Jackknife Variance Estimator for Two Sample Linear Rank Statistics
1988-11-01
Accesion For - - ,NTIS GPA&I "TIC TAB Unann c, nc .. [d Keywords: strong consistency; linear rank test’ influence function . i , at L By S- )Distribut...reverse if necessary and identify by block number) FIELD IGROUP SUB-GROUP Strong consistency; linear rank test; influence function . 19. ABSTRACT
Exact distributions of two-sample rank statistics and block rank statistics using computer algebra
Wiel, van de M.A.
1998-01-01
We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for
Statistical methods for ranking data
Alvo, Mayer
2014-01-01
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
Optimization of the two-sample rank Neyman-Pearson detector
Akimov, P. S.; Barashkov, V. M.
1984-10-01
The development of optimal algorithms concerned with rank considerations in the case of finite sample sizes involves considerable mathematical difficulties. The present investigation provides results related to the design and the analysis of an optimal rank detector based on a utilization of the Neyman-Pearson criteria. The detection of a signal in the presence of background noise is considered, taking into account n observations (readings) x1, x2, ... xn in the experimental communications channel. The computation of the value of the rank of an observation is calculated on the basis of relations between x and the variable y, representing interference. Attention is given to conditions in the absence of a signal, the probability of the detection of an arriving signal, details regarding the utilization of the Neyman-Pearson criteria, the scheme of an optimal rank, multichannel, incoherent detector, and an analysis of the detector.
A generalization of Friedman's rank statistic
Kroon, de J.; Laan, van der P.
1983-01-01
In this paper a very natural generalization of the two·way analysis of variance rank statistic of FRIEDMAN is given. The general distribution-free test procedure based on this statistic for the effect of J treatments in a random block design can be applied in general two-way layouts without
Statistical Optimality in Multipartite Ranking and Ordinal Regression.
Uematsu, Kazuki; Lee, Yoonkyung
2015-05-01
Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.
Directory of Open Access Journals (Sweden)
M.M. Mohie El-Din
2011-10-01
Full Text Available In this paper, two sample Bayesian prediction intervals for order statistics (OS are obtained. This prediction is based on a certain class of the inverse exponential-type distributions using a right censored sample. A general class of prior density functions is used and the predictive cumulative function is obtained in the two samples case. The class of the inverse exponential-type distributions includes several important distributions such the inverse Weibull distribution, the inverse Burr distribution, the loglogistic distribution, the inverse Pareto distribution and the inverse paralogistic distribution. Special cases of the inverse Weibull model such as the inverse exponential model and the inverse Rayleigh model are considered.
Prototyping a Distributed Information Retrieval System That Uses Statistical Ranking.
Harman, Donna; And Others
1991-01-01
Built using a distributed architecture, this prototype distributed information retrieval system uses statistical ranking techniques to provide better service to the end user. Distributed architecture was shown to be a feasible alternative to centralized or CD-ROM information retrieval, and user testing of the ranking methodology showed both…
Efficient nonrigid registration using ranked order statistics
DEFF Research Database (Denmark)
Tennakoon, Ruwan B.; Bab-Hadiashar, Alireza; de Bruijne, Marleen
2013-01-01
of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find the important regions for registration and use an appropriate sampling scheme......Non-rigid image registration techniques are widely used in medical imaging applications. Due to high computational complexities of these techniques, finding appropriate registration method to both reduce the computation burden and increase the registration accuracy has become an intense area...... to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments on registration of real lung CT images, with expert annotated landmarks, show...
A cautionary note on the rank product statistic.
Koziol, James A
2016-06-01
The rank product method introduced by Breitling R et al. [2004, FEBS Letters 573, 83-92] has rapidly generated popularity in practical settings, in particular, detecting differential expression of genes in microarray experiments. The purpose of this note is to point out a particular property of the rank product method, namely, its differential sensitivity to over- and underexpression. It turns out that overexpression is less likely to be detected than underexpression with the rank product statistic. We have conducted both empirical and exact power studies that demonstrate this phenomenon, and summarize these findings in this note. © 2016 Federation of European Biochemical Societies.
Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents
Eliazar, Iddo; Cohen, Morrel H.
2014-01-01
An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.
[Rank distributions in community ecology from the statistical viewpoint].
Maksimov, V N
2004-01-01
Traditional statistical methods for definition of empirical functions of abundance distribution (population, biomass, production, etc.) of species in a community are applicable for processing of multivariate data contained in the above quantitative indices of the communities. In particular, evaluation of moments of distribution suffices for convolution of the data contained in a list of species and their abundance. At the same time, the species should be ranked in the list in ascending rather than descending population and the distribution models should be analyzed on the basis of the data on abundant species only.
Statistical regularities in the rank-citation profile of scientists.
Petersen, Alexander M; Stanley, H Eugene; Succi, Sauro
2011-01-01
Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile c(i)(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each c(i)(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different c(i)(r) profiles, our results demonstrate the utility of the β(i) scaling parameter in conjunction with h(i) for quantifying individual publication impact. We show that the total number of citations C(i) tallied from a scientist's N(i) papers scales as [Formula: see text]. Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress.
International Nuclear Information System (INIS)
Aslan, B.; Zech, G.
2005-01-01
We introduce the novel concept of statistical energy as a statistical tool. We define statistical energy of statistical distributions in a similar way as for electric charge distributions. Charges of opposite sign are in a state of minimum energy if they are equally distributed. This property is used to check whether two samples belong to the same parent distribution, to define goodness-of-fit tests and to unfold distributions distorted by measurement. The approach is binning-free and especially powerful in multidimensional applications
Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R
2016-12-01
: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We
Sensitivity analysis of ranked data: from order statistics to quantiles
Heidergott, B.F.; Volk-Makarewicz, W.
2015-01-01
In this paper we provide the mathematical theory for sensitivity analysis of order statistics of continuous random variables, where the sensitivity is with respect to a distributional parameter. Sensitivity analysis of order statistics over a finite number of observations is discussed before
Wilcoxon's signed-rank statistic: what null hypothesis and why it matters.
Li, Heng; Johnson, Terri
2014-01-01
In statistical literature, the term 'signed-rank test' (or 'Wilcoxon signed-rank test') has been used to refer to two distinct tests: a test for symmetry of distribution and a test for the median of a symmetric distribution, sharing a common test statistic. To avoid potential ambiguity, we propose to refer to those two tests by different names, as 'test for symmetry based on signed-rank statistic' and 'test for median based on signed-rank statistic', respectively. The utility of such terminological differentiation should become evident through our discussion of how those tests connect and contrast with sign test and one-sample t-test. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Litvinenko, Alexander
2018-03-12
Part 1: Parallel H-matrices in spatial statistics 1. Motivation: improve statistical model 2. Tools: Hierarchical matrices 3. Matern covariance function and joint Gaussian likelihood 4. Identification of unknown parameters via maximizing Gaussian log-likelihood 5. Implementation with HLIBPro. Part 2: Low-rank Tucker tensor methods in spatial statistics
The exact probability distribution of the rank product statistics for replicated experiments.
Eisinga, Rob; Breitling, Rainer; Heskes, Tom
2013-03-18
The rank product method is a widely accepted technique for detecting differentially regulated genes in replicated microarray experiments. To approximate the sampling distribution of the rank product statistic, the original publication proposed a permutation approach, whereas recently an alternative approximation based on the continuous gamma distribution was suggested. However, both approximations are imperfect for estimating small tail probabilities. In this paper we relate the rank product statistic to number theory and provide a derivation of its exact probability distribution and the true tail probabilities. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks
Frahm, Klaus M.; Shepelyansky, Dima L.
2014-04-01
We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.
Mathur, Sunil; Sadana, Ajit
2015-12-01
We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.
BROËT, PHILIPPE; TSODIKOV, ALEXANDER; DE RYCKE, YANN; MOREAU, THIERRY
2010-01-01
This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests. PMID:15293627
Broët, Philippe; Tsodikov, Alexander; De Rycke, Yann; Moreau, Thierry
2004-06-01
This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests.
An Improved Rank Correlation Effect Size Statistic for Single-Case Designs: Baseline Corrected Tau.
Tarlow, Kevin R
2017-07-01
Measuring treatment effects when an individual's pretreatment performance is improving poses a challenge for single-case experimental designs. It may be difficult to determine whether improvement is due to the treatment or due to the preexisting baseline trend. Tau- U is a popular single-case effect size statistic that purports to control for baseline trend. However, despite its strengths, Tau- U has substantial limitations: Its values are inflated and not bound between -1 and +1, it cannot be visually graphed, and its relatively weak method of trend control leads to unacceptable levels of Type I error wherein ineffective treatments appear effective. An improved effect size statistic based on rank correlation and robust regression, Baseline Corrected Tau, is proposed and field-tested with both published and simulated single-case time series. A web-based calculator for Baseline Corrected Tau is also introduced for use by single-case investigators.
DEFF Research Database (Denmark)
Schneider, Jesper Wiborg
2012-01-01
In this paper we discuss and question the use of statistical significance tests in relation to university rankings as recently suggested. We outline the assumptions behind and interpretations of statistical significance tests and relate this to examples from the recent SCImago Institutions Rankin...
Heskes, Tom; Eisinga, Rob; Breitling, Rainer
2014-11-21
The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .
Heimann, G; Neuhaus, G
1998-03-01
In the random censorship model, the log-rank test is often used for comparing a control group with different dose groups. If the number of tumors is small, so-called exact methods are often applied for computing critical values from a permutational distribution. Two of these exact methods are discussed and shown to be incorrect. The correct permutational distribution is derived and studied with respect to its behavior under unequal censoring in the light of recent results proving that the permutational version and the unconditional version of the log-rank test are asymptotically equivalent even under unequal censoring. The log-rank test is studied by simulations of a realistic scenario from a bioassay with small numbers of tumors.
Li, Xiangyu; Cai, Hao; Wang, Xianlong; Ao, Lu; Guo, You; He, Jun; Gu, Yunyan; Qi, Lishuang; Guan, Qingzhou; Lin, Xu; Guo, Zheng
2017-10-13
To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma and RankProd (RP) lack statistical power, while the fold change method lacks any statistical control. In this study, we demonstrated that the within-sample relative expression orderings (REOs) of gene pairs were highly stable among technical replicates of a cell line but often widely disrupted after certain treatments such like gene knockdown, gene transfection and drug treatment. Based on this finding, we customized the RankComp algorithm, previously designed for individualized differential expression analysis through REO comparison, to identify DEGs with certain statistical control for small-scale cell line data. In both simulated and real data, the new algorithm, named CellComp, exhibited high precision with much higher sensitivity than the original RankComp, SAM, limma and RP methods. Therefore, CellComp provides an efficient tool for analyzing small-scale cell line data. © The Author 2017. Published by Oxford University Press.
Two sampling techniques for game meat
van der Merwe, Maretha; Jooste, Piet J.; Hoffman, Louw C.; Calitz, Frikkie J.
2013-01-01
A study was conducted to compare the excision sampling technique used by the export market and the sampling technique preferred by European countries, namely the biotrace cattle and swine test. The measuring unit for the excision sampling was grams (g) and square centimetres (cm2) for the swabbing technique. The two techniques were compared after a pilot test was conducted on spiked approved beef carcasses (n = 12) that statistically proved the two measuring units correlated. The two sampling...
Performances of non-parametric statistics in sensitivity analysis and parameter ranking
International Nuclear Information System (INIS)
Saltelli, A.
1987-01-01
Twelve parametric and non-parametric sensitivity analysis techniques are compared in the case of non-linear model responses. The test models used are taken from the long-term risk analysis for the disposal of high level radioactive waste in a geological formation. They describe the transport of radionuclides through a set of engineered and natural barriers from the repository to the biosphere and to man. The output data from these models are the dose rates affecting the maximum exposed individual of a critical group at a given point in time. All the techniques are applied to the output from the same Monte Carlo simulations, where a modified version of Latin Hypercube method is used for the sample selection. Hypothesis testing is systematically applied to quantify the degree of confidence in the results given by the various sensitivity estimators. The estimators are ranked according to their robustness and stability, on the basis of two test cases. The conclusions are that no estimator can be considered the best from all points of view and recommend the use of more than just one estimator in sensitivity analysis
Caster, Ola; Juhlin, Kristina; Watson, Sarah; Norén, G Niklas
2014-08-01
Detection of unknown risks with marketed medicines is key to securing the optimal care of individual patients and to reducing the societal burden from adverse drug reactions. Large collections of individual case reports remain the primary source of information and require effective analytics to guide clinical assessors towards likely drug safety signals. Disproportionality analysis is based solely on aggregate numbers of reports and naively disregards report quality and content. However, these latter features are the very fundament of the ensuing clinical assessment. Our objective was to develop and evaluate a data-driven screening algorithm for emerging drug safety signals that accounts for report quality and content. vigiRank is a predictive model for emerging safety signals, here implemented with shrinkage logistic regression to identify predictive variables and estimate their respective contributions. The variables considered for inclusion capture different aspects of strength of evidence, including quality and clinical content of individual reports, as well as trends in time and geographic spread. A reference set of 264 positive controls (historical safety signals from 2003 to 2007) and 5,280 negative controls (pairs of drugs and adverse events not listed in the Summary of Product Characteristics of that drug in 2012) was used for model fitting and evaluation; the latter used fivefold cross-validation to protect against over-fitting. All analyses were performed on a reconstructed version of VigiBase(®) as of 31 December 2004, at around which time most safety signals in our reference set were emerging. The following aspects of strength of evidence were selected for inclusion into vigiRank: the numbers of informative and recent reports, respectively; disproportional reporting; the number of reports with free-text descriptions of the case; and the geographic spread of reporting. vigiRank offered a statistically significant improvement in area under the receiver
Two-sample discrimination of Poisson means
Lampton, M.
1994-01-01
This paper presents a statistical test for detecting significant differences between two random count accumulations. The null hypothesis is that the two samples share a common random arrival process with a mean count proportional to each sample's exposure. The model represents the partition of N total events into two counts, A and B, as a sequence of N independent Bernoulli trials whose partition fraction, f, is determined by the ratio of the exposures of A and B. The detection of a significant difference is claimed when the background (null) hypothesis is rejected, which occurs when the observed sample falls in a critical region of (A, B) space. The critical region depends on f and the desired significance level, alpha. The model correctly takes into account the fluctuations in both the signals and the background data, including the important case of small numbers of counts in the signal, the background, or both. The significance can be exactly determined from the cumulative binomial distribution, which in turn can be inverted to determine the critical A(B) or B(A) contour. This paper gives efficient implementations of these tests, based on lookup tables. Applications include the detection of clustering of astronomical objects, the detection of faint emission or absorption lines in photon-limited spectroscopy, the detection of faint emitters or absorbers in photon-limited imaging, and dosimetry.
