to, among other things, test composition, administrat

  7. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System.

    Science.gov (United States)

    Saulmon, M M; Reardon, K F; Sadeh, W Z

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  8. A two-stage planning and control model toward Economically Adapted Power Distribution Systems using analytical hierarchy processes and fuzzy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schweickardt, Gustavo [Instituto de Economia Energetica, Fundacion Bariloche, Centro Atomico Bariloche - Pabellon 7, Av. Bustillo km 9500, 8400 Bariloche (Argentina); Miranda, Vladimiro [INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto and FEUP, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 378, 4200-465 Porto (Portugal)

    2009-07-15

    This work presents a model to evaluate the Distribution System Dynamic De-adaptation respecting its planning for a given period of Tariff Control. The starting point for modeling is brought about by the results from a multi-criteria method based on Fuzzy Dynamic Programming and on Analytic Hierarchy Processes applied in a mid/short-term horizon (stage 1). Then, the decision-making activities using the Hierarchy Analytical Processes will allow defining, for a Control of System De-adaptation (stage 2), a Vector to evaluate the System Dynamic Adaptation. It is directly associated to an eventual series of inbalances that take place during its evolution. (author)

  9. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  10. A Cost-Effective Power Ramp-Rate Control Strategy for Single-Phase Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    In the case of a wide-scale adoption of grid-connected Photovoltaic (PV) systems, more fluctuated power will be injected into the grid due to the intermittency of solar PV energy. A sudden change in the PV power can potentially induce grid voltage fluctuations, and thus challenge the stability...

  11. Treatment of real coal gasification wastewater using a novel integrated system of anoxic hybrid two stage aerobic processes: performance and the role of pure oxygen microbubble.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Shan, Shengdao

    2016-06-01

    A novel integrated system of anoxic-pure oxygen microbubble-activated sludge reactor-moving bed biofilm reactor was employed in treatment of real coal gasification wastewater. The results showed the integrated system had efficient performance of pollutants removal in short hydraulic retention time. While pure oxygen microbubble with the flow rate of 1.5 L/h and NaHCO3 dosage ratio of 2:1 (amount NaHCO3 to NH4 (+)-N ratio, mol: mol) were used, the removal efficiencies of COD, total phenols (TPh) and NH4 (+)-N reached 90, 95, and 95 %, respectively, with the influent loading rates of 3.4 kg COD/(m(3) d), 0.81 kg TPh/(m(3) d), and 0.28 kg NH4 (+)-N/(m(3) d). With the recycle ratio of 300 %, the concentrations of NO2 (-)-N and NO3 (-)-N in effluent decreased to 12 and 59 mg/L, respectively. Meanwhile, pure oxygen microbubble significantly improved the enzymatic activities and affected the effluent organic compositions and reduced the foam expansion. Thus, the novel integrated system with efficient, stable, and economical advantages was suitable for engineering application.

  12. Effect of macroporous adsorption resin-membrane bioreactor hybrid system against fouling for municipal wastewater treatment.

    Science.gov (United States)

    Chen, Weiwei; Luo, Jing; Cao, Ruyi; Li, Yuting; Liu, Jinrong

    2017-01-01

    Membrane bioreactor (MBR) displays significant advantages in effluent quality, sludge production, footprint, and operation. However, membrane fouling limits the application of MBR. This study investigated membrane fouling in a macroporous adsorption resin-membrane bioreactor hybrid system established by adding macroporous adsorption resin (MAR) into MBR. MAR addition increased the critical flux by 27.97%, indicating that membrane fouling was successfully mitigated. Consequently, comparative experiments were designed to analyze the pathway. MAR addition mitigated external fouling development and improved mixed liquor characteristics, thereby mitigating gel layer formation and sludge floc deposition on the membrane surface. MAR effectively reduced the supernatant viscosity and dissolved COD by adsorbing soluble microbial products. Sludge production decreased because the sludge activity in MAR-MBR was inhibited. The fouled MAR could be regenerated effectively by deionized water and chemical cleaning. This work demonstrated the feasibility of using MAR-MBR to mitigate fouling in municipal wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water.

  14. Experimental investigation on feasible bioreactor using mechanism of hydrogen oxidation of natural soil for detritiation system.

    Science.gov (United States)

    Edao, Yuki; Iwai, Yasunori; Sato, Katsumi; Hayashi, Takumi

    2016-08-01

    A passive reactor for tritium oxidation at room temperature has been widely studied in nuclear engineering especially for a detritiation system (DS) of a tritium process facility taking possible extraordinary situation severely into consideration. We have focused on bacterial oxidation of tritium by hydrogen-oxidizing bacteria in natural soil to realize the passive oxidation reactor. The purpose of this study was to examine the feasibility of a bioreactor with hydrogen-oxidizing bacteria in soil from a point of view of engineering. The efficiency of the bioreactor was evaluated by kinetics. The bioreactor packed with natural soil shows a relative high conversion rate of tritium under the saturated moisture condition at room temperature, which is obviously superior to that of a Pt/Al2O3 catalyst generally used for tritium oxidation in the existing tritium handling facilities. The order of reaction for tritium oxidation with soil was the pseudo-first order as assessed with Michaelis-Menten kinetics model. Our engineering suggestion to increase the reaction rate is the intentional addition of hydrogen at a small concentration in the feed gas on condition that the oxidation of tritium with soil is expressed by the Michaelis-Menten kinetics model.

  15. 烤烟两段式少基质漂浮育苗对烟苗素质的影响%Effects of Two-stage Little Medium Floating System of Flue-cured Tobacco on Quality of Tobacco Seedling

    Institute of Scientific and Technical Information of China (English)

    曾淑华; 熊成文; 胡永龙; 刘雷; 郭仕平; 覃太友

    2012-01-01

    In order to provide theory evidence for popularization and application of two-stage little medium floating system studies of tobacco seedling quality were carried out to compare two-stage little medium floating system with common floating system. Agronomic traits and some physiological and biochemical indexes were determined respectively on the two kinds of seedling methods. The results showed that plant height, stem circumference, stem height and leave number had no significant difference. Chlorophyll content of the two kinds of seedling methods was equal to each other. However, the root number and root activity of little medium floating system were significantly higher than those of common floating system. The medium was saved by 85% in two-stage little medium floating system. Meanwhile, the cost and peat (non-renewable resources) were dramatically reduced, which played an important role in protecting ecological environment.%为了给实际生产中推广应用烤烟两段式少基质漂浮育苗提供理论依据,研究了烤烟两段式少基质漂浮育苗与常规漂浮育苗对烟苗素质的影响,分别测定了两种育苗方式烟苗成苗主要农艺性状指标和生理生化指标.结果表明:两种育苗方式烟苗的株高、茎围、茎高、有效叶片数等农艺性状无明显差异;两种育苗方式成苗期烟苗叶片叶绿素含量相当,但两段式少基质漂浮育苗的根系数量及根系活力均明显高于常规漂浮育苗.两段式少基质漂浮育苗可节约85%左右的基质用量,育苗基质成本大幅降低,同时有效减少草炭(泥炭)不可再生资源的消耗,对保护生态环境具有重要意义.

  16. THE USE OF CONTINUOUS, TEMPORARY IMMERSION BIOREACTOR SYSTEM AND SEMISOLID CULTURE MEDIUM FOR THE PRODUCTION OF Eucalyptus camaldulensis CLONES

    Directory of Open Access Journals (Sweden)

    Evânia Galvão Mendonça

    2016-01-01

    Full Text Available The plant micro-propagation in bioreactor systems is regarded as one way to reduce cost by automation and production scheduling. This research was carried out in order to obtain an efficient procedure for clone production of Eucalyptus camaldulensis on different types of bioreactor including continuous and temporary immersion bioreactor. To do so, the apical meristems (1 mm and the apical meristems with adjacent tissue (2,5 mm were used as initial explants. These tissues were cultured, for 60 days, in semisolid culture medium supplemented with 1 mg L -1 indole acetic acid (IAA and 0.32 mg L -1 benzylaminopurine (BA. After 60 days, the meristems with adjacent tissue were transferred to a continuous immersion bioreactor and maintained in dark or light conditions. In order to verify the effect of the explant source on bioreactor multiplication, the explants subcultured from meristems multiplied in semisolid culture medium and the meristems multiplied in continuous immersion bioreactor were tested and maintained in dark conditions. After establishing this parameters, the multiplication experiments were carried out in continuous and temporary immersion and the multiplied explants were then rooted in MS medium supplemented with 0, 2, 4, 8 and 20 mg L -1 indole butyric acid (IBA and kept in the dark or under controlled lighting conditions. After that, the rooting the plants were acclimatized in mist chamber. The meristem with adjacent tissue favored a greater number of buds/explants. The continuous immersion bioreactor in the dark provided higher shoots number and multiplication rate. The rooting was better on culture medium without auxin and kept in the dark for 15 days or the culture medium supplemented with auxin and maintained under light with 100% plantlet rooting. The Eucalyptus camaldulensis acclimatization was efficient, with high survival rate (76%. It was possible to establish the procedure for bioreactor micro-propagation of Eucalyptus

  17. Research and design of two - stage defensive system in network security%一种网络安全两级防御系统的研究与设计

    Institute of Scientific and Technical Information of China (English)

    杨玉新

    2012-01-01

    传统的单一防御产品难以构建一个安全的网络防御系统,在参照一些先进的网络安全解决方案的基础上,提出了一种两级防御体系结构模型。在整个防御系统中,设计了在Linux环境下以基于网络的入侵防御系统(NIPS:Network—based Intrusion Prevention System)为第一级入侵防御系统,以主机安全代理为第二级防御系统。两系统都与管理中心保持有密切的通信机制,其中主机安全代理不仅以软件的方式运行在内部网络的各个主机中,也可以安装在远程用户的便携机和托管服务器上。%The traditional single defensive products are difficult to construct a network security defense system. This paper propose a two - stage prevention system model by consulted advanced network security solutions, taking a network - based intrusion prevention system in Linux environment as the first stage and the host security agent system as the second stage. The two stages maintain close communication with the administration center, in which host security agent system not only operate in the various mainframe network by software, but also can be installed in the laptop and server care of remote users.

  18. 太阳能两级喷射式制冷系统性能的模拟及其分析%Simulation and analysis on the two - stage ejector refrigeration system performance of solar refrigeration

    Institute of Scientific and Technical Information of China (English)

    王子敬; 王辉涛; 包桂蓉; 李勤

    2012-01-01

    讨论了一种新型的太阳能制冷系统——带回热器的太阳能两级喷射式制冷系统.该系统最大的特点是将两个喷射器串联在一起,以提高整个太阳能制冷系统的性能系数.分别采用R134a、R152a、R245ca和R227ea为制冷工质下系统性能系数COP随两级间总压比分配度不同的变化关系.这四种制冷剂的两级压缩比的变化对总喷射系数的影响各有不同,并提出了气体喷射器的总压缩比1.2-2.8之间两级压缩比的不均匀分配原则.%A new combined refrigeration system, i. e. two — stage ejector refrigeration system with regenerator of solar refrigeration was studied theoretically. The system was characterized by two injectors in series to improve the coefficient of performance ( COP) of the solar cooling system. These system characteristics in use of R134a、R152a、R245ca and R227ea respectively as a working fluid were calculated. The changes of two - stage compression ratio of four working fluids affected the total ejector coefficient. How to distribute the two - stage compression ratio between 1. 2 and 2. 8 of the total of the compression ratio was gived.

  19. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  20. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  1. Two-stage sampling for acceptance testing

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, C.L.; Bryan, M.F.

    1992-09-01

    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal [alpha] should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  2. Two-stage sampling for acceptance testing

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, C.L.; Bryan, M.F.

    1992-09-01

    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal {alpha} should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  3. Two Stage Gear Tooth Dynamics Program

    Science.gov (United States)

    1989-08-01

    cordi - tions and associated iteration prooedure become more complex. This is due to both the increased number of components and to the time for a...solved for each stage in the two stage solution . There are (3 + ntrrber of planets) degrees of freedom fcr eacb stage plus two degrees of freedom...should be devised. It should be noted that this is not minor task. In general, each stage plus an input or output shaft will have 2 times (4 + number

  4. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    Science.gov (United States)

    Lu, Jue; Okeke, Benedict

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.

  5. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle.

    Science.gov (United States)

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo

    2015-03-01

    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  6. Lactose autoinduction with enzymatic glucose release: characterization of the cultivation system in bioreactor.

    Science.gov (United States)

    Mayer, Sonja; Junne, Stefan; Ukkonen, Kaisa; Glazyrina, Julia; Glauche, Florian; Neubauer, Peter; Vasala, Antti

    2014-02-01

    The lactose autoinduction system for recombinant protein production was combined with enzymatic glucose release as a method to provide a constant feed of glucose instead of using glycerol as a carbon substrate. Bioreactor cultivation confirmed that the slow glucose feed does not prevent the induction by lactose. HPLC studies showed that with successful recombinant protein production only a very low amount of lactose was metabolized during glucose-limited fed-batch conditions by the Escherichia coli strain BL21(DE3)pLysS in well-aerated conditions, which are problematic for glycerol-based autoinduction systems. We propose that slow enzymatic glucose feed does not cause a full activation of the lactose operon. However recombinant PDI-A protein (A-domain of human disulfide isomerase) was steadily produced until the end of the cultivation. The results of the cultivations confirmed our earlier observations with shaken cultures showing that lactose autoinduction cultures based on enzymatic glucose feed have good scalability, and that this system can be applied also to bioreactor cultivations.

  7. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    Science.gov (United States)

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  8. A comparison study of toluene removal by two-stage DBD-catalyst systems loading with MnO(x), CeMnO(x), and CoMnO(x).

    Science.gov (United States)

    Huang, Yifan; Dai, Shaolong; Feng, Fada; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2015-12-01

    This paper studies the toluene removal by a two-stage dielectric barrier discharge (DBD)-catalyst system with three catalysts: MnO(x)/ZSM-5, CoMnO(x)/ZSM-5, and CeMnO(x)/ZSM-5. V-Q Lissajous method, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), and X-ray photoelectron (XPS) are used to characterize the DBD and catalysts. The DBD processing partially oxidizes the toluene, and the removal efficiency has a linear relationship with ozone generation. Three DBD-catalyst systems are compared in terms of their toluene removal efficiency, Fourier transform infrared (FTIR) spectra, carbon balance, CO selectivity, CO2 selectivity, and ozone residual. The results show that the DBD-catalyst system with CoMnO(x)/ZSM-5 performs better than the other two systems. It has the highest removal efficiency of about 93.7%, and the corresponding energy yield is 4.22 g/kWh. The carbon balance and CO2 selectivity of CoMnO(x)/ZSM-5 is also better than the other two catalysts. The measurements of two important byproducts including aerosols and ozone are also presented.

  9. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds......Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...

  10. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    Directory of Open Access Journals (Sweden)

    Fanny Knöspel

    2016-04-01

    Full Text Available Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR, while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  11. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System.

    Science.gov (United States)

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-04-16

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  12. 基于两段式水煤浆气化的IGCC系统变工况特性%Off-design Characteristics of IGCC System Based on Two-stage Coal-slurry Gasification Technology

    Institute of Scientific and Technical Information of China (English)

    刘耀鑫; 吴少华; 李振中; 王阳

    2012-01-01

    The integrated gasification combined cycle system(IGCC) is often operated at off-design condition.In order to learn the off-design characteristics of IGCC,the software ThermoFlex was used to establish the model of a 200 MW integrated gasification combined cycle(IGCC) system based on the two-stage coal-slurry gasification technology.The effects of gas turbine load,air separation unit integrated coefficient(Xas),atmosphere temperature and atmosphere pressure on the performance of IGCC system were investigated.The results show that gross and net electric efficiency increases at first and then decreases with atmosphere temperature increasing or gas turbine load decreasing.The gross electric efficiency decreases when the air separation unit integrated coefficient increases.Atmosphere pressure has little effect on system efficiency.The application of two-stage coal-slurry gasification technology has good availability to improve IGCC system performance under the above running conditions.The results will provide reference for design and operation of the IGCC power plant.%整体煤气化联合循环(integrated gasification combinedcycle,IGCC)机组在一定情况下处于非设计工况运行。为了研究IGCC系统变工况特性,采用ThermoFlex软件建立基于两段式水煤浆气化技术的200 MW级整体煤气化联合循环系统模型,主要考查燃气轮机负荷、整体空分系数Xas、大气温度、大气压力对系统性能的影响。研究结果表明,降低燃气轮机负荷或者提高大气温度系统效率均呈先升高而后降低的趋势。整体空分系数Xas增加,机组发电效率降低。大气压力对系统效率影响较小。上述条件下采用两段水煤浆气化技术,系统性能可以得到有效改善。研究结果可为采用两段式水煤浆气化技术的IGCC系统的设计、运行提供参考。

  13. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems.

    Science.gov (United States)

    Luo, Xia; Jellison, Kristen L; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coupons by sonication, stomaching, bead-beating, and manual scraping. High-throughput sequencing of 16S rRNA amplicons was used to profile bacterial populations from flushed biofilms seeded into bioreactors as well as biofilms recovered from bioreactor coupons by different methods. β diversity between flushed and reactor biofilms was compared to β diversity between (i) biofilms harvested from different reactors and (ii) biofilms harvested by different methods from the same reactor. These analyses showed that average diversity between flushed and bioreactor biofilms was double the diversity between biofilms from different reactors operated in parallel. The diversity between bioreactors was larger than the diversity associated with different biofilm recovery methods. Compared to other experimental variables, the method used to recover biofilms had a negligible impact on the outcome of water biofilm analyses based on 16S amplicon sequencing. Results from this study show that biofilms grown in reactors over 9 to 11 weeks are not representative models of the microbial populations flushed from a distribution system. Furthermore, the bacterial population profile of biofilms grown in replicate reactors from the same flushed water are likely to diverge. However, four common sampling protocols, which differ with respect to disruption of bacterial cells, provide similar information with respect to the 16S rRNA population profile of the biofilm community.

  14. Automatic control systems for submerged membrane bioreactors: a state-of-the-art review.

    Science.gov (United States)

    Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2012-07-01

    Membrane bioreactor (MBR) technology has become relatively widespread as an advanced treatment for both industrial and municipal wastewater, especially in areas prone to water scarcity. Although operational cost is a key issue in MBRs, currently only a few crucial papers and inventions aimed to optimise and enhance MBR efficiency have been published. The present review summarises the available solutions in the area of automatic control systems and widely explores the advances in automation and control for MBRs. In this review of state of the art, different control systems are evaluated comparatively, distinguishing between control systems used for the filtration process and those used for the biological process of MBRs and describing the challenge faced by integrated control systems. The existing knowledge is classified according to the manipulated variables, the operational mode (open-loop or closed-loop) and the controlled variables used.

  15. Space Bioreactor Science Workshop

    Science.gov (United States)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  16. Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR

    Directory of Open Access Journals (Sweden)

    Kärenlampi Sirpa O

    2007-02-01

    Full Text Available Abstract Background Strawberry (Fragaria × ananassa is an economically important soft fruit crop with polyploid genome which complicates the breeding of new cultivars. For certain traits, genetic engineering offers a potential alternative to traditional breeding. However, many strawberry varieties are quite recalcitrant for Agrobacterium-mediated transformation, and a method allowing easy handling of large amounts of starting material is needed. Also the genotyping of putative transformants is challenging since the isolation of DNA for Southern analysis is difficult due to the high amount of phenolic compounds and polysaccharides that complicate efficient extraction of digestable DNA. There is thus a need to apply a screening method that is sensitive and unambiguous in identifying the different transformation events. Results Hygromycin-resistant strawberries were developed in temporary immersion bioreactors by Agrobacterium-mediated gene transfer. Putative transformants were screened by TAIL-PCR to verify T-DNA integration and to distinguish between the individual transformation events. Several different types of border sequence arrangements were detected. Conclusion This study demonstrates that temporary immersion bioreactor system suits well for the regeneration of transgenic strawberry plants as a labour-efficient technique. Small amount of DNA required by TAIL-PCR is easily recovered even from a small transformant, which allows rapid verification of T-DNA integration and detection of separate gene transfer events. These techniques combined clearly facilitate the generation of transgenic strawberries but should be applicable to other plants as well.

  17. Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.

    Science.gov (United States)

    Wang, Tao; Lin, Zhen; Ni, Ming; Thien, Christine; Day, Robert E; Gardiner, Bruce; Rubenson, Jonas; Kirk, Thomas B; Smith, David W; Wang, Allan; Lloyd, David G; Wang, Yan; Zheng, Qiujian; Zheng, Ming H

    2015-12-01

    Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology.

  18. Two-stage approach to full Chinese parsing

    Institute of Scientific and Technical Information of China (English)

    Cao Hailong; Zhao Tiejun; Yang Muyun; Li Sheng

    2005-01-01

    Natural language parsing is a task of great importance and extreme difficulty. In this paper, we present a full Chinese parsing system based on a two-stage approach. Rather than identifying all phrases by a uniform model, we utilize a divide and conquer strategy. We propose an effective and fast method based on Markov model to identify the base phrases. Then we make the first attempt to extend one of the best English parsing models i.e. the head-driven model to recognize Chinese complex phrases. Our two-stage approach is superior to the uniform approach in two aspects. First, it creates synergy between the Markov model and the head-driven model. Second, it reduces the complexity of full Chinese parsing and makes the parsing system space and time efficient. We evaluate our approach in PARSEVAL measures on the open test set, the parsing system performances at 87.53% precision, 87.95% recall.

  19. Full-scale validation of an air scour control system for energy savings in membrane bioreactors.

    Science.gov (United States)

    Monclús, Hèctor; Dalmau, Montserrat; Gabarrón, Sara; Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2015-08-01

    Membrane aeration represents between 35 and 50% of the operational cost of membrane bioreactors (MBR). New automatic control systems and/or module configurations have been developed for aeration optimization. In this paper, we briefly describe an innovative MBR air scour control system based on permeability evolution and present the results of a full-scale validation that lasted over a 1-year period. An average reduction in the air scour flow rate of 13% was achieved, limiting the maximum reduction to 20%. This averaged reduction corresponded to a decrease in energy consumption for membrane aeration of 14% (0.025 kWh m(-3)) with maximum saving rates of 22% (0.04 kWh m(-3)). Permeability and fouling rate evolution were not affected by the air scour control system, as very similar behavior was observed for these variables for both filtration lines throughout the entire experimental evaluation period of 1 year.

  20. Classification in two-stage screening.

    Science.gov (United States)

    Longford, Nicholas T

    2015-11-10

    Decision theory is applied to the problem of setting thresholds in medical screening when it is organised in two stages. In the first stage that involves a less expensive procedure that can be applied on a mass scale, an individual is classified as a negative or a likely positive. In the second stage, the likely positives are subjected to another test that classifies them as (definite) positives or negatives. The second-stage test is more accurate, but also more expensive and more involved, and so there are incentives to restrict its application. Robustness of the method with respect to the parameters, some of which have to be set by elicitation, is assessed by sensitivity analysis.

  1. Recursive algorithm for the two-stage EFOP estimation method

    Institute of Scientific and Technical Information of China (English)

    LUO GuiMing; HUANG Jian

    2008-01-01

    A recursive algorithm for the two-stage empirical frequency-domain optimal param-eter (EFOP) estimation method Was proposed. The EFOP method was a novel sys-tem identificallon method for Black-box models that combines time-domain esti-mation and frequency-domain estimation. It has improved anti-disturbance perfor-mance, and could precisely identify models with fewer sample numbers. The two-stage EFOP method based on the boot-strap technique was generally suitable for Black-box models, but it was an iterative method and takes too much computation work so that it did not work well online. A recursive algorithm was proposed for dis-turbed stochastic systems. Some simulation examples are included to demonstrate the validity of the new method.

  2. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  3. Simulation Analysis of Two-Stage Grid-connected PV Control System%两级式光伏并网发电控制系统仿真分析

    Institute of Scientific and Technical Information of China (English)

    肖恩恺; 毛玉蓉

    2013-01-01

    This paper introduces the structure and control of two-Stage grid-connected photovoltaic control system establishes photovoltaic array model and grid-connected photovoltaic model and simulates the output of grid-connected photovoltaic system with the change of il umination by photovoltaic array model.The results show that this two-level grid-connected photovoltaic system quickly and effectively tracks the maximum power point in photovoltaic array,accurately tracks the voltage phase as for grid-connected current control,assures the output current of inverter and the grid voltage of the same frequency and phase and guarantees the sinusoidal waveform with few ripples of current output.%  阐述了两级式光伏并网发电控制系统的结构及其控制过程,建立了光伏阵列模型和光伏并网发电系统模型,利用光伏阵列模型模拟了光照条件变化时光伏并网系统的输出情况进行仿真分析。实验表明,此两级式光伏并网发电系统能迅速有效地跟踪到光伏阵列的最大功率点,而且能够控制并网电流的波形,使逆变器的输出电流与电网电压同频同相,保证电流输出波形为正弦波。

  4. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-03-11

    This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter

  5. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation.

