WorldWideScience

Sample records for two-stage anaerobic hydrogen

  1. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  2. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process

    DEFF Research Database (Denmark)

    Luo, Gang; Xie, Li; Zhou, Qi

    2011-01-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single......-stage methanogenic process (HRT 15d) under organic loading rate (OLR) 3gVS/(Ld). The two-stage process was still stable when the OLR was increased to 4.5gVS/(Ld), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3...

  3. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process.

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2011-09-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(Ld), while the single-stage process failed. The study further revealed that by changing the HRT(hydrogen):HRT(methane) ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridium thermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.

  4. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste.

    Science.gov (United States)

    Tawfik, A; Salem, A; El-Qelish, M

    2011-09-01

    A two-step anaerobic baffled reactor (ABR-1 and ABR-2) for H2 production from municipal food waste (MFW) was investigated at a temperature of 26 °C. In ABR-1, the average yield of H2 at an HRT of 26 h and OLR of 58 kg COD/m3 d was 250 ml H2/g VS removed. As unexpected; the H2 production in the ABR-2 was further increased up to 370 ml H2/gVS removed at a HRT of 26 h and OLR of 35 kg COD/m3 d. The total H2 yield in the two-step process was estimated to be 4.9 mol H2/mol hexose. The major part of H2 production in the ABR-1 was due to the conversion of COD(particulate) (36%). In the ABR-2 the H2 yield was mainly due to the conversion of COD in the soluble form (76%). Based on these results MFW could be ideal substrate for H2 production in a two-step ABR processes.

  5. Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System

    OpenAIRE

    Thompson, Reese S

    2008-01-01

    Hydrogen production by means of anaerobic fermentation was researched utilizing three different substrates. Synthetic wastewater, dairy manure, and cheese whey were combined together at different concentrations under batch anaerobic conditions to determine the optimal hydrogen producing potential and waste treatment of each. Cheese whey at a concentration of 55% was combined with dairy manure at a concentration of 45% to produce 1.53 liters of hydrogen per liter of substrate. These results...

  6. Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge.

    Science.gov (United States)

    Zhu, Heguang; Parker, Wayne; Conidi, Daniela; Basnar, Robert; Seto, Peter

    2011-07-01

    Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100°C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.

  7. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions.

    Science.gov (United States)

    Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina

    2017-01-01

    Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    Science.gov (United States)

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required.

  9. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  10. Biological hydrogen production from olive mill wastewater with two-stage processes

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Ela; Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, 06531, Ankara (Turkey); Guenduez, Ufuk; Yuecel, Meral [Department of Biology, Middle East Technical University, 06531, Ankara (Turkey); Tuerker, Lemi [Department of Chemistry, Middle East Technical University, 06531, Ankara (Turkey)

    2006-09-15

    In the present work two novel two-stage hydrogen production processes from olive mill wastewater (OMW) have been introduced. The first two-stage process involved dark-fermentation followed by a photofermentation process. Dark-fermentation by activated sludge cultures and photofermentation by Rhodobacter sphaeroides O.U.001 were both performed in 55ml glass vessels, under anaerobic conditions. In some cases of dark-fermentation, activated sludge was initially acclimatized to the OMW to provide the adaptation of microorganisms to the extreme conditions of OMW. The highest hydrogen production potential obtained was 29l{sub H{sub 2}}/l{sub OMW} after photofermentation with 50% (v/v) effluent of dark fermentation with activated sludge. Photofermentation with 50% (v/v) effluent of dark fermentation with acclimated activated sludge had the highest hydrogen production rate (0.008ll{sup -1}h{sup -1}). The second two-stage process involved a clay treatment step followed by photofermentation by R. sphaeroides O.U.001. Photofermentation with the effluent of the clay pretreatment process (4% (v/v)) gives the highest hydrogen production potential (35l{sub H{sub 2}}/l{sub OMW}), light conversion efficiency (0.42%) and COD conversion efficiency (52%). It was concluded that both pretreatment processes enhanced the photofermentative hydrogen production process. Moreover, hydrogen could be produced with highly concentrated OMW. Two-stage processes developed in the present investigation have a high potential for solving the environmental problems caused by OMW. (author)

  11. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1).

    Science.gov (United States)

    Blumensaat, F; Keller, J

    2005-01-01

    The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB/Simulink is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale.

  12. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    Science.gov (United States)

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  13. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  14. A two-stage process for the anaerobic digestion of sludge generated during the production of bioethanol from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatou, K.; Dravillas, K.; Lyberatos, G.

    2003-07-01

    Sweet sorghum is an energy crop, often cultivated to recover energy in the form of ethanol, hydrogen etc by applying biological processes. These processes, however, produce a significant amount of sludge (bagasse) which contains the recalcitrant unconverted portion of sorghum, the non-hydrolyzed portion of the plant biomass as well as microbial biomass. In this work, the sludge from the alcoholic fermentation of sweet sorghum following a distillation step (to remove the generated bioethanol) was subjected to anaerobic digestion for further biodegradation and energy production (methane). A two-stage configuration for the anaerobic digestion of this type of industrial sludge was conceived and compared with a single stage anaerobic digestion of bagasse. For the two-stage process, the sludge was separated into one solid and one liquid stream. The solid portion of the sludge (9%) contributed mainly to the total organic load, although there was a significant organic load dissolved in the liquid portion too (28.73{+-}11.01 g/l). In the two stage system the solid and liquid phases of the sludge were separately treated under different operating conditions in two separate reactors: the solid phase in a thermophilic hydrolyzing reactor and the liquid phase in a mesophilic high-rate digester. The overall yield of the continuous two-stage process was 16 l methane/l wastewater at a hydraulic retention time of almost 20 days, while the maximum methane yield that could be achieved in batch experiments (duration 40d) was 30 l/l wastewater. (author)

  15. Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure.

    Science.gov (United States)

    Bertin, Lorenzo; Grilli, Selene; Spagni, Alessandro; Fava, Fabio

    2013-01-01

    The valorisation of agroindustrial waste through anaerobic digestion represents a significant opportunity for refuse treatment and renewable energy production. This study aimed to improve the codigestion of cheese whey (CW) and cattle manure (CM) by an innovative two-stage process, based on concentric acidogenic and methanogenic phases, designed for enhancing performance and reducing footprint. The optimum CW to CM ratio was evaluated under batch conditions. Thereafter, codigestion was implemented under continuous-flow conditions comparing one- and two-stage processes. The results demonstrated that the addition of CM in codigestion with CW greatly improved the anaerobic process. The highest methane yield was obtained co-treating the two substrates at equal ratio by using the innovative two-stage process. The proposed system reached the maximum value of 258 mL(CH4) g(gv(-1), which was more than twice the value obtained by the one-stage process and 10% higher than the value obtained by the two-stage one.

  16. Performance assessment of two-stage anaerobic digestion of kitchen wastes.

    Science.gov (United States)

    Bo, Zhang; Pin-Jing, He

    2014-01-01

    This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process.

  17. Overcoming the bottlenecks of anaerobic digestion of olive mill solid waste by two-stage fermentation.

    Science.gov (United States)

    Stoyanova, Elitza; Lundaa, Tserennyam; Bochmann, Günther; Fuchs, Werner

    2017-02-01

    Two-stage anaerobic digestion (AD) of two-phase olive mill solid waste (OMSW) was applied for reducing the inhibiting factors by optimizing the acidification stage. Single-stage AD and co-fermentation with chicken manure were conducted coinstantaneous for direct comparison. Degradation of the polyphenols up to 61% was observed during the methanogenic stage. Nevertheless the concentration of phenolic substances was still high; the two-stage fermentation remained stable at OLR 1.5 kgVS/m³day. The buffer capacity of the system was twice as high, compared to the one-stage fermentation, without additives. The two-stage AD was a combined process - thermophilic first stage and mesophilic second stage, which pointed out to be the most profitable for AD of OMSW for the reduced hydraulic retention time (HRT) from 230 to 150 days, and three times faster than the single-stage and the co-fermentation start-up of the fermentation. The optimal HRT and incubation temperature for the first stage were determined to four days and 55°C. The performance of the two-stage AD concerning the stability of the process was followed by the co-digestion of OMSW with chicken manure as a nitrogen-rich co-substrate, which makes them viable options for waste disposal with concomitant energy recovery.

  18. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    Science.gov (United States)

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.

  19. Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system.

    Science.gov (United States)

    Yu, Liang; Zhao, Quanbao; Ma, Jingwei; Frear, Craig; Chen, Shulin

    2012-11-01

    This study established a comprehensive model to configure a new two-stage high solid anaerobic digester (HSAD) system designed for highly degradable organic fraction of municipal solid wastes (OFMSW). The HSAD reactor as the first stage was naturally separated into two zones due to biogas floatation and low specific gravity of solid waste. The solid waste was retained in the upper zone while only the liquid leachate resided in the lower zone of the HSAD reactor. Continuous stirred-tank reactor (CSTR) and advective-diffusive reactor (ADR) models were constructed in series to describe the whole system. Anaerobic digestion model No. 1 (ADM1) was used as reaction kinetics and incorporated into each reactor module. Compared with the experimental data, the simulation results indicated that the model was able to well predict the pH, volatile fatty acid (VFA) and biogas production.

  20. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...

  1. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    Science.gov (United States)

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  2. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2015-03-01

    Full Text Available Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogenesis/methanogenesis. The fermentation liquid of the pressurized anaerobic filter was circulated periodically via a flash tank, operating at atmospheric pressure. Due to the pressure drop, part of dissolved carbon dioxide was released from the liquid phase into the flash tank. The depressurized fermentation liquid was then recycled to the pressurized reactor. Three different flow rates (0 L·day−1, 20 L·day−1 and 40 L·day−1 were tested with three repetitions. As the daily recycled flashed liquid flow was increased from 0 to 40 L, six times as much as the daily feeding, the methane content in the biogas increased from 75 molar percent (mol% to 87 mol%. The pH value of the substrate in the methane reactor rose simultaneously from 6.5 to 6.7. The experimental data were verified by calculation.

  3. Biogas by two-stage microbial anaerobic and semi-continuous digestion of Chinese cabbage waste

    Institute of Scientific and Technical Information of China (English)

    Xiaoying Dong; Lijie Shao; Yan Wang; Wei Kou; Yanxin Cao; Dalei Zhang

    2015-01-01

    Anaerobic digestion of Chinese cabbage waste was investigated through a pilot-scale two-stage digester at a mesophilic temperature of 37 °C. In the acidification digester, the main product was acetic acid, with the maxi-mum concentration of 4289 mg·L-1 on the fourth day, accounting for 50.32%of total volatile fatty acids. The oxidation reduction potential (ORP) and NH4+-N level decreased gradual y with hydraulic retention time (HRT) of acidification. In the second digestion phase, the maximum methanogenic bacterial concentration reached 9.6 × 1010 ml-1 at the organic loading rate (OLR) of 3.5–4 kg VS·m-3, with corresponding HRT of 12–16 days. Accordingly, the optimal biogas production was 0.62 m3·(kg VS)-1, with methane content of 65%–68%. ORP and NH4+-N levels in the methanizer remained between-500 and-560 mV and 2000–4500 mg·L-1, respec-tively. Methanococcus and Methanosarcina served as the main methanogens in the anaerobic digester.

  4. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  5. Operation of a two-stage continuous fermentation process producing hydrogen and methane from artificial food wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Kohki; Mizuno, Shiho; Umeda, Yoshito; Sakka, Makiko [Toho Gas Co., Ltd. (Japan); Osaka, Noriko [Tokyo Gas Co. Ltd. (Japan); Sakka, Kazuo [Mie Univ. (Japan)

    2010-07-01

    An anaerobic two-stage continuous fermentation process with combined thermophilic hydrogenogenic and methanogenic stages (two-stage fermentation process) was applied to artificial food wastes on a laboratory scale. In this report, organic loading rate (OLR) conditions for hydrogen fermentation were optimized before operating the two-stage fermentation process. The OLR was set at 11.2, 24.3, 35.2, 45.6, 56.1, and 67.3 g-COD{sub cr} L{sup -1} day{sup -1} with a temperature of 60 C, pH5.5 and 5.0% total solids. As a result, approximately 1.8-2.0 mol-H{sub 2} mol-hexose{sup -1} was obtained at the OLR of 11.2-56.1 g-COD{sub cr} L{sup -1} day{sup -1}. In contrast, it was inferred that the hydrogen yield at the OLR of 67.3 g-COD{sub cr} L{sup -1} day{sup -1} decreased because of an increase in lactate concentration in the culture medium. The performance of the two-stage fermentation process was also evaluated over three months. The hydraulic retention time (HRT) of methane fermentation was able to be shortened 5.0 days (under OLR 12.4 g-COD{sub cr} L{sup -1} day{sup -1} conditions) when the OLR of hydrogen fermentation was 44.0 g-COD{sub cr} L{sup -1} day{sup -1}, and the average gasification efficiency of the two-stage fermentation process was 81% at the time. (orig.)

  6. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    OpenAIRE

    Kittikhun Taruyanon; Sarun Tejasen

    2010-01-01

    This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT) were 12 and 70 hours, re...

  7. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge.

    Science.gov (United States)

    Mohanty, Sagarika; Dafale, Nishant; Rao, Nageswara Neti

    2006-10-01

    A two-stage anaerobic-aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l(-1). The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l(-1 )and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV-VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic-aerobic treatment after a reaction period of 2 days.

  8. Development of a Novel Type Catalyst SY-2 for Two-Stage Hydrogenation of Pyrolysis Gasoline

    Institute of Scientific and Technical Information of China (English)

    Wu Linmei; Zhang Xuejun; Zhang Zhihua; Wang Fucun

    2004-01-01

    By using the group ⅢB or groupⅦB metals and modulating the characteristics of electric charges on carrier surface, improving the catalyst preparation process and techniques for loading the active metal components, a novel type SY-2 catalyst earmarked for two-stage hydrogenation of pyrolysis gasoline has been developed. The catalyst evaluation results have indicated that the novel catalyst is characterized by a better hydrogenation reaction activity to give higher aromatic yield.

  9. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS....... Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase. (c) 2006 Elsevier Ltd. All rights reserved.......A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage...

  10. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water.

    Science.gov (United States)

    Paudel, Sachin; Kang, Youngjun; Yoo, Yeong-Seok; Seo, Gyu Tae

    2017-03-01

    Two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system. Four different HRTs of 48, 24, 12, 8h were monitored for acidogenic reactor, which provided OLR of 17.7, 34.8, 70.8, 106gVS/L·d respectively. Two HRTs of 15days and 20days were studied with OLR of 1.24 and 1.76gVS/L·d respectively in methanogenic reactor. Hydrogen production at higher OLR and shorter HRT seemed favorable 106gVS/L·d (8h) in acidogenic reactor system. In methanogenic reactor system HRT of 20day with OLR of 1.24gVS/L·d was found optimum in terms of methane production and organic removal. The result of this study illustrated the optimum HRT of 8h and 20days in acidogenic stage and methanogenic stage for maximum hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp.

    Science.gov (United States)

    Stoyanova, Elitza; Forsthuber, Boris; Pohn, Stefan; Schwarz, Christian; Fuchs, Werner; Bochmann, Günther

    2014-04-01

    Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m³ d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system.

  12. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Ariunbaatar, Javkhlan, E-mail: jaka@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Scotto Di Perta, Ester [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy); Panico, Antonio [Telematic University PEGASO, Piazza Trieste e Trento, 48, 80132 Naples (Italy); Frunzo, Luigi [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Claudio, 21, 80125 Naples (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Lens, Piet N.L. [UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Pirozzi, Francesco [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy)

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  13. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Gilroyed, Brandon; Yanke, Jay; Gruninger, Robert; Vedres, Darrell; McAllister, Tim; Hao, Xiying

    2015-06-01

    Bioaugmentation with an anaerobic fungus, Piromyces rhizinflata YM600, was evaluated in an anaerobic two-stage system digesting corn silage and cattail. Comparable methane yields of 328.8±16.8mLg(-1)VS and 295.4±14.5mLg(-1)VS and hydrogen yields of 59.4±4.1mLg(-1)VS and 55.6±6.7mLg(-1)VS were obtained for unaugmented and bioaugmented corn silage, respectively. Similar CH4 yields of 101.0±4.8mLg(-1)VS and 104±19.1mLg(-1)VS and a low H2 yield (biohydrogen production.

  14. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  15. A New Soil Infiltration Technology for Decentralized Sewage Treatment: Two-Stage Anaerobic Tank and Soil Trench System

    Institute of Scientific and Technical Information of China (English)

    YE Chun; HU Zhan-Bo; KONG Hai-Nan; WANG Xin-Ze; HE Sheng-Bing

    2008-01-01

    The low removal efficiency of total nitrogen (TN) is one of the main disadvantages of traditional single stage subsurface infiltration system,which combines an anaerobic tank and a soil filter field.In this study,a full-scale,two-stage anaerobic tank and soil trench system was designed and operated to evaluate the feasibility and performances in treating sewage from a school campus for over a one-year monitoring period.The raw sewage was prepared and fed into the first anaerobic tank and second tank by 60% and 40%,respectively.This novel process could decrease chemical oxygen demand with the dichromate method by 89%-96%,suspended solids by 91%-97%,and total phosphorus by 91%-97%.The denitrification was satisfactory in the second stage soil trench,so the removals of TN as well as ammonia nitrogen (NH+4-N) reached 68%-75% and 96%-99%,respectively.It appeared that the removal efficiency of TN in this two-stage anaerobic tank and soil trench system was more effective than that in the single stage soil infiltration system.The effluent met the discharge standard for the sewage treatment plant (GB18918-2002) of China.

  16. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  17. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste.

    Science.gov (United States)

    Merlino, Giuseppe; Rizzi, Aurora; Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Oberti, Roberto; Adani, Fabrizio; Daffonchio, Daniele

    2013-04-15

    The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes.

  18. Hydrogen and methane production from household solid waste in the two-stage fermentation process.

    Science.gov (United States)

    Liu, Dawei; Liu, Dapeng; Zeng, Raymond J; Angelidaki, Irini

    2006-06-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H(2)/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH(4)/g VS added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. pH was observed as a key factor affecting fermentation pathway in hydrogen production stage. The optimum pH range for hydrogen production in this system was in the range from 5 to 5.5. The short hydraulic retention time (2 days) applied in the first stage was enough to separate acidogenesis from methanogenesis. No additional control for preventing methanogenesis in the first stage was necessary. Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase.

  19. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors.

    Science.gov (United States)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-03-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89 ml-H(2)/g-VS (190 ml-H(2)/g-sugars) and 307 ml-CH(4)/g-VS, respectively were achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4 days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total energy of 13.4 kJ/g-VS. Dominant hydrogen-producing bacteria in the H(2)-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH(4)-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results from this study suggest the two stage anaerobic process can be effectively used for energy recovery and for stabilization of hydrolysate at anaerobic conditions.

  20. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge.

    Science.gov (United States)

    Donoso-Bravo, Andrés; Pérez-Elvira, Sara; Fdz-Polanco, Fernando

    2015-01-01

    Two-phase anaerobic systems are being increasingly implemented for the treatment of both sewage sludge and organic fraction of municipal solid waste. Despite the good amount of mathematical models in anaerobic digestion, few have been applied in two-phase systems. In this study, a three-reaction mechanistic model has been developed, implemented and validated by using experimental data from a long-term anaerobic two-phase (TPAD) digester treating sewage sludge. A sensitivity analysis shows that the most influential parameters of the model are the ones related to the hydrolysis reaction and the activity of methanogens in the thermophilic reactor. The calibration procedure highlights a noticeable growth rate of the thermophilic methanogens throughout the evaluation period. Overall, all the measured variables are properly predicted by the model during both the calibration and the cross-validation periods. The model's representation of the organic matter behaviour is quite good. The most important disagreements are observed for the biogas production especially during the validation period. The whole application procedure underlines the ability of the model to properly predict the behaviour of this bioprocess.

  1. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste.

    Science.gov (United States)

    Ueno, Yoshiyuki; Fukui, Hisatomo; Goto, Masafumi

    2007-02-15

    A pilot-scale experimental plant for the production of hydrogen and methane by a two-stage fermentation process was constructed and operated using a mixture of pulverized garbage and shredded paper wastes. Thermophilic hydrogen fermentation was established at 60 degrees C in the first bioreactor by inoculating with seed microflora. Following the hydrogenogenic process, methanogenesis in the second bioreactor was conducted at 55 degrees C using an internal recirculation packed-bed reactor (IRPR). After conducting steady-state operations under a few selected conditions, the overall hydraulic retention time was optimized at 8 d (hydrogenogenesis, 1.2 d; methanogenesis, 6.8 d), producing 5.4 m3/m3/d of hydrogen and 6.1 m3/m3/d of methane with chemical oxygen demand and volatile suspended solid removal efficiencies of 79.3% and 87.8%, respectively. Maximum hydrogen production yield was calculated to be 2.4 mol/mol hexose and 56 L/kg COD loaded. The methanogenic performance of the IRPR was stable, although the organic loading rate and the composition of the effluent from the hydrogenogenic process fluctuated substantially. A clone library analysis of the microflora in the hydrogenogenic reactor indicated that hydrogen-producing Thermoanaerobacterium-related organisms in the inoculum were active in the hydrogen fermentation of garbage and paper wastes, although no aseptic operations were applied. We speculate that the operation at high temperature and the inoculation of thermophiles enabled the selective growth of the introduced microorganisms and gave hydrogen fermentation efficiencies comparable to laboratory experiments. This is the first report on fermentative production of hydrogen and methane from organic waste at an actual level.

  2. A two-stage anaerobic system for biodegrading wastewater containing terephthalic acid and high strength easily degradable pollutants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high strength easily biodegradable pollutants(represented by CODE) are strong inhibitors of terephthalic acid(TA) anaerobic biodegradation. At the same time, TA can inhibiteasily biodegradable pollutants removal under anaerobic conditionsto a limited extent. This mutual inhibition could happen and causea low removal efficiency of both TA and CODE, when the effluentfrom TA workshops containing TA and easily biodegradable pollutantsare treated by a single anaerobic reactor system. Based upon thetreatment kinetics analysis of both TA degradation and CODEremoval, a two-stage up-flow anaerobic sludge blanket and up-flowfixed film reactor(UASB-UAFF) system for dealing with this kind ofwastewater was developed and run successfully at laboratory scale.An UASB reactor with the methanogenic consortium as the first stageremoves the easily biodegradable pollutants(CODE). An UAFF reactor as the second stage is mainly in charge of TA degradation. At aHRT 18.5h, the CODE and TA removal rate of the system reached 89.2% and 71.6%, respectively.

  3. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

    KAUST Repository

    Lalaurette, Elodie

    2009-08-01

    A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol-glucose at a rate of 0.25 L H2/L-d with a corn stover lignocellulose feed, and 1.64 mol H2/mol-glucose and 1.65 L H2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70-85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC

  4. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors.

    Science.gov (United States)

    Held, Christof; Wellacher, Martin; Robra, Karl-Heinz; Gübitz, Georg M

    2002-01-01

    The mechanically separated liquid fraction of organic waste from households was used as a substrate for anaerobic fermentation. A two-step system consisting of a 2001 continuously stirred tank reactor (CSTR) and a 501 upflow anaerobic filter filled with glass foam pearls was constructed. The CSTR was operated for 5 months with a loading rate of 9.8 kg CSB m(-3) day(-1). At a resulting hydraulic retention time (HRT) of 24 days, 68% COD was degraded and a gas productivity of 4.0 m3 m(-3) day(-1) was achieved. Further digestion of the CSTR output was separately optimised in a 20 l-UFAF and based on these results a 50 l-UFAF was connected to the CSTR. At a resulting hydraulic retention time (HRT) of 6 days 38% COD was degraded and a gas productivity of 1.8 m3 m(-3) day(-1) was achieved with the 50 l-UFAF. Thus, the overall degradation efficiency of the two-phase system was 80%. The methane content (61%) of the biogas produced in the 50 l-UF

  5. Anaerobic digestion of sulfate-acidified cattle slurry: One-stage vs. two-stage.

    Science.gov (United States)

    Moset, Veronica; Ottosen, Lars Ditlev Mørck; Xavier, Cristiane de Almeida Neves; Møller, Henrik Bjarne

    2016-05-15

    Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology.

  6. Dairy manure resource recovery utilizing two-stage anaerobic digestion - Implications of solids fractionation.

    Science.gov (United States)

    Stowe, Edmond J; Coats, Erik R; Brinkman, Cynthia K

    2015-12-01

    Dairy manure management is increasingly becoming an environmental challenge. In this regard, manure anaerobic digestion (AD) can be applied to address environmental concerns; however, dairy manure AD remains economically uncompetitive. Ongoing research is focused on enhanced resource recovery from manure, including maximizing AD methane yield through a novel multi-stage AD configuration. Research presented herein centered on the hypothesis that separately digesting fine and coarse solids from fermented dairy manure would improve methane production; the hypothesis was disproven. While maximum methane concentration was realized on fine solids, combined solids AD yielded enhanced VS destruction. The diverse combined-solids substrate enriched for a more heterogeneous bacterial/archaeal consortium that balanced fermentation and methanogenesis to yield maximum product (methane). However, results suggest that targeted AD of the fat-rich fine solids could be a more optimal approach for processing manure; alternate (non-AD) methods could then be applied to extract value from the fibrous fraction.

  7. Utilizing Anaerobic Fungi for Two-stage Sugar Extraction and Biofuel Production from Lignocellulosic Biomass.

    Science.gov (United States)

    Ranganathan, Abhaya; Smith, Olivia P; Youssef, Noha H; Struchtemeyer, Christopher G; Atiyeh, Hasan K; Elshahed, Mostafa S

    2017-01-01

    Lignocellulosic biomass is a vast and underutilized resource for the production of sugars and biofuels. However, the structural complexity of lignocellulosic biomass and the need for multiple pretreatment and enzymatic steps for sugar release renders this process economically challenging. Here, we report a novel approach for direct, single container, exogenous enzyme-free conversion of lignocellulosic biomass to sugars and biofuels using the anaerobic fungal isolate strain C1A. This approach utilizes simple physiological manipulations for timely inhibition and uncoupling of saccharolytic and fermentative capabilities of strain C1A, leading to the accumulation of sugar monomers (glucose and xylose) in the culture medium. The produced sugars, in addition to fungal hyphal lysate, are subsequently converted by Escherichia coli strain K011 to ethanol. Using this approach, we successfully recovered 17.0% (w/w) of alkali-pretreated corn stover (20.0% of its glucan and xylan content) as sugar monomers in the culture media. More importantly, 14.1% of pretreated corn stover (17.1% of glucan and xylan content) was recovered as ethanol at a final concentration of 28.16 mM after the addition of the ethanologenic strain K011. The high ethanol yield obtained is due to its accumulation as a minor fermentation end product by strain C1A during its initial growth phase, the complete conversion of sugars to ethanol by strain K011, and the possible conversion of unspecified substrates in the hyphal lysate of strain C1A to ethanol by strain K011. This study presents a novel, versatile, and exogenous enzyme-free strategy that utilizes a relatively unexplored group of organisms (anaerobic fungi) for direct biofuel production from lignocellulosic biomass.

  8. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    Science.gov (United States)

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  9. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolicall

  10. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, Brigitte; Graaf, Rob M. de; Staay, Georg W.M. van der; Alen, Theo A. van; Ricard, Guenola; Gabaldón, Toni; Hoek, Angela H.A.M. van; Moon-van der Staay, Seung Yeo; Koopman, Werner J.H.; Hellemond, Jaap J. van; Tielens, Aloysius G.M.; Friedrich, Thorsten; Veenhuis, Marten; Huynen, Martijn A.; Hackstein, Johannes H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolicall

  11. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2014-09-01

    A two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophilic conditions (37°C) were used to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production. The acidogenic reactor was fed with a mixture consisting of olive mill wastewater, cheese whey and liquid cow manure (in a ratio 55:40:5, v/v/v) and operated at five different HRTs (5, 3, 2, 1 and 0.75 d) aiming to evaluate hydrogen productivity and operational stability. The highest system efficiency was achieved at HRT 0.75 d with a maximum hydrogen production rate of 1.72 L/LRd and hydrogen yield of 0.54 mol H2/mol carbohydrates consumed. The methanogenic reactor was operated at HRTs 20 and 25 d with better stability observed at HRT 25 d, whereas accumulation of volatile fatty acids took place at HRT 20 d. The methane production rate at the steady state of HRT 25 d reached 0.33 L CH4/LRd.

  12. Two-stage anaerobic digestion of biodegradable municipal solid waste using a rotating drum mesh filter bioreactor and anaerobic filter.

    Science.gov (United States)

    Walker, M; Banks, C J; Heaven, S

    2009-09-01

    A rotating drum mesh filter bioreactor (RDMFBR) with a 100 microm mesh coupled to an anaerobic filter was used for the anaerobic digestion of biodegradable municipal solid waste (BMW). Duplicate systems were operated for 72 days at an organic loading rate (OLR) of 7.5 g VS l(-1) d(-1). Early in the experiment most of the methane was produced in the 2nd stage. This situation gradually reversed as methanogenesis became established in the 1st stage digester, which eventually produced 86-87% of the total system methane. The total methane production was 0.2 l g(-1) VS(added) with 60-62% volatile solids destruction. No fouling was experienced during the experiment at a transmembrane flux rate of 3.5 l m(-2) h(-1). The system proved to be robust and stably adjusted to a shock loading increase to 15 g VS l(-1) d(-1), although this reduced the overall methane production to 0.15 l g(-1) VS(added).

  13. Two-stage high-rate biogas (H2 and CH4) production from food waste using anaerobic mixed microflora

    Science.gov (United States)

    Xu, K.; Lee, D.; Kobayashi, T.; Ebie, Y.; Li, Y.; Inamori, Y.

    2010-12-01

    To achieve the high-rate H2 and CH4 production from food waste using fermentative anaerobic microflora, the effects of carbonate-alkalinity in the recirculated digestion sludge on continuous two-stage fermentation were investigated. Higher H2 production rate of 2.9 L-H2/L/day was achieved at the recycle ratio of 1.0 in an alkalinity range of 9000 to 10000 mg-CaCO3/L. The maximum CH4 production rate was stably maintained at the range of 1.85 to 1.88 L-CH4/L/day without alkalinity change. Carbonate alkalinity in digestion sludge could reduce the H2 partial pressure in the headspace of the fermentation reactors, and improve a biogas production capacity in the two-stage fermentation process. The average volatile solids degradation rate in the overall process increased as the digestion sludge recycle increased from 0.5 to 1.0. These results show that the alkalinity in recycle of the digestion sludge is crucial factor in determining biogas (H2 and CH4) production capacity and reducing the total solids.

  14. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system.

    Science.gov (United States)

    Dalkılıc, Kenan; Ugurlu, Aysenur

    2015-09-01

    This study investigates the biogas production from chicken manure at different organic loading rates (OLRs), in a mesophilic-thermophilic two stage anaerobic system. The system was operated on semi continuous mode under different OLRs [1.9 g volatile solids (VS)/L·d - 4.7 g VS/L·d] and total solid (TS) contents (3.0-8.25%). It was observed that the anaerobic bacteria acclimatized to high total ammonia nitrogen concentration (>3000 mg/L) originated as a result of the degradation of chicken manure. High volatile fatty acid concentrations were tolerated by the system due to high pH in the reactors. The maximum average biogas production rate was found as 554 mL/g VSfeed while feeding 2.2 g VS/L-d (2.3% VS - 3.8% TS) to the system. Average methane content of produced biogas was 74% during the study.

  15. A study of the process of two staged anaerobic fermentation as a possible method for purifying sewage

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Kouama, K.; Matsuo, T.

    1983-01-01

    Great attention has recently been given to the study of the processes of anaerobic fermentation, which may become alternatives to the existing methods for purifying waste waters which use aerobic microorganisms. A series of experimentswere conducted with the use of an artificially prepared liquid (fermented milk and starch) which imitates the waste to be purified, in order to explain the capabilities of the process of two staged anaerobic fermentation (DAS) as a method for purifying waste waters. The industrial system of the process includes: a fermentation vat for acetic fermentation with recirculation of the sediment, a primary settler, a fermentation tank for methane fermentation and a secondary settler. The process was conducted at a loading speed (based on Carbon) from 0.15 to 0.4 kilograms per cubic meter per day at a temperature of 38C. The degree of conversion of the fermented organic substances into volatile organic acids was not a function of the loading speed and was 54 to 57 percent in the acetic fermentation tank, where 95 to 97 percent of the organic material was broken down with the production of methane and carbon dioxide.

  16. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol Wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuefei; REN Nanqi

    2007-01-01

    In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resistance and could still degrade methanol at pH 5.0.If the methanogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.

  17. A hybrid cascade control scheme for the VFA and COD regulation in two-stage anaerobic digestion processes.

    Science.gov (United States)

    Méndez-Acosta, H O; Campos-Rodríguez, A; González-Álvarez, V; García-Sandoval, J P; Snell-Castro, R; Latrille, E

    2016-10-01

    A hybrid (continuous-discrete) cascade control is proposed to regulate both, volatile fatty acids (VFA) and chemical oxygen demand (COD) concentrations in two-stage (acidogenic-methanogenic) anaerobic digestion (TSAD) processes. The outer loop is a discrete controller that regulates the COD concentration of the methanogenic bioreactor by using a daily off-line measurement and that modifies the set-point tracked by inner loop, which manipulates the dilution rate to regulate the VFA concentration of the acidogenic bioreactor, estimated by continuous on-line conductivity measurements, avoiding acidification. The experimental validation was conducted in a TSAD process for the treatment of tequila vinasses during 110days. Results showed that the proposed cascade control scheme was able to achieve the VFA and COD regulation by using conventional measurements under different set-point values in spite of adverse common scenarios in full-scale anaerobic digestion processes. Microbial composition analysis showed that the controller also favors the abundance and diversity toward methane production.

  18. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation.

    Science.gov (United States)

    Jung, Kyung-Won; Moon, Chungman; Cho, Si-Kyung; Kim, Sang-Hyoun; Shin, Hang-Sik; Kim, Dong-Hoon

    2013-07-01

    In this study, a two-stage system converting organic solid waste (food waste+sewage sludge) to H2 and CH4 was operated. In the first stage of dark fermentative hydrogen production (DFHP), a recently proposed method that does not require external inoculum, was applied. In the second stage, anaerobic sequencing batch reactor (ASBR) and an up-flow anaerobic sludge blanket reactor (UASBr) were followed to treat H2 fermenter effluent. (H2+CH4-ASBR) system showed better performance in terms of total biogas conversion (78.6%), while higher biogas production rate (2.03 L H2/Lsystem/d, 1.96 L CH4/Lsystem/d) was achieved in (H2+CH4-UASBr) system. To reduce the alkali addition requirement in DFHP process, CH4 fermenter effluent was tested as a diluting water. Both the ASBR and UASBr effluent was effective to keep the pH above 6 without CH4 production. In case of using ASBR effluent, H2 production dropped by 15%, but alkali addition requirement was reduced by 50%.

  19. Effect of Agitation on Acidogenesis Stage of Two-Stage Anaerobic Digestion of Palm Oil Mill Effluent (POME) into Biogas

    Science.gov (United States)

    Trisakti, B.; Irvan; Adipasah, H.; Taslim; Turmuzi, M.

    2017-03-01

    The acidogenesis stage in two-stage anaerobic digestion of palm oil mill effluent (POME) was studied in a continuous stirred tank reactor (CSTR). This research investigated the effect of agitation rate on the growth of microorganisms, the degradation of organic substances, and volatile fatty acids (VFA) production and composition. Initially, the suitable loading up was determined by varying the HRT 6.7, 5.0, and 4.0 days in a 2 L CSTR with agitation rate 50 rpm, pH 6.0 ± 0.2, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 25, 50, 100, and 200 rpm. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and volatile fatty acids (VFA) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce VFA. The highest growth of microorganisms was achieved at HRT 4.0 day with microorganism concentration was 20.62 mg VSS/L and COD reduction was 15.7%. The highest production of total VFA achieved was 5,766.61 mg/L mg/L at agitation rate 200 rpm, with concentration of acetic acid, propionic acid and butyric acid were 1,889.23; 1,161.43; and 2,725.95 mg/L, respectively. While degradation VS and COD were 16.61 and 38.79%.

  20. Methods to enhance hydrolysis during one and two-stage anaerobic digestion of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Jagadabhi, P. S.

    2011-07-01

    The objective of this thesis was to evaluate methods to enhance hydrolysis (measured as specific SCOD production, g SCOD g-1 VS) during one and two-stage anaerobic digestion (AD) of energy crops and crop residues. Addition of macro (NH{sub 4}Cl), micro nutrients (Fe, Ni, Co and Mo) and leachate replacement during mono-digestion of grass silage in one-stage leach bed reactors (LBRs) enhanced hydrolysis by 18 % (0.56 g SCOD g-1 VS), 7 % (0.45 g SCOD g-1 VS) and 34 % (0.51 g SCOD g-1 VS) respectively compared to respective controls. On the other hand, creating micro-aerobic conditions (at 1 l min-1, 2.5 l of air) did not improve hydrolysis but enhanced VFA production by 4 fold (from 2.2 g l-1 to 9 g l-1). Application of rumen cultures improved hydrolysis by 10 % (0.33 g SCOD g-1 VS) more than control (0.30 g SCOD g-1 VS). Similarly, during two-stage AD in LBR-UASB reactor configuration leachate replacement enhanced hydrolysis in cucumber and grass silage (0.5 g SCOD g-1 VS) than in tomato and common reed (0.35 and 0.15 g SCOD g-1 VS respectively). During co-digestion of grass silage and cow manure at a ratio of 30:70 (VS) in CSTR, re-circulation of alkali treated solid fraction of digestate did not improve the anaerobic biodegradation rates or methane yields. Results from batch experiments showed that methane potential of grass silage varied from 0.28-0.39 m3 CH{sub 4} kg-1 VS{sub added} in all the experiments. On the other hand, methane potentials of the studied crop residues were 0.32 m3 CH{sub 4} kg-1 VS{sub added} for tomato and 0.26 m3 CH{sub 4} kg-1 VS{sub added} for cucumber and common reed. Alkali pretreatment of solids, obtained from digestate (during co-digestion of grass silage and cow manure in one-stage CSTRs), at a low concentration of 20 g NaOH kg-1 VS resulted in higher methane yield (0.34 m3 CH{sub 4} kg-1 VS{sub added}) than the other tested dosages (40 and 60 g NaOH kg-1 VS). Addition of macro nutrient (NH{sub 4}Cl) enhanced methane potential of

  1. Producing desulfurized biogas through removal of sulfate in the first-stage of a two-stage anaerobic digestion.

    Science.gov (United States)

    Yun, Yeo-Myeong; Sung, Shihwu; Shin, Hang-Sik; Han, Jong-In; Kim, Hyun-Woo; Kim, Dong-Hoon

    2017-05-01

    In the present work, a two-stage anaerobic digestion system (TSADS) was newly designed to produce biogas with a greatly reduced H2 S content. The role of first (sulfidogenic)-stage digester was not only acidogenesis but also sulfidogenesis (sulfate reduction to H2 S), which would minimize the input of H2 S-producing source in the followed second (methanogenic)-stage digester. For the coexistence of acidogens and sulfate reducing bacteria (SRB) in the sulfidogenic-stage digester, it was found that pH played a crucial role. The acidogenic activity was not affected within a pH range of 4.5-6.0, while it was important to maintain a pH at 5.5 to achieve a sulfate removal efficiency over 70%. The highest sulfate removal attained was 78% at a hydraulic retention time (HRT) of 5 h at pH 5.5 ± 0.1. The H2 S content in the biogas produced in the conventional single-stage digester (SSAD), used as a control, reached 1,650 ± 25 ppmv . In contrast, the biogas produced in the methanogenic-stage digester of the developed process had an H2 S content of 200 ± 15 ppmv . Microbial analysis, done by the next generation sequencing technique, clearly showed the changes in community under different operating conditions. Desulfovibrio bastinii (4.9%) played a key role in sulfate removal in the sulfidogenic-stage of the TSADS owing to its characteristics of a short doubling time and growth in an acidic environment. Biotechnol. Bioeng. 2017;114: 970-979. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Effect of agitation on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    Science.gov (United States)

    Trisakti, Bambang; Irvan, Zahara, Intan; Taslim, Turmuzi, Muhammad

    2017-05-01

    This study is an assessment of the effect of agitation on biogas production on methanogenesis stage. Methanogenesis is the second stage of two-stage anaerobic digestion of palm oil effluent (POME) into biogas. The purpose of this study is to get the effect of agitation on growth of microorganisms, degradation of organic substances, and biogas production and composition. Initially, the suitable loading up was determined by varying the HRT at 100, 40, 6, and 4 days in the continuous stirred tank reactor (CSTR) with agitation rate 100 rpm, pH 6.7-7.5, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 50, 100, 150, and 200 rpm. The substrate used was the effluent of the acidogenesis stage that fed to the CSTR four times a day. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Production and composition of biogas were also determined by measuring the volume of biogas and content of H2S and CO2. The result showed that the pH and alkalinity it was still within the range of methanogenesis process. The growth of microorganisms were increased with the increasing of agitation rate. However, the best degradation of organic substances, biogas production, and biogas composition were achieved at 100 rpm. The VS decomposition, COD removal, biogas production, CO2 content, and CH4 content at 100 rpm were 67.44 ± 3.59%, 81.00%, 58.87 ± 6.27 L/kg-ΔVS, 23.36%, and 76.64%, respectively.

  3. An anaerobic mitochondrion that produces hydrogen

    NARCIS (Netherlands)

    Boxma, B.; Graaf, de R.M.; Staay, van der G.W.M.; Alen, T.A.; Richard, G.; Gabalon, T.; Hoek, van A.H.A.M.; Moon - van der Staay, S.Y.; Koopman, W.J.H.; Hellemond, van J.J.; Tielens, A.G.M.; Friedrich, T.; Veenhuis, M.; Huynen, M.A.; Hackstein, J.H.P.

    2005-01-01

    Hydrogenosomes are organelles that produce ATP and hydrogen(1), and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates(2). Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabo

  4. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded.

  5. Evaluation of aeration pretreatment to prepare an inoculum for the two-stage hydrogen and methane production process.

    Science.gov (United States)

    Giordano, Andrea; Sarli, Valentina; Lavagnolo, Maria Cristina; Spagni, Alessandro

    2014-08-01

    This study evaluates the effect of aeration pretreatment to prepare an inoculum for H₂ and CH₄ production in a two-stage process. Moreover, the biochemical hydrogen potential and biochemical methane potential of waste from the food industry in a two-stage process was assessed. The results confirmed the possibility of using an aerobic stress for selecting a hydrogen-producing inoculum. The inoculum was fairly stable since no hydrogenotrophic-methanogenic activity was observed in 25 days. The yields measured using glucose as substrate were of approximately 160 and 280 N mL(H₂) g(COD⁻¹) of glucose for hydrogen and methane, respectively, which are in agreement with other studies using heat-shock for the pretreatment of the inoculum. When waste of the food industry (wheat milling) was used as substrate, a lower H₂ yield was achieved by the aerobically-pretreated inoculum if compared to heat-shock; however, when combined with methane production in a two-stage process, much higher CH₄ yield was achieved.

  6. Determination and variation of core bacterial community in a two-stage full-scale anaerobic reactor treating high-strength pharmaceutical wastewater.

    Science.gov (United States)

    Ma, Haijun; Ye, Lin; Hu, Haidong; Zhang, Lulu; Ding, Lili; Ren, Hongqiang

    2017-08-25

    The functional characterization and temporal variation of anaerobic bacterial population is important to better understanding of microbial process of two-stage anaerobic reactor. However, due to the high diversity of anaerobic bacteria, close attention should be prioritized to be paid to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. Here in this study, using Miseq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactors treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis (PCoA) scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct that FS core bacterial community was indicated to be more related to higher-level fermentation process and SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of FS and SS core bacterial community to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales and Thermotogales might play keystone roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advanced our knowledge about the core bacteria community and its temporal variability for future comparative research and the improvement of the two-stage anaerobic system operation.

  7. Micro-aerobic, anaerobic and two-stage condition for ethanol production by Enterobacter aerogenes from biodiesel-derived crude glycerol

    DEFF Research Database (Denmark)

    Saisaard, Kanokrat; Angelidaki, Irini; Prasertsan, Poonsuk

    2011-01-01

    The microbial production of ethanol from biodiesel-derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethanol...... production (20.7 g/L) as well as the ethanol yield (0.47 g/g glycerol) than anaerobic conditions (1.2 g/L DCW, 6.3 g/L ethanol and 0.72 g/g glycerol, respectively). Crude glycerol (100 g/L) was consumed completely with the rate of 1.80 g/L/h. Two-stage fermentation (combination of micro-aerobic and anaerobic...