Two sampling techniques for game meat
Directory of Open Access Journals (Sweden)
Maretha van der Merwe
2013-03-01
Full Text Available A study was conducted to compare the excision sampling technique used by the export market and the sampling technique preferred by European countries, namely the biotrace cattle and swine test. The measuring unit for the excision sampling was grams (g and square centimetres (cm2 for the swabbing technique. The two techniques were compared after a pilot test was conducted on spiked approved beef carcasses (n = 12 that statistically proved the two measuring units correlated. The two sampling techniques were conducted on the same game carcasses (n = 13 and analyses performed for aerobic plate count (APC, Escherichia coli and Staphylococcus aureus, for both techniques. A more representative result was obtained by swabbing and no damage was caused to the carcass. Conversely, the excision technique yielded fewer organisms and caused minor damage to the carcass. The recovery ratio from the sampling technique improved 5.4 times for APC, 108.0 times for E. coli and 3.4 times for S. aureus over the results obtained from the excision technique. It was concluded that the sampling methods of excision and swabbing can be used to obtain bacterial profiles from both export and local carcasses and could be used to indicate whether game carcasses intended for the local market are possibly on par with game carcasses intended for the export market and therefore safe for human consumption.
Two sampling techniques for game meat.
van der Merwe, Maretha; Jooste, Piet J; Hoffman, Louw C; Calitz, Frikkie J
2013-03-20
A study was conducted to compare the excision sampling technique used by the export market and the sampling technique preferred by European countries, namely the biotrace cattle and swine test. The measuring unit for the excision sampling was grams (g) and square centimetres (cm2) for the swabbing technique. The two techniques were compared after a pilot test was conducted on spiked approved beef carcasses (n = 12) that statistically proved the two measuring units correlated. The two sampling techniques were conducted on the same game carcasses (n = 13) and analyses performed for aerobic plate count (APC), Escherichia coli and Staphylococcus aureus, for both techniques. A more representative result was obtained by swabbing and no damage was caused to the carcass. Conversely, the excision technique yielded fewer organisms and caused minor damage to the carcass. The recovery ratio from the sampling technique improved 5.4 times for APC, 108.0 times for E. coli and 3.4 times for S. aureus over the results obtained from the excision technique. It was concluded that the sampling methods of excision and swabbing can be used to obtain bacterial profiles from both export and local carcasses and could be used to indicate whether game carcasses intended for the local market are possibly on par with game carcasses intended for the export market and therefore safe for human consumption.
Directory of Open Access Journals (Sweden)
Dolores Catelan
2008-11-01
Full Text Available In Environmental Epidemiology, long lists of relative risk estimates from exposed populations are compared to a reference to scrutinize the dataset for extremes. Here, inference on disease profiles for given areas, or for fixed disease population signatures, are of interest and summaries can be obtained averaging over areas or diseases. We have developed a multivariate hierarchical Bayesian approach to estimate posterior rank distributions and we show how to produce league tables of ranks with credibility intervals useful to address the above mentioned inferential problems. Applying the procedure to a real dataset from the report “Environment and Health in Sardinia (Italy” we selected 18 areas characterized by high environmental pressure for industrial, mining or military activities investigated for 29 causes of deaths among male residents. Ranking diseases highlighted the increased burdens of neoplastic (cancerous, and non-neoplastic respiratory diseases in the heavily polluted area of Portoscuso. The averaged ranks by disease over areas showed lung cancer among the three highest positions.
Khan, Haseeb Ahmad
2004-01-01
The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.
Khan, Haseeb Ahmad
2005-01-28
Due to versatile diagnostic and prognostic fidelity molecular signatures or fingerprints are anticipated as the most powerful tools for cancer management in the near future. Notwithstanding the experimental advancements in microarray technology, methods for analyzing either whole arrays or gene signatures have not been firmly established. Recently, an algorithm, ArraySolver has been reported by Khan for two-group comparison of microarray gene expression data using two-tailed Wilcoxon signed-rank test. Most of the molecular signatures are composed of two sets of genes (hybrid signatures) wherein up-regulation of one set and down-regulation of the other set collectively define the purpose of a gene signature. Since the direction of a selected gene's expression (positive or negative) with respect to a particular disease condition is known, application of one-tailed statistics could be a more relevant choice. A novel method, ArrayVigil, is described for comparing hybrid signatures using segregated-one-tailed (SOT) Wilcoxon signed-rank test and the results compared with integrated-two-tailed (ITT) procedures (SPSS and ArraySolver). ArrayVigil resulted in lower P values than those obtained from ITT statistics while comparing real data from four signatures.
Gershenson, Carlos
Studies of rank distributions have been popular for decades, especially since the work of Zipf. For example, if we rank words of a given language by use frequency (most used word in English is 'the', rank 1; second most common word is 'of', rank 2), the distribution can be approximated roughly with a power law. The same applies for cities (most populated city in a country ranks first), earthquakes, metabolism, the Internet, and dozens of other phenomena. We recently proposed ``rank diversity'' to measure how ranks change in time, using the Google Books Ngram dataset. Studying six languages between 1800 and 2009, we found that the rank diversity curves of languages are universal, adjusted with a sigmoid on log-normal scale. We are studying several other datasets (sports, economies, social systems, urban systems, earthquakes, artificial life). Rank diversity seems to be universal, independently of the shape of the rank distribution. I will present our work in progress towards a general description of the features of rank change in time, along with simple models which reproduce it
Forward selection two sample binomial test
Wong, Kam-Fai; Wong, Weng-Kee; Lin, Miao-Shan
2016-01-01
Fisher’s exact test (FET) is a conditional method that is frequently used to analyze data in a 2 × 2 table for small samples. This test is conservative and attempts have been made to modify the test to make it less conservative. For example, Crans and Shuster (2008) proposed adding more points in the rejection region to make the test more powerful. We provide another way to modify the test to make it less conservative by using two independent binomial distributions as the reference distribution for the test statistic. We compare our new test with several methods and show that our test has advantages over existing methods in terms of control of the type 1 and type 2 errors. We reanalyze results from an oncology trial using our proposed method and our software which is freely available to the reader. PMID:27335577
International Nuclear Information System (INIS)
Wilson, G.E.
1992-01-01
The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented
Chaikh, Abdulhamid; Balosso, Jacques
2016-12-01
This study proposes a statistical process to compare different treatment plans issued from different irradiation techniques or different treatment phases. This approach aims to provide arguments for discussion about the impact on clinical results of any condition able to significantly alter dosimetric or ballistic related data. The principles of the statistical investigation are presented in the framework of a clinical example based on 40 fields of radiotherapy for lung cancers. Two treatment plans were generated for each patient making a change of dose distribution due to variation of lung density correction. The data from 2D gamma index (γ) including the pixels having γ≤1 were used to determine the capability index (Cp) and the acceptability index (Cpk) of the process. To measure the strength of the relationship between the γ passing rates and the Cp and Cpk indices, the Spearman's rank non-parametric test was used to calculate P values. The comparison between reference and tested plans showed that 95% of pixels have γ≤1 with criteria (6%, 6 mm). The values of the Cp and Cpk indices were lower than one showing a significant dose difference. The data showed a strong correlation between γ passing rates and the indices with P>0.8. The statistical analysis using Cp and Cpk, show the significance of dose differences resulting from two plans in radiotherapy. These indices can be used for adaptive radiotherapy to measure the difference between initial plan and daily delivered plan. The significant changes of dose distribution could raise the question about the continuity to treat the patient with the initial plan or the need for adjustments.
Ranking as parameter estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Guy, Tatiana Valentine
2009-01-01
Roč. 4, č. 2 (2009), s. 142-158 ISSN 1745-7645 R&D Projects: GA MŠk 2C06001; GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : ranking * Bayesian estimation * negotiation * modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2009/AS/karny- ranking as parameter estimation.pdf
The two-sample problem with induced dependent censorship.
Huang, Y
1999-12-01
Induced dependent censorship is a general phenomenon in health service evaluation studies in which a measure such as quality-adjusted survival time or lifetime medical cost is of interest. We investigate the two-sample problem and propose two classes of nonparametric tests. Based on consistent estimation of the survival function for each sample, the two classes of test statistics examine the cumulative weighted difference in hazard functions and in survival functions. We derive a unified asymptotic null distribution theory and inference procedure. The tests are applied to trial V of the International Breast Cancer Study Group and show that long duration chemotherapy significantly improves time without symptoms of disease and toxicity of treatment as compared with the short duration treatment. Simulation studies demonstrate that the proposed tests, with a wide range of weight choices, perform well under moderate sample sizes.
Testing Homogeneity in a Semiparametric Two-Sample Problem
Directory of Open Access Journals (Sweden)
Yukun Liu
2012-01-01
Full Text Available We study a two-sample homogeneity testing problem, in which one sample comes from a population with density f(x and the other is from a mixture population with mixture density (1−λf(x+λg(x. This problem arises naturally from many statistical applications such as test for partial differential gene expression in microarray study or genetic studies for gene mutation. Under the semiparametric assumption g(x=f(xeα+βx, a penalized empirical likelihood ratio test could be constructed, but its implementation is hindered by the fact that there is neither feasible algorithm for computing the test statistic nor available research results on its theoretical properties. To circumvent these difficulties, we propose an EM test based on the penalized empirical likelihood. We prove that the EM test has a simple chi-square limiting distribution, and we also demonstrate its competitive testing performances by simulations. A real-data example is used to illustrate the proposed methodology.
Generalized reduced rank tests using the singular value decomposition
Kleibergen, F.R.; Paap, R.
2002-01-01
We propose a novel statistic to test the rank of a matrix. The rank statistic overcomes deficiencies of existing rank statistics, like: necessity of a Kronecker covariance matrix for the canonical correlation rank statistic of Anderson (1951), sensitivity to the ordering of the variables for the LDU
Generalized Reduced Rank Tests using the Singular Value Decomposition
F.R. Kleibergen (Frank); R. Paap (Richard)
2003-01-01
textabstractWe propose a novel statistic to test the rank of a matrix. The rank statistic overcomes deficiencies of existing rank statistics, like: necessity of a Kronecker covariance matrix for the canonical correlation rank statistic of Anderson (1951), sensitivity to the ordering of the variables
University Rankings: The Web Ranking
Aguillo, Isidro F.
2012-01-01
The publication in 2003 of the Ranking of Universities by Jiao Tong University of Shanghai has revolutionized not only academic studies on Higher Education, but has also had an important impact on the national policies and the individual strategies of the sector. The work gathers the main characteristics of this and other global university…
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
Wikipedia ranking of world universities
Lages, José; Patt, Antoine; Shepelyansky, Dima L.
2016-03-01
We use the directed networks between articles of 24 Wikipedia language editions for producing the wikipedia ranking of world Universities (WRWU) using PageRank, 2DRank and CheiRank algorithms. This approach allows to incorporate various cultural views on world universities using the mathematical statistical analysis independent of cultural preferences. The Wikipedia ranking of top 100 universities provides about 60% overlap with the Shanghai university ranking demonstrating the reliable features of this approach. At the same time WRWU incorporates all knowledge accumulated at 24 Wikipedia editions giving stronger highlights for historically important universities leading to a different estimation of efficiency of world countries in university education. The historical development of university ranking is analyzed during ten centuries of their history.
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Graphics for the multivariate two-sample problem
International Nuclear Information System (INIS)
Friedman, J.H.; Rafsky, L.C.
1981-01-01
Some graphical methods for comparing multivariate samples are presented. These methods are based on minimal spanning tree techniques developed for multivariate two-sample tests. The utility of these methods is illustrated through examples using both real and artificial data
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Time evolution of Wikipedia network ranking
Eom, Young-Ho; Frahm, Klaus M.; Benczúr, András; Shepelyansky, Dima L.
2013-12-01
We study the time evolution of ranking and spectral properties of the Google matrix of English Wikipedia hyperlink network during years 2003-2011. The statistical properties of ranking of Wikipedia articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabilized for 2007-2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80% of top universities of Shanghai ranking during the considered time period.
Reference Priors For Non-Normal Two-Sample Problems
Fernández, C.; Steel, M.F.J.
1997-01-01
The reference prior algorithm (Berger and Bernardo, 1992) is applied to locationscale models with any regular sampling density. A number of two-sample problems is analyzed in this general context, extending the dierence, ratio and product of Normal means problems outside Normality, while explicitly
Adolescent Psychopathy and the Big Five: Results from Two Samples
Lynam, Donald R.; Caspi, Avshalom; Moffitt, Terrie E.; Raine, Adrian; Loeber, Rolf; Stouthamer-Loeber, Magda
2005-01-01
The present study examines the relation between psychopathy and the Big Five dimensions of personality in two samples of adolescents. Specifically, the study tests the hypothesis that the aspect of psychopathy representing selfishness, callousness, and interpersonal manipulation (Factor 1) is most strongly associated with low Agreeableness,…
Khan, Haseeb Ahmad
2004-01-01
The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for tra...
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests
Directory of Open Access Journals (Sweden)
Aaditya Ramdas
2017-01-01
Full Text Available Nonparametric two-sample or homogeneity testing is a decision theoretic problem that involves identifying differences between two random variables without making parametric assumptions about their underlying distributions. The literature is old and rich, with a wide variety of statistics having being designed and analyzed, both for the unidimensional and the multivariate setting. Inthisshortsurvey,wefocusonteststatisticsthatinvolvetheWassersteindistance. Usingan entropic smoothing of the Wasserstein distance, we connect these to very different tests including multivariate methods involving energy statistics and kernel based maximum mean discrepancy and univariate methods like the Kolmogorov–Smirnov test, probability or quantile (PP/QQ plots and receiver operating characteristic or ordinal dominance (ROC/ODC curves. Some observations are implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric two-sample testing’s classical and continued importance, we aim to provide useful connections for theorists and practitioners familiar with one subset of methods but not others.
Statistical analysis of simulation calculation of sputtering for two interaction potentials
International Nuclear Information System (INIS)
Shao Qiyun
1992-01-01
The effects of the interaction potentials (Moliere potential and Universal potential) are presented on computer simulation results of sputtering via Monte Carlo simulation based on the binary collision approximation. By means of Wilcoxon two-Sample paired sign rank test, the statistically significant difference for the above results is obtained
Comparing survival curves using rank tests
Albers, Willem/Wim
1990-01-01
Survival times of patients can be compared using rank tests in various experimental setups, including the two-sample case and the case of paired data. Attention is focussed on two frequently occurring complications in medical applications: censoring and tail alternatives. A review is given of the
tscvh R Package: Computational of the two samples test on microarray-sequencing data
Fajriyah, Rohmatul; Rosadi, Dedi
2017-12-01
We present a new R package, a tscvh (two samples cross-variance homogeneity), as we called it. This package is a software of the cross-variance statistical test which has been proposed and introduced by Fajriyah ([3] and [4]), based on the cross-variance concept. The test can be used as an alternative test for the significance difference between two means when sample size is small, the situation which is usually appeared in the bioinformatics research. Based on its statistical distribution, the p-value can be also provided. The package is built under a homogeneity of variance between samples.