    Science.gov (United States)

    King, Andrew J; Preheim, Sarah P; Bailey, Kathryn L; Robeson, Michael S; Roy Chowdhury, Taniya; Crable, Bryan R; Hurt, Richard A; Mehlhorn, Tonia; Lowe, Kenneth A; Phelps, Tommy J; Palumbo, Anthony V; Brandt, Craig C; Brown, Steven D; Podar, Mircea; Zhang, Ping; Lancaster, W Andrew; Poole, Farris; Watson, David B; W Fields, Matthew; Chandonia, John-Marc; Alm, Eric J; Zhou, Jizhong; Adams, Michael W W; Hazen, Terry C; Arkin, Adam P; Elias, Dwayne A

    2017-02-10

    Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.

  6. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become m

  7. Performance analysis on a solar-powered air-cooled two-staged water ejector cooling system%风冷太阳能双级水喷射制冷空调系统性能分析

    Institute of Scientific and Technical Information of China (English)

    卢苇; 郑立星; 陈洪杰

    2011-01-01

    The performance was analyzed for a solar-powered air-cooled two-staged water ejector cooling system that rated cooling capacity is 12.3 Kw. The cooling capacity of the proposed system increases with the rising of indoor temperature and the enhancement of solar irradiance, while decreases with the rising of the ambient temperature. The COP has similar changing trend with that of the cooling capacity except that it increases rapidly with the enhancement of solar irradiance firstly and then become stable when the solar irradiance exceeding a certain value. The cooling capacity is 7.7~32 Kw and the COP is 0.082~0.107 under the normal operating conditions with indoor temperature over 27℃, ambient temperature below 38 ℃. And solar irradiance surpassing 500 W/m2.%对额定制冷量为12.3kW的风冷太阳能双级水喷射制冷空调系统进行了变工况性能分析.该系统的制冷量随室内温度升高而增大,随环境温度升高而减小,随太阳辐照度增强而增大;COP的变化与制冷量的变化类似,所不同的是COP随着太阳辐照度的增强先迅速增大,当太阳辐照度增大到一定程度后,COP基本保持稳定.在室内温度不低于27℃,室外温度不高于38℃,太阳辐照度不低于500 W/m2的条件下,系统的制冷量为7.7~32 kW,COP为0.082~0.107.

  8. Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-01-01

    Full Text Available Membrane bioreactors (MBRs are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.

  9. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  10. Two-Stage Modelling Of Random Phenomena

    Science.gov (United States)

    Barańska, Anna

    2015-12-01

    The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.

  11. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. An experimental study with bioreactor-landfill system%生物反应器填埋场的试验研究

    Institute of Scientific and Technical Information of China (English)

    王君琴; 沈东升

    2003-01-01

    In this study, a methane bioreactor-landfill system was utilized to treat municipal solid waste (MSW). Through analyzing and detecting the pollutant(CODcr) in the bioreactor-landfill system, a simulated mathematic formulaof waste degradation was established. After treated with this system, the CODcr and VFA concentrations in MSW could be decreased from more than 20000 and 7000 mg·L-1 to less than 1500 and 200 mg·L-1, respec-tively.

  14. Progress in bioreactors of bioartiifcial livers

    Institute of Scientific and Technical Information of China (English)

    Cheng-Bo Yu; Xiao-Ping Pan; Lan-Juan Li

    2009-01-01

    BACKGROUND: Bioartiifcial liver support systems are becoming an effective therapy for hepatic failure. Bioreactors, as key devices in these systems, can provide a favorable growth and metabolic environment, mass exchange, and immunological isolation as a platform. Currently, stagnancy in bioreactor research is the main factor restricting the development of bioartiifcial liver support systems. DATA SOURCES: A PubMed database search of English-language literature was performed to identify relevant articles using the keywords "bioreactor", "bioartiifcial liver", "hepatocyte", and "liver failure". More than 40 articles related to the bioreactors of bioartiifcial livers were reviewed. RESULTS: Some progress has been made in the improvement of structures, functions, and modiifed macromolecular materials related to bioreactors in recent years. The current data on the improvement of bioreactor conifgurations for bioartiifcial livers or on the potential of the use of certain scaffold materials in bioreactors, combined with the clinical efifcacy and safety evaluation of cultured hepatocytesin vitro, indicate that the AMC (Academic Medical Center) BAL bioreactor and MELS (modular extracorporeal liver support) BAL bioreactor system can partly replace the synthetic and metabolic functions of the liver in phaseⅠ clinical studies. In addition, it has been indicated that the microlfuidic PDMS (polydimethylsiloxane) bioreactor, or SlideBioreactor, and the microfabricated grooved bioreactor are appropriate for hepatocyte culture, which is also promising for bioartiifcial livers. Similarly, modiifed scaffolds can promote the adhesion, growth, and function of hepatocytes, and provide reliable materials for bioreactors.CONCLUSIONS: Bioreactors, as key devices in bioartiifcial livers, play an important role in the therapy for liver failure both now and in the future. Bioreactor conifgurations are indispensable for the development of bioartiifcial livers used for liver

  15. 双扬谷器旋风分离清选系统试验与参数优化%Two-stage Winnower Cyclone Separating Cleaning System Performance Testing and Optimization

    Institute of Scientific and Technical Information of China (English)

    师清翔; 马萌; 闫卫红; 周浩; 袁华杰; 李宇航

    2014-01-01

    为设计便携式谷物联合收获机清选系统,利用双扬谷器旋风分离清选系统试验台,在无物料状态下通过研究两级扬谷器之间和二级扬谷器与风机之间输送管道内气流状态,确定了物料顺利输送的一、二级扬谷器和风机转速的选取范围,物料试验以小麦为试验对象,以一级扬谷器、二级扬谷器和吸杂风机转速作为试验因素,以清洁率为试验指标,进行了正交试验和回归试验,优化确定了最佳参数值.当一级扬谷器、二级扬谷器、风机转速分别为300、764、3 255 r/min时,籽粒清洁率达99%以上.%To solve the cleaning problems of portable reaper,the cleaning system test bench was designed and the wheat was chosen as the experimental object.Air flow test without material was done and analyzed the static pressure in the two stages of pipelines.The relation among the speed of first and second level winnower and the fan can be found.The test can provide the selection scope of motion parameters for the material test.In material test,the fan speed and the first and second winnower speed were selected for test factors,and the cleaning rate for test indicator.Through orthogonal test and quadratic general rotation test,the motion parameters of wheat were found out when its cleaning rate was best and the impact of individual factor on the indicator was researched by regression equation.The best motion parameters can be found through the test:when the speed of first and second level winnower and the fan was 300 r/min 、764 r/min 、3 255 r/min,the cleaning rate would be best.This combination of parameters will apply to portable reaper cleaning systems,and provide the system the reliable movement parameters.

  16. 一种基于两级均衡的超Nyquist码元速率信号传输实现方案%A realization scheme based on two-stage equalization for the Fast-Than-Nyquist transmission system

    Institute of Scientific and Technical Information of China (English)

    郭明喜; 沈越泓; 聂勇; 屈冰峰

    2013-01-01

    Inter-symbol interference (ISI) will be caused when Faster-Than-Nyquist (FTN) signaling is applied,and it will degrade the system performance according to the traditional communication theory.In 1975,however,Mazo told us that system performance will not be degraded as long as the transmission rate is not beyond 25% faster than the Nyquist rate,because the minimum euclidean distance is not changed though ISI exists.In this paper,a realization scheme in AWGN channel based on two-stage equalization for FTN transmission system is proposed,which is composed of a linear minimum mean square error (MMSE) equalizer followed by a windowed Chase equalizer.Simulation results show that the receive scheme can work normally and keep the BER performance invariable if the transmission rate is not beyond 25% faster than Nyquist,which validates the theory of Mazo through experiment.%传统理论认为,当信号以超Nyquist码元速率进行传输,必会引起码间串扰(ISI),误码性能大幅下降.然而1975年Mazo通过理论推导证明,信号在加性高斯白噪声信道下,以超过Nyquist码元速率25%以内的速率进行传输,误码性能可以不下降.本文针对上述理论运用线性最小均方误差均衡(MMSE)和加窗Chase均衡(WCE)两级均衡,在加性高斯白噪声信道下,提出了一种超Nyquist码元速率(FTN)信号的解调接收方案.仿真实验表明在加性高斯白噪声信道下,信号以超过Nyquist码元速率25%以内的速率进行传输,运用本方案进行解调接收误码性能不下降,从而验证了MAZO的理论.

  17. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems.

    Science.gov (United States)

    Ayyildiz-Tamis, Duygu; Nalbantsoy, Ayse; Elibol, Murat; Deliloglu-Gurhan, Saime Ismet

    2014-01-01

    In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.

  18. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2002-01-01

    Composite likelihood; Two-stage estimation; Family studies; Copula; Optimal weights; All possible pairs......Composite likelihood; Two-stage estimation; Family studies; Copula; Optimal weights; All possible pairs...

  19. Effective enrichment of cholangiocarcinoma secretomes using the hollow fiber bioreactor culture system.

    Science.gov (United States)

    Weeraphan, Churat; Diskul-Na-Ayudthaya, Penchatr; Chiablaem, Khajeelak; Khongmanee, Amnart; Chokchaichamnankit, Daranee; Subhasitanont, Pantipa; Svasti, Jisnuson; Srisomsap, Chantragan

    2012-09-15

    The Northeastern region of Thailand is well known to have high incidence of bile duct cancer known as cholangiocarcinoma. So there is a continued need to improve diagnosis and treatment, and discovery of biomarkers for early detection of bile duct cancer should greatly improve treatment outcome for these patients. The secretome, a collection of proteins secreted from cells, is a useful source for identifying circulating biomarkers in blood secreted from cancer cells. Here a Hollow Fiber Bioreactor culture system was used for enrichment of cholangiocarcinoma secretomes, since this culture system mimics the dense three-dimensional microenvironment of the tumor found in vivo. Two-dimensional fluorescence difference gel electrophoresis using a sensitive Fluor saturation dye staining, followed by LC/MS/MS, was used to compare protein expression in the secretomes of cells cultured in the Hollow Fiber system and cells cultured in the monolayer culture system. For the first time, the 2D-patterns of cholangiocarcinoma secretomes from the two culture systems could be compared. The Hollow Fiber system improved the quality and quantity of cholangiocarcinoma secreted proteins compared to conventional monolayer system, showing less interference by cytoplasmic proteins and yielding more secreted proteins. Overall, 75 spots were analyzed by LC/MS/MS and 106 secreted proteins were identified. Two novel secreted proteins (C19orf10 and cystatin B) were found only in the Hollow Fiber system and were absent from the traditional monolayer culture system. Among the highly expressed proteins, 22 secreted soluble proteins were enriched by 5 fold in Hollow Fiber system compared to monolayer culture system. The Hollow Fiber system is therefore useful for preparing a wide range of proteins from low-abundance cell secretomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor Schematic

    Science.gov (United States)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  3. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams.

  4. Bioreactors and bioseparation.

    Science.gov (United States)

    Zhang, Siliang; Cao, Xuejun; Chu, Ju; Qian, Jiangchao; Zhuang, Yingping

    2010-01-01

    Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid

  5. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail

    2012-04-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general two-stage M-estimator, and provide their interpretations. We illustrate our results in the case of the two-stage maximum likelihood estimator and the two-stage least squares estimator. © 2011.

  6. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  7. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  8. Design challenges for space bioreactors

    Science.gov (United States)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  9. Mathematical modeling of continuous ethanol fermentation in a membrane bioreactor by pervaporation compared to conventional system: Genetic algorithm.

    Science.gov (United States)

    Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam

    2016-07-01

    In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model.

  10. Two-stage Optimization Method for Network and Load Recovery During Power System Restoration%电力系统恢复后期网架重构和负荷恢复的两阶段优化方法

    Institute of Scientific and Technical Information of China (English)

    廖诗武; 姚伟; 劲宇; 侯云鹤; 李大虎

    2016-01-01

    ABSTRACT:Network and load recovery (NLR) during power system restoration is a complex mixed-integer nonlinear optimization problem, which is difficult to be solved efficiently. To reduce the difficulty and improve the efficiency, this paper proposes a two-stage optimization method to decouple the NLR into a mixed-integer linear optimization problem and a continuous nonlinear optimization problem. In the first stage, the optimal plan for transmission line charging and load pick-ups is determined by mixed-integer linear programming (MILP) based on the DC power flow with frequency characteristics. Then in the second stage, an expanded AC power flow based continuous nonlinear optimization model is established to minimize the recovery time based on the optimal plan determined in the first stage. The 10-machine 39-bus system is used to analyze the efficiency and characteristics of a restoration plan in both single step and whole restoration process. Analysis results reveal that the restoration plans obtained from the proposed method are more efficient than those obtained by heuristic algorithms, while computation time is greatly reduced. Finally, the feasibility of applying the proposed method in a real power grid is validated through the Hubei Southeast Power Grid.%电力系统恢复后期的网架重构和负荷恢复是一个复杂的多步混整非线性规划问题。为了降低其求解难度和提高求解效率,提出一种适用于网架重构和负荷恢复的两阶段优化方法,该方法将网架重构及负荷恢复问题解耦为基于直流潮流的混整线性规划和基于交流潮流的连续非线性规划两阶段优化问题。在第1阶段优化中,利用计及频率影响的直流潮流模型确定最优线路投运及负荷开关投切状态这些离散变量的值,再将其作为第2阶段基于增广交流潮流的连续非线性规划的系统运行条件,通过优化发电机出力及端电压,在确保系统安全的前提下

  11. A perfusion bioreactor system efficiently generates cell‐loaded bone substitute materials for addressing critical size bone defects

    Science.gov (United States)

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne‐Wistrand, Anna; Walles, Heike

    2015-01-01

    Abstract Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  12. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    Science.gov (United States)

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.

  13. NASA Bioreactor

    Science.gov (United States)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. Novel perfused compression bioreactor system as an in vitro model to investigate fracture healing

    Directory of Open Access Journals (Sweden)

    Waldemar eHoffmann

    2015-02-01

    Full Text Available Secondary bone fracture healing is a physiological process that leads to functional tissue regeneration via endochondral bone formation. In vivo studies have demonstrated that early mobilization and the application of mechanical loads enhances the process of fracture healing. However, the influence of specific mechanical stimuli and particular effects during specific phases of fracture healing remain to be elucidated. In this work, we have developed and provided proof-of-concept of an in vitro human organotypic model of physiological loading of a cartilage callus, based on a novel perfused compression bioreactor system (PCB. We then used the fracture callus model to investigate the regulatory role of dynamic mechanical loading. Our findings provide a proof-of-principle that dynamic mechanical loading applied by the PCB can enhance the maturation process of mesenchymal stromal cells towards late hypertrophic chondrocytes and the mineralization of the deposited extracellular matrix. The PCB provides a promising tool to study fracture healing and for the in vitro assessment of alternative fracture treatments based on engineered tissue grafts or pharmaceutical compounds, allowing for the reduction of animal experiments.

  15. Design for a bioreactor with sunlight supply and operations systems for use in the space environment

    Science.gov (United States)

    Mori, Kei; Ohya, Haruhiko; Matsumoto, Kanji; Furuune, Hiroyuki; Isozaki, Kyôko; Siekmeier, Peter

    An experiment was carried out to determine the characteristics of an operations system that can support fast cultivation of algae at high densities in the weightlessness of space. The experiment was conducted in glass bioreactor tanks, in which light was supplied by radiator rods connected to optical fiber cables. The illumination areas of the tanks were 2600 cm2, 6000 cm2, and 9200 cm2 per liter of solution. The characteristics of O2-CO2 gas exchange, concentration and separation of chlorella in the growth medium, dialysis of ionic salts in the growth medium, etc. were examined. Chlorella ellipsoidea was used in the experiment, yielding the following results: o (1)By increasing the ratio of illumination area to volume, growth rates of up to approximately 0.6 g/L.h could be obtained in a highly concentrated solution (one that contains 20 g/L or more of algae). (2)The most suitable proportions of carbon dioxide and oxygen gases for growing algae quickly at high concentrations were found to be 10% CO2 and 10% O2 (by volume). (3)There was a high optimum concentration for fast cultivation, and the data obtained resembled the theoretical curve postulated by P. Behrens et al. (4)It was possible to exchange carbon dioxide and oxygen using gas-permeable membrane modules. (5)It was possible to separare the chlorella from the growth medium and recycle the medium.

  16. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    Science.gov (United States)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  17. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    Science.gov (United States)

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  18. Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.

    Science.gov (United States)

    Salerno, Simona; Bartolo, Loredana De

    2017-01-01

    In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Two-stage Security Controls Selection

    NARCIS (Netherlands)

    Yevseyeva, I.; Basto, Fernandes V.; Moorsel, van A.; Janicke, H.; Michael, Emmerich T. M.

    2016-01-01

    To protect a system from potential cyber security breaches and attacks, one needs to select efficient security controls, taking into account technical and institutional goals and constraints, such as available budget, enterprise activity, internal and external environment. Here we model the security

  20. Two-stage coaxial gas compressor

    Science.gov (United States)

    Wang, W. S.; Wright, H. W., Jr.; Huniu, S.

    1972-01-01

    Compressor raises pressure of gases from low ambient supply during space experiments by a system of low weight, size, and power input. Dc rotary-torque motor and ball-screw drive shaft activate first and second stage of compressor, utilizing inertia forces to operate check valves.

  1. Two-Stage Part-Based Pedestrian Detection

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Prioletti, Antonio; Trivedi, Mohan M.

    2012-01-01

    Detecting pedestrians is still a challenging task for automotive vision system due the extreme variability of targets, lighting conditions, occlusions, and high speed vehicle motion. A lot of research has been focused on this problem in the last 10 years and detectors based on classifiers has...... gained a special place among the different approaches presented. This work presents a state-of-the-art pedestrian detection system based on a two stages classifier. Candidates are extracted with a Haar cascade classifier trained with the DaimlerDB dataset and then validated through part-based HOG...... of several metrics, such as detection rate, false positives per hour, and frame rate. The novelty of this system rely in the combination of HOG part-based approach, tracking based on specific optimized feature and porting on a real prototype....

  2. Virus rejection with two model human enteric viruses in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A membrane bioreactor (MBR) with gravity drain was tested for virus rejection with two coliphages, T4 and f2, which were used as surrogates for human enteric viruses. Virus rejection was investigated by PVDF and PP membrane modules, with the pore sizes of 0.22 and 0.1 μm, respectively. In tap water system, 2.1 lg rejection of coliphage T4 could be achieved by PVDF membrane compared with complete rejection by PP membrane, while for coliphage f2 with smaller diameter, 0.3―0.5 lg rejection of the influent virus was removed by the two membranes. In domestic wastewater system, cake layer and gel layer on the membrane surface changed the cut-off size of the membrane so that there was no significant difference between PP and PVDF for each coliphage. The removal ratios of coliphage T4 and f2 in the MBR were more than 5.5 and 3.0 lg, respectively. Compared with 5.5 lg removal for virus T4 in the MBR system, only 2.1 lg (96.8%―99.9%) removal rate was observed in the conventional activated sludge system with the influent virus concentration fluctuating from 1830 to 57000 PFU/mL. Only 0.8%―22% virus removal was the effect of adsorption to activated sludge, which showed a decreasing tendency with the retention time, while 75%―98% was the effect of virus inactivation by microbial activity. It indicated that the major mechanism of virus removal was not the transfer of viruses from the water phase to the sludge phase but inactivation in the biological treatment process.

  3. Virus rejection with two model human enteric viruses in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiang; LIU JunXin

    2007-01-01

    A membrane bioreactor (MBR) with gravity drain was tested for virus rejection with two coliphages, T4 and f2, which were used as surrogates for human enteric viruses. Virus rejection was investigated by PVDF and PP membrane modules, with the pore sizes of 0.22 and 0.1 μm, respectively. In tap water system, 2.1 lg rejection of coliphage T4 could be achieved by PVDF membrane compared with complete rejection by PP membrane, while for coliphage f2 with smaller diameter, 0.3-0.5 lg rejection of the influent virus was removed by the two membranes. In domestic wastewater system, cake layer and gel layer on the membrane surface changed the cut-off size of the membrane so that there was no significant difference between PP and PVDF for each coliphage. The removal ratios of coliphage T4 and f2 in the MBR were more than 5.5 and 3.0 lg, respectively. Compared with 5.5 lg removal for virus T4 in the MBR system, only 2.1 lg (96.8%-99.9%) removal rate was observed in the conventional activated sludge system with the influent virus concentration fluctuating from 1830 to 57000 PFU/mL. Only 0.8 %-22 % virus removal was the effect of adsorption to activated sludge, which showed a decreasing tendency with the retention time, while 75%-98% was the effect of virus inactivation by microbial activity. It indicated that the major mechanism of virus removal was not the transfer of viruses from the water phase to the sludge phase but inactivation in the biological treatment process.

  4. Partial Control of a Continuous Bioreactor: Application to an Anaerobic System for Heavy Metal Removal

    Directory of Open Access Journals (Sweden)

    M. I. Neria-González

    2016-01-01

    Full Text Available This work presents a control strategy for a continuous bioreactor for heavy metal removal. For this aim, regulation of the sulfate concentration, which is considered the measured and controlled state variable, allowed diminishing the cadmium concentration in the bioreactor, where the corresponding controller was designed via nonlinear bounded function. Furthermore, a nonlinear controllability analysis was done, which proved the closed-loop instability of the inner or uncontrolled dynamics of the bioreactor. A mathematical model, experimentally corroborated for cadmium removal, was employed as a benchmark for the proposed controller. Numerical experiments clearly illustrated the successful implementation of this methodology; therefore, cadmium removal amounted to more than 99%, when the initial cadmium concentration was up to 170 mg/L in continuous operating mode.

  5. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  6. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  7. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  8. Rheological properties and mechanical stability of new gel-entrapment systems applied in bioreactors

    NARCIS (Netherlands)

    Vogelsang, C.; Wijffels, R.H.; Ostgaard, K.

    2000-01-01

    The mechanical stability of gels applied for entrapment and retention of biocatalysts in bioreactors is of crucial importance for successful scale-up applications. Gel abrasion in agitated reactors will depend on liquid shear, bubble shear, and wall shear, as well as collisions between the gel parti

  9. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    Science.gov (United States)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  10. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    Science.gov (United States)

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in

  11. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREACTOR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R.S. Bowman; E.J. Sullivan

    2003-04-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from October 2002 to March 2003. In this starting stage of this study, we have continued our investigation of SMZ regeneration from our previous DOE project. Two saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. Preliminary results suggest that BTEX sorption actually increases with the number of saturation/regeneration cycles. Furthermore, the experimental vapor phase bioreactors for this project have been designed and are

  12. Two-Stage Conversion of Land and Marine Biomass for Biogas and Biohydrogen Production

    OpenAIRE

    Nkemka, Valentine

    2012-01-01

    The replacement of fossil fuels by renewable fuels such as biogas and biohydrogen will require efficient and economically competitive process technologies together with new kinds of biomass. A two-stage system for biogas production has several advantages over the widely used one-stage continuous stirred tank reactor (CSTR). However, it has not yet been widely implemented on a large scale. Biohydrogen can be produced in the anaerobic two-stage system. It is considered to be a useful fuel for t...

  13. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling.

  14. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.

    Science.gov (United States)

    Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

    2014-06-01

    The large cell doses (>1 × 10(6)  cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC

  15. Bioreactor landfill

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; XING Kai; Anthony Adzomani

    2004-01-01

    Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.