  8. A two-stage bio hydrogen process for energy generation from municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo-Benitez, J. a.; Poggi-Varaldo, H. M.

    2009-07-01

    Energy supply and disposal of solid wastes are two big challenges that great cities face at the present time. Several experts have shown that hydrogen is the fuel of the future, due to their high energy content (three times more than that of the gasoline) and its clean combustion. (Author)

  9. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis.

    Science.gov (United States)

    Cheng, Xi-Yu; Liu, Chun-Zhao

    2012-01-01

    A three-stage anaerobic fermentation process including H(2) fermentation I, H(2) fermentation II, methane fermentation was developed for the coproduction of hydrogen and methane from cornstalks. Hydrogen production from cornstalks using direct microbial conversion by Clostridium thermocellum 7072 was markedly enhanced in the two-stage thermophilic hydrogen fermentation process integrated with alkaline treatment. The highest total hydrogen yield from cornstalks in the two-stage fermentation process reached 74.4 mL/g-cornstalk. The hydrogen fermentation effluents and alkaline hydrolyzate were further used for methane fermentation by anaerobic granular sludge, and the total methane yield reached 205.8 mL/g-cornstalk. The total energy recovery in the three-stage anaerobic fermentation process integrated with alkaline hydrolysis reached 70.0%.

  10. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  11. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  12. Optimisation of biogas production through a two-stage automated anaerobic digester system developed by the CSIR in South Africa

    CSIR Research Space (South Africa)

    Mema, V

    2015-08-01

    Full Text Available with the aim of producing biogas as a renewable energy source plays a critical role in addressing the energy demand at a wastewater treatment works depending on the type of technology applied. Efficacy of anaerobic digestion process is highly dependent...

  13. Hydrogen production from glucose by anaerobes.

    Science.gov (United States)

    Ogino, Hiroyasu; Miura, Takashi; Ishimi, Kosaku; Seki, Minoru; Yoshida, Hiroyuki

    2005-01-01

    Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.

  14. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate.

    Science.gov (United States)

    Lin, Jun; Zhang, Xingwang; Li, Zhongjian; Lei, Lecheng

    2010-01-01

    Pseudomonas sp. strain L1 capable of degrading the azo textile dye Reactive blue 13, was isolated from activated sludge in a sequencing batch reactor. A continuous two-stage anaerobic/aerobic biological fluidized bed system was used to decolorize and mineralize Reactive blue 13. The key factors affecting decolorization were investigated and the efficiency of degradation was also optimized. An overall color removal of 83.2% and COD removal of 90.7% was achieved at pH 7, a residence time of 70 h and a glucose concentration of 2 g/L, HRT=70 h and C(glucose)=2000 mg/L. Oxygen was contributing to blocking the azo bond cleavage. Consequently, decolorization occurred in the anaerobic reactor while partial mineralization was achieved in the aerobic reactor. A possible degradation pathway based on the analysis of intermediates and involving azoreduction, desulfonation, deamination and further oxidation reactions is presented.

  15. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion.

  16. Hydrogen pellet acceleration with a two-stage system consisting of a gas gun and a fuseless electromagnetic railgun

    Energy Technology Data Exchange (ETDEWEB)

    Honig, J.; Kim, K.; Wedge, S.W.

    1986-05-01

    Hydrogen pellets are successfully accelerated for the first time using a two-stage system consisting of a pneumatic gun and an electromagnetic railgun. The pneumatic gun preaccelerator forms cylindrical hydrogen ice pellets (1.6-mm diam x 2.15-mm long) and accelerates them with high-pressure helium gas to velocities in excess of 500 m/s. The booster accelerator, which is a fuseless, circular-bore electromagnetic railgun, derives its propulsive force from a plasma arc armature. The plasma arc armature is formed by electrically breaking down the propellant gas which follows the pellet from the gas gun into the railgun. The diagnostics are for the monitoring of the main capacitor bank and rail currents, for the pellet detection and velocity measurements at the breech and muzzle ends of the railgun, for the recording of the plasma-arc-armature movement inside the railgun bore, and for the photographing of the hydrogen pellet exiting the railgun. Using the system, which is a 60-cm long proof-of-principle machine for refueling magnetic fusion devices, hyrogen pellet velocities exceeding 1 km/s have been achieved for pellets exiting the gas gun at velocities of approx.500 m/s.

  17. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure

    DEFF Research Database (Denmark)

    Nielsen, H.B.; Mladenovska, Zuzana; Westermann, Peter

    2004-01-01

    A two-stage 68degreesC/55degreesC anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68degrees......C for periods of 36, 108, and 168 h, and subsequently digested at 55degreesC. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68degreesC with a hydraulic retention time (HRT) of 3 days, connected to a 55degreesC reactor with 12-day HRT......, was compared with a conventional single-stage reactor running at 55degreesC with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single...

  18. Effect of temperature on survival of micro-organisms and performance of anaerobic two-stage reactors treating cattle slurry.

    Science.gov (United States)

    Mohaibes, Mohammed; Heinonen-Tanski, Helvi

    2012-01-01

    A short-term thermophilic treatment was conducted in order to study the survival of micro-organisms in slurry derived from a cattle farm, at temperatures of 58, 63 and 68 degrees C for 6 h. The second trial was a biogas production experiment with an anaerobic mesophilic first stage and a thermophilic second stage. The mesophilic treatment was at 38 degrees C and the second stage was conducted at 55, 58 or 65 degrees C. The results of first trial showed that survival of micro-organisms was decreased remarkably at higher temperatures in spite of the fact that during the experiment part of slurry was replaced with fresh slurry. Meanwhile, the second trial showed that optimum production ofbiogas was at 55 degrees C while the best result for hygienic control was achieved at 65 degrees C.

  19. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were...

  20. Effect of the temperature and of the organic load in two-stage up flow anaerobic sludge blanket reactors treating of swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bichuette, Alexandre Abud; Duda, Rose Maria; Oliveira, Roberto Alves de [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural], E-mail: oliveira@fcav.unesp.br

    2008-07-01

    In this work the acting of two-stage up flow anaerobic sludge blanket reactors (UASB) was evaluated, installed in series, in pilot scale (volumes of 908 L and 350 L, respectively) in the treatment swine wastewater, with concentrations of total solids suspended (TSS) around 10000 mg L{sup -1}. The organic loading rates (OLR) applied in first UASB were of 5,2 and of 8,6 g total COD (Ld){sup -1}. The medium efficiencies of removal of the chemical demand of total oxygen (total COD), TSS and TKN were higher than 89; 80 and 55%, respectively, for the system of anaerobic treatment composed by the reactors UASB in two apprenticeships. The rate of volumetric methane production in the system of anaerobic treatment with the reactors UASB were 0,08 and 0,16 m{sup 3}CH{sub 4} (m{sup 3} CH{sub 4} reactor d){sup -1}. The number of total coliforms was reduced to 2,6x10{sup 4} NMP/100 mL. (author)

  1. A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava.

    Science.gov (United States)

    Zhang, Qing-Hua; Lu, Xin; Tang, Lei; Mao, Zhong-Gui; Zhang, Jian-Hua; Zhang, Hong-Jian; Sun, Fu-Bao

    2010-07-15

    In the present study, a novel full recycling process for bioethanol production was investigated, where three mathematical models were established to simulate the accumulation of major soluble inhibitory substances, including organic compounds, total ions, volatile fatty acids (VFAs) and colorants. These inhibitory substances in the reused water reached a relative steady state after 3-7 batches of anaerobic treatment and recycling process, which coincided with the results of mathematical models. There were no negative effects of these inhibitory substances on ethanol fermentation and the final ethanol yield, fermentation time, starch utilization ratio were very close to that of the conventional process using tap water. However, approximately 7.54% (w/w) of water was lost during each circulation, which was replenished in subsequent circulations, to assure consistent fermentation broth volume. This novel process was confirmed to have a stable operation over 13 recycles. It is concluded the stable states of the inhibitory substances in the reused water can assure this recycling process will run successfully.

  2. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    Science.gov (United States)

    Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.

    2017-06-01

    This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .

  3. Nutrient and heavy metal accumulation in municipal organic waste from separate collection during anaerobic digestion in a two-stage laboratory biogas plant.

    Science.gov (United States)

    Knoop, Christine; Dornack, Christina; Raab, Thomas

    2017-09-01

    Municipal organic waste (MOW) is a promising feedstock for biogas plants and separate collection will increase available quantities. To close nutrient circles digestates shall be redistributed to arable land. However, less is known about digestate properties and how they are influenced during digestion. Therefore, changes in nutrient and heavy metal concentration in the solid digestate were investigated during anaerobic treatment of MOW in a two-stage laboratory biogas plant. Results show that the solid digestate is exposed to element accumulation, except for N, P and Mg. The loss of initial N, P and Mg load accounts up to 45%, which must be redistributed elsewhere in the digester system. K load of feedstock was completely rediscovered in the solid digestate. Heavy metal concentration in the digestate increases by factor 1.6 at average. The results emphasize that element retention in the digester system has a decisive impact on nutrient content of digestates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Experiments on one-stage and two-stage anaerobic treatment of beetroot slop. Versuche zur ein- und zweistufigen anaeroben Behandlung von Ruebenmelasseschlempe

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, R.

    1987-12-17

    The experiments in this work, particularly in the sludge-bed process, confirm how extremely difficult anaerobic treatment of beetroot slop is. Use of the undiluted slop for the one-phase treatment in a sludge bed reactor mostly resulted only in the acidification of the biologically degradable materials, even if the retention time was more than 20 days. The high content of nitrogenous compounds, especially betaine, proved to be one of the biggest problems in the anaerobic treatment, probably along with the high content of salt and the presence of inhibiting Maillard products. Owing to concentrations of ammonia of, in part, more than 4 grams/litre resulting from the degradation of the nitrogenous compounds, firstly no properly grained, sedimentable sludge flakes were formed, and secondly, with a pH going up simultaneously to the range of 8.0, methane formation was considerably inhibited. In the two-phase process, again, a chemical oxygen consumption of more than 70% was achieved only if the slop was diluted in a ratio of at least 0.7 to 1; at the same time, a rise of the pH to over 7.5 had to be avoided. Since the acidification and the methane stages could not be optimized separately, the two-stage process, given a constant composition of the water, practically proved of no advantage.

  5. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-07-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  6. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    Science.gov (United States)

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  7. Methane and hydrogen production by human intestinal anaerobic bacteria.

    Science.gov (United States)

    McKay, L F; Holbrook, W P; Eastwood, M A

    1982-06-01

    The gas above liquid cultures of a variety of human intestinal anaerobic bacteria was sampled and analysed by headspace gas chromatography. Hydrogen production was greatest with strains of the genus Clostridium, intermediate with anaerobic cocci and least with Bacteroides sp. Very few strains produced methane although small amounts were detected with one strain of B. thetaiotaomicron, C. perfringens and C. histolyticum. There may be a relationship between these anaerobic bacteria and several gastrointestinal disorders in which there is a build up of hydrogen or methane in the intestines.

  8. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.

    Science.gov (United States)

    Rincón, B; Borja, R; Martín, M A; Martín, A

    2009-09-01

    A study of the second step or methanogenic stage of a two-stage anaerobic digestion process treating two-phase olive oil mill solid residue (OMSR) was conducted at mesophilic temperature (35 degrees C). The substrate fed to the methanogenic step was the effluent from a hydrolytic-acidogenic reactor operating at an organic loading rate (OLR) of 12.9 g chemical oxygen demand (COD) L(-1) d(-1) and at a hydraulic retention time (HRT) of 12.4 days; these OLR and HRT were found to be the best values to achieve the maximum total volatile fatty acid concentration (14.5 g L(-1) expressed as acetic acid) with a high concentration in acetic acid (57.5% of the total concentration) as the principal precursor of methane. The methanogenic stage was carried out in an anaerobic stirred tank reactor containing saponite as support media for the immobilization of microorganisms. OLRs of between 0.8 and 22.0 g COD L(-1) d(-1) were studied. These OLRs corresponded to HRTs of between 142.9 and 4.6 days. The methanogenic reactor operated with high stability for OLRs lower than 20.0 g COD L(-1) d(-1). This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept 0.12 for HRTs>4.6 days. The total COD (T-COD) removed was in the range of 94.3-61.3% and the volatile solids (VS) removed between 92.8% and 56.1% for OLRs between 0.8 and 20.0 g COD L(-1) d(-1). In the same way, a reduction of 43.8% was achieved for phenolic content. The low concentration of total volatile fatty acids (TVFA) observed (below 1 g L(-1) expressed as CH(3)COOH) in the methanogenic reactor effluents showed the high percentage of consumption and conversion of these acids to methane. A methane yield of 0.268+/-0.003 L CH(4) at standard temperature and pressure conditions (STP) g(-1) COD eliminated was achieved.

  9. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  10. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  11. Hydrogen generation via anaerobic fermentation of paper mill wastes.

    Science.gov (United States)

    Valdez-Vazquez, Idania; Sparling, Richard; Risbey, Derek; Rinderknecht-Seijas, Noemi; Poggi-Varaldo, Héctor M

    2005-11-01

    The objective of this work was to determine the hydrogen production from paper mill wastes using microbial consortia of solid substrate anaerobic digesters. Inocula from mesophilic, continuous solid substrate anaerobic digestion (SSAD) reactors were transferred to small lab scale, batch reactors. Milled paper (used as a surrogate paper waste) was added as substrate and acetylene or 2-bromoethanesulfonate (BES) was spiked for methanogenesis inhibition. In the first phase of experiments it was found that acetylene at 1% v/v in the headspace was as effective as BES in inhibiting methanogenic activity. Hydrogen gas accumulated in the headspace of the bottles, reaching a plateau. Similar final hydrogen concentrations were obtained for reactors spiked with acetylene and BES. In the second phase of tests the headspace of the batch reactors was flushed with nitrogen gas after the first plateau of hydrogen was reached, and subsequently incubated, with no further addition of inhibitor nor substrate. It was found that hydrogen production resumed and reached a second plateau, although somewhat lower than the first one. This procedure was repeated a third time and an additional amount of hydrogen was obtained. The plateaux and initial rates of hydrogen accumulation decreased in each subsequent incubation cycle. The total cumulative hydrogen harvested in the three cycles was much higher (approx. double) than in the first cycle alone. We coined this procedure as IV-SSAH (intermittently vented solid substrate anaerobic hydrogen generation). Our results point out to a feasible strategy for obtaining higher hydrogen yields from the fermentation of industrial solid wastes, and a possible combination of waste treatment processes consisting of a first stage IV-SSAH followed by a second SSAD stage. Useful products of this approach would be hydrogen, organic acids or methane, and anaerobic digestates that could be used as soil amenders after post-treatment.

  12. Hydrogen generation via anaerobic fermentation of paper mill wastes

    Energy Technology Data Exchange (ETDEWEB)

    Valdez Vazquez, I.; Poggi Varaldo, H.M. [CINVESTAV-IPN, Mexico D.F. (Mexico). Dept. of Biotechnology and Bioengineering; Sparling, R.; Risbey, D. [Manitoba Univ., Winnipeg (Canada). Dept. of Microbiology; Rinderknecht Seijas, N. [ESIQUIE-IPN, Mexico D.F. (Mexico). Division Base Sciences

    2005-11-15

    The objective of this work was to determine the hydrogen production from paper mill wastes using microbial consortia of solid substrate anaerobic digesters. Inocula from mesophilic, continuous solid substrate anaerobic digestion (SSAD) reactors were transferred to small lab scale, batch reactors. Milled paper (used as a surrogate paper waste) was added as substrate and acetylene or 2-bromoethanesulfonate (BES) was spiked for methanogenesis inhibition. In the first phase of experiments it was found that acetylene at 1% v/v in the headspace was as effective as BES in inhibiting methanogenic activity. Hydrogen gas accumulated in the headspace of the bottles, reaching a plateau. Similar final hydrogen concentrations were obtained for reactors spiked with acetylene and BES. In the second phase of tests the headspace of the batch reactors was flushed with nitrogen gas after the first plateau of hydrogen was reached, and subsequently incubated, with no further addition of inhibitor nor substrate. It was found that hydrogen production resumed and reached a second plateau, although somewhat lower than the first one. This procedure was repeated a third time and an additional amount of hydrogen was obtained. The plateaux and initial rates of hydrogen accumulation decreased in each subsequent incubation cycle. The total cumulative hydrogen harvested in the three cycles was much higher (approx. double) than in the first cycle alone. We coined this procedure as IV-SSAH (intermittently vented solid substrate anaerobic hydrogen generation). Our results point out to a feasible strategy for obtaining higher hydrogen yields from the fermentation of industrial solid wastes, and a possible combination of waste treatment processes consisting of a first stage IV-SSAH followed by a second SSAD stage. Useful products of this approach would be hydrogen, organic acids or methane, and anaerobic digestates that could be used as soil amenders after post-treatment. (author)

  13. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield.

    Science.gov (United States)

    Liu, Xinyuan; Li, Ruying; Ji, Min; Han, Li

    2013-10-01

    Batch experiments were conducted to produce hydrogen and methane from waste activated sludge and food waste by two-stage mesophilic fermentation. Hydrogen and methane production, energy yield, soluble organic matters, volatile solid removal efficiency and carbon footprint were investigated during two-stage digestion at various food waste proportions. The highest energy yield reached 14.0 kJ/g-VS at the food waste proportion of 85%, with hydrogen and methane yields of 106.4 ml-H2/g-VS and 353.5 ml-CH4/g-VS respectively. The dominant VFA composition was butyrate for co-digestion and sole food waste fermentation, whereas acetate was dominate in VFA for sole waste activated sludge fermentation. The VS removal efficiencies of co-digestion were 10-77% higher than that of waste activated sludge fermentation. Only 0.1-3.2% of the COD in feedstock was converted into hydrogen, and 14.1-40.9% to methane, with the highest value of 40.9% in methane achieved at food waste proportion of 85%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Anaerobic treatment of wastewater from coffee pulping in upflow anaerobic sludge blanquet (UASB) in two stages; Tratamento anaerobio de aguas residuarias do beneficiamento de cafe por via umida em reatores UASB em dois estagios

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marcelo [UNESP, Jaboticabal, SP (Brazil). Microbiologia Agropecuaria; Oliveira, Roberto A. de [UNESP, Jaboticabal, SP (Brazil). Dept. de Engenharia Rural]. E-mail: raoder@fcav.unesp.br

    2008-04-15

    In this work, it was evaluated the efficiency of two stage up flow anaerobic sludge blanquet (UASB) reactors, in bench scale, treating a liquid effluent from the coffee pulping, submitted to hydraulic detention time (HDT) of 4.0; 5.2 and 6.2 days, resulting in organic loading rate (OLR) of 5.8; 3.6 and 3.0 g COD (L d)-1 in the first reactor (R1) and HDT of 2.0; 2.6 and 3.1 days with OLR of 5.8; 0.5 and 0.4 g DQO total (L d){sup -1} in the second reactor (R2). The medium values of total COD affluent varied from 15,440 to 23,040 mg O{sub 2} L{sup -1}. The medium values of removal efficiencies of total COD and TSS varied from 66 to 98% and 93 to 97%, respectively, in the system of treatment with the UASB reactors in two stages. The content of methane in the biogas varied from 69 to 89% in the R1 and from 52 to 73% in the R2. The maximum volumetric methane production of 0.708 L CH{sub 4} (L reactor d)-1 was obtained with OLR of 3.6 g total COD (L reactor d){sup -1} and HDT of 6.2 days in the R1. Average p H values ranged from 4.7 to 7.7 and 4.9 to 8.0 in the effluents of R1 and R2, respectively. Total volatile acids concentrations was kept below 100 mg L{sup -1} with HDT of 5.2 and 6.2 days in the R1 and HDT of 2.6 and 3.1 days in the R2. The medium values of total phenols of affluent ranged from 80 to 97 mg L-1 and the average removal efficiencies ranged from 72 to 90% in the UASB reactors in two stages. (author)

  15. Fermentative hydrogen production from xylose using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Cheng, Chao-Hui [BioHydrogen Laboratory, Department of Hydraulic Engineering, Feng Chia University, P.O. Box 25-123, Taichung 40724 (Taiwan)

    2006-06-15

    Sewage sludge microflora were anaerobically cultivated in a chemostat-type anaerobic bioreactor at a temperature of 35+/-1{sup o}C, pH of 7.1 and hydraulic retention time of 12h to determine the hydrogen production efficiency from xylose (20g-COD/L). This enriched microflora was used as a seed in batch experiments to investigate the pH and substrate concentration effects on hydrogen-producing bioactivity. It is demonstrated that the enriched mesophilic sewage sludge microflora with a continuous feeding can produce hydrogen from xylose with hydrogen content of 32% (v/v) in the biogas. Each mole of xylose yields 0.7moles of hydrogen and each gram of biomass produces 0.038moles of hydrogen per day. According to the batch test results, changes in pH and xylose concentration could enhance the microflora hydrogen production activity. Batch cultivation of this mixed microflora at pH values of 6-7 and xylose concentrations of 20g-COD/L resulted in high hydrogen production with a yield of 1.92-2.25mol-H{sub 2}/mol-xylose. This value is comparable to that from an enrichment culture. Strategies based on pH and xylose concentration controls for optimal hydrogen production from xylose using sewage sludge microflora are proposed. (author)

  16. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    Directory of Open Access Journals (Sweden)

    Lucas S Parreiras

    Full Text Available The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX-pretreated corn stover hydrolysate (ACSH. We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.

  17. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hanqing Yu; Zhenhu Zhu [University of Science and Technology, Hefei, Anhui (China). School of Chemistry and Materials; Wenrong Hu [Shandong Univ., Jinan (China). School of Resources and Environmental Engineering; Haisheng Zhang [Jingzi Wine Distillery Company, Shandong (China)

    2002-12-01

    Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2-24 h), chemical oxygen demand (COD) concentration in wastewater (14-36 g COD/l), pH (4.5-6.0) and temperature (20-55{sup o}C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53-61%) and carbon dioxide (37-45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH{sub 2}/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55{sup o}C. The hydrogen yield was in the range of 1.37-2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures. (Author)

  18. Study of a transaugmented two-stage small circular-bore railgun for injection of hypervelocity hydrogen pellets as a fusion reactor refueling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, M.W.; Anderson, M.A.; Feng, Q.; Zhang, J.; Kim, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-01-01

    Injection of hypervelocity hydrogen pellets has become widely accepted as the most effective means of refueling magnetically confined fusion reactors. Pellet velocities on the order of 10 km/s are desired and hydrogen pellet erosion during acceleration must be minimized. It is important to maintain uniform bore surfaces during repetitive shots, implying that, if a railgun is to be used to accelerate the pellets, damage to the sidewalls and rails of the railgun due to local heating must be limited. In order to reduce the amount of power dissipated within the bore and increase the propulsive force generated by the plasma-arc armature while minimizing losses due to pellet, rail, and sidewall ablation, the authors have employed a magnetic field transaugmentation mechanism consisting of a two-turn pulsed electromagnet. The two-stage gun consists of a light-gas gun which accelerates a 4- to 5-mg pellet to a speed around 1.2 km/s and injects it into the plasma-arc armature railgun. Currently, they have achieved a final output velocity for a hydrogen pellet of 2.11 km/s with a time-averaged acceleration of 4,850 km/s{sup 2} using a 58-cm railgun pulsed with a peak rail current of 9.2 kA and 28.0 kA of transaugmentation current. This paper will present a description of the hydrogen-pellet-injector railgun system, a discussion of the data on hydrogen pellet acceleration, and projections for future systems.

  19. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Wen-Tang Hong, Yu-Ching Tsai, Hung-Yu Wang, Cheng-Nan Huang, Chien-Hsiung Lee, Bao-Dong Chen

    2010-07-01

    Full Text Available Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2~6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively, but increases to 2~9 kW and 2.6~11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5~16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  20. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Huang, Q.; Sui, M.; Yan, Y.; Wang, F. [Research Center for Biomass Energy, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2008-12-15

    Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH{sub 4}), and material space velocity (W{sub B}HSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH{sub 4} conversion as well as purity of desirable gas product were investigated. High temperature (> 850 C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low W{sub B}HSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH{sub 4} can be obtained under the conditions of S/CH{sub 4} no less than 2 and temperature no less than 800 C. Low GHSV favors the CH{sub 4} conversion and the maximum CH{sub 4} conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 C provided that GHSV is no more than 3600 h{sup -} {sup 1}. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant. (author)

  1. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    HP Goorissen; AJM Stams [Laboratory of Microbiology, Wageningen University and Research centre Wageningen (Netherlands)

    2006-07-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C{sub 5}-C{sub 6} sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  2. A two-stage hydrogen compressor based on (La,Ce,Nd,Pr)Ni{sub 5} intermetallics obtained by low energy mechanical alloying - Low temperature annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Talaganis, B.A. [Instituto Balseiro (UNCu and CNEA), Centro Atomico Bariloche, Av. Bustillo km 9.5 (R8402AGP), S.C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Esquivel, M.R. [Instituto Balseiro (UNCu and CNEA), Centro Atomico Bariloche, Av. Bustillo km 9.5 (R8402AGP), S.C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Av. Bustillo km 9.5 (R8402AGP), S.C. de Bariloche (Argentina); Centro Regional Universitario Bariloche (UNCo), Quintral 1250 (R8400FRF), S.C. de Bariloche (Argentina); Meyer, G. [Instituto Balseiro (UNCu and CNEA), Centro Atomico Bariloche, Av. Bustillo km 9.5 (R8402AGP), S.C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Av. Bustillo km 9.5 (R8402AGP), S.C. de Bariloche (Argentina)

    2009-02-15

    La{sub 0.67}Ce{sub 0.19}Nd{sub 0.08}Pr{sub 0.06}Ni{sub 5} was synthesized by low energy mechanical alloying. The AB{sub 5} was milled up to completion stage to reach the final composition and appropriate particle size distribution and microstructure characteristics. Crystallite size, strain and sorption properties of as-milled samples were evaluated. After milling, La{sub 0.67}Ce{sub 0.19}Nd{sub 0.08}Pr{sub 0.06}Ni{sub 5} and previously obtained LaNi{sub 5} were annealed at 600 C for 24 h. An improvement in both microstructural and hydrogen sorption properties was found. Equilibrium hydrogen sorption properties were obtained and quantified in the 25-90 C range. From these results, a two-stage hydrogen compressor was proposed. In the first stage, hydrogen is absorbed by LaNi{sub 5} at 575 kPa and 25 C and desorbed at 1365 kPa and 90 C. In the second stage, this fluid is absorbed by La{sub 0.67}Ce{sub 0.19}Nd{sub 0.08}Pr{sub 0.06}Ni{sub 5} at 745 kPa and 25 C and desorbed at 2100 kPa and 90 C. As a result, a global compression ratio of 3.65 is reached using this scheme. (author)

  3. Struvite Precipitation as a Means of Recovering Nutrients and Mitigating Ammonia Toxicity in a Two-Stage Anaerobic Digester Treating Protein-Rich Feedstocks.

    Science.gov (United States)

    Wang, Shunli; Hawkins, Gary L; Kiepper, Brian H; Das, Keshav C

    2016-08-03

    Accumulation of ammonia, measured as total ammonia nitrogen (TAN), a product of protein decomposition in slaughterhouse wastes, inhibits the anaerobic digestion process, reducing digester productivity and leading to failure. Struvite precipitation (SP) is an effective means to remove TAN and enhance the buffering of substrates. Different Mg and P sources were evaluated as reactants in SP in acidogenic digester effluents to reduce its TAN levels. In order to measure impact of TAN removal, a standard biochemical methane potential (BMP) test was conducted to measure methane yield from treatments that had the highest TAN reductions. SP results showed 6 of 9 reagent combinations resulted in greater than 70% TAN removal. The BMP results indicated that SP treatment by adding Mg(OH)₂ and H₃PO₄ resulted in 57.6% nitrogen recovery and 41.7% increase in methane yield relative to the substrate without SP. SP is an effective technology to improve nutrient recovery and methane production from the anaerobic digestion of protein-rich feedstocks.

  4. Struvite Precipitation as a Means of Recovering Nutrients and Mitigating Ammonia Toxicity in a Two-Stage Anaerobic Digester Treating Protein-Rich Feedstocks

    Directory of Open Access Journals (Sweden)

    Shunli Wang

    2016-08-01

    Full Text Available Accumulation of ammonia, measured as total ammonia nitrogen (TAN, a product of protein decomposition in slaughterhouse wastes, inhibits the anaerobic digestion process, reducing digester productivity and leading to failure. Struvite precipitation (SP is an effective means to remove TAN and enhance the buffering of substrates. Different Mg and P sources were evaluated as reactants in SP in acidogenic digester effluents to reduce its TAN levels. In order to measure impact of TAN removal, a standard biochemical methane potential (BMP test was conducted to measure methane yield from treatments that had the highest TAN reductions. SP results showed 6 of 9 reagent combinations resulted in greater than 70% TAN removal. The BMP results indicated that SP treatment by adding Mg(OH2 and H3PO4 resulted in 57.6% nitrogen recovery and 41.7% increase in methane yield relative to the substrate without SP. SP is an effective technology to improve nutrient recovery and methane production from the anaerobic digestion of protein-rich feedstocks.

  5. 高温CSTR-中温UASB两级厌氧处理木薯酒精废水%Two-stage anaerobic treatment of cassava ethanol wastewater using thermophilic CSTR and mesophilic UASB

    Institute of Scientific and Technical Information of China (English)

    陈金荣; 谢丽; 罗刚; 周琪

    2011-01-01

    Since cassava ethanol wastewater is characterized by high temperature,high solid content and high organism concentration,the two-stage anaerobic treatment using thermophilic continuous stirred tank reactor (CSTR)and mesophilic upflow anaerobic sludge bed (UASB) has been conducted. Experimental results show that when the influent COD loading of thermophilic CSTR is controlled 14 kg/(m3·d) and COD loading of mesophilic UASB reactor is controlled 3 kg/(m3·d) ,the total removal rates of COD,SS,TN and TP are 94% ,96% ,44% and 87% ,respectively, after the two-stage anaerobic treatment.The life cycle of cassava ethanol production and economic benefits of such wastewater treatment are discussed,indicating that two-stage anaerobic treatment process can not only reduce the pollution resulted from cassava ethanol production, but also create economic benefits from the biogas produced in the course of treatment.%针对木薯酒精废水温度、固体含量及有机物浓度高的特点,采用高温CSTR-中温UASB两级厌氧工艺处理木薯酒精废水.小试结果表明,控制高温CSTR进水COD负荷为14 kg/(m3·d),中温UASB COD负荷为3 kg/(m3·d)时,两级厌氧对COD、SS、溶解性TN、溶解性TP的总去除率分别达94%、96%、44%和87%.对木薯酒精生产周期和废水处理经济效益的分析表明,采用两级厌氧工艺处理木薯酒精废水,不仅削减了木薯酒精生产过程中产生的污染物,其处理过程中产生的沼气还带来了一定的经济效益.

  6. Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process.

    Science.gov (United States)

    Lu, Yuan; Lai, Qiheng; Zhang, Chong; Zhao, Hongxin; Ma, Kun; Zhao, Xuebing; Chen, Hongzhang; Liu, Dehua; Xing, Xin-Hui

    2009-06-01

    This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 degrees C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery.

  7. Bioconversion of corncob to hydrogen using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chunmei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China); Biotechnology Department, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011 (China); Zhang, Shufang; Fan, Yaoting; Hou, Hongwei [Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou 450052 (China)

    2010-04-15

    Biohydrogen production from corncob using natural anaerobic microflora was reported for the first time. The optimum pretreatment condition for the corncob was determined to be 100 C, 30 min, and 1% HCl (w/w). The maximum hydrogen yield of 107.9 ml/g-TVS and hydrogen production rate of 4.20 ml/g-TVS h{sup -1} was obtained under the condition of 10 g/l substrate concentration and initial pH 8.0. Butyrate and acetate were the dominant metabolic by-products of hydrogen fermentation. Chemical composition analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the mechanism of degrading corncob for hydrogen production. The amorphous domains of cellulose and hemicellulose were hydrolyzed into fermentable saccharides through acid pretreatment and the microorganisms had a devastating effect on the crystallinity of the cellulose. The hydrogen yield from pretreated corncob was much higher than from raw corncob. Therefore, the acid pretreatment played a crucial role on hydrogen production from corncob. (author)

  8. Kinetic study of biological hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, R. [Annamalai Univ., Chidambaram (India). Dept. of Chemical Engineering; Karunanithi, T. [Annamalai Univ., Tamilnadu (India). Dept. of Chemical Engineering

    2009-07-01

    This study examined the kinetics of batch biohydrogen production from glucose. Clostridium pasteurianum was used to produce biohydrogen by dark anaerobic fermentation. The initial substrate concentration, initial pH and temperature were optimized for biohydrogen production. The maximum production of hydrogen under optimum conditions was found to be 5.376 l/l. The kinetic parameters were determined for the optimized medium and conditions in the batch reactor. The by product was expressed as total acidic equivalent. This presentation discussed the logistic equation that was used to model the growth of the organism and described how the kinetic parameters were calculated. The Leudeking piret kinetic model was used to express the hydrogen production and substrate use because it combines both growth associated and non associated contributions. It was concluded the production of biohydrogen can be predicted well using the logistic model for cell growth kinetics and the logistic incorporated Leudeking Piret model for product and substrate utilization kinetics.

  9. Enhancement of anaerobic hydrogen production by iron and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-08-15

    The effects of iron and nickel on hydrogen (H{sub 2}) production were investigated in a glucose-fed anaerobic Continuous Flow Stirred Tank Reactor (ACSTR). Both iron and nickel improved the reactor performance and H{sub 2} production was enhanced by 71% with the sole iron or nickel supplementation. In all cases, H{sub 2} production yield was increased by lowering both ethanol and total metabolites production and increasing butyrate production. Furthermore, iron and nickel slightly increased biomass production while glucose degradation decreased with the supplementation of nickel. Dynamic changes in bacterial composition as analyzed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) revealed that hydrogen was produced mainly by Clostridium butyricum strains and that nickel addition decreased the microbial diversity. (author)

  10. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  11. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination

    Science.gov (United States)

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-06-01

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.

  12. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms.

    Science.gov (United States)

    Batstone, D J; Picioreanu, C; van Loosdrecht, M C M

    2006-09-01

    Anaerobic digestion is a multistep process, mediated by a functionally and phylogenetically diverse microbial population. One of the crucial steps is oxidation of organic acids, with electron transfer via hydrogen or formate from acetogenic bacteria to methanogens. This syntrophic microbiological process is strongly restricted by a thermodynamic limitation on the allowable hydrogen or formate concentration. In order to study this process in more detail, we developed an individual-based biofilm model which enables to describe the processes at a microbial resolution. The biochemical model is the ADM1, implemented in a multidimensional domain. With this model, we evaluated three important issues for the syntrophic relationship: (i) Is there a fundamental difference in using hydrogen or formate as electron carrier? (ii) Does a thermodynamic-based inhibition function produced substantially different results from an empirical function? and; (iii) Does the physical co-location of acetogens and methanogens follow directly from a general model. Hydrogen or formate as electron carrier had no substantial impact on model results. Standard inhibition functions or thermodynamic inhibition function gave similar results at larger substrate field grid sizes (> 10 microm), but at smaller grid sizes, the thermodynamic-based function reduced the number of cells with long interspecies distances (> 2.5 microm). Therefore, a very fine grid resolution is needed to reflect differences between the thermodynamic function, and a more generic inhibition form. The co-location of syntrophic bacteria was well predicted without a need to assume a microbiological based mechanism (e.g., through chemotaxis) of biofilm formation.

  13. Bio-hydrogen production from hyacinth by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University No.38 Zheda Road, Hangzhou 310027, (China)

    2006-07-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H{sub 2} concentration in the biogas is 10%-20% and no CH{sub 4} is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  14. Fermentative hydrogen production in anaerobic membrane bioreactors: A review.

    Science.gov (United States)

    Bakonyi, P; Nemestóthy, N; Simon, V; Bélafi-Bakó, K

    2014-03-01

    Reactor design considerations are crucial aspects of dark fermentative hydrogen production. During the last decades, many types of reactors have been developed and used in order to drive biohydrogen technology towards practicality and economical-feasibility. In general, the ultimate aim is to improve the key features of the process, namely the H2 yields and generation rates. Among the various configurations, the traditional, completely stirred tank reactors (CSTRs) are still the most routinely employed ones. However, due to their limitations, there is a progress to develop more reliable alternatives. One of the research directions points to systems combining membranes, which are called as anaerobic membrane bioreactors (AnMBRs). The aim of this paper is to summarize and highlight the recent biohydrogen related work done on AnMBRs and moreover to evaluate their performances and potentials in comparison with their conventional CSTR counterparts.

  15. Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora

    Institute of Scientific and Technical Information of China (English)

    CAI JinLing; WANG GuangCe; LI YanChuan; ZHU DaLing; PAN GuangHua

    2009-01-01

    Acid,alkali,heat-shock,KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora.Seawater culture medium was used as the substrate.The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P<0.05).Among the pretreatment methods studied,heat-shock pretreatment yielded the greatest hydrogen production,which was 14.6 times that of the control.When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied,hydrogen was produced over the entire pH range (pH 4-10).The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased.Sucrose consumption was high at neutral initial pH.During the process of hydrogen production,pH decreased gradually,which indicated that the acquired microflora consisted of acidogenic bacteria.

  16. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2006-01-01

    The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from...... were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS suggesting that: a) olive pulp is a suitable substrate for methane production; and b) biohydrogen...

  17. Energetic potential of biogas produced from cassava starch wastewater using a pilot scale two-stage anaerobic biodigester; Potencial energetico do biogas gerado no tratamento de aguas residuarias de fecularias em sistema piloto de biodigestao anaerobia com separacao de fases

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Armin [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias]. E-mail: armin_feiden@yahoo.com.br; Cereda, Marney Pascoli [UNESP, Botucatu, SP (Brazil). Centro de Raizes Tropicais

    2003-06-01

    Cassava starch is extracted in more of 70 units in west of Parana state, South of Brazil. Near the border of the Parana river there is a big concentration of this type of industry. The cassava starch extraction generates a great quantity of wastewater. The aim of this work was to evaluate the energetic potential of biogas generated in the anaerobic treatment of cassava. The pilot reactors were located at a cassava processing factory, with cassava roots grauding capacity of 250 metric ton day{sup -1} at the parallel 24 deg 09'18'' South latitude and meridian 54 deg 09'26'' West longitude of Grw. The treatment pilot system was consisted of two settling tanks with 500 L each, connected in series, followed by a two-stage anaerobic biodigester reactor. The acidogenic reactor had a capacity of 1,000 L and the methanogenic had a capacity of 3,000 L. The experiment was conducted at temperatures ranging from 23.9 deg C to 27.7 deg C, with a annual average of 25.8 deg C. It was not used the addition of nutrients nor pH correction. The best results were obtained at a flow rate of 901 L d{sup -1} with a TOC (total organic carbon) loading rate of 0.565 g L{sup -1} d{sup -1} and COD (chemical oxygen demand) of 2.49 g L{sup -1} d{sup -1}, and a hydraulic residence time of 4.4 days. At this loading rate, the system had an average biogas yield of 3.975 L L{sup -1} wastewater 0.895 L L{sup -1} reactor day{sup -1}, and 0.391 L g{sup -1} TOC removed. The net biogas yield was 16.10 m{sup 3} ton{sup -1} cassava roots processed, with 28.65% CO{sub 2}. By calculation it was found that the biogas production is enough to supply 30% of the heat necessity to steam production of the industry, 100% of the heat necessity of direct drying of cassava starch, or 50% of the general total electricity need of the factory. (author)

  18. Effective conversion of maize straw wastes into bio-hydrogen by two-stage process integrating H2 fermentation and MECs.

    Science.gov (United States)

    Li, Yan-Hong; Bai, Yan-Xia; Pan, Chun-Mei; Li, Wei-Wei; Zheng, Hui-Qin; Zhang, Jing-Nan; Fan, Yao-Ting; Hou, Hong-Wei

    2015-12-01

    The enhanced H2 production from maize straw had been achieved through the two-stage process of integrating H2 fermentation and microbial electrolysis cells (MECs) in the present work. Several key parameters affecting hydrolysis of maize straw through subcritical H2O were optimized by orthogonal design for saccharification of maize straw followed by H2 production through H2 fermentation. The maximum reducing sugar (RS) content of maize straw reached 469.7 mg/g-TS under the optimal hydrolysis condition with subcritical H2O combining with dilute HCl of 0.3% at 230 °C. The maximum H2 yield, H2 production rate, and H2 content was 115.1 mL/g-TVS, 2.6 mL/g-TVS/h, and 48.9% by H2 fermentation, respectively. In addition, the effluent from H2 fermentation was used as feedstock of MECs for additional H2 production. The maximum H2 yield of 1060 mL/g-COD appeared at an applied voltage of 0.8 V, and total COD removal reached about 35%. The overall H2 yield from maize straw reached 318.5 mL/g-TVS through two-stage processes. The structural characterization of maize straw was also carefully investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectra.

  19. Hydrogen as clean fuel via continuous fermentation by anaerobic ...

    African Journals Online (AJOL)

    Administrator

    anaerobic photosynthetic bacterium catalyzed water gas shift reaction which was used in this research. The synthesis gas ... commercial technology for syngas was steam methane reforming, in ..... Innovations (MOSTI). The authors wish to ...

  20. Production of hydrogen using an anaerobic biological process

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Robert; Pelter, Libbie S.; Patterson, John A.

    2016-11-29

    Various embodiments of the present invention pertain to methods for biological production of hydrogen. More specifically, embodiments of the present invention pertain to a modular energy system and related methods for producing hydrogen using organic waste as a feed stock.

  1. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    Science.gov (United States)

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-01

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  2. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were...... estimated through fitting of the model equations to the data obtained from batch experiments. The simulation of the continuous reactor performance at all HRTs tested (20, 15 and 10d) was very satisfactory. Specifically, the largest deviation of the theoretical predictions against the experimental data...... was 12% for the methane production rate at the HRT of 20d while the deviation values for the 15 and 10 d HRT were 1.9% and 1.1%, respectively. The model predictions regarding pH, methane percentage in the gas phase and COD removal were in very good agreement with the experimental data with a deviation...

  3. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  4. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan;

    2011-01-01

    . The methane production rate of the reactor with H2 addition was 22% higher, compared to the control reactor only fed with manure. The CO2 content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due......The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic...... mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition...

  5. Two-stage fungal pre-treatment for improved biogas production from sisal leaf decortication residues

    National Research Council Canada - National Science Library

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo

    2009-01-01

    .... Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors...

  6. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    Science.gov (United States)

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed.

  7. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by PCR–DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree......Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...

  8. Biological hydrogen production measured in batch anaerobic respirometers.

    Science.gov (United States)

    Logan, Bruce E; Oh, Sang-Eun; Kim, In S; Van Ginkel, Steven

    2002-06-01

    The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).

  9. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    Science.gov (United States)

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI.

  10. Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Wu, Chein-Chung [BioHydrogen Laboratory, Department of Water Resource Engineering, Feng Chia University, P.O. Box 25-123, Taichung 40724 (China); Hung, Chun-Hsiung [Department of Environmental Engineering, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung 40227 (China)

    2008-01-15

    Sewage sludge microflora were anaerobically cultivated in a chemostat-type anaerobic bioreactor at temperatures of 30-55{sup o}C, a pH of 7.1 and a hydraulic retention time of 12 h to determine the hydrogen production efficiency from xylose (20 g-COD/L). It was demonstrated that hydrogen production of the enriched sewage sludge microflora (dominated by Clostridia species) was temperature-dependent in hydrogen gas content, hydrogen yield, hydrogen production rate (HPR) and specific HPR with values of 25.1-42.2% (v/v), 0.4-1.4 mol-H{sub 2}/mol-xylose, 0.06-0.24 mol-H{sub 2}/L-day and 0.02-0.10 mol-H{sub 2}/g-VSS-day, respectively, and the above values peaked whaaen being operated at 50{sup o}C. A transition temperature of 45{sup o}C existed by having a lowest hydrogen production efficiency. Butyrate and ethanol were the major soluble metabolite products for thermophilic and mesophilic fermentation, respectively. The liquid metabolite concentration fractions and microbial community analysis indicate that the differences in hydrogen production efficiency between each tested temperature might relate to the shifts in metabolic pathway or microbial community. Thermodynamic analysis using HPR values and Arrhenius equation showed that the activation energy was 74.7 kJ/mol. Strategies based on temperature control for optimal hydrogen production from xylose using natural mixed cultures are proposed. (author)

  11. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  12. Fermentative Hydrogen Production by Pure Culture with a New H2-producing Anaerobe

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; YANG Chuan-ping; XU Jing-li

    2006-01-01

    As a new clean energy source, the utilization and demand for hydrogen fuel are rapidly increasing. The integrated process of wastewater treatment of DESAR and energy recovery was developed in the studies. A new hydrogen anaerobe was isolated from the activated sludge. The optimal glucose concentration and the optimal initial pH were 12.0 g/L and 5. 5 respectively. The optimum C/N of the growth and hydrogen production in Rennanqilyf3 was (3.0 ~3.5): 1. The integrated process between DESAR system and biohydrogen production will be an important progress on energy recovery of DESAR system.