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
A Fast Algorithm for Generating Permutation Distribution of Ranks in ...
African Journals Online (AJOL)
... function of the distribution of the ranks. This further gives insight into the permutation distribution of a rank statistics. The algorithm is implemented with the aid of the computer algebra system Mathematica. Key words: Combinatorics, generating function, permutation distribution, rank statistics, partitions, computer algebra.
A tilting approach to ranking influence
Genton, Marc G.
2014-12-01
We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking the data in terms of that influence. Our method is based on, first, perturbing the value of the statistic by ‘tilting’, or reweighting, each data value, where the total amount of tilt is constrained to be the least possible, subject to achieving a given small perturbation of the statistic, and, then, taking the ranking of the influence of data values to be that which corresponds to ranking the changes in data weights. It is shown, both theoretically and numerically, that this ranking does not depend on the size of the perturbation, provided that the perturbation is sufficiently small. That simple result leads directly to an elegant geometric interpretation of the ranks; they are the ranks of the lengths of projections of the weights onto a ‘line’ determined by the first empirical principal component function in a generalized measure of covariance. To illustrate the generality of the method we introduce and explore it in the case of functional data, where (for example) it leads to generalized boxplots. The method has the advantage of providing an interpretable ranking that depends on the statistic under consideration. For example, the ranking of data, in terms of their influence on the value of a statistic, is different for a measure of location and for a measure of scale. This is as it should be; a ranking of data in terms of their influence should depend on the manner in which the data are used. Additionally, the ranking recognizes, rather than ignores, sign, and in particular can identify left- and right-hand ‘tails’ of the distribution of a random function or vector.
Adaptive distributional extensions to DFR ranking
DEFF Research Database (Denmark)
Petersen, Casper; Simonsen, Jakob Grue; Järvelin, Kalervo
2016-01-01
-fitting distribution. We call this model Adaptive Distributional Ranking (ADR) because it adapts the ranking to the statistics of the specific dataset being processed each time. Experiments on TREC data show ADR to outperform DFR models (and their extensions) and be comparable in performance to a query likelihood...
Ranking Operations Management conferences
Steenhuis, H.J.; de Bruijn, E.J.; Gupta, Sushil; Laptaned, U
2007-01-01
Several publications have appeared in the field of Operations Management which rank Operations Management related journals. Several ranking systems exist for journals based on , for example, perceived relevance and quality, citation, and author affiliation. Many academics also publish at conferences
Ranking Theory and Conditional Reasoning.
Skovgaard-Olsen, Niels
2016-05-01
Ranking theory is a formal epistemology that has been developed in over 600 pages in Spohn's recent book The Laws of Belief, which aims to provide a normative account of the dynamics of beliefs that presents an alternative to current probabilistic approaches. It has long been received in the AI community, but it has not yet found application in experimental psychology. The purpose of this paper is to derive clear, quantitative predictions by exploiting a parallel between ranking theory and a statistical model called logistic regression. This approach is illustrated by the development of a model for the conditional inference task using Spohn's (2013) ranking theoretic approach to conditionals. Copyright © 2015 Cognitive Science Society, Inc.
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
A two-sample Bayesian t-test for microarray data
Directory of Open Access Journals (Sweden)
Dimmic Matthew W
2006-03-01
Full Text Available Abstract Background Determining whether a gene is differentially expressed in two different samples remains an important statistical problem. Prior work in this area has featured the use of t-tests with pooled estimates of the sample variance based on similarly expressed genes. These methods do not display consistent behavior across the entire range of pooling and can be biased when the prior hyperparameters are specified heuristically. Results A two-sample Bayesian t-test is proposed for use in determining whether a gene is differentially expressed in two different samples. The test method is an extension of earlier work that made use of point estimates for the variance. The method proposed here explicitly calculates in analytic form the marginal distribution for the difference in the mean expression of two samples, obviating the need for point estimates of the variance without recourse to posterior simulation. The prior distribution involves a single hyperparameter that can be calculated in a statistically rigorous manner, making clear the connection between the prior degrees of freedom and prior variance. Conclusion The test is easy to understand and implement and application to both real and simulated data shows that the method has equal or greater power compared to the previous method and demonstrates consistent Type I error rates. The test is generally applicable outside the microarray field to any situation where prior information about the variance is available and is not limited to cases where estimates of the variance are based on many similar observations.
On Rank Driven Dynamical Systems
Veerman, J. J. P.; Prieto, F. J.
2014-08-01
We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.
Bradshaw, Corey J A; Brook, Barry W
2016-01-01
There are now many methods available to assess the relative citation performance of peer-reviewed journals. Regardless of their individual faults and advantages, citation-based metrics are used by researchers to maximize the citation potential of their articles, and by employers to rank academic track records. The absolute value of any particular index is arguably meaningless unless compared to other journals, and different metrics result in divergent rankings. To provide a simple yet more objective way to rank journals within and among disciplines, we developed a κ-resampled composite journal rank incorporating five popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index of relative rank uncertainty. We applied the approach to six sample sets of scientific journals from Ecology (n = 100 journals), Medicine (n = 100), Multidisciplinary (n = 50); Ecology + Multidisciplinary (n = 25), Obstetrics & Gynaecology (n = 25) and Marine Biology & Fisheries (n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplinary journal set to the results of a survey of 188 publishing ecologists who were asked to rank the same journals, and found a 0.68-0.84 Spearman's ρ correlation between the two rankings datasets. Our composite index approach therefore approximates relative journal reputation, at least for that discipline. Agglomerative and divisive clustering and multi-dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identified specific clusters of similarly ranked journals, with only Nature & Science separating out from the others. When comparing a selection of journals within or among disciplines, we recommend collecting multiple citation-based metrics for a sample of relevant and realistic journals to calculate the composite rankings and their relative uncertainty windows.
RankExplorer: Visualization of Ranking Changes in Large Time Series Data.
Shi, Conglei; Cui, Weiwei; Liu, Shixia; Xu, Panpan; Chen, Wei; Qu, Huamin
2012-12-01
For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.
Paired comparisons analysis: an axiomatic approach to ranking methods
Gonzalez-Diaz, J.; Hendrickx, Ruud; Lohmann, E.R.M.A.
2014-01-01
In this paper we present an axiomatic analysis of several ranking methods for general tournaments. We find that the ranking method obtained by applying maximum likelihood to the (Zermelo-)Bradley-Terry model, the most common method in statistics and psychology, is one of the ranking methods that
Hoede, C.
In this paper the concept of page rank for the world wide web is discussed. The possibility of describing the distribution of page rank by an exponential law is considered. It is shown that the concept is essentially equal to that of status score, a centrality measure discussed already in 1953 by
Dobbs, David E.
2012-01-01
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
Chapman, David W.
2008-01-01
Recently, Samford University was ranked 27th in the nation in a report released by "Forbes" magazine. In this article, the author relates how the people working at Samford University were surprised at its ranking. Although Samford is the largest privately institution in Alabama, its distinguished academic achievements aren't even…
A tilting approach to ranking influence
Genton, Marc G.; Hall, Peter
2014-01-01
We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking
Recurrent fuzzy ranking methods
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
Hierarchical partial order ranking
International Nuclear Information System (INIS)
Carlsen, Lars
2008-01-01
Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters
González-Galván, María del Carmen; Mosqueda-Taylor, Adalberto; Bologna-Molina, Ronell; Setien-Olarra, Amaia; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel
2018-01-01
Background Odontogenic myxoma (OM) is a benign intraosseous neoplasm that exhibits local aggressiveness and high recurrence rates. Osteoclastogenesis is an important phenomenon in the tumor growth of maxillary neoplasms. RANK (Receptor Activator of Nuclear Factor κappa B) is the signaling receptor of RANK-L (Receptor activator of nuclear factor kappa-Β ligand) that activates the osteoclasts. OPG (osteoprotegerin) is a decoy receptor for RANK-L that inhibits pro-osteoclastogenesis. The RANK / RANKL / OPG system participates in the regulation of osteolytic activity under normal conditions, and its alteration has been associated with greater bone destruction, and also with tumor growth. Objectives To analyze the immunohistochemical expression of OPG, RANK and RANK-L proteins in odontogenic myxomas (OMs) and their relationship with the tumor size. Material and Methods Eighteen OMs, 4 small ( 3cm) and 18 dental follicles (DF) that were included as control were studied by means of standard immunohistochemical procedure with RANK, RANKL and OPG antibodies. For the evaluation, 5 fields (40x) of representative areas of OM and DF were selected where the expression of each antibody was determined. Descriptive and comparative statistical analyses were performed with the obtained data. Results There are significant differences in the expression of RANK in OM samples as compared to DF (p = 0.022) and among the OMSs and OMLs (p = 0.032). Also a strong association is recognized in the expression of RANK-L and OPG in OM samples. Conclusions Activation of the RANK / RANK-L / OPG triad seems to be involved in the mechanisms of bone balance and destruction, as well as associated with tumor growth in odontogenic myxomas. Key words:Odontogenic myxoma, dental follicle, RANK, RANK-L, OPG, osteoclastogenesis. PMID:29680857
Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra
2013-01-01
Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Directory of Open Access Journals (Sweden)
Arda Halu
Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Algebraic and computational aspects of real tensor ranks
Sakata, Toshio; Miyazaki, Mitsuhiro
2016-01-01
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...
Groundwater contaminant plume ranking
International Nuclear Information System (INIS)
1988-08-01
Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs
Co-integration Rank Testing under Conditional Heteroskedasticity
DEFF Research Database (Denmark)
Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert
null distributions of the rank statistics coincide with those derived by previous authors who assume either i.i.d. or (strict and covariance) stationary martingale difference innovations. We then propose wild bootstrap implementations of the co-integrating rank tests and demonstrate that the associated...... bootstrap rank statistics replicate the first-order asymptotic null distributions of the rank statistics. We show the same is also true of the corresponding rank tests based on the i.i.d. bootstrap of Swensen (2006). The wild bootstrap, however, has the important property that, unlike the i.i.d. bootstrap......, it preserves in the re-sampled data the pattern of heteroskedasticity present in the original shocks. Consistent with this, numerical evidence sug- gests that, relative to tests based on the asymptotic critical values or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small samples un...
Ranking economic history journals
DEFF Research Database (Denmark)
Di Vaio, Gianfranco; Weisdorf, Jacob Louis
2010-01-01
This study ranks-for the first time-12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We also...... compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential for economic...... history, and that, although economic history is quite independent from economics as a whole, knowledge exchange between the two fields is indeed going on....
Ranking Economic History Journals
DEFF Research Database (Denmark)
Di Vaio, Gianfranco; Weisdorf, Jacob Louis
This study ranks - for the first time - 12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We...... also compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential...... for economic history, and that, although economic history is quite independent from economics as a whole, knowledge exchange between the two fields is indeed going on....
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....
Diversifying customer review rankings.
Krestel, Ralf; Dokoohaki, Nima
2015-06-01
E-commerce Web sites owe much of their popularity to consumer reviews accompanying product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to decide which products to buy. At the same time, each popular product has thousands of user-generated reviews, making it impossible for a buyer to read everything. Current approaches to display reviews to users or recommend an individual review for a product are based on the recency or helpfulness of each review. In this paper, we present a framework to rank product reviews by optimizing the coverage of the ranking with respect to sentiment or aspects, or by summarizing all reviews with the top-K reviews in the ranking. To accomplish this, we make use of the assigned star rating for a product as an indicator for a review's sentiment polarity and compare bag-of-words (language model) with topic models (latent Dirichlet allocation) as a mean to represent aspects. Our evaluation on manually annotated review data from a commercial review Web site demonstrates the effectiveness of our approach, outperforming plain recency ranking by 30% and obtaining best results by combining language and topic model representations. Copyright © 2015 Elsevier Ltd. All rights reserved.
College Rankings. ERIC Digest.
Holub, Tamara
The popularity of college ranking surveys published by "U.S. News and World Report" and other magazines is indisputable, but the methodologies used to measure the quality of higher education institutions have come under fire by scholars and college officials. Criticisms have focused on methodological flaws, such as failure to consider…
DEFF Research Database (Denmark)
Müller, Emmanuel; Assent, Ira; Steinhausen, Uwe
2008-01-01
Outlier detection is an important data mining task for consistency checks, fraud detection, etc. Binary decision making on whether or not an object is an outlier is not appropriate in many applications and moreover hard to parametrize. Thus, recently, methods for outlier ranking have been proposed...
An R package for analyzing and modeling ranking data.
Lee, Paul H; Yu, Philip L H
2013-05-14
In medical informatics, psychology, market research and many other fields, researchers often need to analyze and model ranking data. However, there is no statistical software that provides tools for the comprehensive analysis of ranking data. Here, we present pmr, an R package for analyzing and modeling ranking data with a bundle of tools. The pmr package enables descriptive statistics (mean rank, pairwise frequencies, and marginal matrix), Analytic Hierarchy Process models (with Saaty's and Koczkodaj's inconsistencies), probability models (Luce model, distance-based model, and rank-ordered logit model), and the visualization of ranking data with multidimensional preference analysis. Examples of the use of package pmr are given using a real ranking dataset from medical informatics, in which 566 Hong Kong physicians ranked the top five incentives (1: competitive pressures; 2: increased savings; 3: government regulation; 4: improved efficiency; 5: improved quality care; 6: patient demand; 7: financial incentives) to the computerization of clinical practice. The mean rank showed that item 4 is the most preferred item and item 3 is the least preferred item, and significance difference was found between physicians' preferences with respect to their monthly income. A multidimensional preference analysis identified two dimensions that explain 42% of the total variance. The first can be interpreted as the overall preference of the seven items (labeled as "internal/external"), and the second dimension can be interpreted as their overall variance of (labeled as "push/pull factors"). Various statistical models were fitted, and the best were found to be weighted distance-based models with Spearman's footrule distance. In this paper, we presented the R package pmr, the first package for analyzing and modeling ranking data. The package provides insight to users through descriptive statistics of ranking data. Users can also visualize ranking data by applying a thought
Ranking Workplace Competencies: Student and Graduate Perceptions.
Rainsbury, Elizabeth; Hodges, Dave; Burchell, Noel; Lay, Mark
2002-01-01
New Zealand business students and graduates made similar rankings of the five most important workplace competencies: computer literacy, customer service orientation, teamwork and cooperation, self-confidence, and willingness to learn. Graduates placed greater importance on most of the 24 competencies, resulting in a statistically significant…
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...
