WorldWideScience

Sample records for two-semester calculus-based introductory

  1. An Introductory Calculus-Based Mechanics Investigation

    Science.gov (United States)

    Allen, Bradley

    2017-01-01

    One challenge for the introductory physics teacher is incorporating calculus techniques into the laboratory setting. It can be difficult to strike a balance between presenting an experimental task for which calculus is essential and making the mathematics accessible to learners who may be apprehensive about applying it. One-dimensional kinematics…

  2. Promoting Metacognition in Introductory Calculus-based Physics Labs

    Science.gov (United States)

    Grennell, Drew; Boudreaux, Andrew

    2010-10-01

    In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.

  3. Development and Implementation of a Two-Semester Introductory Organic-Bioorganic Chemistry Sequence: Conclusions from the First Six Years

    Science.gov (United States)

    Goess, Brian C.

    2014-01-01

    A two-semester second-year introductory organic chemistry sequence featuring one semester of accelerated organic chemistry followed by one semester of bioorganic chemistry is described. Assessment data collected over a six-year period reveal that such a course sequence can facilitate student mastery of fundamental organic chemistry in the first…

  4. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  5. Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2009-05-01

    Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.

  6. Transversality of electromagnetic waves in the calculus-based introductory physics course

    International Nuclear Information System (INIS)

    Burko, Lior M

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes

  7. Transversality of electromagnetic waves in the calculus-based introductory physics course

    Science.gov (United States)

    Burko, Lior M.

    2008-11-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.

  8. Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs

    Science.gov (United States)

    Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy

    2010-10-01

    With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.

  9. Using Isomorphic Problems to Learn Introductory Physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  10. Can Earth Materials BE Adequately Covered in a - or Two-Semester Course?

    Science.gov (United States)

    Hefferan, K. P.; O'Brien, J.

    2007-12-01

    Traditional geology programs offer courses in mineralogy, optical mineralogy, igneous petrology, metamorphic petrology, sedimentology and economic geology. At many universities this suite of mineralogy/petrology courses has been supplanted by a one-semester or two-semester Earth Materials course. This interactive poster poses five questions to faculty and students related to the means by which Earth Materials can be delivered: 1) Available online syllabi demonstrate a wide variation in the topics addressed in Earth Materials courses; is there a standard core of key topics that must be covered and in what level of detail? 2) Can a one-semester or two- semester Earth Materials course adequately cover these topics? 3) Excellent textbooks exist in both mineralogy and in petrology; what textbooks, if any, adequately encompass Earth Materials? 4) How has the online environment changed the way in which we use textbooks in the classroom? 5) Given the evolution of geology programs, higher education and the global economy in the past twenty years, what additional changes can be anticipated with respect to delivery and demand of Earth Materials topics? Answers-- or at least related discussions-- to these questions are encouraged via verbal dialogue among participants and/or by comments written on the poster. Our goal is to solicit faculty, student and industry feedback to create a textbook, curricula and online materials that support an Earth Materials course.

  11. Mathematical Rigor in Introductory Physics

    Science.gov (United States)

    Vandyke, Michael; Bassichis, William

    2011-10-01

    Calculus-based introductory physics courses intended for future engineers and physicists are often designed and taught in the same fashion as those intended for students of other disciplines. A more mathematically rigorous curriculum should be more appropriate and, ultimately, more beneficial for the student in his or her future coursework. This work investigates the effects of mathematical rigor on student understanding of introductory mechanics. Using a series of diagnostic tools in conjunction with individual student course performance, a statistical analysis will be performed to examine student learning of introductory mechanics and its relation to student understanding of the underlying calculus.

  12. The Structure of the Introductory Economics Course in United States Colleges.

    Science.gov (United States)

    Sweeney, M. Jane Barr; And Others

    1983-01-01

    This survey examined class size, teaching methods, and the one-semester/two-semester organization of the introductory economics course. Student satisfaction with respect to their institution was also studied. (Author/RM)

  13. A many-sorted calculus based on resolution and paramodulation

    CERN Document Server

    Walther, Christoph

    1987-01-01

    A Many-Sorted Calculus Based on Resolution and Paramodulation emphasizes the utilization of advantages and concepts of many-sorted logic for resolution and paramodulation based automated theorem proving.This book considers some first-order calculus that defines how theorems from given hypotheses by pure syntactic reasoning are obtained, shifting all the semantic and implicit argumentation to the syntactic and explicit level of formal first-order reasoning. This text discusses the efficiency of many-sorted reasoning, formal preliminaries for the RP- and ?RP-calculus, and many-sorted term rewrit

  14. Using Case Studies in Calculus-based Physics

    Science.gov (United States)

    Katz, Debora M.

    2006-12-01

    Do your students believe that the physics only works in your classroom or laboratory? Or do they see that physics underlies their everyday experience? Case studies in physics help students connect physics principles to their everyday experience. For decades, case studies have been used to teach law, medicine and biology, but they are rarely used in physics. I am working on a calculus-based physics textbook for scientists and engineers. Case studies are woven into each chapter. Stop by and get a case study to test out in your classroom. I would love to get your feedback.

  15. An ellipsoidal calculus based on propagation and fusion.

    Science.gov (United States)

    Ros, L; Sabater, A; Thomas, F

    2002-01-01

    Presents an ellipsoidal calculus based solely on two basic operations: propagation and fusion. Propagation refers to the problem of obtaining an ellipsoid that must satisfy an affine relation with another ellipsoid, and fusion to that of computing the ellipsoid that tightly bounds the intersection of two given ellipsoids. These two operations supersede the Minkowski sum and difference, affine transformation and intersection tight bounding of ellipsoids on which other ellipsoidal calculi are based. Actually, a Minkowski operation can be seen as a fusion followed by a propagation and an affine transformation as a particular case of propagation. Moreover, the presented formulation is numerically stable in the sense that it is immune to degeneracies of the involved ellipsoids and/or affine relations. Examples arising when manipulating uncertain geometric information in the context of the spatial interpretation of line drawings are extensively used as a testbed for the presented calculus.

  16. Examining End-of-Chapter Problems across Editions of an Introductory Calculus-Based Physics Textbook

    Science.gov (United States)

    Xiao, Bin

    2016-01-01

    End-Of-Chapter (EOC) problems have been part of many physics education studies. Typically, only problems "localized" as relevant to a single chapter were used. This work examines how well this type of problem represents all EOC problems and whether EOC problems found in leading textbooks have changed over the past several decades. To…

  17. Motivating Calculus-Based Kinematics Instruction with Super Mario Bros

    Science.gov (United States)

    Nordine, Jeffrey C.

    2011-09-01

    High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of doing real science.2 A challenge for physics teachers is to find instructional contexts that are meaningful, accessible, and motivating for students. Today's students are spending a growing fraction of their lives interacting with virtual environments, and these environments—physically realistic or not—can provide valuable contexts for physics explorations3-5 and lead to thoughtful discussions about decisions that programmers make when designing virtual environments. In this article, I describe a problem-based approach to calculus-based kinematics instruction that contextualizes students' learning within the Super Mario Bros. video game—a game that is more than 20 years old, but still remarkably popular with today's high school and college students.

  18. From Random Walks to Brownian Motion, from Diffusion to Entropy: Statistical Principles in Introductory Physics

    Science.gov (United States)

    Reeves, Mark

    2014-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk

  19. The Effects of Two Semesters of Secondary School Calculus on Students' First and Second Quarter Calculus Grades at the University of Utah

    Science.gov (United States)

    Robinson, William Baker

    1970-01-01

    The predicted and actual achievement in college calculus is compared for students who had studied two semesters of calculus in high school. The regression equation used for prediction was calculated from the performance data of similar students who had not had high school calculus. (CT)

  20. Using an Isomorphic Problem Pair to Learn Introductory Physics: Transferring from a Two-Step Problem to a Three-Step Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation…

  1. Teaching Electrostatics and Entropy in Introductory Physics

    Science.gov (United States)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  2. Tale of Two Curricula: The Performance of 2000 Students in Introductory Electromagnetism

    Science.gov (United States)

    Kohlmyer, Matthew A.; Caballero, Marcos D.; Catrambone, Richard; Chabay, Ruth W.; Ding, Lin; Haugan, Mark P.; Marr, M. Jackson; Sherwood, Bruce A.; Schatz, Michael F.

    2009-01-01

    The performance of over 2000 students in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I)…

  3. Preliminary Investigation of Instructor Effects on Gender Gap in Introductory Physics

    Science.gov (United States)

    Kreutzer, Kimberley; Boudreaux, Andrew

    2012-01-01

    Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement…

  4. Student Selection of the Textbook for an Introductory Physics Course

    Science.gov (United States)

    Dake, L. S.

    2007-01-01

    Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods,1 which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this…

  5. Introductory speeches

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. This chapter consist of introductory commentary and 4 introductory speeches (video records): (1) Introductory speech of Vincent Pillar, Board chairman and director general of Slovak electric, Plc. (SE); (2) Introductory speech of Stefan Schmidt, director of SE - Bohunice Nuclear power plants; (3) Introductory speech of Jan Korec, Board chairman and director general of VUJE Trnava, Inc. - Engineering, Design and Research Organisation, Trnava; Introductory speech of Dietrich Kuschel, Senior vice-president of FRAMATOME ANP Project and Engineering

  6. Analyzing Conceptual Gains in Introductory Calculus with Interactively-Engaged Teaching Styles

    Science.gov (United States)

    Thomas, Matthew

    2013-01-01

    This dissertation examines the relationship between an instructional style called Interactive-Engagement (IE) and gains on a measure of conceptual knowledge called the Calculus Concept Inventory (CCI). The data comes from two semesters of introductory calculus courses (Fall 2010 and Spring 2011), consisting of a total of 482 students from the…

  7. Computer-Automated Approach for Scoring Short Essays in an Introductory Statistics Course

    Science.gov (United States)

    Zimmerman, Whitney Alicia; Kang, Hyun Bin; Kim, Kyung; Gao, Mengzhao; Johnson, Glenn; Clariana, Roy; Zhang, Fan

    2018-01-01

    Over two semesters short essay prompts were developed for use with the Graphical Interface for Knowledge Structure (GIKS), an automated essay scoring system. Participants were students in an undergraduate-level online introductory statistics course. The GIKS compares students' writing samples with an expert's to produce keyword occurrence and…

  8. Study Modules for Calculus-Based General Physics. [Includes Modules 38-40: Optical Instruments; Diffraction; and Alternating Current Circuits].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  9. Study Modules for Calculus-Based General Physics. [Includes Modules 41 and 42: Lenses and Mirrors; Relativity; and Appendix].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  10. Study Modules for Calculus-Based General Physics. [Includes Modules 6 and 7: Work and Energy; Applications of Newton's Laws].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  11. Study Modules for Calculus-Based General Physics. [Includes Modules 3-5: Planar Motion; Newton's Laws; and Vector Multiplication].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  12. Study Modules for Calculus-Based General Physics. [Includes Modules 24-26: Electric Potential; Ohm's Law; and Capacitors].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  13. A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics

    Science.gov (United States)

    Liang, Jiajuan; Pan, William S. Y.

    2009-01-01

    MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…

  14. An Excel-Aided Method for Teaching Calculus-Based Business Mathematics

    Science.gov (United States)

    Liang, Jiajuan; Martin, Linda

    2008-01-01

    Calculus-based business mathematics is a required quantitative course for undergraduate business students in most AACSB accredited schools or colleges of business. Many business students, however, have relatively weak mathematical background or even display math-phobia when presented with calculus problems. Because of the popularity of Excel, its…

  15. Assessing expertise in introductory physics using categorization task

    Directory of Open Access Journals (Sweden)

    Andrew Mason

    2011-10-01

    Full Text Available The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking three introductory physics classes, each with more than a hundred students, to categorize mechanics problems based upon similarity of solution. We compare their categorization with those of physics graduate students and faculty members. To evaluate the effect of problem context on students’ ability to categorize, two sets of problems were developed for categorization. Some problems in one set included those available from the prior study by Chi et al. We find a large overlap between calculus-based introductory students and graduate students with regard to their categorizations that were assessed as “good.” Our findings, which contrast with those of Chi et al., suggest that there is a wide distribution of expertise in mechanics among introductory and graduate students. Although the categorization task is conceptual, introductory students in the calculus-based course performed better than those in the algebra-based course. Qualitative trends in categorization of problems are similar between the non-Chi problems and problems available from the Chi study used in our study although the Chi problems used are more difficult on average.

  16. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    Science.gov (United States)

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  17. Do evidence-based active-engagement courses reduce the gender gap in introductory physics?

    Science.gov (United States)

    Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha

    2018-03-01

    Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on

  18. Introductory Overviews

    NARCIS (Netherlands)

    Jakeman, A.J.; Hamilton, S.H.; Athanasiadis, I.N.; Pierce, S.A.

    2015-01-01

    Introductory Overview articles are designed to provide introductory level background to key themes and topics that caters to the eclectic readership of EMS. It is envisaged that these articles will help to break down barriers to shared understanding and dialogue within multidisciplinary teams, and

  19. Using isomorphic problems to learn introductory physics

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2011-08-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  20. Using isomorphic problems to learn introductory physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  1. Introductory remarks

    NARCIS (Netherlands)

    Kiefer, Friedemann; Schulte-Merker, Stefan

    2014-01-01

    This introductory section briefly highlights the subsequent chapters in the context of recent findings and open questions in lymphatic vessel biology. It aims to provide a quick overview and orientation in the contents of this monograph collection.

  2. Student Selection of the Textbook for an Introductory Physics Course

    Science.gov (United States)

    Dake, L. S.

    2007-10-01

    Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods, which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this factor, so I turned the textbook selection into a class project. The students unanimously chose one textbook, which I have now successfully used for three years. The project was decidedly worthwhile, and I gained considerable insight into what students prefer in a textbook.

  3. Introductory Punjabi.

    Science.gov (United States)

    Bahri, Ujjal Singh; Walia, Paramjit Singh

    This introductory text in Punjabi (also spelled Panjabi) is intended primarily for those whose mother tongue is not Punjabi but are native speakers of other Indian languages. Some familiarity with the Punjabi cultural items is presupposed. The non-Indian may, however, also be able to use this text with profit since the lessons are graded. The…

  4. Study Modules for Calculus-Based General Physics. [Includes Modules 18-20: Sound; Temperature, Heat, and Thermodynamics: First Law; and Kinetic Theory of Gases].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  5. Study Modules for Calculus-Based General Physics. [Includes Modules 15-17: Gravitation; Simple Harmonic Motion; and Traveling Waves; plus a Partial Derivatives Review].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  6. Study Modules for Calculus-Based General Physics. [Includes Modules 35-37: Reflection and Refraction; Electric Fields and Potentials from Continuous Charge Distributions; and Maxwell's Predictions].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  7. Study Modules for Calculus-Based General Physics. [Includes Modules 31-34: Inductance; Wave Properties of Light; Interference; and Introduction to Quantum Physics].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is Part of a series of 41 Calculus Based Physics (CBP) modules totaling about 1,000 Pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized courses in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  8. Study Modules for Calculus-Based General Physics. [Includes Modules 8-10: Conservation of Energy; Impulse and Momentum; and Rotational Motion].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  9. Study Modules for Calculus-Based General Physics. [Includes Modules 21-23: Second Law and Entropy; Coulomb's Law and the Electric Field; and Flux and Gauss' Law].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  10. Study Modules for Calculus-Based General Physics. [Includes Modules 11-14: Collisions; Equilibrium of Rigid Bodies; Rotational Dynamics; and Fluid Mechanics].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  11. Study Modules for Calculus-Based General Physics. [Includes Modules 1 and 2: Dimensions and Vector Addition; Rectilinear Motion; plus a Trigonometry and Calculus Review].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  12. Study Modules for Calculus-Based General Physics. [Includes Modules 27-30: Direct-Current Circuits; Magnetic Forces; Ampere's Law; and Faraday's Law].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules indlude study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  13. Evolution of Student Knowledge in a Traditional Introductory Classroom

    Science.gov (United States)

    Sayre, Eleanor C.; Heckler, Andrew F.

    2008-10-01

    In the physics education research community, a common format for evaluation is pre- and post-tests. In this study, we collect student test data many times throughout a course, allowing for the measurement of the changes of student knowledge with a time resolution on the order of a few days. The data cover the first two quarters (mechanics, E&M) of a calculus-based introductory sequence populated primarily by first- and second-year engineering majors. To avoid the possibility of test-retest effects, separate and quasi-random subpopulations of students are evaluated every week of the quarter on a variety of tasks. Unsurprisingly for a traditional introductory course, there is little change on many conceptual questions. However, the data suggest that some student ideas peak and decay rapidly during a quarter, a pattern consistent with memory research yet unmeasurable by pre-/post-testing.

  14. Introductory Physics Gender Gaps: Pre- and Post-Studio Transition

    Science.gov (United States)

    Kohl, Patrick B.; Kuo, H. Vincent

    2009-11-01

    Prior work has characterized the gender gaps present in college-level introductory physics courses. Such work has also shown that research-based interactive engagement techniques can reduce or eliminate these gender gaps. In this paper, we study the gender gaps (and lack thereof) in the introductory calculus-based electricity and magnetism course at the Colorado School of Mines. We present eight semesters' worth of data, totaling 2577 students, with four semesters preceding a transition to Studio physics, and four following. We examine gender gaps in course grades, DFW (D grade, fail, or withdrawal) rates, and normalized gains on the Conceptual Survey of Electricity and Magnetism (CSEM), and consider factors such as student ACT scores and grades in prior math classes. We find little or no gap in male/female course grades and DFW rates, but substantial gaps in CSEM gains that are reduced somewhat by the transition to Studio physics.

  15. Examining issues of underrepresented minority students in introductory physics

    Science.gov (United States)

    Watkins, Jessica Ellen

    In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

  16. Introductory Comments

    Directory of Open Access Journals (Sweden)

    Jolanta Sujecka

    2016-12-01

    Full Text Available Introductory Comments The fifth yearly volume of the Colloquia Humanistica comprises a thematic section on Nation, Natsiya, Ethnie. The subject it discusses has thus far received little attention as a research problem in the Slavia Orthodoxa, the Slavia Romana, the Balkans but also in Central and Eastern Europe.   Uwagi wstępne Piąty numer rocznika "Colloquia Humanistica" przedstawia dział tematyczny, poświęcony kategoriom narodu, nacji i etni. Temat ten, w takiej perspektywie, którą proponujemy, nie spotkał się dotąd z należytym namysłem badawczym w sferze Slavia Otrhodoxa, Slavia Romana i na Bałkanach, jak też w Europie Środkowo-Wschodniej.

  17. Introductory Comments

    Directory of Open Access Journals (Sweden)

    Jolanta Sujecka

    2017-11-01

    Full Text Available Introductory Comments The sixth issue (not just in the Thematic Section is devoted to the borders of civilization in our memory, in culture, in art, in literature, in the arrangement of political objectives. Both their demarcation and their crossing is a matter of the objectives we can and want to set ourselves in the context of the order that exists and into which we try to fit, transforming it or levelling. The value of this survey of  “images of borders” is its setting in such varied material, owing to which the theoretical speculations gain a representative illustration and, at the same time, a guarantee of being rooted, even if it is only a “contact zone”.   Wprowadzenie Szósty numer (nie tylko sekcja tematyczna jest poświęcony kwestii granic cywilizacji w naszej pamięci, kulturze, sztuce, literaturze, w definiowaniu celów politycznych. Zarówno ich wyznaczanie, jak i przekraczanie, jest kwestią celów, jakie możemy i chcemy postawić sobie w kontekście istniejącego ładu, w który staramy się wpisać, przekształcając go lub dostosowując się do niego. Wartością niniejszego przeglądu "obrazów granic" jest przedstawienie ich poprzez tak zróżnicowany materiał, dzięki czemu rozważania teoretyczne zyskują reprezentatywną ilustrację, a zarazem gwarancję zakorzenienia, nawet jeśli będzie to tylko "sfera kontaktu".

  18. A Tale of Two Curricula: The performance of two thousand students in introductory electromagnetism

    Science.gov (United States)

    Schatz, Michael; Kohlmyer, Matthew; Caballero, Marcos; Chabay, Ruth; Sherwood, Bruce; Catrambone, Richard; Marr, Marcus; Haugen, Mark; Ding, Lin

    2009-03-01

    Student performance in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I) curriculum. At each university, post-instruction BEMA test averages were significantly higher for the M&I curriculum than for the traditional curriculum. The differences in post-test averages cannot be explained by differences in variables such as pre-instruction BEMA scores, grade point average, or SAT scores.

  19. Comparing the efficacy of multimedia modules with traditional textbooks for learning introductory physics content

    Science.gov (United States)

    Stelzer, Timothy; Gladding, Gary; Mestre, José P.; Brookes, David T.

    2009-02-01

    We compared the efficacy of multimedia learning modules with traditional textbooks for the first few topics of a calculus-based introductory electricity and magnetism course. Students were randomly assigned to three groups. One group received the multimedia learning module presentations, and the other two received the presentations via written text. All students were then tested on their learning immediately following the presentations as well as 2weeks later. The students receiving the multimedia learning modules performed significantly better on both tests than the students experiencing the text-based presentations.

  20. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  1. Effect of written presentation on performance in introductory physics

    Directory of Open Access Journals (Sweden)

    Shawn Ballard

    2010-10-01

    Full Text Available This study examined the written work of students in the introductory calculus-based electricity and magnetism course at the University of Arkansas. The students’ solutions to hourly exams were divided into a small set of countable features organized into three major categories, mathematics, language, and graphics. Each category was further divided into subfeatures. The total number of features alone explained more than 30% of the variance in exam scores and from 9% to 15% of the variance in conceptual posttest scores. If all features and subfeatures are used, between 44% and 49% of the variance in exam scores is explained and between 22% and 28% of the variance in conceptual posttest scores. The use of language is consistently positively correlated with both exam performance and conceptual understanding.

  2. Investigating the use of mastery-style online homework exercises in introductory algebra-based mechanics in a controlled clinical study

    Science.gov (United States)

    Evans, William R.; Selen, Mats A.

    2017-12-01

    Homework in introductory physics represents an important part of a student's learning experience; therefore, choosing the manner in which homework is presented merits investigation. We performed three rounds of clinical trials comparing the effects of mastery-style homework vs traditional-style homework with students in both algebra-based and calculus-based introductory mechanics. Results indicate a benefit from mastery-style over traditional-style homework, principally for weaker students who are less familiar with the material being covered and on questions that are nearer transfer to the study materials.

  3. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    Science.gov (United States)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  4. Impacts of curricular change: Implications from 8 years of data in introductory physics

    Science.gov (United States)

    Pollock, Steven J.; Finkelstein, Noah

    2013-01-01

    Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.

  5. Examining gender differences on FCI performance in algebra and calculus based physics courses

    Science.gov (United States)

    Kreutzer, Kimberley; Boudreaux, Andrew

    2009-05-01

    The Force Concept Inventory (FCI) has been widely used to asses student understanding of Newtonian principles. Studies have shown a marked difference in the performance of men and women on both pre- and post-tests [1,2] and also indicate that experiential based instruction may lead to a reduction in this gender gap [1,3]. This poster presents FCI data collected at Western Washington University. Initial analysis of gender differences are consistent with those reported nationally. We also discuss factors that may contribute to the differences in performance and propose instructional strategies that are designed to address the gender gap. [4pt] [1] M. Lorenzo, et. al., ``Reducing the gender gap in the physics classroom,'' AJP 74(2), 118-122 (2006) [0pt] [2] J. Docktor and K. Heller, ``Gender Differences in Both Force Concept Inventory and Introductory Physics Performance,'' Proceedings at the 2008 PERC [0pt] [3] S. Pollack, et. al., ``Reducing the gender gap in the physics classroom: How sufficient is interactive engagement?'' PRST-PER 3 (2007)

  6. Implementing ILDs and Assessment in Small-enrollment, Calculus-based Physics Classes -- Lessons, Observations and Open Questions

    Science.gov (United States)

    Mason-McCaffrey, Deborah

    2011-04-01

    At Salem State, we offer a Physics minor, but most of our teaching load is support courses for other science majors and a lab sequence which satisfies the University's core education requirement. In three years of using assessments and ILDs in small-enrollment calculus-based Physics classes, there has been a significant implementation learning curve, there are encouraging results, a few cautions, and still some open questions to report. ILDs can be highly effective teaching tools. They do require significant advance preparation as well as a safe environment for student participation. Motivating students to do their best on assessment pre- and post-tests can also be difficult. Strategies for motivating assessment performance, experiments using clickers to encourage participation in ILDs, and modifying and developing home-grown ILDs are discussed.

  7. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  8. Topic Order in Introductory Physics and its Impact on the STEM Curricular Ladder

    Directory of Open Access Journals (Sweden)

    Teresa L Larkin

    2017-02-01

    Full Text Available Introductory physics courses are an important rung on the curricular ladder in STEM. These courses help to strengthen students critical thinking and problem solving skills while simultaneously introducing them to many topics they will explore in more detail in later courses in physics and engineering. For these reasons, introductory physics is a required element on the curricular ladder. Most often, introductory physics is offered as a two-semester sequence with basic mechanics being taught in the first semester and electricity and magnetism in the second. In fact, this curricular sequence has not been altered in decades. Is there a reason for this? There are many other enduring questions that arise pertaining to these foundation courses in physics. These questions include: Does taking the introductory course sequence “out of order” have an impact on student learning in physics? What topics should be taught? When should these topics be taught? What topics could be left out? The list of questions is essentially endless. This paper will address some of these questions in part, through a brief discussion on student learning in a second-semester algebra-based physics course. Connections will also be made to the broader curricular ladder in STEM. To this end, an illustration that makes connections to an engineering statics course will be presented. This discussion will conclude by presenting some broader implications for the larger STEM communities.