  13. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...... thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate...... of 3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared...

  14. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.

    Science.gov (United States)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2012-04-01

    The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis.

  15. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen.

    Science.gov (United States)

    Lay, J J

    2000-05-01

    The pH and hydraulic retention time (HRT) of a chemostat reactor were varied according to a central composite design methodology with the aim of modeling and optimizing the conversion of starch into hydrogen by microorganisms in an anaerobic digested sludge. Experimental results from 23 runs indicate that a maximum hydrogen production rate of 1600 L/m(3)/d under the organic loading rate of 6 kg starch m(3)/d obtained at pH = 5.2 and HRT = 17 h. Throughout this study, the hydrogen percentage in the biogas was approximately 60% and no methanogenesis was observed. while the reactor was operated with HRT of 17 h, hydrogen was produced within a pH range between 4.7 and 5.7. Alcohol production rate was greater than hydrogen production rate if the pH was lower than 4.3 or higher than 6.1. Supplementary experiments confirm that the optimum conditions evaluated in this study were highly reliable; while a hydrogen production yield of 1.29 l H(2)/g starch-COD was obtained. An examination of the response surfaces, including hydrogen, volatile fatty acids (VFA) and alcohols production, led us to the belief that clostridium sp. predominated in the anaerobic hydrogen-producing microorganisms in this study. Experiment results obtained emphasize that the response of metabolites was a more useful indicator than hydrogenic activity for obtaining efficient hydrogen production. Furthermore, expressions of contour plots indicate that Response-Surface Methodology may provide easily interpretable advice on the operation of a hydrogen-producing bioprocess.

  16. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments.

    Science.gov (United States)

    Duangmanee, T; Padmasiri, S I; Simmons, J J; Raskin, L; Sung, S

    2007-09-01

    Biological hydrogen production by anaerobic mixed communities was studied in laboratory-scale bioreactors using sucrose as the substrate. A bioreactor in which a fraction of the return sludge was exposed to repeated heat treatments performed better than a control bioreactor without repeated heat treatment of return sludge and produced a yield of 2.15 moles of hydrogen per mole of sucrose, with 50% hydrogen in the biogas. Terminal restriction fragment length polymorphism analysis showed that two different Clostridium groups (comprised of one or more species) were dominant during hydrogen production. The relative abundance of two other non-Clostridium groups increased during periods of decreased hydrogen production. The first group consisted of Bifidobacterium thermophilum, and the second group included one or more of Bacillus, Melissococcus, Spirochaeta, and Spiroplasma spp.

  17. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric;

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household was...... from digested household wastes. This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H-2 production from complex organic wastes.......The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated...

  18. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  19. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kun; Zhang, Xu; Tan, Wen-Song; Zhu, Ming-Long [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2010-01-15

    Klebsiella pneumoniae ECU-15 (EU360791), which was isolated from anaerobic sewage sludge, was investigated in this paper for its characteristics of fermentative hydrogen production. It was found that the anaerobic condition favored hydrogen production than that of the micro-aerobic condition. Culture temperature and pH of 37 C and 6.0 were the most favorable for the hydrogen production. The strain could grow in several kinds of monosaccharide and disaccharide, as well as the complicated corn stalk hydrolysate, with the best results exhibited in glucose. The maximum hydrogen production rate and yield of 482 ml/l/h and 2.07 mol/mol glucose were obtained at initial glucose concentration of 30 g/L and 5 g/L, respectively. Fermentation results in the diluent corn stalk hydrolysate showed that cell growth was not inhibited. However, the hydrogen production of 0.65 V/V was relatively lower than that of the glucose (1.11 V/V), which was mainly due to the interaction between xylose and glucose. (author)

  20. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  1. Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria.

    Science.gov (United States)

    Joyner, A E; Winter, W T; Godbout, D M

    1977-03-01

    Hydrogen production was studied in the following rumen anaerobes: Bacteroides clostridiiformis, Butyrivibrio fibrisolvens, Enbacterium limosum, Fusobacterium necrophorum, Megasphaera elsdenii, Ruminococcus albus, and Ruminococcus flavefaciens. Clostridium pasteurianum and Escherichia coli were included for comparative purposes. Hydrogen production from dithionite, dithionite-reduced methyl viologen, pyruvate, and formate was determined. All species tested produced hydrogen from dithionite-reduce methyl viologen, but only C. pasteurianum, B. clostridiiformis, E. limosum, and M. elsdenii produced hydrogen from dithionite. All species except E. coli produced hydrogen from pyruvate, but activity was low or absent in extracts of E. limosum, F. necrophorum, R. albus, and R. flavefaciens unless methyl viologen was added. Hydrogen was produced from formate only by E. coli, B. clostridiiformis, E. limosum, F. necrophorum, and R. flavefaciens. Extracts were subjected to ultracentrifugation in an effort to determine the solubility of hydrogenase. The hydrogenase of all species except E. coli appeared to be soluble, although variable amounts of hydrogenase activity were detected in the pellet. Treatment of extracts of the rumen microbial species with DEAE-cellulose resulted in loss ofhydrogen production from pyruvate. Activity was restored by the addition of methyl viologen. It is concluded that hydrogen production in these rumen microorganisms is similar to that in the saccharolytic clostridia.

  2. Light-dependent hydrogen production by C. reinhardi. [anaerobically adapted green algae

    Science.gov (United States)

    Lien, S.; Mcbride, C.; Togasaki, R.; San Pietro, A.

    1979-01-01

    The activity of hydrogenase in nonsynchronous, photoheterotrophically grown cells of C. reinhardi is a function of culture age. Rapidly growing cultures (exponential phase) exhibit lower hydrogenase activity than early stationary phase cultures. During prolonged dark anaerobic incubation the hydrogenase activity attains a maximal value in two to five hours. The activity declines rapidly after three to four hours of anaerobic incubation unless the pH of the suspending medium is maintained above 6.0. In C. reinhardi the source of electrons for hydrogen photoproduction appears to be derived mainly from water oxidation. However, when the water-splitting complex of photosystem II is impaired by a mutational block, the organism can utilize intracellular organic reductants as substrate for H2 production in a light-dependent reaction involving both PSII and PSI. When photosynthetic electron transport is uncoupled from phosphorylation, a rate of 174 micromoles of hydrogen evolved per mg cells per hour is observed. This rate of hydrogen photoproduction corresponds to 76% of the reductant generating capacity of PSII under steady-state photosynthesis.

  3. Light-dependent hydrogen production by C. reinhardi. [anaerobically adapted green algae

    Science.gov (United States)

    Lien, S.; Mcbride, C.; Togasaki, R.; San Pietro, A.

    1979-01-01

    The activity of hydrogenase in nonsynchronous, photoheterotrophically grown cells of C. reinhardi is a function of culture age. Rapidly growing cultures (exponential phase) exhibit lower hydrogenase activity than early stationary phase cultures. During prolonged dark anaerobic incubation the hydrogenase activity attains a maximal value in two to five hours. The activity declines rapidly after three to four hours of anaerobic incubation unless the pH of the suspending medium is maintained above 6.0. In C. reinhardi the source of electrons for hydrogen photoproduction appears to be derived mainly from water oxidation. However, when the water-splitting complex of photosystem II is impaired by a mutational block, the organism can utilize intracellular organic reductants as substrate for H2 production in a light-dependent reaction involving both PSII and PSI. When photosynthetic electron transport is uncoupled from phosphorylation, a rate of 174 micromoles of hydrogen evolved per mg cells per hour is observed. This rate of hydrogen photoproduction corresponds to 76% of the reductant generating capacity of PSII under steady-state photosynthesis.

  4. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor.

    Science.gov (United States)

    de Amorim, Eduardo Lucena Cavalcante; Sader, Leandro Takano; Silva, Edson Luiz

    2012-03-01

    The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L(-1) showed satisfactory H(2) production performance, but the reactor fed with 25 g L(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L(-1). The AFBRs operated with glucose concentrations of 2 and 4 g L(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

  5. ADM1-based modeling of methane production from acidified sweet sorghum extract in a two stage process.

    Science.gov (United States)

    Antonopoulou, Georgia; Gavala, Hariklia N; Skiadas, Ioannis V; Lyberatos, Gerasimos

    2012-02-01

    The present study focused on the application of the Anaerobic Digestion Model 1 on the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were estimated through fitting of the model equations to the data obtained from batch experiments. The simulation of the continuous reactor performance at all HRTs tested (20, 15, and 10d) was very satisfactory. Specifically, the largest deviation of the theoretical predictions against the experimental data was 12% for the methane production rate at the HRT of 20d while the deviation values for the 15 and 10d HRT were 1.9% and 1.1%, respectively. The model predictions regarding pH, methane percentage in the gas phase and COD removal were in very good agreement with the experimental data with a deviation less than 5% for all steady states. Therefore, the ADM1 is a valuable tool for process design in the case of a two-stage anaerobic process as well.

  6. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2012-11-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO(2) , biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO(2) to CH(4) by addition of H(2) . Enrichment at thermophilic temperature (55°C) resulted in CO(2) and H(2) bioconversion rate of 320 mL CH(4) /(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed by PCR-DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH(4) content, around 95% at steady-state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH(4) content to around 90%. Further study showed that by decreasing the gas-liquid mass transfer by increasing the stirring speed of the mixture the CH(4) content was increased to around 95%. Finally, the CH(4) content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day).

  7. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    Science.gov (United States)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  8. Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Hoon; Choi, Jeong-A.; Bhatnagar, Amit; Kumar, Eva; Jeon, Byong-Hun [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Min, Booki [Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea); Song, Hocheol; Kim, Yong Je [Geologic Environment Division, KIGAM, Daejeon, 305-350 (Korea); Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea); Lee, Eung Seok [Geological Sciences, College of Arts and Sciences, Ohio University, Athens, OH 45701-2979 (United States); Um, Sukkee [School of Mechanical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791 (Korea); Lee, Dae Sung [Petroleum and Marine Research Department, KIGAM, Daejeon (Korea)

    2009-12-15

    The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed. (author)

  9. Tratamento anaeróbio de águas residuárias do beneficiamento de café por via úmida em reatores UASB em dois estágios Anaerobic treatment of wastewater from coffee pulping in upflow anaerobic sludge blanquet (UASB in two stages

    Directory of Open Access Journals (Sweden)

    Marcelo Bruno

    2008-06-01

    Full Text Available Neste trabalho, avaliou-se a eficiência do tratamento de águas residuárias do beneficiamento de café por via úmida em reatores anaeróbios de fluxo ascendente com manta de lodo (UASB, em dois estágios, em escala de bancada, submetidos a tempos de detenção hidráulica (TDH de 4,0; 5,2 e 6,2 dias e cargas orgânicas volumétricas (COV de 5,8; 3,0 e 3,6 g DQO total (L d-1, no primeiro reator (R1, e TDH de 2,0; 2,6 e 3,1 dias e COV de 5,8; 0,5 e 0,4 g DQO total (L d-1, no segundo reator (R2. Os valores médios de DQO do afluente variaram de 15.440 a 23.040 mg O2 L-1. As eficiências médias de remoção de DQO total e SST foram de 66 a 98% e de 93 a 97%, respectivamente, nos reatores UASB, em dois estágios. O teor médio de metano no biogás variou de 69 a 89%, no reator R1, e de 52 a 73%, no reator R2. A produção volumétrica máxima de metano de 0,708 L CH4 (L reator d-1 foi obtida com COV de 3,6 g DQO (Ld-1 e TDH de 6,2 d, no reator R1. Os valores médios de pH variaram de 4,7 a 7,7 e de 4,9 a 8,0 nos efluentes dos reatores R1 e R2, respectivamente. As concentrações de ácidos voláteis totais nos efluentes mantiveram-se estáveis com valores inferiores a 100 mg L-1, com TDH de 5,2 e 6,2 dias, no reator R1, e TDH de 2,6 e 3,1 dias, no reator R2. As concentrações médias de fenóis totais no afluente variaram de 80 a 97 mg L-1 e as eficiências médias de remoção nos reatores UASB, em dois estágios, foram de 72 a 90%.In this work, it was evaluated the efficiency of two stage up flow anaerobic sludge blanquet (UASB reactors, in bench scale, treating a liquid effluent from the coffee pulping, submitted to hydraulic detention time (HDT of 4.0; 5.2 and 6.2 days, resulting in organic loading rate (OLR of 5.8; 3.6 and 3.0 g COD (L d-1 in the first reactor (R1 and HDT of 2.0; 2.6 and 3.1 days with OLR of 5.8; 0.5 and 0.4 g DQO total (L d-1 in the second reactor (R2. The medium values of total COD affluent varied from 15,440 to 23,040 mg

  10. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    OpenAIRE

    Cristiane Marques dos Reis; Edson Luiz Silva

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1–8 h). Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1) were operated at different total upflow velocities: 0.30 cm s−1 (R030) and 0.60 cm s−1 (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at...

  11. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi.

    Science.gov (United States)

    Jo, Ji Hye; Jeon, Che Ok; Lee, Dae Sung; Park, Jong Moon

    2007-09-15

    Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.

  12. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    Science.gov (United States)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  13. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  14. Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Hung, Wen-Chin [BioHydrogen Laboratory, Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China)

    2008-07-15

    Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment {alpha}-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 C at various initial pH conditions (5.5-9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4-4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25-3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6-8.0 with peak HY/EY values of 2.8 mmol-H{sub 2}/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H{sub 2}/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental

  15. Bio-Hydrogen Production from Pineapple Waste Extract by Anaerobic Mixed Cultures

    Directory of Open Access Journals (Sweden)

    Chakkrit Sreela-or

    2013-04-01

    Full Text Available A statistical experimental design was employed to optimize factors that affect the production of hydrogen from the glucose contained in pineapple waste extract by anaerobic mixed cultures. Results from Plackett-Burman design indicated that substrate concentration, initial pH and FeSO4 concentration had a statistically significant (p ≤ 0.05 influence on the hydrogen production potential (Ps and the specific hydrogen production rate (SHPR. The path of steepest ascent was undertaken to approach the optimal region of these three significant factors which was then optimized using response surface methodology (RSM with central composite design (CCD. The presence of a substrate concentration of 25.76 g-total sugar/L, initial pH of 5.56, and FeSO4 concentration of 0.81 g/L gave a maximum predicted Ps of 5489 mL H2/L, hydrogen yield of 1.83 mol H2/mol glucose, and SHPR of 77.31 mL H2/g-volatile suspended solid (VSS h. A verification experiment indicated highly reproducible results with the observed Ps and SHPR being only 1.13% and 1.14% different from the predicted values.

  16. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    two phase and sub optimal conditions improves the energy potential to 8.27 MW/tonne VS{sub fed} with VS(removal) efficiency as 80.7% in total 15 days of HRT. The net energy balance results indicated the co-digestion of IFW with waste products of SS treatment plant viz. primary sludge (PS) and waste activated sludge (WAS) are amenable substrates for the two-stage anaerobic bio-hydrogen and biomethane digestion process. (orig.)

  17. Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria.

    Science.gov (United States)

    Hiligsmann, Serge; Masset, Julien; Hamilton, Christopher; Beckers, Laurent; Thonart, Philippe

    2011-02-01

    In this paper, a simple and rapid method was developed in order to assess in comparative tests the production of binary biogas mixtures containing CO(2) and another gaseous compound such as hydrogen or methane. This method was validated and experimented for the characterisation of the biochemical hydrogen potential of different pure strains and mixed cultures of hydrogen-producing bacteria (HPB) growing on glucose. The experimental results compared the hydrogen production yield of 19 different pure strains and sludges: facultative and strict anaerobic HPB strains along with anaerobic digester sludges thermally pre-treated or not. Significant yields variations were recorded even between different strains of the same species by i.e. about 20% for three Clostridium butyricum strains. The pure Clostridium butyricum and pasteurianum strains achieved the highest yields i.e. up to 1.36 mol H(2)/mol glucose compared to the yields achieved by the sludges and the tested Escherichia and Citrobacter strains.

  18. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    Science.gov (United States)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  19. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-11-01

    Hydrogen production by thermophilic anaerobic microflora enriched from sludge compost was studied by using an artificial medium containing cellulose powder. Hydrogen gas was evolved with the formation of acetate, ethanol, and butyrate by decomposition of the cellulose powder. The hydrogen production yield was 2.0 mol/mol-hexose by either batch or chemostat cultivation. A medium that did not contain peptone demonstrated a lower hydrogen production yield of 1.0 mol/mol-hexose with less formation of butyrate. The microbial community in the microflora was investigated through isolation of the microorganisms by both plating and denaturing gradient gel electrophoresis (DGGE) of the' PCR-amplified V3 region of 16S rDNA. Sixty-eight microorganisms were isolated from the microflora and classified into nine distinct groups by genetic fingerprinting of the PCR-DGGE or by a random amplified polymorphic DNA analysis and determination of the partial sequence of 16S rDNA. Most of the isolates belonged to the cluster of the thermophilic Clostridium/Bacillus subphylum of low G+C gram-positive bacteria. Product formation by most of the isolated strains corresponded to that produced by the microflora. Thermoanaerobacterium thermosaccharolyticium was isolated in the enrichment culture with or without added peptone. and was detected with strong intensity by PCR-DGGE. Two other thermophilic cellulolytic microorganisms, Clostridium thermocellum and Clostridium cellulosi, were also detected by PCR-DGGE, although they could not be isolated. These findings imply that hydrogen production from cellulose by microflora is performed by a consortium of several species of microorganisms.

  20. Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation

    Institute of Scientific and Technical Information of China (English)

    Liping Hao; Fan Lü; Lei Li; Liming Shao; Pinjing He

    2013-01-01

    To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems,the responses of microbial communities and metabolic activities,which were involved in anaerobic degradation of acetate,to the addition of methyl fluoride (CH3F),2-bromoethanesulfonate (BES) and hydrogen were investigated in a thermophilic batch experiment.Both the methanogenic inhibitors,i.e.,CH3F and BES,showed their effectiveness on inhibiting CH4 production,whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES,as reflected by the fluctuated acetate concentration.Syntrophic acetate oxidation was thermodynamically blocked by hydrogen (H2),while H2-utilizing reactions as hydrogenotrophic methanogencsis and homoacetogenesis were correspondingly promoted.Results of PCR-DGGE fingerprinting showed that,CH3F did not influence the microbial populations significantly.However,the BES and hydrogen notably altered the bacterial community structures and increased the diversity.BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels,whilst H2 greatly changed the abundance of different methanogenic populations,and induced growth of new species.

  1. Response of anaerobes to methyl fluoride, 2-bromoethanesulfonate and hydrogen during acetate degradation.

    Science.gov (United States)

    Hao, Liping; Lü, Fan; Li, Lei; Shao, Liming; He, Pinjing

    2013-05-01

    To use the selective inhibition method for quantitative analysis of acetate metabolism in methanogenic systems, the responses of microbial communities and metabolic activities, which were involved in anaerobic degradation of acetate, to the addition of methyl fluoride (CH3F), 2-bromoethanesulfonate (BES) and hydrogen were investigated in a thermophilic batch experiment. Both the methanogenic inhibitors, i.e., CH3F and BES, showed their effectiveness on inhibiting CH4 production, whereas acetate metabolism other than acetoclastic methanogenesis was stimulated by BES, as reflected by the fluctuated acetate concentration. Syntrophic acetate oxidation was thermodynamically blocked by hydrogen (H2), while H2-utilizing reactions as hydrogenotrophic methanogenesis and homoacetogenesis were correspondingly promoted. Results of PCR-DGGE fingerprinting showed that, CH3F did not influence the microbial populations significantly. However, the BES and hydrogen notably altered the bacterial community structures and increased the diversity. BES gradually changed the methanogenic community structure by affecting the existence of different populations to different levels, whilst H2 greatly changed the abundance of different methanogenic populations, and induced growth of new species.

  2. Cellulose-hydrogen production from corn stalk biomass by anaerobic fermentation

    Institute of Scientific and Technical Information of China (English)

    XING Yan; MA HongCui; FAN YaoTing; HOU HongWei; CHEN JingRun

    2009-01-01

    Cellulose-hydrogen production from corn stalk by lesser panda manure was carried out in batch testa and a 5 L scale-up continuously stirred anaerobic bioreactor (CSABR),respectively.The bio-pretreat-ment of corn stalk was found most effective at 25℃ using microbe additive of 7.5 g/kg,in which the yields of soluble saccharides (SS) and lactic acid were 212 mg/g-TS and 21 mg/g-TS,respectively.The maximum cumulative H2 yield (176 ml/g-TS) and H2 production rate (14.5 ml/g-TS h-1) were obtained at pH 5.5,36℃ by treating a substrate of 15 g/L.The hydrogen content in biogas was 57.2% and there was no significant methane gas observed.During the optimal period of H2 production,the ORP values stayed in the lower level ranging from -445 mV to -455 mV.The results show that the bio-pretreatment of the raw materials played a vital role in the effective conversion of corn stalk into cellulose-hydrogen by mixed culture.

  3. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    Directory of Open Access Journals (Sweden)

    Cristiane Marques dos Reis

    2014-01-01

    Full Text Available This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT (1–8 h. Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1 were operated at different total upflow velocities: 0.30 cm s−1 (R030 and 0.60 cm s−1 (R060. The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  4. Simultaneous coproduction of hydrogen and ethanol in anaerobic packed-bed reactors.

    Science.gov (United States)

    dos Reis, Cristiane Marques; Silva, Edson Luiz

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1-8 h). Two reactors filled with expanded clay and fed with glucose (3136-3875 mg L(-1)) were operated at different total upflow velocities: 0.30 cm s(-1) (R030) and 0.60 cm s(-1) (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h(-1) L(-1) in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol(-1) glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  5. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    Full Text Available Hydrogen is considered one of the possible main energy carriers for the future, thanks to its unique environmental properties. Indeed, its energy content (120 MJ/kg can be exploited virtually without emitting any exhaust in the atmosphere except for water. Renewable production of hydrogen can be obtained through common biological processes on which relies anaerobic digestion, a well-established technology in use at farm-scale for treating different biomass and residues. Despite two-stage hydrogen and methane producing fermentation is a simple variant of the traditional anaerobic digestion, it is a relatively new approach mainly studied at laboratory scale. It is based on biomass fermentation in two separate, seuqential stages, each maintaining conditions optimized to promote specific bacterial consortia: in the first acidophilic reactorhydrogen is produced production, while volatile fatty acids-rich effluent is sent to the second reactor where traditional methane rich biogas production is accomplished. A two-stage pilot-scale plant was designed, manufactured and installed at the experimental farm of the University of Milano and operated using a biomass mixture of livestock effluents mixed with sugar/starch-rich residues (rotten fruits and potatoes and expired fruit juices, afeedstock mixture based on waste biomasses directly available in the rural area where plant is installed. The hydrogenic and the methanogenic reactors, both CSTR type, had a total volume of 0.7m3 and 3.8 m3 respectively, and were operated in thermophilic conditions (55 2 °C without any external pH control, and were fully automated. After a brief description of the requirements of the system, this contribution gives a detailed description of its components and of engineering solutions to the problems encountered during the plant realization and start-up. The paper also discusses the results obtained in a first experimental run which lead to production in the range of previous

  6. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Balch, W.E.; Schoberth, S.; Tanner, R.S.; Wolfe, R.S.

    1977-10-01

    A new genus of fastidiously anaerobic bacteria which produce a homoacetic fermentation is described. Cells are gram-positive, oval-shaped, short rods which are actively motile by means of one or two subterminal flagella. Hydrogen is oxidized, and carbon dioxide is reduced to acetic acid. Organic substrates which are fermented in a mineral medium include frutose, glucose, lactate, glycerate, and formate. Pantothenate is required as a growth factor. The deoxyribonucleic acid base composition of the type species is 39 mol% guanine plus cytosine. The name Acetobacterium is proposed for this new genus, which is tentatively placed in the family Propionibacteriaceae. The type species, Acetobacterium woodii sp. nov., is named in honor of Harland G. Wood. The type strain of A. woodii is WB1 (= ATCC 29683 and DSM 1030).

  7. Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge.

    Science.gov (United States)

    Kotay, Shireen Meher; Das, Debabrata

    2007-04-01

    Bacillus coagulans strain IIT-BT S1 isolated from anaerobically digested activated sewage sludge was investigated for its ability to produce H(2) from glucose-based medium under the influence of different environmental parameters. At mid-exponential phase of cell growth, H(2) production initiated and reached maximum production rate in the stationary phase. The maximal H(2) yield (2.28 mol H(2)/molglucose) was recorded at an initial glucose concentration of 2% (w/v), pH 6.5, temperature 37 degrees C, inoculum volume of 10% (v/v) and inoculum age of 14 h. Cell growth rate and rate of hydrogen production decreased when glucose concentration was elevated above 2% w/v, indicating substrate inhibition. The ability of the organism to utilize various carbon sources for H(2) fermentation was also determined.

  8. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L; Stevens, David K

    2007-02-15

    The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

  9. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production.

    Science.gov (United States)

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing; Wu, Chao

    2012-07-01

    A facultative anaerobic bacteria strain GS-4-08, isolated from an anaerobic sequence batch reactor for synthetic dye wastewater treatment, was investigated for azo-dye decolorization. This bacterium was identified as a member of Klebsiella oxytoca based on Gram staining, morphology characterization and 16S rRNA gene analysis. It exhibited a good capacity of simultaneous decolorization and hydrogen production in the presence of electron donor. The hydrogen production was less affected even at a high Methyl Orange (MO) concentration of 0.5 mM, indicating a superior tolerability of this strain to MO. This efficient bio-hydrogen production from electron donor can not only avoid bacterial inhibition due to accumulation of volatile fatty acids during MO decolorization, but also can recover considerable energy from dye wastewater.

  10. Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Lara, Cesar-Arturo [INRA, UMR792, Ingenierie des Systemes Biologiques et des Procedes, Toulouse (France); CNRS, UMR5504, Toulouse, France 135 Avenue de Rangueil, Toulouse Cedex F-31077 (France); INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France); Latrille, Eric; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2010-10-15

    This paper addresses the problem of optimization of hydrogen production in continuous anaerobic digesters using a model predictive control (MPC) strategy. The process is described by a dynamic nonlinear model. The influent concentration of molasses together with the effluent substrate and product concentrations of acetate, propionate, butyrate and biomass were estimated by an asymptotic online observer from measurements of gas composition in H{sub 2} and CO{sub 2} and gas flow rate. The observer was tested experimentally before to apply MPC online. The combined strategy (MPC and observer) was used in order to optimize a bioreactor of 2 L. The hydrogen production was increased by 75% up to 8.27mL{sub H{sub 2}} L{sup -1}min{sup -1}, using the influent flow rate as the main control variable while keeping the conversion of the influent concentration higher than 95% and maintaining the temperature at 37 C and pH at 5.5. (author)

  11. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria.

    Science.gov (United States)

    Boiangiu, Clara D; Jayamani, Elamparithi; Brügel, Daniela; Herrmann, Gloria; Kim, Jihoe; Forzi, Lucia; Hedderich, Reiner; Vgenopoulou, Irini; Pierik, Antonio J; Steuber, Julia; Buckel, Wolfgang

    2005-01-01

    Anaerobic bacteria ferment glutamate via two different pathways to ammonia, carbon dioxide, acetate, butyrate and molecular hydrogen. The coenzyme B12-dependent pathway in Clostridium tetanomorphum via 3-methylaspartate involves pyruvate:ferredoxin oxidoreductase and a novel enzyme, a membrane-bound NADH:ferredoxin oxidoreductase. The flavin- and iron-sulfur-containing enzyme probably uses the energy difference between reduced ferredoxin and NADH to generate an electrochemical Na+ gradient, which drives transport processes. The other pathway via 2-hydroxyglutarate in Acidaminococcus fermentans and Fusobacterium nucleatum involves glutaconyl-CoA decarboxylase, which uses the free energy of decarboxylation to generate also an electrochemical Na+ gradient. In the latter two organisms, similar membrane-bound NADH:ferredoxin oxidoreductases have been characterized. We propose that in the hydroxyglutarate pathway these oxidoreductases work in the reverse direction, whereby the reduction of ferredoxin by NADH is driven by the Na+ gradient. The reduced ferredoxin is required for hydrogen production and the activation of radical enzymes. Further examples show that reduced ferredoxin is an agent, whose reducing energy is about 1 ATP 'richer' than that of NADH.

  12. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.

    Science.gov (United States)

    Islam, Rumana; Cicek, Nazim; Sparling, Richard; Levin, David

    2006-09-01

    We have investigated hydrogen (H2) production by the cellulose-degrading anaerobic bacterium, Clostridium thermocellum. In the following experiments, batch-fermentations were carried out with cellobiose at three different substrate concentrations to observe the effects of carbon-limited or carbon-excess conditions on the carbon flow, H2-production, and synthesis of other fermentation end products, such as ethanol and organic acids. Rates of cell growth were unaffected by different substrate concentrations. H2, carbon dioxide (CO2), acetate, and ethanol were the main products of fermentation. Other significant end products detected were formate and lactate. In cultures where cell growth was severely limited due to low initial substrate concentrations, hydrogen yields of 1 mol H2/mol of glucose were obtained. In the cultures where growth ceased due to carbon depletion, lactate and formate represented a small fraction of the total end products produced, which consisted mainly of H2, CO2, acetate, and ethanol throughout growth. In cultures with high initial substrate concentrations, cellobiose consumption was incomplete and cell growth was limited by factors other than carbon availability. H2-production continued even in stationary phase and H2/CO2 ratios were consistently greater than 1 with a maximum of 1.2 at the stationary phase. A maximum specific H2 production rate of 14.6 mmol g dry cell(-1) h(-1) was observed. As cells entered stationary phase, extracellular pyruvate production was observed in high substrate concentration cultures and lactate became a major end product.

  13. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoez, F. Tuba; Keskin, Tugba; Korkmaz, Kemal S.; Syed, Hamid M. [Bioengineering Department, Faculty of Engineering, Ege University, EBILTEM, Bornova, 35100 Izmir (Turkey)

    2009-09-15

    Hydrogen (H{sub 2}) production from cheese processing wastewater via dark anaerobic fermentation was conducted using mixed microbial communities under thermophilic conditions. The effects of varying hydraulic retention time (HRT: 1, 2 and 3.5 days) and especially high organic load rates (OLR: 21, 35 and 47 g chemical oxygen demand (COD)/l/day) on biohydrogen production in a continuous stirred tank reactor were investigated. The biogas contained 5-82% (45% on average) hydrogen and the hydrogen production rate ranged from 0.3 to 7.9 l H{sub 2}/l/day (2.5 l/l/day on average). H{sub 2} yields of 22, 15 and 5 mmol/g COD (at a constant influent COD of 40 g/l) were achieved at HRT values of 3.5, 2, and 1 days, respectively. On the other hand, H{sub 2} yields were monitored to be 3, 9 and 6 mmol/g COD, for OLR values of 47, 35 and 21 g COD/l/day, when HRT was kept constant at 1 day. The total measurable volatile fatty acid concentration in the effluent (as a function of influent COD) ranged between 118 and 27,012 mg/l, which was mainly composed of acetic acid, iso-butyric acid, butyric acid, propionic acid, formate and lactate. Ethanol and acetone production was also monitored from time to time. To characterize the microbial community in the bioreactor at different HRTs, DNA in mixed liquor samples was extracted immediately for PCR amplification of 16S RNA gene using eubacterial primers corresponding to 8F and 518R. The PCR product was cloned and subjected to DNA sequencing. The sequencing results were analyzed by using MegaBlast available on NCBI website which showed 99% identity to uncultured Thermoanaerobacteriaceae bacterium. (author)

  14. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, N.; Tuba, F.; Dokgoz, C. [Bioengineering Dept., Faculty of Engineering, Ege Univ., Izmir (Turkey)], E-mail: nuri.azbar@ege.edu.tr

    2009-07-01

    In this study, H{sub 2} was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31{sup o}C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121{sup o}C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H{sub 2}/ g COD{sub fed}). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H{sub 2} / g COD{sub fed}). It was found that, undiluted raw cheese whey wastewater

  15. The construction of two-stage tests

    NARCIS (Netherlands)

    Adema, Jos J.

    1988-01-01

    Although two-stage testing is not the most efficient form of adaptive testing, it has some advantages. In this paper, linear programming models are given for the construction of two-stage tests. In these models, practical constraints with respect to, among other things, test composition, administrat

  16. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    Science.gov (United States)

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven.

  17. Remoção de matéria orgânica, de nutrientes e de coliformes no processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB para o tratamento de águas residuárias de suinocultura Organic matter, nutrients and coliforms removal in two-stage anaerobic process (anaerobic baffled reactor followed by UASB reactor for swine wastewater treatment

    Directory of Open Access Journals (Sweden)

    Mário S. de Abreu Neto

    2009-03-01

    Full Text Available Neste trabalho, avaliou-se o efeito das águas residuárias de suinocultura, com concentrações médias de sólidos suspensos totais variando de 4.591 a 13.001 mg L-1, no desempenho de processo anaeróbio, em dois estágios, compostos por reator compartimentado (ABR e reator de fluxo ascendente com manta de lodo (UASB, instalados em série, em escala- -piloto (volumes de 530 e 120 L, respectivamente, submetidos a tempos de detenção hidráulica (TDH de 60; 36 e 24 h no primeiro reator, e de 13,6; 8,2 e 5,4 h no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 69 a 84% no reator ABR e de 39 a 58% no reator UASB, resultando em valores médios de 87 a 94% para o sistema de tratamento anaeróbio em dois estágios, com carga orgânica volumétrica (COV na faixa de 11,5 a 18,0 g DQOtotal (L d-1 no reator ABR, e de 4,2 a 13,4 g DQOtotal (L d-1 no reator UASB. A produção volumétrica máxima de metano de 0,227 m³ CH4 (m³ reator d-1 ocorreu no reator UASB, com COV de 10,6 g DQOtotal (L d-1 e TDH de 5,4 h. As maiores eficiências de remoção de coliformes totais e termotolerantes (99,7%, DQOdiss (94%, SST (96%, NTK (71%, P-total (61% e outros nutrientes, no sistema de tratamento anaeróbio em dois estágios, foram obtidas com o TDH de 73,6 h e temperatura climatológica média de 24,6 °C, aplicando-se a menor COV (de 11,5 g DQOtotal (L d-1 no reator ABR, e de 4,2 g DQOtotal (L d-1 no reator UASB com a maior concentração de SST do afluente (13.001 mg L-1.In this work it was evaluated the effect of swine wastewater with mean total suspended solid (TSS concentration ranging from 4.591 to 13.001 mg L-1 on the performance of the anaerobic process in two stages composed of anaerobic baffled reactors (ABR and an upflow sludge blanket reactor (UASB, installed in series, in pilot scale testing (volumes of 530 and 120 L, respectively and with hydraulic detention times (HDT of 60; 36 and 24 h in the ABR reactor and 13.6; 8.2 and

  18. Molecular characterization and fermentative hydrogen production of a wild anaerobe in clostridium genus

    Institute of Scientific and Technical Information of China (English)

    LI Yongfeng; REN Nanqi; YANG Chuanping; LI Jianzheng; LI Peng

    2007-01-01

    Anaerobic process of biohydrogen production is developed in this paper.The isolation and identification of high efficient biohydrogen production anaerobic bacteria are the important foundations for the fermented biohydrogen production process by anaerobic digesting organic wastewater.Taking the physiological and biochemical traits,the morphological characteristics and 16S rDNA sequence into consideration,the isolate Rennanqilyf33 is a new species.

  19. Two-Stage Conversion of Land and Marine Biomass for Biogas and Biohydrogen Production

    OpenAIRE

    Nkemka, Valentine

    2012-01-01

    The replacement of fossil fuels by renewable fuels such as biogas and biohydrogen will require efficient and economically competitive process technologies together with new kinds of biomass. A two-stage system for biogas production has several advantages over the widely used one-stage continuous stirred tank reactor (CSTR). However, it has not yet been widely implemented on a large scale. Biohydrogen can be produced in the anaerobic two-stage system. It is considered to be a useful fuel for t...

  20. Improvement of hydrogen production via ethanol-type fermentation in an anaerobic down-flow structured bed reactor.

    Science.gov (United States)

    Anzola-Rojas, Mélida del Pilar; Zaiat, Marcelo; De Wever, Heleen

    2016-02-01

    Although a novel anaerobic down-flow structured bed reactor has shown feasibility and stable performance for a long-term compared to other anaerobic fixed bed systems for continuous hydrogen production, the volumetric rates and yields have so far been too low. In order to improve the performance, an operation strategy was applied by organic loading rate (OLR) variation (12-96 g COD L(-1) d(-1)). Different volumetric hydrogen rates, and yields at the same OLR indicated that the system was mainly driven by the specific organic load (SOL). When SOL was kept between 3.8 and 6.2 g sucrose g(-1) VSS d(-1), the volumetric rates raised from 0.1 to 8.9 L H2 L(-1) d(-1), and the yields were stable around 2.0 mol H2 mol(-1) converted sucrose. Furthermore, hydrogen was produced mainly via ethanol-type fermentation, reaching a total energy conversion rate of 23.40 kJ h(-1) L(-1) based on both hydrogen and ethanol production.

  1. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production.

  2. Preliminary cleaning of brewery waste water in a two-stage anaerobic plant: influence of COD in the inflow on cleaning efficiency and biogas formation; Vorreinigung von Brauereiabwasser in zweistufigen Anaerob-Anlagen: Einfluss des CSB im Zulauf auf die Reinigungsleistung und Biogasbildung

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A.P. [Universitaet des Saarlandes, Saarbruecken (Germany). Lehrstuhl fuer Prozesstechnik; Janke, H.D. [Gesellschaft fuer Umweltkompatible Prozesstechnik mbH (upt), Saarbruecken (Germany); Chmiel, H. [Gesellschaft fuer Umweltkompatible Prozesstechnik mbH (upt), Saarbruecken (Germany); Universitaet des Saarlandes, Saarbruecken (Germany). Lehrstuhl fuer Prozesstechnik

    1999-07-01

    Using a continuously operated, two-stage laboratory system (acidification reactor and packed-bed methane reactor) and with brewery waste water as a substrate, systematic studies concerning the influence of COD{sup inflow} on fatty acid formation, COD reduction and biogas formation were carried out. In the upshot, the executed pilot tests permit the conclusion that treatment of a partial stream (COD{sup inflow} {>=} 5000mg/l), though not advantageous in terms of space/time yield, may be more economical on the whole under certain boundary conditions than treatment of the entire stream (COD{sup inflow} 1800-3000 mg/l). (orig.) [German] Mit einer kontinuierlich betriebenen, zweistufigen Laboranlage (Versaeuerungsreaktor und Festbett-Methanreaktor) wurden unter Verwendung von Brauereiabwasser als Substrat systematische Untersuchungen zum Einfluss des CSB{sup ZULAUF} auf die Fettsaeurebildung, CSB-Reduktion und Biogasbildung durchgefuehrt. Aus den durchgefuehrten Modellversuchen laesst sich zusammenfassend ableiten, dass eine Teilstrombehandlung (CSB{sup ZULAUF}{>=}5.000 mg/l) zwar hinsichtlich der Raum/Zeit-Ausbeute keine Vorteile mit sich bringt, aber unter bestimmten Randbedingungen insgesamt wirtschaftlicher als eine Vollstrombehandlung (CSB{sup ZULAUF} 1.800-3.000 mg/l) sein kann. (orig.)

  3. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    Directory of Open Access Journals (Sweden)

    Anne M. Henstra

    2011-01-01

    Full Text Available Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently low levels of CO are reached. Here we study CO conversion and final CO levels in cultures of C. hydrogenoformans grown in batch cultures that were started with a 100% CO gas phase with and without removal of formed CO2. Final CO levels were 117 ppm without CO2 removal and below 2 ppm with CO2 removal. The Gibbs free energy change calculated with measured end concentrations and the detection of acetate suggest that C. hydrogenoformans shifted from a hydrogenogenic to an acetogenic metabolism.

  4. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.

    Science.gov (United States)

    Koskinen, Perttu E P; Lay, Chyi-How; Puhakka, Jaakko A; Lin, Ping-Jei; Wu, Shu-Yii; Orlygsson, Jóhann; Lin, Chiu-Yue

    2008-11-01

    Dark fermentative hydrogen production from glucose by a thermophilic culture (33HL), enriched from an Icelandic hot spring sediment sample, was studied in two continuous-flow, completely stirred tank reactors (CSTR1, CSTR2) and in one semi-continuous, anaerobic sequencing batch reactor (ASBR) at 58 degrees C. The 33HL produced H2 yield (HY) of up to 3.2 mol-H2/mol-glucose along with acetate in batch assay. In the CSTR1 with 33HL inoculum, H2 production was unstable. In the ASBR, maintained with 33HL, the H2 production enhanced after the addition of 6 mg/L of FeSO4 x H2O resulting in HY up to 2.51 mol-H2/mol-glucose (H2 production rate (HPR) of 7.85 mmol/h/L). The H2 production increase was associated with an increase in butyrate production. In the CSTR2, with ASBR inoculum and FeSO4 supplementation, stable, high-rate H2 production was obtained with HPR up to 45.8 mmol/h/L (1.1 L/h/L) and HY of 1.54 mol-H2/mol-glucose. The 33HL batch enrichment was dominated by bacterial strains closely affiliated with Thermobrachium celere (99.8-100%). T. celere affiliated strains, however, did not thrive in the three open system bioreactors. Instead, Thermoanaerobacterium aotearoense (98.5-99.6%) affiliated strains, producing H2 along with butyrate and acetate, dominated the reactor cultures. This culture had higher H2 production efficiency (HY and specific HPR) than reported for mesophilic mixed cultures. Further, the thermophilic culture readily formed granules in CSTR and ASBR systems. In summary, the thermophilic culture as characterized by high H2 production efficiency and ready granulation is considered very promising for H2 fermentation from carbohydrates.

  5. Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB para tratamento de águas residuárias de suinocultura Performance of two-stage anaerobic process (baffled reactor (ABR followed by an upflow sludge blanket reactor (UASB treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Gracie F. R. Fernandes

    2006-04-01

    Full Text Available Avaliou-se o efeito das águas residuárias de suinocultura com concentrações de sólidos suspensos totais em torno de 6.000 mg L-1 (DQOtotal variando de 7.557 a 11.640 mg L-1 no desempenho de processo anaeróbio em dois estágios compostos por reator compartimentado (ABR e reator de fluxo ascendente com manta de lodo (UASB, instalados em série, em escala-piloto (volumes de 530 e 120 L, respectivamente, submetidos a tempos de detenção hidráulica (TDH de 56 a 18 h no primeiro reator e de 13 a 4 h no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 71,1 a 87,5% no reator ABR e de 41,5 a 50,1% no reator UASB, resultando em valores médios de 86,8 a 94,9% para o sistema de tratamento anaeróbio em dois estágios com carga orgânica volumétrica (COV, na faixa de 5,05 a 10,12 kg DQOtotal (m³ d-1, no reator ABR, e de 2,83 a 9,63 kg DQOtotal (m³ d-1, no reator UASB. As eficiências de remoção de SST e SSV foram da ordem de 95,6%. O teor de metano no biogás manteve-se acima de 70% para os dois reatores. A produção volumétrica de metano máxima de 0,755 m³ CH4 (m³ d-1 ocorreu no reator 1, com COV de 10,12 kg DQOtotal (m³ d-1 e TDH de 18 h. Os valores médios de pH variaram na faixa de 7,2 a 8,0 para os efluentes dos reatores 1 e 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações abaixo de 200 mg L-1. Com variações abruptas e acentuadas de concentrações de SST e DQOtotal do afluente, os reatores mantiveram as eficiências de remoção de DQO e sólidos suspensos, em torno de 70%, e a qualidade do biogás, com 80% de CH4.In this work it was evaluated the effect of swine wastewater with total suspended solid (TSS concentration around 6000 mg L-1 (CODtotal from 7557 to 11640 mg L-1 on the performance of two stage anaerobic process constituted of anaerobic baffled reactors (ABR and an upflow sludge blanket reactor (UASB installed in series, in pilot scale testing (volumes of 530 L and

  6. Tratamento de águas residuárias de suinocultura em reatores anaeróbios de fluxo ascendente com manta de lodo (uasb em dois estágios seguidos de reator operado em batelada sequencial (RBS Swine wastewater treatment in upflow anaerobic sludge blanket reactor (uasb in two-stages followed by sequencing batch reactor (SBR

    Directory of Open Access Journals (Sweden)

    Roberto A. de Oliveira

    2011-02-01

    daily and the affluent had TSS concentrations of 1348 to 2036 mg L-1. The higher total chemical oxygen demand (COD removal efficiencies were of 78 to 81% in UASB reactors in two-stage and occurred with higher HDT. With the aerobic SBR used as post-treatment of the effluent from UASB reactors allowed removal efficiency averages of 93 to 97%, 92 to 98%, 57 to 78%, 71 to 88% and from 68 to 85% of total COD, TSS, total P, total Kjeldahl nitrogen (TKN and total nitrogen (TN, respectively. The thermotolerants coliforms the removals were of 93.80 to 99.99%.