7 CFR 27.35 - Lower class of two samples to prevail.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Lower class of two samples to prevail. 27.35 Section 27.35 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE... Micronaire Determinations § 27.35 Lower class of two samples to prevail. In case a sample drawn from one...
1991 Acceptance priority ranking
International Nuclear Information System (INIS)
1991-12-01
The Standard Contract for Disposal of Spent Nuclear Fuel and/or High- Level Radioactive Waste (10 CFR Part 961) that the Department of Energy (DOE) has executed with the owners and generators of civilian spent nuclear fuel requires annual publication of the Acceptance Priority Ranking (APR). The 1991 APR details the order in which DOE will allocate Federal waste acceptance capacity. As required by the Standard Contract, the ranking is based on the age of permanently discharged spent nuclear fuel (SNF), with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. the 1991 APR will be the basis for the annual allocation of waste acceptance capacity to the Purchasers in the 1991 Annual Capacity Report (ACR), to be issued later this year. This document is based on SNF discharges as of December 31, 1990, and reflects Purchaser comments and corrections, as appropriate, to the draft APR issued on May 15, 1991
Asympotic efficiency of signed - rank symmetry tests under skew alternatives.
Alessandra Durio; Yakov Nikitin
2002-01-01
The efficiency of some known tests for symmetry such as the sign test, the Wilcoxon signed-rank test or more general linear signed rank tests was studied mainly under the classical alternatives of location. However it is interesting to compare the efficiencies of these tests under asymmetric alternatives like the so-called skew alternative proposed in Azzalini (1985). We find and compare local Bahadur efficiencies of linear signed-rank statistics for skew alternatives and discuss also the con...
Location tests for biomarker studies: a comparison using simulations for the two-sample case.
Scheinhardt, M O; Ziegler, A
2013-01-01
Gene, protein, or metabolite expression levels are often non-normally distributed, heavy tailed and contain outliers. Standard statistical approaches may fail as location tests in this situation. In three Monte-Carlo simulation studies, we aimed at comparing the type I error levels and empirical power of standard location tests and three adaptive tests [O'Gorman, Can J Stat 1997; 25: 269 -279; Keselman et al., Brit J Math Stat Psychol 2007; 60: 267- 293; Szymczak et al., Stat Med 2013; 32: 524 - 537] for a wide range of distributions. We simulated two-sample scenarios using the g-and-k-distribution family to systematically vary tail length and skewness with identical and varying variability between groups. All tests kept the type I error level when groups did not vary in their variability. The standard non-parametric U-test performed well in all simulated scenarios. It was outperformed by the two non-parametric adaptive methods in case of heavy tails or large skewness. Most tests did not keep the type I error level for skewed data in the case of heterogeneous variances. The standard U-test was a powerful and robust location test for most of the simulated scenarios except for very heavy tailed or heavy skewed data, and it is thus to be recommended except for these cases. The non-parametric adaptive tests were powerful for both normal and non-normal distributions under sample variance homogeneity. But when sample variances differed, they did not keep the type I error level. The parametric adaptive test lacks power for skewed and heavy tailed distributions.
Ranking Baltic States Researchers
Directory of Open Access Journals (Sweden)
Gyula Mester
2017-10-01
Full Text Available In this article, using the h-index and the total number of citations, the best 10 Lithuanian, Latvian and Estonian researchers from several disciplines are ranked. The list may be formed based on the h-index and the total number of citations, given in Web of Science, Scopus, Publish or Perish Program and Google Scholar database. Data for the first 10 researchers are presented. Google Scholar is the most complete. Therefore, to define a single indicator, h-index calculated by Google Scholar may be a good and simple one. The author chooses the Google Scholar database as it is the broadest one.
International Nuclear Information System (INIS)
Marrakchi, A.E.L.; Tapia, V.
1992-05-01
Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with k obs =0 and Ω obs t clas approx. 10 20 t Planck approx. 10 -23 s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs
University Rankings and Social Science
Marginson, S.
2014-01-01
University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real outputs are of no common value. It is necessary that rankings be soundly based in scientific terms if a virtuous relationship between performance and...
University Rankings and Social Science
Marginson, Simon
2014-01-01
University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real…
Global network centrality of university rankings
Guo, Weisi; Del Vecchio, Marco; Pogrebna, Ganna
2017-10-01
Universities and higher education institutions form an integral part of the national infrastructure and prestige. As academic research benefits increasingly from international exchange and cooperation, many universities have increased investment in improving and enabling their global connectivity. Yet, the relationship of university performance and its global physical connectedness has not been explored in detail. We conduct, to our knowledge, the first large-scale data-driven analysis into whether there is a correlation between university relative ranking performance and its global connectivity via the air transport network. The results show that local access to global hubs (as measured by air transport network betweenness) strongly and positively correlates with the ranking growth (statistical significance in different models ranges between 5% and 1% level). We also found that the local airport's aggregate flight paths (degree) and capacity (weighted degree) has no effect on university ranking, further showing that global connectivity distance is more important than the capacity of flight connections. We also examined the effect of local city economic development as a confounding variable and no effect was observed suggesting that access to global transportation hubs outweighs economic performance as a determinant of university ranking. The impact of this research is that we have determined the importance of the centrality of global connectivity and, hence, established initial evidence for further exploring potential connections between university ranking and regional investment policies on improving global connectivity.
Fractional cointegration rank estimation
DEFF Research Database (Denmark)
Lasak, Katarzyna; Velasco, Carlos
the parameters of the model under the null hypothesis of the cointegration rank r = 1, 2, ..., p-1. This step provides consistent estimates of the cointegration degree, the cointegration vectors, the speed of adjustment to the equilibrium parameters and the common trends. In the second step we carry out a sup......-likelihood ratio test of no-cointegration on the estimated p - r common trends that are not cointegrated under the null. The cointegration degree is re-estimated in the second step to allow for new cointegration relationships with different memory. We augment the error correction model in the second step...... to control for stochastic trend estimation effects from the first step. The critical values of the tests proposed depend only on the number of common trends under the null, p - r, and on the interval of the cointegration degrees b allowed, but not on the true cointegration degree b0. Hence, no additional...
Rankings, creatividad y urbanismo
Directory of Open Access Journals (Sweden)
JOAQUÍN SABATÉ
2008-08-01
Full Text Available La competencia entre ciudades constituye uno de los factores impulsores de procesos de renovación urbana y los rankings han devenido instrumentos de medida de la calidad de las ciudades. Nos detendremos en el caso de un antiguo barrio industrial hoy en vías de transformación en distrito "creativo" por medio de una intervención urbanística de gran escala. Su análisis nos descubre tres claves críticas. En primer lugar, nos obliga a plantearnos la definición de innovación urbana y cómo se integran el pasado, la identidad y la memoria en la construcción del futuro. Nos lleva a comprender que la innovación y el conocimiento no se "dan" casualmente, sino que son el fruto de una larga y compleja red en la que participan saberes, espacios, actores e instituciones diversas en naturaleza, escala y magnitud. Por último nos obliga a reflexionar sobre el valor que se le otorga a lo local en los procesos de renovación urbana.Competition among cities constitutes one ofthe main factors o furban renewal, and rankings have become instruments to indícate cities quality. Studying the transformation of an old industrial quarter into a "creative district" by the means ofa large scale urban project we highlight three main conclusions. First, itasks us to reconsider the notion ofurban innovation and hoto past, identity and memory should intégrate the future development. Second, it shows that innovation and knowledge doesn't yield per chance, but are the result ofa large and complex grid of diverse knowledges, spaces, agents and institutions. Finally itforces us to reflect about the valué attributed to the "local" in urban renewalprocesses.
Ranking nodes in growing networks: When PageRank fails.
Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng
2015-11-10
PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm's efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank's performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.
Neophilia Ranking of Scientific Journals.
Packalen, Mikko; Bhattacharya, Jay
2017-01-01
The ranking of scientific journals is important because of the signal it sends to scientists about what is considered most vital for scientific progress. Existing ranking systems focus on measuring the influence of a scientific paper (citations)-these rankings do not reward journals for publishing innovative work that builds on new ideas. We propose an alternative ranking based on the proclivity of journals to publish papers that build on new ideas, and we implement this ranking via a text-based analysis of all published biomedical papers dating back to 1946. In addition, we compare our neophilia ranking to citation-based (impact factor) rankings; this comparison shows that the two ranking approaches are distinct. Prior theoretical work suggests an active role for our neophilia index in science policy. Absent an explicit incentive to pursue novel science, scientists underinvest in innovative work because of a coordination problem: for work on a new idea to flourish, many scientists must decide to adopt it in their work. Rankings that are based purely on influence thus do not provide sufficient incentives for publishing innovative work. By contrast, adoption of the neophilia index as part of journal-ranking procedures by funding agencies and university administrators would provide an explicit incentive for journals to publish innovative work and thus help solve the coordination problem by increasing scientists' incentives to pursue innovative work.
Energy Technology Data Exchange (ETDEWEB)
Weber, G. F.; Laudal, D. L.
1989-01-01
This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).
Ranking Specific Sets of Objects.
Maly, Jan; Woltran, Stefan
2017-01-01
Ranking sets of objects based on an order between the single elements has been thoroughly studied in the literature. In particular, it has been shown that it is in general impossible to find a total ranking - jointly satisfying properties as dominance and independence - on the whole power set of objects. However, in many applications certain elements from the entire power set might not be required and can be neglected in the ranking process. For instance, certain sets might be ruled out due to hard constraints or are not satisfying some background theory. In this paper, we treat the computational problem whether an order on a given subset of the power set of elements satisfying different variants of dominance and independence can be found, given a ranking on the elements. We show that this problem is tractable for partial rankings and NP-complete for total rankings.
Carroll, Raymond J.
2010-05-01
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest - the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates - is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and a data application are presented to show the power of the approach.
Rank diversity of languages: generic behavior in computational linguistics.
Cocho, Germinal; Flores, Jorge; Gershenson, Carlos; Pineda, Carlos; Sánchez, Sergio
2015-01-01
Statistical studies of languages have focused on the rank-frequency distribution of words. Instead, we introduce here a measure of how word ranks change in time and call this distribution rank diversity. We calculate this diversity for books published in six European languages since 1800, and find that it follows a universal lognormal distribution. Based on the mean and standard deviation associated with the lognormal distribution, we define three different word regimes of languages: "heads" consist of words which almost do not change their rank in time, "bodies" are words of general use, while "tails" are comprised by context-specific words and vary their rank considerably in time. The heads and bodies reflect the size of language cores identified by linguists for basic communication. We propose a Gaussian random walk model which reproduces the rank variation of words in time and thus the diversity. Rank diversity of words can be understood as the result of random variations in rank, where the size of the variation depends on the rank itself. We find that the core size is similar for all languages studied.
Rank Diversity of Languages: Generic Behavior in Computational Linguistics
Cocho, Germinal; Flores, Jorge; Gershenson, Carlos; Pineda, Carlos; Sánchez, Sergio
2015-01-01
Statistical studies of languages have focused on the rank-frequency distribution of words. Instead, we introduce here a measure of how word ranks change in time and call this distribution rank diversity. We calculate this diversity for books published in six European languages since 1800, and find that it follows a universal lognormal distribution. Based on the mean and standard deviation associated with the lognormal distribution, we define three different word regimes of languages: “heads” consist of words which almost do not change their rank in time, “bodies” are words of general use, while “tails” are comprised by context-specific words and vary their rank considerably in time. The heads and bodies reflect the size of language cores identified by linguists for basic communication. We propose a Gaussian random walk model which reproduces the rank variation of words in time and thus the diversity. Rank diversity of words can be understood as the result of random variations in rank, where the size of the variation depends on the rank itself. We find that the core size is similar for all languages studied. PMID:25849150
Ranking nodes in growing networks: When PageRank fails
Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng
2015-11-01
PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.
Goede, S Lucas; van Roon, Aafke H C; Reijerink, Jacqueline C I Y; van Vuuren, Anneke J; Lansdorp-Vogelaar, Iris; Habbema, J Dik F; Kuipers, Ernst J; van Leerdam, Monique E; van Ballegooijen, Marjolein
2013-05-01
The sensitivity and specificity of a single faecal immunochemical test (FIT) are limited. The performance of FIT screening can be improved by increasing the screening frequency or by providing more than one sample in each screening round. This study aimed to evaluate if two-sample FIT screening is cost-effective compared with one-sample FIT. The MISCAN-colon microsimulation model was used to estimate costs and benefits of strategies with either one or two-sample FIT screening. The FIT cut-off level varied between 50 and 200 ng haemoglobin/ml, and the screening schedule was varied with respect to age range and interval. In addition, different definitions for positivity of the two-sample FIT were considered: at least one positive sample, two positive samples, or the mean of both samples being positive. Within an exemplary screening strategy, biennial FIT from the age of 55-75 years, one-sample FIT provided 76.0-97.0 life-years gained (LYG) per 1000 individuals, at a cost of € 259,000-264,000 (range reflects different FIT cut-off levels). Two-sample FIT screening with at least one sample being positive provided 7.3-12.4 additional LYG compared with one-sample FIT at an extra cost of € 50,000-59,000. However, when all screening intervals and age ranges were considered, intensifying screening with one-sample FIT provided equal or more LYG at lower costs compared with two-sample FIT. If attendance to screening does not differ between strategies it is recommended to increase the number of screening rounds with one-sample FIT screening, before considering increasing the number of FIT samples provided per screening round.
International Conference on Robust Rank-Based and Nonparametric Methods
McKean, Joseph
2016-01-01
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...
International Nuclear Information System (INIS)
Hightower, J.H. III
1994-01-01
Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA's standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations
PageRank tracker: from ranking to tracking.
Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie
2014-06-01
Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.
Universal scaling in sports ranking
International Nuclear Information System (INIS)
Deng Weibing; Li Wei; Cai Xu; Bulou, Alain; Wang Qiuping A
2012-01-01
Ranking is a ubiquitous phenomenon in human society. On the web pages of Forbes, one may find all kinds of rankings, such as the world's most powerful people, the world's richest people, the highest-earning tennis players, and so on and so forth. Herewith, we study a specific kind—sports ranking systems in which players' scores and/or prize money are accrued based on their performances in different matches. By investigating 40 data samples which span 12 different sports, we find that the distributions of scores and/or prize money follow universal power laws, with exponents nearly identical for most sports. In order to understand the origin of this universal scaling we focus on the tennis ranking systems. By checking the data we find that, for any pair of players, the probability that the higher-ranked player tops the lower-ranked opponent is proportional to the rank difference between the pair. Such a dependence can be well fitted to a sigmoidal function. By using this feature, we propose a simple toy model which can simulate the competition of players in different matches. The simulations yield results consistent with the empirical findings. Extensive simulation studies indicate that the model is quite robust with respect to the modifications of some parameters. (paper)
FUNSTAT and statistical image representations
Parzen, E.