  9. Effectiveness of Workshop Style Teaching in Students' Learning of Introductory Electricity and Magnetism

    Science.gov (United States)

    Mehta, Nirav; Cheng, Kelvin

    2012-10-01

    We have developed an interactive workshop-style course for our introductory calculus-based physics sequence at Trinity University. Lecture is limited to approximately 15 min. at the beginning of class, and the remainder of the 50-min. class is devoted to inquiry-based activities and problem solving. So far, lab is done separately and we have not incorporated the lab component into the workshop model. We use the Brief Electricity and Magnetism Assessment (BEMA) to compare learning gains between the workshop and traditional lecture-based course for the Spring 2012 semester. Both the workshop and lecture courses shared the same inquiry-based lab component that involved pre-labs, prediction-observation and post-lab activities. Our BEMA results indicate statistically significant improvement in overall learning gains compared to the traditional course. We compare our workshop BEMA scores both to traditional lecture scores here at Trinity and to those from other institutions.

  10. Assessing the Effectiveness of Studio Physics in Introductory-Level Courses at Georgia State University

    Science.gov (United States)

    Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian

    2009-11-01

    Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.

  11. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    Science.gov (United States)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  12. Preliminary investigation of instructor effects on gender gap in introductory physics

    Directory of Open Access Journals (Sweden)

    Kimberley Kreutzer1

    2012-05-01

    Full Text Available Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement (IE techniques. In two of the IE course sections, however, the gains of female students were comparable to those of male students. Classroom observations of the course sections involved were made over an extended period. In this paper, we characterize the observed instructor-student interactions using a framework from educational psychology referred to as wise schooling. Results suggest that instructor practices affect differential learning, and that wise schooling techniques may constitute an effective strategy for promoting gender equity in the physics classroom.

  13. Gender Differences in Both Force Concept Inventory and Introductory Physics Performance

    Science.gov (United States)

    Docktor, Jennifer; Heller, Kenneth

    2008-10-01

    We present data from a decade of introductory calculus-based physics courses for science and engineering students at the University of Minnesota taught using cooperative group problem solving. The data include 40 classes with more than 5500 students taught by 22 different professors. The average normalized gain for males is 0.4 for these large classes that emphasized problem solving. Female students made up approximately 20% of these classes. We present relationships between pre and post Force Concept Inventory (FCI) scores, course grades, and final exam scores for females and males. We compare our results with previous studies from Harvard [2] and the University of Colorado [3,4]. Our data show there is a significant gender gap in pre-test FCI scores that persists post-instruction although there is essentially no gender difference in course performance as determined by course grade.

  14. Preliminary investigation of instructor effects on gender gap in introductory physics

    Science.gov (United States)

    Kreutzer, Kimberley; Boudreaux, Andrew

    2012-06-01

    Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement (IE) techniques. In two of the IE course sections, however, the gains of female students were comparable to those of male students. Classroom observations of the course sections involved were made over an extended period. In this paper, we characterize the observed instructor-student interactions using a framework from educational psychology referred to as wise schooling. Results suggest that instructor practices affect differential learning, and that wise schooling techniques may constitute an effective strategy for promoting gender equity in the physics classroom.

  15. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    Science.gov (United States)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  16. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  17. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  18. Investigating and improving introductory physics students’ understanding of symmetry and Gauss’s law

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2018-01-01

    We discuss an investigation of student difficulties with symmetry and Gauss’s law and how the research on students’ difficulties was used as a guide to develop a tutorial related to these topics to help students in the calculus-based introductory physics courses learn these concepts. During the development of the tutorial, we interviewed students individually at various stages of development and administered written tests in the free-response and multiple-choice formats on these concepts to learn about common student difficulties. We also obtained feedback from physics instructors who teach introductory physics courses regularly in which these concepts were covered. The students in several ‘equivalent’ sections worked on the tutorial after traditional lecture-based instruction. We discuss the performance of students on the written pre-test (administered after lecture-based instruction in relevant concepts) and post-test given after students worked on the tutorial. We find that on the pre-test, all sections of the course performed comparably regardless of the instructor. Also, on average, student performance on the post-test after working on the tutorial is significantly better than on the pre-test after lecture-based instruction. We also compare the post-test performance of introductory students in sections of the course in which the tutorial was used versus not used and find that sections in which students engaged with the tutorial outperformed those in which students did not engage with it.

  19. Introductory real analysis

    CERN Document Server

    Kolmogorov, A N; Silverman, Richard A

    1975-01-01

    Self-contained and comprehensive, this elementary introduction to real and functional analysis is readily accessible to those with background in advanced calculus. It covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, and much more. 350 problems. 1970 edition.

  20. Introductory photoemission theory

    International Nuclear Information System (INIS)

    Arai, Hiroko; Fujikawa, Takashi

    2010-01-01

    An introductory review is presented on the basis of many-body scattering theory. Some fundamental aspects of photoemission theory are discussed in detail. A few applications are also discussed; photoelectron diffraction, depth distribution function and multi-atom resonant photoemission are also discussed briefly. (author)

  1. Situated Self-efficacy in Introductory Physics Students

    Science.gov (United States)

    Henderson, Rachel; DeVore, Seth; Michaluk, Lynnette; Stewart, John

    2017-01-01

    Within the general university environment, students' perceived self-efficacy has been widely studied and findings suggest it plays a role in student success. The current research adapted a self-efficacy survey, from the ``Self-Efficacy for Learning Performance'' subscale of the Motivated Learning Strategies Questionnaire and administered it to the introductory, calculus-based physics classes (N=1005) over the fall 2015 and spring 2016 semesters. This assessment measured students' self-efficacy in domains including the physics class, other science and mathematics classes, and their intended future career. The effect of gender was explored with the only significant gender difference (p gender difference was not explained by a student's performance which was measured by test average. However, a mediation analysis showed that students' overall academic self-efficacy, measured by their math and science self-efficacy, acts as a mediator for the effect of test average on self-efficacy towards the physics class domain. This mediation effect was significant for both female (p < . 01) and male students (p < . 001) however, it was more pronounced for male students.

  2. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  3. Connecting Symbolic Integrals to Physical Meaning in Introductory Physics

    Science.gov (United States)

    Amos, Nathaniel R.

    This dissertation presents a series of studies pertaining to introductory physics students' abilities to derive physical meaning from symbolic integrals (e.g., the integral of vdt) and their components, namely differentials and differential products (e.g., dt and vdt, respectively). Our studies focus on physical meaning in the form of interpretations (e.g., "the total displacement of an object") and units (e.g., "meters"). Our first pair of studies independently attempted to identify introductory-level mechanics students' common conceptual difficulties with and unproductive interpretations of physics integrals and their components, as well as to estimate the frequencies of these difficulties. Our results confirmed some previously-observed incorrect interpretations, such as the notion that differentials are physically meaningless; however, we also uncovered two new conceptualizations of differentials, the "rate" (differentials are "rates" or "derivatives") and "instantaneous value" (differentials are values of physical variables "at an instant") interpretations, which were exhibited by more than half of our participants at least once. Our next study used linear regression analysis to estimate the strengths of the inter-connections between the abilities to derive physical meaning from each of differentials, differential products, and integrals in both first- and second-semester, calculus-based introductory physics. As part of this study, we also developed a highly reliable, multiple choice assessment designed to measure students' abilities to connect symbolic differentials, differential products, and integrals with their physical interpretations and units. Findings from this study were consistent with statistical mediation via differential products. In particular, students' abilities to extract physical meaning from differentials were seen to be strongly related to their abilities to derive physical meaning from differential products, and similarly differential

  4. Characterizing, modeling, and addressing gender disparities in introductory college physics

    Science.gov (United States)

    Kost-Smith, Lauren Elizabeth

    2011-12-01

    The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self

  5. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  6. Introductory graph theory

    CERN Document Server

    Chartrand, Gary

    1984-01-01

    Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap

  7. Introductory statistical inference

    CERN Document Server

    Mukhopadhyay, Nitis

    2014-01-01

    This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist

  8. Teaching assistants’ performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2016-05-01

    Full Text Available The Force Concept Inventory (FCI has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students’ alternate conceptions in mechanics. Instruction is unlikely to be effective if instructors do not know the common alternate conceptions of introductory physics students and explicitly take into account students’ initial knowledge states in their instructional design. Here, we discuss research involving the FCI to evaluate one aspect of the pedagogical content knowledge of teaching assistants (TAs: knowledge of introductory student alternate conceptions in mechanics as revealed by the FCI. For each item on the FCI, the TAs were asked to identify the most common incorrect answer choice of introductory physics students. This exercise was followed by a class discussion with the TAs related to this task, including the importance of knowing student difficulties in teaching and learning. Then, we used FCI pretest and post-test data from a large population (∼900 of introductory physics students to assess the extent to which TAs were able to identify alternate conceptions of introductory students related to force and motion. In addition, we carried out think-aloud interviews with graduate students who had more than two semesters of teaching experience in recitations to examine how they reason about the task. We find that while the TAs, on average, performed better than random guessing at identifying introductory students’ difficulties with FCI content, they did not identify many common difficulties that introductory physics students have after traditional instruction. We discuss specific alternate conceptions, the extent to which TAs are able to identify them, and results from the think-aloud interviews that provided valuable information

  9. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  10. Modern introductory physics

    CERN Document Server

    Holbrow, Charles H; Amato, Joseph C; Galvez, Enrique; Parks, M. Elizabeth

    2010-01-01

    Modern Introductory Physics, 2nd Edition, by Charles H. Holbrow, James N. Lloyd, Joseph C. Amato, Enrique Galvez, and Beth Parks, is a successful innovative text for teaching introductory college and university physics. It is thematically organized to emphasize the physics that answers the fundamental question: Why do we believe in atoms and their properties?  The book provides a sound introduction to basic physical concepts with particular attention to the nineteenth- and twentieth-century physics underlying our modern ideas of atoms and their structure.  After a review of basic Newtonian mechanics, the book discusses early physical evidence that matter is made of atoms.  With a simple model of the atom Newtonian mechanics can explain the ideal gas laws, temperature, and viscosity.  Basic concepts of electricity and magnetism are introduced along with a more complicated model of the atom to account for the observed electrical properties of atoms. The physics of waves---particularly light and x-rays---an...

  11. Analysis of student engagement in an online annotation system in the context of a flipped introductory physics class

    Directory of Open Access Journals (Sweden)

    Kelly Miller

    2016-12-01

    Full Text Available We discuss student participation in an online social annotation forum over two semesters of a flipped, introductory physics course at Harvard University. We find that students who engage in high-level discussion online, especially by providing answers to their peers’ questions, make more gains in conceptual understanding than students who do not. This is true regardless of students’ physics background. We find that we can steer online interaction towards more productive and engaging discussion by seeding the discussion and managing the size of the sections. Seeded sections produce higher quality annotations and a greater proportion of generative threads than unseeded sections. Larger sections produce longer threads; however, beyond a certain section size, the quality of the discussion decreases.

  12. Introductory Statistics in the Garden

    Science.gov (United States)

    Wagaman, John C.

    2017-01-01

    This article describes four semesters of introductory statistics courses that incorporate service learning and gardening into the curriculum with applications of the binomial distribution, least squares regression and hypothesis testing. The activities span multiple semesters and are iterative in nature.

  13. Introductory statistics for engineering experimentation

    CERN Document Server

    Nelson, Peter R; Coffin, Marie

    2003-01-01

    The Accreditation Board for Engineering and Technology (ABET) introduced a criterion starting with their 1992-1993 site visits that "Students must demonstrate a knowledge of the application of statistics to engineering problems." Since most engineering curricula are filled with requirements in their own discipline, they generally do not have time for a traditional two semesters of probability and statistics. Attempts to condense that material into a single semester often results in so much time being spent on probability that the statistics useful for designing and analyzing engineering/scientific experiments is never covered. In developing a one-semester course whose purpose was to introduce engineering/scientific students to the most useful statistical methods, this book was created to satisfy those needs. - Provides the statistical design and analysis of engineering experiments & problems - Presents a student-friendly approach through providing statistical models for advanced learning techniques - Cove...

  14. A MOOC for Introductory Physics

    Science.gov (United States)

    Schatz, Michael

    2014-03-01

    We describe an effort to develop and to implement a college-level introductory physics (mechanics) MOOC that offers bona fide laboratory experiences. We also discuss efforts to use MOOC curricular materials to ``flip'' the classroom in a large lecture introductory physics course offered on-campus at Georgia Tech. Preliminary results of assessments and surveys from both MOOC and on-campus students will be presented.

  15. News clippings for introductory astronomy

    Science.gov (United States)

    Bobrowsky, Matthew

    1999-09-01

    Most students entering our introductory astronomy course for nonscience majors arrive not merely lacking scientific facts-they also have misconceptions about the nature of science, and many have a handicapping ``science anxiety'' (in addition to math anxiety). So I have added a ``current science'' requirement to our introductory course. Each student must compile a file of five astronomy news articles taken from readily available sources.

  16. Examining students' views about validity of experiments: From introductory to Ph.D. students

    Science.gov (United States)

    Hu, Dehui; Zwickl, Benjamin M.

    2018-06-01

    We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.

  17. Intuitive introductory statistics

    CERN Document Server

    Wolfe, Douglas A

    2017-01-01

    This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course. The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonp...

  18. Toward equity through participation in Modeling Instruction in introductory university physics

    Science.gov (United States)

    Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla

    2010-06-01

    We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women

  19. Toward equity through participation in Modeling Instruction in introductory university physics

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2010-05-01

    Full Text Available We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI at Florida International University (FIU, a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women. This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C− or better by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001, where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students

  20. Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes

    Science.gov (United States)

    Ramos, Roberto

    We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.

  1. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    Science.gov (United States)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  2. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  3. Semantics in Teaching Introductory Physics.

    Science.gov (United States)

    Williams, H. Thomas

    1999-01-01

    Contends that the large vocabulary used for precise purposes in physics contains many words that have related but potentially confusing meanings in everyday usage. Analyzes the treatment of Newton's Laws of Motion in several well-known introductory textbooks for evidence of inconsistent language use. Makes teaching suggestions. (Contains 11…

  4. Teaching abstraction in introductory courses

    NARCIS (Netherlands)

    Koppelman, Herman; van Dijk, Betsy

    Abstraction is viewed as a key concept in computer science. It is not only an important concept but also one that is difficult to master. This paper focuses on the problems that novices experience when they first encounter this concept. Three assignments from introductory courses are analyzed, to

  5. Microcomputers in the Introductory Laboratory.

    Science.gov (United States)

    Bare, John K.

    1982-01-01

    A microcomputer was used successfully to replicate Sternberg's 1966 study of retrieval from short-term memory and Sperling's 1960 study on sensory or iconic memory. Computers with a capacity for measuring reaction time are useful in the laboratory for introductory psychology courses. (SR)

  6. Failure Rates in Introductory Programming

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2007-01-01

    It is a common conception that CS1 is a very difficult course and that failure rates are high. However, until now there has only been anecdotal evidence for this claim. This article reports on a survey among institutions around the world regarding failure rates in introductory programming courses...

  7. Plasma medicine: an introductory review

    NARCIS (Netherlands)

    Kong, M.G.; Kroesen, G.M.W.; Morfill, G.; Nosenko, T.; Shimizu, T.; Dijk, van J.; Zimmermann, J.L.

    2009-01-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry,

  8. Concept Maps in Introductory Statistics

    Science.gov (United States)

    Witmer, Jeffrey A.

    2016-01-01

    Concept maps are tools for organizing thoughts on the main ideas in a course. I present an example of a concept map that was created through the work of students in an introductory class and discuss major topics in statistics and relationships among them.

  9. Computational Inquiry in Introductory Statistics

    Science.gov (United States)

    Toews, Carl

    2017-01-01

    Inquiry-based pedagogies have a strong presence in proof-based undergraduate mathematics courses, but can be difficult to implement in courses that are large, procedural, or highly computational. An introductory course in statistics would thus seem an unlikely candidate for an inquiry-based approach, as these courses typically steer well clear of…

  10. Student Misconceptions in Introductory Biology.

    Science.gov (United States)

    Fisher, Kathleen M.; Lipson, Joseph I.

    Defining a "misconception" as an error of translation (transformation, correspondence, interpolation, interpretation) between two different kinds of information which causes students to have incorrect expectations, a Taxonomy of Errors has been developed to examine student misconceptions in an introductory biology course for science…

  11. MRI Experiments for Introductory Physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-01-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…

  12. Tale of two curricula: The performance of 2000 students in introductory electromagnetism

    Directory of Open Access Journals (Sweden)

    Matthew A. Kohlmyer

    2009-10-01

    Full Text Available The performance of over 2000 students in introductory calculus-based electromagnetism (E&M courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA. Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I curriculum. At each university, postinstruction BEMA test averages were significantly higher for the M&I curriculum than for the traditional curriculum. The differences in post-test averages cannot be explained by differences in variables such as preinstruction BEMA scores, grade point average, or SAT Reasoning Test (SAT scores. BEMA performance on categories of items organized by subtopic was also compared at one of the universities; M&I averages were significantly higher in each topic. The results suggest that the M&I curriculum is more effective than the traditional curriculum at teaching E&M concepts to students, possibly because the learning progression in M&I reorganizes and augments the traditional sequence of topics, for example, by increasing early emphasis on the vector field concept and by emphasizing the effects of fields on matter at the microscopic level.

  13. From F = ma to flying squirrels: curricular change in an introductory physics course.

    Science.gov (United States)

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.

  14. Ups and downs of using ``kitchen sink'' experiments in an introductory fluid mechanics class

    Science.gov (United States)

    Kaye, Nigel

    2015-11-01

    Both positive and negative experiences from two semesters of using take home ``kitchen sink'' experiments in an introductory civil engineering fluid mechanics class are reported. Four different experimental assignments were given each semester to groups of four students. The students were tasked with using common household equipment to measure various properties of fluids or fluid flows. These included the density of cooking oil, the exit velocity from a garden hose, and the mass flux of air from a compressed air can. Students were given minimal guidance on how to do the measurements and each measurement had to be done in at least two different ways. The labs were used to relate their course work to everyday situations and was also used as a platform for discussing experimental uncertainty and error propagation in calculations. In general the students successfully completed each task using at least one method. Finding a second method sometimes proved problematic. The presentation will discuss the logistics of running the program and the positive and negative aspects from the instructor viewpoint. A summary of student feedback on the labs will also be presented. Links to resources for those interested in implementing such a program will be provided.

  15. CAS Introductory Course in Italy

    CERN Multimedia

    2008-01-01

    The CERN Accelerator School’s introductory course is a great success. This year the CERN Accelerator School held its "Introduction to Accelerator Physics" course in Frascati, Italy, from 2-14 November in collaboration with the University of Rome "La Sapienza" and the INFN Frascati National Laboratory. The Introductory level course is particularly important since, for the majority of participants, it is the first opportunity to discover the various aspects of accelerator physics. For this school the programme had been significantly revised in order to take into account the new trends currently being developed in the field, thus putting more emphasis on linacs, synchrotron light sources and free-electron lasers. The school was a resounding success with 115 participants of more than 23 nationalities. Feedback from the students praised the expertise of the lecturers, the high standard of the lectures as well as the excellent organizati...

  16. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2013-10-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem. The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few

  17. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies

  18. Using R for introductory statistics

    CERN Document Server

    Verzani, John

    2014-01-01

    The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version.See What's New in the Second Edition:Increased emphasis on more idiomatic R provides a grounding in the functionality of base R.Discussions of the use of RStudio helps new

  19. A Readability Analysis of Selected Introductory Economics.

    Science.gov (United States)

    Gallagher, Daniel J.; Thompson, G. Rodney

    1981-01-01

    To aid secondary school and college level economics teachers as they select textbooks for introductory economics courses, this article recounts how teachers can use the Flesch Reading Ease Test to measure readability. Data are presented on application of the Flesch Reading Ease Test to 15 introductory economics textbooks. (Author/DB)

  20. Introductory Guide to European Corporate Law

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    Introductory Guide to European Corporate Law presents in an easily comprehensible and accessible way the main features and principles that govern European corporate law.......Introductory Guide to European Corporate Law presents in an easily comprehensible and accessible way the main features and principles that govern European corporate law....

  1. Psychology Ethics in Introductory Psychology Textbooks

    Science.gov (United States)

    Zucchero, Renee' A.

    2011-01-01

    Previous research revealed that introductory psychology textbooks included limited information about psychology ethics. This study reviewed 48 current introductory psychology textbooks for research and other APA ethics content. These textbooks included slightly more total ethics content and were more thorough in their review of research ethics…

  2. The Memorability of Introductory Psychology Revisited

    Science.gov (United States)

    Landrum, R. Eric; Gurung, Regan A. R.

    2013-01-01

    Almost 2 million students enroll in introductory psychology each year in the United States, making it the second most popular undergraduate course in the nation. Introductory psychology not only serves as a prerequisite for other courses in the discipline but for some students this course provides their only exposure to psychological science.…

  3. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  4. MRI experiments for introductory physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-04-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly relevant application of modern physics, especially with so many of our students planning to pursue a career in medicine. This article provides an overview of the physics of MRI and gives advice on how physics teachers can introduce this topic. Also included are some demonstration activities and a discussion of a desktop MRI apparatus that may be used by students in the lab or as a demo.

  5. Quantitative Activities for Introductory Astronomy

    Science.gov (United States)

    Keohane, Jonathan W.; Bartlett, J. L.; Foy, J. P.

    2010-01-01

    We present a collection of short lecture-tutorial (or homework) activities, designed to be both quantitative and accessible to the introductory astronomy student. Each of these involves interpreting some real data, solving a problem using ratios and proportionalities, and making a conclusion based on the calculation. Selected titles include: "The Mass of Neptune” "The Temperature on Titan” "Rocks in the Early Solar System” "Comets Hitting Planets” "Ages of Meteorites” "How Flat are Saturn's Rings?” "Tides of the Sun and Moon on the Earth” "The Gliese 581 Solar System"; "Buckets in the Rain” "How Hot, Bright and Big is Betelgeuse?” "Bombs and the Sun” "What Forms Stars?” "Lifetimes of Cars and Stars” "The Mass of the Milky” "How Old is the Universe?” "Is The Universe Speeding up or Slowing Down?"

  6. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    Science.gov (United States)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  7. An Introductory Course: The Vector Space Theory of Matter

    Science.gov (United States)

    Matsen, F. A.

    1972-01-01

    A course for superior freshmen for both science and liberal arts majors that satisfies the freshman chemistry requirement is discussed. It has been taught for six years and utilizes the new math'' which is based on the elementary concept of a set. A syllabus for the two semesters is included. (DF)

  8. Reducing gender differences in performance in introductory college physics through values affirmation

    Science.gov (United States)

    Kost-Smith, Lauren

    2011-04-01

    Despite males and females being equally represented at the college level in several STEM disciplines (including biology, chemistry and mathematics), females continue to be under-represented in physics. Our research documents and addresses this participation gender gap in the introductory, calculus-based physics courses at the University of Colorado. We characterize gender differences in performance, psychological factors (including attitudes and beliefs) and retention that exist in Physics 1 and 2 [L. E. Kost, et al., Phys. Rev. ST Phys. Educ. Res. 5, 010101 (2009); L. E. Kost-Smith, et al., Phys. Rev. ST Phys. Educ. Res. 6, 020112 (2010)]. We find that the gender differences in performance can largely be accounted for by measurable differences in the physics and mathematics backgrounds and incoming attitudes and beliefs of males and females. But these background factors do not completely account for the gender gaps. We hypothesize, based on gender differences in responses to survey questions about students' sense of physics identity and confidence levels, that identity threat (the fear of confirming a negative characterization about one's identity) is playing a role in our courses. Working with researchers in psychology, we implemented an intervention where students either wrote about their most important values or not, twice at the beginning of the course [A. Miyake, et al., Science, 330, 1234 (2010)]. This ``values affirmation'' activity reduced the male-female performance difference substantially and elevated women's modal grades from the C to B range. Benefits were strongest for women who tended to endorse the stereotype that men do better than women in physics. This brief psychological intervention may be a promising way to address the gender gap in science performance.

  9. Evidence for anecdotes: Examining use of stories in introductory biology courses with a mixed-methods approach

    Science.gov (United States)

    Kreps, Jennifer Susan

    2005-11-01

    Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p perceived learning loss for non-science majors, but not for science majors. The researcher suggests that stories can be an effective tool to teach biology, particularly if the instructor is aware of her audience and uses stories primarily to help students understand how concepts are related to "real life."

  10. Identifying difficult concepts in introductory programming

    OpenAIRE

    Humar, Klaudija

    2014-01-01

    In this diploma thesis we try to find the answer to why students experience difficulties in introductory programming. We ask ourselves what causes most problems while trying to understand concepts in introductory programming, generating code and designing algorithms. In the first section we introduce programming language Python as the first programming language being taught to students. We compare it with programming language Pascal and stress the advantages of Python that seem important ...

  11. Adding Resistances and Capacitances in Introductory Electricity

    Science.gov (United States)

    Efthimiou, C. J.; Llewellyn, R. A.