  7. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  8. Desempenho de reatores anaeróbios de fluxo ascendente com manta de lodo em dois estágios tratando águas residuárias de suinocultura Performance of two-stage up flow anaerobic sludge blanket reactors treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Adriana M. de Santana

    2005-12-01

    reactor. The mean total COD removal efficiency varied from 74.0 to 89.6% in reactor 1, and from 34.3 to 45.1% in reactor 2, resulting average values ranging from 86.6 to 93.1% for the two-stage treatment system under organic volumetric load (OVL of 3.40 to 14.44 kg CODtotal m-3 reactor d-1 in the reactor 1. The methane concentration in biogas values was over 75% in reactor 1 and 80% in reactor 2. Average pH values in the effluents ranged from 6.9 to 8.2 in reactor 1 and 7.0 to 8.3 for reactor 2. The amount of total volatile acids remained steady showing mean concentrations bellow 200 mg L-1. According to these results the organic loading conditions, concerning to the COD and VSS imposed to the two-stage anaerobic treatment system were not limiting to the sludge blanket development of extremely active and adapted micro biota providing high mean values of organic matter removal, from 86.6 to 93.1 % to the CODtotal and 85.6 to 88.2% to VSS, and the rate of volumetric methane production from 0.156 to 0.289 m³ CH4 kg-1 COD removed.

  9. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    OpenAIRE

    Bernadette E. TELEKY; Mugur C. BĂLAN; Nikolausz, Marcell

    2015-01-01

    Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as com...

  10. Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Wang, Jing-Yuan (School of Civil and Environmental Engineering, Nanyang Technological University, N1-01b-45, 50 Nanyang Avenue, 639798 Singapore)

    2010-12-15

    Fermentative hydrogen production from cassava stillage was conducted to investigate the influences of temperature (37 C, 60 C, 70 C) and initial pH (4-10) in batch experiments. Although the seed sludge was mesophilic anaerobic sludge, maximum hydrogen yield (53.8 ml H{sub 2}/gVS) was obtained under thermophilic condition (60 C), 53.5% and 198% higher than the values under mesophilic (37 C) and extreme-thermophilic (70 C) conditions respectively. The difference was mainly due to the different VFA and ethanol distributions. Higher hydrogen production corresponded with higher ratios of butyrate/acetate and butyrate/propionate. Similar hydrogen yields of 66.3 and 67.8 ml H{sub 2}/gVS were obtained at initial pH 5 and 6 respectively under thermophilic condition. The total amount of VFA and ethanol increased from 3536 to 7899 mg/l with the increase of initial pH from 4 to 10. Initial pH 6 was considered as the optimal pH due to its 19% higher total VFA and ethanol concentration than that of pH 5. Homoacetogenesis and methonogenesis were very dependent on the initial pH and temperature even when the inoculum was heat-pretreated. Moreover, a difference between measured and theoretical hydrogen was observed in this study, which could be attributed to homoacetogenesis, methanogenesis and the degradation of protein. (author)

  11. Predominance of cluster I Clostridium in hydrogen fermentation of galactose seeded with various heat-treated anaerobic sludges.

    Science.gov (United States)

    Park, Jeong-Hoon; Lee, Sang-Hoon; Yoon, Jeong-Jun; Kim, Sang-Hyoun; Park, Hee-Deung

    2014-04-01

    To identify the key bacterial populations in hydrogen fermentation of galactose, a fermentor seeded with a heat-treated sludge was operated. After 27h of fermentation, the proportion of butyric acid increased to 69.4wt.% and the gas production yield reached 1.0molH2/molgalactose. In the pyrosequencing of 16S rDNA, an increase of the proportion of the phylum Firmicutes from 4.2% to 92% (mostly cluster I Clostridium) was observed. To verify the predominance and the ubiquity of the cluster, five fermentors seeded with different heat-treated anaerobic sludges having different feedstock compositions and digestion temperatures were investigated using qPCR analyses. The abundance of the cluster increased >100-fold during the fermentation, regardless of the inocula. Moreover, the abundance was negatively correlated with the lag time of hydrogen production and positively correlated with the hydrogen production rate, demonstrating the relevance of the cluster to hydrogen production. Taken together, the results clearly revealed the importance of cluster I Clostridium in the hydrogen fermentation of galactose.

  12. Two-stage sampling for acceptance testing

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, C.L.; Bryan, M.F.

    1992-09-01

    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal [alpha] should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  13. Two-stage sampling for acceptance testing

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, C.L.; Bryan, M.F.

    1992-09-01

    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal {alpha} should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  14. Two Stage Gear Tooth Dynamics Program

    Science.gov (United States)

    1989-08-01

    cordi - tions and associated iteration prooedure become more complex. This is due to both the increased number of components and to the time for a...solved for each stage in the two stage solution . There are (3 + ntrrber of planets) degrees of freedom fcr eacb stage plus two degrees of freedom...should be devised. It should be noted that this is not minor task. In general, each stage plus an input or output shaft will have 2 times (4 + number

  15. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua; Yang, Haijun; Yuan, Zhuliang; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2010-04-15

    The micellar formation and entrapment of bacteria cell in reverse micelles were investigated by ultraviolet spectrum (UV), fluorescence spectrum, and scanning electron microscope (SEM). The hydrogen production in reverse micelles was confirmed. The Gompertz equation was employed to evaluate the hydrogen-producing behavior in reverse micellar systems. Different systems including dioctyl sulfosuccinate sodium salt (AOT)-isooctane, sodium dodecyl sulfate (SDS)-benzene and SDS-carbon tetrachloride (CCl{sub 4}) reverse micelles were analysized. The results revealed that the maximum rate of hydrogen production (R{sub m}) was also suitable to formulate the relationship between hydrogen-producing rate and hydrogen productivity in reverse micelles. (author)

  16. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds......Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...

  17. Two Stage Sibling Cycle Compressor/Expander.

    Science.gov (United States)

    1994-02-01

    vol. 5, p. 424. 11. L. Bauwens and M.P. Mitchell, " Regenerator Analysis: Validation of the MS*2 Stirling Cycle Code," Proc. XVIIIth International...PL-TR--94-1051 PL-TR-- 94-1051 TWO STAGE SIBLING CYCLE COMPRESSOR/EXPANDER Matthew P. Mitchell . Mitchell/ Stirling Machines/Systems, Inc. No\\ 1995...ty. THIS PAGE IS UNCLASSIFIED PL-TR-94-1051 This final report was prepared byMitchell/ Stirling Machines/Systems, Inc., Berkeley, CA under Contract

  18. Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone.

    Science.gov (United States)

    Cheng, S S; Chang, S M; Chen, S T

    2002-01-01

    Hydrogen fermentation using glucose as a single substrate caused abrupt pH drops and the gradual losses of hydrogen producers, which in turn led to system failure. In this study the use of a proteinaceous substrate, peptone, avoided the abrupt pH drops in the reactive system and allowed for further exploration of volatile fatty acids (VFAs) and pH effects on the hydrogen fermentation process. Our results showed that: (1) during the hydrogen fermentation tests, the abrupt pH drops were avoided thus system stability increased due to the production of ammonia from the peptone fermented, (2) pH control was not necessary and the addition of acetate to the process had little effect on the hydrogen fermentation process, (3) at the extreme pHs the addition of acetate either lengthened the lag phase (pH hydrogen production rate (pH > or = 8), and both situations were not desired, and (4) high VFA content in the system sped up the consumption of hydrogen gas. Results of this study suggested that the hydrogen fermentation using the protein-containing substances as substrate was beneficial in maintaining the system pH. As long as the pH was maintained around 6-8, system inhibition due to VFAs accumulation was minimized. Thus, the optimal operation of a hydrogen fermentation process would be achievable via the control of substrate composition at a certain carbohydrate-to-protein ratio.

  19. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions

    DEFF Research Database (Denmark)

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-01-01

    methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were......Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known...... more tolerant to high ammonia levels (≥5 g NH4+-N L−1), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams....

  20. Classification in two-stage screening.

    Science.gov (United States)

    Longford, Nicholas T

    2015-11-10

    Decision theory is applied to the problem of setting thresholds in medical screening when it is organised in two stages. In the first stage that involves a less expensive procedure that can be applied on a mass scale, an individual is classified as a negative or a likely positive. In the second stage, the likely positives are subjected to another test that classifies them as (definite) positives or negatives. The second-stage test is more accurate, but also more expensive and more involved, and so there are incentives to restrict its application. Robustness of the method with respect to the parameters, some of which have to be set by elicitation, is assessed by sensitivity analysis.

  1. Two stage gear tooth dynamics program

    Science.gov (United States)

    Boyd, Linda S.

    1989-01-01

    The epicyclic gear dynamics program was expanded to add the option of evaluating the tooth pair dynamics for two epicyclic gear stages with peripheral components. This was a practical extension to the program as multiple gear stages are often used for speed reduction, space, weight, and/or auxiliary units. The option was developed for either stage to be a basic planetary, star, single external-external mesh, or single external-internal mesh. The two stage system allows for modeling of the peripherals with an input mass and shaft, an output mass and shaft, and a connecting shaft. Execution of the initial test case indicated an instability in the solution with the tooth paid loads growing to excessive magnitudes. A procedure to trace the instability is recommended as well as a method of reducing the program's computation time by reducing the number of boundary condition iterations.

  2. Phenotypic Diversity of Hydrogen Production in Chlorophycean Algae Reflects Distinct Anaerobic Metabolisms

    Energy Technology Data Exchange (ETDEWEB)

    Meuser, J. E.; Ananyev, G.; Wittig, L. E.; Kosourov, S.; Ghirardi, M. L.; Seibert, M.; Dismukes, G. C.; Posewitz, M. C.

    2009-01-01

    Several species of green algae use [FeFe]-hydrogenases to oxidize and/or produce H{sub 2} during anoxia. To further define unique aspects of algal hydrogenase activity, the well-studied anaerobic metabolisms of Chlamydomonas reinhardtii were compared with four strains of Chlamydomonas moewusii and a Lobochlamys culleus strain. In vivo and in vitro hydrogenase activity, starch accumulation/degradation, and anaerobic end product secretion were analyzed. The C. moewusii strains showed the most rapid induction of hydrogenase activity, congruent with high rates of starch catabolism, and anoxic metabolite accumulation. Intriguingly, we observed significant differences in morphology and hydrogenase activity in the C. moewusii strains examined, likely the result of long-term adaptation and/or genetic drift during culture maintenance. Of the C. moewusii strains examined, SAG 24.91 showed the highest in vitro hydrogenase activity. However, SAG 24.91 produced little H{sub 2} under conditions of sulfur limitation, which is likely a consequence of its inability to utilize exogenous acetate. In L. culleus, hydrogenase activity was minimal unless pulsed light was used to induce significant H2 photoproduction. Overall, our results demonstrate that unique anaerobic acclimation strategies have evolved in distinct green algae, resulting in differential levels of hydrogenase activity and species-specific patterns of NADH reoxidation during anoxia.

  3. Methane production from sweet sorghum residues via a two-stage process

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatou, K.; Dravillas, K.; Lyberatos, G. [University of Patras (Greece). Department of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology

    2003-07-01

    The start-up of a two-stage reactor configuration for the anaerobic digestion of sweet sorghum residues was evaluated. The sweet sorghum residues were a waste stream originating from the alcoholic fermentation of sweet sorghum and the subsequent distillation step. This waste stream contained high concentration of solid matter (9% TS) and thus could be characterized as a semi-solid, not easily biodegradable wastewater with high COD (115 g/l). The application of the proposed two-stage configuration (consisting of one thermophilic hydrolyser and one mesophilic methaniser) achieved a methane production of 16 l/l wastewater under a hydraulic retention time of 19 d. (author)

  4. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH4(+)-N L(-1)) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH4(+)-N L(-1)) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH4(+)-N L(-1)), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. EFFECTS OF NITROGEN ADDITIVE AMOUNT ON ANAEROBIC HYDROGEN WITH VEGETABLESS GARBAGE%氮源对蔬菜废弃物发酵制氢的影响

    Institute of Scientific and Technical Information of China (English)

    张相锋; 张全国; 尤希凤; 王毅; 荆艳艳

    2012-01-01

    To reduce the cost of vegetable waste treatment, the anaerobic activated sludge was used as the anaero-pic hydrogen-producing bacteria to study the effects of the nitrogen additive amount on pH, gas production rate, hy-Irogen production capacity and gas composition. The results show that adding a good amount of nitrogen can effec-ively increase the organic production load and extend the hydrogen production cycle for the anaerobic hydrogen pro-luction system; Nitrogen source played the promoting role when the amount is in the range 0%-0. 1% , otherwise litrogen source behave the obvious inhibition on anaerobic hydrogen production when the amount got out of range. Phis is easy to see that the best nitrogen additive amount for anaerobic hydrogen production on vegetable waste treat-nent by the anaerobic activated sludge is 0. 1%.%以厌氧活性污泥为产氢菌种,研究了氮源对蔬菜废弃物厌氧生物制氢的pH值、产气能力、产氢能力以及气体成分的影响.结果表明添加适量的氮源能有效增加产氢量,延长产氢周期;氮源添加量在0%~0.1%范围内,对蔬菜废弃物产氢能力具有促进作用,超过0.1%,则有明显的抑制作用,蔬菜废弃物产氢的最佳氮源添加量为0.1%.

  6. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation.

    Science.gov (United States)

    Ting, C H; Lin, K R; Lee, D J; Tay, J H

    2004-01-01

    The hydrogen and methane were produced from wastewater sludge using a Clostridium strain. The original sludge and the pre-treated (acidified, sterilized, freeze/thawed, and sonicated) sludges were tested. Some pre-treatment could enhance hydrogen yield, and the other tests could enhance methane yield. Hydrogen yield followed freeze/thawed>acidified>sterilized>original sludge>sonicated; while methane yield followed sonicated>freeze/thawed>sterilized>acidified>original sludge. The production and consumption of acetate correlated closely with the trends in both yields.

  7. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse.

    Science.gov (United States)

    Cheng, Jingrong; Zhu, Mingjun

    2013-09-01

    A novel co-culture of Clostridium thermocellum and Thermoanaerobacterium aotearoense with pretreated sugarcane bagasse (SCB) under mild alkali conditions for bio-hydrogen production was established, exhibiting a cost-effective and synergetic advantage in bio-hydrogen production over monoculture of C. thermocellum or T. aotearoense with untreated SCB. The optimized pretreatment conditions were established to be 3% NaOH, and a liquid to solid ratio of 25:1 at 80°C for 3h. A final hydrogen production of 50.05±1.51 mmol/L was achieved with 40 g/L pretreated SCB at 55°C. The established co-culture system provides a novel consolidated bio-processing strategy for bioconversion of SCB to bio-hydrogen.

  8. Two-Stage Modelling Of Random Phenomena

    Science.gov (United States)

    Barańska, Anna

    2015-12-01

    The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.

  9. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; Su, Min; di Pumpo, Francesca; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2016-09-01

    High-temperature pretreatment plays a key role in the anaerobic digestion of food waste (FW). However, the suitable temperature is not yet determined. In this work, a long-term experiment was conducted to compare hydrolysis, acidogenesis, acetogenesis, and hydrogen production at 55°C and 70°C, using real FW in CSTR reactors. The results obtained indicated that acidification was the rate-limiting step at both temperatures with similar process kinetics characterizations. However, the thermophilic pretreatment was more advantageous than the hyperthermophilic with suspended solids solubilization of 47.7% and 29.5% and total VFA vs. soluble COD ratio of 15.2% and 4.9%, for thermophilic and hyperthermophilic treatment, respectively, with a hydrolytic reaction time (HRT) of 10days and an OLR of 14kgCOD/m(3)d. Moreover, stable hydrogen yield (70.7ml-H2/gVSin) and content in off gas (58.6%) was achieved at HRT 5days, pH 5.5, and temperature of 55°C, as opposed to 70°C.

  10. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation.

    Science.gov (United States)

    Cavinato, C; Bolzonella, D; Fatone, F; Cecchi, F; Pavan, P

    2011-09-01

    The optimization of a two-phase thermophilic anaerobic process treating biowaste for hydrogen and methane production was carried out at pilot scale using two stirred reactors (CSTRs) and without any physical/chemical pre-treatment of inoculum. During the experiment the hydrogen production at low hydraulic retention time (3d) was tested, both with and without reject water recirculation and at two organic loading rate (16 and 21 kgTVS/m3 d). The better yields were obtained with recirculation where the pH reached an optimal value (5.5) thanks to the buffering capacity of the recycle stream. The specific gas production of the first reactor was 51 l/kgVS(fed) and H2 content in biogas 37%. The mixture of gas obtained from the two reactors met the standards for the biohythane mix only when lower loading rate were applied to the first reactor, with a composition of 6.7% H2, 40.1% CO2 and 52.3% CH4 the overall SGP being 0.78 m3/kgVS(fed).

  11. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Science, University of Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Tee Liang, David [Institute of Environmental Science and Engineering, Nanyang Technological University, 637723 (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, RO (China); Jiang, Wen-Ju [Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2007-12-15

    An investigation on biohydrogen production was conducted in a granular sludge-based continuous stirred tank reactor (CSTR). The reactor performance was assessed at five different glucose concentrations of 2.5, 5, 10, 20 and 40 g/L and four hydraulic retention times (HRTs) of 0.25, 0.5, 1 and 2 h, resulting in the organic loading rates (OLRs) ranged between 2.5 and 20 g-glucose/L h. Carbon flow was traced by analyzing the composition of gaseous and soluble metabolites as well as the cell yield. Butyrate, acetate and ethanol were found to be the major soluble metabolite products in the biochemical synthesis of hydrogen. Carbon balance analysis showed that more than half of the glucose carbon was converted into unidentified soluble products at an OLR of 2.5 g-glucose/L h. It was found that high hydrogen yields corresponded to a sludge loading rate in between 0.6 and 0.8 g-glucose/g-VSS h. Substantial suppression in hydrogen yield was noted as the sludge loading rate fell beyond the optimum range. It is deduced that decreasing the sludge loading rate induced the metabolic shift of biochemical reactions at an OLR of 2.5 g-glucose/L h, which resulted in a substantial reduction in hydrogen yield to 0.36-0.41 mol-H{sub 2}/mol-glucose. Optimal operation conditions for peak hydrogen yield (1.84 mol-H{sub 2}/mol-glucose) and hydrogen production rate (3.26 L/L h) were achieved at an OLR of 20 g-glucose/L h, which corresponded to an HRT of 0.5 h and an influent glucose concentration of 10 g/L. Influence of HRT and substrate concentration on the reactor performance was interrelated and the adverse impact on hydrogen production was noted as substrate concentration was higher than 20 g/L or HRT was shorter than 0.5 h. The experimental study indicated that a higher OLR derived from appropriate HRTs and substrate concentrations was desirable for hydrogen production in such a granule-based CSTR. (author)

  12. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiue-Lin; Chao, Yu-Chieh; Wang, Yu-Hsuan; Hsiao, Chia-Jung; Bai, Ming-Der [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Whang, Liang-Ming; Wang, Yung-Fu; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Tseng, I.-Cheng [Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Department of Life Science, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China)

    2010-01-15

    This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose-peptone (GP) and starch-peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412 mmol-H{sub 2}/L/d at HRT of 2 and 3 h, respectively. At HRT > 8 h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that Clostridium sporogenes and Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor, Lactobacillus plantarum, Propionispira arboris, and Clostridium butyricum were found to be dominant populations, but the presence of P. arboris at HRT > 3 h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors. (author)

  13. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    Science.gov (United States)

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes.

  14. Metabolic shift and electron discharge pattern of anaerobic consortia as a function of pretreatment method applied during fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, S.; Venkata Mohan, S.; Lalit Babu, V.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500 607, AP (India)

    2010-10-15

    We have made an attempt to evaluate the variation in the electron discharge (ED) pattern of anaerobic consortia as a function of pretreatment viz., chemical, heat-shock, acid and oxygen-shock in comparison with untreated mixed consortia during fermentative hydrogen (H{sub 2}) production. Experiments were performed with dairy wastewater as substrate using anaerobic mixed consortia as biocatalyst (pretreated individually and in combination). Cyclic voltammetry (CV) elucidated significant variation in the ED pattern of mixed consortia along with H{sub 2} production and substrate degradation (SD) as a function of pretreatment method applied. Higher ED was observed with all pretreated consortia which can be attributed to the stable proton (H{sup +}) shuttling due to the suppression of methanogenic activity. Oxygen-shock method and untreated consortia showed lower H{sub 2} production and higher SD among the variations studied, while, combined pretreated consortia resulted higher H{sub 2} production and lower SD. Lower ED observed with untreated consortia suggests the H{sup +} reduction during methanogenesis rather than the inter-conversion of metabolites, which is presumed to be necessary for H{sub 2} production. ED observed with combined pretreated consortia corroborated well with the observed H{sub 2} production. Redox pairs were visualized on the voltammograms with almost all the experimental variations studied except untreated consortia. The potentials (E{sub 0}) of redox pairs observed were corresponding to intracellular electron carriers viz., NAD{sup +}/NADH (E{sub 0} -0.32 V) and FAD{sup +}/FADH{sub 2} (E{sub 0} -0.24 V). (author)

  15. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.

    Science.gov (United States)

    Kim, S-H; Han, S-K; Shin, H-S

    2005-01-01

    This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.

  16. The effect of biomass immobilization support material and bed porosity on hydrogen production in an upflow anaerobic packed-bed bioreactor.

    Science.gov (United States)

    Fernandes, B S; Saavedra, N K; Maintinguer, S I; Sette, L D; Oliveira, V M; Varesche, M B A; Zaiat, M

    2013-07-01

    The aim of this study was to investigate the effect of the support material used for biomass attachment and bed porosity on the potential generation of hydrogen gas in an anaerobic bioreactor treating low-strength wastewater. For this purpose, an upflow anaerobic packed-bed (UAPB) reactor fed with sucrose-based synthetic wastewater was used. Three reactors with various support materials (expanded clay, vegetal coal, and low-density polyethylene) were operated for hydraulic retention time (HRT) of 0.5 and 2 h. Based on the results obtained, three further reactors were operated with low-density polyethylene as a material support using various bed porosities (91, 75, and 50 %) for an HRT of 0.5 h. The UAPB reactor was found to be a feasible technology for hydrogen production, reaching a maximum substrate-based hydrogen yield of 7 mol H₂ mol(-1) sucrose for an HRT of 0.5 h. The type of support material used did not affect hydrogen production or the microbial population inside the reactor. Increasing the bed porosity to 91 % provided a continuous and cyclic production of hydrogen, whereas the lower bed porosities resulted in a reduced time of hydrogen production due to biomass accumulation, which resulted in a decreasing working volume.

  17. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2002-01-01

    Composite likelihood; Two-stage estimation; Family studies; Copula; Optimal weights; All possible pairs......Composite likelihood; Two-stage estimation; Family studies; Copula; Optimal weights; All possible pairs...

  18. Synchronous rapid start-up of the methanation and anammox processes in two-stage ASBRs

    Science.gov (United States)

    Duan, Y.; Li, W. R.; Zhao, Y.

    2017-01-01

    The “methanation + anaerobic ammonia oxidation autotrophic denitrification” method was adopted by using anaerobic sequencing batch reactors (ASBRs) and realized a satisfactory synchronous removal of chemical oxygen demand (COD) and ammonia-nitrogen (NH4 +-N) in wastewater after 75 days operation. 90% of COD was removed at a COD load of 1.2 kg/(m3•d) and 90% of TN was removed at a TN load of 0.14 kg/(m3•d). The anammox reaction ratio was estimated to be 1: 1.32: 0.26. The results showed that synchronous rapid start-up of the methanation and anaerobic ammonia oxidation processes in two-stage ASBRs was feasible.

  19. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail

    2012-04-01

    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general two-stage M-estimator, and provide their interpretations. We illustrate our results in the case of the two-stage maximum likelihood estimator and the two-stage least squares estimator. © 2011.

  20. Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xian-Yang; Jin, Da-Wei; Sun, Qing-Ye [School of Life Science, Anhui University, Hefei 230039 (China); Li, Wen-Wei [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2010-07-15

    Brewery wastewater was converted H{sub 2} by anaerobic sludge in batch experiments. A three-factor three-level experimental design of Box-Behnken method was adopted to find the optimum H{sub 2} production conditions. The effects of three major influence factors, temperature, pH and brewery wastewater concentration (BWC), on H{sub 2} yield and H{sub 2} maximum production rate (R{sub max}) were evaluated by applying response surface methodology (RSM) integrating a desirability function approach. Desirable H{sub 2} yield and R{sub max} simultaneously were achieved under temperature 35.9 C, pH 5.95 and BWC 6.05 g/l by a desirability function approach which produced the maximum overall desirability 0.894. Correspondingly, the H{sub 2} yield and R{sub max} were 149.6 ml H{sub 2}/g COD and 53.6 ml/h, respectively. The verification test confirms that the optimum H{sub 2} yield and R{sub max} measured were in good agreement with the predicted values, suggesting that the desirability function approach with RSM was a useful technique to get the maximum H{sub 2} yield and R{sub max} simultaneously. (author)

  1. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    Science.gov (United States)

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass.

  2. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Show, Kuan-Yeow [Faculty of Science, Engineering and Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak (Malaysia); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan-Ze University, Taoyuan 320 (China)

    2008-10-15

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  3. Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions.

    Science.gov (United States)

    Farghaly, Ahmed; Tawfik, Ahmed

    2017-01-01

    Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m(3) day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m(3) day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g CODremoved and volumetric substrate uptake rate (-rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21 ± 0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g CODremoved) and -rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m(3) day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.

  4. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS.

  5. Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol.

    Science.gov (United States)

    Solomon, B O; Zeng, A P; Biebl, H; Schlieker, H; Posten, C; Deckwer, W D

    1995-04-15

    Data for the anaerobic growth of Klebsiella pneumoniae DSM 2026 and Clostridium butyricum DSM 5431 on glycerol have been analyzed using the concept of material and available electron balances with consideration for hydrogen production. Models for the kinetics of energetic efficiencies of product formation under low residual glycerol are presented. For Klebsiella pneumoniae, the specific rates of electron transfer to the products were mainly significantly dependent on specific growth rate with the exception of ethanol and hydrogen which were also significantly non-growth associated. In the case of Clostridium butyricum, the rates were only growth rate dependent, except for hydrogen formation. The analysis also indicated that the production of 1,3-propanediol by Klebsiella pneumoniae was favoured by limitations other than glycerol limitation, while hydrogen generation was best under low residual glycerol and particularly in the presence of external 1,3-propanediol. Klebsiella pneumoniae appeared to be able to incorporate more of the available electrons of glycerol into hydrogen as compared with the Clostridium butyricum. The study demonstrates the need for properly considering H2 in models describing anaerobic processes.

  6. Anaerobic Production of Hydrogen in the Dark by Synechocystis sp. strain PCC 6803 supplemented with D-glucose

    Directory of Open Access Journals (Sweden)

    Takashi Yamamoto

    2012-08-01

    Full Text Available The effect of D-glucose on the anaerobic production of hydrogen (H2 in the dark by bidirectional hydrogenase of Synechocystis sp. strain PCC 6803 has been studied. D-glucose addition enhanced H2 production rate. It is deduced that NAD(PH, which is a substrate of H2 production reaction, was supplied by catabolism of D-glucose. The molar consumption ratio of H2 and total sugar consumption was low in the presence of D-glucose due to production of L-lactic acid and other metabolites. The cells photosynthetically grown in air produced lower H2 in the dark as compared with those grown in air with 6% CO2, but the lower H2 production was compensated with the addition of D-glucose at 6.4 times of control value without D-glucose. The trend of effect of pH in a growth medium and a reaction mixture on H2 production was not affected by the presence of D-glucose. This result implies that mechanisms of H2 productions with and without D-glucose are similar.

  7. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi;

    2013-01-01

    %~66% and 30%~34% of total soluble metabolic products(SMP), respectively, indicating that the dominant H2 producers in the mixed culture belonged to acidogenic bacteria that underwent butyrate-type fermentation. In addition, higher concentration of volatile fatty acid (VFA) generation was observed......The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  8. Hydrogen production from molasses by anaerobic fermentation in an activated sludge immobilized bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Yao, X.; Chen, H.; Yue, L.R. [Northeast Forestry Univ., Harbin (China). Forestry School; Li, Y.F. [Shanghai Univ. of Engineering and Science (China). School of Chemical Engineering; Northeast Forestry Univ., Harbin (China). Forestry School

    2010-07-01

    This study investigated the use of granular activated carbon as a support material for the production of biohydrogen in a continuous stirred tank reactor (CSTR) with 5.4 L of molasses as a substrate. The CSTR contained both granular activated carbon and pre-treated sludge operating and was operated at a temperature of 36 degrees C with a hydraulic retention time (HRT) of 6 hours. The procedure increased both biogas and hydrogen yields. The biogas was principally comprised of carbon dioxide (CO{sub 2}) and hydrogen (H{sub 2}). The H{sub 2} percentage ranged from 38.4 per cent to 41 per cent. The maximum H{sub 2} production rate of 3.56 L was obtained at an OLR of 24 kg/m{sup t}d. H{sub 2} yield was influenced by the presence of ethanol to acetic acid in the liquid phase. Maximum H{sub 2} production rates occurred when the ratio of ethanol to acetic acid was close to 1. The study indicated that granular activated carbon can help to stabilize H{sub 2} production systems.

  9. Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ching-Hsiung [Department of Biological Engineering, Yung Ta Institute of Technology and Commerce, Pingtung (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa College of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China)

    2007-11-15

    In this work, H{sub 2} was produced by anaerobic mixed microflora with phosphate-buffered medium containing starch or enzyme-treated starch hydrolyzate as the carbon substrate. The effect of pH on H{sub 2}-producing performance was examined for cultures converting raw starch or hydrolyzed starch into H{sub 2}. Response surface methodology was utilized to determine the best condition (41 C, pH 5.2, 2.1% (v/v) enzyme dosage, 27 h reaction time) for starch hydrolysis with concentrated crude amylase obtained from Bacillus subtilis ATCC 21332. The mixed culture was able to produce H{sub 2} at an optimal pH of 7.0 irrespective of raw or hydrolyzed starch. Direct starch fermentation attained a highest maximum H{sub 2} production rate (R{sub max}), overall H{sub 2} production rate (R{sub overall}), and H{sub 2} yield (Y{sub H2}) of 25.6 ml/h, 88 ml/h/l, and 5.28 mmol H{sub 2}/g starch (4.64 mmol H{sub 2}/g COD), respectively. In contrast, using hydrolyzed starch as the substrate gave rise to much better H{sub 2} producing performance, as the highest R{sub max}, R{sub overall}, and Y{sub H2} values increased to 43.1 ml/h, 210 ml/h/l, and 6.1 mmol H{sub 2}/g COD, respectively. This clearly demonstrates the advantage of using hydrolyzed starch for fermentative H{sub 2} production. The soluble metabolites consisted primarily of acetate (HAc), ethanol (EtOH), butyrate (HBu), and 2,3 butandiol. The amount of H{sub 2} produced from raw and hydrolyzed starch (especially, raw starch) could be estimated from formation of HAc and HBu known to stoichiometrically correlate with H{sub 2} production. (author)

  10. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung Chung [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Huang, Chi-Yu.; Fu, Tzu-Ning [Department of Environmental Engineering and Science, Tunghai University, Taichung 407 (China); Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-08-15

    Hydrogen gas was produced via dark fermentation from natural cellulosic materials and {alpha}-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H{sub 2} production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of {alpha}-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H{sub 2} via dark fermentation using seven H{sub 2}-producing bacterial isolates. The bioH{sub 2} production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (C{sub RS,o}) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H{sub 2}-producing efficiency with a cumulative H{sub 2} production of 270 ml/l from {alpha}-cellulose hydrolysate (C{sub RS,o} = 4.52 mg/l) and a H{sub 2} yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (C{sub RS,o} = 1.22 g/l). (author)

  11. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.

    Science.gov (United States)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-01-01

    In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

  12. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078 (China)

    2010-11-15

    Anaerobic hydrogen and methane production from cassava stillage in continuously stirred tank reactor (CSTR) were investigated in this study. Results showed that the heat-pretreatment of inoculum did not enhance hydrogen yield compared to raw inoculum under mesophilic condition after continuous operation. However, the hydrogen yield increased from about 14 ml H{sub 2}/gVS under mesophilic condition to 69.6 ml H{sub 2}/gVS under thermophilic condition due to the decrease of propionate concentration and inhibition of homoacetogens. Therefore, temperature was demonstrated to be more important than pretreatment of inoculum to enhance the hydrogen production. Under high organic loading rate (OLR) (>10 gVS/(L.d)), the two-phase thermophilic CSTR for hydrogen and methane production was stable with hydrogen and methane yields of 56.6 mlH{sub 2}/gVS and 249 mlCH{sub 4}/gVS. The one-phase thermophilic CSTR for methane production failed due to the accumulation of both acetate and propionate, leading to the pH lower than 6. Instead of propionate alone, the accumulations of both acetate and propionate were found to be related to the breakdown of methane reactor. (author)

  13. Biogenic hydrogen conversion of de-oiled jatropha waste via anaerobic sequencing batch reactor operation: process performance, microbial insights, and CO2 reduction efficiency.

    Science.gov (United States)

    Kumar, Gopalakrishnan; Lin, Chiu-Yue

    2014-01-01

    We report the semicontinuous, direct (anaerobic sequencing batch reactor operation) hydrogen fermentation of de-oiled jatropha waste (DJW). The effect of hydraulic retention time (HRT) was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L ∗ d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d) with a DJW concentration of 200 g/L, temperature 55 °C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L ∗ d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30 °C, and pH 7.0. PCR-DGGE analysis revealed that combination of cellulolytic and fermentative bacteria were present in the hydrogen producing ASBR.

  14. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  15. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery.

    Science.gov (United States)

    Ferraz Júnior, Antônio Djalma Nunes; Etchebehere, Claudia; Zaiat, Marcelo

    2015-06-01

    This study evaluated the influence of a high organic loading rate (OLR) on thermophilic hydrogen production at an up-flow anaerobic packed-bed reactor (APBR) treating a residual liquid stream of a Brazilian biorefinery. The APBR, filled with low-density polyethylene, was operated at an OLR of 84.2 kg-COD m(-3) d(-1). This value was determined in a previous study. The maximum values of hydrogen production and yield were 5,252.6 mL-H2 d(-1) and 3.7 mol-H2 mol(-1)(total carbohydrates), respectively. However, whereas the OLR remained constant, the specific organic load rate (sOLR) decreased throughout operation from 1.38 to 0.72 g-Total carbohydratesg-VS(-1) h(-1), this decrease negatively affected hydrogen production. A sOLR of 0.98 g-Total carbohydratesg-VS(-1) h(-1) was optimal for hydrogen production. The microbial community was studied using 454-pyrosequencing analysis. Organisms belonging to the genera Caloramator, Clostridium, Megasphaera, Oxobacter, Thermoanaerobacterium, and Thermohydrogenium were detected in samples taken from the reactor at operation days 30 and 60, suggesting that these organisms contribute to hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.

    Science.gov (United States)

    El-Bery, Haitham; Tawfik, Ahmed; Kumari, Sheena; Bux, Faizal

    2013-01-01

    The effect of thermal pre-treatment on inoculum sludge for continuous H2 production from alkali hydrolysed rice straw using anaerobic baffled reactor (ABR) was investigated. Two reactors, ABR1 and ABR2, were inoculated with untreated and thermally pre-treated sludge, respectively. Both reactors were operated in parallel at a constant hydraulic retention time of 20 h and organic loading rate ranged from 0.5 to 2.16 g COD/L d. The results obtained indicated that ABR2 achieved a better hydrogen conversion rate and hydrogen yield as compared with ABR1. The hydrogen conversion rates were 30% and 24%, while the hydrogen yields were 1.19 and 0.97 mol H2/mol glucose for ABR2 and ABR1, respectively. Similar trend was observed for chemical oxygen demand (COD) and carbohydrate removal, where ABR2 provided a removal efficiency of 53 +/- 2.3% for COD and 46 +/- 2% for carbohydrate. The microbial community analysis using 16S rRNA phylogeny revealed the presence of different species of bacteria, namely Clostridium, Prevotella, Paludibacter, Ensifer, and Petrimonas within the reactors. Volatile fatty acids generated from ABR1 and ABR2 were mainly in the form of acetate and butyrate and a relatively low fraction ofpropionate was detected in ABR1. Based on these results, thermal pre-treatment ofinoculum sludge is preferable for hydrogen production from hydrolysed rice straw.

  17. Treatment of cadmium dust with two-stage leaching process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The treatment of cadmium dust with a two-stage leaching process was investigated to replace the existing sulphation roast-leaching processes. The process parameters in the first stage leaching were basically similar to the neutralleaching in zinc hydrometallurgy. The effects of process parameters in the second stage leaching on the extraction of zincand cadmium were mainly studied. The experimental results indicated that zinc and cadmium could be efficiently recoveredfrom the cadmium dust by two-stage leaching process. The extraction percentages of zinc and cadmium in two stage leach-ing reached 95% and 88% respectively under the optimum conditions. The total extraction percentage of Zn and Cdreached 94%.

  18. The effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoz, F.Tuba [Ege University, Faculty of Engineering, Bioengineering Department, 35100 Izmir (Turkey)

    2010-05-15

    In this study, H{sub 2} was produced from cheese whey wastewater in a two-stage biological process: i) first stage; thermophilic dark fermentation ii) second stage; the photo fermentation using Rhodopseudomonas palustris strain DSM 127 (R. palustris). The effect of both dilution and addition of L-malic acid on the hydrogen production was investigated. Among the dilution rates used, 1/5 dilution ratio was found to produce the best hydrogen production (349 ml H{sub 2}/g COD{sub fed}). On the other hand, It was seen that the mixing the effluent with L-malic acid at increasing ratios had further positive effect and improved the hydrogen production significantly. It was concluded that dilution of the feeding helps to reduce the nitrogen content and the volatile fatty acid content that might be otherwise harmful to the photo-heterotrophic organisms. Overall hydrogen production yield (for dark + photo fermentation) was found to vary 2 and 10 mol H{sub 2}/mol lactose. Second conclusion is that cheese whey effluent should be mixed with a co-substrate containing L-malic acid such as apple juice processing effluents before fed into the photo fermentation reactor. (author)

  19. Enhancing the hydrolysis process of a two-stage biogas technology for the organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Nasir, Zeeshan; Uellendahl, Hinrich

    2015-01-01

    The Danish company Solum A/S has developed a two-stage dry anaerobic digestion process labelled AIKAN® for the biological conversion of the organic fraction of municipal solid waste (OFMSW) into biogas and compost. In the AIKAN® process design the methanogenic (2nd) stage is separated from...... time, recirculation rate of percolate, ratio of admixing effluent from the anaerobic stage to the percolate, water submerge of waste) on the efficiency of the hydrolytic stage. •The effect of addition of adapted mixed cultures and specific hydrolytic microorganisms on the hydrolysis of the waste. •The...

  20. LOGISTICS SCHEDULING: ANALYSIS OF TWO-STAGE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Yung-Chia CHANG; Chung-Yee LEE

    2003-01-01

    This paper studies the coordination effects between stages for scheduling problems where decision-making is a two-stage process. Two stages are considered as one system. The system can be a supply chain that links two stages, one stage representing a manufacturer; and the other, a distributor.It also can represent a single manufacturer, while each stage represents a different department responsible for a part of operations. A problem that jointly considers both stages in order to achieve ideal overall system performance is defined as a system problem. In practice, at times, it might not be feasible for the two stages to make coordinated decisions due to (i) the lack of channels that allow decision makers at the two stages to cooperate, and/or (ii) the optimal solution to the system problem is too difficult (or costly) to achieve.Two practical approaches are applied to solve a variant of two-stage logistic scheduling problems. The Forward Approach is defined as a solution procedure by which the first stage of the system problem is solved first, followed by the second stage. Similarly, the Backward Approach is defined as a solution procedure by which the second stage of the system problem is solved prior to solving the first stage. In each approach, two stages are solved sequentially and the solution generated is treated as a heuristic solution with respect to the corresponding system problem. When decision makers at two stages make decisions locally without considering consequences to the entire system,ineffectiveness may result - even when each stage optimally solves its own problem. The trade-off between the time complexity and the solution quality is the main concern. This paper provides the worst-case performance analysis for each approach.

  1. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-05-12

    Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

  2. Two-stage local M-estimation of additive models

    Institute of Scientific and Technical Information of China (English)

    JIANG JianCheng; LI JianTao

    2008-01-01

    This paper studies local M-estimation of the nonparametric components of additive models. A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives. Under very mild conditions, the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known. The established asymptotic results also hold for two particular local M-estimations: the local least squares and least absolute deviation estimations. However,for general two-stage local M-estimation with continuous and nonlinear ψ-functions, its implementation is time-consuming. To reduce the computational burden, one-step approximations to the two-stage local M-estimators are developed. The one-step estimators are shown to achieve the same efficiency as the fully iterative two-stage local M-estimators, which makes the two-stage local M-estimation more feasible in practice. The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers. In addition, the practical implementation of the proposed estimation is considered in details. Simulations demonstrate the merits of the two-stage local M-estimation, and a real example illustrates the performance of the methodology.

  3. Two-stage local M-estimation of additive models

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper studies local M-estimation of the nonparametric components of additive models.A two-stage local M-estimation procedure is proposed for estimating the additive components and their derivatives.Under very mild conditions,the proposed estimators of each additive component and its derivative are jointly asymptotically normal and share the same asymptotic distributions as they would be if the other components were known.The established asymptotic results also hold for two particular local M-estimations:the local least squares and least absolute deviation estimations.However,for general two-stage local M-estimation with continuous and nonlinear ψ-functions,its implementation is time-consuming.To reduce the computational burden,one-step approximations to the two-stage local M-estimators are developed.The one-step estimators are shown to achieve the same effciency as the fully iterative two-stage local M-estimators,which makes the two-stage local M-estimation more feasible in practice.The proposed estimators inherit the advantages and at the same time overcome the disadvantages of the local least-squares based smoothers.In addition,the practical implementation of the proposed estimation is considered in details.Simulations demonstrate the merits of the two-stage local M-estimation,and a real example illustrates the performance of the methodology.

  4. Hydrogen production from food processing waste by anaerobic bacteria; Kenkisei saikin ni yoru shokuhin kako haikibutsu kara no suiso seisei

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, O.; Ohara, T.; Noike, T. [Tohoku University, Sendai (Japan)

    1997-08-22

    To produce hydrogen from bean-curd refuse discharged from bean-curd production process, effects of solid concentration on the hydrogen production activity and the final amount of hydrogen production are clarified using hydrogen production sludge obtained from a soybean silo with hydrogen explosion. Decomposition characteristics of bean-curd refuse by hydrogen fermentation are also investigated. Hydrogen contents of fermentation gas produced from decomposed bean-curd refuse were between 54 and 78%. It was found that bean-curd refuse can be used for hydrogen fermentation. The final amounts of hydrogen production were between 0.014 and 0.020 m{sup 3}centre dotkgVS{sup -1}, which was not greatly affected by the solid concentration. Even under high solid concentration conditions, sufficient hydrogen was produced. The hydrogen production activity was affected by the solid concentration. During the hydrogen production process, concentrations of alcohol and volatile fatty acid increased with decreasing the concentration of soluble sugars in the liquid phase. Acetate, propionate, n-butyrate and ethanol were the main metabolic products. 10 refs., 5 figs., 2 tabs.

  5. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I

    2014-07-01

    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation.

  6. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added).

  7. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.

    Science.gov (United States)

    Sipma, J; Meulepas, R J W; Parshina, S N; Stams, A J M; Lettinga, G; Lens, P N L

    2004-04-01

    The conversion routes of carbon monoxide (CO) at 55 degrees C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population and that its products, i.e. hydrogen and CO2, were subsequently used by methanogens, homo-acetogens or sulfate reducers depending on the sludge source and inhibitors supplied. Direct methanogenic CO conversion occurred only at low CO concentrations [partial pressure of CO (PCO) paper mill sludge. The presence of hydrogen decreased the CO conversion rates, but did not prevent the depletion of CO to undetectable levels (sludges showed interesting potential for hydrogen production from CO, especially since after 30 min exposure to 95 degrees C, the production of CH4 at 55 degrees C was negligible. The paper mill sludge was capable of sulfate reduction with hydrogen, tolerating and using high CO concentrations (PCO>1.6 bar), indicating that CO-rich synthesis gas can be used efficiently as an electron donor for biological sulfate reduction.