  16. Removal of ammonium-N from ammonium-rich sewage using an immobilized Bacillus subtilis AYC bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingjing Xiao; Changxiong Zhu; Dongyuan Sun; Ping Guo; Yunlong Tian

    2011-01-01

    A self-design bioreactor system employing a fixed bed operation process with immobilized Bacillus subtilis AYC beads for NH4+-N removal from slightly polluted water was proposed.Polyvinyl alcohol and Na-alginate were used as a gel matrix to entrap Bacillus subtilis AYC to form the immobilized beads.The NH4+-N removal process was studied in a intermittent operation mode to examine the start-up and steady state behaviors of the immobilized AYC in the reactor.The results indicated that the reactor was in the start-up state during the first week.NH4+-N began to be steadily removal since the second week,and the nitrogen removal rate was between 84.61% and 96.19% when the hydraulic retention time (HRT) was 30 min.To apply Bacillus subtilis AYC to develop a practical nitrogen removal system and further understand its nitrogen removal ability,the bioreactor was continuously operated under different experimental perameters.The results showed that under the optimum conditions of an HRT of 20 min and DO of 3.77-5.80 mg/L,the NH4+-N removal rate reached 99.55%.The NH4+-N removal rate increased as the C/N ratio increased.However,a high C/N may cause a high residual carbon level in the effluent,therefore,the most suitable C/N ratio was 10.In addition,the results showed that the bioreactor system could remove many types of nitrogen such as NH4+-N,NO3--N and organic-N,and had a good performance for inorganic nitrogen removal from sewage.

  17. Transgenic bioreactors.

    Science.gov (United States)

    Jänne, J; Alhonen, L; Hyttinen, J M; Peura, T; Tolvanen, M; Korhonen, V P

    1998-01-01

    Since the generation of the first transgenic mice in 1980, transgene technology has also been successfully applied to large farm animals. Although this technology can be employed to improve certain production traits of livestock, this approach has not been very successful so far owing to unwanted effects encountered in the production animals. However, by using tissue-specific targeting of the transgene expression, it is possible to produce heterologous proteins in the extracellular space of large transgenic farm animals. Even though some recombinant proteins, such as human hemoglobin, have been produced in the blood of transgenic pigs, in the majority of the cases mammary gland targeted expression of the transgene has been employed. Using production genes driven by regulatory sequences of milk protein genes a number of valuable therapeutic proteins have been produced in the milk of transgenic bioreactors, ranging from rabbits to dairy cattle. Unlike bacterial fermentors, the mammary gland of transgenic bioreactors appear to carry out proper postsynthetic modifications of human proteins required for full biological activity. In comparison with mammalian cell bioreactors, transgenic livestock with mammary gland targeted expression seems to be able to produce valuable human therapeutic proteins at very low cost. Although not one transgenically produced therapeutic protein is yet on the market, the first such proteins have recently entered or even completed clinical trials required for their approval.

  18. Two new disposable bioreactors for plant cell culture: The wave and undertow bioreactor and the slug bubble bioreactor.

    Science.gov (United States)

    Terrier, Bénédicte; Courtois, Didier; Hénault, Nicolas; Cuvier, Arnaud; Bastin, Maryse; Aknin, Aziz; Dubreuil, Julien; Pétiard, Vincent

    2007-04-01

    The present article describes two novel flexible plastic-based disposable bioreactors. The first one, the WU bioreactor, is based on the principle of a wave and undertow mechanism that provides agitation while offering convenient mixing and aeration to the plant cell culture contained within the bioreactor. The second one is a high aspect ratio bubble column bioreactor, where agitation and aeration are achieved through the intermittent generation of large diameter bubbles, "Taylor-like" or "slug bubbles" (SB bioreactor). It allows an easy volume increase from a few liters to larger volumes up to several hundred liters with the use of multiple units. The cultivation of tobacco and soya cells producing isoflavones is described up to 70 and 100 L working volume for the SB bioreactor and WU bioreactor, respectively. The bioreactors being disposable and pre-sterilized before use, cleaning, sterilization, and maintenance operations are strongly reduced or eliminated. Both bioreactors represent efficient and low cost cell culture systems, applicable to various cell cultures at small and medium scale, complementary to traditional stainless-steel bioreactors.

  19. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    Science.gov (United States)

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization.

  20. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were...... estimated through fitting of the model equations to the data obtained from batch experiments. The simulation of the continuous reactor performance at all HRTs tested (20, 15 and 10d) was very satisfactory. Specifically, the largest deviation of the theoretical predictions against the experimental data...... was 12% for the methane production rate at the HRT of 20d while the deviation values for the 15 and 10 d HRT were 1.9% and 1.1%, respectively. The model predictions regarding pH, methane percentage in the gas phase and COD removal were in very good agreement with the experimental data with a deviation...

  1. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-09-11

    supply and EBCT on compost biofilter performance were also investigated. The bioreactor maintained greater than 95% removal efficiency for over 40 days without an additional supply of nutrients when a 10X concentrated HCMM was mixed with the compost packing at the beginning of the experiments. Results also suggest that an EBCT greater than 30 seconds is required to maintain high BTEX removal efficiencies in the compost biofilter system.

  2. Treatment of cadmium dust with two-stage leaching process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The treatment of cadmium dust with a two-stage leaching process was investigated to replace the existing sulphation roast-leaching processes. The process parameters in the first stage leaching were basically similar to the neutralleaching in zinc hydrometallurgy. The effects of process parameters in the second stage leaching on the extraction of zincand cadmium were mainly studied. The experimental results indicated that zinc and cadmium could be efficiently recoveredfrom the cadmium dust by two-stage leaching process. The extraction percentages of zinc and cadmium in two stage leach-ing reached 95% and 88% respectively under the optimum conditions. The total extraction percentage of Zn and Cdreached 94%.

  3. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  4. A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept

    NARCIS (Netherlands)

    Janssen, F.W.; Oostra, Jaap; van Oorschot, Arie; van Blitterswijk, Clemens

    2006-01-01

    In an effort to produce clinically relevant volumes of tissue-engineered bone products, we report a direct perfusion bioreactor system. Goat bone marrow stromal cells (GBMSCs) were dynamically seeded and proliferated in this system in relevant volumes (10 cc) of small sized macroporous biphasic

  5. Acetone-butanol-ethanol fermentation in a continuous and closed-circulating fermentation system with PDMS membrane bioreactor.

    Science.gov (United States)

    Chen, Chunyan; Xiao, Zeyi; Tang, Xiaoyu; Cui, Haidi; Zhang, Junqing; Li, Weijia; Ying, Chao

    2013-01-01

    Acetone-butanol-ethanol (ABE) fermentation by combining a PDMS membrane bioreactor and Clostridium acetobutylicum was studied, and a long continuous and closed-circulating fermentation (CCCF) system has been achieved. Two cycles of experiment were conducted, lasting for 274 h and 300 h, respectively. The operation mode of the first cycle was of fermentation intermittent coupling with pervaporation, and the second cycle was of continuous coupling. The average cell weight, glucose consumption rate, butanol productivity and butanol production of the first cycle were 1.59 g L(-1), 0.63 g L(-1)h(-1), 0.105 g L(-1)h(-1) and 28.03 g L(-1), respectively. Correspondingly, the four parameters of the second cycle were 1.68 g L(-1), 1.12 g L(-1)h(-1), 0.205 g L(-1)h(-1) and 61.43 g L(-1), respectively. The results indicate the fermentation behaviors under continuous coupling mode were superior to that under intermittent coupling mode. Besides, two peak values were observed in the time course profiles, which means the microorganism could adapt the long CCCF membrane bioreactor system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-05-12

    Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

  7. Two-stage local M-estimation of additive models

    Institute of Scientific and Technical Information of China (English)

    JIANG JianCheng; LI JianTao

    2008-01-01

    This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However,for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.

  8. Two-stage local M-estimation of additive models

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper studies local M-estimation of the nonparametric components of additive models.A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives.Under very mild conditions,the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known.The established asymptotic results also hold for two particular local M-estimations:the local least squares and least absolute deviation estimations.However,for general two-stage local M-estimation with continuous and nonlinear ψ-functions,its implementation is time-consuming.To reduce the computational burden,one-step approximations to the two-stage local M-estimators are developed.The one-step estimators are shown to achieve the same effciency as the fully iterative two-stage local M-estimators,which makes the two-stage local M-estimation more feasible in practice.The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers.In addition,the practical implementation of the proposed estimation is considered in details.Simulations demonstrate the merits of the two-stage local M-estimation,and a real example illustrates the performance of the methodology.

  9. Two stages kinetics of municipal solid waste inoculation composting processes

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou1; HUANG Guo-he; QIN Xiao-sheng; LIU Hong-liang

    2004-01-01

    In order to understand the key mechanisms of the composting processes, the municipal solid waste(MSW) composting processes were divided into two stages, and the characteristics of typical experimental scenarios from the viewpoint of microbial kinetics was analyzed. Through experimentation with advanced composting reactor under controlled composting conditions, several equations were worked out to simulate the degradation rate of the substrate. The equations showed that the degradation rate was controlled by concentration of microbes in the first stage. The degradation rates of substrates of inoculation Run A, B, C and Control composting systems were 13.61 g/(kg·h), 13.08 g/(kg·h), 15.671 g/(kg·h), and 10.5 g/(kg·h), respectively. The value of Run C is around 1.5 times higher than that of Control system. The decomposition rate of the second stage is controlled by concentration of substrate. Although the organic matter decomposition rates were similar to all Runs, inoculation could reduce the values of the half velocity coefficient and could be more efficient to make the composting stable. Particularly. For Run C, the decomposition rate is high in the first stage, and is low in the second stage. The results indicated that the inoculation was efficient for the composting processes.

  10. Optimizing of Culture Conditionin Horizontal Rotating Bioreactor

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionBioreactor is the most important equipment in tissue engineering. It can mimic the micro-environment of cell growth in vitro. At present, horizontal rotating bioreactor is the most advanced equipment for cell culture in the world. 2 Rotating bioreactors2.1 Working principleThere are two kinds of horizontal rotating bioreactor: HARV(high aspect ratio vessel) and RCCS (rotary cell culture system). It is drived by step motor with horizontal rotation, the culture medium and cell is filled between ...

  11. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production.

    Science.gov (United States)

    Flórez-Miranda, Liliana; Cañizares-Villanueva, Rosa Olivia; Melchy-Antonio, Orlando; Jerónimo, Fernando Martínez-; Flores-Ortíz, Cesar Mateo

    2017-09-16

    A biomass production process including two stages, heterotrophy/photoinduction (TSHP), was developed to improve biomass and lutein production by the green microalgae Scenedesmus incrassatulus. To determine the effects of different nitrogen sources (yeast extract and urea) and temperature in the heterotrophic stage, experiments using shake flask cultures with glucose as the carbon source were carried out. The highest biomass productivity and specific pigment concentrations were reached using urea+vitamins (U+V) at 30°C. The first stage of the TSHP process was done in a 6L bioreactor, and the inductions in a 3L airlift photobioreactor. At the end of the heterotrophic stage, S. incrassatulus achieved the maximal biomass concentration, increasing from 7.22gL(-1) to 17.98gL(-1) with an increase in initial glucose concentration from 10.6gL(-1) to 30.3gL(-1). However, the higher initial glucose concentration resulted in a lower specific growth rate (μ) and lower cell yield (Yx/s), possibly due to substrate inhibition. After 24h of photoinduction, lutein content in S. incrassatulus biomass was 7 times higher than that obtained at the end of heterotrophic cultivation, and the lutein productivity was 1.6 times higher compared with autotrophic culture of this microalga. Hence, the two-stage heterotrophy/photoinduction culture is an effective strategy for high cell density and lutein production in S. incrassatulus. Copyright © 2017. Published by Elsevier B.V.

  12. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration.

  13. Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutherosides.

    Science.gov (United States)

    Shohael, A M; Chakrabarty, D; Yu, K W; Hahn, E J; Paek, K Y

    2005-11-04

    Embryogenic callus was induced from leaf explants of Eleutherococcus sessiliflorus cultured on Murashige and Skoog (MS) basal medium supplemented with 1 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), while no plant growth regulators were needed for embryo maturation. The addition of 1 mg l(-1) 2,4-D was needed to maintain the embryogenic culture by preventing embryo maturation. Optimal embryo germination and plantlet development was achieved on MS medium with 4 mg l(-1) gibberellic acid (GA(3)). Low-strength MS medium (1/2 and 1/3 strength) was more effective than full-strength MS for the production of normal plantlets with well-developed shoots and roots. The plants were successfully transferred to soil. Embryogenic callus was used to establish a suspension culture for subsequent production of somatic embryos in bioreactor. By inoculating 10 g of embryogenic cells (fresh weight) into a 3l balloon type bubble bioreactor (BTBB) containing 2l MS medium without plant growth regulators, 121.8 g mature somatic embryos at different developmental stages were harvested and could be separated by filtration. Cotyledonary somatic embryos were germinated, and these converted into plantlets following transfer to a 3l BTBB containing 2l MS medium with 4 mg l(-1) GA3. HPLC analysis revealed that the total eleutherosides were significantly higher in leaves of field grown plants as compared to different stages of somatic embryo. However, the content of eleutheroside B was highest in germinated embryos. Germinated embryos also had higher contents of eleutheroside E and eleutheroside E1 as compared to other developmental stages. This result indicates that an efficient protocol for the mass production of E. sessiliflorus biomass can be achieved by bioreactor culture of somatic embryos and can be used as a source of medicinal raw materials.

  14. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications.

    Science.gov (United States)

    Liu, Ke; Zhang, Jian; Bao, Jie

    2015-11-01

    A two stage hydrolysis of corn stover was designed to solve the difficulties between sufficient mixing at high solids content and high power input encountered in large scale bioreactors. The process starts with the quick liquefaction to convert solid cellulose to liquid slurry with strong mixing in small reactors, then followed the comprehensive hydrolysis to complete saccharification into fermentable sugars in large reactors without agitation apparatus. 60% of the mixing energy consumption was saved by removing the mixing apparatus in large scale vessels. Scale-up ratio was small for the first step hydrolysis reactors because of the reduced reactor volume. For large saccharification reactors in the second step, the scale-up was easy because of no mixing mechanism was involved. This two stage hydrolysis is applicable for either simple hydrolysis or combined fermentation processes. The method provided a practical process option for industrial scale biorefinery processing of lignocellulose biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparison of Four Types of Membrane Bioreactor Systems in Terms of Shear Stress over the Membrane Surface using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby

    2013-01-01

    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement...

  16. A two-stage subsurface vertical flow constructed wetland for high-rate nitrogen removal.

    Science.gov (United States)

    Langergraber, Guenter; Leroch, Klaus; Pressl, Alexander; Rohrhofer, Roland; Haberl, Raimund

    2008-01-01

    By using a two-stage constructed wetland (CW) system operated with an organic load of 40 gCOD.m(-2).d(-1) (2 m2 per person equivalent) average nitrogen removal efficiencies of about 50% and average nitrogen elimination rates of 980 g N.m(-2).yr(-1) could be achieved. Two vertical flow beds with intermittent loading have been operated in series. The first stage uses sand with a grain size of 2-3.2 mm for the main layer and has a drainage layer that is impounded; the second stage sand with a grain size of 0.06-4 mm and a drainage layer with free drainage. The high nitrogen removal can be achieved without recirculation thus it is possible to operate the two-stage CW system without energy input. The paper shows performance data for the two-stage CW system regarding removal of organic matter and nitrogen for the two year operating period of the system. Additionally, its efficiency is compared with the efficiency of a single-stage vertical flow CW system designed and operated according to the Austrian design standards with 4 m2 per person equivalent. The comparison shows that a higher effluent quality could be reached with the two-stage system although the two-stage CW system is operated with the double organic load or half the specific surface area requirement, respectively. Another advantage is that the specific investment costs of the two-stage CW system amount to 1,200 EUR per person (without mechanical pre-treatment) and are only about 60% of the specific investment costs of the singe-stage CW system. IWA Publishing 2008.

  17. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  18. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit.

  19. Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2012-06-01

    The removal of trace organics by a membrane bioreactor-granular activated carbon (MBR-GAC) integrated system were investigated. The results confirmed that MBR treatment can be effective for the removal of hydrophobic (log D>3.2) and readily biodegradable trace organics. The data also highlighted the limitation of MBR in removing hydrophilic and persistent compounds (e.g. carbamazepine, diclofenac, and fenoprop) and that GAC could complement MBR very well as a post-treatment process. The MBR-GAC system showed high removal of all selected trace organics including those that are hydrophilic and persistent to biological degradation at up to 406 bed volumes (BV). However, over an extended period, breakthrough of diclofenac was observed after 7320 BV. This suggests that strict monitoring should be applied over the lifetime of the GAC column to detect the breakthrough of hydrophilic and persistent compounds which have low removal by MBR treatment.

  20. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  1. Dynamic Modelling of the Two-stage Gasification Process

    DEFF Research Database (Denmark)

    Gøbel, Benny; Henriksen, Ulrik B.; Houbak, Niels

    1999-01-01

    A two-stage gasification pilot plant was designed and built as a co-operative project between the Technical University of Denmark and the company REKA.A dynamic, mathematical model of the two-stage pilot plant was developed to serve as a tool for optimising the process and the operating conditions...... of the gasification plant.The model consists of modules corresponding to the different elements in the plant. The modules are coupled together through mass and heat conservation.Results from the model are compared with experimental data obtained during steady and unsteady operation of the pilot plant. A good...

  2. Bioreactors addressing diabetes mellitus.

    Science.gov (United States)

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  3. Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants.

    Science.gov (United States)

    Chon, Kangmin; KyongShon, Ho; Cho, Jaeweon

    2012-10-01

    A membrane bioreactor (MBR) and nanofiltration (NF) hybrid system was investigated to demonstrate the performance of treating nitrogen, phosphorus and pharmaceuticals and personal care products (PPCPs) in municipal wastewater. With the MBR and NF (molecular weight cut off (MWCO): 210 Da), the concentration of total nitrogen (TN) and total phosphorus (TP) was effectively reduced by nitrification by MBR and negatively charged surface of NF (TN: 8.67 mgN/L and TP: 0.46 mgP/L). Biosorption and microbial decomposition in MBR seem to be major removal mechanisms for the removal of PPCPs. Among various parameters affecting the removal of PPCPs by NF, namely, physicochemical properties of the PPCPs (charge characteristics, hydrophobicity and M(W)) and membranes (MWCO and surface charge), the MWCO effect was found to be the most critical aspect.

  4. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    -induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor......Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling...

  5. Experimental investigation of hydraulic effects of two-stage fuel injection on fuel-injection systems and diesel combustion in a high-speed optical common-rail diesel engine

    OpenAIRE

    Herfatmanesh, MR; Zhao, H.

    2014-01-01

    In order to meet the ever more stringent emission standards, significant efforts have been devoted to the research and development of internal combustion engines. The requirements for more efficient and responsive diesel engines have led to the introduction and implementation of multiple injection strategies. However, the effects of such injection modes on the hydraulic systems, such as the high-pressure pipes and fuel injectors, must be thoroughly examined and compensated for since the combu...

  6. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Yanju Chen

    2015-01-01

    Full Text Available This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem is derived. As a result, the proposed two-stage model is equivalent to a single-stage model, and the analytical optimal solution of the two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the proposed two-stage model are larger than those provided by the single-stage model.

  7. Efficient Two-Stage Group Testing Algorithms for DNA Screening

    CERN Document Server

    Huber, Michael

    2011-01-01

    Group testing algorithms are very useful tools for DNA library screening. Building on recent work by Levenshtein (2003) and Tonchev (2008), we construct in this paper new infinite classes of combinatorial structures, the existence of which are essential for attaining the minimum number of individual tests at the second stage of a two-stage disjunctive testing algorithm.

  8. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    Based on more than 15 years of research and practical experience, the Technical University of Denmark (DTU) and COWI Consulting Engineers and Planners AS present the two-stage gasification process, a concept for high efficiency gasification of biomass producing negligible amounts of tars. In the ......Based on more than 15 years of research and practical experience, the Technical University of Denmark (DTU) and COWI Consulting Engineers and Planners AS present the two-stage gasification process, a concept for high efficiency gasification of biomass producing negligible amounts of tars....... In the two-stage gasification concept, the pyrolysis and the gasification processes are physical separated. The volatiles from the pyrolysis are partially oxidized, and the hot gases are used as gasification medium to gasify the char. Hot gases from the gasifier and a combustion unit can be used for drying...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...

  9. FREE GRAFT TWO-STAGE URETHROPLASTY FOR HYPOSPADIAS REPAIR

    Institute of Scientific and Technical Information of China (English)

    Zhong-jin Yue; Ling-jun Zuo; Jia-ji Wang; Gan-ping Zhong; Jian-ming Duan; Zhi-ping Wang; Da-shan Qin

    2005-01-01

    Objective To evaluate the effectiveness of free graft transplantation two-stage urethroplasty for hypospadias repair.Methods Fifty-eight cases with different types of hypospadias including 10 subcoronal, 36 penile shaft, 9 scrotal, and 3 perineal were treated with free full-thickness skin graft or (and) buccal mucosal graft transplantation two-stage urethroplasty. Of 58 cases, 45 were new cases, 13 had history of previous failed surgeries. Operative procedure included two stages: the first stage is to correct penile curvature (chordee), prepare transplanting bed, harvest and prepare full-thickness skin graft, buccal mucosal graft, and perform graft transplantation. The second stage is to complete urethroplasty and glanuloplasty.Results After the first stage operation, 56 of 58 cases (96.6%) were successful with grafts healing well, another 2foreskin grafts got gangrened. After the second stage operation on 56 cases, 5 cases failed with newly formed urethras opened due to infection, 8 cases had fistulas, 43 (76.8%) cases healed well.Conclusions Free graft transplantation two-stage urethroplasty for hypospadias repair is a kind of effective treatment with broad indication, comparatively high success rate, less complicationsand good cosmatic results, indicative of various types of hypospadias repair.

  10. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2004-01-01

    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...

  11. A two-stage rank test using density estimation

    NARCIS (Netherlands)

    Albers, Willem/Wim

    1995-01-01

    For the one-sample problem, a two-stage rank test is derived which realizes a required power against a given local alternative, for all sufficiently smooth underlying distributions. This is achieved using asymptotic expansions resulting in a precision of orderm −1, wherem is the size of the first

  12. The construction of customized two-stage tests

    NARCIS (Netherlands)

    Adema, Jos J.

    1990-01-01

    In this paper mixed integer linear programming models for customizing two-stage tests are given. Model constraints are imposed with respect to test composition, administration time, inter-item dependencies, and other practical considerations. It is not difficult to modify the models to make them use

  13. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    Science.gov (United States)

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  14. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day.

  15. Production of Valuable Lipophilic Compounds by Using Three Types of Interface Bioprocesses: Solid-Liquid Interface Bioreactor, Liquid-Liquid Interface Bioreactor, and Extractive Liquid-Surface Immobilization System.

    Science.gov (United States)

    Oda, Shinobu

    2017-01-01

    Bioconversions such as enzymatic and microbial transformations are attractive alternatives to organic synthesis because of practical advantages such as resource conservation, energy efficiency, and environmentally harmonic properties. In addition, the production of secondary metabolites through microbial fermentation is also useful for manufacturing pharmaceuticals, agricultural chemicals, and aroma compounds. For microbial production of useful chemicals, the authors have developed three unique interfacial bioprocesses: a solid-liquid interface bioreactor (S/L-IBR), a liquid-liquid interface bioreactor (L/L-IBR), and an extractive liquid-surface immobilization (Ext-LSI) system. The S/L-IBR comprises a hydrophobic organic solvent (upper phase), a microbial film (middle phase), and a hydrophilic gel such as an agar plate (lower phase); the L/L-IBR and the Ext-LSI consist of a hydrophobic organic solvent (upper phase), a fungal mat with ballooned microspheres (middle phase), and a liquid medium (lower phase). All three systems have unique and practically important characteristics such as utilization of living cells, high concentration of lipophilic substrates/products in an organic phase, no requirement for aeration and agitation, efficient supply of oxygen, easy recovery of product, high regio- and stereoselectivity, and wide versatility. This paper reviews the principle, construction, characteristics, and application of these interfacial systems for producing lipophilic compounds such as useful aroma compounds, citronellol-related compounds, β-caryophyllene oxide, and 6-penty-α-pyrone.

  16. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  17. Grid-connected Technology for Two Stages Hybrid PV-wind Generation System with Double Input%采用双输入两级式风光互补发电的并网技术

    Institute of Scientific and Technical Information of China (English)

    於锋; 胡国文

    2011-01-01

    A new Buck/Buck-Boost DC chopper circuit for hybrid PV-wind generation system is proposed and variable step perturbation method is used to achieve the maximum power point tracking (MPPT) on the basis of the proposed circuit. Grid-connected side, a new design method of grid-connected combinating dynamic reactive power compensation and active power filter is presented which based onip-iq current detection method of instaneous reactive power theory.From the simulation results, it is demonstrated that the proposed DC chopper circuit is enable to achieve the MPPT of the input side on the power system isimultaneously or individually. The proposed grid-connected scheme can achieve hybrid PV-wind generation and can also improve power quality effectively.%提出了一种新颖的供风光互补发电系统发电侧输入的升降压直流斩波电路.在该电路基础上,通过变步长扰动法实现对系统的最大功率点跟踪(MPPT).在其并网侧,基于瞬时无功理论的i-i电流检测法,成功实现了具有动态无功补偿、有源滤波功能的并网发电技术.仿真结果表明,所设计的直流斩波电路能够同时或独立地对发电系统输入端进行MPPT,所提出的并网方案在实现风光互补并网发电的同时,有效改善了电能质量.