    2005-09-01

    All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.

  12. Curricular Activities that Promote Metacognitive Skills Impact Lower-Performing Students in an Introductory Biology Course†

    Science.gov (United States)

    Dang, Nathan V.; Chiang, Jacob C.; Brown, Heather M.

    2018-01-01

    This study explores the impacts of repeated curricular activities designed to promote metacognitive skills development and academic achievement on students in an introductory biology course. Prior to this study, the course curriculum was enhanced with pre-assignments containing comprehension monitoring and self-evaluation questions, exam review assignments with reflective questions related to study habits, and an optional opportunity for students to explore metacognition and deep versus surface learning. We used a mixed-methods study design and collected data over two semesters. Self-evaluation, a component of metacognition, was measured via exam score postdictions, in which students estimated their exam scores after completing their exam. Metacognitive awareness was assessed using the Metacognitive Awareness Inventory (MAI) and a reflective essay designed to gauge students’ perceptions of their metacognitive skills and study habits. In both semesters, more students over-predicted their Exam 1 scores than under-predicted, and statistical tests revealed significantly lower mean exam scores for the over-predictors. By Exam 3, under-predictors still scored significantly higher on the exam, but they outnumbered the over-predictors. Lower-performing students also displayed a significant increase in exam postdiction accuracy by Exam 3. While there was no significant difference in students’ MAI scores from the beginning to the end of the semester, qualitative analysis of reflective essays indicated that students benefitted from the assignments and could articulate clear action plans to improve their learning and performance. Our findings suggest that assignments designed to promote metacognition can have an impact on students over the course of one semester and may provide the greatest benefits to lower-performing students. PMID:29904551

  13. Curricular Activities that Promote Metacognitive Skills Impact Lower-Performing Students in an Introductory Biology Course.

    Science.gov (United States)

    Dang, Nathan V; Chiang, Jacob C; Brown, Heather M; McDonald, Kelly K

    2018-01-01

    This study explores the impacts of repeated curricular activities designed to promote metacognitive skills development and academic achievement on students in an introductory biology course. Prior to this study, the course curriculum was enhanced with pre-assignments containing comprehension monitoring and self-evaluation questions, exam review assignments with reflective questions related to study habits, and an optional opportunity for students to explore metacognition and deep versus surface learning. We used a mixed-methods study design and collected data over two semesters. Self-evaluation, a component of metacognition, was measured via exam score postdictions, in which students estimated their exam scores after completing their exam. Metacognitive awareness was assessed using the Metacognitive Awareness Inventory (MAI) and a reflective essay designed to gauge students' perceptions of their metacognitive skills and study habits. In both semesters, more students over-predicted their Exam 1 scores than under-predicted, and statistical tests revealed significantly lower mean exam scores for the over-predictors. By Exam 3, under-predictors still scored significantly higher on the exam, but they outnumbered the over-predictors. Lower-performing students also displayed a significant increase in exam postdiction accuracy by Exam 3. While there was no significant difference in students' MAI scores from the beginning to the end of the semester, qualitative analysis of reflective essays indicated that students benefitted from the assignments and could articulate clear action plans to improve their learning and performance. Our findings suggest that assignments designed to promote metacognition can have an impact on students over the course of one semester and may provide the greatest benefits to lower-performing students.

  14. Plasma medicine: an introductory review

    International Nuclear Information System (INIS)

    Kong, M G; Kroesen, G; Van Dijk, J; Morfill, G; Nosenko, T; Shimizu, T; Zimmermann, J L

    2009-01-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology-an unavoidable by-product of interdisciplinary research-is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene-helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  15. Improving student performance in an introductory biology majors course: A social action project in the scholarship of teaching

    Science.gov (United States)

    Chambers, Sara Lang Ketchum

    This social action study followed an introductory biology course for a three-year period to determine whether changes in teaching personnel, instructional techniques and reorientation to student-centered learning would impact student performance. The course was redirected from a traditional lecture-laboratory format to one emphasizing active learning inquiry methods. Student retention, achievement, and failure were observed for three years in addition to one year prior, and one year following, the study. The study examined the two semester introductory biology course required of all biology majors and those intending a career in science, medicine or dentistry. During the first semester of the study, the dropout rate decreased from 46% to 21%. Prior to the study, 39% of the students completing the course received a grade of D or F while only 4% received a grade of B or above. During the first semester of the study 14% of the students received a grade of D or F while 46% received a B, B+ or A grade. Similar results were seen in other semesters of the study. A statistical comparison of student retention and performance was carried out using grade data for classes taught by the original faculty, the action study faculty and the post-study faculty. The differences between the original faculty and the action study faculty were statistically significant. Effect size calculations indicated large differences between the action study faculty and the two other faculty groups in terms of student retention, achievement and failure. The results are attributed to both the personnel change and, more significantly, the change in teaching methods and emphasis on student-active learning. Comparison between the pre- and post-study teams showed less dramatic effect sizes than when the action study data were compared with the data from either other team. Nevertheless, the post-study results showed that although the retention rate dropped during the year after the study, the improvement

  16. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  17. Barriers to Teaching Introductory Physical Geography Online

    Science.gov (United States)

    Ritter, Michael E.

    2012-01-01

    Learning geography online is becoming an option for more students but not without controversy. Issues of faculty resources, logistics, professional recognition, and pedagogical concerns are cited as barriers to teaching online. Offering introductory physical geography online presents special challenges. As a general education course, an…

  18. 16 CFR 502.101 - Introductory offers.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR... FAIR PACKAGING AND LABELING ACT Retail Sale Price Representations § 502.101 Introductory offers. (a... retail sale at a price lower than the anticipated ordinary and customary retail sale price. (b) The...

  19. Teaching Health Care in Introductory Economics

    Science.gov (United States)

    Cutler, David M.

    2017-01-01

    Health care is one of the economy's biggest industries, so it is natural that the health care industry should play some role in the teaching of introductory economics. There are many ways that health care can appear in such a context: in the teaching of microeconomics, as a macroeconomic issue, to learn about social welfare, and even to learn how…

  20. Making Introductory Quantum Physics Understandable and Interesting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Making Introductory Quantum Physics Understandable and Interesting. Ranjana Y Abhang. Classroom Volume 10 Issue 1 January 2005 pp 63-73. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. An Infiltration Exercise for Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  2. Inference and the Introductory Statistics Course

    Science.gov (United States)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  3. Integrated Circuits in the Introductory Electronics Laboratory

    Science.gov (United States)

    English, Thomas C.; Lind, David A.

    1973-01-01

    Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)

  4. Macromod: Computer Simulation For Introductory Economics

    Science.gov (United States)

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  5. The Lasting Effects of Introductory Economics Courses.

    Science.gov (United States)

    Sanders, Philip

    1980-01-01

    Reports research which tests the Stigler Hypothesis. The hypothesis suggests that students who have taken introductory economics courses and those who have not show little difference in test performance five years after completing college. Results of the author's research illustrate that economics students do retain some knowledge of economics…

  6. Item Analysis in Introductory Economics Testing.

    Science.gov (United States)

    Tinari, Frank D.

    1979-01-01

    Computerized analysis of multiple choice test items is explained. Examples of item analysis applications in the introductory economics course are discussed with respect to three objectives: to evaluate learning; to improve test items; and to help improve classroom instruction. Problems, costs and benefits of the procedures are identified. (JMD)

  7. The Nature of Introductory Economics Courses

    Science.gov (United States)

    Koscielniak, James

    1975-01-01

    A questionnaire was developed to determine the content, mode of instruction, approach, and textbook selection of instructors of introductory economics courses. The survey was distributed in 1974 to 143 economics instructors at two- and four-year colleges in Illinois. Results are presented here, and recommendations are made. (Author/NHM)

  8. Teaching Quantum Mechanics on an Introductory Level.

    Science.gov (United States)

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  9. 29 CFR 782.0 - Introductory statement.

    Science.gov (United States)

    2010-07-01

    ... one place general interpretations of the Administrator which will provide “a practical guide to... CERTAIN EMPLOYEES OF MOTOR CARRIERS § 782.0 Introductory statement. (a) Since the enactment of the Fair... seek to apply it.” (Skidmore v. Swift & Co., 323 U.S. 134) (b) The interpretations contained in this...

  10. 29 CFR 531.25 - Introductory statement.

    Science.gov (United States)

    2010-07-01

    ... such interpretations of this Act “provide a practical guide to employers and employees as to how the... PAYMENTS UNDER THE FAIR LABOR STANDARDS ACT OF 1938 Interpretations § 531.25 Introductory statement. (a... responsibilities of administration and enforcement (Skidmore v. Swift, 323 U.S. 134). In order that these positions...

  11. 29 CFR 1977.1 - Introductory statement.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH ACT OF 1970 General § 1977.1 Introductory statement. (a) The Occupational Safety and Health... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... general application designed to regulate employment conditions relating to occupational safety and health...

  12. Exploring Urban America: An Introductory Reader.

    Science.gov (United States)

    Caves, Roger W.

    This introductory text presents a collection of articles from urban-studies journals to introduce undergraduate students to the interdisciplinary field of urban studies. The book is divided into 9 parts as follows: Part 1: Cities and Urbanism; part 2: Urban History; part 3: Urban Policy; part 4: Economic Development; part 5: Community Services and…

  13. Beat the Instructor: An Introductory Forecasting Game

    Science.gov (United States)

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  14. "World Religions" in Introductory Sociology Textbooks

    Science.gov (United States)

    Carroll, Michael P.

    2017-01-01

    A section on "world religions" (WRs) is now routinely included in the religion chapters of introductory sociology textbooks. Looking carefully at these WR sections, however, two things seem puzzling. The first is that the criteria for defining a WR varies considerably from textbook to textbook; the second is that these WRs sections…

  15. Holography and Introductory Science at Hampshire College.

    Science.gov (United States)

    Wirth, Frederick H.

    1991-01-01

    An introductory Natural Science course with a focus on the laboratory is described. The main function of the course is getting students prepared for required individual projects in science. A copy of the syllabus, a description of laboratory experiments, and the context of the course are included. (KR)

  16. Using In-class Group Exercises to Enhance Lectures and Provide Introductory Physics Students an Opportunity to Perfect Problem Solving Skills through Interactions with Fellow Students

    Science.gov (United States)

    Trout, Joseph; Bland, Jared

    2013-03-01

    In this pilot project, one hour of lecture time was replaced with one hour of in-class assignments, which groups of students collaborated on. These in-class assignments consisted of problems or projects selected for the calculus-based introductory physics students The first problem was at a level of difficulty that the majority of the students could complete with a small to moderate amount of difficulty. Each successive problem was increasingly more difficult, the last problem being having a level of difficulty that was beyond the capabilities of the majority of the students and required some instructor intervention. The students were free to choose their own groups. Students were encouraged to interact and help each other understand. The success of the in-class exercises were measured using pre-tests and post-tests. The pre-test and post-test were completed by each student independently. Statistics were also compiled on each student's attendance record and the amount of time spent reading and studying, as reported by the student. Statistics were also completed on the student responses when asked if they had sufficient time to complete the pre-test and post-test and if they would have completed the test with the correct answers if they had more time. The pre-tests and post-tests were not used in the computation of the grades of the students.

  17. Student effort expectations and their learning in first-year introductory physics: A case study in Thailand

    Directory of Open Access Journals (Sweden)

    N. Emarat

    2011-06-01

    Full Text Available The Maryland Physics Expectations (MPEX survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1 individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE results, which measure students’ conceptual understanding, and (2 student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.

  18. Student effort expectations and their learning in first-year introductory physics: A case study in Thailand

    Directory of Open Access Journals (Sweden)

    U. Wutchana

    2011-06-01

    Full Text Available The Maryland Physics Expectations (MPEX survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1 individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE results, which measure students’ conceptual understanding, and (2 student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.

  19. Student effort expectations and their learning in first-year introductory physics: A case study in Thailand

    Science.gov (United States)

    Wutchana, U.; Emarat, N.

    2011-06-01

    The Maryland Physics Expectations (MPEX) survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1) individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE) results, which measure students’ conceptual understanding, and (2) student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.

  20. An Introductory Interprofessional Exercise for Healthcare Students

    Science.gov (United States)

    Rege, Saumitra V.; Misto, Kara; Dollase, Richard; George, Paul

    2012-01-01

    Objective. To evaluate healthcare students’ perceptions of an introductory interprofessional exercise and their team dynamics. Design. A workshop was developed, combining second-year medical students, fourth-year nursing students, and third-year pharmacy students to work as an interdisciplinary team. The teams alternated between working together on patient cases focusing on chronic obstructive pulmonary disease and asthma, and on the evaluation of standardized pneumonia patients. Teams were given the patients' health information and no other instructions. A faculty member and the standardized patient evaluated the students using a teamwork global rating scale. Assessment. Student survey results showed a positive response to interprofessional teamwork. The faculty members and standardized patients reported that the students worked as a cohesive unit and demonstrated good team communication. Conclusions. This introductory interprofessional experience had a positive impact on the students’ understanding of collaboration and teamwork. This type of experience will help students foster future collaborations as healthcare providers. PMID:23129853

  1. An introductory course in philosophy of medicine.

    Science.gov (United States)

    Rudnick, A

    2004-06-01

    Philosophy of medicine, narrowly defined as ontology and epistemology of medicine, is a well developed research field, yet education in this field is less well developed. The aim of this paper is to present an educational development in philosophy of medicine-an introductory course in philosophy of medicine. Central features of the course are described. Participants (medical undergraduate students) scored high on average. The conclusion is that further such educational ventures in philosophy of medicine should be developed and implemented.

  2. Examining the Gender Gap in Introductory Physics

    Science.gov (United States)

    Kost, Lauren; Pollock, Steven; Finkelstein, Noah

    2009-05-01

    Our previous research[1] showed that despite the use of interactive engagement techniques in the introductory physics course, the gap in performance between males and females on a mechanics conceptual learning survey persisted from pre- to post-test, at our institution. Such findings were counter to previously published work[2]. Follow-up studies[3] identified correlations between student performance on the conceptual learning survey and students' prior physics and math knowledge and their incoming attitudes and beliefs about physics and learning physics. The results indicate that the gender gap at our institution is predominantly associated with differences in males' and females' previous physics and math knowledge, and attitudes and beliefs. Our current work extends these results in two ways: 1) we look at the gender gap in the second semester of the introductory sequence and find results similar to those in the first semester course and 2) we identify ways in which males and females differentially experience several aspects of the introductory course. [1] Pollock, et al, Phys Rev: ST: PER 3, 010107. [2] Lorenzo, et al, Am J Phys 74, 118. [3] Kost, et al, PERC Proceedings 2008.

  3. Wave calculus based upon wave logic

    International Nuclear Information System (INIS)

    Orlov, Y.F.

    1978-01-01

    A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)

  4. Introductory statistics and analytics a resampling perspective

    CERN Document Server

    Bruce, Peter C

    2014-01-01

    Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrapA uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on application

  5. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  6. Introductory modern algebra a historical approach

    CERN Document Server

    Stahl, Saul

    2013-01-01

    Praise for the First Edition ""Stahl offers the solvability of equations from the historical point of view...one of the best books available to support a one-semester introduction to abstract algebra.""-CHOICE Introductory Modern Algebra: A Historical Approach, Second Edition presents the evolution of algebra and provides readers with the opportunity to view modern algebra as a consistent movement from concrete problems to abstract principles. With a few pertinent excerpts from the writings of some of the greatest mathematicians, the Second Edition uniquely facilitates the understanding of pi

  7. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  8. Introductory statistics for the behavioral sciences

    CERN Document Server

    Welkowitz, Joan; Cohen, Jacob

    1971-01-01

    Introductory Statistics for the Behavioral Sciences provides an introduction to statistical concepts and principles. This book emphasizes the robustness of parametric procedures wherein such significant tests as t and F yield accurate results even if such assumptions as equal population variances and normal population distributions are not well met.Organized into three parts encompassing 16 chapters, this book begins with an overview of the rationale upon which much of behavioral science research is based, namely, drawing inferences about a population based on data obtained from a samp

  9. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  10. Ancient Indian Astronomy in Introductory Texts

    Science.gov (United States)

    Narahari Achar, B. N.

    1997-10-01

    It is customary in introductory survey courses in astronomy to devote some time to the history of astronomy. In the available text books only the Greek contribution receives any attention. Apart from Stonehenge and Chichenitza pictures, contributions from Babylon and China are some times mentioned. Hardly any account is given of ancient Indian astronomy. Even when something is mentioned it is incomplete or incorrect or both. Examples are given from several text books currently available. An attempt is made to correct this situation by sketching the contributions from the earliest astronomy of India, namely Vedaanga Jyotisha.

  11. Introductory Statistics for the Behavioral Sciences

    CERN Document Server

    Cohen, Barry H; Lea, R Brooke

    2012-01-01

    A comprehensive and user-friendly introduction to statistics for behavioral science students-revised and updated Refined over seven editions by master teachers, this book gives instructors and students alike clear examples and carefully crafted exercises to support the teaching and learning of statistics for both manipulating and consuming data. One of the most popular and respected statistics texts in the behavioral sciences, the Seventh Edition of Introductory Statistics for the Behavioral Sciences has been fully revised. The new edition presents all the topics students in the behavioral s

  12. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  13. Who's Who in Introductory Psychology Textbooks: A Citation Analysis Redux

    Science.gov (United States)

    Griggs, Richard A.; Christopher, Andrew N.

    2016-01-01

    It is important to assess periodically how introductory textbooks portray our discipline because introductory psychology is the most popular psychology course, almost all teachers use textbooks for it, and textbooks play a major role in defining the course for students. To do so, past studies have used textbook citation analyses. We analyzed…

  14. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  15. A Citation Analysis of Who's Who in Introductory Textbooks

    Science.gov (United States)

    Griggs, Richard A.; Proctor, Derrick L.

    2002-01-01

    Given the many changes in the introductory psychology textbook market in the past 2 decades and the lack of a recent citation study of introductory texts, we conducted a citation analysis of a stratified random sample of current texts. To provide a more comprehensive picture of current citation emphases, we extended our analysis to the top 60…

  16. The Greening of Marketing: An Analysis of Introductory Textbooks

    Science.gov (United States)

    DeMoss, Michelle; Nicholson, Carolyn Y.

    2005-01-01

    In this study, the authors examined whether introductory marketing textbooks contain the information that is needed to educate future business leaders about the important role of environmentally sustainable practices. We content-analyzed the 21 current introductory marketing textbooks for coverage of these practices. The results showed limited,…

  17. Qualitative Research for Tobacco Control : A How-to Introductory ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Qualitative Research for Tobacco Control : A How-to Introductory Manual for Researchers and Development Practitioners. Couverture du livre Qualitative Research for Tobacco Control : A How-to Introductory Manual for. Auteur(s):. Alison Mathie et Anne Carnozzi. Maison(s) d'édition: CRDI. 15 janvier 2005. ISBN :.

  18. Teaching Introductory Business Statistics Using the DCOVA Framework

    Science.gov (United States)

    Levine, David M.; Stephan, David F.

    2011-01-01

    Introductory business statistics students often receive little guidance on how to apply the methods they learn to further business objectives they may one day face. And those students may fail to see the continuity among the topics taught in an introductory course if they learn those methods outside a context that provides a unifying framework.…

  19. Redesigning a Large Introductory Course to Incorporate the GAISE Guidelines

    Science.gov (United States)

    Woodard, Roger; McGowan, Herle

    2012-01-01

    In 2005, the "Guidelines for Assessment and Instruction in Statistics Education" (GAISE) college report described several recommendations for teaching introductory statistics. This paper discusses how a large multi-section introductory course was redesigned in order to implement these recommendations. The experience described discusses…

  20. Fish: A New Computer Program for Friendly Introductory Statistics Help

    Science.gov (United States)

    Brooks, Gordon P.; Raffle, Holly

    2005-01-01

    All introductory statistics students must master certain basic descriptive statistics, including means, standard deviations and correlations. Students must also gain insight into such complex concepts as the central limit theorem and standard error. This article introduces and describes the Friendly Introductory Statistics Help (FISH) computer…

  1. Using a Common Experience to Teach Introductory Managerial Accounting

    Science.gov (United States)

    King, Gail Hoover; McConnell, Cheryl

    2010-01-01

    Teaching introductory accounting courses can be both challenging and rewarding. In introductory financial and managerial accounting, students struggle with the unfamiliar terminology and concepts. However, managerial accounting offers distinct challenges in that managerial accounting reports used for decision-making are not publically available,…

  2. Coverage of the Stanford Prison Experiment in Introductory Psychology Courses

    Science.gov (United States)

    Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina

    2016-01-01

    The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…

  3. Teaching Introductory Psychology: Tips from "ToP"

    Science.gov (United States)

    Griggs, Richard A., Ed.; Jackson, Sherri L., Ed.

    2011-01-01

    This book follows in the footsteps of the first three volumes in the "Handbook for Teaching Introductory Psychology" series. In the prefaces to these volumes, the various editors all stressed two major points relevant to the development of this series. These comments also apply to this book. First, introductory psychology is one of the most…

  4. Faraday's Principle and Air Travel in the Introductory Labs

    Science.gov (United States)

    Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty

    2017-01-01

    We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…

  5. Toward Publicly Responsive Sociology Curricula: The Role of Introductory Sociology

    Science.gov (United States)

    Greenwood, Nancy A.

    2013-01-01

    Introductory sociology casts a wide net with regard to its audience and plays an important role in capturing the public eye as well as helping students to make more informed choices in their lives and communities. I ask six questions that help us as sociologists to think about how introductory sociology can better serve our discipline, our…

  6. Synthesis of Ibuprofen in the Introductory Organic Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Williams, Peggy E.; Counce, David A.; Crawley, Lindsey R.

    2011-01-01

    A method for the synthesis of ibuprofen in introductory organic chemistry laboratory courses is reported. This experiment requires two 3-h lab sessions. All of the reactions and techniques are a standard part of any introductory organic chemistry course. In the first lab session, students reduce p-isobutylacetophenone to an alcohol and then…

  7. SIGKit: Software for Introductory Geophysics Toolkit

    Science.gov (United States)

    Kruse, S.; Bank, C. G.; Esmaeili, S.; Jazayeri, S.; Liu, S.; Stoikopoulos, N.

    2017-12-01

    The Software for Introductory Geophysics Toolkit (SIGKit) affords students the opportunity to create model data and perform simple processing of field data for various geophysical methods. SIGkit provides a graphical user interface built with the MATLAB programming language, but can run even without a MATLAB installation. At this time SIGkit allows students to pick first arrivals and match a two-layer model to seismic refraction data; grid total-field magnetic data, extract a profile, and compare this to a synthetic profile; and perform simple processing steps (subtraction of a mean trace, hyperbola fit) to ground-penetrating radar data. We also have preliminary tools for gravity, resistivity, and EM data representation and analysis. SIGkit is being built by students for students, and the intent of the toolkit is to provide an intuitive interface for simple data analysis and understanding of the methods, and act as an entrance to more sophisticated software. The toolkit has been used in introductory courses as well as field courses. First reactions from students are positive. Think-aloud observations of students using the toolkit have helped identify problems and helped shape it. We are planning to compare the learning outcomes of students who have used the toolkit in a field course to students in a previous course to test its effectiveness.

  8. Introductory quantum mechanics for applied nanotechnology

    CERN Document Server

    Kim, Dae Mann

    2015-01-01

    This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.

  9. Introductory lectures on Chern-Simons theories

    Science.gov (United States)

    Zanelli, Jorge

    2012-02-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think. They are found in the studies of anomalies in quantum field theories and as Lagrangians for gauge fields, including gravity and supergravity. They seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point-like but an extended fundamental object, a membrane. A cursory review of these ideas is presented at an introductory level.

  10. Introductory Physics Experiments Using the Wiimote

    Science.gov (United States)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  11. A Theory Based Introductory Programming Course

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Kristensen, Jens Thyge; Rischel, Hans

    1999-01-01

    This paper presents an introductory programming course designed to teach programming as an intellectual activity. The course emphasizes understandable concepts which can be useful in designing programs, while the oddities of today's technology are considered of secondary importance. An important...... goal is to fight the trial-and-error approach to programming which is a result of the students battles with horribly designed and documented systems and languages prior to their studies at university. Instead, the authors strive for giving the students a good experience of programming as a systematic......, intellectual activity where the solution of a programming problem can be described in an understandable way. The approach is illustrated by an example which is a commented solution of a problem posed to the students in the course....