  8. 钠盐浓度对厌氧产氢颗粒污泥从蔗糖中产氢的影响%Effect of Sodium Ion Concentration on Hydrogen Production from Sucrose by Anaerobic Hydrogen-producing Granular Sludge

    Institute of Scientific and Technical Information of China (English)

    郝小龙; 周明华; 俞汉青; 沈琴琴; 雷乐成

    2006-01-01

    This work evaluated the effects of sodium ion concentration, ranging from 0 to 16000mg·L-1(Na+), on the conversion of sucrose to hydrogen by a high-activity anaerobic hydrogen-producing granular sludge. At the optimum sodium ion concentration [1000-2000mg·L-1(Na+)] for hydrogen production at 37℃, the maximum sucrose degradation rate, the specific hydrogen production yield and the specific hydrogen production rate were 393.6-413.1mg·L-1·h-1, 28.04-28.97ml·g-1, 7.52-7.83ml·g-1·h-1, respectively. The specific production yields of propionate, butyrate and valerate decreased, with increasing sodium ion concentration, whereas the specific acetate production yield increased, meanwhile the specific production yields of ethanol and caproate were less than 55.3 and 12.6mg·g-1, respectively. The hybrid fermentation composition gradually developed from acetate, propionate and butyrate to acetate with the increase in sodium ion concentration.

  9. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

    Science.gov (United States)

    Cha, Minseok; Chung, Daehwan; Westpheling, Janet

    2016-02-01

    The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ∼80 °C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ∼67 % and ethanol yield per mole of cellobiose was decreased ∼39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose.

  10. Two stage thermophilic sludge digestion - solids degradation, heat and energy considerations

    Energy Technology Data Exchange (ETDEWEB)

    Zupancic, Gregor Drago; Ros, Milenko

    2003-07-01

    The conventional process for solids treatment is mesophilic anaerobic sludge digestion (at about 35{sup o}C). In this process about 44% of volatile solids (VSS) are removed at about 40-50 days retention time with the specific biogas production of about 400 L/kg of VSS inserted. At the National Institute of Chemistry Ljubljana, thermophilic sludge digestion at 50 to 60{sup o}C was studied. As the result of research two-stage anaerobic-aerobic process was developed and patented. A case of 3+12 days retention time (anaerobic + aerobic stage) gave specific biogas production equal to mesophilic process (about 400 L/kg of VSS inserted) and VSS removal of 62% in 15 days of total retention time. A case of 3+6 days retention time gave the same biogas production of 400 L/kg and VSS removal of 49% in 9 days of total retention time. The main problem at thermophilic sludge digestion is the heat requirements for sustaining the process. The biogas produced is not sufficient for covering the heat requirements. This problem was resolved with heat regeneration between outflow and inflow sludge. Such regeneration brought the process equal to mesophilic process. With 80 to 95% excess heat of power production from produced biogas all heat requirements were covered. (author)

  11. Fermentative Hydrogen Production from Combination of Tofu processing and anaerobic digester sludge wastes using a microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    You-Kwan, O.; Mi-Sun, K.

    2009-07-01

    The combination of Tofu manufacturing waste and anaerobic digester sludge was studied for fermentative H{sub 2} production in batch and continuous modes using a mixed culture originated from sewage. In order to increase the solubilization of organic substrates from Tofu waste, various pretreatments including heat-treatment, acid/alkali treatment, and sonication were examined alone or in combination with others. (Author)

  12. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  13. Dynamic Modelling of the Two-stage Gasification Process

    DEFF Research Database (Denmark)

    Gøbel, Benny; Henriksen, Ulrik B.; Houbak, Niels

    1999-01-01

    A two-stage gasification pilot plant was designed and built as a co-operative project between the Technical University of Denmark and the company REKA.A dynamic, mathematical model of the two-stage pilot plant was developed to serve as a tool for optimising the process and the operating conditions...... of the gasification plant.The model consists of modules corresponding to the different elements in the plant. The modules are coupled together through mass and heat conservation.Results from the model are compared with experimental data obtained during steady and unsteady operation of the pilot plant. A good...

  14. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries.

  15. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate.

    Science.gov (United States)

    Hung, Chun-Hsiung; Lee, Kuo-Shing; Cheng, Lu-Hsiu; Huang, Yu-Hsin; Lin, Ping-Jei; Chang, Jo-Shu

    2007-06-01

    Fermentative H(2) production microbial structure in an agitated granular sludge bed bioreactor was analyzed using fluorescence in situ hybridization (FISH) and polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE). This hydrogen-producing system was operated at four different hydraulic retention times (HRTs) of 4, 2, 1, and 0.5 h and with an influent glucose concentration of 20 g chemical oxygen demand/l. According to the PCR-DGGE analysis, bacterial community structures were mainly composed of Clostridium sp. (possibly Clostridium pasteurianum), Klebsiella oxytoca, and Streptococcus sp. Significant increase of Clostridium/total cell ratio (68%) was observed when the reactor was operated under higher influent flow rate. The existence of Streptococcus sp. in the reactor became more important when operated under a short HRT as indicated by the ratio of Streptococcus probe-positive cells to Clostridium probe-positive cells changing from 21% (HRT 4 h) to 38% (HRT 0.5 h). FISH images suggested that Streptococcus cells probably acted as seeds for self-flocculated granule formation. Furthermore, combining the inspections with hydrogen production under different HRTs and their corresponding FISH analysis indicated that K. oxytoca did not directly contribute to H(2) production but possibly played a role in consuming O(2) to create an anaerobic environment for the hydrogen-producing Clostridium.

  16. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure.

    Science.gov (United States)

    Hernández, Mario Andrés; Rodríguez Susa, Manuel; Andres, Yves

    2014-09-01

    Coffee mucilage (CM), a novel substrate produced as waste from agricultural activity in Colombia, the largest fourth coffee producer in the world, was used for hydrogen production. The study evaluated three ratios (C1-3) for co-digestion of CM and swine manure (SM), and an increase in organic load to improve hydrogen production (C4). The hydrogen production was improved by a C/N ratio of 53.4 used in C2 and C4. The average hydrogen production rate in C4 was 7.6 NL H2/LCMd, which indicates a high hydrogen potential compare to substrates such as POME and wheat starch. In this condition, the biogas composition was 0.1%, 50.6% and 39.0% of methane, carbon dioxide and hydrogen, respectively. The butyric and acetic fermentation pathways were the main routes identified during hydrogen production which kept a Bu/Ac ratio at around 1.0. A direct relationship between coffee mucilage, biogas and cumulative hydrogen volume was established.

  17. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry.

    Science.gov (United States)

    Yokoyama, Hiroshi; Waki, Miyoko; Moriya, Naoko; Yasuda, Tomoko; Tanaka, Yasuo; Haga, Kiyonori

    2007-02-01

    We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.

  18. Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Lay, J.J; Tsai, C.J.; Chau, C.H.; Fan, K.S.; Chang, J.I.; Hsu, P.C. [National Kaohsiung First Univ. of Science and Technology, Kaohsiung, Taiwan (China). Energy Research Centre; Huang, C.C.; Chang, J.J. [National Hsing Univ., Taichung, Taiwan (China). Dept. of Life Sciences

    2004-07-01

    Hydrogen is considered a viable renewable energy source that may come to replace fossil fuels. Although 98 per cent of current hydrogen production is from fossil fuels, research has begun to produce hydrogen from fermentation of organic wastes. Only when this is economically achieved will the hydrogen economy become viable. Hydrogen from dark fermentation is carried out using species of the genus Clostridium. Previous studies of producing hydrogen from organic wastes indicate that the control of pH is essential. Moreover, HRT is also an important variable. In this investigation, a set of experiments with yeast obtained from beer processing wastes was performed to illuminate the effect of pH and HRT on hydrogen production. A predictive quadratic equation and response surface methodology were developed to optimize the hydrogen production rate. A pH of 5.8 and HRT of 32 hours were found optimum. The key species involved were found to be Clostridium thermocellum and Klebsiella pneumoniae. 11 refs., 2 tabs., 4 figs.

  19. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility.

    Science.gov (United States)

    Tommasi, T; Sassi, G; Ruggeri, B

    2008-01-01

    The present study is aimed to test the effectiveness and the reproducibility of the acid pre-treatment of sewage sludge to suppress the methanogenic bacteria activity, in order to increase the hydrogen forming bacteria activity, mainly Clostridium species. The treated sludge has been tested on glucose reach medium under mesophilic conditions (35 degrees C), in batch mode to quantify the biological fermentative hydrogen production. In the whole series of experiments, the main components of biogas are hydrogen (52-60%) and carbon dioxide (40-48%); no methane and hydrogen sulphide were present in it. The rate of biogas production reached a maximum of 75 ml/lh. An overall mean hydrogen conversion efficiency was 11.20% on the assumption of maximum of 3 mol H2/mol glucose. Clostridium spp. multiplied ten times after 10 h of fermentation and over that thousand times at the end of fermentation.

  20. Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen.

    Science.gov (United States)

    Lay, J J; Tsai, C J; Huang, C C; Chang, J J; Chou, C H; Fan, K S; Chang, J I; Hsu, P C

    2005-01-01

    To convert high-solids organic wastes (3% w./w.) to high-value hydrogen, a full factorial experimental design was employed in planning the experiments for learning the effects of pH and hydraulic retention time (HRT) on the hydrogen production in a chemostat reactor using waste yeast obtained from beer processing wastes. For determining which experimental variable settings affect hydrogen production, predictive polynomial quadratic equation and response surface methodology were employed to determine and explain the conditions required for high-value hydrogen production. Experimental results indicate that a maximum hydrogen production rate of 460 mL/gVSS/d was obtained at pH = 5.8 and HRT = 32 hours. Moreover, hydrogenase targeted RT-PCR results indicate that Clostridium thermocellum and Klebsiella pneumoniae predominated.

  1. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Yanju Chen

    2015-01-01

    Full Text Available This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem is derived. As a result, the proposed two-stage model is equivalent to a single-stage model, and the analytical optimal solution of the two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the proposed two-stage model are larger than those provided by the single-stage model.

  2. Efficient Two-Stage Group Testing Algorithms for DNA Screening

    CERN Document Server

    Huber, Michael

    2011-01-01

    Group testing algorithms are very useful tools for DNA library screening. Building on recent work by Levenshtein (2003) and Tonchev (2008), we construct in this paper new infinite classes of combinatorial structures, the existence of which are essential for attaining the minimum number of individual tests at the second stage of a two-stage disjunctive testing algorithm.

  3. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    Based on more than 15 years of research and practical experience, the Technical University of Denmark (DTU) and COWI Consulting Engineers and Planners AS present the two-stage gasification process, a concept for high efficiency gasification of biomass producing negligible amounts of tars. In the ......Based on more than 15 years of research and practical experience, the Technical University of Denmark (DTU) and COWI Consulting Engineers and Planners AS present the two-stage gasification process, a concept for high efficiency gasification of biomass producing negligible amounts of tars....... In the two-stage gasification concept, the pyrolysis and the gasification processes are physical separated. The volatiles from the pyrolysis are partially oxidized, and the hot gases are used as gasification medium to gasify the char. Hot gases from the gasifier and a combustion unit can be used for drying...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...

  4. FREE GRAFT TWO-STAGE URETHROPLASTY FOR HYPOSPADIAS REPAIR

    Institute of Scientific and Technical Information of China (English)

    Zhong-jin Yue; Ling-jun Zuo; Jia-ji Wang; Gan-ping Zhong; Jian-ming Duan; Zhi-ping Wang; Da-shan Qin

    2005-01-01

    Objective To evaluate the effectiveness of free graft transplantation two-stage urethroplasty for hypospadias repair.Methods Fifty-eight cases with different types of hypospadias including 10 subcoronal, 36 penile shaft, 9 scrotal, and 3 perineal were treated with free full-thickness skin graft or (and) buccal mucosal graft transplantation two-stage urethroplasty. Of 58 cases, 45 were new cases, 13 had history of previous failed surgeries. Operative procedure included two stages: the first stage is to correct penile curvature (chordee), prepare transplanting bed, harvest and prepare full-thickness skin graft, buccal mucosal graft, and perform graft transplantation. The second stage is to complete urethroplasty and glanuloplasty.Results After the first stage operation, 56 of 58 cases (96.6%) were successful with grafts healing well, another 2foreskin grafts got gangrened. After the second stage operation on 56 cases, 5 cases failed with newly formed urethras opened due to infection, 8 cases had fistulas, 43 (76.8%) cases healed well.Conclusions Free graft transplantation two-stage urethroplasty for hypospadias repair is a kind of effective treatment with broad indication, comparatively high success rate, less complicationsand good cosmatic results, indicative of various types of hypospadias repair.

  5. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2004-01-01

    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...

  6. A two-stage rank test using density estimation

    NARCIS (Netherlands)

    Albers, Willem/Wim

    1995-01-01

    For the one-sample problem, a two-stage rank test is derived which realizes a required power against a given local alternative, for all sufficiently smooth underlying distributions. This is achieved using asymptotic expansions resulting in a precision of orderm −1, wherem is the size of the first

  7. The construction of customized two-stage tests

    NARCIS (Netherlands)

    Adema, Jos J.

    1990-01-01

    In this paper mixed integer linear programming models for customizing two-stage tests are given. Model constraints are imposed with respect to test composition, administration time, inter-item dependencies, and other practical considerations. It is not difficult to modify the models to make them use

  8. Hydrogen production in anaerobic reactors during shock loads--influence of formate production and H2 kinetics.

    Science.gov (United States)

    Voolapalli, R K; Stuckey, D C

    2001-05-01

    In this article the role of hydrogen as a process monitoring tool in methanogenic systems was studied by considering the influence of several key system parameters. Hydrogen production was found to be influenced mainly by the inocula's source pH, and varied only slightly with external pH and HCO3- levels. When an inoculum adapted to above neutral conditions (pH > 7) was shocked, reducing equivalents were selectively channelled through formate, while high hydrogen production was noticed with acidically (pH production of hydrogen or formate during shock loads was not strongly associated with microbial morphology (granules or flocs) as high electron fluxes were possible through either during acidogenesis. Shock load experiments in continuous reactors revealed that neither hydrogen nor formate accumulated to any significant degree, nevertheless digester recovery took a long time due to the slow kinetics of volatile fatty acid degradation. Selective formate production under neutral pH environments, coupled with high hydrogenotrophic activity, was found to be responsible for the dampened hydrogen response during the early phases of gradually shocked systems (step change). Based on these results it appears that the role of hydrogen as a process monitoring tool has been overemphasised in the literature.

  9. Square Kilometre Array station configuration using two-stage beamforming

    CERN Document Server

    Jiwani, Aziz; Razavi-Ghods, Nima; Hall, Peter J; Padhi, Shantanu; de Vaate, Jan Geralt bij

    2012-01-01

    The lowest frequency band (70 - 450 MHz) of the Square Kilometre Array will consist of sparse aperture arrays grouped into geographically-localised patches, or stations. Signals from thousands of antennas in each station will be beamformed to produce station beams which form the inputs for the central correlator. Two-stage beamforming within stations can reduce SKA-low signal processing load and costs, but has not been previously explored for the irregular station layouts now favoured in radio astronomy arrays. This paper illustrates the effects of two-stage beamforming on sidelobes and effective area, for two representative station layouts (regular and irregular gridded tile on an irregular station). The performance is compared with a single-stage, irregular station. The inner sidelobe levels do not change significantly between layouts, but the more distant sidelobes are affected by the tile layouts; regular tile creates diffuse, but regular, grating lobes. With very sparse arrays, the station effective area...

  10. Two stage sorption type cryogenic refrigerator including heat regeneration system

    Science.gov (United States)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  11. Recursive algorithm for the two-stage EFOP estimation method

    Institute of Scientific and Technical Information of China (English)

    LUO GuiMing; HUANG Jian

    2008-01-01

    A recursive algorithm for the two-stage empirical frequency-domain optimal param-eter (EFOP) estimation method Was proposed. The EFOP method was a novel sys-tem identificallon method for Black-box models that combines time-domain esti-mation and frequency-domain estimation. It has improved anti-disturbance perfor-mance, and could precisely identify models with fewer sample numbers. The two-stage EFOP method based on the boot-strap technique was generally suitable for Black-box models, but it was an iterative method and takes too much computation work so that it did not work well online. A recursive algorithm was proposed for dis-turbed stochastic systems. Some simulation examples are included to demonstrate the validity of the new method.

  12. Two-stage approach to full Chinese parsing

    Institute of Scientific and Technical Information of China (English)

    Cao Hailong; Zhao Tiejun; Yang Muyun; Li Sheng

    2005-01-01

    Natural language parsing is a task of great importance and extreme difficulty. In this paper, we present a full Chinese parsing system based on a two-stage approach. Rather than identifying all phrases by a uniform model, we utilize a divide and conquer strategy. We propose an effective and fast method based on Markov model to identify the base phrases. Then we make the first attempt to extend one of the best English parsing models i.e. the head-driven model to recognize Chinese complex phrases. Our two-stage approach is superior to the uniform approach in two aspects. First, it creates synergy between the Markov model and the head-driven model. Second, it reduces the complexity of full Chinese parsing and makes the parsing system space and time efficient. We evaluate our approach in PARSEVAL measures on the open test set, the parsing system performances at 87.53% precision, 87.95% recall.

  13. 餐厨垃圾厌氧发酵制氢残留物连续沼气发酵研究%Research on Continuous Methane Fermentation of Residues of Hydrogen Production by Anaerobic Fermentation of Kitchen Waste

    Institute of Scientific and Technical Information of China (English)

    张国华; 张志红; 黄江丽; 王东升; 丁建南

    2015-01-01

    餐厨垃圾中有机物含量高,利用餐厨垃圾厌氧发酵制备氢气后残留物中含有丰富的低级脂肪酸、醇类等. 从接种产甲烷菌和pH调节角度,利用餐厨垃圾厌氧发酵制备氢气后的残留物研究连续沼气发酵,提高餐厨垃圾资源利用率. 结果表明,在接种产甲烷菌和调节发酵体系pH>7的条件下,餐厨垃圾厌氧发酵制备氢气后的残留物能够连续沼气发酵. 接种以新鲜沼渣为产甲烷菌来源的沼气发酵比以厌氧活性污泥为产甲烷菌种来源的沼气发酵产气效果好.%Kitchen waste contents high organic matter, and abundant of low-level fatty acids, alco-hols,etc. exist in the residues after using kitchen waste preparation for hydrogen by anaerobic fer-mentation. This paper studied the feasibility of continue to produce methane by anaerobic fermenta-tion of hydrogen production residues from inoculate methane bacteria and pH,which hope to improve the utilization of kitchen waste resources. The results show that, under the conditions of pH>7 and inoculated methane bacteria in the anaerobic fermentation system,it can continue to produce methane use the hydrogen production residues by anaerobic fermentation,and it is better of produce biogas by inoculated with fresh biogas residues as methane bacteria in anaerobic fermentation than inoculated with anaerobic activated sludge as methane bacteria.

  14. Income and Poverty across SMSAs: A Two-Stage Analysis

    OpenAIRE

    1993-01-01

    Two popular explanations of urban poverty are the "welfare-disincentive" and "urban-deindustrialization" theories. Using cross-sectional Census data, we develop a two-stage model to predict an SMSAs median family income and poverty rate. The model allows the city's welfare level and industrial structure to affect its median family income and poverty rate directly. It also allows welfare and industrial structure to affect income and poverty indirectly, through their effects on family structure...

  15. A Two-stage Polynomial Method for Spectrum Emissivity Modeling

    OpenAIRE

    Qiu, Qirong; Liu, Shi; Teng, Jing; Yan, Yong

    2015-01-01

    Spectral emissivity is a key in the temperature measurement by radiation methods, but not easy to determine in a combustion environment, due to the interrelated influence of temperature and wave length of the radiation. In multi-wavelength radiation thermometry, knowing the spectral emissivity of the material is a prerequisite. However in many circumstances such a property is a complex function of temperature and wavelength and reliable models are yet to be sought. In this study, a two stages...

  16. Measuring the Learning from Two-Stage Collaborative Group Exams

    CERN Document Server

    Ives, Joss

    2014-01-01

    A two-stage collaborative exam is one in which students first complete the exam individually, and then complete the same or similar exam in collaborative groups immediately afterward. To quantify the learning effect from the group component of these two-stage exams in an introductory Physics course, a randomized crossover design was used where each student participated in both the treatment and control groups. For each of the two two-stage collaborative group midterm exams, questions were designed to form matched near-transfer pairs with questions on an end-of-term diagnostic which was used as a learning test. For learning test questions paired with questions from the first midterm, which took place six to seven weeks before the learning test, an analysis using a mixed-effects logistic regression found no significant differences in learning-test performance between the control and treatment group. For learning test questions paired with questions from the second midterm, which took place one to two weeks prio...

  17. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target.

    Science.gov (United States)

    Jen, Chang Jui; Chou, Chia-Hung; Hsu, Ping-Chi; Yu, Sian-Jhong; Chen, Wei-En; Lay, Jiunn-Jyi; Huang, Chieh-Chen; Wen, Fu-Shyan

    2007-04-01

    By using hydrogenase gene-targeted polymerase chain reaction (PCR) and reverse transcriptase PCR (RT-PCR), the predominant clostridial hydrogenase that may have contributed to biohydrogen production in an anaerobic semi-solid fermentation system has been monitored. The results revealed that a Clostridium pasteurianum-like hydrogenase gene sequence can be detected by both PCR and RT-PCR and suggested that the bacterial strain possessing this specific hydrogenase gene was dominant in hydrogenase activity and population. Whereas another Clostridium saccharobutylicum-like hydrogenase gene can be detected only by RT-PCR and suggest that the bacterial strain possessing this specific hydrogenase gene may be less dominant in population. In this study, hydrogenase gene-targeted fluorescence in situ hybridization (FISH) and flow cytometry analysis confirmed that only 6.6% of the total eubacterial cells in a hydrogen-producing culture were detected to express the C. saccharobutylicum-like hydrogenase, whereas the eubacteria that expressed the C. pasteurianum-like hydrogenase was 25.6%. A clostridial strain M1 possessing the identical nucleotide sequences of the C. saccharobutylicum-like hydrogenase gene was then isolated and identified as Clostridium butyricum based on 16S rRNA sequence. Comparing to the original inoculum with mixed microflora, either using C. butyricum M1 as the only inoculum or co-culturing with a Bacillus thermoamylovorans isolate will guarantee an effective and even better production of hydrogen from brewery yeast waste.

  18. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms

    Science.gov (United States)

    Jackson, B. E.; Bhupathiraju, V. K.; Tanner, R. S.; Woese, C. R.; McInerney, M. J.

    1999-01-01

    Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 +/- 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the delta-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus.

  19. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas.

    Science.gov (United States)

    Qiao, Wei; Takayanagi, Kazuyuki; Niu, Qigui; Shofie, Mohammad; Li, Yu You

    2013-12-01

    The performance of thermophilic anaerobic co-digestion of coffee grounds and sludge using membrane reactor was investigated for 148 days, out of a total research duration of 263 days. The OLR was increased from 2.2 to 33.7 kg-COD/m(3)d and HRT was shortened from 70 to 7 days. A significant irreversible drop in pH confirmed the overload of reactor. Under a moderately high OLR of 23.6 kg-COD/m(3)d, and with HRT and influent total solids of 10 days and 150 g/L, respectively, the COD removal efficiency was 44.5%. Hydrogen in biogas was around 100-200 ppm, which resulted in the persistent propionate of 1.0-3.2g/L. The VFA consumed approximately 60% of the total alkalinity. NH4HCO3 was supplemented to maintain alkalinity. The stability of system relied on pH management under steady state. The 16SrDNA results showed that hydrogen-utilizing methanogens dominates the archaeal community. The propionate-oxidizing bacteria in bacterial community was insufficient.

  20. Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Ren, Nanqi

    2015-11-15

    Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system.

  1. 产氢产甲烷两相厌氧发酵的研究进展%Research advances in two-phase anaerobic fermentation for hydrogen and methane production

    Institute of Scientific and Technical Information of China (English)

    魏勃; 刘文辉; 袁林江

    2014-01-01

    产氢/产甲烷的两相厌氧技术在国内外受到普遍关注,如何提高产氢反应器的氢气产率和系统生物能源的高效转化成为两相厌氧研究的关键问题。总结了近年来两相厌氧技术研究和应用的最新成果,介绍了两相厌氧基质利用的运行情况、相分离的优势及两相中的优势菌种。同时,就氢/甲烷两相厌氧发酵的前景提出了建议。%Extensively attention has been paid to the two-phase anaerobic process for hydrogen and methane produc-tion in China and abroad. How to improve the hydrogen productivity of hydrogen producing reactor and efficient con-version of system bio-energy sources have become the key problem of two-phase anaerobic research. Recent ad-vances in the research on two-phase anaerobic technology and application of the newest achievement are summa-rized. The running situation of the two-phase anaerobic substrate utilization ,the superiority of phase separation and the predominant strains in two phases are introduced. Furthermore ,suggestions on the prospect concerning two-phase anaerobic fermentation for hydrogen and methane production have been made.

  2. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    Science.gov (United States)

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo

    2009-01-01

    Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR. PMID:20087466

  3. Forty-five-degree two-stage venous cannula: advantages over standard two-stage venous cannulation.

    Science.gov (United States)

    Lawrence, D R; Desai, J B

    1997-01-01

    We present a 45-degree two-stage venous cannula that confers advantage to the surgeon using cardiopulmonary bypass. This cannula exits the mediastinum under the transverse bar of the sternal retractor, leaving the rostral end of the sternal incision free of apparatus. It allows for lifting of the heart with minimal effect on venous return and does not interfere with the radially laid out sutures of an aortic valve replacement using an interrupted suture technique.

  4. Solid substrate anaerobic fermentation of municipal and juice fruit-industry solid wastes for the production of bio hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Paez, K.; Pareja-Camacho, J.; Rios-Leal, E.; Ponce-Noyola, M. T.; Esparza-Garcia, F. J.; Garcia Mena, J.; Poggi-Varaldo, H. M.

    2009-07-01

    Use and abuse of fossil fuels has lead to decreased supply, increasing energy costs and negative environmental and health impacts. Thus, renewable and environmentally-friendly sources of energy are attracting increased attention in recent years. Hydrogen has been targeted as the fuel of the future because of its high calorific heat and clean combustion. (Author)

  5. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rodriguez, A.M. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Ambientales, Universidad Pablo de Olavide. Carretera de Utrera, km 1. 41013 Sevilla (Spain); Duran-Barrantes, M.M. [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Sevilla, C/Profesor Garcia Gonzalez, s/n, 41071 Sevilla (Spain); Borja, R., E-mail: rborja@cica.es [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de la Grasa, Avda. Padre Garcia Tejero 4, 41012 Sevilla (Spain); Sanchez, E.; Colmenarejo, M.F. [Consejo Superior de Investigaciones Cientificas (CSIC), Centro de Ciencias Medioambientales, C/Serrano, 115-duplicado, 28006 Madrid (Spain); Raposo, F. [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de la Grasa, Avda. Padre Garcia Tejero 4, 41012 Sevilla (Spain)

    2009-06-15

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  6. On Two-stage Seamless Adaptive Design in Clinical Trials

    Directory of Open Access Journals (Sweden)

    Shein-Chung Chow

    2008-12-01

    Full Text Available In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular because of its efficiency and flexibility in modifying trial and/or statistical procedures of ongoing clinical trials. One of the most commonly considered adaptive designs is probably a two-stage seamless adaptive trial design that combines two separate studies into one single study. In many cases, study endpoints considered in a two-stage seamless adaptive design may be similar but different (e.g. a biomarker versus a regular clinical endpoint or the same study endpoint with different treatment durations. In this case, it is important to determine how the data collected from both stages should be combined for the final analysis. It is also of interest to know how the sample size calculation/allocation should be done for achieving the study objectives originally set for the two stages (separate studies. In this article, formulas for sample size calculation/allocation are derived for cases in which the study endpoints are continuous, discrete (e.g. binary responses, and contain time-to-event data assuming that there is a well-established relationship between the study endpoints at different stages, and that the study objectives at different stages are the same. In cases in which the study objectives at different stages are different (e.g. dose finding at the first stage and efficacy confirmation at the second stage and when there is a shift in patient population caused by protocol amendments, the derived test statistics and formulas for sample size calculation and allocation are necessarily modified for controlling the overall type I error at the prespecified level.

  7. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa.

    Science.gov (United States)

    Yadavalli, Rajasri; Heggers, Goutham Rao Venkata Naga

    2013-12-19

    Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer.

  8. Two-stage series array SQUID amplifier for space applications

    Science.gov (United States)

    Tuttle, J. G.; DiPirro, M. J.; Shirron, P. J.; Welty, R. P.; Radparvar, M.

    We present test results for a two-stage integrated SQUID amplifier which uses a series array of d.c. SQUIDS to amplify the signal from a single input SQUID. The device was developed by Welty and Martinis at NIST and recent versions have been manufactured by HYPRES, Inc. Shielding and filtering techniques were employed during the testing to minimize the external noise. Energy resolution of 300 h was demonstrated using a d.c. excitation at frequencies above 1 kHz, and better than 500 h resolution was typical down to 300 Hz.

  9. A Two Stage Classification Approach for Handwritten Devanagari Characters

    CERN Document Server

    Arora, Sandhya; Nasipuri, Mita; Malik, Latesh

    2010-01-01

    The paper presents a two stage classification approach for handwritten devanagari characters The first stage is using structural properties like shirorekha, spine in character and second stage exploits some intersection features of characters which are fed to a feedforward neural network. Simple histogram based method does not work for finding shirorekha, vertical bar (Spine) in handwritten devnagari characters. So we designed a differential distance based technique to find a near straight line for shirorekha and spine. This approach has been tested for 50000 samples and we got 89.12% success

  10. Two-Stage Aggregate Formation via Streams in Myxobacteria

    Science.gov (United States)

    Alber, Mark; Kiskowski, Maria; Jiang, Yi

    2005-03-01

    In response to adverse conditions, myxobacteria form aggregates which develop into fruiting bodies. We model myxobacteria aggregation with a lattice cell model based entirely on short range (non-chemotactic) cell-cell interactions. Local rules result in a two-stage process of aggregation mediated by transient streams. Aggregates resemble those observed in experiment and are stable against even very large perturbations. Noise in individual cell behavior increases the effects of streams and result in larger, more stable aggregates. Phys. Rev. Lett. 93: 068301 (2004).

  11. Straw Gasification in a Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    Additive-prepared straw pellets were gasified in the 100 kW two-stage gasifier at The Department of Mechanical Engineering of the Technical University of Denmark (DTU). The fixed bed temperature range was 800-1000°C. In order to avoid bed sintering, as observed earlier with straw gasification...... residues were examined after the test. No agglomeration or sintering was observed in the ash residues. The tar content was measured both by solid phase amino adsorption (SPA) method and cold trapping (Petersen method). Both showed low tar contents (~42 mg/Nm3 without gas cleaning). The particle content...

  12. Two-Stage Fan I: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Messenger, H. E.; Kennedy, E. E.

    1972-01-01

    A two-stage, highly-loaded fan was designed to deliver an overall pressure ratio of 2.8 with an adiabatic efficiency of 83.9 percent. At the first rotor inlet, design flow per unit annulus area is 42 lbm/sec/sq ft (205 kg/sec/sq m), hub/tip ratio is 0.4 with a tip diameter of 31 inches (0.787 m), and design tip speed is 1450 ft/sec (441.96 m/sec). Other features include use of multiple-circular-arc airfoils, resettable stators, and split casings over the rotor tip sections for casing treatment tests.

  13. Two-Stage Eagle Strategy with Differential Evolution

    CERN Document Server

    Yang, Xin-She

    2012-01-01

    Efficiency of an optimization process is largely determined by the search algorithm and its fundamental characteristics. In a given optimization, a single type of algorithm is used in most applications. In this paper, we will investigate the Eagle Strategy recently developed for global optimization, which uses a two-stage strategy by combing two different algorithms to improve the overall search efficiency. We will discuss this strategy with differential evolution and then evaluate their performance by solving real-world optimization problems such as pressure vessel and speed reducer design. Results suggest that we can reduce the computing effort by a factor of up to 10 in many applications.

  14. CFD Modelling of Bore Erosion in Two-Stage Light Gas Guns

    Science.gov (United States)

    Bogdanoff, D. W.

    1998-01-01

    A well-validated quasi-one-dimensional computational fluid dynamics (CFD) code for the analysis of the internal ballistics of two-stage light gas guns is modified to explicitly calculate the ablation of steel from the gun bore and the incorporation of the ablated wall material into the hydrogen working cas. The modified code is used to model 45 shots made with the NASA Ames 0.5 inch light gas gun over an extremely wide variety of gun operating conditions. Good agreement is found between the experimental and theoretical piston velocities (maximum errors of +/-2% to +/-6%) and maximum powder pressures (maximum errors of +/-10% with good igniters). Overall, the agreement between the experimental and numerically calculated gun erosion values (within a factor of 2) was judged to be reasonably good, considering the complexity of the processes modelled. Experimental muzzle velocities agree very well (maximum errors of 0.5-0.7 km/sec) with theoretical muzzle velocities calculated with loading of the hydrogen gas with the ablated barrel wall material. Comparison of results for pump tube volumes of 100%, 60% and 40% of an initial benchmark value show that, at the higher muzzle velocities, operation at 40% pump tube volume produces much lower hydrogen loading and gun erosion and substantially lower maximum pressures in the gun. Large muzzle velocity gains (2.4-5.4 km/sec) are predicted upon driving the gun harder (that is, upon using, higher powder loads and/or lower hydrogen fill pressures) when hydrogen loading is neglected; much smaller muzzle velocity gains (1.1-2.2 km/sec) are predicted when hydrogen loading is taken into account. These smaller predicted velocity gains agree well with those achieved in practice. CFD snapshots of the hydrogen mass fraction, density and pressure of the in-bore medium are presented for a very erosive shot.

  15. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  16. Runway Operations Planning: A Two-Stage Heuristic Algorithm

    Science.gov (United States)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.

  17. Two-Stage Heuristic Algorithm for Aircraft Recovery Problem

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2017-01-01

    Full Text Available This study focuses on the aircraft recovery problem (ARP. In real-life operations, disruptions always cause schedule failures and make airlines suffer from great loss. Therefore, the main objective of the aircraft recovery problem is to minimize the total recovery cost and solve the problem within reasonable runtimes. An aircraft recovery model (ARM is proposed herein to formulate the ARP and use feasible line of flights as the basic variables in the model. We define the feasible line of flights (LOFs as a sequence of flights flown by an aircraft within one day. The number of LOFs exponentially grows with the number of flights. Hence, a two-stage heuristic is proposed to reduce the problem scale. The algorithm integrates a heuristic scoring procedure with an aggregated aircraft recovery model (AARM to preselect LOFs. The approach is tested on five real-life test scenarios. The computational results show that the proposed model provides a good formulation of the problem and can be solved within reasonable runtimes with the proposed methodology. The two-stage heuristic significantly reduces the number of LOFs after each stage and finally reduces the number of variables and constraints in the aircraft recovery model.

  18. Long-term performance and microbial ecology of a two-stage PN-ANAMMOX process treating mature landfill leachate.

    Science.gov (United States)

    Li, Huosheng; Zhou, Shaoqi; Ma, Weihao; Huang, Pengfei; Huang, Guotao; Qin, Yujie; Xu, Bin; Ouyang, Hai

    2014-05-01

    Long-term performance of a two-stage partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) process treating mature landfill leachate was investigated. Stable partial nitritation performance was achieved in a sequencing batch reactor (SBR) using endpoint pH control, providing an effluent with a ratio of NO2(-)-N/NH4(+)-N at 1.23 ± 0.23. High rate nitrogen removal over 4 kg N/m(3)/d was observed in the ANAMMOX reactor in the first three months. However, during long-term operation, the ANAMMOX reactor can only stably operate under nitrogen load of 1 kg N/m(3)/d, with 85 ± 1% of nitrogen removal. The ammonium oxidizing bacteria (AOB) in the PN-SBR were mainly affiliated to Nitrosomonas sp. IWT514, Nitrosomonas eutropha and Nitrosomonas eutropha, the anaerobic ammonium oxidizing bacteria (AnAOB) in the ANAMMOX reactor were mainly affiliated to Kuenenia stuttgartiensis.

  19. Characteristics and hydrogen production efficiency in anaerobic baffled reactor (ABR) system%ABR发酵系统运行特性及产氢效能研究

    Institute of Scientific and Technical Information of China (English)

    郑国臣; 李建政; 昌盛; 张照韩; 官涤; 金羽; 郭静波; 卢海凤

    2013-01-01

    To solve the continuous-flow stirred tank reactor (CSTR) hydrogen system has low efficient and waste energy,a 3-compartment anaerobic baffled reactor (ABR), with an effective volume of 27.8L, was adapted and its performing characteristics and hydrogen production efficiency were investigated,using diluted molasses as the material. ABR had higher efficiency and lower energy consumption comparing with CSTR. ABR achieved stable ethanol type fermentation within 26d with 35℃ and initial COD of 5000mg/L, and the specific hydrogen production rate was 0.13L/(gMLVSSd) while that of CSTR under the same conditions was 0.06L/g MLVSS-d. Results showed that ABR was an ideal facility for hydrogen production from organic wastewater fermentation.%为解决连续流搅拌槽式反应器(CSTR)发酵制氢系统存在的不足,如单位基质氢气转化率低、因搅拌带来的耗能,抗负荷冲击能力不强等问题,开展了厌氧折流板反应器(ABR)发酵产氢的研究.结果表明,在35℃和进水COD 5000mg/L等条件下,ABR系统可在26d达到乙醇型发酵,其比产氢速率为0.13L/(gMLVSS.d),而在同样条件下,CSTR达到乙醇型发酵后,比产氢速率仅为0.06L/(gMLVSS.d).ABR通过生物相的分离,使产氢系统梯级利用有机物并达到深度产氢的目的.与CSTR相比,ABR具有较高的产氢活性、较低能源消耗等优点,是一种较为理想的有机废水发酵制氢反应设备.

  20. Organic Waste Treatment via Anaerobic Bio-hydrogenation%有机废弃物厌氧生物制氢处理

    Institute of Scientific and Technical Information of China (English)

    高斯 M K; 孙义; 刘晋; 王黎; 西瓦 K M

    2015-01-01

    The resources of fossil fuel will be dried up in the near future. Moreover,greenhouse gas from fossil fuel burning has worsened the global warming situation. The development of sustainable en-ergy has currently become a hot issue in the world. H2 as cleanest ernergy was combused with O2 to pro-duce pure water. The paper presents a model of bio-hydrogenation process with anaerobic bacterial growth on organic wastewater. Data from laboratory scale reactors operating with artificial substrates u-sing bacteria from agricultural waste were conducted. The calculating bio-hydrogen yields and assuming from the waste stream were suitable properties in the digestion. Bacteria played a very important role in the processes of bio-hydrogenation. Bacteria that produce hydrogen were isolated by its characteristic of heat-resistance. Factors that affect the efficiency of bio-hydrogenation process include pH, temperature and the ratio of biomass to substrate concentration( F/M) . By using glucose as the substrate with Clos-tridium sp. seeding,it is shown that of bio-hydrogenation can be produced efficiently in the experiment. Methanogenesis which consumes H2 may be prevented by special operation,and optimum parameters, such as pH around 5,Temperature at 35 ℃,HRT approximately 8hours and F/M between 25% ~50%. And the maximum hydrogen concentration is found to be 88. 6%( V/V) for practical application were obtained from the model.%化石燃料的枯竭,化石燃料燃烧排放的温室气体加剧了全球变暖的问题,已经成为世界的热点问题之一.氢气作为清洁能源,与沼气和化石燃料相比,燃烧产物只有水.利用有机废弃物厌氧发酵制氢气,通过厌氧反应器和农业废弃物生物制氢模型,计算实验过程中生物产氢量和废弃物消解与微生物生长的关系.实验过程表明:在生物制氢过程中,产氢细菌作用显著,产氢菌可以通过其耐热性进行筛选.而影响生物制氢效率的因素还包括:pH值

  1. Application of a modified Anaerobic Digestion Model 1 version for fermentative hydrogen production from sweet sorghum extract by Ruminococcus albus

    Energy Technology Data Exchange (ETDEWEB)

    Ntaikou, I.; Lyberatos, G. [Department of Chemical Engineering, University of Patras, Karatheodori 1 St., 26500 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras (Greece); Gavala, H.N. [Department of Chemical Engineering, University of Patras, Karatheodori 1 St., 26500 Patras (Greece); Copenhagen Institute of Technology (Aalborg University Copenhagen), Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Lautrupvang 15, DK 2750 Ballerup (Denmark)

    2010-04-15

    The aim of the present study was to evaluate the effectiveness of a developed, ADM1-based kinetic model for the hydrogen production process in batch and continuous cultures of the bacterium Ruminococcus albus grown on sweet sorghum extract as the sole carbon source. Although sorghum extract is known to contain at least two different sugars, i.e. sucrose and glucose, no biphasic growth was observed in batch cultures as such growth is reported to occur in cultures of R. albus with mixed substrates. Thus, taking into account that the main sugar of sweet sorghum extract is sucrose, batch experiments with different initial concentrations of sucrose were performed in order to estimate the growth kinetics of the bacterium on this substrate. The kinetic parameters used, concerning the endogenous metabolism of the bacterium as well as those concerning the effect of pH and hydrogen partial pressure (P{sub H2}), were the same as those estimated in a previous study with glucose as carbon source. Subsequently, the experimental data of batch and continuous experiments with sweet sorghum extract were simulated based on the already developed, modified ADM1 model accounting for the use of sugar-based substrate. It was shown that the model which was developed on synthetic substrates was successful in adequately describing the behavior of the microorganism on a real substrate such as sweet sorghum extract and predicting the experimental results quite well with a deviation of the model predictions from the experimental results being between 5-18% for the hydrogen yield. (author)

  2. Two-Stage Part-Based Pedestrian Detection

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Prioletti, Antonio; Trivedi, Mohan M.

    2012-01-01

    Detecting pedestrians is still a challenging task for automotive vision system due the extreme variability of targets, lighting conditions, occlusions, and high speed vehicle motion. A lot of research has been focused on this problem in the last 10 years and detectors based on classifiers has...... gained a special place among the different approaches presented. This work presents a state-of-the-art pedestrian detection system based on a two stages classifier. Candidates are extracted with a Haar cascade classifier trained with the DaimlerDB dataset and then validated through part-based HOG...... of several metrics, such as detection rate, false positives per hour, and frame rate. The novelty of this system rely in the combination of HOG part-based approach, tracking based on specific optimized feature and porting on a real prototype....

  3. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi

    2013-03-01

    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  4. Laparoscopic management of a two staged gall bladdertorsion

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Gall bladder torsion (GBT) is a relatively uncommonentity and rarely diagnosed preoperatively. A constantfactor in all occurrences of GBT is a freely mobilegall bladder due to congenital or acquired anomalies.GBT is commonly observed in elderly white females.We report a 77-year-old, Caucasian lady who wasoriginally diagnosed as gall bladder perforation butwas eventually found with a two staged torsion of thegall bladder with twisting of the Riedel's lobe (partof tongue like projection of liver segment 4A). Thistogether, has not been reported in literature, to thebest of our knowledge. We performed laparoscopiccholecystectomy and she had an uneventful postoperativeperiod. GBT may create a diagnostic dilemmain the context of acute cholecystitis. Timely diagnosisand intervention is necessary, with extra care whileoperating as the anatomy is generally distorted. Thefundus first approach can be useful due to alteredanatomy in the region of Calot's triangle. Laparoscopiccholecystectomy has the benefit of early recovery.

  5. Lightweight Concrete Produced Using a Two-Stage Casting Process

    Directory of Open Access Journals (Sweden)

    Jin Young Yoon

    2015-03-01

    Full Text Available The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa.

  6. TWO-STAGE OCCLUDED OBJECT RECOGNITION METHOD FOR MICROASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    WANG Huaming; ZHU Jianying

    2007-01-01

    A two-stage object recognition algorithm with the presence of occlusion is presented for microassembly. Coarse localization determines whether template is in image or not and approximately where it is, and fine localization gives its accurate position. In coarse localization, local feature, which is invariant to translation, rotation and occlusion, is used to form signatures. By comparing signature of template with that of image, approximate transformation parameter from template to image is obtained, which is used as initial parameter value for fine localization. An objective function, which is a function of transformation parameter, is constructed in fine localization and minimized to realize sub-pixel localization accuracy. The occluded pixels are not taken into account in objective function, so the localization accuracy will not be influenced by the occlusion.