  18. CARES: Completely Automated Robust Edge Snapper for carotid ultrasound IMT measurement on a multi-institutional database of 300 images: a two stage system combining an intensity-based feature approach with first order absolute moments

    Science.gov (United States)

    Molinari, Filippo; Acharya, Rajendra; Zeng, Guang; Suri, Jasjit S.

    2011-03-01

    The carotid intima-media thickness (IMT) is the most used marker for the progression of atherosclerosis and onset of the cardiovascular diseases. Computer-aided measurements improve accuracy, but usually require user interaction. In this paper we characterized a new and completely automated technique for carotid segmentation and IMT measurement based on the merits of two previously developed techniques. We used an integrated approach of intelligent image feature extraction and line fitting for automatically locating the carotid artery in the image frame, followed by wall interfaces extraction based on Gaussian edge operator. We called our system - CARES. We validated the CARES on a multi-institutional database of 300 carotid ultrasound images. IMT measurement bias was 0.032 +/- 0.141 mm, better than other automated techniques and comparable to that of user-driven methodologies. Our novel approach of CARES processed 96% of the images leading to the figure of merit to be 95.7%. CARES ensured complete automation and high accuracy in IMT measurement; hence it could be a suitable clinical tool for processing of large datasets in multicenter studies involving atherosclerosis.pre-

  19. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste.

    Science.gov (United States)

    Ueno, Yoshiyuki; Fukui, Hisatomo; Goto, Masafumi

    2007-02-15

    A pilot-scale experimental plant for the production of hydrogen and methane by a two-stage fermentation process was constructed and operated using a mixture of pulverized garbage and shredded paper wastes. Thermophilic hydrogen fermentation was established at 60 degrees C in the first bioreactor by inoculating with seed microflora. Following the hydrogenogenic process, methanogenesis in the second bioreactor was conducted at 55 degrees C using an internal recirculation packed-bed reactor (IRPR). After conducting steady-state operations under a few selected conditions, the overall hydraulic retention time was optimized at 8 d (hydrogenogenesis, 1.2 d; methanogenesis, 6.8 d), producing 5.4 m3/m3/d of hydrogen and 6.1 m3/m3/d of methane with chemical oxygen demand and volatile suspended solid removal efficiencies of 79.3% and 87.8%, respectively. Maximum hydrogen production yield was calculated to be 2.4 mol/mol hexose and 56 L/kg COD loaded. The methanogenic performance of the IRPR was stable, although the organic loading rate and the composition of the effluent from the hydrogenogenic process fluctuated substantially. A clone library analysis of the microflora in the hydrogenogenic reactor indicated that hydrogen-producing Thermoanaerobacterium-related organisms in the inoculum were active in the hydrogen fermentation of garbage and paper wastes, although no aseptic operations were applied. We speculate that the operation at high temperature and the inoculation of thermophiles enabled the selective growth of the introduced microorganisms and gave hydrogen fermentation efficiencies comparable to laboratory experiments. This is the first report on fermentative production of hydrogen and methane from organic waste at an actual level.

  20. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  1. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    Science.gov (United States)

    Paul, Parneet; Jones, Franck Anderson

    2016-01-05

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  2. Square Kilometre Array station configuration using two-stage beamforming

    CERN Document Server

    Jiwani, Aziz; Razavi-Ghods, Nima; Hall, Peter J; Padhi, Shantanu; de Vaate, Jan Geralt bij

    2012-01-01

    The lowest frequency band (70 - 450 MHz) of the Square Kilometre Array will consist of sparse aperture arrays grouped into geographically-localised patches, or stations. Signals from thousands of antennas in each station will be beamformed to produce station beams which form the inputs for the central correlator. Two-stage beamforming within stations can reduce SKA-low signal processing load and costs, but has not been previously explored for the irregular station layouts now favoured in radio astronomy arrays. This paper illustrates the effects of two-stage beamforming on sidelobes and effective area, for two representative station layouts (regular and irregular gridded tile on an irregular station). The performance is compared with a single-stage, irregular station. The inner sidelobe levels do not change significantly between layouts, but the more distant sidelobes are affected by the tile layouts; regular tile creates diffuse, but regular, grating lobes. With very sparse arrays, the station effective area...

  3. A two-stage decentralised system combining high rate activated ...

    African Journals Online (AJOL)

    Campaigns towards re-use of wastewater are not very common in Africa among other factors, due to a ... and alternating charcoal filters (ACF) are combined and used to treat wastewater to standards fit for reuse in agriculture. ... Article Metrics.

  4. Income and Poverty across SMSAs: A Two-Stage Analysis

    OpenAIRE

    1993-01-01

    Two popular explanations of urban poverty are the "welfare-disincentive" and "urban-deindustrialization" theories. Using cross-sectional Census data, we develop a two-stage model to predict an SMSAs median family income and poverty rate. The model allows the city's welfare level and industrial structure to affect its median family income and poverty rate directly. It also allows welfare and industrial structure to affect income and poverty indirectly, through their effects on family structure...

  5. A Two-stage Polynomial Method for Spectrum Emissivity Modeling

    OpenAIRE

    Qiu, Qirong; Liu, Shi; Teng, Jing; Yan, Yong

    2015-01-01

    Spectral emissivity is a key in the temperature measurement by radiation methods, but not easy to determine in a combustion environment, due to the interrelated influence of temperature and wave length of the radiation. In multi-wavelength radiation thermometry, knowing the spectral emissivity of the material is a prerequisite. However in many circumstances such a property is a complex function of temperature and wavelength and reliable models are yet to be sought. In this study, a two stages...

  6. Perfusion Bioreactor Module

    Science.gov (United States)

    Morrison, Dennis R.

    1990-01-01

    Perfusion bioreactor module, self-contained, closed-loop cell-culture system that operates in microgravity or on Earth. Equipment supports growth or long-term maintenance of cultures of human or other fragile cells for experiments in basic cell biology or process technology. Designed to support proliferation (initially at exponential rates of growth) of cells in complex growth medium and to maintain confluent cells in defined medium under conditions optimized to permit or encourage selected functions of cells, including secretion of products of cells into medium.

  7. Measuring the Learning from Two-Stage Collaborative Group Exams

    CERN Document Server

    Ives, Joss

    2014-01-01

    A two-stage collaborative exam is one in which students first complete the exam individually, and then complete the same or similar exam in collaborative groups immediately afterward. To quantify the learning effect from the group component of these two-stage exams in an introductory Physics course, a randomized crossover design was used where each student participated in both the treatment and control groups. For each of the two two-stage collaborative group midterm exams, questions were designed to form matched near-transfer pairs with questions on an end-of-term diagnostic which was used as a learning test. For learning test questions paired with questions from the first midterm, which took place six to seven weeks before the learning test, an analysis using a mixed-effects logistic regression found no significant differences in learning-test performance between the control and treatment group. For learning test questions paired with questions from the second midterm, which took place one to two weeks prio...

  8. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study

    KAUST Repository

    Harb, Moustapha

    2016-12-24

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents’ microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (< 2 to >5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  9. Hydrodynamic extensional stress during the bubble bursting process for bioreactor system design

    Science.gov (United States)

    Tran, Thanh Tinh; Lee, Eun Gyo; Lee, In Su; Woo, Nam Sub; Han, Sang Mok; Kim, Young Ju; Hwang, Wook Ryol

    2016-11-01

    Cell damage, one of critical issues in the bioreactor design for animal cell culture, is caused mainly from the bubble bursting at the free surface subjected to strong extensional flows. In this work, extensive computational studies are performed to investigate bubble bursting process in great details. Extensive numerical simulations are performed for a wide range of bubble diameters (from 0.5 to 6 mm) and the surface tension values (from 0.03 to 0.072 N/m), with which effects of the bubble size and surfactant (PF68) concentration on the hydrodynamic stress are investigated. For all the cases, the maximum extensional stress appears at the instance when receding films impact each other at the bottom of the bubble. A model equation based on numerical simulations is presented to predict the maximum extensional stress as a function of the bubble diameter and the surface tension. The bubble diameter has turned out to contribute significantly the maximum hydrodynamic extensional stress. In addition, the bubble collapsed time and the affected volume around a bubble subjected to the critical extensional stress are investigated. The extensional stress estimation is reported as a function of the bubble size and the surface tension. The influence of the bubble size on the maximum stress dominates and extensional stress reaches up to the order of 104 Pa for bubble size of 0.5 mm.

  10. Two-stage data envelopment analysis technique for evaluating internal supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Nisakorn Somsuk

    2014-12-01

    Full Text Available A two-stage data envelopment analysis (DEA which uses mathematical linear programming techniques is applied to evaluate the efficiency of a system composed of two relational sub-processes, by which the outputs from the first sub-process (as the intermediate outputs of the system are the inputs for the second sub-process. The relative efficiencies of the system and its sub-processes can be measured by applying the two-stage DEA. According to the literature review on the supply chain management, this technique can be used as a tool for evaluating the efficiency of the supply chain composed of two relational sub-processes. The technique can help to determine the inefficient sub-processes. Once the inefficient sub-process was improved its efficiency, it would result in better aggregate efficiency of the supply chain. This paper aims to present a procedure for evaluating the efficiency of the supply chain by using the two-stage DEA, under the assumption of constant returns to scale, with an example of internal supply chain efficiency measurement of insurance companies by applying the two-stage DEA for illustration. Moreover, in this paper the authors also present some observations on the application of this technique.

  11. Forty-five-degree two-stage venous cannula: advantages over standard two-stage venous cannulation.

    Science.gov (United States)

    Lawrence, D R; Desai, J B

    1997-01-01

    We present a 45-degree two-stage venous cannula that confers advantage to the surgeon using cardiopulmonary bypass. This cannula exits the mediastinum under the transverse bar of the sternal retractor, leaving the rostral end of the sternal incision free of apparatus. It allows for lifting of the heart with minimal effect on venous return and does not interfere with the radially laid out sutures of an aortic valve replacement using an interrupted suture technique.

  12. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    Science.gov (United States)

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo

    2009-01-01

    Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR. PMID:20087466

  13. On Two-stage Seamless Adaptive Design in Clinical Trials

    Directory of Open Access Journals (Sweden)

    Shein-Chung Chow

    2008-12-01

    Full Text Available In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular because of its efficiency and flexibility in modifying trial and/or statistical procedures of ongoing clinical trials. One of the most commonly considered adaptive designs is probably a two-stage seamless adaptive trial design that combines two separate studies into one single study. In many cases, study endpoints considered in a two-stage seamless adaptive design may be similar but different (e.g. a biomarker versus a regular clinical endpoint or the same study endpoint with different treatment durations. In this case, it is important to determine how the data collected from both stages should be combined for the final analysis. It is also of interest to know how the sample size calculation/allocation should be done for achieving the study objectives originally set for the two stages (separate studies. In this article, formulas for sample size calculation/allocation are derived for cases in which the study endpoints are continuous, discrete (e.g. binary responses, and contain time-to-event data assuming that there is a well-established relationship between the study endpoints at different stages, and that the study objectives at different stages are the same. In cases in which the study objectives at different stages are different (e.g. dose finding at the first stage and efficacy confirmation at the second stage and when there is a shift in patient population caused by protocol amendments, the derived test statistics and formulas for sample size calculation and allocation are necessarily modified for controlling the overall type I error at the prespecified level.

  14. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa.

    Science.gov (United States)

    Yadavalli, Rajasri; Heggers, Goutham Rao Venkata Naga

    2013-12-19

    Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer.

  15. Two-stage series array SQUID amplifier for space applications

    Science.gov (United States)

    Tuttle, J. G.; DiPirro, M. J.; Shirron, P. J.; Welty, R. P.; Radparvar, M.

    We present test results for a two-stage integrated SQUID amplifier which uses a series array of d.c. SQUIDS to amplify the signal from a single input SQUID. The device was developed by Welty and Martinis at NIST and recent versions have been manufactured by HYPRES, Inc. Shielding and filtering techniques were employed during the testing to minimize the external noise. Energy resolution of 300 h was demonstrated using a d.c. excitation at frequencies above 1 kHz, and better than 500 h resolution was typical down to 300 Hz.

  16. A Two Stage Classification Approach for Handwritten Devanagari Characters

    CERN Document Server

    Arora, Sandhya; Nasipuri, Mita; Malik, Latesh

    2010-01-01

    The paper presents a two stage classification approach for handwritten devanagari characters The first stage is using structural properties like shirorekha, spine in character and second stage exploits some intersection features of characters which are fed to a feedforward neural network. Simple histogram based method does not work for finding shirorekha, vertical bar (Spine) in handwritten devnagari characters. So we designed a differential distance based technique to find a near straight line for shirorekha and spine. This approach has been tested for 50000 samples and we got 89.12% success

  17. Two-Stage Aggregate Formation via Streams in Myxobacteria

    Science.gov (United States)

    Alber, Mark; Kiskowski, Maria; Jiang, Yi

    2005-03-01

    In response to adverse conditions, myxobacteria form aggregates which develop into fruiting bodies. We model myxobacteria aggregation with a lattice cell model based entirely on short range (non-chemotactic) cell-cell interactions. Local rules result in a two-stage process of aggregation mediated by transient streams. Aggregates resemble those observed in experiment and are stable against even very large perturbations. Noise in individual cell behavior increases the effects of streams and result in larger, more stable aggregates. Phys. Rev. Lett. 93: 068301 (2004).

  18. Straw Gasification in a Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    Additive-prepared straw pellets were gasified in the 100 kW two-stage gasifier at The Department of Mechanical Engineering of the Technical University of Denmark (DTU). The fixed bed temperature range was 800-1000°C. In order to avoid bed sintering, as observed earlier with straw gasification...... residues were examined after the test. No agglomeration or sintering was observed in the ash residues. The tar content was measured both by solid phase amino adsorption (SPA) method and cold trapping (Petersen method). Both showed low tar contents (~42 mg/Nm3 without gas cleaning). The particle content...

  19. Two-Stage Fan I: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Messenger, H. E.; Kennedy, E. E.

    1972-01-01

    A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.

  20. Two-Stage Eagle Strategy with Differential Evolution

    CERN Document Server

    Yang, Xin-She

    2012-01-01

    Efficiency of an optimization process is largely determined by the search algorithm and its fundamental characteristics. In a given optimization, a single type of algorithm is used in most applications. In this paper, we will investigate the Eagle Strategy recently developed for global optimization, which uses a two-stage strategy by combing two different algorithms to improve the overall search efficiency. We will discuss this strategy with differential evolution and then evaluate their performance by solving real-world optimization problems such as pressure vessel and speed reducer design. Results suggest that we can reduce the computing effort by a factor of up to 10 in many applications.

  1. Dynamic Modeling and Analysis of Power Coupling System with Two-stage Planetary Gear Trains for Hybrid System%混合动力两级行星机构动力耦合系统动力学建模及分析

    Institute of Scientific and Technical Information of China (English)

    罗玉涛; 陈营生

    2012-01-01

    以基于双转子电机的混合动力传动系统的两级行星齿轮机构动力耦合系统为研究对象,考虑前后两级行星齿轮机构的齿轮副啮合刚度、中心构件的扭转支撑刚度、连接部分的扭转耦合刚度、各构件惯性等基本因素,详细推导并建立两级行星齿轮耦合系统的纯扭转动力学模型.利用两级行星齿轮机构的有关参数进行特征值问题求解,得到系统整体模型的固有特性,按照振型特点把系统的振动形式划分为三种模式:整体扭转振动模式、前排行星轮振动模式和后排行星轮振动模式.在整体模式下固有频率为单根,系统各构件均以一定幅度做扭转振动;前、后排行星轮模式下固有频率均为二重根,且除了其自身外,其他构件均无振动.归纳分析得到的各振动模式特征与前人有关结论相吻合.同时指出连接部分的耦合刚度对系统振动特性的影响,并作了初步分析.%A power coupling system with two-stage planetary gear trains is considered, which is a part of a novel hybrid power train system based on a double-rotor motor. Many fundamental factors are taken into account, such as mesh stiffness of gear pairs of the two-stage planetary gears, torsional stiffness of the central parts, torsional coupling stiffness of the connecting section, inertia of the system, etc. Purely torsional dynamic model of the coupling system is developed. The reduced-order eigenvalue problems are derived by using the related parameters of the system, and the natural characteristics of the system is shown. The vibration modes of the system are classified into three categories: overall rotational mode, front row planet mode, rear row planet mode. In overall mode, the natural frequency is a simple root and each part of the system has torsional vibration to some extent. However, the natural frequency is a double root in the other two modes and no part of system vibrates except the planet gears

  2. An Innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunxia; ZHOU Jiti; ZHANG Jinsong; YUAN Shouzhi

    2009-01-01

    An innovative shortcut biological nitrogen removal system, consisting of an aerobic submerged membrane bioreactor (MBR) and an anaerobic packed-bed biofilm reactor (PBBR), was evaluated for treating high strength ammonium-bearing wastewater. The system was seeded with enriched ammonia-oxidizing bacteria (AOB) and operated without sludge purge with a decreased hydraulic retention time (HRT) through three phases. The MBR was successful in both maintaining nitrite ratio over 0.95 and nitrification efficiency higher than 98% at a HRT of 24 h. The PBBR showed satisfactory denitrification efficiency with very low effluent nitrite and nitrate concentration (both below 3 mg/L). By examining the nitrification activity of microorganism, it was found that the specific ammonium oxidization rate (SAOR) increased from 0.17 to 0.51 g N/(g VSS·d) and then decreased to 0.22 g N/(g VSS·d) at the last phase, which resulted from the accumulation of extracellular polymers substances (EPS) and inert matters enwrapped around the zoogloea. In contrast, the average specific nitrite oxidization rate (SNOR) is 0.002 g N/(g VSS·d), only 1% of SAOR. Because very little Nitrobactor has been detected by fluorescence in situ hybridization (FISH), it is confirmed that the stability of high nitrite accumulation in MBR is caused by a large amount of AOB.

  3. A two-stage logistic regression-ANN model for the prediction of distress banks: Evidence from 11 emerging countries

    National Research Council Canada - National Science Library

    Shu Ling Lin

    2010-01-01

      This paper proposes a new approach of two-stage hybrid model of logistic regression-ANN for the construction of a financial distress warning system for banking industry in emerging market during 1998-2006...

  4. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  5. Overcoming the bottlenecks of anaerobic digestion of olive mill solid waste by two-stage fermentation.

    Science.gov (United States)

    Stoyanova, Elitza; Lundaa, Tserennyam; Bochmann, Günther; Fuchs, Werner

    2017-02-01

    Two-stage anaerobic digestion (AD) of two-phase olive mill solid waste (OMSW) was applied for reducing the inhibiting factors by optimizing the acidification stage. Single-stage AD and co-fermentation with chicken manure were conducted coinstantaneous for direct comparison. Degradation of the polyphenols up to 61% was observed during the methanogenic stage. Nevertheless the concentration of phenolic substances was still high; the two-stage fermentation remained stable at OLR 1.5 kgVS/m³day. The buffer capacity of the system was twice as high, compared to the one-stage fermentation, without additives. The two-stage AD was a combined process - thermophilic first stage and mesophilic second stage, which pointed out to be the most profitable for AD of OMSW for the reduced hydraulic retention time (HRT) from 230 to 150 days, and three times faster than the single-stage and the co-fermentation start-up of the fermentation. The optimal HRT and incubation temperature for the first stage were determined to four days and 55°C. The performance of the two-stage AD concerning the stability of the process was followed by the co-digestion of OMSW with chicken manure as a nitrogen-rich co-substrate, which makes them viable options for waste disposal with concomitant energy recovery.

  6. Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure.

    Science.gov (United States)

    Bertin, Lorenzo; Grilli, Selene; Spagni, Alessandro; Fava, Fabio

    2013-01-01

    The valorisation of agroindustrial waste through anaerobic digestion represents a significant opportunity for refuse treatment and renewable energy production. This study aimed to improve the codigestion of cheese whey (CW) and cattle manure (CM) by an innovative two-stage process, based on concentric acidogenic and methanogenic phases, designed for enhancing performance and reducing footprint. The optimum CW to CM ratio was evaluated under batch conditions. Thereafter, codigestion was implemented under continuous-flow conditions comparing one- and two-stage processes. The results demonstrated that the addition of CM in codigestion with CW greatly improved the anaerobic process. The highest methane yield was obtained co-treating the two substrates at equal ratio by using the innovative two-stage process. The proposed system reached the maximum value of 258 mL(CH4) g(gv(-1), which was more than twice the value obtained by the one-stage process and 10% higher than the value obtained by the two-stage one.

  7. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2017-04-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  8. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2016-09-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  9. Low-noise SQUIDs with large transfer: two-stage SQUIDs based on DROSs

    Science.gov (United States)

    Podt, M.; Flokstra, J.; Rogalla, H.

    2002-08-01

    We have realized a two-stage integrated superconducting quantum interference device (SQUID) system with a closed loop bandwidth of 2.5 MHz, operated in a direct voltage readout mode. The corresponding flux slew rate was 1.3×10 5Φ0/s and the measured white flux noise was 1.3 μ Φ0/√Hz at 4.2 K. The system is based on a conventional dc SQUID with a double relaxation oscillation SQUID (DROS) as the second stage. Because of the large flux-to-voltage transfer, the sensitivity of the system is completely determined by the sensor SQUID and not by the DROS or the room-temperature preamplifier. Decreasing the Josephson junction area enables a further improvement of the sensitivity of the two-stage SQUID systems.

  10. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  11. Bioreactor Technology in Cardiovascular Tissue Engineering

    Science.gov (United States)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  12. Spatial Experiment Technologies Suitable for Unreturnable Bioreactor

    Science.gov (United States)

    Zhang, Tao; Zheng, Weibo; Tong, Guanghui

    2016-07-01

    The system composition and main function of the bioreactor piggybacked on TZ cargo transport spacecraft are introduced briefly in the paper.The spatial experiment technologies which are suitable for unreturnable bioreactor are described in detail,including multi-channel liquid transportion and management,multi-type animal cells circuit testing,dynamic targets microscopic observation in situ etc..The feasibility and effectiveness of these technologies which will be used in space experiment in bioreactor are verified in tests and experiments on the ground.

  13. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  14. Runway Operations Planning: A Two-Stage Heuristic Algorithm

    Science.gov (United States)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.

  15. Two-Stage Heuristic Algorithm for Aircraft Recovery Problem

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2017-01-01

    Full Text Available This study focuses on the aircraft recovery problem (ARP. In real-life operations, disruptions always cause schedule failures and make airlines suffer from great loss. Therefore, the main objective of the aircraft recovery problem is to minimize the total recovery cost and solve the problem within reasonable runtimes. An aircraft recovery model (ARM is proposed herein to formulate the ARP and use feasible line of flights as the basic variables in the model. We define the feasible line of flights (LOFs as a sequence of flights flown by an aircraft within one day. The number of LOFs exponentially grows with the number of flights. Hence, a two-stage heuristic is proposed to reduce the problem scale. The algorithm integrates a heuristic scoring procedure with an aggregated aircraft recovery model (AARM to preselect LOFs. The approach is tested on five real-life test scenarios. The computational results show that the proposed model provides a good formulation of the problem and can be solved within reasonable runtimes with the proposed methodology. The two-stage heuristic significantly reduces the number of LOFs after each stage and finally reduces the number of variables and constraints in the aircraft recovery model.

  16. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    Directory of Open Access Journals (Sweden)

    Andrea Polo

    2014-05-01

    Full Text Available This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97% and thickness (−50%, and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition.

  17. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    Science.gov (United States)

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-01-01

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97%) and thickness (−50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition. PMID:24879523

  18. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach.

    Science.gov (United States)

    Tan, Robin; Perkowski, Marek

    2017-02-20

    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.