  12. Introductory analysis a deeper view of calculus

    CERN Document Server

    Bagby, Richard J

    2000-01-01

    Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts.* Written in an engaging, conversational tone and readable style while softening the rigor and theory* Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students* A thorough concentration of basic topics of calculus* Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use* Covers natural logarithms and exponential functions* Provides the computational techniques often encountered in basic calculus

  13. Online Quizzes Promote Inconsistent Improvements on In-Class Test Performance in Introductory Anatomy and Physiology

    Science.gov (United States)

    Brown, Gregory A.; Bice, Matthew R.; Shaw, Brandon S.; Shaw, Ina

    2015-01-01

    Review quizzes can provide students with feedback and assist in the preparation for in-class tests, but students often do not voluntarily use self-testing resources. The purpose of the present study was to evaluate if taking a mandatory online review quiz alters performance on subsequent in-class tests. During two semesters of a single-semester…

  14. Challenge of Helping Introductory Physics Students Transfer Their Learning by Engaging with a Self-Paced Learning Tutorial

    Directory of Open Access Journals (Sweden)

    Emily Megan Marshman

    2018-03-01

    Full Text Available With advances in digital technology, research-validated self-paced learning tools can play an increasingly important role in helping students with diverse backgrounds become good problem solvers and independent learners. Thus, it is important to ensure that all students engage with self-paced learning tools effectively in order to learn the content deeply, develop good problem-solving skills, and transfer their learning from one context to another. Here, we first provide an overview of a holistic framework for engaging students with self-paced learning tools so that they can transfer their learning to solve novel problems. The framework not only takes into account the features of the self-paced learning tools but also how those tools are implemented, the extent to which the tools take into account student characteristics, and whether factors related to students’ social environments are accounted for appropriately in the implementation of those tools. We then describe an investigation in which we interpret the findings using the framework. In this study, a research-validated self-paced physics tutorial was implemented in both controlled one-on-one interviews and in large enrollment, introductory calculus-based physics courses as a self-paced learning tool. We find that students who used the tutorial in a controlled one-on-one interview situation performed significantly better on transfer problems than those who used it as a self-paced learning tool in the large-scale implementation. The findings suggest that critically examining and taking into account how the self-paced tools are implemented and incentivized, student characteristics including their self-regulation and time-management skills, and social and environmental factors can greatly impact the extent and manner in which students engage with these learning tools. Getting buy in from students about the value of these tools and providing appropriate support while implementing them is

  15. Black Holes and Pulsars in the Introductory Physics Course

    Science.gov (United States)

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  16. Effects of Team Teaching on Students Performance in Introductory ...

    African Journals Online (AJOL)

    FIRST LADY

    Students taught. Introductory Technology through team teaching approach performed ... Vocational education differs in both concept and status in different nations of ... completion of the course, can carry out simple daily maintenance of motor.

  17. The Write Stuff: Teaching the Introductory Public Relations Writing Course.

    Science.gov (United States)

    King, Cynthia M.

    2001-01-01

    Outlines an introductory public relations writing course. Presents course topics and objectives, and assignments designed to meet them. Provides a sample grading rubric and evaluates major public relations writing textbooks. Discusses learning and assessment strategies. (SR)

  18. Implementing New Reform Guidelines in Teaching Introductory College Statistics Courses

    Science.gov (United States)

    Everson, Michelle; Zieffler, Andrew; Garfield, Joan

    2008-01-01

    This article introduces the recently adopted Guidelines for the Assessment and Instruction in Statistics Education (GAISE) and provides two examples of introductory statistics courses that have been redesigned to better align with these guidelines.

  19. Women and Minorities in Introductory Economics Textbooks: 1974 to 1984.

    Science.gov (United States)

    Feiner, Susan F.; Morgan, Barbara A.

    1987-01-01

    Reviews widely-used introductory economics textbooks, examining how issues relating to race and gender are treated. Suggests how stereotypical roles could be avoided in the future. Includes a table summarizing data from 21 textbooks. (Author/DH)

  20. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  1. Office Skills: What Are the Effects of a Composition Emphasis during Two Semesters of Typewriting?

    Science.gov (United States)

    Gades, Robert E.; Dougal, Barbara

    1979-01-01

    A study which compared the composition approach of typewriting instruction with the traditional approach found no significant difference in typewriting speed after one year of instruction. Students trained with the composition approach showed significantly fewer errors on straight-line timings. (LRA)

  2. Cost-Savings Achieved in Two Semesters through the Adoption of Open Educational Resources

    Science.gov (United States)

    Hilton, John Levi, III; Robinson, Jared; Wiley, David; Ackerman, J. Dale

    2014-01-01

    Textbooks represent a significant portion of the overall cost of higher education in the United States. The burden of these costs is typically shouldered by students, those who support them, and the taxpayers who fund the grants and student loans which pay for textbooks. Open educational resources (OER) provide students a way to receive…

  3. Introductory quantum mechanics for semiconductor nanotechnology

    International Nuclear Information System (INIS)

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)

  4. Strengthening introductory psychology: A new model for teaching the introductory course.

    Science.gov (United States)

    Gurung, Regan A R; Hackathorn, Jana; Enns, Carolyn; Frantz, Susan; Cacioppo, John T; Loop, Trudy; Freeman, James E

    2016-01-01

    Introductory psychology (Intro Psych) is one of the most popular and frequently taught courses on college campuses, yet educators in psychology have limited knowledge about what is covered in classes around the nation or the extent to which class content reflects the current scope of the discipline. There is no explicit model to guide course content selection for the intro course, which poses substantial challenges for instructors. This article proposes a new model for teaching the intro course that integrates (a) scientific foundations, (b) 5 major domains or pillars of knowledge (biological, cognitive, developmental, social and personality, and mental and physical health), and (c) cross-cutting themes relevant to all domains (cultural and social diversity, ethics, variations in human functioning, and applications; American Psychological Association, 2014). We advocate for national assessment of the course, a similar introductory course for majors and nonmajors, the inclusion of experiential or laboratory components, and additional training resources for instructors of the intro course. Given the exponential growth of psychological knowledge and applications during the past decades, we caution against attempting to provide exhaustive coverage of all topic areas of psychology in a one-semester course. We conclude by discussing the challenges that lie ahead for the discipline of psychology as it launches this new model for Intro Psych. (c) 2016 APA, all rights reserved).

  5. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    Science.gov (United States)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  6. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  7. Engaging Students In Modeling Instruction for Introductory Physics

    Science.gov (United States)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  8. Personality types and student performance in an introductory physics course

    Science.gov (United States)

    Harlow, Jason J. B.; Harrison, David M.; Justason, Michael; Meyertholen, Andrew; Wilson, Brian

    2017-12-01

    We measured the personality type of the students in a large introductory physics course of mostly life science students using the True Colors instrument. We found large correlations of personality type with performance on the precourse Force Concept Inventory (FCI), both term tests, the postcourse FCI, and the final examination. We also saw correlations with the normalized gain on the FCI. The personality profile of the students in this course is very different from the profile of the physics faculty and graduate students, and also very different from the profile of students taking the introductory physics course intended for physics majors and specialists.

  9. Introductory Textbooks and Plagiarism in Higher Education: A Case Study from Economics.

    Science.gov (United States)

    Richardson, Paul

    2002-01-01

    Textbooks are powerful technologies that are foundational to introductory level courses. In the research site of an introductory economic classroom, the textbook is positioned as having status similar to that of a canonical religious text. This study investigated how student reading and writing can be problematic when introductory level courses…

  10. Topical Coverage in Introductory Textbooks from the 1980s through the 2000s

    Science.gov (United States)

    Griggs, Richard A.

    2014-01-01

    To determine how topical coverage in introductory textbooks may have changed from the 1980s to the present, the author examined topic coverage in full-length and brief introductory textbooks from this time period. Because 98% of the teachers use textbooks for the introductory course and the majority do not assign reading beyond the textbook, the…

  11. The Importance of Attendance in an Introductory Textile Science Course

    Science.gov (United States)

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  12. The Effects of Different Teaching Approaches in Introductory Financial Accounting

    Science.gov (United States)

    Chiang, Bea; Nouri, Hossein; Samanta, Subarna

    2014-01-01

    The purpose of the research is to examine the effect of the two different teaching approaches in the first accounting course on student performance in a subsequent finance course. The study compares 128 accounting and finance students who took introductory financial accounting by either a user approach or a traditional preparer approach to examine…

  13. Public Speaking versus Hybrid Introductory Communication Courses: Exploring Four Outcomes

    Science.gov (United States)

    Broeckelman-Post, Melissa A.; Pyle, Andrew S.

    2017-01-01

    The purpose of this study was to compare student growth in public speaking and hybrid introductory communication skills courses on four outcomes: public speaking anxiety, self-perceived communication competence, intercultural effectiveness, and connected classroom climate. This study also sought to find out whether there were differences in the…

  14. Rhetorical Analysis as Introductory Speech: Jumpstarting Student Engagement

    Science.gov (United States)

    Malone, Marc P.

    2012-01-01

    When students enter the basic public speaking classroom,When students enter the basic public speaking classroom, they are asked to develop an introductory speech. This assignment typically focuses on a speech of self-introduction for which there are several pedagogical underpinnings: it provides an immediate and relatively stress-free speaking…

  15. Class Size and Academic Achievement in Introductory Political Science Courses

    Science.gov (United States)

    Towner, Terri L.

    2016-01-01

    Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…

  16. Student and Professor Gender Effects in Introductory Business Statistics

    Science.gov (United States)

    Haley, M. Ryan; Johnson, Marianne F.; Kuennen, Eric W.

    2007-01-01

    Studies have yielded highly mixed results as to differences in male and female student performance in statistics courses; the role that professors play in these differences is even less clear. In this paper, we consider the impact of professor and student gender on student performance in an introductory business statistics course taught by…

  17. A Proposal for More Sophisticated Normative Principles in Introductory Economics

    Science.gov (United States)

    Schmidt, Stephen

    2017-01-01

    Introductory textbooks teach a simple normative story about the importance of maximizing economic surplus that supports common policy claims. There is little defense of the claim that maximizing surplus is normatively important, which is not obvious to non-economists. Difficulties with the claim that society should maximize surplus are generally…

  18. Learning Styles and Student Performance in Introductory Economics

    Science.gov (United States)

    Brunton, Bruce

    2015-01-01

    Data from nine introductory microeconomics classes was used to test the effect of student learning style on academic performance. The Kolb Learning Style Inventory was used to assess individual student learning styles. The results indicate that student learning style has no significant effect on performance, undermining the claims of those who…

  19. Does the Choice of Introductory Microeconomics Textbook Matter?

    Science.gov (United States)

    Pyne, Derek

    2007-01-01

    The author examines the effects of different introductory microeconomics textbooks on student performance in subsequent economics courses (specifically, Intermediate Microeconomics I and Money and Banking). In some cases, the effects are significant and sizeable. There is also evidence of other variables affecting student performance in later…

  20. Core References in Introductory Social Psychology and Developmental Psychology Textbooks

    Science.gov (United States)

    Whitehead, George I., III; Smith, Stephanie H.; Losonczy-Marshall, Marta

    2017-01-01

    The purpose of the present study was to identify the core references in introductory textbooks in two sub-disciplines of psychology: social psychology and developmental psychology. One research question was the extent to which the common references in these textbooks present the trends in contemporary research in each sub-discipline. An analysis…

  1. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  2. The Role of the Introductory Matter in Bilingual Dictionaries of ...

    African Journals Online (AJOL)

    rbr

    learner's dictionaries and bilingual English–Arabic dictionaries, and to determine to what ... Here, one has to differentiate between an introduction in a book and one in a .... study will analyze, compare and criticize the introductory matter in a set of .... designed for native speakers of English, especially for comprehension and.

  3. A Case-Based Curriculum for Introductory Geology

    Science.gov (United States)

    Goldsmith, David W.

    2011-01-01

    For the past 5 years I have been teaching my introductory geology class using a case-based method that promotes student engagement and inquiry. This article presents an explanation of how a case-based curriculum differs from a more traditional approach to the material. It also presents a statistical analysis of several years' worth of student…

  4. Characterizing Teaching in Introductory Geology Courses: Measuring Classroom Practices

    Science.gov (United States)

    Budd, D. A.; van der Hoeven Kraft, K. J.; McConnell, D. A.; Vislova, T.

    2013-01-01

    Most research about reformed teaching practices in the college science classroom is based on instructor self-report. This research describes what is happening in some introductory geology courses at multiple institutions across the country using external observers. These observations are quantified using the Reformed Teaching Observation Protocol…

  5. The Effect of Vocabulary on Introductory Microbiology Instruction

    Science.gov (United States)

    Richter, Emily

    2011-01-01

    This study examines the effect of the translation of traditional scientific vocabulary into plain English, a process referred to as Anglicization, on student learning in the context of introductory microbiology instruction. Data from Anglicized and Classical-vocabulary lab sections were collected. Data included exam scores as well as pre and…

  6. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  7. Academic Performance in Introductory Accounting: Do Learning Styles Matter?

    Science.gov (United States)

    Tan, Lin Mei; Laswad, Fawzi

    2015-01-01

    This study examines the impact of learning styles on academic performance using major assessment methods (examinations and assignments including multiple-choice and constructed response questions (CRQs)) in an introductory accounting course. Students' learning styles were assessed using Kolb's Learning Style Inventory Version 3.1. The results…

  8. Teaching Introductory Weather and Climate Using Popular Movies

    Science.gov (United States)

    Yow, Donald M.

    2014-01-01

    Addressing the need for an introductory atmospheric science course for nonscience majors, a course was developed that provides a general understanding of atmospheric processes by examining how meteorological events are portrayed in movies. The course also uses films to study the causes of, impacts associated with, and potential adaptations to…

  9. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  10. Introductory Psychology Textbooks: An Objective Analysis and Update.

    Science.gov (United States)

    Griggs, Richard A.; Jackson, Sherri L.; Christopher, Andrew N.; Marek, Pam

    1999-01-01

    Explores changes in the introductory psychology textbook market through an analysis of edition, author, length, and content coverage of the volumes that comprise the current market. Finds a higher edition average, a decrease in the number of authors, an increase in text pages, and a focus on developmental psychology and sensation/perception. (CMK)

  11. The Introductory Psychology Textbook Market: Perceptions of Authors and Editors.

    Science.gov (United States)

    Griggs, Richard A.; Jackson, Sherri L.

    1989-01-01

    Surveys psychology textbook authors and editors on their perceptions of the introductory psychology textbook market. Finds that the textbook market is divided into three levels according to quality, and that authors and editors are not familiar with most textbooks. Notes that the growth of used book companies has adversely affected the market.…

  12. Catholic/Jesuit Values in an Introductory Religious Studies Course

    Science.gov (United States)

    Lynch, Patrick; S. J.; Mizak, Pat

    2012-01-01

    A growing interest in the communication to students of the mission and identity of a higher education institution prompted this study about the presence of Catholic, Jesuit values in the introductory religious studies course at a faith-based university. To conduct this study a survey instrument was developed, piloted, further refined, and then…

  13. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  14. A Model for Teaching an Introductory Programming Course Using ADRI

    Science.gov (United States)

    Malik, Sohail Iqbal; Coldwell-Neilson, Jo

    2017-01-01

    High failure and drop-out rates from introductory programming courses continue to be of significant concern to computer science disciplines despite extensive research attempting to address the issue. In this study, we include the three entities of the didactic triangle, instructors, students and curriculum, to explore the learning difficulties…

  15. A Critical Understanding and Transformation of an Introductory Statistics Course

    Science.gov (United States)

    Magalhães, Marcos Nascimento; Magalhães, Maria Cecilia Camargo

    2014-01-01

    In this paper, we report on the impact of four activities and two interviews on the organization of an introductory statistics course attended by future mathematics teachers at the University of Sao Paulo, Brazil. The activities were designed to enhance students' learning and collaborative knowledge construction, based on Vygotsky's…

  16. Exploring Foundation Concepts in Introductory Statistics Using Dynamic Data Points

    Science.gov (United States)

    Ekol, George

    2015-01-01

    This paper analyses introductory statistics students' verbal and gestural expressions as they interacted with a dynamic sketch (DS) designed using "Sketchpad" software. The DS involved numeric data points built on the number line whose values changed as the points were dragged along the number line. The study is framed on aggregate…

  17. Introductory Statistics Education and the National Science Foundation

    Science.gov (United States)

    Hall, Megan R.; Rowell, Ginger Holmes

    2008-01-01

    This paper describes 27 National Science Foundation supported grant projects that have innovations designed to improve teaching and learning in introductory statistics courses. The characteristics of these projects are compared with the six recommendations given in the "Guidelines for Assessment and Instruction in Statistics Education (GAISE)…

  18. Race, Sex, and Their Influences on Introductory Statistics Education

    Science.gov (United States)

    van Es, Cindy; Weaver, Michelle M.

    2018-01-01

    The Survey of Attitudes Toward Statistics or SATS was administered for three consecutive years to students in an Introductory Statistics course at Cornell University. Questions requesting demographic information and expected final course grade were added. Responses were analyzed to investigate possible differences between sexes and racial/ethnic…

  19. Using Facebook Data to Turn Introductory Statistics Students into Consultants

    Science.gov (United States)

    Childers, Adam F.

    2017-01-01

    Facebook provides businesses and organizations with copious data that describe how users are interacting with their page. This data affords an excellent opportunity to turn introductory statistics students into consultants to analyze the Facebook data using descriptive and inferential statistics. This paper details a semester-long project that…

  20. The Impact of Student-Directed Projects in Introductory Statistics

    Science.gov (United States)

    Spence, Dianna J.; Bailey, Brad; Sharp, Julia L.

    2017-01-01

    A multi-year study investigated the impact of incorporating student-directed discovery projects into introductory statistics courses. Pilot instructors at institutions across the United States taught statistics implementing student-directed projects with the help of a common set of instructional materials designed to facilitate such projects.…

  1. Incorporating Code-Based Software in an Introductory Statistics Course

    Science.gov (United States)

    Doehler, Kirsten; Taylor, Laura

    2015-01-01

    This article is based on the experiences of two statistics professors who have taught students to write and effectively utilize code-based software in a college-level introductory statistics course. Advantages of using software and code-based software in this context are discussed. Suggestions are made on how to ease students into using code with…

  2. Using Data from Climate Science to Teach Introductory Statistics

    Science.gov (United States)

    Witt, Gary

    2013-01-01

    This paper shows how the application of simple statistical methods can reveal to students important insights from climate data. While the popular press is filled with contradictory opinions about climate science, teachers can encourage students to use introductory-level statistics to analyze data for themselves on this important issue in public…

  3. A Pilot Study Teaching Metrology in an Introductory Statistics Course

    Science.gov (United States)

    Casleton, Emily; Beyler, Amy; Genschel, Ulrike; Wilson, Alyson

    2014-01-01

    Undergraduate students who have just completed an introductory statistics course often lack deep understanding of variability and enthusiasm for the field of statistics. This paper argues that by introducing the commonly underemphasized concept of measurement error, students will have a better chance of attaining both. We further present lecture…

  4. [Economics] Introductory Lesson (Begin Day One). Lesson Plan.

    Science.gov (United States)

    Lewin, Roland

    This introductory lesson on teaching economics concepts contains sections on the following: purpose; objectives; time; materials needed; and step-by-step classroom procedures. The focus is on the economic problem of scarcity and opportunity costs. Attached is an original skit, "There's no such thing as a free lunch," and a chart that…

  5. Basic Math Skills and Performance in an Introductory Economics Class

    Science.gov (United States)

    Ballard, Charles L.; Johnson, Marianne F.

    2004-01-01

    The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…

  6. Addressing the Problem of Service Teaching Introductory Economics Subjects

    Science.gov (United States)

    Barrett, Steven

    2005-01-01

    Enrolments in undergraduate economics programs have been falling constantly since the early 1990s. This trend coincides with the increasing popularity of business and management degrees. Consequently, the major activity of many, if not most economics departments and schools in Australia is service teaching of introductory economics to first year…

  7. Introducing the Cloud in an Introductory IT Course

    Science.gov (United States)

    Woods, David M.

    2018-01-01

    Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…

  8. Special Relativity and Magnetism in an Introductory Physics Course

    Science.gov (United States)

    Piccioni, R. G.

    2007-01-01

    Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…

  9. The Approaches to Studying of Portuguese Students of Introductory Accounting

    Science.gov (United States)

    Teixeira, Cláudia; Gomes, Delfina; Borges, Janete

    2013-01-01

    The focus of this paper is an investigation into the approaches to studying of Portuguese students of introductory accounting using the short version of the ASSIST instrument. In doing so, it also examined the impact upon the strategy adopted of the discipline area of students and gender. The results validate the use of the inventory with students…

  10. Using Astrology to Teach Research Methods to Introductory Psychology Students.

    Science.gov (United States)

    Ward, Roger A.; Grasha, Anthony F.

    1986-01-01

    Provides a classroom demonstration designed to test an astrological hypothesis and help teach introductory psychology students about research design and data interpretation. Illustrates differences between science and nonscience, the role of theory in developing and testing hypotheses, making comparisons among groups, probability and statistical…

  11. Assessing Expertise in Introductory Physics Using Categorization Task

    Science.gov (United States)

    Mason, Andrew; Singh, Chandralekha

    2011-01-01

    The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking…

  12. Lecturers' Perspectives on How Introductory Economic Courses Address Sustainability

    Science.gov (United States)

    Green, Tom L.

    2015-01-01

    Purpose: The purpose of this article is to explore sustainability commitments' potential implications for the curriculum of introductory economics courses. Universities have signed the Talloires Declaration, committing themselves to promoting students' environmental literacy and ecological citizenship, thereby creating pressure to integrate…

  13. Learners Programming Language a Helping System for Introductory Programming Courses

    Directory of Open Access Journals (Sweden)

    MUHAMMAD SHUMAIL NAVEED

    2016-07-01

    Full Text Available Programming is the core of computer science and due to this momentousness a special care is taken in designing the curriculum of programming courses. A substantial work has been conducted on the definition of programming courses, yet the introductory programming courses are still facing high attrition, low retention and lack of motivation. This paper introduced a tiny pre-programming language called LPL (Learners Programming Language as a ZPL (Zeroth Programming Language to illuminate novice students about elementary concepts of introductory programming before introducing the first imperative programming course. The overall objective and design philosophy of LPL is based on a hypothesis that the soft introduction of a simple and paradigm specific textual programming can increase the motivation level of novice students and reduce the congenital complexities and hardness of the first programming course and eventually improve the retention rate and may be fruitful in reducing the dropout/failure level. LPL also generates the equivalent high level programs from user source program and eventually very fruitful in understanding the syntax of introductory programming languages. To overcome the inherent complexities of unusual and rigid syntax of introductory programming languages, the LPL provide elementary programming concepts in the form of algorithmic and plain natural language based computational statements. The initial results obtained after the introduction of LPL are very encouraging in motivating novice students and improving the retention rate.

  14. Ecology Content in Introductory Biology Courses: A Comparative Analysis

    Science.gov (United States)

    Pool, Richard F.; Turner, Gregory D.; Böttger, S. Anne

    2013-01-01

    In recent years the need for ecological literacy and problem solving has increased, but there is no evidence that this need is reflected by increased ecology coverage at institutions of higher education (IHE) across the United States. Because introductory biology courses may serve to direct student interest toward particular biological categories…

  15. Graphical User Interface Programming in Introductory Computer Science.

    Science.gov (United States)

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  16. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    Science.gov (United States)

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  17. Students' Spirituality and "Big Questions" in Introductory Religion Courses

    Science.gov (United States)

    Walvoord, Barbara E.

    2008-01-01

    A study of sixty-six highly effective teachers of introductory theology and religion courses in various types of institutions reveals very complex challenges for instructors. The majority of students have as a goal their own religious and spiritual development. Faculty members' most frequent goal is critical thinking. Students much less frequently…

  18. The European Public Prosecutor's Office (EPPO): Introductory Remarks

    NARCIS (Netherlands)

    Vervaele, J.A.E.

    2018-01-01

    These introductory remarks deal with the reasons why the EPPO is perceived by some as a controversial body. These reasons are mirrored with the problem identification and the causes thereof. The size of EU fraud and related corruption and money laundering, both at the income and expenditure side, is

  19. A Simulation Game for an Introductory Course in International Business

    Science.gov (United States)

    McGuinness, Michael J.

    2004-01-01

    An international business simulation game designed for an introductory International Business course. The simulation game allows for student decision making and allows for the ready introduction of many topics which are covered in an International Business course. The simulation game has continued to be improved with student suggestions and has…

  20. Teaching an Introductory Programming Language in a General Education Course

    Science.gov (United States)

    Ali, Azad; Smith, David

    2014-01-01

    A department of computer science (CS) has faced a peculiar situation regarding their selection of introductory programming course. This course is a required course for the students enrolled in the CS program and is a prerequisite to their other advanced programming courses. At the same time, the course can be considered a general education course…

  1. Eating Competence of College Students in an Introductory Nutrition Course

    Science.gov (United States)

    Brown, Lora Beth; Larsen, Katrina J.; Nyland, Nora K.; Eggett, Dennis L.

    2013-01-01

    Objective: Describe eating competence, a positive and flexible way of conceptualizing eating attitudes and behaviors, in students enrolled in an introductory nutrition course. Methods: Online completion of the Satter Eating Competence Inventory (ecSI) and self-assessment of eating disorder status by 557 students (343 ages 18-20 years and 180 ages…

  2. The Introductory College Business Course: A New Dimension

    Science.gov (United States)

    Podell, Joel; And Others

    1977-01-01

    Describes various methodologies used at the Queensboro Community College, New York, to enrich some of the topics traditionally included in the introductory course such as union management relations, social responsibility and business ethics, internal organization structure, and small business management. (TA)

  3. Introductory Anatomy and Physiology in an Undergraduate Nursing Curriculum

    Science.gov (United States)

    Brown, S. J.; White, S.; Power, N.

    2017-01-01

    Using an educational data mining approach, first-year academic achievement of undergraduate nursing students, which included two compulsory courses in introductory human anatomy and physiology, was compared with achievement in a final semester course that transitioned students into the workplace. We hypothesized that students could be grouped…

  4. Introductory Graduate Research Courses: An Examination of the Knowledge Base.

    Science.gov (United States)

    Mundfrom, Daniel J.; Shaw, Dale G.; Thomas, Ann; Young, Suzanne; Moore, Alan D.