1983-01-01
General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.
International Nuclear Information System (INIS)
Frahm, K M; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers. (paper)
Freudenthal ranks: GHZ versus W
International Nuclear Information System (INIS)
Borsten, L
2013-01-01
The Hilbert space of three-qubit pure states may be identified with a Freudenthal triple system. Every state has an unique Freudenthal rank ranging from 1 to 4, which is determined by a set of automorphism group covariants. It is shown here that the optimal success rates for winning a three-player non-local game, varying over all local strategies, are strictly ordered by the Freudenthal rank of the shared three-qubit resource. (paper)
Ranking Queries on Uncertain Data
Hua, Ming
2011-01-01
Uncertain data is inherent in many important applications, such as environmental surveillance, market analysis, and quantitative economics research. Due to the importance of those applications and rapidly increasing amounts of uncertain data collected and accumulated, analyzing large collections of uncertain data has become an important task. Ranking queries (also known as top-k queries) are often natural and useful in analyzing uncertain data. Ranking Queries on Uncertain Data discusses the motivations/applications, challenging problems, the fundamental principles, and the evaluation algorith
Ranking in evolving complex networks
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
Rankings & Estimates: Rankings of the States 2016 and Estimates of School Statistics 2017
National Education Association, 2017
2017-01-01
The data presented in this combined report provide facts about the extent to which local, state, and national governments commit resources to public education. NEA Research offers this report to its state and local affiliates as well as to researchers, policymakers, and the public as a tool to examine public education policies, programs, and…
RANK and RANK ligand expression in primary human osteosarcoma
Directory of Open Access Journals (Sweden)
Daniel Branstetter
2015-09-01
Our results demonstrate RANKL expression was observed in the tumor element in 68% of human OS using IHC. However, the staining intensity was relatively low and only 37% (29/79 of samples exhibited≥10% RANKL positive tumor cells. RANK expression was not observed in OS tumor cells. In contrast, RANK expression was clearly observed in other cells within OS samples, including the myeloid osteoclast precursor compartment, osteoclasts and in giant osteoclast cells. The intensity and frequency of RANKL and RANK staining in OS samples were substantially less than that observed in GCTB samples. The observation that RANKL is expressed in OS cells themselves suggests that these tumors may mediate an osteoclastic response, and anti-RANKL therapy may potentially be protective against bone pathologies in OS. However, the absence of RANK expression in primary human OS cells suggests that any autocrine RANKL/RANK signaling in human OS tumor cells is not operative, and anti-RANKL therapy would not directly affect the tumor.
Wilson, Laura C; Scarpa, Angela
2013-01-01
Although substantial literature discusses sensation seeking as playing a role in the relationship between baseline heart rate and aggression, few published studies have tested the relationships among these variables. Furthermore, most prior studies have focused on risk factors of aggression in men and have largely ignored this issue in women. Two samples (n = 104; n = 99) of young adult women completed measures of resting heart rate, sensation seeking, and aggression. Across the two samples of females there was no evidence for the relationships of baseline heart rate with sensation seeking or with aggression that has been consistently shown in males. Boredom susceptibility and disinhibition subscales of sensation seeking were consistently significantly correlated with aggression. The lack of significance and the small effect sizes indicate that other mechanisms are also at work in affecting aggression in young adult women. Finally, it is important to consider the type of sensation seeking in relation to aggression, as only boredom susceptibility and disinhibition were consistently replicated across samples. © 2013 Wiley Periodicals, Inc.
Tang, Liguo; Zhang, Yang; Cao, Wenwu
2016-10-01
Although the self-consistency of the full matrix material constants of a piezoelectric sample obtained by the resonant ultrasonic spectroscopy technique can be guaranteed because all constants come from the same sample, it is a great challenge to determine the constants of a piezoelectric sample with strong anisotropy because it might not be possible to identify enough resonance modes from the resonance spectrum. To overcome this difficulty, we developed a strategy to use two samples of similar geometries to increase the number of easy identifiable modes. Unlike the IEEE resonance methods, sample-to-sample variation here is negligible because the two samples have almost the same dimensions, cut from the same specimen and poled under the same conditions. Using this method, we have measured the full matrix constants of a [011]c poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal, which has 17 independent constants. The self-consistency of the obtained results is checked by comparing the calculated elastic stiffness constants c33 D , c44 D , and c55 D with those directly measured ones using the ultrasonic pulse-echo method.
Ranking structures and rank-rank correlations of countries: The FIFA and UEFA cases
Ausloos, Marcel; Cloots, Rudi; Gadomski, Adam; Vitanov, Nikolay K.
2014-04-01
Ranking of agents competing with each other in complex systems may lead to paradoxes according to the pre-chosen different measures. A discussion is presented on such rank-rank, similar or not, correlations based on the case of European countries ranked by UEFA and FIFA from different soccer competitions. The first question to be answered is whether an empirical and simple law is obtained for such (self-) organizations of complex sociological systems with such different measuring schemes. It is found that the power law form is not the best description contrary to many modern expectations. The stretched exponential is much more adequate. Moreover, it is found that the measuring rules lead to some inner structures in both cases.
ASURV: Astronomical SURVival Statistics
Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.
2014-06-01
ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.
Power-law and exponential rank distributions: A panoramic Gibbsian perspective
International Nuclear Information System (INIS)
Eliazar, Iddo
2015-01-01
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars
Power-law and exponential rank distributions: A panoramic Gibbsian perspective
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2015-04-15
Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.
Diffusion of scientific credits and the ranking of scientists
Radicchi, Filippo; Fortunato, Santo; Markines, Benjamin; Vespignani, Alessandro
2009-11-01
Recently, the abundance of digital data is enabling the implementation of graph-based ranking algorithms that provide system level analysis for ranking publications and authors. Here, we take advantage of the entire Physical Review publication archive (1893-2006) to construct authors’ networks where weighted edges, as measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit transfer. On this network, we define a ranking method based on a diffusion algorithm that mimics the spreading of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by local measures such as the citation count and provide a statistical analysis of the assignment of major career awards in the area of physics. A website where the algorithm is made available to perform customized rank analysis can be found at the address http://www.physauthorsrank.org.
Toward optimal feature selection using ranking methods and classification algorithms
Directory of Open Access Journals (Sweden)
Novaković Jasmina
2011-01-01
Full Text Available We presented a comparison between several feature ranking methods used on two real datasets. We considered six ranking methods that can be divided into two broad categories: statistical and entropy-based. Four supervised learning algorithms are adopted to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We showed that the selection of ranking methods could be important for classification accuracy. In our experiments, ranking methods with different supervised learning algorithms give quite different results for balanced accuracy. Our cases confirm that, in order to be sure that a subset of features giving the highest accuracy has been selected, the use of many different indices is recommended.
Kendler, K S; Walters, E E; Truett, K R; Heath, A C; Neale, M C; Martin, N G; Eaves, L J
1994-11-01
Self-reported symptoms of depression are commonly used in mental health research to assess current psychiatric state, yet wide variation in these symptoms among individuals has been found in both clinical and epidemiologic populations. The authors sought to understand, from a genetic-epidemiologic perspective, the sources of individual differences in depressive symptoms. Self-reported symptoms of depression were assessed in two samples of twins and their spouses, parents, siblings, and offspring: one sample contained volunteer twins recruited through the American Association of Retired Persons and their relatives (N = 19,203 individuals) and the other contained twins from a population-based twin registry in Virginia and their relatives (N = 11,242 individuals). Model fitting by an iterative, diagonal, weighted least squares method was applied to the 80 different family relationships in the extended twin-family design. Independent analyses of the two samples revealed that the level of depressive symptoms was modestly familial, and familial resemblance could be explained solely by genetic factors and spousal resemblance. The estimated heritability of depressive symptoms was between 30% and 37%. There was no evidence that the liability to depressive symptoms was environmentally transmitted from parents to offspring or was influenced by environmental factors shared either generally among siblings or specifically between twins. With correction for unreliability of measurement, genetic factors accounted for half of the stable variance in depressive symptoms. Depressive symptoms in adulthood partly reflect enduring characteristics of temperament that are substantially influenced by hereditary factors but little, or not at all, by shared environmental experiences in the family of origin.
Ranking species in mutualistic networks
Domínguez-García, Virginia; Muñoz, Miguel A.
2015-02-01
Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.
University rankings in computer science
DEFF Research Database (Denmark)
Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela
2017-01-01
This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...
It's all relative: ranking the diversity of aquatic bacterial communities.
Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H
2008-09-01
The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.
Subtracting a best rank-1 approximation may increase tensor rank
Stegeman, Alwin; Comon, Pierre
2010-01-01
It has been shown that a best rank-R approximation of an order-k tensor may not exist when R >= 2 and k >= 3. This poses a serious problem to data analysts using tensor decompositions it has been observed numerically that, generally, this issue cannot be solved by consecutively computing and
Rank Dynamics of Word Usage at Multiple Scales
Directory of Open Access Journals (Sweden)
José A. Morales
2018-05-01
Full Text Available The recent dramatic increase in online data availability has allowed researchers to explore human culture with unprecedented detail, such as the growth and diversification of language. In particular, it provides statistical tools to explore whether word use is similar across languages, and if so, whether these generic features appear at different scales of language structure. Here we use the Google Books N-grams dataset to analyze the temporal evolution of word usage in several languages. We apply measures proposed recently to study rank dynamics, such as the diversity of N-grams in a given rank, the probability that an N-gram changes rank between successive time intervals, the rank entropy, and the rank complexity. Using different methods, results show that there are generic properties for different languages at different scales, such as a core of words necessary to minimally understand a language. We also propose a null model to explore the relevance of linguistic structure across multiple scales, concluding that N-gram statistics cannot be reduced to word statistics. We expect our results to be useful in improving text prediction algorithms, as well as in shedding light on the large-scale features of language use, beyond linguistic and cultural differences across human populations.
Consistent ranking of volatility models
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
2006-01-01
We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable....
Understanding Statistics - Cancer Statistics
Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.
THE USE OF RANKING SAMPLING METHOD WITHIN MARKETING RESEARCH
Directory of Open Access Journals (Sweden)
CODRUŢA DURA
2011-01-01
Full Text Available Marketing and statistical literature available to practitioners provides a wide range of sampling methods that can be implemented in the context of marketing research. Ranking sampling method is based on taking apart the general population into several strata, namely into several subdivisions which are relatively homogenous regarding a certain characteristic. In fact, the sample will be composed by selecting, from each stratum, a certain number of components (which can be proportional or non-proportional to the size of the stratum until the pre-established volume of the sample is reached. Using ranking sampling within marketing research requires the determination of some relevant statistical indicators - average, dispersion, sampling error etc. To that end, the paper contains a case study which illustrates the actual approach used in order to apply the ranking sample method within a marketing research made by a company which provides Internet connection services, on a particular category of customers – small and medium enterprises.
Let Us Rank Journalism Programs
Weber, Joseph
2014-01-01
Unlike law, business, and medical schools, as well as universities in general, journalism schools and journalism programs have rarely been ranked. Publishers such as "U.S. News & World Report," "Forbes," "Bloomberg Businessweek," and "Washington Monthly" do not pay them much mind. What is the best…
African Journals Online (AJOL)
maths/stats
... GAUSS SEIDEL'S. NUMERICAL ALGORITHMS IN PAGE RANK ANALYSIS. ... The convergence is guaranteed, if the absolute value of the largest eigen ... improved Gauss-Seidel iteration algorithm, based on the decomposition. U. L. D. M. +. +. = ..... This corresponds to determine the eigen vector of T with eigen value 1.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
14 CFR 1214.1105 - Final ranking.
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Final ranking. 1214.1105 Section 1214.1105... Recruitment and Selection Program § 1214.1105 Final ranking. Final rankings will be based on a combination of... preference will be included in this final ranking in accordance with applicable regulations. ...
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
A Survey on PageRank Computing
Berkhin, Pavel
2005-01-01
This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. This defines the importance of the model and the data structures that underly PageRank processing. Computing even a single PageRank is a difficult computational task. Computing many PageRanks is a much mor...
Schneider, Michael; Rittle-Johnson, Bethany; Star, Jon R
2011-11-01
Competence in many domains rests on children developing conceptual and procedural knowledge, as well as procedural flexibility. However, research on the developmental relations between these different types of knowledge has yielded unclear results, in part because little attention has been paid to the validity of the measures or to the effects of prior knowledge on the relations. To overcome these problems, we modeled the three constructs in the domain of equation solving as latent factors and tested (a) whether the predictive relations between conceptual and procedural knowledge were bidirectional, (b) whether these interrelations were moderated by prior knowledge, and (c) how both constructs contributed to procedural flexibility. We analyzed data from 2 measurement points each from two samples (Ns = 228 and 304) of middle school students who differed in prior knowledge. Conceptual and procedural knowledge had stable bidirectional relations that were not moderated by prior knowledge. Both kinds of knowledge contributed independently to procedural flexibility. The results demonstrate how changes in complex knowledge structures contribute to competence development.
Exact Rational Expectations, Cointegration, and Reduced Rank Regression
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...
Exact rational expectations, cointegration, and reduced rank regression
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...
Exact rational expectations, cointegration, and reduced rank regression
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
2008-01-01
We interpret the linear relations from exact rational expectations models as restrictions on the parameters of the statistical model called the cointegrated vector autoregressive model for non-stationary variables. We then show how reduced rank regression, Anderson (1951), plays an important role...
Diagrammatic perturbation methods in networks and sports ranking combinatorics
International Nuclear Information System (INIS)
Park, Juyong
2010-01-01
Analytic and computational tools developed in statistical physics are being increasingly applied to the study of complex networks. Here we present recent developments in the diagrammatic perturbation methods for the exponential random graph models, and apply them to the combinatoric problem of determining the ranking of nodes in directed networks that represent pairwise competitions
First rank symptoms for schizophrenia.