  19. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-03-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  20. Laparoscopic management of a two staged gall bladdertorsion

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Gall bladder torsion (GBT) is a relatively uncommonentity and rarely diagnosed preoperatively. A constantfactor in all occurrences of GBT is a freely mobilegall bladder due to congenital or acquired anomalies.GBT is commonly observed in elderly white females.We report a 77-year-old, Caucasian lady who wasoriginally diagnosed as gall bladder perforation butwas eventually found with a two staged torsion of thegall bladder with twisting of the Riedel's lobe (partof tongue like projection of liver segment 4A). Thistogether, has not been reported in literature, to thebest of our knowledge. We performed laparoscopiccholecystectomy and she had an uneventful postoperativeperiod. GBT may create a diagnostic dilemmain the context of acute cholecystitis. Timely diagnosisand intervention is necessary, with extra care whileoperating as the anatomy is generally distorted. Thefundus first approach can be useful due to alteredanatomy in the region of Calot's triangle. Laparoscopiccholecystectomy has the benefit of early recovery.

  1. Lightweight Concrete Produced Using a Two-Stage Casting Process

    Directory of Open Access Journals (Sweden)

    Jin Young Yoon

    2015-03-01

    Full Text Available The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa.

  2. TWO-STAGE OCCLUDED OBJECT RECOGNITION METHOD FOR MICROASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    WANG Huaming; ZHU Jianying

    2007-01-01

    A two-stage object recognition algorithm with the presence of occlusion is presented for microassembly. Coarse localization determines whether template is in image or not and approximately where it is, and fine localization gives its accurate position. In coarse localization, local feature, which is invariant to translation, rotation and occlusion, is used to form signatures. By comparing signature of template with that of image, approximate transformation parameter from template to image is obtained, which is used as initial parameter value for fine localization. An objective function, which is a function of transformation parameter, is constructed in fine localization and minimized to realize sub-pixel localization accuracy. The occluded pixels are not taken into account in objective function, so the localization accuracy will not be influenced by the occlusion.

  3. Two-stage designs for cross-over bioequivalence trials.

    Science.gov (United States)

    Kieser, Meinhard; Rauch, Geraldine

    2015-07-20

    The topic of applying two-stage designs in the field of bioequivalence studies has recently gained attention in the literature and in regulatory guidelines. While there exists some methodological research on the application of group sequential designs in bioequivalence studies, implementation of adaptive approaches has focused up to now on superiority and non-inferiority trials. Especially, no comparison of the features and performance characteristics of these designs has been performed, and therefore, the question of which design to employ in this setting remains open. In this paper, we discuss and compare 'classical' group sequential designs and three types of adaptive designs that offer the option of mid-course sample size recalculation. A comprehensive simulation study demonstrates that group sequential designs can be identified, which show power characteristics that are similar to those of the adaptive designs but require a lower average sample size. The methods are illustrated with a real bioequivalence study example.

  4. Two Stage Assessment of Thermal Hazard in An Underground Mine

    Science.gov (United States)

    Drenda, Jan; Sułkowski, Józef; Pach, Grzegorz; Różański, Zenon; Wrona, Paweł

    2016-06-01

    The results of research into the application of selected thermal indices of men's work and climate indices in a two stage assessment of climatic work conditions in underground mines have been presented in this article. The difference between these two kinds of indices was pointed out during the project entitled "The recruiting requirements for miners working in hot underground mine environments". The project was coordinated by The Institute of Mining Technologies at Silesian University of Technology. It was a part of a Polish strategic project: "Improvement of safety in mines" being financed by the National Centre of Research and Development. Climate indices are based only on physical parameters of air and their measurements. Thermal indices include additional factors which are strictly connected with work, e.g. thermal resistance of clothing, kind of work etc. Special emphasis has been put on the following indices - substitute Silesian temperature (TS) which is considered as the climatic index, and the thermal discomfort index (δ) which belongs to the thermal indices group. The possibility of the two stage application of these indices has been taken into consideration (preliminary and detailed estimation). Based on the examples it was proved that by the application of thermal hazard (detailed estimation) it is possible to avoid the use of additional technical solutions which would be necessary to reduce thermal hazard in particular work places according to the climate index. The threshold limit value for TS has been set, based on these results. It was shown that below TS = 24°C it is not necessary to perform detailed estimation.

  5. Spiral vane bioreactor

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  6. Hybrid staging of a Lysholm positive displacement engine with two Westinghouse two stage impulse Curtis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.A.

    1982-06-01

    The University of California at Berkeley has tested and modeled satisfactorly a hybrid staged Lysholm engine (positive displacement) with a two stage Curtis wheel turbine. The system operates in a stable manner over its operating range (0/1-3/1 water ratio, 120 psia input). Proposals are made for controlling interstage pressure with a partial admission turbine and volume expansion to control mass flow and pressure ratio for the Lysholm engine.

  7. Low-noise SQUIDs with large transfer: two-stage SQUIDs based on DROSs

    NARCIS (Netherlands)

    Podt, M.; Flokstra, Jakob; Rogalla, Horst

    2002-01-01

    We have realized a two-stage integrated superconducting quantum interference device (SQUID) system with a closed loop bandwidth of 2.5 MHz, operated in a direct voltage readout mode. The corresponding flux slew rate was 1.3×105 Φ0/s and the measured white flux noise was 1.3 μΦ0/√Hz at 4.2 K. The

  8. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Science.gov (United States)

    Kılıç, Bayram

    2012-07-01

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared.

  9. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram [Mehmet Akif Ersoy University, Bucak Emin Guelmez Vocational School, Bucak, Burdur (Turkey)

    2012-07-15

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared. (orig.)

  10. A hybrid cascade control scheme for the VFA and COD regulation in two-stage anaerobic digestion processes.

    Science.gov (United States)

    Méndez-Acosta, H O; Campos-Rodríguez, A; González-Álvarez, V; García-Sandoval, J P; Snell-Castro, R; Latrille, E

    2016-10-01

    A hybrid (continuous-discrete) cascade control is proposed to regulate both, volatile fatty acids (VFA) and chemical oxygen demand (COD) concentrations in two-stage (acidogenic-methanogenic) anaerobic digestion (TSAD) processes. The outer loop is a discrete controller that regulates the COD concentration of the methanogenic bioreactor by using a daily off-line measurement and that modifies the set-point tracked by inner loop, which manipulates the dilution rate to regulate the VFA concentration of the acidogenic bioreactor, estimated by continuous on-line conductivity measurements, avoiding acidification. The experimental validation was conducted in a TSAD process for the treatment of tequila vinasses during 110days. Results showed that the proposed cascade control scheme was able to achieve the VFA and COD regulation by using conventional measurements under different set-point values in spite of adverse common scenarios in full-scale anaerobic digestion processes. Microbial composition analysis showed that the controller also favors the abundance and diversity toward methane production.

  11. Development of Two-Stage Stirling Cooler for ASTRO-F

    Science.gov (United States)

    Narasaki, K.; Tsunematsu, S.; Ootsuka, K.; Kyoya, M.; Matsumoto, T.; Murakami, H.; Nakagawa, T.

    2004-06-01

    A two-stage small Stirling cooler has been developed and tested for the infrared astronomical satellite ASTRO-F that is planned to be launched by Japanese M-V rocket in 2005. ASTRO-F has a hybrid cryogenic system that is a combination of superfluid liquid helium (HeII) and two-stage Stirling coolers. The mechanical cooler has a two-stage displacer driven by a linear motor in a cold head and a new linear-ball-bearing system for the piston-supporting structure in a compressor. The linear-ball-bearing supporting system achieves the piston clearance seal, the long piston-stroke operation and the low frequency operation. The typical cooling power is 200 mW at 20 K and the total input power to the compressor and the cold head is below 90 W without driver electronics. The engineering, the prototype and the flight models of the cooler have been fabricated and evaluated to verify the capability for ASTRO-F. This paper describes the design of the cooler and the results from verification tests including cooler performance test, thermal vacuum test, vibration test and lifetime test.

  12. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  13. Bioreactor Design for Tendon/Ligament Engineering

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  14. Modular bioreactor for the remediation of liquid streams and methods for using the same

    Science.gov (United States)

    Noah, Karl S.; Sayer, Raymond L.; Thompson, David N.

    1998-01-01

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.

  15. [Transgenic animals bioreactors].

    Science.gov (United States)

    Gou, Ke-Mian; An, Xiao-Rong; Tian, Jian-Hui; Chen, Yong-Fu

    2002-01-01

    The production of human recombinant proteins in milk of transgenic farm animals offers a safe, very cost-effective source of commercially important proteins that cannot be produced as efficiently in adequate quantities by other methods. This review has summarized the current status of gene selection, vector construct, transgenic methods, economics, and obvious potential in transgenic animals bioreactors. Recently, a more powerful approach was adopted in the transgenic animals founded on the application of nuclear transfer. As we will illustrate, this strategy presents a breakthrough in the overall efficiency of generating transgenic farm animals, product consistency, and time of product development. The successful adaptation of Cre-/lox P-mediated site-specific DNA recombination systems in farm animals will offer unprecedented possibilities for generating transgenic animals.

  16. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  17. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.

    Science.gov (United States)

    McCoy, Ryan J; O'Brien, Fergal J

    2012-12-01

    Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place.

  18. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp.

    Science.gov (United States)

    Stoyanova, Elitza; Forsthuber, Boris; Pohn, Stefan; Schwarz, Christian; Fuchs, Werner; Bochmann, Günther

    2014-04-01

    Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m³ d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system.

  19. A novel approach to recycle bacterial culture waste for fermentation reuse via a microbial fuel cell-membrane bioreactor system.

    Science.gov (United States)

    Li, Jian; Zhu, Yuan; Zhuang, Liangpeng; Otsuka, Yuichiro; Nakamura, Masaya; Goodell, Barry; Sonoki, Tomonori; He, Zhen

    2015-09-01

    Biochemical production processes require water and nutrient resources for culture media preparation, but aqueous waste is generated after the target products are extracted. In this study, culture waste (including cells) produced from a lab-scale fermenter was fed into a microbial fuel cell-membrane bioreactor (MFC-MBR) system. Electrical energy was generated via the interaction between the microbial consortia and the solid electrode in the MFC. The treated wastewater was reclaimed in this process which was reused as a solvent and a nutrient source in subsequent fermentation. Polarization testing showed that the MFC produced a maximum current density of 37.53 A m(-3) with a maximum power density of 5.49 W m(-3). The MFC was able to generate 0.04 kWh of energy per cubic meter of culture waste treated. The lab-scale fermenters containing pure cultures of an engineered Pseudomonas spp. were used to generate 2-pyrone-4,6-dicarboxylic acid (PDC), a high value platform chemical. When the MFC-MBR-treated wastewater was used for the fermenter culture medium, a specific bacterial growth rate of 1.00 ± 0.05 h(-1) was obtained with a PDC production rate of 708.11 ± 64.70 mg PDC L(-1) h(-1). Comparable values for controls using pure water were 0.95 ± 0.06 h(-1) and 621.01 ± 22.09 mg PDC L(-1) h(-1) (P > 0.05), respectively. The results provide insight on a new approach for more sustainable bio-material production while at the same time generating energy, and suggest that the treated wastewater can be used as a solvent and a nutrient source for the fermentation production of high value platform chemicals.

  20. Characterization of component interactions in two-stage axial turbine

    Directory of Open Access Journals (Sweden)

    Adel Ghenaiet

    2016-08-01

    Full Text Available This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic performances show noticeable differences when simulating the turbine stages simultaneously or separately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while downstream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevailing effect is rather linked to the blade tip flow structure.

  1. Characterization of component interactions in two-stage axial turbine

    Institute of Scientific and Technical Information of China (English)

    Adel Ghenaiet; Kaddour Touil

    2016-01-01

    This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic perfor-mances show noticeable differences when simulating the turbine stages simultaneously or sepa-rately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD) produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while down-stream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevail-ing effect is rather linked to the blade tip flow structure.

  2. Hollow fiber bioreactor technology for tissue engineering applications.

    Science.gov (United States)

    Eghbali, Hadis; Nava, Michele M; Mohebbi-Kalhori, Davod; Raimondi, Manuela T

    2016-01-01

    Hollow fiber bioreactors are the focus of scientific research aiming to mimic physiological vascular networks and engineer organs and tissues in vitro. The reason for this lies in the interesting features of this bioreactor type, including excellent mass transport properties. Indeed, hollow fiber bioreactors allow limitations to be overcome in nutrient transport by diffusion, which is often an obstacle to engineer sizable constructs in vitro. This work reviews the existing literature relevant to hollow fiber bioreactors in organ and tissue engineering applications. To this purpose, we first classify the hollow fiber bioreactors into 2 categories: cylindrical and rectangular. For each category, we summarize their main applications both at the tissue and at the organ level, focusing on experimental models and computational studies as predictive tools for designing innovative, dynamic culture systems. Finally, we discuss future perspectives on hollow fiber bioreactors as in vitro models for tissue and organ engineering applications.

  3. ADM1-based modeling of methane production from acidified sweet sorghum extract in a two stage process.

    Science.gov (United States)

    Antonopoulou, Georgia; Gavala, Hariklia N; Skiadas, Ioannis V; Lyberatos, Gerasimos

    2012-02-01

    The present study focused on the application of the Anaerobic Digestion Model 1 on the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were estimated through fitting of the model equations to the data obtained from batch experiments. The simulation of the continuous reactor performance at all HRTs tested (20, 15, and 10d) was very satisfactory. Specifically, the largest deviation of the theoretical predictions against the experimental data was 12% for the methane production rate at the HRT of 20d while the deviation values for the 15 and 10d HRT were 1.9% and 1.1%, respectively. The model predictions regarding pH, methane percentage in the gas phase and COD removal were in very good agreement with the experimental data with a deviation less than 5% for all steady states. Therefore, the ADM1 is a valuable tool for process design in the case of a two-stage anaerobic process as well.

  4. A two-stage Stirling-type pulse tube cryocooler with a cold inertance tube

    Science.gov (United States)

    Gan, Z. H.; Fan, B. Y.; Wu, Y. Z.; Qiu, L. M.; Zhang, X. J.; Chen, G. B.

    2010-06-01

    A thermally coupled two-stage Stirling-type pulse tube cryocooler (PTC) with inertance tubes as phase shifters has been designed, manufactured and tested. In order to obtain a larger phase shift at the low acoustic power of about 2.0 W, a cold inertance tube as well as a cold reservoir for the second stage, precooled by the cold end of the first stage, was introduced into the system. The transmission line model was used to calculate the phase shift produced by the cold inertance tube. Effect of regenerator material, geometry and charging pressure on the performance of the second stage of the two-stage PTC was investigated based on the well known regenerator model REGEN. Experimental results of the two-stage PTC were carried out with an emphasis on the performance of the second stage. A lowest cooling temperature of 23.7 K and 0.50 W at 33.9 K were obtained with an input electric power of 150.0 W and an operating frequency of 40 Hz.

  5. A Comparison of Direct and Two-Stage Transportation of Patients to Hospital in Poland

    Directory of Open Access Journals (Sweden)

    Anna Rosiek

    2015-04-01

    Full Text Available Background: The rapid international expansion of telemedicine reflects the growth of technological innovations. This technological advancement is transforming the way in which patients can receive health care. Materials and Methods: The study was conducted in Poland, at the Department of Cardiology of the Regional Hospital of Louis Rydygier in Torun. The researchers analyzed the delay in the treatment of patients with acute coronary syndrome. The study was conducted as a survey and examined 67 consecutively admitted patients treated invasively in a two-stage transport system. Data were analyzed statistically. Results: Two-stage transportation does not meet the timeframe guidelines for the treatment of patients with acute myocardial infarction. Intervals for the analyzed group of patients were statistically significant (p < 0.0001. Conclusions: Direct transportation of the patient to a reference center with interventional cardiology laboratory has a significant impact on reducing in-hospital delay in case of patients with acute coronary syndrome. Perspectives: This article presents the results of two-stage transportation of the patient with acute coronary syndrome. This measure could help clinicians who seek to assess time needed for intervention. It also shows how time from the beginning of pain in chest is important and may contribute to patient disability, death or well-being.

  6. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  7. Bioreactor rotating wall vessel

    Science.gov (United States)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  8. Two-Stage Maximum Likelihood Estimation (TSMLE for MT-CDMA Signals in the Indoor Environment

    Directory of Open Access Journals (Sweden)

    Sesay Abu B

    2004-01-01

    Full Text Available This paper proposes a two-stage maximum likelihood estimation (TSMLE technique suited for multitone code division multiple access (MT-CDMA system. Here, an analytical framework is presented in the indoor environment for determining the average bit error rate (BER of the system, over Rayleigh and Ricean fading channels. The analytical model is derived for quadrature phase shift keying (QPSK modulation technique by taking into account the number of tones, signal bandwidth (BW, bit rate, and transmission power. Numerical results are presented to validate the analysis, and to justify the approximations made therein. Moreover, these results are shown to agree completely with those obtained by simulation.

  9. A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation.

    Science.gov (United States)

    Hosseinzadeh, Majid; Bidhendi, Gholamreza Nabi; Torabian, Ali; Mehrdadi, Naser; Pourabdullah, Mehdi

    2015-09-01

    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover, based on the SVI comparison of two reactor biomass samples, HEMBR showed better settling characteristics which improved the dewaterability and filterability of the sludge. Analysis the change of membrane surfaces and the cake layer formed over them through field emission scanning electron microscopy (FESEM) and X-ray fluorescence spectrometer (XRF) were also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    Science.gov (United States)

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.

  11. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system

    KAUST Repository

    Kim, Youngjin

    2016-02-09

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulphate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulphate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.

  12. 自然工质风冷太阳能双级喷射中低温空调制冷系统的设计及性能分析%Design and performance analysis of solar-powered air-cooled two-staged ejector cooling systems with natural refrigerants for middle and low temperature purpose

    Institute of Scientific and Technical Information of China (English)

    卢苇; 陈洪杰; 杨林; 曹聪

    2012-01-01

    依据中低温空调温度要求,分别以水、氨、R290和R600a为工质,设计了额定制冷量为10kW的风冷太阳能双级喷射制冷系统并对其进行变工况性能分析.在获得相同制冷量和室内温度的条件下,水系统最省材料,其次是氨和R290系统,且二者相当,R600a系统最耗材.4种工质系统均具有较强的变工况性能;综合考虑环境温度和太阳辐照度的影响,各系统制冷能力相当.水系统的COP较其他系统的高,且在低太阳辐照度时更明显;其余3个系统COP从高到低依次为氨、R290、R600a.在太阳辐照度较弱地区,使用水喷射制冷系统更合理.%According to the requirement of middle and low temperature air conditioning,the solar-powered air-cooled two-staged ejector cooling system with rated cooling capacity of 10 kW is designed,using water,ammonia,R290 and R600a as working fluids separately. The performance is analyzed. At certain cooling capacity and indoor temperature,the water system is the most material-saving system,followed by the ammonia and R290 ones with equivalent consumption,and the R600a system is the most material-consuming one. The four systems have relatively perfect off-design performance and their cooling capacities are almost the same on comprehensive consideration of the influences of ambient temperature and solar irradiance. Among the four systems,the water system presents higher COP value,the effect of which is more obvious under weaker solar irradiance,followed by ammonia system,R290 and R600a systems. A solar-powered air-cooled ejector refrigeration system with water as working fluid is more suitable for use in the regions with relatively weak solar irradiance.

  13. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  14. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    Directory of Open Access Journals (Sweden)

    Rong Fan

    2016-03-01

    Full Text Available Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1. The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1, showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems.

  15. Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jackson, Dennis G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dickson, John O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eddy-Dilek, Carol A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-12

    A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that address the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.

  16. Tapered bed bioreactor

    Science.gov (United States)

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  17. Right Axillary Sweating After Left Thoracoscopic Sypathectomy in Two-Stage Surgery

    Directory of Open Access Journals (Sweden)

    Berkant Ozpolat

    2013-06-01

    Full Text Available One stage bilateral or two stage unilateral video assisted thoracoscopic sympathectomy could be performed in the treatment of primary focal hyperhidrosis. Here we present a case with compensatory sweating of contralateral side after a two stage operation.

  18. The Two-stage Constrained Equal Awards and Losses Rules for Multi-Issue Allocation Situation

    NARCIS (Netherlands)

    Lorenzo-Freire, S.; Casas-Mendez, B.; Hendrickx, R.L.P.

    2005-01-01

    This paper considers two-stage solutions for multi-issue allocation situations.Characterisations are provided for the two-stage constrained equal awards and constrained equal losses rules, based on the properties of composition and path independence.

  19. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA(®) and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA(®) bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sulfur formation and recovery in a thiosulfateoxidizing bioreactor

    NARCIS (Netherlands)

    Gonzalez-Sanchez, A.; Meulepas, R.J.W.; Revah, S.

    2008-01-01

    This work describes the design and Performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate

  1. Sulfur formation and recovery in a thiosulfateoxidizing bioreactor

    NARCIS (Netherlands)

    Gonzalez-Sanchez, A.; Meulepas, R.J.W.; Revah, S.

    2008-01-01

    This work describes the design and Performance of a thiosulfate-oxidizing bioreactor that allowed high elemental sulfur production and recovery efficiency. The reactor system, referred to as a Supernatant-Recycling Settler Bioreactor (SRSB), consisted of a cylindrical upflow reactor and a separate a

  2. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Ariunbaatar, Javkhlan, E-mail: jaka@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Scotto Di Perta, Ester [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy); Panico, Antonio [Telematic University PEGASO, Piazza Trieste e Trento, 48, 80132 Naples (Italy); Frunzo, Luigi [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Claudio, 21, 80125 Naples (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Lens, Piet N.L. [UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Pirozzi, Francesco [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy)

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  3. A bioreactor test system to mimic the biological and mechanical environment of oral soft tissues and to evaluate substitutes for connective tissue grafts.

    Science.gov (United States)

    Mathes, Stephanie H; Wohlwend, Lorenz; Uebersax, Lorenz; von Mentlen, Roger; Thoma, Daniel S; Jung, Ronald E; Görlach, Christoph; Graf-Hausner, Ursula

    2010-12-15

    Gingival cells of the oral connective tissue are exposed to complex mechanical forces during mastication, speech, tooth movement and orthodontic treatments. Especially during wound healing following surgical procedures, internal and external forces may occur, creating pressure upon the newly formed tissue. This clinical situation has to be considered when developing biomaterials to augment soft tissue in the oral cavity. In order to pre-evaluate a collagen sponge intended to serve as a substitute for autogenous connective tissue grafts (CTGs), a dynamic bioreactor system was developed. Pressure and shear forces can be applied in this bioreactor in addition to a constant medium perfusion to cell-material constructs. Three-dimensional volume changes and stiffness of the matrices were analyzed. In addition, cell responses such as cell vitality and extracellular matrix (ECM) production were investigated. The number of metabolic active cells constantly increased under fully dynamic culture conditions. The sponges remained elastic even after mechanical forces were applied for 14 days. Analysis of collagen type I and fibronectin revealed a statistically significant accumulation of these ECM molecules (P tissue remodeling processes, was observed under dynamic conditions only. The results indicate that the tested in vitro cell culture system was able to mimic both the biological and mechanical environments of the clinical situation in a healing wound.

  4. Bioreactor systems for tissue engineering II. Strategies for the expansion and directed differentiation of stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Cornelia [Hannover Univ. (Germany). Inst. fuer Technische Chemie; Griensven, Martijn van [Ludwig Boltzmann Institut fuer Klinische und Experimentelle Traumatologie, Wien (Austria); Poertner, Ralf (eds.) [Technische Univ. Hamburg-Harburg (Germany). Inst. Biotechnologie und Verfahrenstechnik

    2010-07-01

    Alternative Sources of Adult Stem Cells: Human Amniotic Membrane, by S. Wolbank, M. van Griensven, R. Grillari-Voglauer, and A. Peterbauer-Scherb; - Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications, by P. Moretti, T. Hatlapatka, D. Marten, A. Lavrentieva, I. Majore, R. Hass and C. Kasper; - Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells, by J. W. Kuhbier, B. Weyand, C. Radtke, P. M. Vogt, C. Kasper and K. Reimers; - Induced Pluripotent Stem Cells: Characteristics and Perspectives, by T. Cantz and U. Martin; - Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology, by D. Pei, J. Xu, Q. Zhuang, H.-F. Tse and M. A. Esteban; - Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells, by C. Weber, S. Pohl, R. Poertner, P. Pino-Grace, D. Freimark, C. Wallrapp, P. Geigle and P. Czermak; - Cartilage Engineering from Mesenchymal Stem Cells, by C. Goepfert, A. Slobodianski, A.F. Schilling, P. Adamietz and R. Poertner; - Outgrowth Endothelial Cells: Sources, Characteristics and Potential Applications in Tissue Engineering and Regenerative Medicine, by S. Fuchs, E. Dohle, M. Kolbe, C. J. Kirkpatrick; - Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, by I. Ribitsch, J. Burk, U. Delling, C. Geissler, C. Gittel, H. Juelke, W. Brehm; - Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms, by R. M. El Backly, R. Cancedda; - Clinical Application of Stem Cells in the Cardiovascular System, C. Stamm, K. Klose, Y.-H. Choi. (orig.)