    This study addresses the question, "What should graduate students know about research and statistics after completing an initial course?" Individuals who teach such courses at various Carnegie classifications of institutions were surveyed about the specific characteristics of an introductory graduate research course at their own institutions to…

  5. Using Chinua Achebe's "Things Fall Apart" in Introductory Geography Courses.

    Science.gov (United States)

    Hathaway, James

    1993-01-01

    Describes use of Nigerian author, Chinua Achebe's novel, "Things Fall Apart," in an introductory geography course at the secondary school or college level. Provides a summary of the book's story, which deals with the impact of colonialism and Christianity on the culture of eastern Nigeria. Includes recommended instructional strategies…

  6. The Distribution of Macromolecular Principles throughout Introductory Organic Chemistry

    Science.gov (United States)

    Shulman, Joel I.

    2017-01-01

    Many of the principles of organic polymer chemistry are direct extensions of the information contained in the standard introductory organic chemistry course. Often, however, the discussion of macromolecules is relegated to a chapter at the end of the organic chemistry text and is covered briefly, if at all. Connecting the organic-chemical…

  7. Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry

    Science.gov (United States)

    Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.

    2011-01-01

    We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…

  8. Python Source Code Plagiarism Attacks on Introductory Programming Course Assignments

    Science.gov (United States)

    Karnalim, Oscar

    2017-01-01

    This paper empirically enlists Python plagiarism attacks that have been found on Introductory Programming course assignments for undergraduate students. According to our observation toward 400 plagiarism-suspected cases, there are 35 plagiarism attacks that have been conducted by students. It starts with comment & whitespace modification as…

  9. Introductory Biology Labs... They Just Aren't Sexy Enough!

    Science.gov (United States)

    Cotner, Sehoya; Gallup, Gordon G., Jr.

    2011-01-01

    The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…

  10. Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering

    Science.gov (United States)

    McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart

    2012-01-01

    Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…

  11. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    Science.gov (United States)

    Caton, Dan

    2013-01-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more…

  12. First order error corrections in common introductory physics experiments

    Science.gov (United States)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  13. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    Science.gov (United States)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  14. The role of applied physics in American introductory physics courses

    Science.gov (United States)

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-09-01

    To what extent should technology and applied physics be included in introductory physics courses? What is the proper balance between pure and applied physics? Should physics teachers devote precious time to socially relevant issues like nuclear power and alternative sources of energy? How much time should be spent, if any, on applications that are more relevant to the student's world like cars, music, television and refrigeration? Does including applications reduce or enhance student understanding of important classical topics? A response to these questions must be based on goals for physics teaching, on knowledge of how students learn and on the nature of the physics discipline. Since there is not enough time to teach everything in an introductory course, priorities must be determined.

  15. Using RSpec in an introductory bright star spectroscopy lab activity

    Science.gov (United States)

    Howe, James; Sitar, David J.

    2018-01-01

    After presenting at the North Carolina Section of the American Association of Physics Teachers during the fall 2016 meeting, we were encouraged to turn our poster into a paper. This article describes the strengthening of a bright star spectroscopy lab activity for introductory astronomy lab students (AST1002) at Appalachian State University. Explanations of the tools and methods used in the activity are included, particularly the preparation of additional materials using RSpec and calibrated instrument response curves.

  16. Evaluating multiple-choice exams in large introductory physics courses

    OpenAIRE

    Gary Gladding; Tim Stelzer; Michael Scott

    2006-01-01

    The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the Unive...

  17. Introduction to neutron scattering. Lecture notes of the introductory course

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS '96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs

  18. Differential participation in formative assessment and achievement in introductory calculus

    OpenAIRE

    Dibbs, Rebecca-Anne

    2015-01-01

    International audience; Prior formative assessment research has shown positive achievement gains when classes using formative assessment are compared to classes that do not. However, little is known about what, if any, benefits of formative assessment occur within a class. The purpose of this study was to investigate the achievement of the students in introductory calculus using formative assessment at the two different participation levels observed in class. Although there was no significant...

  19. Themes of nanoscience for the introductory physics course

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Lindell, Anssi; Remskar, Maja

    2009-01-01

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  20. Themes of nanoscience for the introductory physics course

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd [Faculty for Mathematics and Physics, University of Ljubljana (Slovenia); Lindell, Anssi [Department of Teacher Education, University of Jyvaskyla (Finland); Remskar, Maja [Josef Stefan Institute, Ljubljana (Slovenia)

    2009-07-15

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  1. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  2. Python for teaching introductory programming: A quantitative evaluation

    OpenAIRE

    Jayal, A; Lauria, S; Tucker, A; Swift, S

    2011-01-01

    This paper compares two different approaches of teaching introductory programming by quantitatively analysing the student assessments in a real classroom. The first approach is to emphasise the principles of object-oriented programming and design using Java from the very beginning. The second approach is to first teach the basic programming concepts (loops, branch, and use of libraries) using Python and then move on to oriented programming using Java. Each approach was adopted for one academi...

  3. TEACHING OBJECT ORIENTED PROGRAMMING AT THE INTRODUCTORY LEVEL

    OpenAIRE

    OKUR , Prof.Dr. Mehmet C.

    2006-01-01

    Teaching object oriented programming has become a rapidly expanding preference at various educational environments. However, teachers usually experience problems when introducing object oriented concepts and programming to beginners. How to teach the fundamentals of object oriented programming at an introductory level course is still a common subject for debate. In this paper, an evaluation of these problems is presented and some possible approaches for improving the quality and success of su...

  4. Blended Learning Versus Traditional Lecture in Introductory Nursing Pathophysiology Courses.

    Science.gov (United States)

    Blissitt, Andrea Marie

    2016-04-01

    Currently, many undergraduate nursing courses use blended-learning course formats with success; however, little evidence exists that supports the use of blended formats in introductory pathophysiology courses. The purpose of this study was to compare the scores on pre- and posttests and course satisfaction between traditional and blended course formats in an introductory nursing pathophysiology course. This study used a quantitative, quasi-experimental, nonrandomized control group, pretest-posttest design. Analysis of covariance compared pre- and posttest scores, and a t test for independent samples compared students' reported course satisfaction of the traditional and blended course formats. Results indicated that the differences in posttest scores were not statistically significant between groups. Students in the traditional group reported statistically significantly higher satisfaction ratings than students in the blended group. The results of this study support the need for further research of using blended learning in introductory pathophysiology courses in undergraduate baccalaureate nursing programs. Further investigation into how satisfaction is affected by course formats is needed. Copyright 2016, SLACK Incorporated.

  5. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  6. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner

    2009-01-01

    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  7. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  8. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    Science.gov (United States)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  9. The physical basis of electronics an introductory course

    CERN Document Server

    Harris, D J; Hammond, P

    1975-01-01

    The Physical Basis of Electronics: An Introductory Course, Second Edition is an 11-chapter text that discusses the physical concepts of electronic devices. This edition deals with the considerable advances in electronic techniques, from the introduction of field effect transistors to the development of integrated circuits. The opening chapters discuss the fundamentals of vacuum electronics and solid-state electronics. The subsequent chapters deal with the other components of electronic devices and their functions, including semiconductor diode and transistor as an amplifier and a switch. The d

  10. Earthquake effects on groundwater systems: an introductory review

    International Nuclear Information System (INIS)

    1988-09-01

    This report presents an introductory review of the potential effects of earthquakes on groundwater systems with respect to the performance of underground repositories for radioactive waste in Britain. An approach to modelling these effects within the scope of general environmental simulation codes is presented. The relevant literature is reviewed and it is concluded that, although pertinent information exists, no clear relationship between seismic intensity and the degree of fracturing has been established. Recommendations are made for further work on fracture development to complement existing research into the effects of long-term changes on the integrity of radioactive waste disposal facilities. (author)

  11. Evolving Roles For Teaching Assistants In Introductory Courses

    Science.gov (United States)

    Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.

    2008-12-01

    As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process

  12. Using Visual Analogies To Teach Introductory Statistical Concepts

    Directory of Open Access Journals (Sweden)

    Jessica S. Ancker

    2017-07-01

    Full Text Available Introductory statistical concepts are some of the most challenging to convey in quantitative literacy courses. Analogies supplemented by visual illustrations can be highly effective teaching tools. This literature review shows that to exploit the power of analogies, teachers must select analogies familiar to the audience, explicitly link the analog with the target concept, and avert misconceptions by explaining where the analogy fails. We provide guidance for instructors and a series of visual analogies for use in teaching medical and health statistics.

  13. The Symbolic Dimension of Gender Violence: an introductory discussion

    Directory of Open Access Journals (Sweden)

    Romeu Gomes

    2008-11-01

    Full Text Available The aim of this article is to support a positive campaign against gender violence, or violence against women, by offering an introductory account of its symbolism. First, I set out the case for taking gender and masculinity to be the keys to understanding the symbolism of violence in the conetxt of gender relations. I then use that analysis to bring into focus those cases of violence which are otherwise hidden or unrecognised. Lastly, I offer suggestions as to how the debate may be continued.

  14. Contrasting Grading Approaches in Introductory Physics and Quantum Mechanics: The Case of Graduate Teaching Assistants

    Science.gov (United States)

    Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha

    2017-01-01

    At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics…

  15. Emotion Instruction in Journalism Courses: An Analysis of Introductory News Writing Textbooks

    Science.gov (United States)

    Hopper, K. Megan; Huxford, John

    2017-01-01

    This study explores how introductory news writing textbooks address issues surrounding emotional labor and its consequences, both for journalists and for those they interview. Eighteen of the highest-selling introductory news-writing textbooks were selected for qualitative analysis. Results showed the term and concept of emotional labor--the…

  16. Stimulating Situational Interest and Student Questioning through Three Types of Historical Introductory Texts

    Science.gov (United States)

    Logtenberg, Albert; van Boxtel, Carla; van Hout-Wolters, Bernadette

    2011-01-01

    This study investigates questions students ask related to an introductory text about a new topic in the history classroom. The effects of a narrative, problematizing, and expository introductory text on the situational interest of students and the number and type of student-generated questions, are compared. Participants are 174 students in higher…

  17. Just the Facts? Introductory Undergraduate Biology Courses Focus on Low-Level Cognitive Skills

    Science.gov (United States)

    Momsen, Jennifer L.; Long, Tammy M.; Wyse, Sara A.; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses.…

  18. Peer Learning as a Tool to Strengthen Math Skills in Introductory Chemistry Laboratories

    Science.gov (United States)

    Srougi, Melissa C.; Miller, Heather B.

    2018-01-01

    Math skills vary greatly among students enrolled in introductory chemistry courses. Students with weak math skills (algebra and below) tend to perform poorly in introductory chemistry courses, which is correlated with increased attrition rates. Previous research has shown that retention of main ideas in a peer learning environment is greater when…

  19. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    Science.gov (United States)

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  20. Assessing Factors That Influence the Recruitment of Majors from Introductory Geology Classes at Northern Arizona University

    Science.gov (United States)

    Hoisch, Thomas D.; Bowie, James I.

    2010-01-01

    In order to guide the formulation of strategies for recruiting undergraduates into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our analysis shows that ~7% of students in the introductory classes are possible candidates for…

  1. Pre-Service Physics Teachers' Opinions about the Difficulties in Understanding Introductory Quantum Physics Topics

    Science.gov (United States)

    Kizilcik, Hasan Sahin; Yavas, Pervin Ünlü

    2017-01-01

    The aim of this study is to identify the opinions of pre-service physics teachers about the difficulties in introductory quantum physics topics. In this study conducted with twenty-five pre-service physics teachers, the case study method was used. The participants were interviewed about introductory quantum physics topics. The interviews were…

  2. Introductory Astronomy Course at the University of Cape Town: Probing Student Perspectives

    Science.gov (United States)

    Rajpaul, Vinesh; Allie, Saalih; Blyth, Sarah-Louise

    2014-01-01

    We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire…

  3. Improving Introductory Astronomy Education in American Colleges and Universities: A Review of Recent Progress

    Science.gov (United States)

    Waller, William H.; Slater, Timothy F.

    2011-01-01

    Over the past 15 years, professional astronomers, their societies, and associated funding agencies have collaborated to improve astronomy teaching and learning at the introductory undergraduate level. Many nonscience majors and preservice teachers enroll in these introductory astronomy courses, thus meriting the focused attention. In this review…

  4. Future of the Introductory Psychology Textbook: A Survey of College Publishers.

    Science.gov (United States)

    Buskit, William; Cush, David T.

    1997-01-01

    Examines aspects of the introductory psychology textbook market through a publishing house survey. Aspects covered are the current and future number of introductory texts, fewer textbook publishers, custom publishing, changing content, and computer technologies. Discusses the results of the publishers' responses and provides statistical tables of…

  5. An Analysis of Learning Objectives and Content Coverage in Introductory Psychology Syllabi

    Science.gov (United States)

    Homa, Natalie; Hackathorn, Jana; Brown, Carrie M.; Garczynski, Amy; Solomon, Erin D.; Tennial, Rachel; Sanborn, Ursula A.; Gurung, Regan A. R.

    2013-01-01

    Introductory psychology is one of the most popular undergraduate courses and often serves as the gateway to choosing psychology as an academic major. However, little research has examined the typical structure of introductory psychology courses. The current study examined student learning objectives (SLOs) and course content in introductory…

  6. Teaching Introductory Psychology in the Community College Classroom: Enhancing Student Understanding and Retention of Essential Information

    Science.gov (United States)

    Debb, Scott M.; Debb, Sharon M.

    2012-01-01

    Enrolling in an introductory course in psychology is a staple of many community college students' core curriculum. For those students who plan to pursue social science and humanities-related majors in particular, introductory psychology helps provide a solid base upon which future coursework at all academic levels will be built. The goal of any…

  7. Research and Teaching: From Gatekeeper to Gateway: Improving Student Success in an Introductory Biology Course

    Science.gov (United States)

    Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.

    2017-01-01

    Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…

  8. Agricultural In-Service Needs of Introductory Level Career and Technical Education Teachers

    Science.gov (United States)

    Christensen, Jolene; Warnick, Brian K.; Spielmaker, Debra; Tarpley, Rudy S.; Straquadine, Gary S.

    2009-01-01

    This study identified and prioritized the agricultural in-service needs of introductory level career and technical education teachers in Utah. The Utah State Board of Education requires that all seventh grade students complete an introductory career and technical education course as their first formal career exploration experience. One component…

  9. The Effect of "Clickers" on Attendance in an Introductory Statistics Course: An Action Research Study

    Science.gov (United States)

    Amstelveen, Raoul H.

    2013-01-01

    The purpose of this study was to design and implement a Classroom Response System, also known as a "clicker," to increase attendance in introductory statistics courses at an undergraduate university. Since 2010, non-attendance had been prevalent in introductory statistics courses. Moreover, non-attendance created undesirable classrooms…

  10. Comparing Student Success and Understanding in Introductory Statistics under Consensus and Simulation-Based Curricula

    Science.gov (United States)

    Hldreth, Laura A.; Robison-Cox, Jim; Schmidt, Jade

    2018-01-01

    This study examines the transferability of results from previous studies of simulation-based curriculum in introductory statistics using data from 3,500 students enrolled in an introductory statistics course at Montana State University from fall 2013 through spring 2016. During this time, four different curricula, a traditional curriculum and…

  11. Incentive Matters!--The Benefit of Reminding Students about Their Academic Standing in Introductory Economics Courses

    Science.gov (United States)

    Chen, Qihui; Okediji, Tade O.

    2014-01-01

    In this article, the authors illustrate how incentives can improve student performance in introductory economics courses. They implemented a policy experiment in a large introductory economics class in which they reminded students who scored below an announced cutoff score on the midterm exam about the risk of failing the course. The authors…

  12. Enhancing the Teaching of Introductory Economics with a Team-Based, Multi-Section Competition

    Science.gov (United States)

    Beaudin, Laura; Berdiev, Aziz N.; Kaminaga, Allison Shwachman; Mirmirani, Sam; Tebaldi, Edinaldo

    2017-01-01

    The authors describe a unique approach to enhancing student learning at the introductory economics level that utilizes a multi-section, team-based competition. The competition is structured to supplement learning throughout the entire introductory course. Student teams are presented with current economic issues, trends, or events, and use economic…

  13. Does Living near Classmates Help Introductory Economics Students Get Better Grades?

    Science.gov (United States)

    Parker, Jeffrey

    2012-01-01

    This article examines whether first-year students in introductory economics courses get better grades if they have other students in their on-campus residential unit who either are taking the same course or have taken the course in the past. The study uses nine years of data for the introductory economics course at Reed College. The author finds…

  14. Research and Teaching: Reenvisioning the Introductory Science Course as a Cognitive Apprenticeship

    Science.gov (United States)

    Thompson, Meredith M.; Pastorino, Lucia; Lee, Star; Lipton, Paul

    2016-01-01

    Introductory science courses play a critical role in the recruitment and retention of undergraduate science majors. In particular, first-year courses are opportunities to engage students in scientific practices and motivate them to consider scientific careers. We developed an introductory course using a semester-long series of established…

  15. The Development of a Set of Core Communication Competencies for Introductory Communication Courses

    Science.gov (United States)

    Engleberg, Isa N.; Ward, Susan M.; Disbrow, Lynn M.; Katt, James A.; Myers, Scott A.; O'Keefe, Patricia

    2017-01-01

    In most academic disciplines, there is "one" introductory course that presents an overview of the discipline and introduces fundamental, discipline-specific principles and competencies. However, in Communication Studies, the discipline recognizes and offers multiple course options that may serve as the introductory course. This project…

  16. Towards a Virtual Teaching Assistant to Answer Questions Asked by Students in Introductory Computer Science

    Science.gov (United States)

    Heiner, Cecily

    2009-01-01

    Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This dissertation analyzes 411 questions from an introductory Java programming course by reducing the…

  17. Cultural Diversity in Introductory Psychology Textbook Selection: The Case for Historically Black Colleges/Universities (HBCUs)

    Science.gov (United States)

    Whaley, Arthur L.; Clay, William A. L.; Broussard, Dominique

    2017-01-01

    The present study describes a culturally relevant approach to introductory psychology textbook selection for students attending a historically Black college/university (HBCU). The following multistage procedure was used: (1) a survey of HBCU psychology departments was conducted to ascertain how they selected their introductory psychology…

  18. Python and Roles of Variables in Introductory Programming: Experiences from Three Educational Institutions

    Science.gov (United States)

    Nikula, Uolevi; Sajaniemi, Jorma; Tedre, Matti; Wray, Stuart

    2007-01-01

    Students often find that learning to program is hard. Introductory programming courses have high drop-out rates and students do not learn to program well. This paper presents experiences from three educational institutions where introductory programming courses were improved by adopting Python as the first programming language and roles of…

  19. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    Science.gov (United States)

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  20. Equity investigation of attitudinal shifts in introductory physics

    Science.gov (United States)

    Traxler, Adrienne; Brewe, Eric

    2015-12-01

    We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI) sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students' social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  1. Computer-Tailored Student Support in Introductory Physics

    Science.gov (United States)

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a ‘better-than-expected’ measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century. PMID:26352403

  2. Implementing Recommendations for Introductory Biology by Writing a New Textbook

    Science.gov (United States)

    Barsoum, Mark J.; Sellers, Patrick J.; Campbell, A. Malcolm; Heyer, Laurie J.; Paradise, Christopher J.

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p < 0.05). We conclude that ICB improves critical thinking, metacognition, and disciplinary perceptions without compromising content knowledge in introductory biology. PMID:23463233

  3. Equity investigation of attitudinal shifts in introductory physics

    Directory of Open Access Journals (Sweden)

    Adrienne Traxler

    2015-11-01

    Full Text Available We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students’ social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  4. Computer-Tailored Student Support in Introductory Physics.

    Science.gov (United States)

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a 'better-than-expected' measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century.

  5. Calculus-Based Mathematics: An Australian Endangered Species?

    Science.gov (United States)

    Maltas, Dimitrios; Prescott, Anne

    2014-01-01

    Many people are discussing the issues surrounding mathematics at all levels of education. Politicians, parents, students, universities, education departments all have a view about what the problem is and all have ideas about what should happen. This article represents a synthesis of the issues and implications of one of the problems evident in…

  6. Development and evaluation of clicker methodology for introductory physics courses

    Science.gov (United States)

    Lee, Albert H.

    Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments

  7. Interlaboratory survey for T3 and T4 assays in Italy: results from a two semester period

    International Nuclear Information System (INIS)

    Pilo, A.; Zucchelli, G.C.; Chiesa, M.R.; Piro, M.A.

    1982-01-01

    The usefulness of external quality control schemes (EQCS) is generally acknowledged in clinical chemistry; these schemes allow not only the evaluation of the between-laboratory variability of the assay under study, but also make it possible the improvement of the analytical performances of the participants laboratories. Recently interlaboratory surveys have been extended to radioimmunoassays. Starting from january 1980, a national EQCS hormone assays was organized in Italy; triiodothyronine (T3) and thyroxine (T4) have been the first assays considered due to their large diffusion

  8. Assessment of burnout in veterinary medical students using the Maslach Burnout Inventory-Educational Survey: a survey during two semesters.

    Science.gov (United States)

    Chigerwe, Munashe; Boudreaux, Karen A; Ilkiw, Jan E

    2014-11-28

    Burnout among veterinary students can result from known stressors in the absence of a support system. The objectives of this study were to evaluate use of the Maslach Burnout Inventory-Educator Survey (MBI-ES) to assess burnout in veterinary students and evaluate the factors that predict the MBI-ES scores. The MBI-ES was administered to first (Class of 2016) and second year (Class of 2015) veterinary medical students during the 2012-2013 academic year in the fall and spring semesters. Factor analysis and test reliability for the survey were determined. Mean scores for the subscales determining burnout namely emotional exhaustion (EE), depersonalization (DP) and lack of personal accomplishment (PA) were calculated for both classes in the 2 semesters. Multiple regression analysis was performed to evaluate other factors that predict the MBI-ES scores. A non-probability sampling method was implemented consisting of a voluntary sample of 170 and 123 students in the fall and spring semesters, respectively. Scores for EE, DP and PA were not different between the 2 classes within the same semester. Mean ± SD scores for EE, DP and PA for the fall semester were 22.9 ± 9.6, 5.0 ± 4.8 and 32.3 ± 6.7, respectively. Mean ± SD scores for EE, DP and PA the spring semester were 27.8 ± 10.7, 6.5 ± 6.1and 31.7 ± 6.8, respectively. The EE score was higher in spring compared to fall while DP and PA scores were not different between the 2 semesters. Living arrangements specifically as to whether or not a student lived with another veterinary medical students was the only variable significantly associated with the MBI-ES scores. Students in this study had moderate levels of burnout based on the MBI-ES scores. The MBI-ES was an acceptable instrument for assessing burnout in veterinary medical students. The EE scores were higher in the spring semester as compared to the fall semester. Thus students in the first and second years of veterinary school under the current curriculum experience the greatest levels of emotional exhaustion during the spring semester. This has administrative implications for the school, when considering the allocation and use of resources for student support systems during each semester.

  9. Fuzzy logic an introductory course for engineering students

    CERN Document Server

    Trillas, Enric

    2015-01-01

      This book introduces readers to fundamental concepts in fuzzy logic. It describes the necessary theoretical background and a number of basic mathematical models. Moreover, it makes them familiar with fuzzy control, an important topic in the engineering field. The book offers an unconventional introductory textbook on fuzzy logic, presenting theory together with examples and not always following the typical mathematical style of theorem-corollaries. Primarily intended to support engineers during their university studies, and to spark their curiosity about fuzzy logic and its applications, the book is also suitable for self-study, providing a valuable resource for engineers and professionals who deal with imprecision and non-random uncertainty in real-world applications.  

  10. Laboratory Sequence in Computational Methods for Introductory Chemistry

    Science.gov (United States)

    Cody, Jason A.; Wiser, Dawn C.

    2003-07-01

    A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.

  11. Active Learning by Design: An Undergraduate Introductory Public Health Course

    Directory of Open Access Journals (Sweden)

    Karin eYeatts

    2014-12-01

    Full Text Available Principles of active learning were used to design and implement an introductory public health course. Students were introduced to the breadth and practice of public health through team and individual-based activities. Team assignments covered topics in epidemiology, biostatistics, health behavior, nutrition, maternal and child health, environment, and health policy. Students developed an appreciation of the population perspective through an experience trip and related intervention project in a public health area of their choice. Students experienced several key critical component elements of a public health undergraduate major; they cover key public health domains, experience public health practice, and integrated concepts with their assignments. In this paper, course assignments, lessons learned, and student successes are described. Given the increased growth in the undergraduate public health major, these active learning assignments may be of interest to undergraduate public health programs at both liberal arts colleges and research universities.

  12. A smartphone-based introductory astronomy experiment: Seasons investigation

    Science.gov (United States)

    Durelle, Jeremy; Jones, Jennifer; Merriman, Steven; Balan, Aurelian

    2017-02-01

    Light sensor probes are useful in experiments that investigate seasonal variations and the nature of light. However, having a dedicated light probe is not always possible or even convenient for many instructors. Modern smartphone technology gives instructors the ability to use built-in light sensors as an inexpensive alternative. This introductory experiment will have students use a smartphone loaded with a light detection app to quantitatively determine how changing latitude on Earth changes flux received. The purpose is to have students discover how the different seasons arise from the Earth-Sun system. While performing the experiment and analyzing the data, students will also discover the following important and relevant physical relationships: distance from light source and light brightness (flux), latitude and flux, and Earth's orientation and location (latitude) of maximum flux. By piecing all of these relationships together, students are able to explain the origins of the different seasons based on the data they collected.