  7. Two-stage designs for cross-over bioequivalence trials.

    Science.gov (United States)

    Kieser, Meinhard; Rauch, Geraldine

    2015-07-20

    The topic of applying two-stage designs in the field of bioequivalence studies has recently gained attention in the literature and in regulatory guidelines. While there exists some methodological research on the application of group sequential designs in bioequivalence studies, implementation of adaptive approaches has focused up to now on superiority and non-inferiority trials. Especially, no comparison of the features and performance characteristics of these designs has been performed, and therefore, the question of which design to employ in this setting remains open. In this paper, we discuss and compare 'classical' group sequential designs and three types of adaptive designs that offer the option of mid-course sample size recalculation. A comprehensive simulation study demonstrates that group sequential designs can be identified, which show power characteristics that are similar to those of the adaptive designs but require a lower average sample size. The methods are illustrated with a real bioequivalence study example.

  8. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  9. Two Stage Assessment of Thermal Hazard in An Underground Mine

    Science.gov (United States)

    Drenda, Jan; Sułkowski, Józef; Pach, Grzegorz; Różański, Zenon; Wrona, Paweł

    2016-06-01

    The results of research into the application of selected thermal indices of men's work and climate indices in a two stage assessment of climatic work conditions in underground mines have been presented in this article. The difference between these two kinds of indices was pointed out during the project entitled "The recruiting requirements for miners working in hot underground mine environments". The project was coordinated by The Institute of Mining Technologies at Silesian University of Technology. It was a part of a Polish strategic project: "Improvement of safety in mines" being financed by the National Centre of Research and Development. Climate indices are based only on physical parameters of air and their measurements. Thermal indices include additional factors which are strictly connected with work, e.g. thermal resistance of clothing, kind of work etc. Special emphasis has been put on the following indices - substitute Silesian temperature (TS) which is considered as the climatic index, and the thermal discomfort index (δ) which belongs to the thermal indices group. The possibility of the two stage application of these indices has been taken into consideration (preliminary and detailed estimation). Based on the examples it was proved that by the application of thermal hazard (detailed estimation) it is possible to avoid the use of additional technical solutions which would be necessary to reduce thermal hazard in particular work places according to the climate index. The threshold limit value for TS has been set, based on these results. It was shown that below TS = 24°C it is not necessary to perform detailed estimation.

  10. Development and optimization of a two-stage gasifier for heat and power production

    Science.gov (United States)

    Kosov, V. V.; Zaichenko, V. M.

    2016-11-01

    The major methods of biomass thermal conversion are combustion in excess oxygen, gasification in reduced oxygen, and pyrolysis in the absence of oxygen. The end products of these methods are heat, gas, liquid and solid fuels. From the point of view of energy production, none of these methods can be considered optimal. A two-stage thermal conversion of biomass based on pyrolysis as the first stage and pyrolysis products cracking as the second stage can be considered the optimal method for energy production that allows obtaining synthesis gas consisting of hydrogen and carbon monoxide and not containing liquid or solid particles. On the base of the two stage cracking technology, there was designed an experimental power plant of electric power up to 50 kW. The power plant consists of a thermal conversion module and a gas engine power generator adapted for operation on syngas. Purposes of the work were determination of an optimal operation temperature of the thermal conversion module and an optimal mass ratio of processed biomass and charcoal in cracking chamber of the thermal conversion module. Experiments on the pyrolysis products cracking at various temperatures show that the optimum cracking temperature is equal to 1000 °C. From the results of measuring the volume of gas produced in different mass ratios of charcoal and wood biomass processed, it follows that the maximum volume of the gas in the range of the mass ratio equal to 0.5-0.6.

  11. Two-stage earth-to-orbit vehicles with dual-fuel propulsion in the Orbiter

    Science.gov (United States)

    Martin, J. A.

    1982-01-01

    Earth-to-orbit vehicle studies of future replacements for the Space Shuttle are needed to guide technology development. Previous studies that have examined single-stage vehicles have shown advantages for dual-fuel propulsion. Previous two-stage system studies have assumed all-hydrogen fuel for the Orbiters. The present study examined dual-fuel Orbiters and found that the system dry mass could be reduced with this concept. The possibility of staging the booster at a staging velocity low enough to allow coast-back to the launch site is shown to be beneficial, particularly in combination with a dual-fuel Orbiter. An engine evaluation indicated the same ranking of engines as did a previous single-stage study. Propane and RP-1 fuels result in lower vehicle dry mass than methane, and staged-combustion engines are preferred over gas-generator engines. The sensitivity to the engine selection is less for two-stage systems than for single-stage systems.

  12. Fuzzy self-tuning PID control of the operation temperatures in a two-staged membrane separation process

    Institute of Scientific and Technical Information of China (English)

    Lei Wang; Wencai Du; Hai Wang; Hong Wu

    2008-01-01

    A two-staged membrane separation process for hydrogen recovery from refinery gases is introduced. The principle of the gas membrane separation process and the influence of the operation temperatures are analyzed. As the conventional PID controller is difficult to make the operation temperatures steady, a fuzzy self-tuning PID control algorithm is proposed. The application shows that the algorithm is effective, the operation temperatures of both stages can be controlled steadily, and the operation flexibility and adaptability of the hydrogen recovery unit are enhanced with safety. This study lays a foundation to optimize the control of the membrane separation process and thus ensure the membrane performance.

  13. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  14. Study of a two-stage photobase generator for photolithography in microelectronics.

    Science.gov (United States)

    Turro, Nicholas J; Li, Yongjun; Jockusch, Steffen; Hagiwara, Yuji; Okazaki, Masahiro; Mesch, Ryan A; Schuster, David I; Willson, C Grant

    2013-03-01

    The investigation of the photochemistry of a two-stage photobase generator (PBG) is described. Absorption of a photon by a latent PBG (1) (first step) produces a PBG (2). Irradiation of 2 in the presence of water produces a base (second step). This two-photon sequence (1 + hν → 2 + hν → base) is an important component in the design of photoresists for pitch division technology, a method that doubles the resolution of projection photolithography for the production of microelectronic chips. In the present system, the excitation of 1 results in a Norrish type II intramolecular hydrogen abstraction to generate a 1,4-biradiacal that undergoes cleavage to form 2 and acetophenone (Φ ∼ 0.04). In the second step, excitation of 2 causes cleavage of the oxime ester (Φ = 0.56) followed by base generation after reaction with water.

  15. a Remote Liquid Target Loading System for a Two-Stage Gas Gun

    Science.gov (United States)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-12-01

    A Remote Liquid Loading System (RLLS) was designed and tested for the application of loading high-hazard liquid materials into instrumented target cells for gas gun-driven plate impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target immediately prior to gun firing provides the most stable and reliable target fielding approach. We present the design and evaluation of an RLLS built for the LANL two-stage gas gun. The system has been used successfully to interrogate the shock initiation behavior of ˜98 wt% percent hydrogen peroxide (H2O2) solutions, using embedded electromagnetic gauges for measurement of shock wave profiles in-situ.

  16. Hydrogen production by an anaerobic sequencing batch reactor (ASBR)%厌氧序批式反应器产氢

    Institute of Scientific and Technical Information of China (English)

    张娜; 袁林江

    2012-01-01

    Using anaerobic sludge from a UASB of the brewery wastewater treatment plant in Xi’an as seeding sludge and glucose as substrate,hydrogen production was investigated in an ASBR.Results show that steady hydrogen production in the ASBR obtained under the operating conditions of pH value of 4.0~4.5,temperature of(36±1)℃,HRT of 8 h,influent glucose concentration of 4 000 mg/L and organic loading rate of 12 kg/(m3·d),respectively.Concentration of hydrogen in the biogas produced was about 48%~53% in proportion.The maximum hydrogen producing rate was 1.1 mol per mol of glucose,COD removal rate between 15% and 25%,and the maximum specific hydrogen producing rate 84.5 mol/(kg VSS·d).Ethanol fermentation was established in the ASBR with that ethanol and acetic acid in the fermentative end products accounted for more than 80%.It implies that the ASBR may be suitable for carbohydrate wastewater treatment in small scale.%以啤酒厂废水处理厂UASB中的厌氧污泥为种泥,葡萄糖为基质,研究了厌氧序批式反应器产氢。控制反应器内pH为4.0~4.5,温度为(36±1)℃,水力停留时间为8 h,当进水葡萄糖浓度为4 000 mg/L,容积负荷为12 kg/(m3.d)条件下,该厌氧序批式反应器实现了连续高效厌氧产氢。生物气中的氢气含量约为48%~53%,基质产氢率为1.1 mol/mol葡萄糖,COD去除率为15%~25%,最大比产氢速率为84.5 mol/(kg VSS.d)。液相末端发酵产物中乙醇和乙酸的含量占液相末端发酵产物总量的80%以上,表明该反应器内进行的是乙醇型发酵厌氧产氢。厌氧序批式反应器完全可以实现连续高效厌氧产氢,比较适用于日处理量较小的高浓度含糖废水。

  17. Characterization of component interactions in two-stage axial turbine

    Directory of Open Access Journals (Sweden)

    Adel Ghenaiet

    2016-08-01

    Full Text Available This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic performances show noticeable differences when simulating the turbine stages simultaneously or separately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while downstream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevailing effect is rather linked to the blade tip flow structure.

  18. A continuous two stage solar coal gasification system

    Science.gov (United States)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

    The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

  19. Characterization of component interactions in two-stage axial turbine

    Institute of Scientific and Technical Information of China (English)

    Adel Ghenaiet; Kaddour Touil

    2016-01-01

    This study concerns the characterization of both the steady and unsteady flows and the analysis of stator/rotor interactions of a two-stage axial turbine. The predicted aerodynamic perfor-mances show noticeable differences when simulating the turbine stages simultaneously or sepa-rately. By considering the multi-blade per row and the scaling technique, the Computational fluid dynamics (CFD) produced better results concerning the effect of pitchwise positions between vanes and blades. The recorded pressure fluctuations exhibit a high unsteadiness characterized by a space–time periodicity described by a double Fourier decomposition. The Fast Fourier Transform FFT analysis of the static pressure fluctuations recorded at different interfaces reveals the existence of principal harmonics and their multiples, and each lobed structure of pressure wave corresponds to the number of vane/blade count. The potential effect is seen to propagate both upstream and downstream of each blade row and becomes accentuated at low mass flow rates. Between vanes and blades, the potential effect is seen to dominate the quasi totality of blade span, while down-stream the blades this effect seems to dominate from hub to mid span. Near the shroud the prevail-ing effect is rather linked to the blade tip flow structure.

  20. Two stages kinetics of municipal solid waste inoculation composting processes

    Institute of Scientific and Technical Information of China (English)

    XI Bei-dou1; HUANG Guo-he; QIN Xiao-sheng; LIU Hong-liang

    2004-01-01

    In order to understand the key mechanisms of the composting processes, the municipal solid waste(MSW) composting processes were divided into two stages, and the characteristics of typical experimental scenarios from the viewpoint of microbial kinetics was analyzed. Through experimentation with advanced composting reactor under controlled composting conditions, several equations were worked out to simulate the degradation rate of the substrate. The equations showed that the degradation rate was controlled by concentration of microbes in the first stage. The degradation rates of substrates of inoculation Run A, B, C and Control composting systems were 13.61 g/(kg·h), 13.08 g/(kg·h), 15.671 g/(kg·h), and 10.5 g/(kg·h), respectively. The value of Run C is around 1.5 times higher than that of Control system. The decomposition rate of the second stage is controlled by concentration of substrate. Although the organic matter decomposition rates were similar to all Runs, inoculation could reduce the values of the half velocity coefficient and could be more efficient to make the composting stable. Particularly. For Run C, the decomposition rate is high in the first stage, and is low in the second stage. The results indicated that the inoculation was efficient for the composting processes.

  1. Gas loading system for LANL two-stage gas guns

    Science.gov (United States)

    Gibson, Lee; Bartram, Brian; Dattelbaum, Dana; Lang, John; Morris, John

    2015-06-01

    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures. The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez and Teflon. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system, and example data from the plate impact experiments will be shown. LA-UR-15-20521

  2. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.

    Science.gov (United States)

    Finke, Niko; Hoehler, Tori Michael; Jørgensen, Bo Barker

    2007-04-01

    The effect of variations in H2 concentrations on methanogenesis from the non-competitive substrates methanol and methylamine (used by methanogens but not by sulfate reducers) was investigated in methanogenic marine sediments. Imposed variations in sulfate concentration and temperature were used to drive systematic variations in pore water H2 concentrations. Specifically, increasing sulfate concentrations and decreasing temperatures both resulted in decreasing H2 concentrations. The ratio of CO2 and CH4 produced from 14C-labelled methylamine and methanol showed a direct correlation with the H2 concentration, independent of the treatment, with lower H2 concentrations resulting in a shift towards CO2. We conclude that this correlation is driven by production of H2 by methylotrophic methanogens, followed by loss to the environment with a magnitude dependent on the extracellular H2 concentrations maintained by hydrogenotrophic methanogens (in the case of the temperature experiment) or sulfate reducers (in the case of the sulfate experiment). Under sulfate-free conditions, the loss of reducing power as H2 flux out of the cell represents a loss of energy for the methylotrophic methanogens while, in the presence of sulfate, it results in a favourable free energy yield. Thus, hydrogen leakage might conceivably be beneficial for methanogens in marine sediments dominated by sulfate reduction. In low-sulfate systems such as methanogenic marine or freshwater sediments it is clearly detrimental--an adverse consequence of possessing a hydrogenase that is subject to externally imposed control by pore water H2 concentrations. H2 leakage in methanogens may explain the apparent exclusion of acetoclastic methanogenesis in sediments dominated by sulfate reduction.

  3. PERFORMANCE STUDY OF A TWO STAGE SOLAR ADSORPTION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    BAIJU. V

    2011-07-01

    Full Text Available The present study deals with the performance of a two stage solar adsorption refrigeration system with activated carbon-methanol pair investigated experimentally. Such a system was fabricated and tested under the conditions of National Institute of Technology Calicut, Kerala, India. The system consists of a parabolic solar concentrator,two water tanks, two adsorbent beds, condenser, expansion device, evaporator and accumulator. In this particular system the second water tank is act as a sensible heat storage device so that the system can be used during night time also. The system has been designed for heating 50 litres of water from 25oC to 90oC as well ascooling 10 litres of water from 30oC to 10oC within one hour. The performance parameters such as specific cooling power (SCP, coefficient of performance, solar COP and exergetic efficiency are studied. The dependency between the exergetic efficiency and cycle COP with the driving heat source temperature is also studied. The optimum heat source temperature for this system is determined as 72.4oC. The results show that the system has better performance during night time as compared to the day time. The system has a mean cycle COP of 0.196 during day time and 0.335 for night time. The mean SCP values during day time and night time are 47.83 and 68.2, respectively. The experimental results also demonstrate that the refrigerator has cooling capacity of 47 to 78 W during day time and 57.6 W to 104.4W during night time.

  4. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  5. 添加垃圾渗滤液对厨余垃圾厌氧发酵产氢的影响%Influence of feedstock proportion on anaerobic fermentative hydrogen production of kitchen waste and landfill leachate

    Institute of Scientific and Technical Information of China (English)

    刘婉玉; 叶景清; 甄峰; 郭燕锋; 袁振宏; 孙永明; 李东

    2012-01-01

    Using kitchen waste and landfill leachate as anaerobic fermentation materials, influences of feedstock proportion on stability of anaerobic fermentation and performance of hydrogen production were investigated. Experimental results showed that low proportion of landfill leachate can reduce the delay time and have not influence on the stability of anaerobic fermentation.The ammonia inhibition was easy to form when the proportion of landfill leachate increase gradually. The 100 g landfill leachate was added to 40 g kitchen waste, the delay time was 6 hours, hydrogen contents was kept at 50%, the maximum hydrogen production rate was 4.8 mL/(h · g), the final hydrogen production was 48.37 mL/g. The higher proportion could not realize effective hydrogen production due to the inhibition of ammonia. The hydrogen production rates were lower than 2.5 mL/(h · g) and the final hydrogen productions were 16~30 mL/g.%以厨余垃圾和垃圾渗滤液为原料,考察了垃圾渗滤液的不同添加量对厌氧消化稳定性及产氢气性能的影响.结果表明,在厨余垃圾中添加少量的垃圾渗滤液能缩短厌氧消化的延滞期而不影响其消化及产气性能,垃圾渗滤液浓度越高则越容易形成氨抑制,严重影响厌氧消化作用的进行.在40 g厨余原料中添加100 g垃圾渗滤液,其厌氧消化延滞期为6h,氢气含量稳定在50%,最大产氢气速率为4.8 mL/(h·g),最终氢气产量为48.37 mL/g;添加200~500 g垃圾渗滤液均形成氨抑制,严重影响产气性能,产气速率均低于2.5 mL/(h·g),最终产气量为16~30 mL/g.

  6. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  7. Two-stage light-gas magnetoplasma accelerator for hypervelocity impact simulation

    Science.gov (United States)

    Khramtsov, P. P.; Vasetskij, V. A.; Makhnach, A. I.; Grishenko, V. M.; Chernik, M. Yu; Shikh, I. A.; Doroshko, M. V.

    2016-11-01

    The development of macroparticles acceleration methods for high-speed impact simulation in a laboratory is an actual problem due to increasing of space flights duration and necessity of providing adequate spacecraft protection against micrometeoroid and space debris impacts. This paper presents results of experimental study of a two-stage light- gas magnetoplasma launcher for acceleration of a macroparticle, in which a coaxial plasma accelerator creates a shock wave in a high-pressure channel filled with light gas. Graphite and steel spheres with diameter of 2.5-4 mm were used as a projectile and were accelerated to the speed of 0.8-4.8 km/s. A launching of particle occurred in vacuum. For projectile velocity control the speed measuring method was developed. The error of this metod does not exceed 5%. The process of projectile flight from the barrel and the process of a particle collision with a target were registered by use of high-speed camera. The results of projectile collision with elements of meteoroid shielding are presented. In order to increase the projectile velocity, the high-pressure channel should be filled with hydrogen. However, we used helium in our experiments for safety reasons. Therefore, we can expect that the range of mass and velocity of the accelerated particles can be extended by use of hydrogen as an accelerating gas.

  8. Remote liquid target loading system for LANL two-stage gas gun

    Science.gov (United States)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-06-01

    A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.

  9. Anaerobic Pre-treatment of Strong Sewage

    NARCIS (Netherlands)

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised

  10. Right Axillary Sweating After Left Thoracoscopic Sypathectomy in Two-Stage Surgery

    Directory of Open Access Journals (Sweden)

    Berkant Ozpolat

    2013-06-01

    Full Text Available One stage bilateral or two stage unilateral video assisted thoracoscopic sympathectomy could be performed in the treatment of primary focal hyperhidrosis. Here we present a case with compensatory sweating of contralateral side after a two stage operation.

  11. The Two-stage Constrained Equal Awards and Losses Rules for Multi-Issue Allocation Situation

    NARCIS (Netherlands)

    Lorenzo-Freire, S.; Casas-Mendez, B.; Hendrickx, R.L.P.

    2005-01-01

    This paper considers two-stage solutions for multi-issue allocation situations.Characterisations are provided for the two-stage constrained equal awards and constrained equal losses rules, based on the properties of composition and path independence.

  12. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate.

    Science.gov (United States)

    Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2016-06-01

    Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased.

  13. Two-Stage Exams Improve Student Learning in an Introductory Geology Course: Logistics, Attendance, and Grades

    Science.gov (United States)

    Knierim, Katherine; Turner, Henry; Davis, Ralph K.

    2015-01-01

    Two-stage exams--where students complete part one of an exam closed book and independently and part two is completed open book and independently (two-stage independent, or TS-I) or collaboratively (two-stage collaborative, or TS-C)--provide a means to include collaborative learning in summative assessments. Collaborative learning has been shown to…

  14. 两相厌氧产氢产甲烷工艺的最新研究进展%State-of-the-Art of Two-phase Anaerobic Hydrogen and Methane Production Process

    Institute of Scientific and Technical Information of China (English)

    张栋; 叶正祥; 陈银广; 赵建夫; 于水利

    2012-01-01

    At present, recycling and reuse of organic wastes have attracted a widespread attention. Two-phase anaerobic hydrogen and methane production process for treatment of organic wastewaters and solids can achieve innocuity, reduction, stabilization, reclamation and reuse of organic wastes, and it is research focus in the field. The current study and evolution of two-phase anaerobic hydrogen and methane production process for treatment of organic wastewaters and solids at home and abroad were introduced, including organic matters treated by two-phase anaerobic process and reactor type, kinetics model for aci-dogenic section, hydrogenogenic bacteria and methanogenic bacteria. The existing research results showed that two-phase anaerobic hydrogen and methane production reactor for treatment of organic wastewater and solids could achieve maximum hydrogen and methane production. It has good application prospect.%利用两相厌氧产氢、产甲烷方法处理各种有机废物和有机废水,可实现有机废物的无害化、减量化、稳定化及资源化,是目前该领域的研究热点.介绍了国内外有关两相厌氧产氢、产甲烷处理有机废水和固体废弃物的最新研究进展,包括两相厌氧处理的有机质及反应器类型、产酸段的动力学模型及产氢相和产甲烷相的优势菌群等.已有结果表明,采用两相厌氧产氢、产甲烷反应器处理有机废水及有机固体废弃物,可实现产氢和产甲烷最大化,具有良好的应用前景.

  15. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  16. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Escalante, Froylan M.; Pelayo-Ortiz, Carlos; Navarro-Corona, Jose; Gonzalez-Garcia, Yolanda [Department of Chemical Engineering, University of Guadalajara, Blvd. M. Garcia Barragan No. 1421, Guadalajara CP 44430 (Mexico); Bories, Andre [INRA-Unite Experimentale de Pech-Rouge, 11430 Gruissan (France); Gutierrez-Pulido, Humberto [Department of Mathematics, University of Guadalajara, Blvd. M. Garcia Barragan No. 1421, Guadalajara CP 44430 (Mexico)

    2009-01-15

    The objective of this work was to study the effect of three operational parameters (pH, hydraulic retention time (HRT) and growing temperature) on a semi-continuous bioreactor treating Tequila's vinasses by anaerobic digestion (AD). The response was measured through four response variables: total reducing sugars (TRS) consumption, VFA's, hydrogen and methane production. Trials were done according to a factorial design. The experimental results were studied through a multiple response optimization (MRO) analysis to find single and multiple optimums for the above-mentioned variables. Mathematical models that can describe the effect of the operational parameters on each response variable were found. In this study it is shown that hydrogen production is favored at thermophilic growth (55 C), operating the reactor at a slight acidic pH range and at the higher HRT in the boundaries of the experimental region. (author)

  17. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  18. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  19. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  20. Hypervelocity projectile acceleration with a railgun using a two-stage gas gun injector

    Science.gov (United States)

    Hawke, R. S.

    1989-04-01

    Unique potential applications of electromagnetic railguns [R.S. Hawke, IEEE Trans. Nucl. NS-28 (2) (1981) 1542] have motivated a decade of continuous development throughout the world. This effort has led to routine acceleration of projectiles of from 1 g to about 1 kg, to velocities of nearly 4 km/s. Attempts to reach higher velocities have met with problems in the 6- to 8-km/s range [J.V. Parker, Proc. 4th Symp. on Electromagnetic Launch Tech., Austin, TX, 1988, to be published in IEEE Trans. Mag.]. The principal problem is "restrike", which causes shunting of the propulsive plasma armature by the formation of a second plasma short circuit in the breech region of the railgun. One means of impeding restrike is the use of a two-stage light-gas gun (2SLGG) as a projectile injector. A joint development project was initiated in early 1986 between the Sandia National Laboratories Albuquerque (SNLA) and the Lawrence Livermore National Laboratory (LLNL). The project is based on the use of a 2SLGG to inject projectiles at about 7 km/s. The injection gas is hydrogen, which serves to inhibit formation of the secondary arc and to minimize barrel ablation and armature contamination. Results and status of this work are discussed.

  1. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Flurina C.; Camenisch, Ulrike; Fei, Jia; Kaczmarek, Nina; Mathieu, Nadine [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland); Naegeli, Hanspeter, E-mail: naegelih@vetpharm.uzh.ch [Institute of Pharmacology and Toxicology, University of Zuerich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zuerich (Switzerland)

    2010-03-01

    The recognition and subsequent repair of DNA damage are essential reactions for the maintenance of genome stability. A key general sensor of DNA lesions is xeroderma pigmentosum group C (XPC) protein, which recognizes a wide variety of helix-distorting DNA adducts arising from ultraviolet (UV) radiation, genotoxic chemicals and reactive metabolic byproducts. By detecting damaged DNA sites, this unique molecular sensor initiates the global genome repair (GGR) pathway, which allows for the removal of all the aforementioned lesions by a limited repertoire of excision factors. A faulty GGR activity causes the accumulation of DNA adducts leading to mutagenesis, carcinogenesis, neurological degeneration and other traits of premature aging. Recent findings indicate that XPC protein achieves its extraordinary substrate versatility by an entirely indirect readout strategy implemented in two clearly discernible stages. First, the XPC subunit uses a dynamic sensor interface to monitor the double helix for the presence of non-hydrogen-bonded bases. This initial screening generates a transient nucleoprotein intermediate that subsequently matures into the ultimate recognition complex by trapping undamaged nucleotides in the abnormally oscillating native strand, in a way that no direct contacts are made between XPC protein and the offending lesion itself. It remains to be elucidated how accessory factors like Rad23B, centrin-2 or the UV-damaged DNA-binding complex contribute to this dynamic two-stage quality control process.

  2. Autothermal two-stage gasification of low-density waste-derived fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Stefan [Universitaet Siegen, Institut fuer Energietechnik, Paul-Bonatz-Str. 9-11, D-57068 Siegen (Germany); Hasselbach, Holger [Universitaet Siegen, Institut fuer Energietechnik, Paul-Bonatz-Str. 9-11, D-57068 Siegen (Germany); Weil, Steffen [Universitaet Siegen, Institut fuer Energietechnik, Paul-Bonatz-Str. 9-11, D-57068 Siegen (Germany); Krumm, Wolfgang [Universitaet Siegen, Institut fuer Energietechnik, Paul-Bonatz-Str. 9-11, D-57068 Siegen (Germany)]. E-mail: w.krumm@et.mb.uni-siegen.de

    2007-02-15

    In order to increase the efficiency of waste utilization in thermal conversion processes, pre-treatment is advantageous. With the Herhof Stabilat[reg] process, residual domestic waste is upgraded to waste-derived fuel by means of biological drying and mechanical separation of inerts and metals. The dried and homogenized waste-derived Stabilat[reg] fuel has a relatively high calorific value and contains high volatile matter which makes it suitable for gasification. As a result of extensive mechanical treatment, the Stabilat[reg] produced is of a fluffy appearance with a low density. A two-stage gasifier, based on a parallel-arranged bubbling fluidized bed and a fixed bed reactor, has been developed to convert Stabilat[reg] into hydrogen-rich product gas. This paper focuses on the design and construction of the configured laboratory-scale gasifier and experience with its operation. The processing of low-density fluffy waste-derived fuel using small-scale equipment demands special technical solutions for the core components as well as for the peripheral equipment. These are discussed here. The operating results of Stabilat[reg] gasification are also presented.

  3. 猪粪与马铃薯皮渣混合厌氧发酵产氢特性%Characteristics of hydrogen production from anaerobic co-fermentation of pig manure and potato pulp

    Institute of Scientific and Technical Information of China (English)

    刘爽; 李文哲

    2012-01-01

    为了提高厌氧产氢菌利用复杂物料的产氢能力和稳定性,该文研究了猪粪与马铃薯皮渣混合质量比对厌氧发酵产氢的比产氢率、挥发性固体去除率、液相末端产物组成等发酵特性的影响.试验结果表明,底物组成显著影响产氢发酵的发酵类型.以单纯马铃薯皮渣为底物时,体系的比产氢率最高达31.55 mL/g,挥发性固体去除率为29.43%,发酵类型为丁酸型;当猪粪在发酵底物中的质量比从10∶70提高至40∶40后,体系的发酵类型由丁酸型转变为乙酸型,同时维持了较高的比产氢率(22.48~24.18 mL/g)和挥发性固体去除率(28.31%~32.93%).但是当猪粪逐渐变为主要发酵底物(猪粪与马铃薯皮渣质量比为50∶30、60∶20、70∶10、80∶0)时,发酵逐渐受到抑制,系统的比产氢率和挥发性固体去除率都明显下降.采用Modified Gompertz模型可以很好地拟合累积产氢量随时间的变化,其动力学参数最大产氢量、最大产氢速率和停滞时间可以作为混合物料产氢发酵代谢过程的重要评价指标.该研究为优化混合物料厌氧产氢发酵过程提供参考和依据.%In order to increase anaerobic hydrogen production capacity and stability using complex materials, effects of pig manure (PM)/potato pulp (PP) mass ratio on specific hydrogen production rate (SHPR), VS degradation rate (VDR), and composition of dissolved fermentation products were investigated. Results showed that substrate composite affected the metabolism pathway of anaerobic hydrogen fermentation significantly. With sole PP as substrate, SHPR peaked at 31.55mL/g, at the same time VDR was 29.43%, and butyrate-type fermentation was formed. When PM/PP ratio ranged from 10:70 to 40:40, acetate-type fermentation replaced butyrate-type fermentation, and higher SHPR (22.48-24.18 mL/g) and VDR (28.31%-32.93%) levels were maintained. When further increased PM/PP ratio from 50:30 to 80:0, limitation of

  4. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Meulepas, R.J.W.; Stams, A.J.M.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The conversion routes of carbon monoxide (CO) at 55°C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population an

  5. 微量元素对ABR发酵产氢产甲烷的影响%Effect of Trace Elements on Fermentative Co-production of Hydrogen and Methane in Anaerobic Baffled Reactor

    Institute of Scientific and Technical Information of China (English)

    郑国臣; 赵峰; 李建政; 张照韩; 昌盛; 闫志成; AJAYKumarJha

    2012-01-01

    In order to achieve fermentative co-production of hydrogen and methane in a 4-compart-ment anaerobic baffled reactor ( ABR) , the effects of trace elements on fermentative production of hydrogen in the front compartment and fermentative production of methane in the rear compartment were investigated. Under the conditions of influent COD of 6 000 mg/L and ALK of 1 900 mg/L, before addition of trace elements, the COD removal rate was 51% , the hydrogen production capacity was 0.46 m /(m ? D) , and the methane production capacity was 0.68 mV( m3 ? D), with low dehydrogenase activity of anaerobic sludge. While under the same conditions, after addition of trace elements, the COD removal rate increased to above 62% , the hydrogen production capacity decreased to 0. 37 m /( m ? D), and themethane production capacity increased to 1. 66 m /( m ? D). As a result, the addition of trace elements could effectively stimulate the activity of anaerobic sludge in fermentative co-production of hydrogen and methane in the ABR. The increase in the activity of hydrogen-consuming bacteria like methanogenic bacteria leaded to inhibition of the hydrogen production, but enhanced the methanogenic activity, which significantly improved the treatment efficient.%为构建厌氧折流板反应器(ABR)发酵联合产氢产甲烷系统,考察了微量元素对ABR系统前端格室发酵产氢、后端格室发酵产甲烷的影响.在进水COD为6 000 mg/L、碱度为1 900 mg/L的条件下,当未投加微量元素时,系统对COD的去除率为51%,产氢能力为0.46 m3/(m3·d),产甲烷能力为0.68 m3/(m3·d),四格室的厌氧污泥脱氢酶活性均较低;而在相同运行条件下,当投加微量元素后,系统对COD的去除率提高到62%以上,产氢能力为0.37 m3/(m3·d),产甲烷能力达到1.66 m3/( m3·d)..研究表明,投加微量元素可有效刺激ABR发酵联合产氢产甲烷系统中厌氧污泥的活性,由于ABR中产甲烷菌等耗氢菌群活性的增强导致发

  6. Preemptive scheduling in a two-stage supply chain to minimize the makespan

    NARCIS (Netherlands)

    Pei, Jun; Fan, Wenjuan; Pardalos, Panos M.; Liu, Xinbao; Goldengorin, Boris; Yang, Shanlin

    2015-01-01

    This paper deals with the problem of preemptive scheduling in a two-stage supply chain framework. The supply chain environment contains two stages: production and transportation. In the production stage jobs are processed on a manufacturer's bounded serial batching machine, preemptions are allowed,

  7. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; di Pumpo, Francesca; Bianchi, David; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2017-05-29

    Anaerobic digestion is a well-established technology for treating organic waste, but it is still under challenge for food waste due to process stability problems. In this work, continuous H2 and CH4 production from canteen food waste (FW) in a two-stage system were successfully established by optimizing process parameters. The optimal hydraulic retention time was 5d for H2 and 15d for CH4. Overall, around 59% of the total COD in FW was converted into H2 (4%) and into CH4 (55%). The fluctuations of FW characteristics did not significantly affect process performance. From the energy point view, the H2 reactor contributed much less than the methane reactor to total energy balance, but it played a key role in maintaining the stability of anaerobic treatment of food waste. Microbial characterization indicated that methane formation was through syntrophic acetate oxidation combined with hydrogenotrophic methanogenesis pathway. Copyright © 2017. Published by Elsevier Ltd.

  8. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.

    Science.gov (United States)

    Hassan, Sedky H A; Morsy, Fatthy Mohamed

    2015-12-01

    Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. 垃圾渗滤液发酵产氢和产甲烷特性研究%Bio-production of hydrogen and methane from landfill leachate by anaerobic fermentation

    Institute of Scientific and Technical Information of China (English)

    徐乔根; 傅木星; 苏泱洲; 汪敏; 潘建国

    2012-01-01

    The characteristics of hydrogen and methane production from landfill leachate by anaerobic fermentation at 37 ℃ and pH 7. 0 was studied. The experimental results suggested that during the process of leachate anaerobic fermentation,the maximum cumulative production of hydrogen and methane was 24. 33,91. 95 mL (counted by per gram of COD) respectively; there was a lag phase a in the process of hydrogen production,while the methane production process appear no lag phase. Large amount of volatile organic acids and ethanol were found in the ultimate liquid product in hydrogen production process with the concentration of ethanol,acetate and butyrate was 487. 23,1 175. 21, 1 225. 78 mg/L respectively. Compared with hydrogen production process,ethanol,acetate and butyrate production of methane production process was relatively low,the concentration of was 256. 38,106. 73,107. 42 mg/L respectively. The ultimate mixture of hydrogen production process was strong acidic, the pH value was 4. 21. While, in methane production process,the ultimate mixture was close to neutral, the pH value was 6. 32. The removal rate of COD in methane production process was 41. 78% , which was higher than that of hydrogen production process (32. 14%). This might be the acetate in ultimate mixture of hydrogen production process could be utilized by methanogenesis and further be biodegrade.%以实际垃圾渗滤液作为厌氧发酵基质,研究了初始pH为7.0、中温(37℃)条件下的发酵产氢、产甲烷特性.结果表明,利用垃圾渗滤液作为基质发酵产氢或甲烷时,氢气的最大累积产量为24.33 mL(以每克COD计,下同),甲烷的最大累积产量为91.59 mL,产氢发酵在初期存在明显的迟滞期,但是产甲烷发酵不存在明显迟滞期;产氢发酵的液相末端产物中含有大量的挥发性有机酸和乙醇,乙醇、乙酸、丁酸质量浓度分别为487.23、1175.21、1225.78 mg/L,相比产氢发酵,产甲烷发酵的液相末端产物中乙

  10. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  11. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  12. Growth phase effect on the dark anaerobic hydrogen production in the glucose tolerant mutant of unicellular cyanobacterium Synechocystis sp. strain PCC6803

    Directory of Open Access Journals (Sweden)

    Adipa Chongsuksantikul*

    2015-04-01

    Full Text Available This study has examined the effect of growth phase on hydrogenproduction from cells of a glucose tolerant mutant of Synechocystissp. strain PCC6803. The extracellular products including hydrogen,lactate and acetate from cyanobacteria cells in dark anaerobicnitrate-free solution, yielded different excretory profiles dependingon which growth phases were prepared from photosynthesis. Theamount of hydrogen generated cells prepared from stationary phasewas highest in HEPES buffer and nitrate-free solution, darkanaerobic condition.

  13. ABR处理大豆蛋白废水产氢效能的研究%Performance of hydrogen production in anaerobic baffled reactor (ABR) treating soy protein wastewater

    Institute of Scientific and Technical Information of China (English)

    王帅; 李博; 赵倩; 姜力行; 曹莉; 李永峰

    2011-01-01

    Anaerobic Baffled Reactor (ABR) is a class derived from multi-phase anaerobic reactor stages (Staged Multi -Phase Anaerobic Reactor, SMPA) theory of the third generation of a new anaerobic reactor. To study of anaerobic baffled reactor (ABR) soy protein wastewater treatment efficiency and operating characteristics of the 4 cell room operation of the system of ABR control measures were studied using the effective volume of 42 L four -room frame ABR, MLVSS in the sludge inoculum for the 18.0 g/ L, influent COD concentration of 2 000 mg/L , HRT 48 h, (35 ± 1) ℃ and other conditions (ie OLR1. 0 kg/( m3 · d) ) , running through a period of 80 d of the study based on the influent COD concentration was increased organic load ( OLR) to change the impact of its processing power, can successfully started in 31 d and reached the initial ABR and stable operation. In addition, rate of 96% , studied different organic load, ABR reactor COD removal efficiency and gas production. On this basis, for the efficient development of ABR equipment, and successfully applied to fermentation technology and bio-hydrogen production of soy protein wastewater treatment under study was provided.%厌氧折流板反应器(ABR)是一类源于分阶段多相厌氧反应器(Staged Multi -Phase Anaerobic Reactor,SMPA)理论的第三代新型厌氧反应器.为考察厌氧折流板反应器(ABR)处理大豆蛋白生产废水的效能及其运行特征,对4格室ABR反应系统的运行控制对策进行了研究,采用有效容积为42L的四格室ABR,在污泥接种量MLVSS为18.0 g/L、进水COD质量浓度2 000 mg/L、HRT 48 h、(35±1)℃等条件下(即OLR 1.0 kg/(m3·d)),通过为期80 d的运行,研究了基于进水COD质量浓度提高的有机负荷(OLR)改变对其处理效能的影响,可在31 d内成功启动ABR并达到初步稳定运行,研究不同有机负荷下,ABR反应器的COD去除效率及产气量.为在此基础上研发高效的ABR反应设备,并成功将其应用到发

  14. Numerical simulation of a step-piston type series two-stage pulse tube refrigerator

    Science.gov (United States)

    Zhu, Shaowei; Nogawa, Masafumi; Inoue, Tatsuo

    2007-09-01

    A two-stage pulse tube refrigerator has a great advantage in that there are no moving parts at low temperatures. The problem is low theoretical efficiency. In an ordinary two-stage pulse tube refrigerator, the expansion work of the first stage pulse tube is rather large, but is changed to heat. The theoretical efficiency is lower than that of a Stirling refrigerator. A series two-stage pulse tube refrigerator was introduced for solving this problem. The hot end of the regenerator of the second stage is connected to the hot end of the first stage pulse tube. The expansion work in the first stage pulse tube is part of the input work of the second stage, therefore the efficiency is increased. In a simulation result for a step-piston type two-stage series pulse tube refrigerator, the efficiency is increased by 13.8%.

  15. Theory and calculation of two-stage voltage stabilizer on zener diodes

    Directory of Open Access Journals (Sweden)

    G. S. Veksler

    1966-12-01

    Full Text Available Two-stage stabilizer is compared with one-stage. There have been got formulas, which give the possibility to make an engineering calculation. There is an example of the calculation.

  16. Experiment research on two-stage dry-fed entrained flow coal gasifier

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The process flow and the main devices of a new two-stage dry-fed coal gasification pilot plant with a throughout of 36 t/d are introduced in this paper. For comparison with the traditional one-stage gasifiers, the influences of the coal feed ratio between two stages on the performance of the gasifier are detailedly studied by a series of experiments. The results reveal that the two-stage gasification decreases the temperature of the syngas at the outlet of the gasifier, simplifies the gasification process, and reduces the size of the syngas cooler. Moreover, the cold gas efficiency of the gasifier can be improved by using the two-stage gasification. In our experiments, the efficiency is about 3%-6% higher than the existing one-stage gasifiers.

  17. TWO-STAGE CHARACTER CLASSIFICATION : A COMBINED APPROACH OF CLUSTERING AND SUPPORT VECTOR CLASSIFIERS

    NARCIS (Netherlands)

    Vuurpijl, L.; Schomaker, L.

    2000-01-01

    This paper describes a two-stage classification method for (1) classification of isolated characters and (2) verification of the classification result. Character prototypes are generated using hierarchical clustering. For those prototypes known to sometimes produce wrong classification results, a

  18. A Two-Stage Waste Gasification Reactor for Mars In-Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a two-stage waste processing reactor for space applications. Our proposed technology converts waste from space missions into...

  19. A new multi-motor drive system based on two-stage direct power converter

    OpenAIRE

    Kumar, Dinesh

    2011-01-01

    The two-stage AC to AC direct power converter is an alternative matrix converter topology, which offers the benefits of sinusoidal input currents and output voltages, bidirectional power flow and controllable input power factor. The absence of any energy storage devices, such as electrolytic capacitors, has increased the potential lifetime of the converter. In this research work, a new multi-motor drive system based on a two-stage direct power converter has been proposed, with two motors c...

  20. Maximally efficient two-stage screening: Determining intellectual disability in Taiwanese military conscripts

    Directory of Open Access Journals (Sweden)

    Chia-Chang Chien

    2009-01-01

    Full Text Available Chia-Chang Chien1, Shu-Fen Huang1,2,3,4, For-Wey Lung1,2,3,41Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan; 2Graduate Institute of Behavioral Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; 3Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan; 4Calo Psychiatric Center, Pingtung County, TaiwanObjective: The purpose of this study was to apply a two-stage screening method for the large-scale intelligence screening of military conscripts.Methods: We collected 99 conscripted soldiers whose educational levels were senior high school level or lower to be the participants. Every participant was required to take the Wisconsin Card Sorting Test (WCST and the Wechsler Adult Intelligence Scale-Revised (WAIS-R assessments.Results: Logistic regression analysis showed the conceptual level responses (CLR index of the WCST was the most significant index for determining intellectual disability (ID; FIQ ≤ 84. We used the receiver operating characteristic curve to determine the optimum cut-off point of CLR. The optimum one cut-off point of CLR was 66; the two cut-off points were 49 and 66. Comparing the two-stage window screening with the two-stage positive screening, the area under the curve and the positive predictive value increased. Moreover, the cost of the two-stage window screening decreased by 59%.Conclusion: The two-stage window screening is more accurate and economical than the two-stage positive screening. Our results provide an example for the use of two-stage screening and the possibility of the WCST to replace WAIS-R in large-scale screenings for ID in the future.Keywords: intellectual disability, intelligence screening, two-stage positive screening, Wisconsin Card Sorting Test, Wechsler Adult Intelligence Scale-Revised

  1. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas.

    Science.gov (United States)

    Nghiem, Long D; Manassa, Patrick; Dawson, Marcia; Fitzgerald, Shona K

    2014-12-01

    This study aims to evaluate the use of oxidation reduction potential (ORP) to regulate the injection of a small amount of oxygen into an anaerobic digester for reducing H2S concentration in biogas. The results confirm that micro-oxygen injection can be effective for controlling H2S formation during anaerobic digestion without disturbing the performance of the digester. Biogas production, composition, and the removal of volatile solids (VS) and chemical oxygen demand (COD) were monitored to assessment the digester's performance. Six days after the start of the micro-oxygen injection, the ORP values increased to between -320 and -270 mV, from the natural baseline value of -485 mV. Over the same period the H2S concentration in the biogas decreased from over 6000 ppm to just 30 ppm. No discernible changes in the VS and COD removal rates, pH and alkalinity of the digestate or in the biogas production or composition were observed.

  2. Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris.

    Science.gov (United States)

    Barca, Cristian; Ranava, David; Bauzan, Marielle; Ferrasse, Jean-Henry; Giudici-Orticoni, Marie-Thérèse; Soric, Audrey

    2016-12-01

    Dark fermentation systems often show low H2 yields and unstable H2 production, as the result of the variability of microbial dynamics and metabolic pathways. Recent batch investigations have demonstrated that an artificial consortium of two anaerobic bacteria, Clostridium acetobutylicum and Desulfovibrio vulgaris Hildenborough, may redirect metabolic fluxes and improve H2 yields. This study aimed at evaluating the scale-up from batch to continuous H2 production in an up-flow anaerobic packed-bed reactor (APBR) continuously fed with a glucose-medium. The effects of various parameters, including void hydraulic retention time (HRTv), pH, and alkalinity, on H2 production performances and metabolic pathways were investigated. The results demonstrated that a stable H2 production was reached after 3-4days of operation. H2 production rates increased significantly with decreasing HRTv from 4 to 2h. Instead, H2 yields remained almost stable despite the change in HRTv, indicating that the decrease in HRTv did not affect the global metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Anaerobic degradation and toxicity of commercial cationic surfactants in anaerobic screening tests.