  5. Two-Stage Exams Improve Student Learning in an Introductory Geology Course: Logistics, Attendance, and Grades

    Science.gov (United States)

    Knierim, Katherine; Turner, Henry; Davis, Ralph K.

    2015-01-01

    Two-stage exams--where students complete part one of an exam closed book and independently and part two is completed open book and independently (two-stage independent, or TS-I) or collaboratively (two-stage collaborative, or TS-C)--provide a means to include collaborative learning in summative assessments. Collaborative learning has been shown to…

  6. Two-stage earth-to-orbit vehicles with dual-fuel propulsion in the Orbiter

    Science.gov (United States)

    Martin, J. A.

    1982-01-01

    Earth-to-orbit vehicle studies of future replacements for the Space Shuttle are needed to guide technology development. Previous studies that have examined single-stage vehicles have shown advantages for dual-fuel propulsion. Previous two-stage system studies have assumed all-hydrogen fuel for the Orbiters. The present study examined dual-fuel Orbiters and found that the system dry mass could be reduced with this concept. The possibility of staging the booster at a staging velocity low enough to allow coast-back to the launch site is shown to be beneficial, particularly in combination with a dual-fuel Orbiter. An engine evaluation indicated the same ranking of engines as did a previous single-stage study. Propane and RP-1 fuels result in lower vehicle dry mass than methane, and staged-combustion engines are preferred over gas-generator engines. The sensitivity to the engine selection is less for two-stage systems than for single-stage systems.

  7. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Open source software to control Bioflo bioreactors.

    Directory of Open Access Journals (Sweden)

    David A Burdge

    Full Text Available Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  9. Open source software to control Bioflo bioreactors.

    Science.gov (United States)

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  10. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    KAUST Repository

    Pathak, Nirenkumar

    2017-03-14

    The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612-1434 mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48 to 6.98 LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor–forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively.

  11. 基于遗传算法的复杂双层磁悬浮精密隔振系统 LQR 控制研究%LQR control of a complex two-stage magnetic suspension active precise isolation system based on the genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    宋春生; 于传超; 张锦光; 陈金亮

    2016-01-01

    The active-passive hybrid vibration isolation technology is the hotspot of precise vibration isolation, which can overcome the defects of passive vibration isolation technology such as the poor vibration isolation performance in low and resonant frequencies.Compared with other active vibration isolation technologies,magnetic suspension isolation technology has shown useful characteristics,such as wide frequency response range,fast response,high reliability,and the electromagnetic force adjusted easily by changing controller's parameters on-line.A magnetic suspension vibrator was proposed for an existing complex two-stage passive isolation system to form a precise active system.The characteristics and capacity of the isolator were studied theoretically.The dynamical equations and state equations of the active system were built.An LQR control model of the active vibration isolation based on the minimization of isolation table acceleration response was proposed.The genetic algorithm was used to optimize the Q and R matrices of the LQR model.The control model was simulated.The simulation results show that the active system has much better performance in vibration isolation.%主被动结合混合隔振技术能充分利用主被动隔振的各自优势,是精密隔振的研究热点。磁悬浮隔振技术具有无接触、无摩擦、寿命长、支承参数可控可调等特点,在主动精密隔振领域内得到广泛研究。设计磁悬浮主动隔振器并将其应用到被动精密隔振系统组成复杂双层磁悬浮精密隔振系统,建立了其动力学方程,推导出了相应系统的状态方程,提出了一种基于最小加速度响应的 LQR 主动隔振控制策略,并采用遗传算法进行优化,得到 Q 与 R 矩阵的值,并进行仿真研究。仿真结果表明:在不同的激励下,复杂双层磁悬浮精密隔振系统较被动隔振系统,隔振效果都有显著提高。

  12. Performance Analysis on a Solar-powered Air-cooled Two-stage Ejector Refrigeration System with Ammonia as Refrigerant at Cold Storage%风冷太阳能双级氨喷射制冷系统冷藏工况性能分析

    Institute of Scientific and Technical Information of China (English)

    陈洪杰; 卢苇; 覃文奇; 郑立星; 聂涛

    2011-01-01

    通过建立数学模型,对额定制冷量为9.4kW的冷藏库用风冷太阳能双级氨喷射制冷系统进行了变工况性能分析.该系统的制冷量随冷藏温度升高而增大,随环境温度升高而减小,随太阳辐照度增强而增大;COP的变化规律与制冷量类似,其差别是随太阳辐照度增强先迅速增大,但当太阳辐照度增大到一定程度后,COP的变化趋于平缓.在正常使用条件下(冷藏温度不低于4℃,环境温度不高于38℃,太阳辐照度不低于500W/m2),系统的制冷量为6.3~26kW,COP为0.042~0.087.该系统能较好地与亚热带典型城市南宁的果蔬盛产季节气候条件相匹配.%By the establishment of a mathematical model on a solar-powered air-cooled two-stage ejector refrigeration system using ammonia as refrigerant, the performance of ejector refrigeration system with rated refrigeration capacity of 9.4kW for cold store was analyzed. The refrigeration capacity of the proposed system increases with the rising of cold storage temperature and the enhancement of solar irradiance, while decreases with the rising of ambient temperature. The COP has similar changing trend with that of the refrigeration capacity except that it increases rapidly with the enhancement of solar irradiance firstly and then become stable after solar irradiance exceeding a certain value. The refrigeration capacity is 6.3-26kW and the COP 0.042-0.087 under the normal operating conditions with cold storage temperature over 4°C, ambient temperature below 38'C and solar irradiance surpassing 500W/m2. The proposed system can match the climatic conditions in fruits and vegetables harvest season of Naming, a typical city in subtropical zone.

  13. Disposable bioreactors for inoculum production and protein expression.

    Science.gov (United States)

    Eibl, Regine; Löffelholz, Christian; Eibl, Dieter

    2014-01-01

    Disposable bioreactors have been increasingly implemented over the past ten years. This relates to both R & D and commercial manufacture, in particular, in animal cell-based processes. Among the numerous disposable bioreactors which are available today, wave-mixed bag bioreactors and stirred bioreactors are predominant. Whereas wave-mixed bag bioreactors represent the system of choice for inoculum production, stirred systems are often preferred for protein expression. For this reason, the authors present protocols instructing the reader how to use the wave-mixed BIOSTAT CultiBag RM 20 L for inoculum production and the stirred UniVessel SU 2 L for recombinant protein production at benchtop scale. All methods described are based on a Chinese hamster ovary (CHO) suspension cell line expressing the human placental secreted alkaline phosphatase (SEAP).

  14. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    Science.gov (United States)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  15. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment.

  16. Influence of Gasification Parameters in a Two-stage Coal-Slurry Gasifier on Performance of the IGCC System%两段式水煤浆气化炉气化参数对IGCC系统性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘耀鑫; 吴少华; 李振中; 王阳; 陈晓利

    2012-01-01

    采用Thermo Flex软件建立了基于两段式水煤浆气化技术的200MW级IGCC系统模型,研究了气化温度、水煤浆浓度、气化压力、氧气纯度等气化参数对系统性能的影响.结果表明:提高反应温度和气化压力,系统的供电效率和发电效率降低;氧气纯度增加,供电效率上升;在相同气化温度(或气化压力、氧气纯度)的情况下,提高二段给煤比γsc,系统性能可以得到有效改善;当水煤浆浓度变化时,氧煤质量比随γsc改变进行调整才能达到设计值碳转化率的要求.%Using software ThermoFlex,a model of 200 MW IGCC system was established based on two-stage coal-slurry gasification technology,so as to study the effects of following factors on performance of the IGCC system,such as the gasification temperature,coal-slurry concentration,gasification pressure and purity of oxygen,etc.Results show that both the gross and net efficiency of power generation decrease with rising gasification temperature and pressure;higher net efficiency is to be obtained at a flow of higher purity oxgen;raising coal supply ratio(γsc) at the second stage may help to improve the system performance under same conditions of gasification temperature(or purity of oxygen,or gasification pressure).Whereas under the varying conditions of coal-slurry concentration,the designed value of carbon conversion can be achieved based on adjustment of oxygen-coal mass ratio along with the variation of γsc.

  17. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  18. Configuration Consideration for Expander in Transcritical Carbon Dioxide Two-Stage Compression Cycle

    Institute of Scientific and Technical Information of China (English)

    MA Yitai; YANG Junlan; GUAN Haiqing; LI Minxia

    2005-01-01

    To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.

  19. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  20. NASA Classroom Bioreactor

    Science.gov (United States)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  1. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?

    Science.gov (United States)

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr

    2012-04-01

    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  2. Microbial community analysis of a full-scale DEMON bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  3. Two-stage dental implants inserted in a one-stage procedure : a prospective comparative clinical study

    NARCIS (Netherlands)

    Heijdenrijk, Kees

    2002-01-01

    The results of this study indicate that dental implants designed for a submerged implantation procedure can be used in a single-stage procedure and may be as predictable as one-stage implants. Although one-stage implant systems and two-stage.

  4. A Two-Stage Multi-Agent Based Assessment Approach to Enhance Students' Learning Motivation through Negotiated Skills Assessment

    Science.gov (United States)

    Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan

    2015-01-01

    In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…

  5. Two-stage dental implants inserted in a one-stage procedure : a prospective comparative clinical study

    NARCIS (Netherlands)

    Heijdenrijk, Kees

    2002-01-01

    The results of this study indicate that dental implants designed for a submerged implantation procedure can be used in a single-stage procedure and may be as predictable as one-stage implants. Although one-stage implant systems and two-stage.

  6. Enhanced biodiesel production in Neochloris oleoabundans by a semi-continuous process in two stage photobioreactors.

    Science.gov (United States)

    Yoon, Se Young; Hong, Min Eui; Chang, Won Seok; Sim, Sang Jun

    2015-07-01

    Under autotrophic conditions, highly productive biodiesel production was achieved using a semi-continuous culture system in Neochloris oleoabundans. In particular, the flue gas generated by combustion of liquefied natural gas and natural solar radiation were used for cost-effective microalgal culture system. In semi-continuous culture, the greater part (~80%) of the culture volume containing vegetative cells grown under nitrogen-replete conditions in a first photobioreactor (PBR) was directly transferred to a second PBR and cultured sequentially under nitrogen-deplete conditions for accelerating oil accumulation. As a result, in semi-continuous culture, the productivities of biomass and biodiesel in the cells were increased by 58% (growth phase) and 51% (induction phase) compared to the cells in batch culture, respectively. The semi-continuous culture system using two stage photobioreactors is a very efficient strategy to further improve biodiesel production from microalgae under photoautotrophic conditions.

  7. Prey-Predator Model with Two-Stage Infection in Prey: Concerning Pest Control

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Nandi

    2015-01-01

    Full Text Available A prey-predator model system is developed; specifically the disease is considered into the prey population. Here the prey population is taken as pest and the predators consume the selected pest. Moreover, we assume that the prey species is infected with a viral disease forming into susceptible and two-stage infected classes, and the early stage of infected prey is more vulnerable to predation by the predator. Also, it is assumed that the later stage of infected pests is not eaten by the predator. Different equilibria of the system are investigated and their stability analysis and Hopf bifurcation of the system around the interior equilibriums are discussed. A modified model has been constructed by considering some alternative source of food for the predator population and the dynamical behavior of the modified model has been investigated. We have demonstrated the analytical results by numerical analysis by taking some simulated set of parameter values.

  8. Bioreactor and methods for producing synchronous cells

    Science.gov (United States)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  9. Complex Dynamical Behavior of a Two-Stage Colpitts Oscillator with Magnetically Coupled Inductors

    Directory of Open Access Journals (Sweden)

    V. Kamdoum Tamba

    2014-01-01

    Full Text Available A five-dimensional (5D controlled two-stage Colpitts oscillator is introduced and analyzed. This new electronic oscillator is constructed by considering the well-known two-stage Colpitts oscillator with two further elements (coupled inductors and variable resistor. In contrast to current approaches based on piecewise linear (PWL model, we propose a smooth mathematical model (with exponential nonlinearity to investigate the dynamics of the oscillator. Several issues, such as the basic dynamical behaviour, bifurcation diagrams, Lyapunov exponents, and frequency spectra of the oscillator, are investigated theoretically and numerically by varying a single control resistor. It is found that the oscillator moves from the state of fixed point motion to chaos via the usual paths of period-doubling and interior crisis routes as the single control resistor is monitored. Furthermore, an experimental study of controlled Colpitts oscillator is carried out. An appropriate electronic circuit is proposed for the investigations of the complex dynamics behaviour of the system. A very good qualitative agreement is obtained between the theoretical/numerical and experimental results.

  10. A two-stage series diode for intense large-area moderate pulsed X rays production

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  11. Simultaneous bile duct and portal venous branch ligation in two-stage hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Hiroya Iida; Chiaki Yasui; Tsukasa Aihara; Shinichi Ikuta; Hidenori Yoshie; Naoki Yamanaka

    2011-01-01

    Hepatectomy is an effective surgical treatment for multiple bilobar liver metastases from colon cancer; however, one of the primary obstacles to completing surgical resection for these cases is an insufficient volume of the future remnant liver, which may cause postoperative liver failure. To induce atrophy of the unilateral lobe and hypertrophy of the future remnant liver, procedures to occlude the portal vein have been conventionally used prior to major hepatectomy. We report a case of a 50-year-old woman in whom two-stage hepatectomy was performed in combination with intraoperative ligation of the portal vein and the bile duct of the right hepatic lobe. This procedure was designed to promote the atrophic effect on the right hepatic lobe more effectively than the conventional technique, and to the best of our knowledge, it was used for the first time in the present case. Despite successful induction of liver volume shift as well as the following procedure, the patient died of subsequent liver failure after developing recurrent tumors. We discuss the first case in which simultaneous ligation of the portal vein and the biliary system was successfully applied as part of the first step of two-stage hepatectomy.

  12. Dynamics of installation way for the actuator of a two-stage active vibration-isolator

    Institute of Scientific and Technical Information of China (English)

    HU Li; HUANG Qi-bai; HE Xue-song; YUAN Ji-xuan

    2008-01-01

    We investigated the behaviors of an active control system of two-stage vibration isolation with the actuator installed in parallel with either the upper passive mount or the lower passive isolation mount. We revealed the relationships between the active control force of the actuator and the parameters of the passive isolators by studying the dynamics of two-stage active vibration isolation for the actuator at the foregoing two positions in turn. With the actuator installed beside the upper mount, a small active force can achieve a very good isolating effect when the frequency of the stimulating force is much larger than the natural frequency of the upper mount; a larger active force is required in the low-frequency domain; and the active force equals the stimulating force when the upper mount works within the resonance region, suggesting an approach to reducing wobble and ensuring desirable installation accuracy by increasing the upper-mount stiffness. In either the low or the high frequency region far away from the resonance region, the active force is smaller when the actuator is beside the lower mount than beside the upper mount.

  13. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  14. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks

    Science.gov (United States)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming

    2015-01-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  15. Properties of a two stage adiabatic demagnetization refrigerator

    Science.gov (United States)

    Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.

    2015-12-01

    Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.

  16. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys

    Science.gov (United States)

    Murray, R.; Rastegar, J.

    2009-03-01

    Harvesting mechanical energy from ocean wave oscillations for conversion to electrical energy has long been pursued as an alternative or self-contained power source. The attraction to harvesting energy from ocean waves stems from the sheer power of the wave motion, which can easily exceed 50 kW per meter of wave front. The principal barrier to harvesting this power is the very low and varying frequency of ocean waves, which generally vary from 0.1Hz to 0.5Hz. In this paper the application of a novel class of two-stage electrical energy generators to buoyant structures is presented. The generators use the buoy's interaction with the ocean waves as a low-speed input to a primary system, which, in turn, successively excites an array of vibratory elements (secondary system) into resonance - like a musician strumming a guitar. The key advantage of the present system is that by having two decoupled systems, the low frequency and highly varying buoy motion is converted into constant and much higher frequency mechanical vibrations. Electrical energy may then be harvested from the vibrating elements of the secondary system with high efficiency using piezoelectric elements. The operating principles of the novel two-stage technique are presented, including analytical formulations describing the transfer of energy between the two systems. Also, prototypical design examples are offered, as well as an in-depth computer simulation of a prototypical heaving-based wave energy harvester which generates electrical energy from the up-and-down motion of a buoy riding on the ocean's surface.

  17. Fuse Selection for the Two-Stage Explosive Type Switches

    Science.gov (United States)

    Muravlev, I. O.; Surkov, M. A.; Tarasov, E. V.; Uvarov, N. F.

    2017-04-01

    In the two-level explosive switch destruction of a delay happens in the form of electric explosion. Criteria of similarity of electric explosion in transformer oil are defined. The challenge of protecting the power electrical equipment from short circuit currents is still urgent, especially with the growth of unit capacity. Is required to reduce the tripping time as much as possible, and limit the amplitude of the fault current, that is very important for saving of working capacity of life-support systems. This is particularly important when operating in remote stand-alone power supply systems with a high share of renewable energy, working through the inverter transducers, as well as inverter-type diesel generators. The explosive breakers copes well with these requirements. High-speed flow of transformer oil and high pressure provides formation rate of a contact gap of 20 - 100 m/s. In these conditions there is as a rapid increase in voltage on the discontinuity, and recovery of electric strength (Ures) after current interruption.

  18. Stabilizing effect of cannibalism in a two stages population model.

    Science.gov (United States)

    Rault, Jonathan; Benoît, Eric; Gouzé, Jean-Luc

    2013-03-01

    In this paper we build a prey-predator model with discrete weight structure for the predator. This model will conserve the number of individuals and the biomass and both growth and reproduction of the predator will depend on the food ingested. Moreover the model allows cannibalism which means that the predator can eat the prey but also other predators. We will focus on a simple version with two weight classes or stage (larvae and adults) and present some general mathematical results. In the last part, we will assume that the dynamics of the prey is fast compared to the predator's one to go further in the results and eventually conclude that under some conditions, cannibalism can stabilize the system: more precisely, an unstable equilibrium without cannibalism will become almost globally stable with some cannibalism. Some numerical simulations are done to illustrate this result.

  19. Final two-stage MOAO on-sky demonstration with CANARY

    Science.gov (United States)

    Gendron, E.; Morris, T.; Basden, A.; Vidal, F.; Atkinson, D.; Bitenc, U.; Buey, T.; Chemla, F.; Cohen, M.; Dickson, C.; Dipper, N.; Feautrier, P.; Gach, J.-L.; Gratadour, D.; Henry, D.; Huet, J.-M.; Morel, C.; Morris, S.; Myers, R.; Osborn, J.; Perret, D.; Reeves, A.; Rousset, G.; Sevin, A.; Stadler, E.; Talbot, G.; Todd, S.; Younger, E.

    2016-07-01

    CANARY is an on-sky Laser Guide Star (LGS) tomographic AO demonstrator in operation at the 4.2m William Herschel Telescope (WHT) in La Palma. From the early demonstration of open-loop tomography on a single deformable mirror using natural guide stars in 2010, CANARY has been progressively upgraded each year to reach its final goal in July 2015. It is now a two-stage system that mimics the future E-ELT: a GLAO-driven woofer based on 4 laser guide stars delivers a ground-layer compensated field to a figure sensor locked tweeter DM, that achieves the final on-axis tomographic compensation. We present the overall system, the control strategy and an overview of its on-sky performance.

  20. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells.

    Science.gov (United States)

    Vidal, Jorge E; Howery, Kristen E; Ludewick, Herbert P; Nava, Porfirio; Klugman, Keith P

    2013-04-01

    Streptococcus pneumoniae forms organized biofilms in the human upper respiratory tract that may play an essential role in both persistence and acute respiratory infection. However, the production and regulation of biofilms on human cells is not yet fully understood. In this work, we developed a bioreactor with living cultures of human respiratory epithelial cells (HREC) and a continuous flow of nutrients, mimicking the microenvironment of the human respiratory epithelium, to study the production and regulation of S. pneumoniae biofilms (SPB). SPB were also produced under static conditions on immobilized HREC. Our experiments demonstrated that the biomass of SPB increased significantly when grown on HREC compared to the amount on abiotic surfaces. Additionally, pneumococcal strains produced more early biofilms on lung cells than on pharyngeal cells. Utilizing the bioreactor or immobilized human cells, the production of early SPB was found to be regulated by two quorum-sensing systems, Com and LuxS/AI-2, since a mutation in either comC or luxS rendered the pneumococcus unable to produce early biofilms on HREC. Interestingly, while LuxS/autoinducer 2 (AI-2) regulated biofilms on both HREC and abiotic surfaces, Com control was specific for those structures produced on HREC. The biofilm phenotypes of strain D39-derivative ΔcomC and ΔluxS QS mutants were reversed by genetic complementation. Of note, SPB formed on immobilized HREC and incubated under static conditions were completely lysed 24 h postinoculation. Biofilm lysis was also regulated by the Com and LuxS/AI-2 quorum-sensing systems.

  1. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    Science.gov (United States)

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.

  2. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.

    Science.gov (United States)

    Zhang, Zhi-Yong; Teoh, Swee Hin; Teo, Erin Yiling; Khoon Chong, Mark Seow; Shin, Chong Woon; Tien, Foo Toon; Choolani, Mahesh A; Chan, Jerry K Y

    2010-11-01

    Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.

  3. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery.

    Science.gov (United States)

    Xue, Chuang; Zhao, Jingbo; Liu, Fangfang; Lu, Congcong; Yang, Shang-Tian; Bai, Feng-Wu

    2013-05-01

    Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L·h vs. 0.30 g/L·h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery

    Energy Technology Data Exchange (ETDEWEB)

    Xue, C; Zhao, JB; Liu, FF; Lu, CC; Yang, ST; Bai, FW

    2013-05-01

    Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L.h vs. 0.30 g/L-h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3 g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy. (C) 2012 Elsevier Ltd. All rights reserved.

  5. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    Science.gov (United States)

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  6. Loss Function Based Ranking in Two-Stage, Hierarchical Models

    Science.gov (United States)

    Lin, Rongheng; Louis, Thomas A.; Paddock, Susan M.; Ridgeway, Greg

    2009-01-01

    Performance evaluations of health services providers burgeons. Similarly, analyzing spatially related health information, ranking teachers and schools, and identification of differentially expressed genes are increasing in prevalence and importance. Goals include valid and efficient ranking of units for profiling and league tables, identification of excellent and poor performers, the most differentially expressed genes, and determining “exceedances” (how many and which unit-specific true parameters exceed a threshold). These data and inferential goals require a hierarchical, Bayesian model that accounts for nesting relations and identifies both population values and random effects for unit-specific parameters. Furthermore, the Bayesian approach coupled with optimizing a loss function provides a framework for computing non-standard inferences such as ranks and histograms. Estimated ranks that minimize Squared Error Loss (SEL) between the true and estimated ranks have been investigated. The posterior mean ranks minimize SEL and are “general purpose,” relevant to a broad spectrum of ranking goals. However, other loss functions and optimizing ranks that are tuned to application-specific goals require identification and evaluation. For example, when the goal is to identify the relatively good (e.g., in the upper 10%) or relatively poor performers, a loss function that penalizes classification errors produces estimates that minimize the error rate. We construct loss functions that address this and other goals, developing a unified framework that facilitates generating candidate estimates, comparing approaches and producing data analytic performance summaries. We compare performance for a fully parametric, hierarchical model with Gaussian sampling distribution under Gaussian and a mixture of Gaussians prior distributions. We illustrate approaches via analysis of standardized mortality ratio data from the United States Renal Data System. Results show that SEL

  7. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. NASA Bioreactor tissue culture

    Science.gov (United States)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. Basic bioreactor design.

    NARCIS (Netherlands)

    Riet, van 't K.; Tramper, J.

    1991-01-01

    Based on a graduate course in biochemical engineering, provides the basic knowledge needed for the efficient design of bioreactors and the relevant principles and data for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms. Includes exercises.

  10. Basic bioreactor design.

    NARCIS (Netherlands)

    Riet, van 't K.; Tramper, J.

    1991-01-01

    Based on a graduate course in biochemical engineering, provides the basic knowledge needed for the efficient design of bioreactors and the relevant principles and data for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms. Includes exercises.

  11. Cascades of bioreactors.

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :i) processes with a variable stoichiometry ,ii) processes with a consta

  12. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  13. Establishing Liver Bioreactors for In Vitro Research.