  13. Predicting introductory programming performance: A multi-institutional multivariate study

    Science.gov (United States)

    Bergin, Susan; Reilly, Ronan

    2006-12-01

    A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.

  14. The Climate Experiences of Students in Introductory Biology

    Directory of Open Access Journals (Sweden)

    Ramón S. Barthelemy

    2015-08-01

    Full Text Available Understanding course climate is important for improving students’ experiences and increasing the likelihood of their persistence in STEM fields. This study presents climate survey results from 523 students taking introductory biology at the University of Michigan. Principal component analysis revealed that a student’s climate experience is comprised of five main elements: comfort, school avoidance, relationship to course, academic stress, and discomfort. Of these climate factors, comfort, school avoidance, and relationship to course were significant predictors of course satisfaction, and academic stress was a significant predictor of persistence. The results indicated the importance of a positive climate that is facilitated by the instructor in order to promote a positive student experience. Climate may be an important metric for institutions to track across time and course.

  15. Introductory Physics Experiments Using the Wii Balance Board

    Science.gov (United States)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  16. Introductory Education for Mechanical Engineering by Exercise in Mechanical Disassembly

    Science.gov (United States)

    Matsui, Yoshio; Asakawa, Naoki; Iwamori, Satoru

    An introductory program “Exercise for engineers in mechanical disassembly” is an exercise that ten students of every team disassemble a motor scooter to the components and then assemble again to the initial form in 15 weeks. The purpose of this program is to introduce mechanical engineering by touching the real machine and learning how it is composed from various mechanical parts to the students at the early period after the entrance into the university. Additional short lectures by young teachers and a special lecture by a top engineer in the industry encourage the students to combine the actual machine and the mechanical engineering subjects. Furthermore, various educations such as group leader system, hazard prediction training, parts filing are included in this program. As a result, students recognize the importance of the mechanical engineering study and the way of group working.

  17. Exoplanet Peer-Learning Exercises for Introductory Astronomy Courses

    Science.gov (United States)

    Wisniewski, John P.; Larson, A.

    2010-01-01

    While exoplanet research has witnessed explosive growth over the past decade with over 350 exoplanets identified to date (http://exoplanet.eu), few education and public outreach tools capable of bringing the techniques and results of exoplanet science into the classroom have been developed. To help reduce this shortcoming, we have been developing and implementing a series of exoplanet-related active-learning exercises to be used in non-astronomy major introductory settings, including think-pair-share questions and peer-learning activities. We discuss some of these activities which we have field tested in undergraduate classes at the University of Washington. We also discuss our efforts to engage students in these classes in obtaining and analyzing astronomical observations of exoplanet host stars to identify and characterize exoplanet transit events. JPW acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230.

  18. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-03-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students actually do sleep the night before an exam, and how that would relate to their performance. The effect of inadequate sleep on exam performance was explored in a second-semester introductory physics course. At the end of the final exam, students reported the number of hours they slept the night before. Sleep deprivation corresponded to lower final exam scores. The main purpose of this study is to provide evidence that instructors can provide to their students to convince them that their time is better spent sleeping rather than studying all night before an exam.

  19. Using the Teach Astronomy Website to Enrich Introductory Astronomy Classes

    Science.gov (United States)

    Hardegree-Ullman, K. K.; Impey, C. D.; Patikkal, A.; Austin, C. L.

    2013-04-01

    This year we implemented Teach Astronomy as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive astronomy content of the website includes: an introductory text book, encyclopedia articles, images, two to three minute topical video clips, podcasts, and news articles. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. We will present an overview of how Teach Astronomy works and how instructors can use it as an effective teaching tool in the classroom. Additionally, we will gather feedback from science instructors on how to improve the features and functionality of the website, as well as develop new assignment ideas using Teach Astronomy.

  20. Scientific thinking employed in tasks of introductory physics

    Directory of Open Access Journals (Sweden)

    Alexandre Fagundes Faria

    2017-04-01

    Full Text Available In Science Education, notably in Physics Teaching, there are research based instructional strategies that are renown by their potential to promote conceptual development. It is likely that many of these strategies lead to more elaborate learning; promoting, for instance, scientific thinking development. Scientific thinking might be construed as the sum of domain-specific knowledge and domain-general strategies. Here is reported an investigation of domain-general strategies used by students on tasks proposed in a Newtonian Dynamics activity inspired by “Tutorials in Introductory Physics”. Nineteen volunteers, aged 15-17, participated; all were students in electronics or computer science from a Brazilian vocational high school. The school activities proposed to the students have been regularly used in the Physics course for seven years. Therefore, there was no special interventions prepared with research purposes. Data collection involved audio and video recordings of students’ teamwork; field notes; and photographs of student’s notebooks and of posters teams presented in classes. Data analysis was based on categorization of domain-general strategies used by students. We found that students used four domain-general strategies on the proposed tasks: evidence-based reasoning, assessment of the reasoning line, reason based on operational definition and hypothetic-deductive reasoning. These findings suggest that activities inspired by the “Tutorials in Introductory Physics” favor the learning of scientific concepts plus further – and yet more elaborate – learning. These results place a demand on the field of Science Education to refine the strategies of data collection and data analysis as a way to identify the use of other domain-general strategies by students in similar contexts, as well as the expansion of research to other schools contexts.

  1. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  2. Interactive Lecture Experiments in Large Introductory Physics Classes

    Science.gov (United States)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  3. Evaluation of a flipped classroom approach to learning introductory epidemiology.

    Science.gov (United States)

    Shiau, Stephanie; Kahn, Linda G; Platt, Jonathan; Li, Chihua; Guzman, Jason T; Kornhauser, Zachary G; Keyes, Katherine M; Martins, Silvia S

    2018-04-02

    Although the flipped classroom model has been widely adopted in medical education, reports on its use in graduate-level public health programs are limited. This study describes the design, implementation, and evaluation of a flipped classroom redesign of an introductory epidemiology course and compares it to a traditional model. One hundred fifty Masters-level students enrolled in an introductory epidemiology course with a traditional format (in-person lecture and discussion section, at-home assignment; 2015, N = 72) and a flipped classroom format (at-home lecture, in-person discussion section and assignment; 2016, N = 78). Using mixed methods, we compared student characteristics, examination scores, and end-of-course evaluations of the 2016 flipped classroom format and the 2015 traditional format. Data on the flipped classroom format, including pre- and post-course surveys, open-ended questions, self-reports of section leader teaching practices, and classroom observations, were evaluated. There were no statistically significant differences in examination scores or students' assessment of the course between 2015 (traditional) and 2016 (flipped). In 2016, 57.1% (36) of respondents to the end-of-course evaluation found watching video lectures at home to have a positive impact on their time management. Open-ended survey responses indicated a number of strengths of the flipped classroom approach, including the freedom to watch pre-recorded lectures at any time and the ability of section leaders to clarify targeted concepts. Suggestions for improvement focused on ways to increase regular interaction with lecturers. There was no significant difference in students' performance on quantitative assessments comparing the traditional format to the flipped classroom format. The flipped format did allow for greater flexibility and applied learning opportunities at home and during discussion sections.

  4. Use of AECC Directives and Cooperative Learning Theory in Introductory Accounting Classes.

    Science.gov (United States)

    Holt, Doris L.; Swanson, Janice Goodnow

    1995-01-01

    Explores how colleges and universities are responding to the directives of the Accounting Education Change Commission for introductory accounting classes and whether these classrooms use cooperative learning techniques. (Author/JOW)

  5. Off to the (Earthworm) Races: A Quick and Flexible Lab Experiment for Introductory Zoology Courses.

    Science.gov (United States)

    Switzer, Paul V.; Fritz, Ann H.

    2001-01-01

    Presents a hands-on, investigative lab activity for use in an introductory zoology course. Tests the behavioral hypothesis that substrate texture affects earthworm locomotor ability. Provides background information on earthworm locomotion followed by details of the lab exercise. (NB)

  6. Operation, analysis, and design of signalized intersections : a module for the introductory course in transportation engineering.

    Science.gov (United States)

    2014-02-01

    This report presents materials that can be used as the basis for a module on signalized intersections in the introductory : course in transportation engineering. The materials were developed based on studies of the work of students who took : this in...

  7. The joy of stats a short guide to introductory statistics in the social sciences

    CERN Document Server

    Garner, Roberta

    2010-01-01

    "This is a great book for social science students. Clearly written, with many examples, Garner certainly makes learning and teaching introductory statistics a joy!" - Nikolaos Liodakis, Wilfrid Laurier University.

  8. A Modified Approach to the Introductory Economics Course in a School of Business

    Science.gov (United States)

    Crockett, G. V.

    1977-01-01

    Describes course format, materials development, and evaluation of an introductory economics course which stressed problem solving techniques and conceptual skills instead of rote memorization of factual content. For journal availability, see SO 506 029. (AV)

  9. Student Performance in Introductory Psychology Following Termination of the Programmed Achievement Contingency at Mid-Semester

    Science.gov (United States)

    Nation, Jack R.; And Others

    1977-01-01

    Discusses the Programmed Achievement learning system in an introductory psychology course. This system is based on an instructional system of motivation and reward in which a crucial ingredient is the testing procedure. (Author/JR)

  10. Introductory quantum mechanics a traditional approach emphasizing connections with classical physics

    CERN Document Server

    Berman, Paul R

    2018-01-01

    This book presents a basic introduction to quantum mechanics at the undergraduate level. Depending on the choice of topics, it can be used for a one-semester or two-semester course. An attempt has been made to anticipate the conceptual problems students encounter when they first study quantum mechanics. Wherever possible, examples are given to illustrate the underlying physics associated with the mathematical equations of quantum mechanics. To this end, connections are made with corresponding phenomena in classical mechanics and electromagnetism. The problems at the end of each chapter are intended to help students master the course material and to explore more advanced topics. Many calculations exploit the extraordinary capabilities of computer programs such as Mathematica, MatLab, and Maple. Students are urged to use these programs, just as they had been urged to use calculators in the past. The treatment of various topics is rather complete, in that most steps in derivations are included. Several of the ch...

  11. Measuring the impact of an instructional laboratory on the learning of introductory physics

    OpenAIRE

    Wieman, Carl; Holmes, N. G.

    2015-01-01

    We have analyzed the impact of taking an associated lab course on the scores on final exam questions in two large introductory physics courses. Approximately a third of the students who completed each course also took an accompanying instructional lab course. The lab courses were fairly conventional, although they focused on supporting the mastery of a subset of the introductory physics topics covered in the associated course. Performance between students who did and did not take the lab cour...

  12. Excerpts from the introductory statement. IAEA Board of Governors. Vienna, 18 March 2002

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2002-01-01

    Excerpts are given from the Introductory Statement to the Board of Governors by the IAEA Director General Dr. Mohamed ElBaradei. Major topics covered in his introductory remarks include: protection against terrorism, nuclear technology, water resource management, application of sterile insect technique, human health, nuclear power, radioactive waste management, management of nuclear knowledge, nuclear safety, safety of radioactive sources, safeguards agreements and additional protocols, conceptual framework for integrated safeguards, Democratic People's Republic of Korea, and Iraq

  13. Implementing Inclusive Design for Learning in an introductory geology laboratory

    Science.gov (United States)

    Robert, G.; Merriman, J. D.; Ceylan, G. M.

    2013-12-01

    As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D

  14. A collaborative learning approach for service-oriented introductory physics

    Science.gov (United States)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received

  15. Teaching Introductory Geology by a Paradigm, Process and Product Approach

    Science.gov (United States)

    Reams, M.

    2008-12-01

    Students in introductory geology courses can easily become lost in the minutiae of terms and seemingly random ideas and theories. One way to avoid this and provide a holistic picture of each major subject area in a beginning course is to introduce, at the start of each section, the ruling paradigm, the processes, and resultant products. By use of these three Ps: paradigm, processes, and products, students have a reasonably complete picture of the subject area. If they knew nothing more than this simple construct, they would have an excellent perspective of the subject area. This provides a jumping off point for the instructor to develop the details. The three Ps can make course construction much more straightforward and complete. Students benefit since they have a clearer idea of what the subject is about and its importance. Retention may be improved and carryover to advanced courses may be aided. For faculty, the use of these three P's makes organizing a course more straightforward. Additionally, the instructor benefits include: 1. The main points are clearly stated, thus avoiding the problem of not covering the essential concepts. 2. The course topics hold together, pedagogically. There is significant opportunity for continuity of thought. 3. An outline is developed that is easily analyzed for holes or omissions. 4. A course emerges with a balance of topics, permitting appropriate time to be devoted to significant subject matter. 5. If a course is shared between faculty or passes from one faculty to another by semester or quarter, there is greater assurance that topics and concepts everyone agrees on can be adequately covered. 6. There is less guesswork involved in planning a course. New faculty have an approach that will make sense and allow them to feel less awash and more focused. In summary, taking time to construct a course utilizing the important paradigms, processes, and products can provide significant benefits to the instructor and the student. Material

  16. Gender, experience, and self-efficacy in introductory physics

    Directory of Open Access Journals (Sweden)

    Jayson M. Nissen

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men’s and women’s physics self-efficacy, which comprises students’ thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women’s self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM. We used ESM to collect multiple samples of university students’ feelings of self-efficacy during four types of activity for two one-week periods: (i an introductory IE physics course, (ii students’ other introductory STEM courses, (iii their non-STEM courses, and (iv their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women’s self-efficacy was not reliably different from men’s. We therefore concluded that the experience of physics instruction in the IE physics course depressed women’s self-efficacy. Using complementary measures showing the IE

  17. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  18. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    Science.gov (United States)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics

  19. Workforce, subject of law and education: introductory notes

    Directory of Open Access Journals (Sweden)

    Carolina Roig Catini

    2016-06-01

    Full Text Available This article consists of an introductory exposition to the Marxist critique of law that, as we aim to demonstrate, provides relevant conceptual contributions to critical reflection on the specifically capitalistic social relations of education. It is an analysis of the fundamental concepts that circumscribe the social function of massive education in capitalism, under hegemony of the school form: workforce and subject of law. The mercantile social nexus, under the aegis of the blind and automatic movement of capital accumulation foresees not only the generalization of the worker "free" from the means of production, but also the universalization of the law-form, which conceals the economic subordination under the mask of equality between private owners. In the first section we briefly resumed a critical interpretation of the work presented by Karl Marx in Capital, in order to move on to the Marxist critique of law and in the second part, based on Evgène Pachukanis, Walter Benjamin and Bernard Edelman´s studies. Based on this presentation, we extract, by way of conclusion and in a preliminary way, some theoretical consequences for the apprehension of the specifically capitalist way of education. Keywords: Education. Work. Merchandise.

  20. Effectiveness of Tutorials for Introductory Physics in Argentinean high schools

    Science.gov (United States)

    Benegas, J.; Flores, J. Sirur

    2014-06-01

    This longitudinal study reports the results of a replication of Tutorials in Introductory Physics in high schools of a Latin-American country. The main objective of this study was to examine the suitability of Tutorials for local science education reform. Conceptual learning of simple resistive electric circuits was determined by the application of the single-response multiple-choice test "Determining and Interpreting Resistive Electric Circuits Concepts Test" (DIRECT) to high school classes taught with Tutorials and traditional instruction. The study included state and privately run schools of different socioeconomic profiles, without formal laboratory space and equipment, in classes of mixed-gender and female-only students, taught by novice and experienced instructors. Results systematically show that student learning is significantly higher in the Tutorials classes compared with traditional teaching for all of the studied conditions. The results also show that long-term learning (one year after instruction) in the Tutorials classes is highly satisfactory, very similar to the performance of the samples of college students used to develop the test DIRECT. On the contrary, students following traditional instruction returned one year after instruction to the poor performance (students attending seven universities in Spain and four Latin-American countries. Some replication and adaptation problems and difficulties of this experience are noted, as well as recommendations for successful use of Tutorials in high schools of similar educational systems.

  1. Gender-based performance differences in an introductory physics course

    Science.gov (United States)

    McKinnon, Mark Lee

    Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.

  2. Implementing recommendations for introductory biology by writing a new textbook.

    Science.gov (United States)

    Barsoum, Mark J; Sellers, Patrick J; Campbell, A Malcolm; Heyer, Laurie J; Paradise, Christopher J

    2013-01-01

    We redesigned the undergraduate introductory biology course by writing a new textbook (Integrating Concepts in Biology [ICB]) that follows first principles of learning. Our approach emphasizes primary data interpretation and the utility of mathematics in biology, while de-emphasizing memorization. This redesign divides biology into five big ideas (information, evolution, cells, emergent properties, homeostasis), addressing each at five levels of organization (molecules, cells, organisms, populations, ecological systems). We compared our course outcomes with two sections that used a traditional textbook and were taught by different instructors. On data interpretation assessments administered periodically during the semester, our students performed better than students in the traditional sections (p = 0.046) and exhibited greater improvement over the course of the semester (p = 0.015). On factual content assessments, our students performed similarly to students in the other sections (p = 0.737). Pre- and postsemester assessment of disciplinary perceptions and self-appraisal indicate that our students acquired a more accurate perception of biology as a discipline and may have developed a more realistic evaluation of their scientific abilities than did the control students (p biology.

  3. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  4. Introductory guide to the statistics of molecular genetics.

    Science.gov (United States)

    Eley, Thalia C; Rijsdijk, Frühling

    2005-10-01

    This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. New methods are being developed all the time but the core principles of linkage and association remain the same. The basis of linkage is the transmission of a marker along with a disease within families, whereas association is based on the comparison of marker frequencies in case and control groups. It is becoming increasingly clear that effect sizes of individual markers on diseases and traits are likely to be very small. As such, much greater power is needed, and correspondingly greater sample sizes. Although non-replication is still a problem, molecular genetic studies in some areas such as attention deficit/hyperactivity disorder (ADHD) are starting to show greater convergence. Epidemiologists and other researchers with large well-characterized samples will be well placed to use these methods. Inter-disciplinary studies can then ask far more interesting questions such as those relating to developmental, multivariate and gene-environment interaction hypotheses.

  5. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    Science.gov (United States)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  6. Incorporating Service Learning into the Introductory Astronomy Course

    Science.gov (United States)

    Mukherjee, K.

    2002-05-01

    The introductory Astronomy course can be enriched by adding a service learning component to it. This enables students to interact with and educate the general public about matters of outer space. At Slippery Rock University we have incorporated this idea into our Astronomy and Space Science courses. Working in groups, the students do a presentation which is often interdisciplinary. Frequently the department gets requests from schools to do a show specifically tailored to a topic like the solar system or constellations. Such projects are beneficial to students in many ways. They demand a thorough knowledge of the subject matter so as to communicate to the audience in a clear and nontechnical manner. The students also experience first hand the difficulties involved in coordinating a group effort. They learn to take responsibility for their allocated part and how to combine effectively to make the entire show a success. Interacting with various age groups demands a versatility in planning content and public speaking skills not easily available elsewhere in a traditional education. Our planetarium facilities help in attracting diverse audiences from preschoolers to senior citizens. Performance in these shows constitutes twenty five percent of course grade. Feedback from audience groups helps refine future shows by subsequent student cohorts.

  7. The use of economic evaluation in CAM: an introductory framework.

    Science.gov (United States)

    Ford, Emily; Solomon, Daniela; Adams, Jon; Graves, Nicholas

    2010-11-11

    For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities.In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM.

  8. The use of economic evaluation in CAM: an introductory framework

    Science.gov (United States)

    2010-01-01

    Background For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities. In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Methods Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Conclusions Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM. PMID:21067622

  9. Video-based problems in introductory mechanics physics courses

    International Nuclear Information System (INIS)

    Gröber, Sebastian; Klein, Pascal; Kuhn, Jochen

    2014-01-01

    Introductory mechanics physics courses at the transition from school to university are a challenge for students. They are faced with an abrupt and necessary increase of theoretical content and requirements on their conceptual understanding of phyiscs. In order to support this transition we replaced part of the mandatory weekly theory-based paper-and-pencil problems with video analysis problems of equal content and level of difficulty. Video-based problems (VBP) are a new problem format for teaching physics from a linked sequence of theoretical and video-based experimental tasks. Experimental tasks are related to the well-known concept of video motion analysis. This introduction of an experimental part in recitations allows the establishment of theory–experiment interplay as well as connections between physical content and context fields such as nature, technique, everyday life and applied physics by conducting model-and context-related experiments. Furthermore, laws and formulas as predominantly representative forms are extended by the use of diagrams and vectors. In this paper we give general reasons for this approach, describe the structure and added values of VBP, and show that they cover a relevant part of mechanics courses at university. Emphasis is put on theory–experiment interplay as a structural added value of VBP to promote students' construction of knowledge and conceptual understanding. (paper)

  10. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    International Nuclear Information System (INIS)

    Nagy, P.; Tasnádi, P.

    2015-01-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine. 1. –

  11. Teaching Science Writing in an Introductory Lab Course

    Science.gov (United States)

    Holstein, Sarah E.; Mickley Steinmetz, Katherine R.; Miles, John D.

    2015-01-01

    One challenge that many neuroscience instructors face is how to teach students to communicate within the field. The goal of this project was to improve students’ scientific writing in an introductory psychology laboratory course that serves as a feeder course into the neuroscience curriculum. This course included a scaffolded approach - breaking assignments into different sections that build upon each other to allow for more direction and feedback on each section. Students were also provided with examples of scientific writing, given direction on finding and reading journal articles, and were taught how to effectively peer review a paper. Research papers were assessed before (Year 1) and after (Year 2) this scaffolded approach was instituted. The assessment included measures of “Genre Knowledge” for each section of a research paper (abstract, introduction, method, results, discussion) as well as measures of “Writing Elements” (grammar, formatting, clarity, transitions, building to the hypothesis, using evidence). The results indicated that there was an improvement for Genre Knowledge scores when comparing Year 1 to Year 2. However, there was no systematic improvement in Writing Elements. This suggests that this teaching technique was most effective in improving students’ ability to write within the scientific genre. The logistics of implementing such an approach are discussed. PMID:25838801

  12. New Session of introductory “E-Groups Training”

    CERN Multimedia

    2013-01-01

    The session provides a short introduction of E-Groups and how to use it to efficiently manage mailing lists at CERN. Alongside a general overview of the E-Groups application, E-Groups specific terminology, the management of dynamic and static groups and the specific settings for mails and archives are discussed in detail.   The course is intended to give newcomers a clear idea of what E-Groups are and how they can be used at CERN. It should enable users to be more efficient when being confronted in particular with: the creation of dynamic and static E-groups and the decision whether the one or the other type is more appropriate, the management of E-group memberships, and the setting of mailing/archiving related properties. The session will also focus on some best practices and give general advice on how to use E-Groups. This introductory training session is given jointly by members of the IT-OIS and GS-AIS groups and is intended for any member at CERN potentially being confronted with the ...

  13. Evaluating multiple-choice exams in large introductory physics courses

    Directory of Open Access Journals (Sweden)

    Gary Gladding

    2006-07-01

    Full Text Available The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the University of Illinois, Urbana-Champaign were investigated. The reliability of exam scores over the course of a semester results in approximately a 3% uncertainty in students’ total semester exam score. This semester test score uncertainty yields an uncertainty in the students’ assigned letter grade that is less than 1 / 3 of a letter grade. To study the validity of exam scores, a subset of students were ranked independently based on their multiple-choice score, graded explanations, and student interviews. The ranking of these students based on their multiple-choice score was found to be consistent with the ranking assigned by physics instructors based on the students’ written explanations ( r>0.94 at the 95% confidence level and oral interviews (r=0.94−0.09+0.06 .

  14. The use of economic evaluation in CAM: an introductory framework

    Directory of Open Access Journals (Sweden)

    Adams Jon

    2010-11-01

    Full Text Available Abstract Background For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities. In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Methods Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Conclusions Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM.

  15. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  16. Characterizing interactive engagement activities in a flipped introductory physics class

    Directory of Open Access Journals (Sweden)

    Anna K. Wood

    2016-06-01

    Full Text Available Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL, which focuses on student interactions (with the lecturer, with each other, and with the material is proposed. The pedagogical approach is based on Peer Instruction (PI and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%, vicarious interactive (20% (involving questions to and from the lecturer, and noninteractive (55%. As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B, although not on student-student interactions (12% and 12% or on individual learning (10% and 7%. These results are explored in detail and the implications for future research are discussed.

  17. An evaluation of teaching methods in the introductory physics classroom

    Science.gov (United States)

    Savage, Lauren Michelle Williams

    The introductory physics mechanics course at the University of North Carolina at Charlotte has a history of relatively high DFW rates. In 2011, the course was redesigned from the traditional lecture format to the inverted classroom format (flipped). This format inverts the classroom by introducing material in a video assigned as homework while the instructor conducts problem solving activities and guides discussions during the regular meetings. This format focuses on student-centered learning and is more interactive and engaging. To evaluate the effectiveness of the new method, final exam data over the past 10 years was mined and the pass rates examined. A normalization condition was developed to evaluate semesters equally. The two teaching methods were compared using a grade distribution across multiple semesters. Students in the inverted class outperformed those in the traditional class: "A"s increased by 22% and "B"s increased by 38%. The final exam pass rate increased by 12% under the inverted classroom approach. The same analysis was used to compare the written and online final exam formats. Surprisingly, no students scored "A"s on the online final. However, the percent of "B"s increased by 136%. Combining documented best practices from a literature review with personal observations of student performance and attitudes from first hand classroom experience as a teaching assistant in both teaching methods, reasons are given to support the continued use of the inverted classroom approach as well as the online final. Finally, specific recommendations are given to improve the course structure where weaknesses have been identified.