    Science.gov (United States)

    García, M T; Campos, E; Sánchez-Leal, J; Ribosa, I

    2000-09-01

    Anaerobic biodegradability and toxicity on anaerobic bacteria of di(hydrogenated tallow) dimethyl ammonium chloride (DHTDMAC) and two esterquats have been investigated. A batch test system containing municipal digester solids as a source of anaerobic bacteria, based on the method proposed by the ECETOC, has been applied. To evaluate the potential toxicity of such surfactants on anaerobic sludge, a co-substrate, an easily biodegradable compound in anaerobic conditions, has been added to the samples to test and the effects on biogas production have been determined. For the esterquats studied high biodegradation levels were obtained and no toxic effects on anaerobic bacteria were observed even at the highest concentrations tested, 100 and 200 mg C/l, respectively. On the contrary, DHTDMAC was not degradated at the same test conditions. However, no inhibitory effects on the biogas production were detected for this surfactant at concentrations <100 mg C/l.

  4. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  5. Operational strategy for nitrogen removal from centrate in a two-stage partial nitrification--anammox process.

    Science.gov (United States)

    Kosari, S F; Rezania, B; Lo, K V; Mavinic, D S

    2014-01-01

    This paper presents the operational strategy for nitrogen removal in a two-stage, partial nitrification (PN) process coupled with anaerobic ammonium oxidation (Anammox) process. The process was used to remove ammonium from centrate obtained from a full-scale, wastewater treatment plant in British Columbia, Canada. The PN, which was carried out in a sequencing batch reactor (SBR), successfully converted approximately 49.5 +/- 1.0% of ammonium to nitrite. The operation of SBR under higher dissolved oxygen in combination with slow feeding resulted in significant reduced HRT without nitrate accumulation. Partially nitrified centrate was further treated in Anammox reactors, where the mixture of ammonium and nitrite was converted mainly to nitrogen gas. Anammox treatment was carried out in two different types of Anammox reactors: a moving bed hybrid reactor and an up-flow fixed-bed biofilm reactor. The hybrid Anammox reactor removed an average of 55.8% of NH4-N, versus the 48.3% NH4-N removed in the up-flow fixed-bed reactor. Nitrite removal in the hybrid and up-flow fixed-bed Anammox reactors averaged 80.8% and 62.5%, respectively. This study also illustrated that in both Anammox reactors, better ammonium removal was achieved when the nitrite to ammonium ratio is between 1.35 and 1.45. As such, alkalinity was found to neither control nor limit the Anammox reaction.

  6. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  7. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.

    Science.gov (United States)

    Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T

    2009-01-01

    Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.

  8. Method of oxygen-enriched two-stage underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Liu Hongtao; Chen Feng; Pan Xia; Yao Kai; Liu Shuqin

    2011-01-01

    Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times. A model test using the oxygen-enriched two-stage coal gasification method was carried out. The composition of the gas produced, the time ratio of the two stages, and the role of the temperature field were analysed. The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage. Feed oxygen concentrations of 30%,35%, 40%, 45%, 60%, or 80% gave time ratios (first stage to second stage) of 1:0.12, 1:0.21, 1:0.51, 1:0.64,1:0.90, and 1:4.0 respectively. Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4 ℃/min to 2.3-6.8 ℃/min. But this rate increased with increasing oxygen concentrations in the first stage. The caloric value of the syngas improves with increased oxygen concentration in the first stage. Injection of 80% oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time. The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm3 to 10.54 MJ/Nm3.

  9. High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khaja Mohaideen, K.; Joy, P.A., E-mail: pa.joy@ncl.res.in

    2014-12-15

    From the studies on the magnetostriction characteristics of two-stage sintered polycrystalline CoFe{sub 2}O{sub 4} made from nanocrystalline powders, it is found that two-stage sintering at low temperatures is very effective for enhancing the density and for attaining higher magnetostriction coefficient. Magnetostriction coefficient and strain derivative are further enhanced by magnetic field annealing and relatively larger enhancement in the magnetostriction parameters is obtained for the samples sintered at lower temperatures, after magnetic annealing, despite the fact that samples sintered at higher temperatures show larger magnetostriction coefficients before annealing. A high magnetostriction coefficient of ∼380 ppm is obtained after field annealing for the sample sintered at 1100 °C, below a magnetic field of 400 kA/m, which is the highest value so far reported at low magnetic fields for sintered polycrystalline cobalt ferrite. - Highlights: • Effect of two-stage sintering on the magnetostriction characteristics of CoFe{sub 2}O{sub 4} is studied. • Two-stage sintering is very effective for enhancing the density and the magnetostriction parameters. • Higher magnetostriction for samples sintered at low temperatures and after magnetic field annealing. • Highest reported magnetostriction of 380 ppm at low fields after two-stage, low-temperature sintering.

  10. 13 K thermally coupled two-stage Stirling-type pulse tube refrigerator

    Institute of Scientific and Technical Information of China (English)

    TANG Ke; CHEN Guobang; THUMMES Günter

    2005-01-01

    Stirling-type pulse tube refrigerators have attracted academic and commercial interest in recent years due to their more compact configuration and higher efficiency than those of G-M type pulse tube refrigerators. In order to achieve a no-load cooling temperature below 20 K, a thermally coupled two-stage Stirling-type pulse tube refrigerator has been built. The thermally coupled arrangement was expected to minimize the interference between the two stages and to simplify the adjustment and optimization of the phase shifters. A no-load cooling temperature of 14.97 K has been realized with the two-stage cooler driven by one linear compressor of 200 W electric input. When the two stages are driven by two compressors respectively, with total electric input of 400 W, the prototype has attained a no-load cooling temperature of 12.96 K, which is the lowest temperature ever reported with two-stage Stirling-type pulse tube refrigerators.

  11. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy

    2016-01-01

    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  12. Anaerobic Digestion.

    Science.gov (United States)

    Liebetrau, Jan; Sträuber, Heike; Kretzschmar, Jörg; Denysenko, Velina; Nelles, Michael

    2017-04-09

    The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and - as the substrate is often waste material - to reduce the organic matter content of the substrate prior to disposal.Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas - the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

  13. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  14. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  15. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    Science.gov (United States)

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production.

  16. Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Vavouraki, Aikaterini Ioannis; Kornaros, Michael

    2014-06-01

    The aim of this study was to investigate the impact of pH on the production of bio-hydrogen and end-products from a mixture of olive mill wastewater, cheese whey and liquid cow manure (with a ratio of 55:40:5, v/v/v). Batch experiments were performed under mesophilic conditions (37°C) at a range of pH from 4.5 to 7.5. The main end-products identified were acetic, propionic, butyric, lactic acid and ethanol. The highest hydrogen production yield was observed at pH 6.0 (0.642 mol H2/mol equivalent glucose consumed), whereas the maximum VFAs concentration (i.e. 13.43 g/L) was measured at pH 6.5. The composition of acidified effluent in acetic and butyric acid was similar at pH 6.0 and 6.5, albeit an increase of propionic acid was observed in higher pH. Lactic acid was identified as a major metabolite which presented an intense accumulation (up to 11 g/L) before its further bioconversion to butyric acid and hydrogen.

  17. Design and construction of the X-2 two-stage free piston driven expansion tube

    Science.gov (United States)

    Doolan, Con

    1995-01-01

    This report outlines the design and construction of the X-2 two-stage free piston driven expansion tube. The project has completed its construction phase and the facility has been installed in the new impulsive research laboratory where commissioning is about to take place. The X-2 uses a unique, two-stage driver design which allows a more compact and lower overall cost free piston compressor. The new facility has been constructed in order to examine the performance envelope of the two-stage driver and how well it couple to sub-orbital and super-orbital expansion tubes. Data obtained from these experiments will be used for the design of a much larger facility, X-3, utilizing the same free piston driver concept.

  18. Analysis of performance and optimum configuration of two-stage semiconductor thermoelectric module

    Institute of Scientific and Technical Information of China (English)

    Li Kai-Zhen; Liang Rui-Sheng; Wei Zheng-Jun

    2008-01-01

    In this paper, the theoretical analysis and simulating calculation were conducted for a basic two-stage semiconductor thermoelectric module, which contains one thermocouple in the second stage and several thermocouples in the first stage. The study focused on the configuration of the two-stage semiconductor thermoelectric cooler, especially investigating the influences of some parameters, such as the current I1 of the first stage, the area A1 of every thermocouple and the number n of thermocouples in the first stage, on the cooling performance of the module. The obtained results of analysis indicate that changing the current I1 of the first stage, the area A1 of thcrmocouples and the number n of thermocouples in the first stage can improve the cooling performance of the module. These results can be used to optimize the configuration of the two-stage semiconductor thermoelectric module and provide guides for the design and application of thermoelectric cooler.

  19. Effects of earthworm casts and zeolite on the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2015-05-01

    Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21days with the optimized two-stage composting method rather than in the 90-270days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  20. Two-Stage Revision Anterior Cruciate Ligament Reconstruction: Bone Grafting Technique Using an Allograft Bone Matrix.

    Science.gov (United States)

    Chahla, Jorge; Dean, Chase S; Cram, Tyler R; Civitarese, David; O'Brien, Luke; Moulton, Samuel G; LaPrade, Robert F

    2016-02-01

    Outcomes of primary anterior cruciate ligament (ACL) reconstruction have been reported to be far superior to those of revision reconstruction. However, as the incidence of ACL reconstruction is rapidly increasing, so is the number of failures. The subsequent need for revision ACL reconstruction is estimated to occur in up to 13,000 patients each year in the United States. Revision ACL reconstruction can be performed in one or two stages. A two-stage approach is recommended in cases of improper placement of the original tunnels or in cases of unacceptable tunnel enlargement. The aim of this study was to describe the technique for allograft ACL tunnel bone grafting in patients requiring a two-stage revision ACL reconstruction.

  1. The CSS and The Two-Staged Methods for Parameter Estimation in SARFIMA Models

    Directory of Open Access Journals (Sweden)

    Erol Egrioglu

    2011-01-01

    Full Text Available Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA models are used in the analysis of seasonal long memory-dependent time series. Two methods, which are conditional sum of squares (CSS and two-staged methods introduced by Hosking (1984, are proposed to estimate the parameters of SARFIMA models. However, no simulation study has been conducted in the literature. Therefore, it is not known how these methods behave under different parameter settings and sample sizes in SARFIMA models. The aim of this study is to show the behavior of these methods by a simulation study. According to results of the simulation, advantages and disadvantages of both methods under different parameter settings and sample sizes are discussed by comparing the root mean square error (RMSE obtained by the CSS and two-staged methods. As a result of the comparison, it is seen that CSS method produces better results than those obtained from the two-staged method.

  2. Parametric study of two-stage hydropyrolysis of lignocellulosic biomass for production of gaseous and light aromatic hydrocarbons.

    Science.gov (United States)

    Zheng, Nan; Zhang, Jie; Wang, Jie

    2017-11-01

    Non-catalytic hydropyrolysis of pinewood and its components was carried out using a two-stage reactor. The main aim of this work is to investigate the hydrodeoxygenation and hydrogenation of volatile matter in the post hydrocracking reactor for oriented production of gaseous and light aromatic hydrocarbons. A portion of volatile matter, which evolved from hemicellulose, neutral extractives and lignin below 275°C, was found to be thoroughly hydrodeoxygenated preventing the release of CO2 and CO. Increasing hydrocracking temperature from 600°C to 750°C and pressure from 1.0MPa to 5.0MPa strongly facilitated the hydrogenation reactions to target products. The summed yield of CH4 and C2H6 (dry biomass basis) reached up to 33.2% at a hydrocracking temperature of 750°C and 5.0MPa, with a concomitant 5.1% yield of BTX. All components in pinewood significantly contributed to the production of CH4 and BTX by hydropyrolysis, differing from the case of pyrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks.

    Science.gov (United States)

    López, M Estefanía; Rene, Eldon R; Boger, Zvi; Veiga, María C; Kennes, Christian

    2017-02-15

    A two-stage biological waste gas treatment system consisting of a first stage biotrickling filter (BTF) and second stage biofilter (BF) was tested for the removal of a gas-phase methanol (M), hydrogen sulphide (HS) and α-pinene (P) mixture. The bioreactors were tested with two types of shock loads, i.e., long-term (66h) low to medium concentration loads, and short-term (12h) low to high concentration loads. M and HS were removed in the BTF, reaching maximum elimination capacities (ECmax) of 684 and 33 gm(-3)h(-1), respectively. P was removed better in the second stage BF with an ECmax of 130 gm(-3)h(-1). The performance was modelled using two multi-layer perceptrons (MLPs) that employed the error backpropagation with momentum algorithm, in order to predict the removal efficiencies (RE, %) of methanol (REM), hydrogen sulphide (REHS) and α-pinene (REP), respectively. It was observed that, a MLP with the topology 3-4-2 was able to predict REM and REHS in the BTF, while a topology of 3-3-1 was able to approximate REP in the BF. The results show that artificial neural network (ANN) based models can effectively be used to model the transient-state performance of bioprocesses treating gas-phase pollutants.

  4. Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

    1994-03-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

  5. Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-06-01

    The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

  6. A two-stage subsurface vertical flow constructed wetland for high-rate nitrogen removal.

    Science.gov (United States)

    Langergraber, Guenter; Leroch, Klaus; Pressl, Alexander; Rohrhofer, Roland; Haberl, Raimund

    2008-01-01

    By using a two-stage constructed wetland (CW) system operated with an organic load of 40 gCOD.m(-2).d(-1) (2 m2 per person equivalent) average nitrogen removal efficiencies of about 50% and average nitrogen elimination rates of 980 g N.m(-2).yr(-1) could be achieved. Two vertical flow beds with intermittent loading have been operated in series. The first stage uses sand with a grain size of 2-3.2 mm for the main layer and has a drainage layer that is impounded; the second stage sand with a grain size of 0.06-4 mm and a drainage layer with free drainage. The high nitrogen removal can be achieved without recirculation thus it is possible to operate the two-stage CW system without energy input. The paper shows performance data for the two-stage CW system regarding removal of organic matter and nitrogen for the two year operating period of the system. Additionally, its efficiency is compared with the efficiency of a single-stage vertical flow CW system designed and operated according to the Austrian design standards with 4 m2 per person equivalent. The comparison shows that a higher effluent quality could be reached with the two-stage system although the two-stage CW system is operated with the double organic load or half the specific surface area requirement, respectively. Another advantage is that the specific investment costs of the two-stage CW system amount to 1,200 EUR per person (without mechanical pre-treatment) and are only about 60% of the specific investment costs of the singe-stage CW system. IWA Publishing 2008.

  7. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Chitralekha Nag; Jose Gilbert, J.; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India); Lindblad, Peter; Heidorn, Thorsten [Department of Photochemistry and Molecular Science, Uppsala University (Sweden); Borgvang, Stig A.; Skjanes, Kari [Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Oslo (Norway)

    2010-10-15

    Hydrogen production through biological routes is promising because they are environmentally friendly. Hydrogen production through biophotolysis or photofermentation is usually a two stage process. In the first stage CO{sub 2} is utilized for biomass production which is followed by hydrogen production in the second stage in anaerobic/sulfur-deprived conditions. In addition, one-stage photobiological hydrogen production process can be achieved using selected cyanobacterial strains. The major challenges confronting the large scale production of biomass/hydrogen are limited not only on the performance of the photobioreactors in which light penetration in dense cultures is a major bottleneck but also on the characteristics of the organisms. Other dependable factors include area/volume (A/V) ratio, mode of agitation, temperature and gas exchange. Photobioreactors of different geometries are reported for biohydrogen production: Tubular, Flat plate, Fermentor type etc. Every reactor has its own advantages and disadvantages. Airlift, helical tubular and flat plate reactors are found most suitable with respect to biomass production. These bioreactors may be employed for hydrogen production with necessary modifications to overcome the existing bottlenecks like gas hold up, oxygen toxicity and poor agitation. This review article attempts to focus on existing photobioreactors with respect to biomass generation and hydrogen production and the steps taken to improve its performance through engineering innovation that definitely help in the future design and construction of photobioreactors. (author)

  8. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  9. Two Stage Fully Differential Sample and Hold Circuit Using .18µm Technology

    Directory of Open Access Journals (Sweden)

    Dharmendra Dongardiye

    2014-05-01

    Full Text Available This paper presents a well-established Fully Differential sample & hold circuitry, implemented in 180-nm CMOS technology. In this two stage method the first stage give us very high gain and second stage gives large voltage swing. The proposed opamp provides 149MHz unity-gain bandwidth , 78 degree phase margin and a differential peak to peak output swing more than 2.4v. using the improved fully differential two stage operational amplifier of 76.7dB gain. Although the sample and hold circuit meets the requirements of SNR specifications.

  10. One-stage and two-stage penile buccal mucosa urethroplasty

    Directory of Open Access Journals (Sweden)

    G. Barbagli

    2016-03-01

    Full Text Available The paper provides the reader with the detailed description of current techniques of one-stage and two-stage penile buccal mucosa urethroplasty. The paper provides the reader with the preoperative patient evaluation paying attention to the use of diagnostic tools. The one-stage penile urethroplasty using buccal mucosa graft with the application of glue is preliminary showed and discussed. Two-stage penile urethroplasty is then reported. A detailed description of first-stage urethroplasty according Johanson technique is reported. A second-stage urethroplasty using buccal mucosa graft and glue is presented. Finally postoperative course and follow-up are addressed.

  11. Development of a linear compressor for two-stage pulse tube cryocoolers

    Institute of Scientific and Technical Information of China (English)

    Peng-da YAN; Wei-li GAO; Guo-bang CHEN

    2009-01-01

    A valveless linear compressor was built up to drive a self-made two-stage pulse tube cryocooler. With a designed maximum swept volume of 60 cm~3, the compressor can provide the cryocooler with a pressure volume (PV) power of 400 W.Preliminary measurements of the compressor indicated that both an efficiency of 35%~55% and a pressure ratio of 1.3~1.4 could be obtained. The two-stage pulse tube cryocooler driven by this compressor achieved the lowest temperature of 14.2 K.

  12. Terephthalic acid wastewater treatment by using two-stage aerobic process

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Based on the tests between anoxic and aerobic process, the two-stage aerobic process with a biological selector was chosen to treat terephthalic acid wastewater (PTA). By adopting the two- stage aerobic process, the CODCr in PTA wastewater could be reduced from 4000-6000 mg/L to below 100 mg/L; the COD loading in the first aerobic tank could reach 7.0-8.0 kgCODCr/(m3.d) and that of the second stage was from 0.2 to 0.4 kgCODCr/(m3.d). Further researches on the kinetics of substrate degradation were carried out.

  13. First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working with R404A

    National Research Council Canada - National Science Library

    Feiza Memet; Daniela-Elena Mitu

    2011-01-01

    The traditional two-stage vapor compression refrigeration cycle might be replaced by a two-stage ejector-vapor compression refrigeration cycle if it is aimed the decrease of irreversibility during expansion...

  14. Anaerobic desulphurisation of thiophenes by mixed microbial communities from oilfields

    NARCIS (Netherlands)

    Marcelis, C.L.M.; Ivanova, A.E.; Janssen, A.J.H.; Stams, A.J.M.

    2003-01-01

    Anaerobic enrichment cultures obtained from oil fields degraded various thiophenic compounds i.e. thiophene, benzothiophene and dibenzothiophene, with the concomitant formation of sulphide using hydrogen, lactate and ethanol as possible electron donors. It was demonstrated that dibenzothiophene was

  15. THE MATHEMATICAL MODEL DEVELOPMENT OF THE ETHYLBENZENE DEHYDROGENATION PROCESS KINETICS IN A TWO-STAGE ADIABATIC CONTINUOUS REACTOR

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2015-01-01

    Full Text Available The article is devoted to the mathematical modeling of the kinetics of ethyl benzene dehydrogenation in a two-stage adiabatic reactor with a catalytic bed functioning on continuous technology. The analysis of chemical reactions taking place parallel to the main reaction of styrene formation has been carried out on the basis of which a number of assumptions were made proceeding from which a kinetic scheme describing the mechanism of the chemical reactions during the dehydrogenation process was developed. A mathematical model of the dehydrogenation process, describing the dynamics of chemical reactions taking place in each of the two stages of the reactor block at a constant temperature is developed. The estimation of the rate constants of direct and reverse reactions of each component, formation and exhaustion of the reacted mixture was made. The dynamics of the starting material concentration variations (ethyl benzene batch was obtained as well as styrene formation dynamics and all byproducts of dehydrogenation (benzene, toluene, ethylene, carbon, hydrogen, ect.. The calculated the variations of the component composition of the reaction mixture during its passage through the first and second stages of the reactor showed that the proposed mathematical description adequately reproduces the kinetics of the process under investigation. This demonstrates the advantage of the developed model, as well as loyalty to the values found for the rate constants of reactions, which enable the use of models for calculating the kinetics of ethyl benzene dehydrogenation under nonisothermal mode in order to determine the optimal temperature trajectory of the reactor operation. In the future, it will reduce energy and resource consumption, increase the volume of produced styrene and improve the economic indexes of the process.

  16. The Design, Construction and Operation of a 75 kW Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk; Ahrenfeldt, Jesper; Jensen, Torben Kvist

    2003-01-01

    The Two-Stage Gasifier was operated for several weeks (465 hours) and of these 190 hours continuously. The gasifier is operated automatically unattended day and night, and only small adjustments of the feeding rate were necessary once or twice a day. The operation was successful, and the output a...... of the reactor had to be constructed in some other material....

  17. A two-stage ethanol-based biodiesel production in a packed bed reactor

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Woodley, John

    2012-01-01

    A two-stage enzymatic process for producing fatty acid ethyl ester (FAEE) in a packed bed reactor is reported. The process uses an experimental immobilized lipase (NS 88001) and Novozym 435 to catalyze transesterification (first stage) and esterification (second stage), respectively. Both stages...

  18. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...... problem....

  19. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    Science.gov (United States)

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  20. Two-Stage Sampling Procedures for Comparing Means When Population Distributions Are Non-Normal.

    Science.gov (United States)

    Luh, Wei-Ming; Olejnik, Stephen

    Two-stage sampling procedures for comparing two population means when variances are heterogeneous have been developed by D. G. Chapman (1950) and B. K. Ghosh (1975). Both procedures assume sampling from populations that are normally distributed. The present study reports on the effect that sampling from non-normal distributions has on Type I error…

  1. Some design aspects of a two-stage rail-to-rail CMOS op amp

    NARCIS (Netherlands)

    Gierkink, S.L.J.; Holzmann, Peter J.; Wiegerink, R.J.; Wassenaar, R.F.

    1999-01-01

    A two-stage low-voltage CMOS op amp with rail-to-rail input and output voltage ranges is presented. The circuit uses complementary differential input pairs to achieve the rail-to-rail common-mode input voltage range. The differential pairs operate in strong inversion, and the constant transconductan

  2. Capacity Analysis of Two-Stage Production lines with Many Products

    NARCIS (Netherlands)

    M.B.M. de Koster (René)

    1987-01-01

    textabstractWe consider two-stage production lines with an intermediate buffer. A buffer is needed when fluctuations occur. For single-product production lines fluctuations in capacity availability may be caused by random processing times, failures and random repair times. For multi-product producti

  3. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...

  4. An intracooling system for a novel two-stage sliding-vane air compressor

    Science.gov (United States)

    Murgia, Stefano; Valenti, Gianluca; Costanzo, Ida; Colletta, Daniele; Contaldi, Giulio

    2017-08-01

    Lube-oil injection is used in positive-displacement compressors and, among them, in sliding-vane machines to guarantee the correct lubrication of the moving parts and as sealing to prevent air leakage. Furthermore, lube-oil injection allows to exploit lubricant also as thermal ballast with a great thermal capacity to minimize the temperature increase during the compression. This study presents the design of a two-stage sliding-vane rotary compressor in which the air cooling is operated by high-pressure cold oil injection into a connection duct between the two stages. The heat exchange between the atomized oil jet and the air results in a decrease of the air temperature before the second stage, improving the overall system efficiency. This cooling system is named here intracooling, as opposed to intercooling. The oil injection is realized via pressure-swirl nozzles, both within the compressors and inside the intracooling duct. The design of the two-stage sliding-vane compressor is accomplished by way of a lumped parameter model. The model predicts an input power reduction as large as 10% for intercooled and intracooled two-stage compressors, the latter being slightly better, with respect to a conventional single-stage compressor for compressed air applications. An experimental campaign is conducted on a first prototype that comprises the low-pressure compressor and the intracooling duct, indicating that a significant temperature reduction is achieved in the duct.

  5. Development of a heavy-duty diesel engine with two-stage turbocharging

    NARCIS (Netherlands)

    Sturm, L.; Kruithof, J.

    2001-01-01

    A mean value model was developed by using Matrixx/ Systembuild simulation tool for designing real-time control algorithms for the two-stage engine. All desired characteristics are achieved, apart from lower A/F ratio at lower engine speeds and Turbocharger matches calculations. The CANbus is used to

  6. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals

    Science.gov (United States)

    John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe

    1985-01-01

    This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.

  7. Two-stage data envelopment analysis technique for evaluating internal supply chain efficiency

    Directory of Open Access Journals (Sweden)

    Nisakorn Somsuk

    2014-12-01

    Full Text Available A two-stage data envelopment analysis (DEA which uses mathematical linear programming techniques is applied to evaluate the efficiency of a system composed of two relational sub-processes, by which the outputs from the first sub-process (as the intermediate outputs of the system are the inputs for the second sub-process. The relative efficiencies of the system and its sub-processes can be measured by applying the two-stage DEA. According to the literature review on the supply chain management, this technique can be used as a tool for evaluating the efficiency of the supply chain composed of two relational sub-processes. The technique can help to determine the inefficient sub-processes. Once the inefficient sub-process was improved its efficiency, it would result in better aggregate efficiency of the supply chain. This paper aims to present a procedure for evaluating the efficiency of the supply chain by using the two-stage DEA, under the assumption of constant returns to scale, with an example of internal supply chain efficiency measurement of insurance companies by applying the two-stage DEA for illustration. Moreover, in this paper the authors also present some observations on the application of this technique.

  8. Two-stage estimation in copula models used in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2005-01-01

    In this paper register based family studies provide the motivation for studying a two-stage estimation procedure in copula models for multivariate failure time data. The asymptotic properties of the estimators in both parametric and semi-parametric models are derived, generalising the approach by...

  9. Extraoral implants for orbit rehabilitation: a comparison between one-stage and two-stage surgeries.

    Science.gov (United States)

    de Mello, M C L M P; Guedes, R; de Oliveira, J A P; Pecorari, V A; Abrahão, M; Dib, L L

    2014-03-01

    The aim of the study was to compare the osseointegration success rate and time for delivery of the prosthesis among cases treated by two-stage or one-stage surgery for orbit rehabilitation between 2003 and 2011. Forty-five patients were included, 31 males and 14 females; 22 patients had two-stage surgery and 23 patients had one-stage surgery. A total 138 implants were installed, 42 (30.4%) on previously irradiated bone. The implant survival rate was 96.4%, with a success rate of 99.0% among non-irradiated patients and 90.5% among irradiated patients. Two-stage patients received 74 implants with a survival rate of 94.6% (four implants lost); one-stage surgery patients received 64 implants with a survival rate of 98.4% (one implant lost). The median time interval between implant fixation and delivery of the prosthesis for the two-stage group was 9.6 months and for the one-stage group was 4.0 months (P < 0.001). The one-stage technique proved to be reliable and was associated with few risks and complications; the rate of successful osseointegration was similar to those reported in the literature. The one-stage technique should be considered a viable procedure that shortens the time to final rehabilitation and facilitates appropriate patient follow-up treatment.

  10. Validation of Continuous CHP Operation of a Two-Stage Biomass Gasifier

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2006-01-01

    The Viking gasification plant at the Technical University of Denmark was built to demonstrate a continuous combined heat and power operation of a two-stage gasifier fueled with wood chips. The nominal input of the gasifier is 75 kW thermal. To validate the continuous operation of the plant, a 9-d...

  11. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2017-04-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  12. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2016-09-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  13. A Two-Stage Exercise on the Binomial Distribution Using Minitab.

    Science.gov (United States)

    Shibli, M. Abdullah

    1990-01-01

    Describes a two-stage experiment that was designed to explain binomial distribution to undergraduate statistics students. A manual coin flipping exercise is explained as the first stage; a computerized simulation using MINITAB software is presented as stage two; and output from the MINITAB exercises is included. (two references) (LRW)

  14. The rearrangement process in a two-stage broadcast switching network

    DEFF Research Database (Denmark)

    Jacobsen, Søren B.

    1988-01-01

    The rearrangement process in the two-stage broadcast switching network presented by F.K. Hwang and G.W. Richards (ibid., vol.COM-33, no.10, p.1025-1035, Oct. 1985) is considered. By defining a certain function it is possible to calculate an upper bound on the number of connections to be moved...

  15. Two-stage laparoscopic resection of colon cancer and metastatic liver tumour

    Directory of Open Access Journals (Sweden)

    Yukio Iwashita

    2012-01-01

    Full Text Available We report herein the case of 70-year-old woman in whom colon cancer and a synchronous metastatic liver tumour were successfully resected laparoscopically. The tumours were treated in two stages. Both post-operative courses were uneventful, and there has been no recurrence during the 8 months since the second procedure.

  16. Two-stage laparoscopic resection of colon cancer and metastatic liver tumour

    Directory of Open Access Journals (Sweden)

    Iwashita Yukio

    2005-01-01

    Full Text Available We report herein the case of 70-year-old woman in whom colon cancer and a synchronous metastatic liver tumour were successfully resected laparoscopically. The tumours were treated in two stages. Both postoperative courses were uneventful, and there has been no recurrence during the 8 months since the second procedure.

  17. Two-stage bargaining with coverage extension in a dual labour market

    DEFF Research Database (Denmark)

    Roberts, Mark A.; Stæhr, Karsten; Tranæs, Torben

    2000-01-01

    This paper studies coverage extension in a simple general equilibrium model with a dual labour market. The union sector is characterized by two-stage bargaining whereas the firms set wages in the non-union sector. In this model firms and unions of the union sector have a commonality of interest...

  18. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.

    Science.gov (United States)

    Wu, Shu-Yii; Hung, Chun-Hsiung; Lin, Chi-Neng; Chen, Hsin-Wei; Lee, An-Sheng; Chang, Jo-Shu

    2006-04-01

    A novel continuously stirred anaerobic bioreactor (CSABR) seeded with silicone-immobilized sludge was developed for high-rate fermentative H2 production using sucrose as the limiting substrate. The CSABR system was operated at a hydraulic retention time (HRT) of 0.5-6 h and an influent sucrose concentration of 10-40 g COD/L. With a high feeding sucrose concentration (i.e., 30-40 g COD/L) and a short HRT (0.5 h), the CSABR reactor produced H2 more efficiently with the highest volumetric rate (VH2) of 15 L/h/L (i.e., 14.7 mol/d/L) and an optimal yield of ca. 3.5 mol H2/mol sucrose. The maximum VH2 value obtained from this work is much higher than any other VH2 values ever documented. Formation of self-flocculated granular sludge occurred during operation at a short HRT. The granule formation is thought to play a pivotal role in the dramatic enhancement of H2 production rate, because it led to more efficient biomass retention. A high biomass concentration of up to 35.4 g VSS/L was achieved even though the reactor was operated at an extremely low HRT (i.e., 0.5 h). In addition to gaining high biomass concentrations, formation of granular sludge also triggered a transition in bacterial community structure, resulting in a nearly twofold increase in the specific H2 production rate. According to denatured-gradient-gel-electrophoresis analysis, operations at a progressively decreasing HRT resulted in a decrease in bacterial population diversity. The culture with the best H2 production performance (at HRT = 0.5 h and sucrose concentration = 30 g COD/L) was eventually dominated by a presumably excellent H2-producing bacterial species identified as Clostridium pasteurianum.

  19. The Bracka two-stage repair for severe proximal hypospadias: A single center experience

    Directory of Open Access Journals (Sweden)

    Rakesh S Joshi

    2015-01-01

    Full Text Available Background: Surgical correction of severe proximal hypospadias represents a significant surgical challenge and single-stage corrections are often associated with complications and reoperations. Bracka two-stage repair is an attractive alternative surgical procedure with superior, reliable, and reproducible results. Purpose: To study the feasibility and applicability of Bracka two-stage repair for the severe proximal hypospadias and to analyze the outcomes and complications of this surgical technique. Materials and Methods: This prospective study was conducted from January 2011 to December 2013. Bracka two-stage repair was performed using inner preputial skin as a free graft in subjects with proximal hypospadias in whom severe degree of chordee and/or poor urethral plate was present. Only primary cases were included in this study. All subjects received three doses of intra-muscular testosterone 3 weeks apart before first stage. Second stage was performed 6 months after the first stage. Follow-up ranged from 6 months to 24 months. Results: A total of 43 patients operated for Bracka repair, out of which 30 patients completed two-stage repair. Mean age of the patients was 4 years and 8 months. We achieved 100% graft uptake and no revision was required. Three patients developed fistula, while two had metal stenosis. Glans dehiscence, urethral stricture and the residual chordee were not found during follow-up and satisfactory cosmetic results with good urinary stream were achieved in all cases. Conclusion: The Bracka two-stage repair is a safe and reliable approach in select patients in whom it is impractical to maintain the axial integrity of the urethral plate, and, therefore, a full circumference urethral reconstruction become necessary. This gives good results both in terms of restoration of normal function with minimal complication.

  20. Optimisation of two-stage screw expanders for waste heat recovery applications

    Science.gov (United States)

    Read, M. G.; Smith, I. K.; Stosic, N.

    2015-08-01

    It has previously been shown that the use of two-phase screw expanders in power generation cycles can achieve an increase in the utilisation of available energy from a low temperature heat source when compared with more conventional single-phase turbines. However, screw expander efficiencies are more sensitive to expansion volume ratio than turbines, and this increases as the expander inlet vapour dryness fraction decreases. For singlestage screw machines with low inlet dryness, this can lead to under expansion of the working fluid and low isentropic efficiency for the expansion process. The performance of the cycle can potentially be improved by using a two-stage expander, consisting of a low pressure machine and a smaller high pressure machine connected in series. By expanding the working fluid over two stages, the built-in volume ratios of the two machines can be selected to provide a better match with the overall expansion process, thereby increasing efficiency for particular inlet and discharge conditions. The mass flow rate though both stages must however be matched, and the compromise between increasing efficiency and maximising power output must also be considered. This research uses a rigorous thermodynamic screw machine model to compare the performance of single and two-stage expanders over a range of operating conditions. The model allows optimisation of the required intermediate pressure in the two- stage expander, along with the rotational speed and built-in volume ratio of both screw machine stages. The results allow the two-stage machine to be fully specified in order to achieve maximum efficiency for a required power output.

  1. Advanced nitrogen removal via nitrite from municipal landfill leachate using a two-stage UASB-A/O system

    Institute of Scientific and Technical Information of China (English)

    Lina Wu; Yongzhen Peng; Xiao Shi; Chengyao Peng; Jie Zhang

    2015-01-01

    A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) reactor and an anoxic/aerobic (A/O) reactor was used to treat municipal landfill leachate. Denitrification took place in the first stage of the UASB re-actor (UASB1). The chemical oxygen demand of the UASB1 effluent was further decreased in the second stage (UASB2). Nitrification was accomplished in the A/O reactor. When diluted with tap water at a ratio of 1:1, the ammonia nitrogen concentration of the influent leachate was approximately 1200 mg·L−1, whereas that of the system effluent was approximately 8–11 mg·L−1, and the corresponding removal efficiency is about 99.08%. Stable partial nitrification was achieved in the A/O reactor with 88.61%–91.58%of the nitrite accumula-tion ratio, even at comparatively low temperature (16 °C). The results demonstrate that free ammonia (FA) con-centrations within a suitable range exhibit a positive effect on partial nitrification. In this experiment when FA was within the 1–30 mg·L−1 range, partial nitrification could be achieved, whereas when FA exceeded 280 mg·L−1, the nitrification process was entirely inhibited. Temperature was not the key factor leading to par-tial nitrification within the 16–29 °C range. The inhibitory influence of free nitrous acid (FNA) on nitrification was also minimal when pH was greater than 8.5. Thus, FA concentration was a major factor in achieving partial nitrification.

  2. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  3. Matching tutor to student: rules and mechanisms for efficient two-stage learning in neural circuits

    CERN Document Server

    Tesileanu, Tiberiu; Balasubramanian, Vijay

    2016-01-01

    Existing models of birdsong learning assume that brain area LMAN introduces variability into song for trial-and-error learning. Recent data suggest that LMAN also encodes a corrective bias driving short-term improvements in song. These later consolidate in area RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using a stochastic gradient descent approach, we derive how 'tutor' circuits should match plasticity mechanisms in 'student' circuits for efficient learning. We further describe a reinforcement learning framework with which the tutor can build its teaching signal. We show that mismatching the tutor signal and plasticity mechanism can impair or abolish learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.

  4. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  5. Two-stage precipitation process of iron and arsenic from acid leaching solutions

    Institute of Scientific and Technical Information of China (English)

    N.J.BOLIN; J.E.SUNDKVIST

    2008-01-01

    A leaching process for base metals recovery often generates considerable amounts of impurities such as iron and arsenic into the solution.It is a challenge to separate the non-valuable metals into manageable and stable waste products for final disposal,without loosing the valuable constituents.Boliden Mineral AB has patented a two-stage precipitation process that gives a very clean iron-arsenic precipitate by a minimum of coprecipitation of base metals.The obtained product shows to have good sedimentation and filtration properties,which makes it easy to recover the iron-arsenic depleted solution by filtration and washing of the precipitate.Continuos bench scale tests have been done,showing the excellent results achieved by the two-stage precipitation process.

  6. S-band gain-flattened EDFA with two-stage double-pass configuration

    Science.gov (United States)

    Fu, Hai-Wei; Xu, Shi-Chao; Qiao, Xue-Guang; Jia, Zhen-An; Liu, Ying-Gang; Zhou, Hong

    2011-11-01

    A gain-flattened S-band erbium-doped fiber amplifier (EDFA) using standard erbium-doped fiber (EDF) is proposed and experimentally demonstrated. The proposed amplifier with two-stage double-pass configuration employs two C-band suppressing filters to obtain the optical gain in S-band. The amplifier provides a maximum signal gain of 41.6 dB at 1524 nm with the corresponding noise figure of 3.8 dB. Furthermore, with a well-designed short-pass filter as a gain flattening filter (GFF), we are able to develop the S-band EDFA with a flattened gain of more than 20 dB in 1504-1524 nm. In the experiment, the two-stage double-pass amplifier configuration improves performance of gain and noise figure compared with the configuration of single-stage double-pass S-band EDFA.

  7. Power Frequency Oscillation Suppression Using Two-Stage Optimized Fuzzy Logic Controller for Multigeneration System

    Directory of Open Access Journals (Sweden)

    Y. K. Bhateshvar

    2016-01-01

    Full Text Available This paper attempts to develop a linearized model of automatic generation control (AGC for an interconnected two-area reheat type thermal power system in deregulated environment. A comparison between genetic algorithm optimized PID controller (GA-PID, particle swarm optimized PID controller (PSO-PID, and proposed two-stage based PSO optimized fuzzy logic controller (TSO-FLC is presented. The proposed fuzzy based controller is optimized at two stages: one is rule base optimization and other is scaling factor and gain factor optimization. This shows the best dynamic response following a step load change with different cases of bilateral contracts in deregulated environment. In addition, performance of proposed TSO-FLC is also examined for ±30% changes in system parameters with different type of contractual demands between control areas and compared with GA-PID and PSO-PID. MATLAB/Simulink® is used for all simulations.

  8. A two-stage scheme for multi-view human pose estimation

    Science.gov (United States)

    Yan, Junchi; Sun, Bing; Liu, Yuncai

    2010-08-01

    We present a two-stage scheme integrating voxel reconstruction and human motion tacking. By combining voxel reconstruction with human motion tracking interactively, our method can work in a cluttered background where perfect foreground silhouettes are hardly available. For each frame, a silhouette-based 3D volume reconstruction method and hierarchical tracking algorithm are applied in two stages. In the first stage, coarse reconstruction and tracking results are obtained, and then the refinement for reconstruction is applied in the second stage. The experimental results demonstrate our approach is promising. Although our method focuses on the problem of human body voxel reconstruction and motion tracking in this paper, our scheme can be used to reconstruct voxel data and infer the pose of many specified rigid and articulated objects.

  9. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach.

    Science.gov (United States)

    Tan, Robin; Perkowski, Marek

    2017-02-20

    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.

  10. Effect of two-stage aging on superplasticity of Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    LUO Zhi-hui; ZHANG Xin-ming; DU Yu-xuan; YE Ling-ying

    2006-01-01

    The effect of two-stage aging on the microstructures and superplasticity of 01420 Al-Li alloy was investigated by means of OM, TEM analysis and stretching experiment. The results demonstrate that the second phase particles distributed more uniformly with a larger volume fraction can be observed after the two-stage aging (120 ℃, 12 h+300 ℃, 36 h) compared with the single-aging(300 ℃, 48 h). After rolling and recrystallization annealing, fine grains with size of 8-10 μm are obtained, and the superplastic elongation of the specimens reaches 560% at strain rate of 8×10-4 s-1 and 480 ℃. Uniformly distributed fine particles precipitate both on grain boundaries and in grains at lower temperature. When the sheet is aged at high temperature, the particles become coarser with a large volume fraction.

  11. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  12. Performance measurement of insurance firms using a two-stage DEA method

    Directory of Open Access Journals (Sweden)

    Raha Jalili Sabet

    2013-01-01

    Full Text Available Measuring the relative performance of insurance firms plays an important role in this industry. In this paper, we present a two-stage data envelopment analysis to measure the performance of insurance firms, which were active over the period of 2006-2010. The proposed study of this paper performs DEA method in two stages where the first stage considers five inputs and three outputs while the second stage considers the outputs of the first stage as the inputs of the second stage and uses three different outputs for this stage. The results of our survey have indicated that while there were 4 efficient insurance firms most other insurances were noticeably inefficient. This means market was monopolized mostly by a limited number of insurance firms and competition was not fare enough to let other firms participate in economy, more efficiently.

  13. Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach

    Directory of Open Access Journals (Sweden)

    Jinliang Zhang

    2015-01-01

    Full Text Available Extended Kalman filter (EKF has been widely applied for sensorless direct torque control (DTC in induction machines (IMs. One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.

  14. Syme's two-stage amputation in insulin-requiring diabetics with gangrene of the forefoot.

    Science.gov (United States)

    Pinzur, M S; Morrison, C; Sage, R; Stuck, R; Osterman, H; Vrbos, L

    1991-06-01

    Thirty-five insulin-requiring adult diabetic patients underwent 38 Syme's Two-Stage amputations for gangrene of the forefoot with nonreconstructible peripheral vascular insufficiency. All had a minimum Doppler ischemic index of 0.5, serum albumin of 3.0 gm/dl, and total lymphocyte count of 1500. Thirty-one (81.6%) eventually healed and were uneventfully fit with a prosthesis. Regional anesthesia was used in all of the patients, with 22 spinal and 16 ankle block anesthetics. Twenty-seven (71%) returned to their preamputation level of ambulatory function. Six (16%) had major, and fifteen (39%) minor complications following the first stage surgery. The results of this study support the use of the Syme's Two-Stage amputation in adult diabetic patients with gangrene of the forefoot requiring amputation.

  15. Low-noise SQUIDs with large transfer: two-stage SQUIDs based on DROSs

    Science.gov (United States)

    Podt, M.; Flokstra, J.; Rogalla, H.

    2002-08-01

    We have realized a two-stage integrated superconducting quantum interference device (SQUID) system with a closed loop bandwidth of 2.5 MHz, operated in a direct voltage readout mode. The corresponding flux slew rate was 1.3×10 5Φ0/s and the measured white flux noise was 1.3 μ Φ0/√Hz at 4.2 K. The system is based on a conventional dc SQUID with a double relaxation oscillation SQUID (DROS) as the second stage. Because of the large flux-to-voltage transfer, the sensitivity of the system is completely determined by the sensor SQUID and not by the DROS or the room-temperature preamplifier. Decreasing the Josephson junction area enables a further improvement of the sensitivity of the two-stage SQUID systems.