Soares-Weiser, Karla; Maayan, Nicola; Bergman, Hanna; Davenport, Clare; Kirkham, Amanda J; Grabowski, Sarah; Adams, Clive E
2015-01-25
Early and accurate diagnosis and treatment of schizophrenia may have long-term advantages for the patient; the longer psychosis goes untreated the more severe the repercussions for relapse and recovery. If the correct diagnosis is not schizophrenia, but another psychotic disorder with some symptoms similar to schizophrenia, appropriate treatment might be delayed, with possible severe repercussions for the person involved and their family. There is widespread uncertainty about the diagnostic accuracy of First Rank Symptoms (FRS); we examined whether they are a useful diagnostic tool to differentiate schizophrenia from other psychotic disorders. To determine the diagnostic accuracy of one or multiple FRS for diagnosing schizophrenia, verified by clinical history and examination by a qualified professional (e.g. psychiatrists, nurses, social workers), with or without the use of operational criteria and checklists, in people thought to have non-organic psychotic symptoms. We conducted searches in MEDLINE, EMBASE, and PsycInfo using OvidSP in April, June, July 2011 and December 2012. We also searched MEDION in December 2013. We selected studies that consecutively enrolled or randomly selected adults and adolescents with symptoms of psychosis, and assessed the diagnostic accuracy of FRS for schizophrenia compared to history and clinical examination performed by a qualified professional, which may or may not involve the use of symptom checklists or based on operational criteria such as ICD and DSM. Two review authors independently screened all references for inclusion. Risk of bias in included studies were assessed using the QUADAS-2 instrument. We recorded the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for constructing a 2 x 2 table for each study or derived 2 x 2 data from reported summary statistics such as sensitivity, specificity, and/or likelihood ratios. We included 21 studies with a total of 6253 participants
The diagnostic status of first-rank symptoms
DEFF Research Database (Denmark)
Nordgaard, Julie; Arnfred, Sidse Marie; Handest, P.
2008-01-01
In the International Statistical Classification of Diseases, Tenth Revision(ICD-10) and Diagnostic and Statistical Manual of Mental Disorder, Third and Fourth Edition(DSM-III-IV), the presence of one of Schneider "first-rank symptoms" (FRS) is symptomatically sufficient for the schizophrenia...... diagnosis. Yet, it has been claimed that FRS may also be found in the nonschizophrenic conditions, and therefore, they are not specific or diagnostic for schizophrenia. This review was made to clarify the issue of diagnostic specificity....
Predictors of job satisfaction and absenteeism in two samples of Hong Kong nurses.
Siu, Oi-Ling
2002-10-01
Stress-related outcomes of job satisfaction and absenteeism among nurses should receive more attention in Hong Kong because absenteeism is costly. Many nurses' complaints are due to organizational change in privatization since the establishment of the Hong Kong Hospital Authority in 1991. Organizational climate is found to be an antecedent of job dissatisfaction and absenteeism in many studies in western societies. To investigate the role of organizational climate and psychological distress on job satisfaction; and the role of climate, distress and job satisfaction on absenteeism in Hong Kong nurses, while controlling for demographic variables. A self-administered questionnaire survey method was used to collect data from two samples of nurses within a 8-month period. They are, respectively, 144 (74 general nurses, 70 psychiatric nurses; 47 males, 97 females) and 114 (85 general nurses, 29 psychiatric nurses; 17 males, 97 females) nurses. Multiple regression analyses revealed that occupational type (psychiatric/general), environment (the physical conditions in the work area) and psychological distress were significant predictors of job satisfaction for sample 1; and well-being (social relations, welfare and health issues) was the only significant predictor of job satisfaction for sample 2. However, age, involvement (the degree of commitment displayed towards employees by the organization), psychological distress and job satisfaction were significant predictors of absenteeism for sample 1; and occupational type, organization (the interaction between the worker and the organization), and involvement were significant predictors of absenteeism for sample 2. The empirical findings provide support for the climate-job satisfaction and climate-absenteeism relationships. Psychological distress could be an antecedent of job satisfaction; and job satisfaction could be an antecedent of absenteeism. Certain climate dimensions should be improved to enhance job satisfaction and
Validating rankings in soccer championships
Directory of Open Access Journals (Sweden)
Annibal Parracho Sant'Anna
2012-08-01
Full Text Available The final ranking of a championship is determined by quality attributes combined with other factors which should be filtered out of any decision on relegation or draft for upper level tournaments. Factors like referees' mistakes and difficulty of certain matches due to its accidental importance to the opponents should have their influence reduced. This work tests approaches to combine classification rules considering the imprecision of the number of points as a measure of quality and of the variables that provide reliable explanation for it. Two home-advantage variables are tested and shown to be apt to enter as explanatory variables. Independence between the criteria is checked against the hypothesis of maximal correlation. The importance of factors and of composition rules is evaluated on the basis of correlation between rank vectors, number of classes and number of clubs in tail classes. Data from five years of the Brazilian Soccer Championship are analyzed.
Minkowski metrics in creating universal ranking algorithms
Directory of Open Access Journals (Sweden)
Andrzej Ameljańczyk
2014-06-01
Full Text Available The paper presents a general procedure for creating the rankings of a set of objects, while the relation of preference based on any ranking function. The analysis was possible to use the ranking functions began by showing the fundamental drawbacks of commonly used functions in the form of a weighted sum. As a special case of the ranking procedure in the space of a relation, the procedure based on the notion of an ideal element and generalized Minkowski distance from the element was proposed. This procedure, presented as universal ranking algorithm, eliminates most of the disadvantages of ranking functions in the form of a weighted sum.[b]Keywords[/b]: ranking functions, preference relation, ranking clusters, categories, ideal point, universal ranking algorithm
Iacovacci, Jacopo; Rahmede, Christoph; Arenas, Alex; Bianconi, Ginestra
2016-10-01
Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so-called pattern to success.
Low rank magnetic resonance fingerprinting.
Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C
2016-08-01
Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.
Ranking Support Vector Machine with Kernel Approximation
Directory of Open Access Journals (Sweden)
Kai Chen
2017-01-01
Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Statistical application of groundwater monitoring data at the Hanford Site
International Nuclear Information System (INIS)
Chou, C.J.; Johnson, V.G.; Hodges, F.N.
1993-09-01
Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis
Ranking benchmarks of top 100 players in men's professional tennis.
Reid, Machar; Morris, Craig
2013-01-01
In men's professional tennis, players aspire to hold the top ranking position. On the way to the top spot, reaching the top 100 can be seen as a significant career milestone. National Federations undertake extensive efforts to assist their players to reach the top 100. However, objective data considering reasonable ranking yardsticks for top 100 success in men's professional tennis are lacking. Therefore, it is difficult for National Federations and those involved in player development to give empirical programming advice to young players. By taking a closer look at the ranking history of professional male tennis players, this article tries to provide those involved in player development a more objective basis for decision-making. The 100 names, countries, birthdates and ranking histories of the top 100 players listed in the Association of Tennis Professionals (ATP) at 31 December 2009 were recorded from websites in the public domain. Descriptive statistics were reported for the ranking milestones of interest. Results confirmed the merits of the International Tennis Federation's junior tour with 91% of the top 100 professionals earning a junior ranking, the mean peak of which was 94.1, s=148.9. On average, top 100 professionals achieved their best junior rankings and earned their first ATP point at similar ages, suggesting that players compete on both the junior and professional tours during their transition. Once professionally ranked, players took an average 4.5, s=2.1 years to reach the ATP top 100 at the mean age of 21.5, s=2.6 years, which contrasts with the mean current age of the top 100 of 26.8, s=3.2. The best professional rankings of players born in 1982 or earlier were positively related to the ages at which players earned their first ATP point and then entered the top 100, suggesting that the ages associated with these ranking milestones may have some forecasting potential. Future work should focus on the change in top 100 demographics over time as well
Automatic figure ranking and user interfacing for intelligent figure search.
Directory of Open Access Journals (Sweden)
Hong Yu
2010-10-01
Full Text Available Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org. Existing research in figure search treats each figure equally, but we introduce a novel concept of "figure ranking": figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery.We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation.The evaluation results conclude that automatic figure ranking and user
A Rank Test on Equality of Population Medians
Pooi Ah Hin
2012-01-01
The Kruskal-Wallis test is a non-parametric test for the equality of K population medians. The test statistic involved is a measure of the overall closeness of the K average ranks in the individual samples to the average rank in the combined sample. The resulting acceptance region of the test however may not be the smallest region with the required acceptance probability under the null hypothesis. Presently an alternative acceptance region is constructed such that it has the smallest size, ap...
SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking
Shams, Bita; Haratizadeh, Saman
2016-09-01
Collaborative ranking is an emerging field of recommender systems that utilizes users' preference data rather than rating values. Unfortunately, neighbor-based collaborative ranking has gained little attention despite its more flexibility and justifiability. This paper proposes a novel framework, called SibRank that seeks to improve the state of the art neighbor-based collaborative ranking methods. SibRank represents users' preferences as a signed bipartite network, and finds similar users, through a novel personalized ranking algorithm in signed networks.
The Marketing of Canadian University Rankings: A Misadventure Now 24 Years Old
Cramer, Kenneth M.; Page, Stewart; Burrows, Vanessa; Lamoureux, Chastine; Mackay, Sarah; Pedri, Victoria; Pschibul, Rebecca
2016-01-01
Based on analyses of Maclean's ranking data pertaining to Canadian universities published over the last 24 years, we present a summary of statistical findings of annual ranking exercises, as well as discussion about their current status and the effects upon student welfare. Some illustrative tables are also presented. Using correlational and…
"Times Higher Education" 100 under 50 Ranking: Old Wine in a New Bottle?
Soh, Kaycheng
2013-01-01
"Times Higher Education" 100 under 50 ranking is a new twist to the university ranking. It focuses on universities that have a history of 50 years or less with the purpose of offsetting the advantage of prestige of the older ones. This article re-analysed the data publicly available and looked into relevant conceptual and statistical issues. The…
Rank Two Affine Manifolds in Genus 3
Aulicino, David; Nguyen, Duc-Manh
2016-01-01
We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.
The Privilege of Ranking: Google Plays Ball.
Wiggins, Richard
2003-01-01
Discussion of ranking systems used in various settings, including college football and academic admissions, focuses on the Google search engine. Explains the PageRank mathematical formula that scores Web pages by connecting the number of links; limitations, including authenticity and accuracy of ranked Web pages; relevancy; adjusting algorithms;…
A Comprehensive Analysis of Marketing Journal Rankings
Steward, Michelle D.; Lewis, Bruce R.
2010-01-01
The purpose of this study is to offer a comprehensive assessment of journal standings in Marketing from two perspectives. The discipline perspective of rankings is obtained from a collection of published journal ranking studies during the past 15 years. The studies in the published ranking stream are assessed for reliability by examining internal…
Rank-based model selection for multiple ions quantum tomography
International Nuclear Information System (INIS)
Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian
2012-01-01
The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ 2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements. (paper)
Balakrishnan, N; Nagaraja, HN
2007-01-01
S. Panchapakesan has made significant contributions to ranking and selection and has published in many other areas of statistics, including order statistics, reliability theory, stochastic inequalities, and inference. Written in his honor, the twenty invited articles in this volume reflect recent advances in these areas and form a tribute to Panchapakesan's influence and impact on these areas. Thematically organized, the chapters cover a broad range of topics from: Inference; Ranking and Selection; Multiple Comparisons and Tests; Agreement Assessment; Reliability; and Biostatistics. Featuring
A boundary-optimized rejection region test for the two-sample binomial problem.
Gabriel, Erin E; Nason, Martha; Fay, Michael P; Follmann, Dean A
2018-03-30
Testing the equality of 2 proportions for a control group versus a treatment group is a well-researched statistical problem. In some settings, there may be strong historical data that allow one to reliably expect that the control proportion is one, or nearly so. While one-sample tests or comparisons to historical controls could be used, neither can rigorously control the type I error rate in the event the true control rate changes. In this work, we propose an unconditional exact test that exploits the historical information while controlling the type I error rate. We sequentially construct a rejection region by first maximizing the rejection region in the space where all controls have an event, subject to the constraint that our type I error rate does not exceed α for any true event rate; then with any remaining α we maximize the additional rejection region in the space where one control avoids the event, and so on. When the true control event rate is one, our test is the most powerful nonrandomized test for all points in the alternative space. When the true control event rate is nearly one, we demonstrate that our test has equal or higher mean power, averaging over the alternative space, than a variety of well-known tests. For the comparison of 4 controls and 4 treated subjects, our proposed test has higher power than all comparator tests. We demonstrate the properties of our proposed test by simulation and use our method to design a malaria vaccine trial. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
24 CFR 599.401 - Ranking of applications.
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Ranking of applications. 599.401... Communities § 599.401 Ranking of applications. (a) Ranking order. Rural and urban applications will be ranked... applications ranked first. (b) Separate ranking categories. After initial ranking, both rural and urban...
Cioca, L. I.; Giurea, R.; Precazzini, I.; Ragazzi, M.; Achim, M. I.; Schiavon, M.; Rada, E. C.
2018-05-01
Nowadays the global tourism growth has caused a significant interest in research focused on the impact of the tourism on environment and community. The purpose of this study is to introduce a new ranking for the classification of tourist accommodation establishments with the functions of agro-tourism boarding house type by examining the sector of agro-tourism based on a research aimed to improve the economic, socio-cultural and environmental performance of agrotourism structures. This paper links the criteria for the classification of agro-tourism boarding houses (ABHs) to the impact of agro-tourism activities on the environment, enhancing an eco-friendly approach on agro-tourism activities by increasing the quality reputation of the agro-tourism products and services. Taking into account the impact on the environment, agrotourism can play an important role by protecting and conserving it.
Intuitive introductory statistics
Wolfe, Douglas A
2017-01-01
This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course. The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonp...
Learning of Rule Ensembles for Multiple Attribute Ranking Problems
Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin
In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.
Ranking metrics in gene set enrichment analysis: do they matter?
Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna
2017-05-12
There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Methodology for ranking restoration options
International Nuclear Information System (INIS)
Hedemann Jensen, Per
1999-04-01
The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Five contaminated European sites have been studied. Various remedial measures have been envisaged with respect to the optimisation of the protection of the populations being exposed to the radionuclides at the sites. Cost-benefit analysis and multi-attribute utility analysis have been applied for optimisation. Health, economic and social attributes have been included and weighting factors for the different attributes have been determined by the use of scaling constants. (au)
Citation graph based ranking in Invenio
Marian, Ludmila; Rajman, Martin; Vesely, Martin
2010-01-01
Invenio is the web-based integrated digital library system developed at CERN. Within this framework, we present four types of ranking models based on the citation graph that complement the simple approach based on citation counts: time-dependent citation counts, a relevancy ranking which extends the PageRank model, a time-dependent ranking which combines the freshness of citations with PageRank and a ranking that takes into consideration the external citations. We present our analysis and results obtained on two main data sets: Inspire and CERN Document Server. Our main contributions are: (i) a study of the currently available ranking methods based on the citation graph; (ii) the development of new ranking methods that correct some of the identified limitations of the current methods such as treating all citations of equal importance, not taking time into account or considering the citation graph complete; (iii) a detailed study of the key parameters for these ranking methods. (The original publication is ava...