  18. A qualitative characterization of an introductory college nonmajors biology laboratory

    Science.gov (United States)

    Lee, Cherin Ann

    The nature of an undergraduate, nonmajors biology laboratory was investigated in this study. Student participants were enrolled in a general education biology laboratory course at the University of Northern Iowa. The researcher's purpose was to gain a characterization of the instructional format and laboratory activities experienced by students. Interpretation of student and instructor responses enabled an insider's view of the biology laboratory. The laboratory period was consistently described by both students and instructors as having three parts, Beginning, Middle, and End, with the End being of special importance for conceptual development. The instructional format of the three instructors differed within the three portions of the laboratory period, ranging from an inquiry-oriented, partial learning cycle to a fairly expository model labeled inform/verify/practice. There was striking similarity in intrasectional student and teacher descriptions of instructional format. Additionally, students experiencing the alternate instructor provided the same characterizations of instructional format as those provided by the instructor's usual students. There were no discernible patterns of instructional format based on sex or reasoning level. In addition to the central role of instructional format, three areas of importance emerged: the social aspects of learning, the collaborative and cooperative nature of laboratory work and learning, and the role of self-efficacy. Theory developed from and grounded in the data showed six factors important in the introductory college biology laboratory: collaborative and cooperative learning, student-student and teacher-student interactions, attitude and self-efficacy, learning process and learning style, effective instructional format, and science content. These factors were found to be similar to factors identified in the literature as important in K-12 science education. These factors were set in the context of schooling and learning

  19. Effectiveness of Tutorials for Introductory Physics in Argentinean high schools

    Directory of Open Access Journals (Sweden)

    J. Benegas

    2014-03-01

    Full Text Available This longitudinal study reports the results of a replication of Tutorials in Introductory Physics in high schools of a Latin-American country. The main objective of this study was to examine the suitability of Tutorials for local science education reform. Conceptual learning of simple resistive electric circuits was determined by the application of the single-response multiple-choice test “Determining and Interpreting Resistive Electric Circuits Concepts Test” (DIRECT to high school classes taught with Tutorials and traditional instruction. The study included state and privately run schools of different socioeconomic profiles, without formal laboratory space and equipment, in classes of mixed-gender and female-only students, taught by novice and experienced instructors. Results systematically show that student learning is significantly higher in the Tutorials classes compared with traditional teaching for all of the studied conditions. The results also show that long-term learning (one year after instruction in the Tutorials classes is highly satisfactory, very similar to the performance of the samples of college students used to develop the test DIRECT. On the contrary, students following traditional instruction returned one year after instruction to the poor performance (<20% shown before instruction, a result compatible with the very low level of conceptual knowledge of basic physics recently determined by a systematic study of first-year students attending seven universities in Spain and four Latin-American countries. Some replication and adaptation problems and difficulties of this experience are noted, as well as recommendations for successful use of Tutorials in high schools of similar educational systems.

  20. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  1. Correlates of gender and achievement in introductory algebra based physics

    Science.gov (United States)

    Smith, Rachel Clara

    The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.

  2. Introductory lectures on Conformal Field Theory and Strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these

  3. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  4. The Social Interplay of Disciplinarity and Interdisciplinarity. Some Introductory Remarks

    Directory of Open Access Journals (Sweden)

    Reinhold Hedtke

    2006-12-01

    Full Text Available Social Science Education as a subject field in schools is an intrinsic pluridisciplinary feature, whatever disciplines are included, however it may be organised and wherever it may be institutionalised. Civic education, economic education, social education and historical education each comprise several academic disciplines even if they are thought to be completely independent subjects. From the start on, disciplinarity and interdisciplinarity are on the agenda for any subject related to social science education and are one of its main problems. For these introductory remarks interdisciplinarity can be simply defined as relating two or more academic disciplines or school subjects to each other if this is done in a purposeful, systematic, explicit and reflective way. The overarching goal is to improve education that is to enhance students' understandings of the worlds and their abilities to act within and towards them. A relationship between disciplines or subjects which misses one or more of the four characteristics can be called pluridisciplinary or multidisciplinary (cf. Audigier 2006. In the following I first want to discuss some aspects of disciplinarity and interdisciplinarity at schools and at universities and the weakness of interdisciplinarity. I sketch some social science based ideas on the interrelationship between the subject structure of the academic world and the world of schools (3. and of some tendency to commonalities or even unification of social sciences and related competencies (4.. I conclude with some remarks on different kinds of knowledge (5.. Last but not least, I'll give an overview on the papers in this issue of the Journal of Social Science Education (6..

  5. Instructors' Support of Student Autonomy in an Introductory Physics Course

    Science.gov (United States)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  6. Just the facts? Introductory undergraduate biology courses focus on low-level cognitive skills.

    Science.gov (United States)

    Momsen, Jennifer L; Long, Tammy M; Wyse, Sara A; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses. We used Bloom's Taxonomy of Educational Objectives to assign cognitive learning levels to course goals as articulated on syllabi and individual items on high-stakes assessments (i.e., exams and quizzes). Our investigation revealed the following: 1) assessment items overwhelmingly targeted lower cognitive levels, 2) the cognitive level of articulated course goals was not predictive of the cognitive level of assessment items, and 3) there was no influence of course size or institution type on the cognitive levels of assessments. These results support the claim that introductory biology courses emphasize facts more than higher-order thinking.

  7. A 21st century perspective as a primer to introductory physics

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Lorenzo J, E-mail: ljc@physics.utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2011-09-15

    Much effort over many years has been devoted to the reform of the teaching of physics. This has led to many new and imaginative approaches in the content and delivery of material. Great strides have been made in the delivery, and the content has been continually supplemented. However, attempts to modernize the basic structure of the presentation have faced resistance, and the majority of introductory physics textbooks in wide adoption today have a general structure that has changed little in over 60 years. Thus, in comparison to biology, chemistry, geology, etc, physics is unique in that its introductory course is not a survey of the current status of the field. In an attempt to circumvent this problem in a tractable way, we have developed a qualitative front-end course designed to create a 21st century perspective that can be embedded into the beginning of a standard introductory physics sequence.

  8. A 21st century perspective as a primer to introductory physics

    International Nuclear Information System (INIS)

    Curtis, Lorenzo J

    2011-01-01

    Much effort over many years has been devoted to the reform of the teaching of physics. This has led to many new and imaginative approaches in the content and delivery of material. Great strides have been made in the delivery, and the content has been continually supplemented. However, attempts to modernize the basic structure of the presentation have faced resistance, and the majority of introductory physics textbooks in wide adoption today have a general structure that has changed little in over 60 years. Thus, in comparison to biology, chemistry, geology, etc, physics is unique in that its introductory course is not a survey of the current status of the field. In an attempt to circumvent this problem in a tractable way, we have developed a qualitative front-end course designed to create a 21st century perspective that can be embedded into the beginning of a standard introductory physics sequence.

  9. Computer Self-Efficacy: A Practical Indicator of Student Computer Competency in Introductory IS Courses

    Directory of Open Access Journals (Sweden)

    Rex Karsten

    1998-01-01

    Full Text Available Students often receive their first college-level computer training in introductory information systems courses. Students and faculty frequently expect this training to develop a level of student computer competence that will support computer use in future courses. In this study, we applied measures of computer self-efficacy to students in a typical introductory IS course. The measures provided useful evidence that student perceptions of their ability to use computers effectively in the future significantly improved as a result of their training experience. The computer self-efficacy measures also provided enhanced insight into course-related factors of practical concern to IS educators. Study results also suggest computer self-efficacy measures may be a practical and informative means of assessing computer-training outcomes in the introductory IS course context

  10. Generating a Gender Balance: making introductory information systems courses a positive experience

    Directory of Open Access Journals (Sweden)

    Rosemary Stockdale

    2007-12-01

    Full Text Available There is a growing shortfall of graduates entering the IT profession. The situation is exacerbated by the continuing decline in the number of women undertaking IT related degrees. However, there are an increasing number of students taking business degrees that have a small information systems component, although few students choose to major in IS. Using a qualitative reflective approach we identify the perceptions and experiences of female undergraduates taking introductory IS courses in two universities, one in Australia and one in New Zealand. We discuss ways of improving the delivery of introductory IS courses in order to make information systems more interesting to women undergraduates, thus enhancing their learning experiences and encouraging further uptake of IS majors. The paper concludes with some reflections on other influences that impact on the ability of IS departments to deliver appropriate introductory courses.

  11. Illustrating Geology With Customized Video in Introductory Geoscience Courses

    Science.gov (United States)

    Magloughlin, J. F.

    2008-12-01

    For the past several years, I have been creating short videos for use in large-enrollment introductory physical geology classes. The motivation for this project included 1) lack of appropriate depth in existing videos, 2) engagement of non-science students, 3) student indifference to traditional textbooks, 4) a desire to share the visual splendor of geology through virtual field trips, and 5) a desire to meld photography, animation, narration, and videography in self-contained experiences. These (HD) videos are information-intensive but short, allowing a focus on relatively narrow topics from numerous subdisciplines, incorporation into lectures to help create variety while minimally interrupting flow and holding students' attention, and manageable file sizes. Nearly all involve one or more field locations, including sites throughout the western and central continental U.S., as well as Hawaii, Italy, New Zealand, and Scotland. The limited scope of the project and motivations mentioned preclude a comprehensive treatment of geology. Instead, videos address geologic processes, locations, features, and interactions with humans. The videos have been made available via DVD and on-line streaming. Such a project requires an array of video and audio equipment and software, a broad knowledge of geology, very good computing power, adequate time, creativity, a substantial travel budget, liability insurance, elucidation of the separation (or non-separation) between such a project and other responsibilities, and, preferably but not essentially, the support of one's supervisor or academic unit. Involving students in such projects entails risks, but involving necessary technical expertise is virtually unavoidable. In my own courses, some videos are used in class and/or made available on-line as simply another aspect of the educational experience. Student response has been overwhelmingly positive, particularly when expectations of students regarding the content of the videos is made

  12. Documenting Instructional Practices in Large Introductory STEM Lecture Courses

    Science.gov (United States)

    Vu, Viet Quoc

    STEM education reform in higher education is framed around the need to improve student learning outcomes, increase student retention, and increase the number of underrepresented minorities and female students in STEM fields, all of which would ultimately contribute to America's competitiveness and prosperity. To achieve these goals, education reformers call for an increase in the adoption of research-based "promising practices" in classrooms. Despite efforts to increase the adoption of more promising practices in classrooms, postsecondary instructors are still likely to lecture and use traditional teaching approaches. To shed light on this adoption dilemma, a mix-methods study was conducted. First, instructional practices in large introductory STEM courses were identified, followed by an analysis of factors that inhibit or contribute to the use of promising practices. Data were obtained from classroom observations (N = 259) of large gateway courses across STEM departments and from instructor interviews (N = 67). Results show that instructors are already aware of promising practices and that change strategies could move from focusing on the development and dissemination of promising practices to focusing on improving adoption rates. Teaching-track instructors such as lecturers with potential for security of employment (LPSOE) and lecturers with security of employment (LSOE) have adopted promising practices more than other instructors. Interview data show that LPSOEs are also effective at disseminating promising practices to their peers, but opinion leaders (influential faculty in a department) are necessary to promote adoption of promising practices by higher ranking instructors. However, hiring more LPSOEs or opinion leaders will not be enough to shift instructional practices. Variations in the adoption of promising practices by instructors and across departments show that any reform strategy needs to be systematic and take into consideration how information is

  13. Using News Media Databases (LexisNexis) To Identify Relevant Topics For Introductory Earth Science Classes

    Science.gov (United States)

    Cervato, C.; Jach, J. Y.; Ridky, R.

    2003-12-01

    Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms

  14. Understanding Computational Thinking before Programming: Developing Guidelines for the Design of Games to Learn Introductory Programming through Game-Play

    Science.gov (United States)

    Kazimoglu, Cagin; Kiernan, Mary; Bacon, Liz; MacKinnon, Lachlan

    2011-01-01

    This paper outlines an innovative game-based approach to learning introductory programming that is grounded in the development of computational thinking at an abstract conceptual level, but also provides a direct contextual relationship between game-play and learning traditional introductory programming. The paper proposes a possible model for,…

  15. Development and Validation of a Teaching Practice Scale (TISS) for Instructors of Introductory Statistics at the College Level

    Science.gov (United States)

    Hassad, Rossi A.

    2009-01-01

    This study examined the teaching practices of 227 college instructors of introductory statistics (from the health and behavioral sciences). Using primarily multidimensional scaling (MDS) techniques, a two-dimensional, 10-item teaching practice scale, TISS (Teaching of Introductory Statistics Scale), was developed and validated. The two dimensions…

  16. Humor to the Rescue: How to Make Introductory Economics an Appealing Social Science for Non-Majors

    Science.gov (United States)

    Jones, George H.

    2014-01-01

    Despite efforts made over the past few years to improve upon the way introductory economics is taught, these efforts have unfortunately done very little to change student perception of economics as a dry, difficult and boring subject. Since the introductory economics course for many nonmajors may be their only economics course in college, it is…

  17. The Appropriateness of Scratch and App Inventor as Educational Environments for Teaching Introductory Programming in Primary and Secondary Education

    Science.gov (United States)

    Papadakis, Stamatios; Kalogiannakis, Michail; Orfanakis, Vasileios; Zaranis, Nicholas

    2017-01-01

    Teaching programming is a complex task. The task is even more challenging for introductory modules. There is an ongoing debate in the teaching community over the best approach to teaching introductory programming. Visual block-based programming environments allow school students to create their own programs in ways that are more accessible than in…

  18. First-Day Strategies for Millennial Students in Introductory Accounting Courses: It's All Fun and Games until Something Gets Learned

    Science.gov (United States)

    Mastilak, Christian

    2012-01-01

    Millennial students often possess characteristics at odds with typical lecture-based approaches to introductory accounting courses. The author introduces an approach for reaching millennial students early in introductory accounting courses in ways that fit millennials' characteristics. This article describes the use of the board game Monopoly[R]…

  19. TA Mentorship in Lecture significantly enhances students' learning in mechanics in large introductory physics classes

    Science.gov (United States)

    Cheng, K.; Caglar, Mehmet

    2011-10-01

    Lab is an important component of students' learning in a traditional lecture-lab setting of introductory physics courses. Using standard mechanics concepts and baseline surveys as well as independent classroom observations, the effects of TA mentorship in Lecture on students' learning of physics concepts and problem-solving skills among different student subgroups taught by other TAs and lecturers using different level of student interactive engagement in classes have been analyzed. Our data indicate that in lecture training of TA promotes lecture/lab synergism in improvement students' learning of mechanics in large introductory physics classes.

  20. Evaluating and redesigning teaching learning sequences at the introductory physics level

    Science.gov (United States)

    Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José

    2017-12-01

    In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.

  1. Autonomy and the Student Experience in Introductory Physics

    Science.gov (United States)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  2. Teaching Sustainability from a Scientific Standpoint at the Introductory Level

    Science.gov (United States)

    Campbell-Stone, E.; Myers, J. D.

    2008-12-01

    In recent decades, humankind has recognized that current levels of resource utilization are seriously impacting our planet's life support systems and threatening the ability of future generations to provide for themselves. The concept of sustainability has been promoted by a variety of national and international organizations as a method to devise ways to adjust humanity's habits and consumption to levels that can be maintained over the long term, i.e. sustained. Courses on sustainability are being offered at many universities and colleges, but most are taught outside of science departments; they are often designed around policy concerns or focus primarily on environmental impacts while neglecting the science of sustainability. Because the three foundations necessary to implement sustainability are sustainability governance, sustainability accounting, and sustainability science, it is imperative that science departments play an active role in preparing citizens and professionals for dealing with sustainability issues. The geosciences are one of the scientific disciplines that offer a logical foundation from which to teach sustainability science. Geoscientists can also offer a unique and relevant geologic perspective on sustainability issues. The authors have developed an introductory, interdisciplinary course entitled 'Global Sustainability: Managing Earth's Resources' that integrates scientific disciplines in the examination of real world sustainability issues. In-depth understanding of physical, Earth and biological science principles are necessary for students to identify the limits and constraints imposed on important issues facing modern society, e.g. water, energy, population growth, etc. This course exposes students to all the scientific principles that apply directly to sustainability. The subject allows the instructors to present open-ended, multifaceted and complex problems relevant to today's industrialized and globalized world, and it encourages

  3. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  4. Workshop Physics Activity Guide, Module 4: Electricity and Magnetism

    Science.gov (United States)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

  5. Learning by doing at the Colorado School of Mines

    Science.gov (United States)

    Furtak, Thomas E.; Ruskell, Todd G.

    2013-03-01

    With over 260 majors, the undergraduate physics program at CSM is among the largest in the country. An underlying theme in this success is experiential learning, starting with a studio teaching method in the introductory calculus-based physics courses. After their second year students complete a 6-week full-time summer course devoted to hands-on practical knowledge and skills, including machine shop techniques, high-vacuum technology, applied optics, electronic control systems, and computational tools. This precedes a two-semester laboratory sequence that can be taught at an advanced level because of the students' experience. The required capstone senior course is a year-long open-ended challenge in which students partner with members of the faculty to work on authentic research projects, teaming with grad students or post-docs as contributing members to the department's externally funded scholarship. All of these features are important components of our B.S. degree, Engineering Physics, which is officially accredited by ABET.

  6. Introductory Accounting Students' Motives, Expectations and Preparedness for Higher Education: Some Portuguese Evidence

    Science.gov (United States)

    Teixeira, Cláudia; Gomes, Delfina; Borges, Janete

    2015-01-01

    In Portugal, the massive expansion and diversification of higher education has led to a large and diverse student population. This has impacted on the complexity of the higher education learning environment and has implications for the teaching and learning activities. Thus, the current study examines Portuguese introductory accounting students'…

  7. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    Science.gov (United States)

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  8. Can Personalized Nudges Improve Learning in Hybrid Classes? Experimental Evidence from an Introductory Undergraduate Course

    Science.gov (United States)

    O'Connell, Stephen D.; Lang, Guido

    2018-01-01

    A field experiment was conducted to investigate whether personalized e-mail reminders can improve study consistency and learning outcomes in an introductory-level undergraduate course. By randomly assigning whether nearly 300 students would receive occasional e-mail messages encouraging out-of-class study, we find that these reminders increased…

  9. Prism foil from an LCD monitor as a tool for teaching introductory optics

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  10. Prism foil from an LCD monitor as a tool for teaching introductory optics

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd; Gojkosek, Mihael, E-mail: gorazd.planinsic@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19 (Slovenia)

    2011-03-15

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  11. An Analysis of Economic Learning among Undergraduates in Introductory Economics Courses in Germany

    Science.gov (United States)

    Happ, Roland; Zlatkin-Troitschanskaia, Olga; Schmidt, Susanne

    2016-01-01

    In this article, the authors present the findings of a pretest-posttest measurement of the economic knowledge of students in introductory economics courses in undergraduate study programs in Germany. The responses of 403 students to 14 items selected from the "Test of Economic Literacy" (Soper and Walstad 1987) were analyzed to identify…

  12. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    Science.gov (United States)

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  13. Creating Trans-Inclusive Schools: Introductory Activities That Enhance the Critical Consciousness of Future Educators

    Science.gov (United States)

    De Pedro, Kris Tunac; Jackson, Christopher; Campbell, Erin; Gilley, Jade; Ciarelli, Brock

    2016-01-01

    The Lawrence King murder and other tragedies surrounding transgender youth have prompted a national discussion about the need for schools to be more supportive and inclusive of transgender students. In this multi-authored reflection, the authors describe a series of three introductory activities in an undergraduate educational studies course aimed…

  14. Mediating Relationship of Differential Products in Understanding Integration in Introductory Physics

    Science.gov (United States)

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and…

  15. Ditching the Script: Moving beyond "Automatic Thinking" in Introductory Political Science Courses

    Science.gov (United States)

    Glover, Robert W.; Tagliarina, Daniel

    2011-01-01

    Political science is a challenging field, particularly when it comes to undergraduate teaching. If we are to engage in something more than uncritical ideological instruction, it demands from the student a willingness to approach alien political ideas with intellectual generosity. Yet, students within introductory classes often harbor inherited…

  16. Making Politics "Click": The Costs and Benefits of Using Clickers in an Introductory Political Science Course

    Science.gov (United States)

    Evans, Heather K.

    2012-01-01

    In this article, the author addresses both the costs and benefits of implementing clickers into an introductory political science course. Comparing student responses to a mid-semester survey in both a clicker and non-clicker course, the results show that students have higher satisfaction of the course and instructor, higher exam scores, and feel…

  17. The Robotic Decathlon: Project-Based Learning Labs and Curriculum Design for an Introductory Robotics Course

    Science.gov (United States)

    Cappelleri, D. J.; Vitoroulis, N.

    2013-01-01

    This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…

  18. A One-Year Introductory Robotics Curriculum for Computer Science Upperclassmen

    Science.gov (United States)

    Correll, N.; Wing, R.; Coleman, D.

    2013-01-01

    This paper describes a one-year introductory robotics course sequence focusing on computational aspects of robotics for third- and fourth-year students. The key challenges this curriculum addresses are "scalability," i.e., how to teach a robotics class with a limited amount of hardware to a large audience, "student assessment,"…

  19. The "Core Concepts Plus" Paradigm for Creating an Electronic Textbook for Introductory Business and Economic Statistics

    Science.gov (United States)

    Haley, M. Ryan

    2013-01-01

    This paper describes a flexible paradigm for creating an electronic "Core Concepts Plus" textbook (CCP-text) for a course in Introductory Business and Economic Statistics (IBES). In general terms, "core concepts" constitute the intersection of IBES course material taught by all IBES professors at the author's university. The…

  20. Dualism-Based Design of the Introductory Chinese MOOC "Kit de contact en langue chinoise"

    Science.gov (United States)

    Wang-Szilas, Jue; Bellassen, Joël

    2017-01-01

    This article reviews the existing Chinese language Massive Open Online Courses (MOOCs) and points out three problems in their design: the monism-based teaching method, the non-integration of cultural elements, and the lack of learner-learner interactions. It then presents the design principles of the Introductory Chinese MOOC in an attempt to…

  1. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  2. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    Science.gov (United States)

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  3. A Hybrid and Flipped Version of an Introductory Mathematics Course for Higher Education

    Science.gov (United States)

    Salinas Martínez, N. Patricia; Quintero Rodríguez, Eliud

    2018-01-01

    This in practice paper describes the experience of seven lecturers in a hybrid and flipped version of an introductory mathematics course for higher education. In a Mexican university, lecturers adapted to this innovation supported by an adjusted Massive Open Online Course. The experience revealed the relevance of leaving conventional assessment…

  4. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    Science.gov (United States)

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  5. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    Science.gov (United States)

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  6. Media Literacy in Action? What Are We Teaching in Introductory College Media Studies Courses?

    Science.gov (United States)

    Ashley, Seth

    2015-01-01

    An introductory media studies course is a staple of post-secondary education. What are instructors teaching in this course, and to what extent are the principles of media literacy education being incorporated into this likely home? This article reports the findings of a small survey of instructors, who describe aspects of their course content and…

  7. Comparing Linear and Nonlinear Delivery of Introductory Psychology Lectures: Improving Student Retention

    Science.gov (United States)

    Cramer, Kenneth M.; Sands, Mandy

    2016-01-01

    As in most disciplines, the typical introductory class presents topics to students in a linear fashion, beginning (to use psychology as an example) with the history of the field, research methods, brain and neurons, sensation and perception, and so on. This study examined the impact of topic sequence on student achievement. The same professor…

  8. Accounting History in Undergraduate Introductory Financial Accounting Courses: An Exploratory Study.

    Science.gov (United States)

    Williams, Satina V.; Schwartz, Bill N.

    2002-01-01

    Accounting faculty surveyed (n=45) did not overwhelmingly support incorporating accounting history into introductory courses, despite Accounting Education Change Commission recommendations. They did not support a separate course or believe history would attract more students. Attitudes of those already including history did not differ greatly from…

  9. Measuring the Effects of Virtual Pair Programming in an Introductory Programming Java Course

    Science.gov (United States)

    Zacharis, N. Z.

    2011-01-01

    This study investigated the effectiveness of virtual pair programming (VPP) on student performance and satisfaction in an introductory Java course. Students used online tools that integrated desktop sharing and real-time communication, and the metrics examined showed that VPP is an acceptable alternative to individual programming experience.…

  10. Java vs. Python Coverage of Introductory Programming Concepts: A Textbook Analysis

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Rague, Brian; Wolthuis, Stuart

    2017-01-01

    In this research, we compare two languages, Java and Python, by performing a content analysis of words in textbooks that describe important programming concepts. Our goal is to determine which language has better textbook support for teaching introductory programming courses. We used the TextSTAT program to count how often our list of concept…

  11. Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics

    Science.gov (United States)

    Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim

    2018-01-01

    Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…

  12. Which Introductory Programming Approach Is Most Suitable for Students: Procedural or Visual Programming?

    Science.gov (United States)

    Eid, Chaker; Millham, Richard

    2012-01-01

    In this paper, we discuss the visual programming approach to teaching introductory programming courses and then compare this approach with that of procedural programming. The involved cognitive levels of students, as beginning students are introduced to different types of programming concepts, are correlated to the learning processes of…

  13. Exploring the Relationship between Self-Efficacy and Retention in Introductory Physics

    Science.gov (United States)

    Sawtelle, Vashti; Brewe, Eric; Kramer, Laird H.