    Science.gov (United States)

    Rebelo, Sofia P; Costa, Rita; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2015-01-01

    In vitro systems that can effectively model liver function for long periods of time are fundamental tools for preclinical research. Nevertheless, the adoption of in vitro research tools at the earliest stages of drug development has been hampered by the lack of culture systems that offer the robustness, scalability, and flexibility necessary to meet industry's demands. Bioreactor-based technologies, such as stirred tank bioreactors, constitute a feasible approach to aggregate hepatic cells and maintain long-term three-dimensional cultures. These three-dimensional cultures sustain the polarity, differentiated phenotype, and metabolic performance of human hepatocytes. Culture in computer-controlled stirred tank bioreactors allows the maintenance of physiological conditions, such as pH, dissolved oxygen, and temperature, with minimal fluctuations. Moreover, by operating in perfusion mode, gradients of soluble factors and metabolic by-products can be established, aiming at resembling the in vivo microenvironment. This chapter provides a protocol for the aggregation and culture of hepatocyte spheroids in stirred tank bioreactors by applying perfusion mode for the long-term culture of human hepatocytes. This in vitro culture system is compatible with feeding high-throughput screening platforms for the assessment of drug elimination pathways, being a useful tool for toxicology research and drug development in the preclinical phase.

  14. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  15. Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm

    Institute of Scientific and Technical Information of China (English)

    Gui-xia Liu; Wei Feng; Han Wang; Lei Liu; Chun-guang Zhou

    2009-01-01

    In the post-genomic biology era, the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system, and it has been a challenging task in bioinformatics. The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages, but how to determine the network structure and parameters is still important to be explored. This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network .The new algorithm is evaluated with the use of both simulated and yeast cell cycle data. The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.

  16. A two-stage metal valorisation process from electric arc furnace dust (EAFD

    Directory of Open Access Journals (Sweden)

    H. Issa

    2016-04-01

    Full Text Available This paper demonstrates possibility of separate zinc and lead recovery from coal composite pellets, composed of EAFD with other synergetic iron-bearing wastes and by-products (mill scale, pyrite-cinder, magnetite concentrate, through a two-stage process. The results show that in the first, low temp erature stage performed in electro-resistant furnace, removal of lead is enabled due to presence of chlorides in the system. In the second stage, performed at higher temperatures in Direct Current (DC plasma furnace, valorisation of zinc is conducted. Using this process, several final products were obtained, including a higher purity zinc oxide, which, by its properties, corresponds washed Waelz oxide.

  17. Study of a two-stage photobase generator for photolithography in microelectronics.

    Science.gov (United States)

    Turro, Nicholas J; Li, Yongjun; Jockusch, Steffen; Hagiwara, Yuji; Okazaki, Masahiro; Mesch, Ryan A; Schuster, David I; Willson, C Grant

    2013-03-01

    The investigation of the photochemistry of a two-stage photobase generator (PBG) is described. Absorption of a photon by a latent PBG (1) (first step) produces a PBG (2). Irradiation of 2 in the presence of water produces a base (second step). This two-photon sequence (1 + hν → 2 + hν → base) is an important component in the design of photoresists for pitch division technology, a method that doubles the resolution of projection photolithography for the production of microelectronic chips. In the present system, the excitation of 1 results in a Norrish type II intramolecular hydrogen abstraction to generate a 1,4-biradiacal that undergoes cleavage to form 2 and acetophenone (Φ ∼ 0.04). In the second step, excitation of 2 causes cleavage of the oxime ester (Φ = 0.56) followed by base generation after reaction with water.

  18. A Two-stage Tuning Method of Servo Parameters for Feed Drives in Machine Tools

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.

  19. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  20. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination

    Energy Technology Data Exchange (ETDEWEB)

    Kosmadakis, G.; Manolakos, D.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-05-15

    The present work concerns the parametric study of an autonomous, two-stage solar organic Rankine cycle for RO desalination. The main goal of the current simulation is to estimate the efficiency, as well as to calculate the annual mechanical energy available for desalination in the considered cases, in order to evaluate the influence of various parameters on the performance of the system. The parametric study concerns the variation of different parameters, without changing actually the baseline case. The effect of the collectors' slope and the total number of evacuated tube collectors used, have been extensively examined. The total cost is also taken into consideration and is calculated for the different cases examined, along with the specific fresh water cost (EUR/m{sup 3}). (author)

  1. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  2. Efficiency evaluation of three fluidised aerobic bioreactor based ...

    African Journals Online (AJOL)

    Dil

    2013-04-24

    Apr 24, 2013 ... bioreactor based sewage treatment plants in Kashmir ... systems: a physical and a biological purification steps. In ... in Germany, Netherlands, Europe and Canada successfully. This ..... treatment of meat industry wastewater.

  3. Focused ultrasound simultaneous irradiation/MRI imaging, and two-stage general kinetic model.

    Directory of Open Access Journals (Sweden)

    Sheng-Yao Huang

    Full Text Available Many studies have investigated how to use focused ultrasound (FUS to temporarily disrupt the blood-brain barrier (BBB in order to facilitate the delivery of medication into lesion sites in the brain. In this study, through the setup of a real-time system, FUS irradiation and injections of ultrasound contrast agent (UCA and Gadodiamide (Gd, an MRI contrast agent can be conducted simultaneously during MRI scanning. By using this real-time system, we were able to investigate in detail how the general kinetic model (GKM is used to estimate Gd penetration in the FUS irradiated area in a rat's brain resulting from UCA concentration changes after single FUS irradiation. Two-stage GKM was proposed to estimate the Gd penetration in the FUS irradiated area in a rat's brain under experimental conditions with repeated FUS irradiation combined with different UCA concentrations. The results showed that the focal increase in the transfer rate constant of Ktrans caused by BBB disruption was dependent on the doses of UCA. Moreover, the amount of in vivo penetration of Evans blue in the FUS irradiated area in a rat's brain under various FUS irradiation experimental conditions was assessed to show the positive correlation with the transfer rate constants. Compared to the GKM method, the Two-stage GKM is more suitable for estimating the transfer rate constants of the brain treated with repeated FUS irradiations. This study demonstrated that the entire process of BBB disrupted by FUS could be quantitatively monitored by real-time dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI.

  4. Development of membrane bioreactor system. 1. ; Selective permeation of protein solutions by electric microfiltrations. Mokei bioreactor system no kaihatsu. 1. ; Denki seimitsu roka ni yoru tanpakushitsu no sentaku toka

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Y.; Totsuka, Y.; Kuwahara, H. (Shizuoka Industrial Research Institute, Shizuoka (Japan))

    1992-07-01

    Investigation was carried out to apply electric microfiltration to the separation of fungus under fermentation from protein. A charged-type ultrafine filtration membrane was experimentally prepared to be combined with an electric field for the purpose of examining the permeation behaviour of membrane. First, a mixed suspension of bakers' yeast and bovine serum albumin was used as model ferment liquid so as to examine filtering conditions. In consequence, it was found that pH adjustment can control permeability; albumin content is increased as the electric field is strengthened; the current of less than 0.3A is practical in consideration of denaturation of protein and so forth. A ferment liquid yielding bacteriolytic enzyme was used as actual ferment liquid so as to confirm the above information. This method was judged to be effective for concentration and penetration of enzyme in bioreactors from the data on the relation between the blocking rate of enzyme and the change-over of polarity. It is considered possible from the investigation in which sulfonated polysulfon ultrafine filtering membrane as charge type membrane is combined with electric field to separate nucleic acids of similar molecular weight by their electric charge. 20 refs., 7 figs.

  5. Preemptive scheduling in a two-stage supply chain to minimize the makespan

    NARCIS (Netherlands)

    Pei, Jun; Fan, Wenjuan; Pardalos, Panos M.; Liu, Xinbao; Goldengorin, Boris; Yang, Shanlin

    2015-01-01

    This paper deals with the problem of preemptive scheduling in a two-stage supply chain framework. The supply chain environment contains two stages: production and transportation. In the production stage jobs are processed on a manufacturer's bounded serial batching machine, preemptions are allowed,

  6. Complex Dynamics of a Continuous Bertrand Duopoly Game Model with Two-Stage Delay

    Directory of Open Access Journals (Sweden)

    Junhai Ma

    2016-07-01

    Full Text Available This paper studies a continuous Bertrand duopoly game model with two-stage delay. Our aim is to investigate the influence of delay and weight on the complex dynamic characteristics of the system. We obtain the bifurcation point of the system respect to delay parameter by calculating. In addition, the dynamic properties of the system are simulated by power spectrum, attractor, bifurcation diagram, the largest Lyapunov exponent, 3D surface chart, 4D Cubic Chart, 2D parameter bifurcation diagram, and 3D parameter bifurcation diagram. The results show that the stability of the system depends on the delay and weight, in order to maintain stability of price and ensure the firm profit, the firms must control the parameters in the reasonable region. Otherwise, the system will lose stability, and even into chaos, which will cause fluctuations in prices, the firms cannot be profitable. Finally, the chaos control of the system is carried out by a control strategy of the state variables’ feedback and parameter variation, which effectively avoid the damage of chaos to the economic system. Therefore, the results of this study have an important practical significance to make decisions with multi-stage delay for oligopoly firms.

  7. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  8. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment.

  9. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    Science.gov (United States)

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  10. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid

    2012-08-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.

  11. Improvement of an integrated system of membrane bioreactor and worm reactor by phosphorus removal using additional post-chemical treatment.

    Science.gov (United States)

    Liu, Jia; Zuo, Wei; Tian, Yu; Zhang, Jun; Li, Hui; Li, Lipin

    2016-11-01

    A membrane bioreactor (MBR) coupled with a worm reactor (SSBWR) was designed as SSBWR-MBR for sewage treatment and excess sludge reduction. However, total phosphorus (TP) release caused by worm predation in the SSBWR could increase the effluent TP concentration in the SSBWR-MBR. To decrease the amount of TP excreted, chemical treatment reactor was connected after the SSBWR-MBR to remove the excess phosphorus (P). The effects of chemical treatment at different time intervals on the performance of the SSBWR-MBR were assessed. The results showed that a maximum TP removal efficiency of 21.5 ± 1.0% was achieved in the SSBWR-MBR after chemical treatment. More importantly, a higher sulfate concentration induced by chemical treatment could promote TP release in the SSBWR, which provided further TP removal from the SSBWR-MBR. Additionally, chemical oxygen demand (COD) removal efficiency of the SSBWR-MBR was increased by 1.3% after effective chemical treatment. In the SSBWR-MBR, the chemical treatment had little effects on NH3-N removal and sludge production. Eventually, chemical treatment also alleviated the membrane fouling in the SSBWR-MBR. In this work, the improvement on TP, COD removal and membrane fouling alleviation was achieved in the SSBWR-MBR using additional chemical treatment.

  12. The bioreactor: a powerful tool for large-scale culture of animal cells.

    Science.gov (United States)

    Wang, Dianliang; Liu, Wanshun; Han, Baoqin; Xu, Ruian

    2005-10-01

    Bioreactors play a key role in the field of biologics, where they are used for the production of recombinant therapeutic proteins by large-scale cultivation of animal cells. There are several types of bioreactors, including stirred-tank, airlift, hollow-fiber, and Rotary Cell Culture System (RCCS) designs. The stirred-tank bioreactor is one of the most commonly used types, and is used both for industrial applications and laboratory research. The RCCS, invented by NASA, is increasingly used in the area of tissue engineering for medical purposes. Important improvements have been made in the design of traditional bioreactors, and new types of bioreactor are also being developed such as Couette-Taylor bioreactor, multifunctional-membrane bioreactor, and shaking bioreactor. Work is also progressing on techniques to improve the performance of bioreactors, including perfusion culture, the use of microcarriers, and methods of suppressing apoptosis and of monitoring cell growth in real time. Given the demand for the production by animal cells for use in the growing number of clinical applications, further advances in bioreactor technology can be expected during the next few years. Two main goals will be pursued: firstly, to increase output by high density cultivation of animal cells to produce high value protein pharmaceutics or viral vectors for clinical gene therapy; and secondly, to create a three-dimension space similar to that of an in vivo environment to regenerate tissue or organ and to reproduce valuable cells that are hard to culture in the traditional culture system.

  13. Hairy root culture: bioreactor design and process intensification.

    Science.gov (United States)

    Stiles, Amanda R; Liu, Chun-Zhao

    2013-01-01

    The cultivation of hairy roots for the production of secondary metabolites offers numerous advantages; hairy roots have a fast growth rate, are genetically stable, and are relatively simple to maintain in phytohormone free media. Hairy roots provide a continuous source of secondary metabolites, and are useful for the production of chemicals for pharmaceuticals, cosmetics, and food additives. In order for hairy roots to be utilized on a commercial scale, it is necessary to scale-up their production. Over the last several decades, significant research has been conducted on the cultivation of hairy roots in various types of bioreactor systems. In this review, we discuss the advantages and disadvantages of various bioreactor systems, the major factors related to large-scale bioreactor cultures, process intensification technologies and overview the mathematical models and computer-aided methods that have been utilized for bioreactor design and development.

  14. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals.

    Science.gov (United States)

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-06-17

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals.

  15. 后喷技术与两级增压系统的优化匹配对燃烧过程的影响%Effect of Optimization Matching Between Post Injection Technology and Two-Stage Turbocharging System on Combustion Process

    Institute of Scientific and Technical Information of China (English)

    韩志强; 战强; 吴松林; 周小波; 苏万华

    2013-01-01

    根据“高密度-低温燃烧”方案匹配的两级增压系统,使重型柴油机在中低速能实现低排放和高有效热效率。然而,在高速中高负荷工况,增压系统不经过必要的调压手段,会存在排气背压过高的问题,从而使柴油机油耗和烟度均较高,有效热效率较低。为此,本文采用后喷技术和涡端放气技术,通过分析后喷定时、主后喷油量比例和进气压力等参数对排放和有效热效率的影响,得到油路参数与气路参数的协同优化控制方法。研究表明,在高涡前压力工况,相比单次喷射模式,采用“主喷+后喷”的喷油模式,能实现更低排放,但有效热效率会下降。进一步研究发现,随着后喷定时和主后喷油量比例的变化,存在一个适当的后喷定时和后喷油量区间,使缸内碳烟易于降低。同时,随着涡端旁通阀开度增加,NOx排放会不断减小,碳烟排放会出现一个拐点,呈现先减小后增加的趋势,而有效热效率则逐渐增加。这充分说明,在高涡前压力工况,适时放气,能同时改善排放和有效热效率。%Low emissions and high brake thermal efficiency could be achieved in medium and low speed condition by the heavy-duty diesel engine with two-stage turbocharging system based on the high-density low temperature combus-tion theory. However,if the turbocharging system had none pressure regulation means,the exhaust backpressure would be so high that the fuel consumption and smoke intensity of the diesel engine would be relatively high and the brake thermal efficiency would be relatively low in high speed,medium and high load conditions. So post injection and turbo-side deflating technology was used in this paper,and the control method of collaborative optimization of oil and gas parameters could be achieved by analyzing the parameters of post injection timing,fuel quantity propor-tion of main and post injection

  16. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development.

  17. A two-stage storage routing model for green roof runoff detention.

    Science.gov (United States)

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  18. Food behavior change in late-life widowhood: A two-stage process.

    Science.gov (United States)

    Vesnaver, Elisabeth; Keller, Heather H; Sutherland, Olga; Maitland, Scott B; Locher, J L

    2015-12-01

    Widowhood is a common life event for married older women. Prior research has found disruptions in eating behaviors to be common among widows. Little is known about the process underlying these disruptions. The aim of this study was to generate a theoretical understanding of the changing food behaviors of older women during the transition of widowhood. Qualitative methods based on constructivist grounded theory guided by a critical realist worldview were used. Individual active interviews were conducted with 15 community-living women, aged 71-86 years, living alone, and widowed six months to 15 years at the time of the interview. Participants described a variety of educational backgrounds and levels of health, were mainly white and of Canadian or European descent, and reported sufficient income to meet their needs. The loss of regular shared meals initiated a two-stage process whereby women first fall into new patterns and then re-establish the personal food system, thus enabling women to redirect their food system from one that satisfied the couple to one that satisfied their personal food needs. Influences on the trajectory of the change process included the couple's food system, experience with nutritional care, food-related values, and food-related resources. Implications for research and practice are discussed.

  19. Two-stage removal of nitrate from groundwater using biological and chemical treatments.

    Science.gov (United States)

    Ayyasamy, Pudukadu Munusamy; Shanthi, Kuppusamy; Lakshmanaperumalsamy, Perumalsamy; Lee, Soon-Jae; Choi, Nag-Choul; Kim, Dong-Ju

    2007-08-01

    In this study, we attempted to treat groundwater contaminated with nitrate using a two-stage removal system: one is biological treatment using the nitrate-degrading bacteria Pseudomonas sp. RS-7 and the other is chemical treatment using a coagulant. For the biological system, the effect of carbon sources on nitrate removal was first investigated using mineral salt medium (MSM) containing 500 mg l(-1) nitrate to select the most effective carbon source. Among three carbon sources, namely, glucose, starch and cellulose, starch at 1% was found to be the most effective. Thus, starch was used as a representative carbon source for the remaining part of the biological treatment where nitrate removal was carried out for MSM solution and groundwater samples containing 500 mg l(-1) and 460 mg l(-1) nitrate, respectively. About 86% and 89% of nitrate were removed from the MSM solution and groundwater samples, respectively at 72 h. Chemical coagulants such as alum, lime and poly aluminium chloride were tested for the removal of nitrate remaining in the samples. Among the coagulants, lime at 150 mg l(-1) exhibited the highest nitrate removal efficiency with complete disappearance for the MSM solutions. Thus, a combined system of biological and chemical treatments was found to be more effective for the complete removal of nitrate from groundwater.

  20. Numerical simulation of a step-piston type series two-stage pulse tube refrigerator

    Science.gov (United States)

    Zhu, Shaowei; Nogawa, Masafumi; Inoue, Tatsuo

    2007-09-01

    A two-stage pulse tube refrigerator has a great advantage in that there are no moving parts at low temperatures. The problem is low theoretical efficiency. In an ordinary two-stage pulse tube refrigerator, the expansion work of the first stage pulse tube is rather large, but is changed to heat. The theoretical efficiency is lower than that of a Stirling refrigerator. A series two-stage pulse tube refrigerator was introduced for solving this problem. The hot end of the regenerator of the second stage is connected to the hot end of the first stage pulse tube. The expansion work in the first stage pulse tube is part of the input work of the second stage, therefore the efficiency is increased. In a simulation result for a step-piston type two-stage series pulse tube refrigerator, the efficiency is increased by 13.8%.

  1. Theory and calculation of two-stage voltage stabilizer on zener diodes

    Directory of Open Access Journals (Sweden)

    G. S. Veksler

    1966-12-01

    Full Text Available Two-stage stabilizer is compared with one-stage. There have been got formulas, which give the possibility to make an engineering calculation. There is an example of the calculation.

  2. Experiment research on two-stage dry-fed entrained flow coal gasifier

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The process flow and the main devices of a new two-stage dry-fed coal gasification pilot plant with a throughout of 36 t/d are introduced in this paper. For comparison with the traditional one-stage gasifiers, the influences of the coal feed ratio between two stages on the performance of the gasifier are detailedly studied by a series of experiments. The results reveal that the two-stage gasification decreases the temperature of the syngas at the outlet of the gasifier, simplifies the gasification process, and reduces the size of the syngas cooler. Moreover, the cold gas efficiency of the gasifier can be improved by using the two-stage gasification. In our experiments, the efficiency is about 3%-6% higher than the existing one-stage gasifiers.

  3. TWO-STAGE CHARACTER CLASSIFICATION : A COMBINED APPROACH OF CLUSTERING AND SUPPORT VECTOR CLASSIFIERS

    NARCIS (Netherlands)

    Vuurpijl, L.; Schomaker, L.

    2000-01-01

    This paper describes a two-stage classification method for (1) classification of isolated characters and (2) verification of the classification result. Character prototypes are generated using hierarchical clustering. For those prototypes known to sometimes produce wrong classification results, a

  4. A Two-Stage Waste Gasification Reactor for Mars In-Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a two-stage waste processing reactor for space applications. Our proposed technology converts waste from space missions into...

  5. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system.

    Science.gov (United States)

    Guadie, Awoke; Xia, Siqing; Zhang, Zhiqiang; Zeleke, Jemaneh; Guo, Wenshan; Ngo, Huu Hao; Hermanowicz, Slawomir W

    2014-03-01

    Effect of intermittent aeration cycle (IAC=15/45-60/60min) on nutrient removal and microbial community structure was investigated using a novel fluidized bed reactor-membrane bioreactor (FBR-MBR) combo system. FBR alone was found more efficient for removing PO4-P (>85%) than NH4-N (98%). Efficient nitrification, stable mixed liquor suspended solid and reduced transmembrane pressure was also achieved. Quantitative real-time polymerase chain reaction results of total bacteria 16S rRNA gene copies per mL of mixed-liquor varied from (2.48±0.42)×10(9) initial to (2.74±0.10)×10(8), (6.27±0.16)×10(9) and (9.17±1.78)×10(9) for 15/45, 45/15 and 60/60min of IACs, respectively. The results of clone library analysis revealed that Proteobacteria (59%), Firmicutes (12%) and Bacteroidetes (11%) were the dominant bacterial group in all samples. Overall, the combo system performs optimum nutrient removal and host stable microbial communities at 45/15min of IAC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Study on supply and demand relation based on two stages division of market of Chinese materia medica].

    Science.gov (United States)

    Yang, Guang; Guo, Lan-Ping; Wang, Nuo; Zeng, Yan; Huang, Lu-Qi

    2014-01-01

    The complex production processes and long industrial chain in traditional Chinese medicine (TCM) market result in difficulty in Chinese market microstructure research. Based on the defining the logical relationships among different concepts. This paper divides TCM market into two stages as Chinese materia medica resource market and traditional Chinese Patent Medicines market. Under this foundation, we investigated the supply capacity, approaching rules and motivation system of suppliers in TCM market, analyzed the demand situation in the perspective of demand side, and evaluated the purchasing power in terms of population profile, income, and insurance. Furthermore we also analyzed the price formation mechanism in two stages of TCM market. We hope this study can make a positive and promotion effect on TCM market related research.

  7. A queuing-theory-based interval-fuzzy robust two-stage programming model for environmental management under uncertainty

    Science.gov (United States)

    Sun, Y.; Li, Y. P.; Huang, G. H.

    2012-06-01

    In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.

  8. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...... that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what...... are the limitations of different types of mod - els? This paper will provide examples of models that have been published in the literature for use across bioreactor scales, including computational fluid dynamics (CFD) and population balance models. Furthermore, the importance of good modeling practice...

  9. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  10. Maximally efficient two-stage screening: Determining intellectual disability in Taiwanese military conscripts

    Directory of Open Access Journals (Sweden)

    Chia-Chang Chien

    2009-01-01

    Full Text Available Chia-Chang Chien1, Shu-Fen Huang1,2,3,4, For-Wey Lung1,2,3,41Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; 2Graduate Institute of Behavioral Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan; 4Calo Psychiatric Center, Pingtung County, TaiwanObjective: The purpose of this study was to apply a two-stage screening method for the large-scale intelligence screening of military conscripts.Methods: We collected 99 conscripted soldiers whose educational levels were senior high school level or lower to be the participants. Every participant was required to take the Wisconsin Card Sorting Test (WCST and the Wechsler Adult Intelligence Scale-Revised (WAIS-R assessments.Results: Logistic regression analysis showed the conceptual level responses (CLR index of the WCST was the most significant index for determining intellectual disability (ID; FIQ ≤ 84. We used the receiver operating characteristic curve to determine the optimum cut-off point of CLR. The optimum one cut-off point of CLR was 66; the two cut-off points were 49 and 66. Comparing the two-stage window screening with the two-stage positive screening, the area under the curve and the positive predictive value increased. Moreover, the cost of the two-stage window screening decreased by 59%.Conclusion: The two-stage window screening is more accurate and economical than the two-stage positive screening. Our results provide an example for the use of two-stage screening and the possibility of the WCST to replace WAIS-R in large-scale screenings for ID in the future.Keywords: intellectual disability, intelligence screening, two-stage positive screening, Wisconsin Card Sorting Test, Wechsler Adult Intelligence Scale-Revised

  11. 一种生化反应器智能自适应学习和预测神经元网络系统%An Intelligent Neural Networks System for Adaptive Learning and Prediction of a Bioreactor Benchmark Process

    Institute of Scientific and Technical Information of China (English)

    邹志云; 于德弘; 冯文强; 于鲁平; 郭宁

    2008-01-01

    The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark proc-ess is studied using NeurOn-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment, and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quickly track the time-varying and nonlinear behavior of the bioreactor.