  16. Interval estimation of binomial proportion in clinical trials with a two-stage design.

    Science.gov (United States)

    Tsai, Wei-Yann; Chi, Yunchan; Chen, Chia-Min

    2008-01-15

    Generally, a two-stage design is employed in Phase II clinical trials to avoid giving patients an ineffective drug. If the number of patients with significant improvement, which is a binomial response, is greater than a pre-specified value at the first stage, then another binomial response at the second stage is also observed. This paper considers interval estimation of the response probability when the second stage is allowed to continue. Two asymptotic interval estimators, Wald and score, as well as two exact interval estimators, Clopper-Pearson and Sterne, are constructed according to the two binomial responses from this two-stage design, where the binomial response at the first stage follows a truncated binomial distribution. The mean actual coverage probability and expected interval width are employed to evaluate the performance of these interval estimators. According to the comparison results, the score interval is recommended for both Simon's optimal and minimax designs.

  17. Experiment and surge analysis of centrifugal two-stage turbocharging system

    Institute of Scientific and Technical Information of China (English)

    Yituan HE; Chaochen MA

    2008-01-01

    To study a centrifugal two-stage turbocharging system's surge and influencing factors, a special test bench was set up and the system surge test was performed. The test results indicate that the measured parameters such as air mass flow and rotation speed of a high pressure (HP) stage compressor can be converted into corrected para-meters under a standard condition according to the Mach number similarity criterion, because the air flow in a HP stage compressor has entered the Reynolds number (Re) auto-modeling range. Accordingly, the reasons leading to a two-stage turbocharging system's surge can be analyzed according to the corrected mass flow characteristic maps and actual operating conditions of HP and low pressure (LP) stage compressors.

  18. Two-staged management for all types of congenital pouch colon

    Directory of Open Access Journals (Sweden)

    Rajendra K Ghritlaharey

    2013-01-01

    Full Text Available Background: The aim of this study was to review our experience with two-staged management for all types of congenital pouch colon (CPC. Patients and Methods: This retrospective study included CPC cases that were managed with two-staged procedures in the Department of Paediatric Surgery, over a period of 12 years from 1 January 2000 to 31 December 2011. Results: CPC comprised of 13.71% (97 of 707 of all anorectal malformations (ARM and 28.19% (97 of 344 of high ARM. Eleven CPC cases (all males were managed with two-staged procedures. Distribution of cases (Narsimha Rao et al.′s classification into types I, II, III, and IV were 1, 2, 6, and 2, respectively. Initial operative procedures performed were window colostomy (n = 6, colostomy proximal to pouch (n = 4, and ligation of colovesical fistula and end colostomy (n = 1. As definitive procedures, pouch excision with abdomino-perineal pull through (APPT of colon in eight, and pouch excision with APPT of ileum in three were performed. The mean age at the time of definitive procedures was 15.6 months (ranges from 3 to 53 months and the mean weight was 7.5 kg (ranges from 4 to 11 kg. Good fecal continence was observed in six and fair in two cases in follow-up periods, while three of our cases lost to follow up. There was no mortality following definitive procedures amongst above 11 cases. Conclusions: Two-staged procedures for all types of CPC can also be performed safely with good results. The most important fact that the definitive procedure is being done without protective stoma and therefore, it avoids stoma closure, stoma-related complications, related cost of stoma closure and hospital stay.

  19. Hybrid staging of a Lysholm positive displacement engine with two Westinghouse two stage impulse Curtis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.A.

    1982-06-01

    The University of California at Berkeley has tested and modeled satisfactorly a hybrid staged Lysholm engine (positive displacement) with a two stage Curtis wheel turbine. The system operates in a stable manner over its operating range (0/1-3/1 water ratio, 120 psia input). Proposals are made for controlling interstage pressure with a partial admission turbine and volume expansion to control mass flow and pressure ratio for the Lysholm engine.

  20. Noncausal two-stage image filtration at presence of observations with anomalous errors

    Directory of Open Access Journals (Sweden)

    S. V. Vishnevyy

    2013-04-01

    Full Text Available Introduction. It is necessary to develop adaptive algorithms, which allow to detect such regions and to apply filter with respective parameters for suppression of anomalous noises for the purposes of image filtration, which consist of regions with anomalous errors. Development of adaptive algorithm for non-causal two-stage images filtration at pres-ence of observations with anomalous errors. The adaptive algorithm for noncausal two-stage filtration is developed. On the first stage the adaptive one-dimensional algorithm for causal filtration is used for independent processing along rows and columns of image. On the second stage the obtained data are united and a posteriori estimations are calculated. Results of experimental investigations. The developed adaptive algorithm for noncausal images filtration at presence of observations with anomalous errors is investigated on the model sample by means of statistical modeling on PC. The image is modeled as a realization of Gaussian-Markov random field. The modeled image is corrupted with uncorrelated Gaussian noise. Regions of image with anomalous errors are corrupted with uncorrelated Gaussian noise which has higher power than normal noise on the rest part of the image. Conclusions. The analysis of adaptive algorithm for noncausal two-stage filtration is done. The characteristics of accuracy of computed estimations are shown. The comparisons of first stage and second stage of the developed adaptive algorithm are done. Adaptive algorithm is compared with known uniform two-stage algorithm of image filtration. According to the obtained results the uniform algorithm does not suppress anomalous noise meanwhile the adaptive algorithm shows good results.

  1. Full noise characterization of a low-noise two-stage SQUID amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Falferi, P [Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, 38100 Povo, Trento (Italy); Mezzena, R [INFN, Gruppo Collegato di Trento, Sezione di Padova, 38100 Povo, Trento (Italy); Vinante, A [INFN, Sezione di Padova, 35131 Padova (Italy)], E-mail: falferi@science.unitn.it

    2009-07-15

    From measurements performed on a low-noise two-stage SQUID amplifier coupled to a high- Q electrical resonator we give a complete noise characterization of the SQUID amplifier around the resonator frequency of 11 kHz in terms of additive, back action and cross-correlation noise spectral densities. The minimum noise temperature evaluated at 135 mK is 10 {mu}K and corresponds to an energy resolution of 18{Dirac_h}.

  2. A covariate adjusted two-stage allocation design for binary responses in randomized clinical trials.

    Science.gov (United States)

    Bandyopadhyay, Uttam; Biswas, Atanu; Bhattacharya, Rahul

    2007-10-30

    In the present work, we develop a two-stage allocation rule for binary response using the log-odds ratio within the Bayesian framework allowing the current allocation to depend on the covariate value of the current subject. We study, both numerically and theoretically, several exact and limiting properties of this design. The applicability of the proposed methodology is illustrated by using some data set. We compare this rule with some of the existing rules by computing various performance measures.

  3. Investigation on a two-stage solvay refrigerator with magnetic material regenerator

    Science.gov (United States)

    Chen, Guobang; Zheng, Jianyao; Zhang, Fagao; Yu, Jianping; Tao, Zhenshi; Ding, Cenyu; Zhang, Liang; Wu, Peiyi; Long, Yi

    This paper describes experimental results that the no-load temperature of a two-stage Solvay refrigerator has been reached in liquid helium temperature region from the original 11.5 K by using magnetic regenerative material instead of lead. The structure and technological characteristics of the prototype machine are presented. The effects of operating frequency and pressure on the refrigerating temperature have been discussed in this paper.

  4. The two-stage aegean extension, from localized to distributed, a result of slab rollback acceleration

    OpenAIRE

    Brun, Jean-Pierre; Faccenna, Claudio; Gueydan, Frédéric; Sokoutis, Dimitrios; Philippon, Mélody; Kydonakis, Konstantinos; Gorini, Christian

    2016-01-01

    International audience; Back-arc extension in the Aegean, which was driven by slab rollback since 45 Ma, is described here for the first time in two stages. From Middle Eocene to Middle Miocene, deformation was localized leading to i) the exhumation of high-pressure metamorphic rocks to crustal depths, ii) the exhumation of high-temperature metamorphic rocks in core complexes and iii) the deposition of sedimentary basins. Since Middle Miocene, extension distributed over the whole Aegean domai...

  5. A Two-stage Discriminating Framework for Making Supply Chain Operation Decisions under Uncertainties

    OpenAIRE

    Gu, H; Rong, G

    2010-01-01

    This paper addresses the problem of making supply chain operation decisions for refineries under two types of uncertainties: demand uncertainty and incomplete information shared with suppliers and transport companies. Most of the literature only focus on one uncertainty or treat more uncertainties identically. However, we note that refineries have more power to control uncertainties in procurement and transportation than in demand in the real world. Thus, a two-stage framework for dealing wit...

  6. Low-noise SQUIDs with large transfer: two-stage SQUIDs based on DROSs

    NARCIS (Netherlands)

    Podt, M.; Flokstra, Jakob; Rogalla, Horst

    2002-01-01

    We have realized a two-stage integrated superconducting quantum interference device (SQUID) system with a closed loop bandwidth of 2.5 MHz, operated in a direct voltage readout mode. The corresponding flux slew rate was 1.3×105 Φ0/s and the measured white flux noise was 1.3 μΦ0/√Hz at 4.2 K. The

  7. Latent Inhibition as a Function of US Intensity in a Two-Stage CER Procedure

    Science.gov (United States)

    Rodriguez, Gabriel; Alonso, Gumersinda

    2004-01-01

    An experiment is reported in which the effect of unconditioned stimulus (US) intensity on latent inhibition (LI) was examined, using a two-stage conditioned emotional response (CER) procedure in rats. A tone was used as the pre-exposed and conditioned stimulus (CS), and a foot-shock of either a low (0.3 mA) or high (0.7 mA) intensity was used as…

  8. Two stage dual gate MESFET monolithic gain control amplifier for Ka-band

    Science.gov (United States)

    Sokolov, V.; Geddes, J.; Contolatis, A.

    A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.

  9. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Science.gov (United States)

    Kılıç, Bayram

    2012-07-01

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared.

  10. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram [Mehmet Akif Ersoy University, Bucak Emin Guelmez Vocational School, Bucak, Burdur (Turkey)

    2012-07-15

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared. (orig.)

  11. Performance of Combined Water Turbine Darrieus-Savonius with Two Stage Savonius Buckets and Single Deflector

    OpenAIRE

    Sahim, Kaprawi; Santoso, Dyos; Sipahutar, Riman

    2016-01-01

    The objective of this study is to show the effect of single deflector plate on the performance of combined Darrieus-Savonius water turbine. In order to overcome the disadvantages of low torque of solo Darrieus turbine, a plate deflector mounted in front of returning Savonius bucket of combined water turbine composing of Darrieus and Savonius rotor has been proposed in this study. Some configurations of combined turbines with two stage Savonius rotors were experimentally tested in a river of c...

  12. Perceived Health Benefits and Soy Consumption Behavior: Two-Stage Decision Model Approach

    OpenAIRE

    Moon, Wanki; Balasubramanian, Siva K.; Rimal, Arbindra

    2005-01-01

    A two-stage decision model is developed to assess the effect of perceived soy health benefits on consumers' decisions with respect to soy food. The first stage captures whether or not to consume soy food, while the second stage reflects how often to consume. A conceptual/analytical framework is also employed, combining Lancaster's characteristics model and Fishbein's multi-attribute model. Results show that perceived soy health benefits significantly influence both decision stages. Further, c...

  13. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages

    Science.gov (United States)

    Zhou, Yi; Chen, Jianxin; Xu, Zhicheng; He, Li

    2016-08-01

    In this paper, we report on mid-wavelength infrared interband cascade photodetectors grown on InAs substrates. We studied the transport properties of the photon-generated carriers in the interband cascade structures by comparing two different detectors, a single stage detector and a two-stage cascade detector. The two-stage device showed quantum efficiency around 19.8% at room temperature, and clear optical response was measured even at a temperature of 323 K. The two detectors showed similar Johnson-noise limited detectivity. The peak detectivity of the one- and two-stage devices was measured to be 2.15 × 1014 cm·Hz1/02/W and 2.19 × 1014 cm·Hz1/02/W at 80 K, 1.21 × 109 cm·Hz1/02/W and 1.23 × 109 cm·Hz1/02/W at 300 K, respectively. The 300 K background limited infrared performance (BLIP) operation temperature is estimated to be over 140 K.

  14. Development of Two-Stage Stirling Cooler for ASTRO-F

    Science.gov (United States)

    Narasaki, K.; Tsunematsu, S.; Ootsuka, K.; Kyoya, M.; Matsumoto, T.; Murakami, H.; Nakagawa, T.

    2004-06-01

    A two-stage small Stirling cooler has been developed and tested for the infrared astronomical satellite ASTRO-F that is planned to be launched by Japanese M-V rocket in 2005. ASTRO-F has a hybrid cryogenic system that is a combination of superfluid liquid helium (HeII) and two-stage Stirling coolers. The mechanical cooler has a two-stage displacer driven by a linear motor in a cold head and a new linear-ball-bearing system for the piston-supporting structure in a compressor. The linear-ball-bearing supporting system achieves the piston clearance seal, the long piston-stroke operation and the low frequency operation. The typical cooling power is 200 mW at 20 K and the total input power to the compressor and the cold head is below 90 W without driver electronics. The engineering, the prototype and the flight models of the cooler have been fabricated and evaluated to verify the capability for ASTRO-F. This paper describes the design of the cooler and the results from verification tests including cooler performance test, thermal vacuum test, vibration test and lifetime test.

  15. Performance analysis of RDF gasification in a two stage fluidized bed-plasma process.

    Science.gov (United States)

    Materazzi, M; Lettieri, P; Taylor, R; Chapman, C

    2016-01-01

    The major technical problems faced by stand-alone fluidized bed gasifiers (FBG) for waste-to gas applications are intrinsically related to the composition and physical properties of waste materials, such as RDF. The high quantity of ash and volatile material in RDF can provide a decrease in thermal output, create high ash clinkering, and increase emission of tars and CO2, thus affecting the operability for clean syngas generation at industrial scale. By contrast, a two-stage process which separates primary gasification and selective tar and ash conversion would be inherently more forgiving and stable. This can be achieved with the use of a separate plasma converter, which has been successfully used in conjunction with conventional thermal treatment units, for the ability to 'polish' the producer gas by organic contaminants and collect the inorganic fraction in a molten (and inert) state. This research focused on the performance analysis of a two-stage fluid bed gasification-plasma process to transform solid waste into clean syngas. Thermodynamic assessment using the two-stage equilibrium method was carried out to determine optimum conditions for the gasification of RDF and to understand the limitations and influence of the second stage on the process performance (gas heating value, cold gas efficiency, carbon conversion efficiency), along with other parameters. Comparison with a different thermal refining stage, i.e. thermal cracking (via partial oxidation) was also performed. The analysis is supported by experimental data from a pilot plant.

  16. Continuous removal of endocrine disruptors by versatile peroxidase using a two-stage system.

    Science.gov (United States)

    Taboada-Puig, Roberto; Lu-Chau, Thelmo A; Eibes, Gemma; Feijoo, Gumersindo; Moreira, Maria T; Lema, Juan M

    2015-01-01

    The oxidant Mn(3+) -malonate, generated by the ligninolytic enzyme versatile peroxidase in a two-stage system, was used for the continuous removal of endocrine disrupting compounds (EDCs) from synthetic and real wastewaters. One plasticizer (bisphenol-A), one bactericide (triclosan) and three estrogenic compounds (estrone, 17β-estradiol, and 17α-ethinylestradiol) were removed from wastewater at degradation rates in the range of 28-58 µg/L·min, with low enzyme inactivation. First, the optimization of three main parameters affecting the generation of Mn(3+) -malonate (hydraulic retention time as well as Na-malonate and H2 O2 feeding rates) was conducted following a response surface methodology (RSM). Under optimal conditions, the degradation of the EDCs was proven at high (1.3-8.8 mg/L) and environmental (1.2-6.1 µg/L) concentrations. Finally, when the two-stage system was compared with a conventional enzymatic membrane reactor (EMR) using the same enzyme, a 14-fold increase of the removal efficiency was observed. At the same time, operational problems found during EDCs removal in the EMR system (e.g., clogging of the membrane and enzyme inactivation) were avoided by physically separating the stages of complex formation and pollutant oxidation, allowing the system to be operated for a longer period (∼8 h). This study demonstrates the feasibility of the two-stage enzymatic system for removing EDCs both at high and environmental concentrations.

  17. A two-stage Stirling-type pulse tube cryocooler with a cold inertance tube

    Science.gov (United States)

    Gan, Z. H.; Fan, B. Y.; Wu, Y. Z.; Qiu, L. M.; Zhang, X. J.; Chen, G. B.

    2010-06-01

    A thermally coupled two-stage Stirling-type pulse tube cryocooler (PTC) with inertance tubes as phase shifters has been designed, manufactured and tested. In order to obtain a larger phase shift at the low acoustic power of about 2.0 W, a cold inertance tube as well as a cold reservoir for the second stage, precooled by the cold end of the first stage, was introduced into the system. The transmission line model was used to calculate the phase shift produced by the cold inertance tube. Effect of regenerator material, geometry and charging pressure on the performance of the second stage of the two-stage PTC was investigated based on the well known regenerator model REGEN. Experimental results of the two-stage PTC were carried out with an emphasis on the performance of the second stage. A lowest cooling temperature of 23.7 K and 0.50 W at 33.9 K were obtained with an input electric power of 150.0 W and an operating frequency of 40 Hz.

  18. Rehabilitation outcomes in patients with early and two-stage reconstruction of flexor tendon injuries.

    Science.gov (United States)

    Sade, Ilgin; İnanir, Murat; Şen, Suzan; Çakmak, Esra; Kablanoğlu, Serkan; Selçuk, Barin; Dursun, Nigar

    2016-08-01

    [Purpose] The primary aim of this study was to assess rehabilitation outcomes for early and two-stage repair of hand flexor tendon injuries. The secondary purpose of this study was to compare the findings between treatment groups. [Subjects and Methods] Twenty-three patients were included in this study. Early repair (n=14) and two-stage repair (n=9) groups were included in a rehabilitation program that used hand splints. This retrospective evaluated patients according to their demographic characteristics, including age, gender, injured hand, dominant hand, cause of injury, zone of injury, number of affected fingers, and accompanying injuries. Pain, range of motion, and grip strength were evaluated using a visual analog scale, goniometer, and dynamometer, respectively. [Results] Both groups showed significant improvements in pain and finger flexion after treatment compared with baseline measurements. However, no significant differences were observed between the two treatment groups. Similar results were obtained for grip strength and pinch grip, whereas gross grip was better in the early tendon repair group. [Conclusion] Early and two-stage reconstruction of patients with flexor tendon injuries can be performed with similarly favorable responses and effective rehabilitation programs.

  19. A Comparison of Direct and Two-Stage Transportation of Patients to Hospital in Poland

    Directory of Open Access Journals (Sweden)

    Anna Rosiek

    2015-04-01

    Full Text Available Background: The rapid international expansion of telemedicine reflects the growth of technological innovations. This technological advancement is transforming the way in which patients can receive health care. Materials and Methods: The study was conducted in Poland, at the Department of Cardiology of the Regional Hospital of Louis Rydygier in Torun. The researchers analyzed the delay in the treatment of patients with acute coronary syndrome. The study was conducted as a survey and examined 67 consecutively admitted patients treated invasively in a two-stage transport system. Data were analyzed statistically. Results: Two-stage transportation does not meet the timeframe guidelines for the treatment of patients with acute myocardial infarction. Intervals for the analyzed group of patients were statistically significant (p < 0.0001. Conclusions: Direct transportation of the patient to a reference center with interventional cardiology laboratory has a significant impact on reducing in-hospital delay in case of patients with acute coronary syndrome. Perspectives: This article presents the results of two-stage transportation of the patient with acute coronary syndrome. This measure could help clinicians who seek to assess time needed for intervention. It also shows how time from the beginning of pain in chest is important and may contribute to patient disability, death or well-being.

  20. Two-Stage Liver Transplantation with Temporary Porto-Middle Hepatic Vein Shunt

    Directory of Open Access Journals (Sweden)

    Giovanni Varotti

    2010-01-01

    Full Text Available Two-stage liver transplantation (LT has been reported for cases of fulminant liver failure that can lead to toxic hepatic syndrome, or massive hemorrhages resulting in uncontrollable bleeding. Technically, the first stage of the procedure consists of a total hepatectomy with preservation of the recipient's inferior vena cava (IVC, followed by the creation of a temporary end-to-side porto-caval shunt (TPCS. The second stage consists of removing the TPCS and implanting a liver graft when one becomes available. We report a case of a two-stage total hepatectomy and LT in which a temporary end-to-end anastomosis between the portal vein and the middle hepatic vein (TPMHV was performed as an alternative to the classic end-to-end TPCS. The creation of a TPMHV proved technically feasible and showed some advantages compared to the standard TPCS. In cases in which a two-stage LT with side-to-side caval reconstruction is utilized, TPMHV can be considered as a safe and effective alternative to standard TPCS.

  1. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling.

    Science.gov (United States)

    Terza, Joseph V; Basu, Anirban; Rathouz, Paul J

    2008-05-01

    The paper focuses on two estimation methods that have been widely used to address endogeneity in empirical research in health economics and health services research-two-stage predictor substitution (2SPS) and two-stage residual inclusion (2SRI). 2SPS is the rote extension (to nonlinear models) of the popular linear two-stage least squares estimator. The 2SRI estimator is similar except that in the second-stage regression, the endogenous variables are not replaced by first-stage predictors. Instead, first-stage residuals are included as additional regressors. In a generic parametric framework, we show that 2SRI is consistent and 2SPS is not. Results from a simulation study and an illustrative example also recommend against 2SPS and favor 2SRI. Our findings are important given that there are many prominent examples of the application of inconsistent 2SPS in the recent literature. This study can be used as a guide by future researchers in health economics who are confronted with endogeneity in their empirical work.

  2. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  3. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.

    Science.gov (United States)

    Zeng, Xi; Shao, Ruyi; Wang, Fang; Dong, Pengwei; Yu, Jian; Xu, Guangwen

    2016-04-01

    A fluidized bed two-stage gasification process, consisting of a fluidized-bed (FB) pyrolyzer and a transport fluidized bed (TFB) gasifier, has been proposed to gasify biomass for fuel gas production with low tar content. On the basis of our previous fundamental study, an autothermal two-stage gasifier has been designed and built for gasify a kind of Chinese herb residue with a treating capacity of 600 kg/h. The testing data in the operational stable stage of the industrial demonstration plant showed that when keeping the reaction temperatures of pyrolyzer and gasifier respectively at about 700 °C and 850 °C, the heating value of fuel gas can reach 1200 kcal/Nm(3), and the tar content in the produced fuel gas was about 0.4 g/Nm(3). The results from this pilot industrial demonstration plant fully verified the feasibility and technical features of the proposed FB two-stage gasification process.

  4. Study on two stage activated carbon/HFC-134a based adsorption chiller

    Science.gov (United States)

    >K Habib,

    2013-06-01

    In this paper, a theoretical analysis on the performance of a thermally driven two-stage four-bed adsorption chiller utilizing low-grade waste heat of temperatures between 50°C and 70°C in combination with a heat sink (cooling water) of 30°C for air-conditioning applications has been described. Activated carbon (AC) of type Maxsorb III/HFC-134a pair has been examined as an adsorbent/refrigerant pair. FORTRAN simulation program is developed to analyze the influence of operating conditions (hot and cooling water temperatures and adsorption/desorption cycle times) on the cycle performance in terms of cooling capacity and COP. The main advantage of this two-stage chiller is that it can be operational with smaller regenerating temperature lifts than other heat-driven single-stage chillers. Simulation results shows that the two-stage chiller can be operated effectively with heat sources of 50°C and 70°C in combination with a coolant at 30°C.

  5. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  6. A Two-stage injection-locked magnetron for accelerators with superconducting cavities

    CERN Document Server

    Kazakevich, Grigory; Flanagan, Gene; Marhauser, Frank; Neubauer, Mike; Yakovlev, Vyacheslav; Chase, Brian; Nagaitsev, Sergey; Pasquinelli, Ralph; Solyak, Nikolay; Tupikov, Vitali; Wolff, Daniel

    2013-01-01

    A concept for a two-stage injection-locked CW magnetron intended to drive Superconducting Cavities (SC) for intensity-frontier accelerators has been proposed. The concept considers two magnetrons in which the output power differs by 15-20 dB and the lower power magnetron being frequency-locked from an external source locks the higher power magnetron. The injection-locked two-stage CW magnetron can be used as an RF power source for Fermilab's Project-X to feed separately each of the 1.3 GHz SC of the 8 GeV pulsed linac. We expect output/locking power ratio of about 30-40 dB assuming operation in a pulsed mode with pulse duration of ~ 8 ms and repetition rate of 10 Hz. The experimental setup of a two-stage magnetron utilising CW, S-band, 1 kW tubes operating at pulse duration of 1-10 ms, and the obtained results are presented and discussed in this paper.

  7. Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2014-01-01

    Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.

  8. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

  9. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2010-04-01

    Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.

  10. Removal of Hydrogen Sulfide in Cold Coal Gas by Anaerobic Bio-trickling Filter%厌氧生物滴滤法脱除冷煤气中硫化氢的研究

    Institute of Scientific and Technical Information of China (English)

    何腾云; 郭小燕; 许绿丝

    2012-01-01

    Hydrogen sulfide in water gas would turn into sulfur dioxide when burnt, which would pollute the environment. Anaerobic biological filter method was used in desulfurization for cold coal gas. As the water gas has strict control of oxygen concentration, bio-trickling filter was designed for removing hydrogen sulfide about 1~5 g/m3 in water gas under anaerobic conditions after biological membrane hunged and domesticated. Effect of the filter operating conditions on removal efficiency was studied. Results showed that after biological membrane hanged and domesticated in 25 d, the bio-trickling filter became stable, spray liquid pH value was 2.23, ORP value was 283 mV, dissolved oxygen concentration was 0.4 mg/L, and oxidation efficiency of sulfur ion in the solution reached 94%. Under the optimal operating conditions as liquid gas ratio 0.15, aeration rate 0.088 m/s, pH value 5.0-7.0, packing height 82 cm, tower temperature 25-30 ℃, the desulfurization efficiency was 91.2% for 1 940 mg/m3 H2S in the simulated water gas consisting of CO, CO2, H2 and H2S.%水煤气中硫化氢在燃烧时会转变成二氧化硫,对环境产生污染.文章采用厌氧生物滴滤塔法对冷煤气进行脱硫处理.因煤气对氧的严格限制,通过设计生物滴滤塔,经挂膜驯化后在厌氧条件下对浓度在1~5 g/m3左右的硫化氢进行脱除处理,考察滴滤塔运行条件对脱除效果的影响.结果表明,生物挂膜25 d后,生物滴滤塔达到稳定,喷淋液pH值为2.23,ORP值为283 mV,溶解氧为0.4 mg/L,对溶液中硫离子氧化效率达到94%.滴滤塔在液气比0.15,空塔气速0.088 m/s,pH值5.0~7.0,填料高度为82 cm,塔温为25~30℃左右时,达到较优的运行条件,此时该滴滤塔对以CO、CO2、H2和1 940 mg/m3 H2S组成的模拟水煤气的脱硫效率达91.2%.

  11. Anaerobes in pleuropulmonary infections

    Directory of Open Access Journals (Sweden)

    De A

    2002-01-01

    Full Text Available A total of 76 anaerobes and 122 aerobes were isolated from 100 patients with pleuropulmonary infections, e.g. empyema (64, pleural effusion (19 and lung abscess (13. In 14% of the patients, only anaerobes were recovered, while a mixture of aerobes and anaerobes was encountered in 58%. From all cases of lung abscess, anaerobic bacteria were isolated, alone (04 or along with aerobic bacteria (13. From empyema and pleural effusion cases, 65.6% and 68.4% anaerobes were recovered respectively. Amongst anaerobes, gram negative anaerobic bacilli predominated (Prevotella melaninogenicus 16, Fusobacterium spp. 10, Bacteroides spp. 9, followed by gram positive anaerobic cocci (Peptostreptococcus spp. 31. Coliform bacteria (45 and Pseudomonas aeruginosa (42 were the predominant aerobic isolates.

  12. 1株高温型厌氧产氢细菌的分离与鉴定%Isolation and Identification of an Anaerobic Bacteria with Thermophilic Hydrogen Production

    Institute of Scientific and Technical Information of China (English)

    王娜; 肖军; 肇莹; 王红; 陈珣; 龚娜; 杨涛

    2012-01-01

    Eight stains were isolated from racks in oilfield by the way of interlayer culture and anaerobic bottle. Two strains could produce hydrogen detected by gas chromatograph and ability. ZX-1 strain had the highest yield of hydrogen which was l.Smol H2-mor' glucose at 60^. It was 0.35fjLm~0.45u.mx2n,m-8|Ain, bacilliform sharp without flagellum, gram-negative and with spore. The colonies of ZX-1 were round, creamy, ganoid, opaque. They had smooth surface, not transparent. The results of physiological biochemical test showed that gelatin liquefaction, nitrate reduction test, citrate utilization and glucose were positive, and oxidase reaction, starch hydrolysis and VP reaction were negative. The result of comparing its 16S rDNA sequence with known seguence showed that it was identified as Brevibacillus borsieleruis.%利用平面夹层和平板培养瓶厌氧法从油田区的岩石中分离到8株细菌,经气体组成及产氢能力检测,发现其中2株细菌具有产氢能力.在60℃高温条件下,菌株ZX-1的氢转化率最高,为1.8mol H2·mol-1葡萄糖.该菌为革兰氏阴性、杆菌、有芽孢、无鞭毛,菌体大小为(0.35 -0.45) μm× (2~8)μm;菌落特征表现为圆形、乳白色、表面光滑、不透明;生理生化试验结果表明,明胶液化、硝酸盐还原、柠檬酸盐利用、葡萄糖为阳性,氧化酶、淀粉水解、V-P反应为阴性,初步鉴定为短芽孢杆菌属(Brevibacillus).经16S rDNA PCR扩增及测序结果表明,该菌序列与Brevibacillus borstelensis的序列相似性达100%,进一步确定该菌为波茨坦短芽孢杆菌.

  13. Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura;

    An innovative method for biogas upgrading (i.e. CH4 content more than 90%) combines the coupling of H2, which could be produced by water electrolysis using surplus renewable electricity produced from wind mills, with the CO2 of the biogas. CO2 is biologically converted to CH4 by hydrogenotrophic...... methanogens. In this study, a novel serial biogas reactor system is presented, in which the produced biogas from the first stage reactor was introduced in the second stage, where also H2 was injected. The effects of the H2 addition on the process performance and on the microbial community were investigated...

  14. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  15. Biodegradation of 2,4-dinitrotoluene in a two stage system

    Energy Technology Data Exchange (ETDEWEB)

    VanderLoop, S.L.; Suidan, M.T.; Moteleb, M.A. [Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering; Maloney, S.W. [Army Construction Engineering Research Labs., Champaign, IL (United States)

    1994-12-31

    An anaerobic/anoxic fluidized-bed GAC bioreactor in series with an activated sludge reactor was used to treat 2,4-Dinitrotoluene (2,4-DNT). A Simulated high strength wastewater solution of 2,4-DNT, ethanol, and ethyl ether as well as carbonate buffer and nutrient solutions were fed to the anaerobic/anoxic reactor. The environment in the fluidized-bed reactor was varied to determine its effect on 2,4-DNT biodegradation. The effluent from this reactor was treated further in an activated sludge system. Methanogenic operation of the fluidized-bed resulted in stoichiometric transformation of 2,4-DNT to 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT was completely mineralized by the activated sludge. The system failed to transform the 2,4-DNT under anaerobic conditions without addition of a primary substrate. The effects of operating the first stage under nitrate reducing conditions with a primary substrate is currently being investigated.

  16. Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    Science.gov (United States)

    Bogdanoff, David W.

    2015-01-01

    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle

  17. Two-Stage Power Factor Corrected Power Supplies: The Low Component-Stress Approach

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.

    2002-01-01

    The discussion concerning the use of single-stage contra two-stage PFC solutions has been going on for the last decade and it continues. The purpose of this paper is to direct the focus back on how the power is processed and not so much as to the number of stages or the amount of power processed....... The performance of the basic DC/DC topologies is reviewed with focus on the component stress. The knowledge obtained in this process is used to review some examples of the alternative PFC solutions and compare these solutions with the basic twostage PFC solution....

  18. Generalized Yule-walker and two-stage identification algorithms for dual-rate systems

    Institute of Scientific and Technical Information of China (English)

    Feng DING

    2006-01-01

    In this paper, two approaches are developed for directly identifying single-rate models of dual-rate stochastic systems in which the input updating frequency is an integer multiple of the output sampling frequency. The first is the generalized Yule-Walker algorithm and the second is a two-stage algorithm based on the correlation technique. The basic idea is to directly identify the parameters of underlying single-rate models instead of the lifted models of dual-rate systems from the dual-rate input-output data, assuming that the measurement data are stationary and ergodic. An example is given.

  19. Two-stage bargaining with coverage extension in a dual labour market

    DEFF Research Database (Denmark)

    Roberts, Mark A.; Stæhr, Karsten; Tranæs, Torben

    2000-01-01

    in extending coverage of a minimum wage to the non-union sector. Furthermore, the union sector does not seek to increase the non-union wage to a level above the market-clearing wage. In fact, it is optimal for the union sector to impose a market-clearing wage on the non-union sector. Finally, coverage......This paper studies coverage extension in a simple general equilibrium model with a dual labour market. The union sector is characterized by two-stage bargaining whereas the firms set wages in the non-union sector. In this model firms and unions of the union sector have a commonality of interest...

  20. SQL/JavaScript Hybrid Worms As Two-stage Quines

    CERN Document Server

    Orlicki, José I

    2009-01-01

    Delving into present trends and anticipating future malware trends, a hybrid, SQL on the server-side, JavaScript on the client-side, self-replicating worm based on two-stage quines was designed and implemented on an ad-hoc scenario instantiating a very common software pattern. The proof of concept code combines techniques seen in the wild, in the form of SQL injections leading to cross-site scripting JavaScript inclusion, and seen in the laboratory, in the form of SQL quines propa- gated via RFIDs, resulting in a hybrid code injection. General features of hybrid worms are also discussed.

  1. Two stage DOA and Fundamental Frequency Estimation based on Subspace Techniques

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; Christensen, Mads Græsbøll; So, Hing-Cheung

    2012-01-01

    optimally weighted harmonic multiple signal classification (MCOW-HMUSIC) estimator is devised for the estimation of fundamental frequencies. Secondly, the spatio- temporal multiple signal classification (ST-MUSIC) estimator is proposed for the estimation of DOA with the estimated frequencies. Statistical......In this paper, the problem of fundamental frequency and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signal is addressed. The estimation procedure consists of two stages. Firstly, by making use of the subspace technique and Markov-based eigenanalysis, a multi- channel...... evaluation with synthetic signals shows the high accuracy of the proposed methods compared with their non-weighting versions....

  2. Performance of the SITP 35K two-stage Stirling cryocooler

    Science.gov (United States)

    Liu, Dongyu; Li, Ao; Li, Shanshan; Wu, Yinong

    2010-04-01

    This paper presents the design, development, optimization experiment and performance of the SITP two-stage Stirling cryocooler. The geometry size of the cooler, especially the diameter and length of the regenerator were analyzed. Operating parameters by experiments were optimized to maximize the second stage cooling performance. In the test the cooler was operated at various drive frequency, phase shift between displacer and piston, fill pressure. The experimental results indicate that the cryocooler has a higher efficiency with a performance of 0.85W at 35K with a compressor input power of 56W at a phase shift of 65°, an operating frequency of 40Hz, 1MPa fill pressure.

  3. Two-Stage Bulk Electron Heating in the Diffusion Region of Anti-Parallel Symmetric Reconnection

    CERN Document Server

    Le, Ari; Daughton, William

    2016-01-01

    Electron bulk energization in the diffusion region during anti-parallel symmetric reconnection entails two stages. First, the inflowing electrons are adiabatically trapped and energized by an ambipolar parallel electric field. Next, the electrons gain energy from the reconnection electric field as they undergo meandering motion. These collisionless mechanisms have been decribed previously, and they lead to highly-structured electron velocity distributions. Nevertheless, a simplified control-volume analysis gives estimates for how the net effective heating scales with the upstream plasma conditions in agreement with fully kinetic simulations and spacecraft observations.

  4. Use of two-stage membrane countercurrent cascade for natural gas purification from carbon dioxide

    Science.gov (United States)

    Kurchatov, I. M.; Laguntsov, N. I.; Karaseva, M. D.

    2016-09-01

    Membrane technology scheme is offered and presented as a two-stage countercurrent recirculating cascade, in order to solve the problem of natural gas dehydration and purification from CO2. The first stage is a single divider, and the second stage is a recirculating two-module divider. This scheme allows natural gas to be cleaned from impurities, with any desired degree of methane extraction. In this paper, the optimal values of the basic parameters of the selected technological scheme are determined. An estimation of energy efficiency was carried out, taking into account the energy consumption of interstage compressor and methane losses in energy units.

  5. Forecasting long memory series subject to structural change: A two-stage approach

    DEFF Research Database (Denmark)

    Papailias, Fotis; Dias, Gustavo Fruet

    2015-01-01

    A two-stage forecasting approach for long memory time series is introduced. In the first step, we estimate the fractional exponent and, by applying the fractional differencing operator, obtain the underlying weakly dependent series. In the second step, we produce multi-step-ahead forecasts...... for the weakly dependent series and obtain their long memory counterparts by applying the fractional cumulation operator. The methodology applies to both stationary and nonstationary cases. Simulations and an application to seven time series provide evidence that the new methodology is more robust to structural...... change and yields good forecasting results....

  6. Space Station Freedom carbon dioxide removal assembly two-stage rotary sliding vane pump

    Science.gov (United States)

    Matteau, Dennis

    1992-07-01

    The design and development of a positive displacement pump selected to operate as an essential part of the carbon dioxide removal assembly (CDRA) are described. An oilless two-stage rotary sliding vane pump was selected as the optimum concept to meet the CDRA application requirements. This positive displacement pump is characterized by low weight and small envelope per unit flow, ability to pump saturated gases and moderate amount of liquid, small clearance volumes, and low vibration. It is easily modified to accommodate several stages on a single shaft optimizing space and weight, which makes the concept ideal for a range of demanding space applications.

  7. Two-Stage Maximum Likelihood Estimation (TSMLE for MT-CDMA Signals in the Indoor Environment

    Directory of Open Access Journals (Sweden)

    Sesay Abu B

    2004-01-01

    Full Text Available This paper proposes a two-stage maximum likelihood estimation (TSMLE technique suited for multitone code division multiple access (MT-CDMA system. Here, an analytical framework is presented in the indoor environment for determining the average bit error rate (BER of the system, over Rayleigh and Ricean fading channels. The analytical model is derived for quadrature phase shift keying (QPSK modulation technique by taking into account the number of tones, signal bandwidth (BW, bit rate, and transmission power. Numerical results are presented to validate the analysis, and to justify the approximations made therein. Moreover, these results are shown to agree completely with those obtained by simulation.

  8. Two-Stage Electric Vehicle Charging Coordination in Low Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    Increased environmental awareness in the recent years has encouraged rapid growth of renewable energy sources (RESs); especially solar PV and wind. One of the effective solutions to compensate intermittencies in generation from the RESs is to enable consumer participation in demand response (DR......). Being a sizable rated element, electric vehicles (EVs) can offer a great deal of demand flexibility in future intelligent grids. This paper first investigates and analyzes driving pattern and charging requirements of EVs. Secondly, a two-stage charging algorithm, namely local adaptive control...

  9. Health care planning and education via gaming-simulation: a two-stage experiment.

    Science.gov (United States)

    Gagnon, J H; Greenblat, C S

    1977-01-01

    A two-stage process of gaming-simulation design was conducted: the first stage of design concerned national planning for hemophilia care; the second stage of design was for gaming-simulation concerning the problems of hemophilia patients and health care providers. The planning design was intended to be adaptable to large-scale planning for a variety of health care problems. The educational game was designed using data developed in designing the planning game. A broad range of policy-makers participated in the planning game.

  10. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard

    2007-01-01

    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hardly...... of systems like this. Contrary to the common sense in operations management, the LPT rule is able to maximize the total production volume per day. Furthermore, we show that adding one tank has considerable effects. Finally, we conclude that the optimal setup frequency for batches in the first stage...

  11. The global stability of a delayed predator-prey system with two stage-structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengyan [College of Science, Jimei University, Xiamen Fujian 361021 (China)], E-mail: wangfy68@163.com; Pang Guoping [Department of Mathematics and Computer Science, Yulin Normal University, Yulin Guangxi 537000 (China)

    2009-04-30

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  12. A Two-Stage Assembly-Type Flowshop Scheduling Problem for Minimizing Total Tardiness

    Directory of Open Access Journals (Sweden)

    Ju-Yong Lee

    2016-01-01

    Full Text Available This research considers a two-stage assembly-type flowshop scheduling problem with the objective of minimizing the total tardiness. The first stage consists of two independent machines, and the second stage consists of a single machine. Two types of components are fabricated in the first stage, and then they are assembled in the second stage. Dominance properties and lower bounds are developed, and a branch and bound algorithm is presented that uses these properties and lower bounds as well as an upper bound obtained from a heuristic algorithm. The algorithm performance is evaluated using a series of computational experiments on randomly generated instances and the results are reported.

  13. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?

    Science.gov (United States)

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr

    2012-04-01

    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  14. Two-stage continuous fermentation of Saccharomycopsis fibuligeria and Candida utilis.

    Science.gov (United States)

    Admassu, W; Korus, R A; Heimsch, R C

    1983-11-01

    Biomass production and carbohydrate reduction were determined for a two-stage continuous fermentation process with a simulated potato processing waste feed. The amylolytic yeast Saccharomycopsis fibuligera was grown in the first stage and a mixed culture of S. fibuligera and Candida utilis was maintained in the second stage. All conditions for the first and second stages were fixed except the flow of medium to the second stage was varied. Maximum biomass production occurred at a second stage dilution rate, D(2), of 0.27 h (-1). Carbohydrate reduction was inversely proportional to D(2), between 0.10 and 0.35 h (-1).

  15. Structural requirements and basic design concepts for a two-stage winged launcher system (Saenger)

    Science.gov (United States)

    Kuczera, H.; Keller, K.; Kunz, R.

    1988-10-01

    An evaluation is made of materials and structures technologies deemed capable of increasing the mass fraction-to-orbit of the Saenger two-stage launcher system while adequately addressing thermal-control and cryogenic fuel storage insulation problems. Except in its leading edges, nose cone, and airbreathing propulsion system air intakes, Ti alloy-based materials will be the basis of the airframe primary structure. Lightweight metallic thermal-protection measures will be employed. Attention is given to the design of the large lower stage element of Saenger.

  16. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    OpenAIRE

    Ladan Jamshidy; Hamid Reza Mozaffari; Payam Faraji; Roohollah Sharifi

    2016-01-01

    Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with ...

  17. An Investigation on the Formation of Carbon Nanotubes by Two-Stage Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available High density of carbon nanotubes (CNTs has been synthesized from agricultural hydrocarbon: camphor oil using a one-hour synthesis time and a titanium dioxide sol gel catalyst. The pyrolysis temperature is studied in the range of 700–900°C at increments of 50°C. The synthesis process is done using a custom-made two-stage catalytic chemical vapor deposition apparatus. The CNT characteristics are investigated by field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results showed that structural properties of CNT are highly dependent on pyrolysis temperature changes.

  18. FORMATION OF HIGHLY RESISTANT CARBIDE AND BORIDE COATINGS BY A TWO-STAGE DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    W. I. Sawich

    2011-01-01

    Full Text Available A study was made of the aspects of forming highly resistant coatings in the surface zone of tool steels and solid carbide inserts by a two-stage method. at the first stage of the method, pure Ta or Nb coatings were electrodeposited on samples of tool steel and solid carbide insert in a molten salt bath containing Ta and Nb fluorides. at the second stage, the electrodeposited coating of Ta (Nb was subjected to carburizing or boriding to form carbide (TaC, NbC or boride (TaB, NbB cladding layers.

  19. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  20. Photobiological hydrogen production.

    Science.gov (United States)

    Asada, Y; Miyake, J

    1999-01-01

    The principles and recent progress in the research and development of photobiological hydrogen production are reviewed. Cyanobacteria produce hydrogen gas using nitrogenase and/or hydrogenase. Hydrogen production mediated by native hydrogenases in cyanobacteria occurs under in the dark under anaerobic conditions by degradation of intracellular glycogen. In vitro and in vivo coupling of the cyanobacterial photosynthetic system with a clostridial hydrogenase via cyanobacterial ferredoxin was demonstrated in the presence of light. Genetic transformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum was successful; the active enzyme was expressed in PCC7942. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Coculture of Rhodobacter and Clostriudium was applied for hydrogen production from glucose. A mutant strain of Rhodobacter sphaeroides RV whose light-harvesting proteins were altered was obtained by UV irradiation. Hydrogen productivity by the mutant was improved when irradiated with monochromatic light of some wavelengths. The development of photobioreactors for hydrogen production is also reviewed.