    2012-01-01

    The quantitative results of Sources of Self-Efficacy in Science Courses-Physics (SOSESC-P) are presented as a logistic regression predicting the passing of students in introductory Physics with Calculus I, overall as well as disaggregated by gender. Self-efficacy as a theory to explain human behavior change [Bandura [1977] "Psychological…

  14. Data Analysis and Graphing in an Introductory Physics Laboratory: Spreadsheet versus Statistics Suite

    Science.gov (United States)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…

  15. An Alternative to the Problematic Macro-Micro Structure of Introductory Economics.

    Science.gov (United States)

    Tinari, Frank D.

    The paper explains an alternative structure to teaching micro and macroeconomic theory and describes the characteristics that make it an effective framework for introductory and principles courses. The teaching of economics principles typically proceeds by separating macroeconomic theory and microeconomic theory. But the use of the macro-micro…

  16. Sex and Gender in the Social Sciences: Reassessing the Introductory Course, Principles in Microeconomics.

    Science.gov (United States)

    Gappa, Judith M.; Pearce, Janice

    Developed to help faculty teaching introductory courses in microeconomics, psychology, and sociology in colleges and universities incorporate existing knowledge about women into their course content and teaching practices, this report is organized into two sets of guidelines. The first, "Content Guidelines: Sex and Gender in the Introductory…

  17. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    Science.gov (United States)

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  18. Success in Introductory College Physics: The Role of High School Preparation.

    Science.gov (United States)

    Sadler, Philip M.; Tai, Robert H.

    2001-01-01

    Examines the extent to which a high school physics course prepares students for college physics success. In this study of 1,933 introductory college physics students, demographic and schooling factors account for a large fraction of the variation in college physics grades at 18 colleges and universities from around the nation. (Author/SAH)

  19. Effects of Day Care and Maternal Employment: Views from Introductory Psychology Textbooks.

    Science.gov (United States)

    Etaugh, Claire; Cohen, Joseph; Cummings-Hill, Myra; Massey, Michelle; Detweiler, Kelly Selchow

    1999-01-01

    Examines the treatment of day care and maternal employment in introductory psychology textbooks between 1970 and 1997. Finds that the coverage of day care and maternal employment increased over the 28 year span, while 95% of the later textbooks presented views ranging from positive to balanced in the mid-1990s. (CMK)

  20. A Severe Weather Laboratory Exercise for an Introductory Weather and Climate Class Using Active Learning Techniques

    Science.gov (United States)

    Grundstein, Andrew; Durkee, Joshua; Frye, John; Andersen, Theresa; Lieberman, Jordan

    2011-01-01

    This paper describes a new severe weather laboratory exercise for an Introductory Weather and Climate class, appropriate for first and second year college students (including nonscience majors), that incorporates inquiry-based learning techniques. In the lab, students play the role of meteorologists making forecasts for severe weather. The…

  1. Introductory analysis of sustainable consumption and production : Factors of corporate social responsibility management in Japan

    OpenAIRE

    八木, 迪幸; 國部, 克彦

    2017-01-01

    As an introductory analysis of sustainable consumption and production, this paper examines what factors influence corporate social responsibility management in Japan. Following some underlying theories (management control system; the neo-institutional theory; performance measurement systems; the stakeholder theory; the resource dependence theory), this paper conducts empirical studies using firm-level data. The first three studies examine what factors encourage corporate social responsibility...

  2. The Face of Society: Gender and Race in Introductory Sociology Books Revisited

    Science.gov (United States)

    Clark, Roger; Nunes, Alex

    2008-01-01

    We have updated Ferree and Hall's (1990) study of the way gender and race are constructed through pictures in introductory sociology textbooks. Ferree and Hall looked at 33 textbooks published between 1982 and 1988. We replicated their study by examining 3,085 illustrations in a sample of 27 textbooks, most of which were published between 2002 and…

  3. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    Science.gov (United States)

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  4. Effect of Using Separate Laboratory and Lecture Courses for Introductory Crop Science on Student Performance.

    Science.gov (United States)

    Wiebold, W. J.; Slaughter, Leon

    1986-01-01

    Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)

  5. Not Just "Rocks for Jocks": Who Are Introductory Geology Students and Why Are They Here?

    Science.gov (United States)

    Gilbert, Lisa A.; Stempien, Jennifer; McConnell, David A.; Budd, David A.; van der Hoeven Kraft, Katrien J.; Bykerk-Kauffman, Ann; Jones, Megan H.; Knight, Catharine C.; Matheney, Ronald K.; Perkins, Dexter; Wirth, Karl R.

    2012-01-01

    Do students really enroll in Introductory Geology because they think it is "rocks for jocks"? In this study, we examine the widely held assumption that students view geology as a qualitative and remedial option for fulfilling a general education requirement. We present the first quantitative characterization of a large number of…

  6. Measuring Student Engagement, Knowledge, and Perceptions of Climate Change in an Introductory Environmental Geology Course

    Science.gov (United States)

    McNeal, Karen S.; Spry, Jacob M.; Mitra, Ritayan; Tipton, Jamie L.

    2014-01-01

    This research examines a semester-long introductory environmental geology course, which emphasized climate science using an Earth systems approach and employed a multipronged teaching strategy comprising lecture, movie viewing, class dialogues, and journaling. Evidence of student engagement during various pedagogical approaches (e.g., movie…

  7. Food Preparation and Service. An Introductory Course for Food Services Careers.

    Science.gov (United States)

    Douma, Elaine L.

    Intended for use in a comprehensive senior high school, this curriculum guide for an introductory laboratory course focuses on the development of abilities, attitudes, and personal qualities which would lead to job success at the entry level in the food service industry, including in the areas of cooking, waitressing, supermarkets, and similar…

  8. An Open-Ended Investigative Microbial Ecology Laboratory for Introductory Biology

    Science.gov (United States)

    Jones-Held, Susan; Paoletti, Robert; Glick, David; Held, Michael E.

    2010-01-01

    In this article we describe a multi-week investigative laboratory in microbial ecology/diversity and nitrogen cycling that we have used in our introductory biology course. This module encourages active student involvement in experimental design, using the scientific literature and quantitative analysis of large data sets. Students analyze soil…

  9. Content Analysis of Introductory Interior Design College Textbooks: A Study Revisited

    Science.gov (United States)

    Temple, Julie A.; Potthoff, Joy K.

    2013-01-01

    Introductory interior design texts adopted by design educators present information relevant to both historical and contemporary issues in interior design. According to one author, they provide a "survey of the field of interior design as it now exists" (Pile, 2007). A comparison of the content of contemporary texts with those of more…

  10. Coursera's Introductory Human Physiology Course: Factors That Characterize Successful Completion of a MOOC

    Science.gov (United States)

    Engle, Deborah; Mankoff, Chris; Carbrey, Jennifer

    2015-01-01

    Since Massive Open Online Courses (MOOCs) are accessible by anyone in the world at no cost, they have large enrollments that are conducive to educational research. This study examines students in the Coursera MOOC, Introductory Human Physiology. Of the 33,378 students who accessed the course, around 15,000 students responded to items on the…

  11. Improving the Development of Student's Research Questions and Hypotheses in an Introductory Business Research Methods Course

    Science.gov (United States)

    Strangman, Lauria; Knowles, Elizabeth

    2012-01-01

    In an introductory research methods course, students often develop research questions and hypotheses that are vague or confusing, do not contain measurable concepts, and are too narrow in scope or vision. Because of this, the final research projects often fail to provide useful information or address the overall research problem. A Lesson Study…

  12. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    Science.gov (United States)

    Fink, Rachel D.

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…

  13. How We Teach Introductory Bible Courses: A Comparative and Historical Sampling

    Science.gov (United States)

    Cornell, Collin; LeMon, Joel M.

    2016-01-01

    This study identifies the dominant modes of biblical interpretation being taught in introductory Bible courses through a qualitative analysis of course syllabi from three institutional contexts: evangelical Christian colleges, private colleges, and public universities. Despite a proliferation of methods and scholarly approaches to the Bible, this…

  14. A Comparison of Traditional and Blended Learning in Introductory Principles of Accounting Course

    Science.gov (United States)

    Du, Chan

    2011-01-01

    This paper examines whether a blended course that introduces lower-level education online learned by students before they come into class and after class online assignments and online discussions enhances student performance for an introductory principles of accounting course over the period 2009-2010. The blended course design includes (1)…

  15. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  16. The Use of Facebook in an Introductory MIS Course: Social Constructivist Learning Environment

    Science.gov (United States)

    Ractham, Peter; Kaewkitipong, Laddawan; Firpo, Daniel

    2012-01-01

    The major objective of this article is to evaluate via a Design Science Research Methodology (DSRM) the implementation of a Social Constructivist learning framework for an introductory Management Information System (MIS) course. Facebook was used as a learning artifact to build and foster a learning environment, and a series of features and…

  17. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  18. Deep-Elaborative Learning of Introductory Management Accounting for Business Students

    Science.gov (United States)

    Choo, Freddie; Tan, Kim B.

    2005-01-01

    Research by Choo and Tan (1990; 1995) suggests that accounting students, who engage in deep-elaborative learning, have a better understanding of the course materials. The purposes of this paper are: (1) to describe a deep-elaborative instructional approach (hereafter DEIA) that promotes deep-elaborative learning of introductory management…

  19. An Engineering-Oriented Approach to the Introductory Differential Equations Course

    Science.gov (United States)

    Pennell, S.; Avitabile, P.; White, J.

    2009-01-01

    The introductory differential equations course can be made more relevant to engineering students by including more of the engineering viewpoint, in which differential equations are regarded as systems with inputs and outputs. This can be done without sacrificing any of the usual topical coverage. This point of view is conducive to student…

  20. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    Science.gov (United States)

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  1. Helping When They Are Listening: A Midterm Study Skills Intervention for "Introductory Psychology"

    Science.gov (United States)

    Cathey, Christie L.; Visio, Michelle E; Whisenhunt, Brooke L.; Hudson, Danae L.; Shoptaugh, Carol F.

    2016-01-01

    This study examined the effectiveness of a study skills training session offered at midterm to students enrolled in a large section of "Introductory Psychology." In the training session, students watched a series of five, short videos on effective learning and answered related clicker questions that encouraged them to reflect their own…

  2. Attitudes and Motivation of Students in an Introductory Technical Graphics Course: A Meta-Analysis Study

    Science.gov (United States)

    Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    Students in introductory engineering graphics courses at North Carolina State University (NCSU) were asked to complete surveys to help educators and administrators understand their attitudes toward learning and their motivation to learn. Analyses of the completed surveys provided the Graphic Communications Program at NCSU with an understanding of…

  3. Learning from the Starry Message: Using Galileo's "Sidereus Nuncius" in Introductory Astronomy Classes

    Science.gov (United States)

    Wiesner, Matthew P.

    2015-01-01

    Every introductory astronomy class encounters Galileo during the course as the first man to systematically study the sky with a telescope. Every Astronomy 101 student meets Galileo as one of the major catalysts behind the shift from the Ptolemaic to the Copernican system and as one of the great minds behind the scientific method. But most of the…

  4. The Socratic Method in the Introductory PR Course: An Alternative Pedagogy.

    Science.gov (United States)

    Parkinson, Michael G.; Ekachai, Daradirek

    2002-01-01

    Presents the results of a study comparing student reactions to and perceptions of learning in introductory public relations courses using a traditional lecture format and a Socratic approach. Finds significant differences in the two groups showing that students who received the Socratic instruction reported more opportunities in practicing their…

  5. The Client-Centered Approach as a Foundation for Teaching the Introductory Course in Public Relations.

    Science.gov (United States)

    Najor, Michele A.; Motschall, Melissa

    2001-01-01

    Describes how the authors use a broad-based, client-centered model to teach an introductory course in public relations, integrating writing assignments for "clients" into course topics, which include history, ethics, theory, research, program planning, publicity, crisis management, and evaluation methods. Discusses course objectives, and notes…

  6. Textbook Readability and Student Performance in Online Introductory Corporate Finance Classes

    Science.gov (United States)

    Peng, Chien-Chih

    2015-01-01

    This paper examines whether the choice of a more readable textbook can improve student performance in online introductory corporate finance classes. The ordinary least squares regression model is employed to analyze a sample of 206 students during the period from 2008 to 2012. The results of this study show that the student's age, student's major,…

  7. Introductory statement to the administrative and budgetary committee, 4 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the Introductory Statement made by the Director General of the IAEA on 4 May 1998 to the Administrative and Budgetary Committee of the IAEA who met at the Agency's Headquarters in Vienna. The Director General comments on the Agency's programme and budget proposals for 1999 and 2000, the framework for further reform, staffing of the Secretariat, and current resource situation

  8. A First Assignment to Create Student Buy-In in an Introductory Business Statistics Course

    Science.gov (United States)

    Newfeld, Daria

    2016-01-01

    This paper presents a sample assignment to be administered after the first two weeks of an introductory business focused statistics course in order to promote student buy-in. This assignment integrates graphical displays of data, descriptive statistics and cross-tabulation analysis through the lens of a marketing analysis study. A marketing sample…

  9. From Research to Practice: Basic Mathematics Skills and Success in Introductory Statistics

    Science.gov (United States)

    Lunsford, M. Leigh; Poplin, Phillip

    2011-01-01

    Based on previous research of Johnson and Kuennen (2006), we conducted a study to determine factors that would possibly predict student success in an introductory statistics course. Our results were similar to Johnson and Kuennen in that we found students' basic mathematical skills, as measured on a test created by Johnson and Kuennen, were a…

  10. Primarily Statistics: Developing an Introductory Statistics Course for Pre-Service Elementary Teachers

    Science.gov (United States)

    Green, Jennifer L.; Blankenship, Erin E.

    2013-01-01

    We developed an introductory statistics course for pre-service elementary teachers. In this paper, we describe the goals and structure of the course, as well as the assessments we implemented. Additionally, we use example course work to demonstrate pre-service teachers' progress both in learning statistics and as novice teachers. Overall, the…

  11. Evaluating Two Models of Collaborative Tests in an Online Introductory Statistics Course

    Science.gov (United States)

    Björnsdóttir, Auðbjörg; Garfield, Joan; Everson, Michelle

    2015-01-01

    This study explored the use of two different types of collaborative tests in an online introductory statistics course. A study was designed and carried out to investigate three research questions: (1) What is the difference in students' learning between using consensus and non-consensus collaborative tests in the online environment?, (2) What is…

  12. Student Performance in an Introductory Business Statistics Course: Does Delivery Mode Matter?

    Science.gov (United States)

    Haughton, Jonathan; Kelly, Alison

    2015-01-01

    Approximately 600 undergraduates completed an introductory business statistics course in 2013 in one of two learning environments at Suffolk University, a mid-sized private university in Boston, Massachusetts. The comparison group completed the course in a traditional classroom-based environment, whereas the treatment group completed the course in…

  13. Course Format Effects on Learning Outcomes in an Introductory Statistics Course

    Science.gov (United States)

    Sami, Fary

    2011-01-01

    The purpose of this study was to determine if course format significantly impacted student learning and course completion rates in an introductory statistics course taught at Harford Community College. In addition to the traditional lecture format, the College offers an online, and a hybrid (blend of traditional and online) version of this class.…

  14. Statistics Graduate Teaching Assistants' Beliefs, Practices and Preparation for Teaching Introductory Statistics

    Science.gov (United States)

    Justice, Nicola; Zieffler, Andrew; Garfield, Joan

    2017-01-01

    Graduate teaching assistants (GTAs) are responsible for the instruction of many statistics courses offered at the university level, yet little is known about these students' preparation for teaching, their beliefs about how introductory statistics should be taught, or the pedagogical practices of the courses they teach. An online survey to examine…

  15. Development and Assessment of a Preliminary Randomization-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Tintle, Nathan; VanderStoep, Jill; Holmes, Vicki-Lynn; Quisenberry, Brooke; Swanson, Todd

    2011-01-01

    The algebra-based introductory statistics course is the most popular undergraduate course in statistics. While there is a general consensus for the content of the curriculum, the recent Guidelines for Assessment and Instruction in Statistics Education (GAISE) have challenged the pedagogy of this course. Additionally, some arguments have been made…

  16. Exploring Factors Related to Completion of an Online Undergraduate-Level Introductory Statistics Course

    Science.gov (United States)

    Zimmerman, Whitney Alicia; Johnson, Glenn

    2017-01-01

    Data were collected from 353 online undergraduate introductory statistics students at the beginning of a semester using the Goals and Outcomes Associated with Learning Statistics (GOALS) instrument and an abbreviated form of the Statistics Anxiety Rating Scale (STARS). Data included a survey of expected grade, expected time commitment, and the…

  17. Understanding the elementary considerations in a network warfare environment: an introductory framework

    CSIR Research Space (South Africa)

    Veerasamy, N

    2008-07-01

    Full Text Available . It seeks to offer a better introductory understanding to the field of network warfare. This paper addresses the requirements for a network warfare capability and will look at the high-level approach, constraints, focus areas, levels, techniques...

  18. Do Introductory Statistics Courses in the United States Improve Students' Attitudes?

    Science.gov (United States)

    Schau, Candace; Emmioglu, Esma

    2012-01-01

    We examined the attitudes of about 2200 students enrolled in 101 sections of post-secondary introductory statistics service courses located across the United States. Using the "Survey of Attitudes Toward Statistics-36," we assessed students' attitudes when they entered and left their courses, as well as changes in attitudes across their courses.…

  19. An Exploration of Student Attitudes and Satisfaction in a GAISE-Influenced Introductory Statistics Course

    Science.gov (United States)

    Paul, Warren; Cunnington, R. Clare

    2017-01-01

    We used the Survey of Attitudes Toward Statistics to (1) evaluate using presemester data the Students' Attitudes Toward Statistics Model (SATS-M), and (2) test the effect on attitudes of an introductory statistics course redesigned according to the Guidelines for Assessment and Instruction in Statistics Education (GAISE) by examining the change in…

  20. Data analysis and graphing in an introductory physics laboratory: spreadsheet versus statistics suite

    International Nuclear Information System (INIS)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared.

  1. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    Science.gov (United States)

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  2. Evaluating an Active Learning Approach to Teaching Introductory Statistics: A Classroom Workbook Approach

    Science.gov (United States)

    Carlson, Kieth A.; Winquist, Jennifer R.

    2011-01-01

    The study evaluates a semester-long workbook curriculum approach to teaching a college level introductory statistics course. The workbook curriculum required students to read content before and during class and then work in groups to complete problems and answer conceptual questions pertaining to the material they read. Instructors spent class…

  3. Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan

    2017-01-01

    Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…

  4. Promoting Active Learning When Teaching Introductory Statistics and Probability Using a Portfolio Curriculum Approach

    Science.gov (United States)

    Adair, Desmond; Jaeger, Martin; Price, Owen M.

    2018-01-01

    The use of a portfolio curriculum approach, when teaching a university introductory statistics and probability course to engineering students, is developed and evaluated. The portfolio curriculum approach, so called, as the students need to keep extensive records both as hard copies and digitally of reading materials, interactions with faculty,…

  5. Retention of Statistical Concepts in a Preliminary Randomization-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Tintle, Nathan; Topliff, Kylie; VanderStoep, Jill; Holmes, Vicki-Lynn; Swanson, Todd

    2012-01-01

    Previous research suggests that a randomization-based introductory statistics course may improve student learning compared to the consensus curriculum. However, it is unclear whether these gains are retained by students post-course. We compared the conceptual understanding of a cohort of students who took a randomization-based curriculum (n = 76)…

  6. Effect of Task Presentation on Students' Performances in Introductory Statistics Courses

    Science.gov (United States)

    Tomasetto, Carlo; Matteucci, Maria Cristina; Carugati, Felice; Selleri, Patrizia

    2009-01-01

    Research on academic learning indicates that many students experience major difficulties with introductory statistics and methodology courses. We hypothesized that students' difficulties may depend in part on the fact that statistics tasks are commonly viewed as related to the threatening domain of math. In two field experiments which we carried…

  7. Mainstreaming Remedial Mathematics Students in Introductory Statistics: Results Using a Randomized Controlled Trial

    Science.gov (United States)

    Logue, Alexandra W.; Watanabe-Rose, Mari

    2014-01-01

    This study used a randomized controlled trial to determine whether students, assessed by their community colleges as needing an elementary algebra (remedial) mathematics course, could instead succeed at least as well in a college-level, credit-bearing introductory statistics course with extra support (a weekly workshop). Researchers randomly…

  8. OkCupid Data for Introductory Statistics and Data Science Courses

    Science.gov (United States)

    Kim, Albert Y.; Escobedo-Land, Adriana

    2015-01-01

    We present a data set consisting of user profile data for 59,946 San Francisco OkCupid users (a free online dating website) from June 2012. The data set includes typical user information, lifestyle variables, and text responses to 10 essay questions. We present four example analyses suitable for use in undergraduate introductory probability and…

  9. A Qualitative Assessment of the Learning Outcomes of Teaching Introductory American Politics in Comparative Perspective

    Science.gov (United States)

    Gelbman, Shamira M.

    2011-01-01

    This article discusses the findings of an ethnographic content analysis of students' written reflections as a means for assessing the learning outcomes of teaching introductory American politics in comparative perspective. It focuses especially on determining whether and how this approach enhanced students' understanding and retention of knowledge…

  10. Clinical Application Projects (CAPs) for Health Science Students in Introductory Microbiology.

    Science.gov (United States)

    Halyard, Rebecca A.

    Clinical Application Projects (CAPs) have been developed that allow dental hygiene and nursing students to apply introductory microbiology principles and skills learned in lecture and laboratory to a problem in an appropriate clinical situation. CAPs therefore substitute for the traditional study of "unknowns". Principles and processes emphasized…

  11. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  12. General Systems Theory, Systems Analysis, and Regional Planning: An Introductory Bibliography. Exchange Bibliography No. 164.

    Science.gov (United States)

    Williams, Hugh E.

    This bibliography suggests a number of introductory readings that will enable regional and urban planners to understand the systems approach. The main focus of the research study that gave rise to this review of the literature was on establishing ways in which decisionmakers in regional planning could be helped in making their choices. The…

  13. Understanding Factors Leading to Participation in Supplemental Instruction Programs in Introductory Accounting Courses

    Science.gov (United States)

    Goldstein, James; Sauer, Paul; O'Donnell, Joseph

    2014-01-01

    Although studies have shown that supplemental instruction (SI) programs can have positive effects in introductory accounting courses, these programs experience low participation rates. Thus, our study is the first to examine the factors leading to student participation in SI programs. We do this through a survey instrument based on the Theory of…

  14. Introductory statement to the 2nd scientific forum on sustainable development: A role for nuclear power?

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    In his Introductory Statement to the 2nd Scientific Forum on 'Sustainable Development - A Role for Nuclear Power?' (Vienna, 28 September 1999), the Director General of the IAEA focussed on the the main aspects concerning the development of nuclear power: safety, competitiveness, and public support

  15. Economic Education in the Middle East: Are the Determinants of Success in Introductory Economics Any Different?

    Science.gov (United States)

    Kherfi, Samer

    2008-01-01

    The author examines the determinants of success in introductory microeconomics, in the context of a Middle Eastern society but within an American educational setting. The data set is rich and covers over 3,500 students in one regional campus, allowing control for a wide range of student and class characteristics, one of which, nationality, is…

  16. Active Learning in Introductory Economics: Do MyEconLab and Aplia Make Any Difference?

    Science.gov (United States)

    Nguyen, Trien; Trimarchi, Angela

    2010-01-01

    This paper reports experiment results of teaching large classes of introductory economics with modern learning technology such as MyEconLab or Aplia. This new technology emerges partially in response to the enrollment pressure currently facing many institutions of higher education. Among other things, the technology provides an integrated online…

  17. "Economics with Training Wheels": Using Blogs in Teaching and Assessing Introductory Economics

    Science.gov (United States)

    Cameron, Michael P.

    2012-01-01

    Blogs provide a dynamic interactive medium for online discussion, consistent with communal constructivist pedagogy. The author of this article describes and evaluates a blog assignment used in the teaching and assessment of a small (40-60 students) introductory economics course. Using qualitative and quantitative data collected across four…

  18. Influence of Course Delivery Method and Proctoring on Performance in Introductory Economics

    OpenAIRE

    Wachenheim, Cheryl J.

    2011-01-01

    This work was published in the Review of Agricultural Economics. See Wachenheim, C.J. 2009. Final Exam Scores in Introductory Economics Courses: Effect of Course Delivery Method and Proctoring. Review of Agricultural Economics 31(3), pp. 640-652.

  19. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    Science.gov (United States)

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  20. The Role of an Actuarial Director in the Development of an Introductory Program

    Science.gov (United States)

    Staples, Susan G.

    2014-01-01

    We describe the roles and duties of a director in developing an introductory actuarial program. Degree plan design, specialized exam courses, internship classes, coordination of efforts with Economics and Finance Departments, opportunities for creating a minor in actuarial mathematics, actuarial clubs, career advice, and interaction with actuarial…