  12. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    Science.gov (United States)

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Two-stage biofilter for effective NH3 removal from waste gases containing high concentrations of H2S.

    Science.gov (United States)

    Chung, Ying-Chien; Ho, Kuo-Ling; Tseng, Ching-Ping

    2007-03-01

    A high H2S concentration inhibits nitrification when H2S and NH3 are simultaneously treated in a single biofilter. To improve NH3 removal from waste gases containing concentrated H2S, a two-stage biofilter was designed to solve the problem. In this study, the first biofilter, inoculated with Thiobacillus thioparus, was intended mainly to remove H2S and to reduce the effect of H2S concentration on nitrification in the second biofilter, and the second biofilter, inoculated with Nitrosomonas europaea, was to remove NH3. Extensive studies, which took into account the characteristics of gas removal, the engineering properties of the two biofilters, and biological parameters, were conducted in a 210-day operation. The results showed that an average 98% removal efficiency for H2S and a 100% removal efficiency for NH3 (empty bed retention time = 23-180 sec) were achieved after 70 days. The maximum degradation rate for NH3 was measured as 2.35 g N day(-1) kg of dry granular activated carbon(-1). Inhibition of nitrification was not found in the biofilter. This two-stage biofilter also exhibited good adaptability to shock loading and shutdown periods. Analysis of metabolic product and observation of the bacterial community revealed no obvious acidification or alkalinity phenomena. In addition, a lower moisture content (approximately 40%) for microbial survival and low pressure drop (average 24.39 mm H2O m(-1)) for system operation demonstrated that the two-stage biofilter was energy saving and economic. Thus, the two-stage biofilter is a feasible system to enhance NH3 removal in the concentrated coexistence of H2S.

  14. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  15. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  16. An Enhanced Two-Stage Impulse Noise Removal Technique based on Fast ANFIS and Fuzzy Decision

    Directory of Open Access Journals (Sweden)

    V. Saradhadevi

    2011-09-01

    Full Text Available Image enhancement plays a vital role in various applications. There are many techniques to remove the noise from the image and produce the clear visual of the image. Moreover, there are several filters and image smoothing techniques available in the literature. All these available techniques have certain limitations. Recently, neural networks are found to be a very efficient tool for image enhancement. A novel two-stage noise removal technique for image enhancement and noise removal is proposed in this paper. In noise removal stage, Adaptive Neuro-Fuzzy Inference System (ANFIS with a Modified Levenberg-Marquardt training algorithm was used to eliminate the impulse noise. The usage of Modified Levenberg-Marquardt training algorithm will reduce the execution time. In the image enhancement stage, the fuzzy decision rules inspired by the Human Visual System (HVS are used to categorize the image pixels into human perception sensitive class and nonsensitive class, and to enhance the quality of the image. The Hyper trapezoidal fuzzy membership function is used in the proposed technique. In order to improve the sensitive regions with higher visual quality, a Neural Network (NN is proposed. The experiment is conducted with standard image. It is observed from the experimental result that the proposed FANFIS shows significant performance when compared to existing methods.

  17. New Grapheme Generation Rules for Two-Stage Modelbased Grapheme-to-Phoneme Conversion

    Directory of Open Access Journals (Sweden)

    Seng Kheang

    2015-01-01

    Full Text Available The precise conversion of arbitrary text into its  corresponding phoneme sequence (grapheme-to-phoneme or G2P conversion is implemented in speech synthesis and recognition, pronunciation learning software, spoken term detection and spoken document retrieval systems. Because the quality of this module plays an important role in the performance of such systems and many problems regarding G2P conversion have been reported, we propose a novel two-stage model-based approach, which is implemented using an existing weighted finite-state transducer-based G2P conversion framework, to improve the performance of the G2P conversion model. The first-stage model is built for automatic conversion of words  to phonemes, while  the second-stage  model utilizes the input graphemes and output phonemes obtained from the first stage to determine the best final output phoneme sequence. Additionally, we designed new grapheme generation rules, which enable extra detail for the vowel and consonant graphemes appearing within a word. When compared with previous approaches, the evaluation results indicate that our approach using rules focusing on the vowel graphemes slightly improved the accuracy of the out-of-vocabulary dataset and consistently increased the accuracy of the in-vocabulary dataset.

  18. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2015-03-01

    Full Text Available Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogenesis/methanogenesis. The fermentation liquid of the pressurized anaerobic filter was circulated periodically via a flash tank, operating at atmospheric pressure. Due to the pressure drop, part of dissolved carbon dioxide was released from the liquid phase into the flash tank. The depressurized fermentation liquid was then recycled to the pressurized reactor. Three different flow rates (0 L·day−1, 20 L·day−1 and 40 L·day−1 were tested with three repetitions. As the daily recycled flashed liquid flow was increased from 0 to 40 L, six times as much as the daily feeding, the methane content in the biogas increased from 75 molar percent (mol% to 87 mol%. The pH value of the substrate in the methane reactor rose simultaneously from 6.5 to 6.7. The experimental data were verified by calculation.

  19. Two-stage seasonal streamflow forecasts to guide water resources decisions and water rights allocation

    Science.gov (United States)

    Block, P. J.; Gonzalez, E.; Bonnafous, L.

    2011-12-01

    Decision-making in water resources is inherently uncertain producing copious risks, ranging from operational (present) to planning (season-ahead) to design/adaptation (decadal) time-scales. These risks include human activity and climate variability/change. As the risks in designing and operating water systems and allocating available supplies vary systematically in time, prospects for predicting and managing such risks become increasingly attractive. Considerable effort has been undertaken to improve seasonal forecast skill and advocate for integration to reduce risk, however only minimal adoption is evident. Impediments are well defined, yet tailoring forecast products and allowing for flexible adoption assist in overcoming some obstacles. The semi-arid Elqui River basin in Chile is contending with increasing levels of water stress and demand coupled with insufficient investment in infrastructure, taxing its ability to meet agriculture, hydropower, and environmental requirements. The basin is fed from a retreating glacier, with allocation principles founded on a system of water rights and markets. A two-stage seasonal streamflow forecast at leads of one and two seasons prescribes the probability of reductions in the value of each water right, allowing water managers to inform their constituents in advance. A tool linking the streamflow forecast to a simple reservoir decision model also allows water managers to select a level of confidence in the forecast information.

  20. Predictive Modeling of a Two-Stage Gearbox towards Fault Detection

    Directory of Open Access Journals (Sweden)

    Edward J. Diehl

    2016-01-01

    Full Text Available This paper presents a systematic approach to the modeling and analysis of a benchmark two-stage gearbox test bed to characterize gear fault signatures when processed with harmonic wavelet transform (HWT analysis. The eventual goal of condition monitoring is to be able to interpret vibration signals from nonstationary machinery in order to identify the type and severity of gear damage. To advance towards this goal, a lumped-parameter model that can be analyzed efficiently is developed which characterizes the gearbox vibratory response at the system level. The model parameters are identified through correlated numerical and experimental investigations. The model fidelity is validated first by spectrum analysis, using constant speed experimental data, and secondly by HWT analysis, using nonstationary experimental data. Model prediction and experimental data are compared for healthy gear operation and a seeded fault gear with a missing tooth. The comparison confirms that both the frequency content and the predicted, relative response magnitudes match with physical measurements. The research demonstrates that the modeling method in combination with the HWT data analysis has the potential for facilitating successful fault detection and diagnosis for gearbox systems.

  1. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  2. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    Science.gov (United States)

    2012-01-01

    Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724

  3. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    Directory of Open Access Journals (Sweden)

    Somerville Robert PT

    2012-04-01

    Full Text Available Abstract Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols.

  4. AREA DETERMINATION OF DIABETIC FOOT ULCER IMAGES USING A CASCADED TWO-STAGE SVM BASED CLASSIFICATION.

    Science.gov (United States)

    Wang, Lei; Pedersen, Peder; Agu, Emmanuel; Strong, Diane; Tulu, Bengisu

    2016-11-23

    It is standard practice for clinicians and nurses to primarily assess patients' wounds via visual examination. This subjective method can be inaccurate in wound assessment and also represents a significant clinical workload. Hence, computer-based systems, especially implemented on mobile devices, can provide automatic, quantitative wound assessment and can thus be valuable for accurately monitoring wound healing status. Out of all wound assessment parameters, the measurement of the wound area is the most suitable for automated analysis. Most of the current wound boundary determination methods only process the image of the wound area along with a small amount of surrounding healthy skin. In this paper, we present a novel approach that uses Support Vector Machine (SVM) to determine the wound boundary on a foot ulcer image captured with an image capture box, which provides controlled lighting, angle and range conditions. The Simple Linear Iterative Clustering (SLIC) method is applied for effective super-pixel segmentation. A cascaded two-stage classifier is trained as follows: in the first stage a set of k binary SVM classifiers are trained and applied to different subsets of the entire training images dataset, and a set of incorrectly classified instances are collected. In the second stage, another binary SVM classifier is trained on the incorrectly classified set. We extracted various color and texture descriptors from super-pixels that are used as input for each stage in the classifier training. Specifically, we apply the color and Bag-of-Word (BoW) representation of local Dense SIFT features (DSIFT) as the descriptor for ruling out irrelevant regions (first stage), and apply color and wavelet based features as descriptors for distinguishing healthy tissue from wound regions (second stage). Finally, the detected wound boundary is refined by applying a Conditional Random Field (CRF) image processing technique. We have implemented the wound classification on a Nexus

  5. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    Full Text Available Hydrogen is considered one of the possible main energy carriers for the future, thanks to its unique environmental properties. Indeed, its energy content (120 MJ/kg can be exploited virtually without emitting any exhaust in the atmosphere except for water. Renewable production of hydrogen can be obtained through common biological processes on which relies anaerobic digestion, a well-established technology in use at farm-scale for treating different biomass and residues. Despite two-stage hydrogen and methane producing fermentation is a simple variant of the traditional anaerobic digestion, it is a relatively new approach mainly studied at laboratory scale. It is based on biomass fermentation in two separate, seuqential stages, each maintaining conditions optimized to promote specific bacterial consortia: in the first acidophilic reactorhydrogen is produced production, while volatile fatty acids-rich effluent is sent to the second reactor where traditional methane rich biogas production is accomplished. A two-stage pilot-scale plant was designed, manufactured and installed at the experimental farm of the University of Milano and operated using a biomass mixture of livestock effluents mixed with sugar/starch-rich residues (rotten fruits and potatoes and expired fruit juices, afeedstock mixture based on waste biomasses directly available in the rural area where plant is installed. The hydrogenic and the methanogenic reactors, both CSTR type, had a total volume of 0.7m3 and 3.8 m3 respectively, and were operated in thermophilic conditions (55 2 °C without any external pH control, and were fully automated. After a brief description of the requirements of the system, this contribution gives a detailed description of its components and of engineering solutions to the problems encountered during the plant realization and start-up. The paper also discusses the results obtained in a first experimental run which lead to production in the range of previous

  6. Neuroscience and approach/avoidance personality traits: a two stage (valuation-motivation) approach.

    Science.gov (United States)

    Corr, Philip J; McNaughton, Neil

    2012-11-01

    Many personality theories link specific traits to the sensitivities of the neural systems that control approach and avoidance. But there is no consensus on the nature of these systems. Here we combine recent advances in economics and neuroscience to provide a more solid foundation for a neuroscience of approach/avoidance personality. We propose a two-stage integration of valuation (loss/gain) sensitivities with motivational (approach/avoidance/conflict) sensitivities. Our key conclusions are: (1) that valuation of appetitive and aversive events (e.g. gain and loss as studied by behavioural economists) is an independent perceptual input stage--with the economic phenomenon of loss aversion resulting from greater negative valuation sensitivity compared to positive valuation sensitivity; (2) that valuation of an appetitive stimulus then interacts with a contingency of presentation or omission to generate a motivational 'attractor' or 'repulsor', respectively (vice versa for an aversive stimulus); (3) the resultant behavioural tendencies to approach or avoid have distinct sensitivities to those of the valuation systems; (4) while attractors and repulsors can reinforce new responses they also, more usually, elicit innate or previously conditioned responses and so the perception/valuation-motivation/action complex is best characterised as acting as a 'reinforcer' not a 'reinforcement'; and (5) approach-avoidance conflict must be viewed as activating a third motivation system that is distinct from the basic approach and avoidance systems. We provide examples of methods of assessing each of the constructs within approach-avoidance theories and of linking these constructs to personality measures. We sketch a preliminary five-element reinforcer sensitivity theory (RST-5) as a first step in the integration of existing specific approach-avoidance theories into a coherent neuroscience of personality.

  7. Experimental evaluation of the inter-stage conditions of a two-stage refrigeration cycle using a compound compressor

    Energy Technology Data Exchange (ETDEWEB)

    Torrella, E. [Department of Applied Thermodynamics, Camino de Vera, 14, Polytechnic University of Valencia, E-46022 Valencia (Spain); Llopis, R.; Cabello, R. [Department of Mechanical Engineering and Construction, Campus de Riu Sec, Jaume I University, E-12071 Castellon (Spain)

    2009-03-15

    The aim of the present paper is to detail an analysis, based on experimental data, of the inter-stage working conditions of a two-stage vapour compression facility equipped with a compound compressor, which operates with the most usual inter-stage configurations (two-stage with direct liquid injection and two-stage with subcooler) in medium- and low-capacity commercial refrigeration applications. The experimental analysis is performed in an evaporating temperature range between -36 and -20 C, and in a condensing temperature range between 30 and 47 C, using one of the fluids most widely-used in Europe for low-temperature applications, the R-404a. The inter-stage working temperature/pressure obtained in the tests has been contrasted with the two usual criterion of the optimum working conditions definition: the arithmetical mean of the refrigerant condensing and evaporating temperatures and the criterion of equal pressure ratios in both stages. This paper presents the differences and affinities with the criterion and analyses the influence of the intermediate systems (direct liquid injection and subcooler) on the inter-stage operating conditions. (author)

  8. Two-Stage Robust Security-Constrained Unit Commitment with Optimizable Interval of Uncertain Wind Power Output

    Directory of Open Access Journals (Sweden)

    Dayan Sun

    2017-01-01

    Full Text Available Because wind power spillage is barely considered, the existing robust unit commitment cannot accurately analyze the impacts of wind power accommodation on on/off schedules and spinning reserve requirements of conventional generators and cannot consider the network security limits. In this regard, a novel double-level robust security-constrained unit commitment formulation with optimizable interval of uncertain wind power output is firstly proposed in this paper to obtain allowable interval solutions for wind power generation and provide the optimal schedules for conventional generators to cope with the uncertainty in wind power generation. The proposed double-level model is difficult to be solved because of the invalid dual transform in solution process caused by the coupling relation between the discrete and continuous variables. Therefore, a two-stage iterative solution method based on Benders Decomposition is also presented. The proposed double-level model is transformed into a single-level and two-stage robust interval unit commitment model by eliminating the coupling relation, and then this two-stage model can be solved by Benders Decomposition iteratively. Simulation studies on a modified IEEE 26-generator reliability test system connected to a wind farm are conducted to verify the effectiveness and advantages of the proposed model and solution method.

  9. A two-stage process for the anaerobic digestion of sludge generated during the production of bioethanol from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatou, K.; Dravillas, K.; Lyberatos, G.

    2003-07-01

    Sweet sorghum is an energy crop, often cultivated to recover energy in the form of ethanol, hydrogen etc by applying biological processes. These processes, however, produce a significant amount of sludge (bagasse) which contains the recalcitrant unconverted portion of sorghum, the non-hydrolyzed portion of the plant biomass as well as microbial biomass. In this work, the sludge from the alcoholic fermentation of sweet sorghum following a distillation step (to remove the generated bioethanol) was subjected to anaerobic digestion for further biodegradation and energy production (methane). A two-stage configuration for the anaerobic digestion of this type of industrial sludge was conceived and compared with a single stage anaerobic digestion of bagasse. For the two-stage process, the sludge was separated into one solid and one liquid stream. The solid portion of the sludge (9%) contributed mainly to the total organic load, although there was a significant organic load dissolved in the liquid portion too (28.73{+-}11.01 g/l). In the two stage system the solid and liquid phases of the sludge were separately treated under different operating conditions in two separate reactors: the solid phase in a thermophilic hydrolyzing reactor and the liquid phase in a mesophilic high-rate digester. The overall yield of the continuous two-stage process was 16 l methane/l wastewater at a hydraulic retention time of almost 20 days, while the maximum methane yield that could be achieved in batch experiments (duration 40d) was 30 l/l wastewater. (author)

  10. CO removal by two-stage methanation for polymer electrolyte fuel cell

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Li; Wanliang Mi; Juan Gong; Zhenlong Lu; Lihao Xu; Qingquan Su

    2008-01-01

    In order to remove CO to achieve lower CO content of below 10 ppm in the CO removal step of reformer for polymer electrolyte fuel cell (PEFC) co-generation systems, CO preferential methanation under various conditions were studied in this paper. Results showed that, with a single kind of catalyst, it was difficult to reach both CO removal depth and CO2 conversion ratio of below 5%. Thus, a two-stage methanation process applying two kinds of catalysts is proposed in this study, that is, one kind of catalyst with relatively low activity and high selectivity for the first stage at higher temperature, and another kind of catalyst with relatively high activity and high selectivity for the second stage at lower temperature. Experimental results showed that at the first stage CO content was decreased from 1% to below 0.1% at 250-300 ℃, and at the second stage to below 10 ppm at 150-185 ℃. CO2 conversion was kept less than 5%. At the same time, influence of inlet CO content and GHSV on CO removal depth was also discussed in this paper.

  11. A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

    Directory of Open Access Journals (Sweden)

    RAMKRISHNA KUNDU

    2017-03-01

    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  12. Two-Stage Chaos Optimization Search Application in Maximum Power Point Tracking of PV Array

    Directory of Open Access Journals (Sweden)

    Lihua Wang

    2014-01-01

    Full Text Available In order to deliver the maximum available power to the load under the condition of varying solar irradiation and environment temperature, maximum power point tracking (MPPT technologies have been used widely in PV systems. Among all the MPPT schemes, the chaos method is one of the hot topics in recent years. In this paper, a novel two-stage chaos optimization method is presented which can make search faster and more effective. In the process of proposed chaos search, the improved logistic mapping with the better ergodic is used as the first carrier process. After finding the current optimal solution in a certain guarantee, the power function carrier as the secondary carrier process is used to reduce the search space of optimized variables and eventually find the maximum power point. Comparing with the traditional chaos search method, the proposed method can track the change quickly and accurately and also has better optimization results. The proposed method provides a new efficient way to track the maximum power point of PV array.

  13. Two-stage collaborative global optimization design model of the CHPG microgrid

    Science.gov (United States)

    Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng

    2017-06-01

    With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.

  14. A two-stage heuristic method for vehicle routing problem with split deliveries and pickups

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Xiao-lei MA; Yun-teng LAO; Hai-yan YU; Yong LIU

    2014-01-01

    The vehicle routing problem (VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups (VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.

  15. Hydrogen and methane production from household solid waste in the two-stage fermentation process.

    Science.gov (United States)

    Liu, Dawei; Liu, Dapeng; Zeng, Raymond J; Angelidaki, Irini

    2006-06-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H(2)/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH(4)/g VS added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. pH was observed as a key factor affecting fermentation pathway in hydrogen production stage. The optimum pH range for hydrogen production in this system was in the range from 5 to 5.5. The short hydraulic retention time (2 days) applied in the first stage was enough to separate acidogenesis from methanogenesis. No additional control for preventing methanogenesis in the first stage was necessary. Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase.

  16. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  17. TWO-STAGE PRODUCTION SCHEDULING WITH AN OPTION OF OUTSOURCING FROM A REMOTE SUPPLIER

    Institute of Scientific and Technical Information of China (English)

    Xiangtong QI

    2009-01-01

    This paper studies a two-stage production system with n job orders where each job needs two sequential operations. In addition to the two in-house production facilities, the manufacturer has another option of outsourcing some stage-one operations to a remote outside supplier. The jobs with their stage-one operations outsourced are subject to a batch transportation delay from the outside supplier before their respective stage-two operations can be started in-house. The problem is to design an integrated schedule that considers both the in-house production and the outsourcing with the aim of optimally balancing the outsourcing cost and the makespan. The problem is NP-hard. We have developed an optimal algorithm and a heuristic algorithm to solve the problem, and conducted computational experiments to validate our model and algorithms. Our modeling and algorithm framework can be extended to handle other more general cases such as when the outside supplier has a production facility with a different processing efficiency and when there are many outside suppliers on a spot market.

  18. Novel two-stage piezoelectric-based electrical energy generators for low and variable speed rotary machinery

    Science.gov (United States)

    Rastegar, J.; Murray, R.

    2010-04-01

    A novel class of two-stage piezoelectric-based electrical energy generators is presented for rotary machinery in which the input speed is low and varies significantly, even reversing. Applications include wind mills, turbo-machinery for harvesting tidal flows, etc. Current technology using magnet-and-coil rotary generators require gearing or similar mechanisms to increase the input speed and make the generation cycle efficient. Variable speed-control mechanisms are also usually needed to achieve high mechanical to electrical energy conversion efficiency. Presented here are generators that do not require gearing or speed control mechanisms, significantly reducing complexity and cost, especially pertaining to maintenance and service. Additionally, these new generators can expand the application of energy harvesting to much slower input speeds than current technology allows. The primary novelty of this technology is the two-stage harvesting system. The harvesting environment (e.g. wind) provides input to the primary system, which is then used to successively excite a secondary system of vibratory elements into resonance - like strumming a guitar. The key advantage is that by having two decoupled systems, the low-andvarying- speed input can be converted into constant and much higher frequency vibrations. Energy is then harvested from the secondary system's vibrating elements with high efficiency using piezoelectric elements or magnet-and-coil generators. These new generators are uncomplicated, and can efficiently operate at widely varying and even reversing input speeds. Conceptual designs are presented for a number of generators and subsystems (e.g. for passing mechanical energy from the primary to the secondary system). Additionally, analysis of a complete two-stage energy harvesting system is discussed with predictions of performance and efficiency.

  19. Two-Stage Multi-Objective Collaborative Scheduling for Wind Farm and Battery Switch Station

    Directory of Open Access Journals (Sweden)

    Zhe Jiang

    2016-10-01

    Full Text Available In order to deal with the uncertainties of wind power, wind farm and electric vehicle (EV battery switch station (BSS were proposed to work together as an integrated system. In this paper, the collaborative scheduling problems of such a system were studied. Considering the features of the integrated system, three indices, which include battery swapping demand curtailment of BSS, wind curtailment of wind farm, and generation schedule tracking of the integrated system are proposed. In addition, a two-stage multi-objective collaborative scheduling model was designed. In the first stage, a day-ahead model was built based on the theory of dependent chance programming. With the aim of maximizing the realization probabilities of these three operating indices, random fluctuations of wind power and battery switch demand were taken into account simultaneously. In order to explore the capability of BSS as reserve, the readjustment process of the BSS within each hour was considered in this stage. In addition, the stored energy rather than the charging/discharging power of BSS during each period was optimized, which will provide basis for hour-ahead further correction of BSS. In the second stage, an hour-ahead model was established. In order to cope with the randomness of wind power and battery swapping demand, the proposed hour-ahead model utilized ultra-short term prediction of the wind power and the battery switch demand to schedule the charging/discharging power of BSS in a rolling manner. Finally, the effectiveness of the proposed models was validated by case studies. The simulation results indicated that the proposed model could realize complement between wind farm and BSS, reduce the dependence on power grid, and facilitate the accommodation of wind power.

  20. Method of oxygen-enriched two-stage underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Liu Hongtao; Chen Feng; Pan Xia; Yao Kai; Liu Shuqin

    2011-01-01

    Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times. A model test using the oxygen-enriched two-stage coal gasification method was carried out. The composition of the gas produced, the time ratio of the two stages, and the role of the temperature field were analysed. The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage. Feed oxygen concentrations of 30%,35%, 40%, 45%, 60%, or 80% gave time ratios (first stage to second stage) of 1:0.12, 1:0.21, 1:0.51, 1:0.64,1:0.90, and 1:4.0 respectively. Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4 ℃/min to 2.3-6.8 ℃/min. But this rate increased with increasing oxygen concentrations in the first stage. The caloric value of the syngas improves with increased oxygen concentration in the first stage. Injection of 80% oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time. The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm3 to 10.54 MJ/Nm3.