Communities in Large Networks: Identification and Ranking
DEFF Research Database (Denmark)
Olsen, Martin
2008-01-01
We study the problem of identifying and ranking the members of a community in a very large network with link analysis only, given a set of representatives of the community. We define the concept of a community justified by a formal analysis of a simple model of the evolution of a directed graph. ...... and its immediate surroundings. The members are ranked with a “local” variant of the PageRank algorithm. Results are reported from successful experiments on identifying and ranking Danish Computer Science sites and Danish Chess pages using only a few representatives....
Ranking Entities in Networks via Lefschetz Duality
DEFF Research Database (Denmark)
Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Poulsen, Bjarne
2014-01-01
then be ranked according to how essential their positions are in the network by considering the effect of their respective absences. Defining a ranking of a network which takes the individual position of each entity into account has the purpose of assigning different roles to the entities, e.g. agents......, in the network. In this paper it is shown that the topology of a given network induces a ranking of the entities in the network. Further, it is demonstrated how to calculate this ranking and thus how to identify weak sub-networks in any given network....
Ramdas, Aaditya; Reddi, Sashank J.; Poczos, Barnabas; Singh, Aarti; Wasserman, Larry
2014-01-01
Nonparametric two sample testing deals with the question of consistently deciding if two distributions are different, given samples from both, without making any parametric assumptions about the form of the distributions. The current literature is split into two kinds of tests - those which are consistent without any assumptions about how the distributions may differ (\\textit{general} alternatives), and those which are designed to specifically test easier alternatives, like a difference in me...
Zhou, Peng; Liu, Zhiguo; Lin, Xiaoyan; Liu, Xin; Ye, Lei; Wang, Xingyi; Pan, Kai; Li, Yude
2018-05-01
Two samples of ancient Chinese coins were analyzed with a confocal three-dimensional micro-X-ray fluoroscope. The depth distributions of elemental iron (Fe), calcium (Ca) and copper (Cu) were obtained based on this non-destructive measurement method. One coin, named "Chongning Tongbao", was certified as genuine in accordance with the available archaeological data, whereas another coin, named "Zhenglong Yuanbao", was identified as a reproduction.
Ranking scientific publications: the effect of nonlinearity
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru
2014-10-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Ranking scientific publications: the effect of nonlinearity.
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru
2014-10-17
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Neural Ranking Models with Weak Supervision
Dehghani, M.; Zamani, H.; Severyn, A.; Kamps, J.; Croft, W.B.
2017-01-01
Despite the impressive improvements achieved by unsupervised deep neural networks in computer vision and NLP tasks, such improvements have not yet been observed in ranking for information retrieval. The reason may be the complexity of the ranking problem, as it is not obvious how to learn from
A Rational Method for Ranking Engineering Programs.
Glower, Donald D.
1980-01-01
Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)
Lerot: An Online Learning to Rank Framework
Schuth, A.; Hofmann, K.; Whiteson, S.; de Rijke, M.
2013-01-01
Online learning to rank methods for IR allow retrieval systems to optimize their own performance directly from interactions with users via click feedback. In the software package Lerot, presented in this paper, we have bundled all ingredients needed for experimenting with online learning to rank for
Contests with rank-order spillovers
M.R. Baye (Michael); D. Kovenock (Dan); C.G. de Vries (Casper)
2012-01-01
textabstractThis paper presents a unified framework for characterizing symmetric equilibrium in simultaneous move, two-player, rank-order contests with complete information, in which each player's strategy generates direct or indirect affine "spillover" effects that depend on the rank-order of her
Classification of rank 2 cluster varieties
DEFF Research Database (Denmark)
Mandel, Travis
We classify rank 2 cluster varieties (those whose corresponding skew-form has rank 2) according to the deformation type of a generic fiber U of their X-spaces, as defined by Fock and Goncharov. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi...
Using centrality to rank web snippets
Jijkoun, V.; de Rijke, M.; Peters, C.; Jijkoun, V.; Mandl, T.; Müller, H.; Oard, D.W.; Peñas, A.; Petras, V.; Santos, D.
2008-01-01
We describe our participation in the WebCLEF 2007 task, targeted at snippet retrieval from web data. Our system ranks snippets based on a simple similarity-based centrality, inspired by the web page ranking algorithms. We experimented with retrieval units (sentences and paragraphs) and with the
Mining Feedback in Ranking and Recommendation Systems
Zhuang, Ziming
2009-01-01
The amount of online information has grown exponentially over the past few decades, and users become more and more dependent on ranking and recommendation systems to address their information seeking needs. The advance in information technologies has enabled users to provide feedback on the utilities of the underlying ranking and recommendation…
Entity Ranking using Wikipedia as a Pivot
R. Kaptein; P. Serdyukov; A.P. de Vries (Arjen); J. Kamps
2010-01-01
htmlabstractIn this paper we investigate the task of Entity Ranking on the Web. Searchers looking for entities are arguably better served by presenting a ranked list of entities directly, rather than a list of web pages with relevant but also potentially redundant information about
Entity ranking using Wikipedia as a pivot
Kaptein, R.; Serdyukov, P.; de Vries, A.; Kamps, J.; Huang, X.J.; Jones, G.; Koudas, N.; Wu, X.; Collins-Thompson, K.
2010-01-01
In this paper we investigate the task of Entity Ranking on the Web. Searchers looking for entities are arguably better served by presenting a ranked list of entities directly, rather than a list of web pages with relevant but also potentially redundant information about these entities. Since
Rank 2 fusion rings are complete intersections
DEFF Research Database (Denmark)
Andersen, Troels Bak
We give a non-constructive proof that fusion rings attached to a simple complex Lie algebra of rank 2 are complete intersections.......We give a non-constructive proof that fusion rings attached to a simple complex Lie algebra of rank 2 are complete intersections....
A Ranking Method for Evaluating Constructed Responses
Attali, Yigal
2014-01-01
This article presents a comparative judgment approach for holistically scored constructed response tasks. In this approach, the grader rank orders (rather than rate) the quality of a small set of responses. A prior automated evaluation of responses guides both set formation and scaling of rankings. Sets are formed to have similar prior scores and…
Ranking Music Data by Relevance and Importance
DEFF Research Database (Denmark)
Ruxanda, Maria Magdalena; Nanopoulos, Alexandros; Jensen, Christian Søndergaard
2008-01-01
Due to the rapidly increasing availability of audio files on the Web, it is relevant to augment search engines with advanced audio search functionality. In this context, the ranking of the retrieved music is an important issue. This paper proposes a music ranking method capable of flexibly fusing...
Ranking of Unwarranted Variations in Healthcare Treatments
Moes, Herry; Brekelmans, Ruud; Hamers, Herbert; Hasaart, F.
2017-01-01
In this paper, we introduce a framework designed to identify and rank possible unwarranted variation of treatments in healthcare. The innovative aspect of this framework is a ranking procedure that aims to identify healthcare institutions where unwarranted variation is most severe, and diagnosis
The Rankings Game: Who's Playing Whom?
Burness, John F.
2008-01-01
This summer, Forbes magazine published its new rankings of "America's Best Colleges," implying that it had developed a methodology that would give the public the information that it needed to choose a college wisely. "U.S. News & World Report," which in 1983 published the first annual ranking, just announced its latest ratings last week--including…
Dynamic collective entity representations for entity ranking
Graus, D.; Tsagkias, M.; Weerkamp, W.; Meij, E.; de Rijke, M.
2016-01-01
Entity ranking, i.e., successfully positioning a relevant entity at the top of the ranking for a given query, is inherently difficult due to the potential mismatch between the entity's description in a knowledge base, and the way people refer to the entity when searching for it. To counter this
Comparing classical and quantum PageRanks
Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B.
2017-01-01
Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker's probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.
Universal emergence of PageRank
Energy Technology Data Exchange (ETDEWEB)
Frahm, K M; Georgeot, B; Shepelyansky, D L, E-mail: frahm@irsamc.ups-tlse.fr, E-mail: georgeot@irsamc.ups-tlse.fr, E-mail: dima@irsamc.ups-tlse.fr [Laboratoire de Physique Theorique du CNRS, IRSAMC, Universite de Toulouse, UPS, 31062 Toulouse (France)
2011-11-18
The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter {alpha} Element-Of ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when {alpha} {yields} 1. The whole network can be divided into a core part and a group of invariant subspaces. For {alpha} {yields} 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at {alpha} {yields} 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses. (paper)
Universal emergence of PageRank
International Nuclear Information System (INIS)
Frahm, K M; Georgeot, B; Shepelyansky, D L
2011-01-01
The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter α ∈ ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when α → 1. The whole network can be divided into a core part and a group of invariant subspaces. For α → 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at α → 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses. (paper)
... What Is Cancer? Cancer Statistics Cancer Disparities Cancer Statistics Cancer has a major impact on society in ... success of efforts to control and manage cancer. Statistics at a Glance: The Burden of Cancer in ...
From Eminent Men to Excellent Universities: University Rankings as Calculative Devices.
Hammarfelt, Björn; de Rijcke, Sarah; Wouters, Paul
2017-01-01
Global university rankings have become increasingly important 'calculative devices' for assessing the 'quality' of higher education and research. Their ability to make characteristics of universities 'calculable' is here exemplified by the first proper university ranking ever, produced as early as 1910 by the American psychologist James McKeen Cattell. Our paper links the epistemological rationales behind the construction of this ranking to the sociopolitical context in which Cattell operated: an era in which psychology became institutionalized against the backdrop of the eugenics movement, and in which statistics of science became used to counter a perceived decline in 'great men.' Over time, however, the 'eminent man,' shaped foremost by heredity and upbringing, came to be replaced by the excellent university as the emblematic symbol of scientific and intellectual strength. We also show that Cattell's ranking was generative of new forms of the social, traces of which can still be found today in the enactment of 'excellence' in global university rankings.
PageRank and rank-reversal dependence on the damping factor
Son, S.-W.; Christensen, C.; Grassberger, P.; Paczuski, M.
2012-12-01
PageRank (PR) is an algorithm originally developed by Google to evaluate the importance of web pages. Considering how deeply rooted Google's PR algorithm is to gathering relevant information or to the success of modern businesses, the question of rank stability and choice of the damping factor (a parameter in the algorithm) is clearly important. We investigate PR as a function of the damping factor d on a network obtained from a domain of the World Wide Web, finding that rank reversal happens frequently over a broad range of PR (and of d). We use three different correlation measures, Pearson, Spearman, and Kendall, to study rank reversal as d changes, and we show that the correlation of PR vectors drops rapidly as d changes from its frequently cited value, d0=0.85. Rank reversal is also observed by measuring the Spearman and Kendall rank correlation, which evaluate relative ranks rather than absolute PR. Rank reversal happens not only in directed networks containing rank sinks but also in a single strongly connected component, which by definition does not contain any sinks. We relate rank reversals to rank pockets and bottlenecks in the directed network structure. For the network studied, the relative rank is more stable by our measures around d=0.65 than at d=d0.
PageRank and rank-reversal dependence on the damping factor.
Son, S-W; Christensen, C; Grassberger, P; Paczuski, M
2012-12-01
PageRank (PR) is an algorithm originally developed by Google to evaluate the importance of web pages. Considering how deeply rooted Google's PR algorithm is to gathering relevant information or to the success of modern businesses, the question of rank stability and choice of the damping factor (a parameter in the algorithm) is clearly important. We investigate PR as a function of the damping factor d on a network obtained from a domain of the World Wide Web, finding that rank reversal happens frequently over a broad range of PR (and of d). We use three different correlation measures, Pearson, Spearman, and Kendall, to study rank reversal as d changes, and we show that the correlation of PR vectors drops rapidly as d changes from its frequently cited value, d_{0}=0.85. Rank reversal is also observed by measuring the Spearman and Kendall rank correlation, which evaluate relative ranks rather than absolute PR. Rank reversal happens not only in directed networks containing rank sinks but also in a single strongly connected component, which by definition does not contain any sinks. We relate rank reversals to rank pockets and bottlenecks in the directed network structure. For the network studied, the relative rank is more stable by our measures around d=0.65 than at d=d_{0}.
A Ranking Approach to Genomic Selection.
Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori
2015-01-01
Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Ranking Adverse Drug Reactions With Crowdsourcing
Gottlieb, Assaf
2015-03-23
Background: There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. Objective: The intent of the study was to rank ADRs according to severity. Methods: We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. Results: There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. Conclusions: ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.
Ranking adverse drug reactions with crowdsourcing.
Gottlieb, Assaf; Hoehndorf, Robert; Dumontier, Michel; Altman, Russ B
2015-03-23
There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. The intent of the study was to rank ADRs according to severity. We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.
Applied statistical designs for the researcher
Paulson, Daryl S
2003-01-01
Research and Statistics Basic Review of Parametric Statistics Exploratory Data Analysis Two Sample Tests Completely Randomized One-Factor Analysis of Variance One and Two Restrictions on Randomization Completely Randomized Two-Factor Factorial Designs Two-Factor Factorial Completely Randomized Blocked Designs Useful Small Scale Pilot Designs Nested Statistical Designs Linear Regression Nonparametric Statistics Introduction to Research Synthesis and "Meta-Analysis" and Conclusory Remarks References Index.
Health systems around the world - a comparison of existing health system rankings.
Schütte, Stefanie; Acevedo, Paula N Marin; Flahault, Antoine
2018-06-01
Existing health systems all over the world are different due to the different combinations of components that can be considered for their establishment. The ranking of health systems has been a focal points for many years especially the issue of performance. In 2000 the World Health Organization (WHO) performed a ranking to compare the Performance of the health system of the member countries. Since then other health system rankings have been performed and it became an issue of public discussion. A point of contention regarding these rankings is the methodology employed by each of them, since no gold standard exists. Therefore, this review focuses on evaluating the methodologies of each existing health system performance ranking to assess their reproducibility and transparency. A search was conducted to identify existing health system rankings, and a questionnaire was developed for the comparison of the methodologies based on the following indicators: (1) General information, (2) Statistical methods, (3) Data (4) Indicators. Overall nine rankings were identified whereas six of them focused rather on the measurement of population health without any financial component and were therefore excluded. Finally, three health system rankings were selected for this review: "Health Systems: Improving Performance" by the WHO, "Mirror, Mirror on the wall: How the Performance of the US Health Care System Compares Internationally" by the Commonwealth Fund and "the Most efficient Health Care" by Bloomberg. After the completion of the comparison of the rankings by giving them scores according to the indicators, the ranking performed the WHO was considered the most complete regarding the ability of reproducibility and transparency of the methodology. This review and comparison could help in establishing consensus in the field of health system research. This may also help giving recommendations for future health rankings and evaluating the current gap in the literature.
Augmenting the Deliberative Method for Ranking Risks.
Susel, Irving; Lasley, Trace; Montezemolo, Mark; Piper, Joel
2016-01-01
The Department of Homeland Security (DHS) characterized and prioritized the physical cross-border threats and hazards to the nation stemming from terrorism, market-driven illicit flows of people and goods (illegal immigration, narcotics, funds, counterfeits, and weaponry), and other nonmarket concerns (movement of diseases, pests, and invasive species). These threats and hazards pose a wide diversity of consequences with very different combinations of magnitudes and likelihoods, making it very challenging to prioritize them. This article presents the approach that was used at DHS to arrive at a consensus regarding the threats and hazards that stand out from the rest based on the overall risk they pose. Due to time constraints for the decision analysis, it was not feasible to apply multiattribute methodologies like multiattribute utility theory or the analytic hierarchy process. Using a holistic approach was considered, such as the deliberative method for ranking risks first published in this journal. However, an ordinal ranking alone does not indicate relative or absolute magnitude differences among the risks. Therefore, the use of the deliberative method for ranking risks is not sufficient for deciding whether there is a material difference between the top-ranked and bottom-ranked risks, let alone deciding what the stand-out risks are. To address this limitation of ordinal rankings, the deliberative method for ranking risks was augmented by adding an additional step to transform the ordinal ranking into a ratio scale ranking. This additional step enabled the selection of stand-out risks to help prioritize further analysis. © 2015 Society for Risk Analysis.
Communities in Large Networks: Identification and Ranking
DEFF Research Database (Denmark)
Olsen, Martin
2008-01-01
show that the problem of deciding whether a non trivial community exists is NP complete. Nevertheless, experiments show that a very simple greedy approach can identify members of a community in the Danish part of the web graph with time complexity only dependent on the size of the found community...... and its immediate surroundings. The members are ranked with a “local” variant of the PageRank algorithm. Results are reported from successful experiments on identifying and ranking Danish Computer Science sites and Danish Chess pages using only a few representatives....
2016-01-01
A mere hyperbolic law, like the Zipf’s law power function, is often inadequate to describe rank-size relationships. An alternative theoretical distribution is proposed based on theoretical physics arguments starting from the Yule-Simon distribution. A modeling is proposed leading to a universal form. A theoretical suggestion for the “best (or optimal) distribution”, is provided through an entropy argument. The ranking of areas through the number of cities in various countries and some sport competition ranking serves for the present illustrations. PMID:27812192
Statistical Power in Meta-Analysis
Liu, Jin
2015-01-01
Statistical power is important in a meta-analysis study, although few studies have examined the performance of simulated power in meta-analysis. The purpose of this study is to inform researchers about statistical power estimation on two sample mean difference test under different situations: (1) the discrepancy between the analytical power and…
Scalable Faceted Ranking in Tagging Systems
Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.
Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.
Evaluation of treatment effects by ranking
DEFF Research Database (Denmark)
Halekoh, U; Kristensen, K
2008-01-01
In crop experiments measurements are often made by a judge evaluating the crops' conditions after treatment. In the present paper an analysis is proposed for experiments where plots of crops treated differently are mutually ranked. In the experimental layout the crops are treated on consecutive...... plots usually placed side by side in one or more rows. In the proposed method a judge ranks several neighbouring plots, say three, by ranking them from best to worst. For the next observation the judge moves on by no more than two plots, such that up to two plots will be re-evaluated again...... in a comparison with the new plot(s). Data from studies using this set-up were analysed by a Thurstonian random utility model, which assumed that the judge's rankings were obtained by comparing latent continuous utilities or treatment effects. For the latent utilities a variance component model was considered...
Superfund Hazard Ranking System Training Course
The Hazard Ranking System (HRS) training course is a four and ½ day, intermediate-level course designed for personnel who are required to compile, draft, and review preliminary assessments (PAs), site inspections (SIs), and HRS documentation records/packag
Who's bigger? where historical figures really rank
Skiena, Steven
2014-01-01
Is Hitler bigger than Napoleon? Washington bigger than Lincoln? Picasso bigger than Einstein? Quantitative analysts are rapidly finding homes in social and cultural domains, from finance to politics. What about history? In this fascinating book, Steve Skiena and Charles Ward bring quantitative analysis to bear on ranking and comparing historical reputations. They evaluate each person by aggregating the traces of millions of opinions, just as Google ranks webpages. The book includes a technical discussion for readers interested in the details of the methods, but no mathematical or computational background is necessary to understand the rankings or conclusions. Along the way, the authors present the rankings of more than one thousand of history's most significant people in science, politics, entertainment, and all areas of human endeavor. Anyone interested in history or biography can see where their favorite figures place in the grand scheme of things.
Ranking Forestry Investments With Parametric Linear Programming
Paul A. Murphy
1976-01-01
Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.
Block models and personalized PageRank.
Kloumann, Isabel M; Ugander, Johan; Kleinberg, Jon
2017-01-03
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods through the "seed set expansion problem": given a subset [Formula: see text] of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of "landing probabilities" of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work, we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameter [Formula: see text] that depends on the block model parameters. This connection provides a formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance, despite being simple linear classification rules, and are even competitive with belief propagation.
Block models and personalized PageRank
Kloumann, Isabel M.; Ugander, Johan; Kleinberg, Jon
2016-01-01
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods though the seed set expansion problem: given a subset $S$ of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate...
How Many Alternatives Can Be Ranked? A Comparison of the Paired Comparison and Ranking Methods.
Ock, Minsu; Yi, Nari; Ahn, Jeonghoon; Jo, Min-Woo
2016-01-01
To determine the feasibility of converting ranking data into paired comparison (PC) data and suggest the number of alternatives that can be ranked by comparing a PC and a ranking method. Using a total of 222 health states, a household survey was conducted in a sample of 300 individuals from the general population. Each respondent performed a PC 15 times and a ranking method 6 times (two attempts of ranking three, four, and five health states, respectively). The health states of the PC and the ranking method were constructed to overlap each other. We converted the ranked data into PC data and examined the consistency of the response rate. Applying probit regression, we obtained the predicted probability of each method. Pearson correlation coefficients were determined between the predicted probabilities of those methods. The mean absolute error was also assessed between the observed and the predicted values. The overall consistency of the response rate was 82.8%. The Pearson correlation coefficients were 0.789, 0.852, and 0.893 for ranking three, four, and five health states, respectively. The lowest mean absolute error was 0.082 (95% confidence interval [CI] 0.074-0.090) in ranking five health states, followed by 0.123 (95% CI 0.111-0.135) in ranking four health states and 0.126 (95% CI 0.113-0.138) in ranking three health states. After empirically examining the consistency of the response rate between a PC and a ranking method, we suggest that using five alternatives in the ranking method may be superior to using three or four alternatives. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Rank distributions: A panoramic macroscopic outlook
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Fair ranking of researchers and research teams.
Vavryčuk, Václav
2018-01-01
The main drawback of ranking of researchers by the number of papers, citations or by the Hirsch index is ignoring the problem of distributing authorship among authors in multi-author publications. So far, the single-author or multi-author publications contribute to the publication record of a researcher equally. This full counting scheme is apparently unfair and causes unjust disproportions, in particular, if ranked researchers have distinctly different collaboration profiles. These disproportions are removed by less common fractional or authorship-weighted counting schemes, which can distribute the authorship credit more properly and suppress a tendency to unjustified inflation of co-authors. The urgent need of widely adopting a fair ranking scheme in practise is exemplified by analysing citation profiles of several highly-cited astronomers and astrophysicists. While the full counting scheme often leads to completely incorrect and misleading ranking, the fractional or authorship-weighted schemes are more accurate and applicable to ranking of researchers as well as research teams. In addition, they suppress differences in ranking among scientific disciplines. These more appropriate schemes should urgently be adopted by scientific publication databases as the Web of Science (Thomson Reuters) or the Scopus (Elsevier).
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-01
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Correlation of Cognitive Abilities Level, Age and Ranks in Judo
Directory of Open Access Journals (Sweden)
Kraček Stanislav
2016-11-01
Full Text Available The aim of this paper is to ascertain the correlation between selected cognitive abilities, age and performance of judokas according to ranking. The study group consisted of judokas in the age group 18 ± 2.4 years. The Stroop Color-Word Test - Victoria Version (VST was the instrument used to determine the level of cognitive abilities. The data obtained were measured by the Pearson Correlation (r correlation test. The results of the study show an associative relationship of indirect correlation (p < 0.01 between age and all of the three categories of the Stroop test. This is an indirect correlation, so the higher the age, the lower the time (better performance of the probands in the Stroop test. There was no statistically significant correlation between performance in the categories of the Stroop test and rankings. The outcomes show that the level of selected cognitive abilities depends on age, but the level of the selected cognitive abilities does not affect the ranking of the judokas.
Adaptive linear rank tests for eQTL studies.
Szymczak, Silke; Scheinhardt, Markus O; Zeller, Tanja; Wild, Philipp S; Blankenberg, Stefan; Ziegler, Andreas
2013-02-10
Expression quantitative trait loci (eQTL) studies are performed to identify single-nucleotide polymorphisms that modify average expression values of genes, proteins, or metabolites, depending on the genotype. As expression values are often not normally distributed, statistical methods for eQTL studies should be valid and powerful in these situations. Adaptive tests are promising alternatives to standard approaches, such as the analysis of variance or the Kruskal-Wallis test. In a two-stage procedure, skewness and tail length of the distributions are estimated and used to select one of several linear rank tests. In this study, we compare two adaptive tests that were proposed in the literature using extensive Monte Carlo simulations of a wide range of different symmetric and skewed distributions. We derive a new adaptive test that combines the advantages of both literature-based approaches. The new test does not require the user to specify a distribution. It is slightly less powerful than the locally most powerful rank test for the correct distribution and at least as powerful as the maximin efficiency robust rank test. We illustrate the application of all tests using two examples from different eQTL studies. Copyright © 2012 John Wiley & Sons, Ltd.
Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging.
Directory of Open Access Journals (Sweden)
Xingjian Yu
Full Text Available In dynamic Positron Emission Tomography (PET, an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.
... this page: https://medlineplus.gov/usestatistics.html MedlinePlus Statistics To use the sharing features on this page, ... By Quarter View image full size Quarterly User Statistics Quarter Page Views Unique Visitors Oct-Dec-98 ...
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics
About the use of rank transformation in sensitivity analysis of model output
International Nuclear Information System (INIS)
Saltelli, Andrea; Sobol', Ilya M
1995-01-01
Rank transformations are frequently employed in numerical experiments involving a computational model, especially in the context of sensitivity and uncertainty analyses. Response surface replacement and parameter screening are tasks which may benefit from a rank transformation. Ranks can cope with nonlinear (albeit monotonic) input-output distributions, allowing the use of linear regression techniques. Rank transformed statistics are more robust, and provide a useful solution in the presence of long tailed input and output distributions. As is known to practitioners, care must be employed when interpreting the results of such analyses, as any conclusion drawn using ranks does not translate easily to the original model. In the present note an heuristic approach is taken, to explore, by way of practical examples, the effect of a rank transformation on the outcome of a sensitivity analysis. An attempt is made to identify trends, and to correlate these effects to a model taxonomy. Employing sensitivity indices, whereby the total variance of the model output is decomposed into a sum of terms of increasing dimensionality, we show that the main effect of the rank transformation is to increase the relative weight of the first order terms (the 'main effects'), at the expense of the 'interactions' and 'higher order interactions'. As a result the influence of those parameters which influence the output mostly by way of interactions may be overlooked in an analysis based on the ranks. This difficulty increases with the dimensionality of the problem, and may lead to the failure of a rank based sensitivity analysis. We suggest that the models can be ranked, with respect to the complexity of their input-output relationship, by mean of an 'Association' index I y . I y may complement the usual model coefficient of determination R y 2 as a measure of model complexity for the purpose of uncertainty and sensitivity analysis
Caricati, Luca; Mancini, Tiziana; Marletta, Giuseppe
2017-01-01
This research investigated the relationship among perception of ingroup threats (realistic and symbolic), conservative ideologies (social dominance orientation [SDO] and right-wing authoritarianism [RWA]), and prejudice against immigrants. Data were collected with a cross-sectional design in two samples: non-student Italian adults (n = 223) and healthcare professionals (n = 679). Results were similar in both samples and indicated that symbolic and realistic threats, as well as SDO and RWA, positively and significantly predicted anti-immigrant prejudice. Moreover, the model considering SDO and RWA as mediators of threats' effects on prejudice showed a better fit than the model in which ingroup threats mediated the effects of SDO and RWA on prejudice against immigrants. Accordingly, SDO and RWA partially mediated the effect of both symbolic and realistic threats, which maintained a significant effect on prejudice against immigrants, however.
Teaching Nonparametric Statistics Using Student Instrumental Values.
Anderson, Jonathan W.; Diddams, Margaret
Nonparametric statistics are often difficult to teach in introduction to statistics courses because of the lack of real-world examples. This study demonstrated how teachers can use differences in the rankings and ratings of undergraduate and graduate values to discuss: (1) ipsative and normative scaling; (2) uses of the Mann-Whitney U-test; and…
International Nuclear Information System (INIS)
Yongquan, Sun; Xi, Chen; He, Ren; Yingchao, Jin; Quanwu, Liu
2016-01-01
Ordering decision-making on spare parts is crucial in maximizing aircraft utilization and minimizing total operating cost. Extensive researches on spare parts inventory management and optimal allocation could be found based on the amount of historical operation data or condition-monitoring data. However, it is challengeable to make an ordering decision on spare parts under the case of establishment of a fleet by introducing new aircraft with little historical data. In this paper, spare parts supporting policy and ordering decision-making policy for new aircraft fleet are analyzed firstly. Then two-sample predictions for a Weibull distribution and a Weibull process are incorporated into forecast of the first failure time and failure number during certain time period using Bayesian and classical method respectively, according to which the ordering time and ordering quantity for spare parts are identified. Finally, a case study is presented to illustrate the methods of identifying the ordering time and ordering number of engine-driven pumps through forecasting the failure time and failure number, followed by a discussion on the impact of various fleet sizes on prediction results. This method has the potential to decide the ordering time and quantity of spare parts when a new aircraft fleet is established. - Highlights: • A modeling framework of ordering spare parts for a new fleet is proposed. • Models for ordering time and number are established based on two-sample prediction. • The computation of future failure time is simplified using Newtonian binomial law. • Comparison of the first failure time PDFs is used to identify process parameters. • Identification methods for spare parts are validated by Engine Driven Pump case study.
Verweij, Karin J H; Treur, Jorien L; Vink, Jacqueline M
2018-07-01
Epidemiological studies consistently show co-occurrence of use of different addictive substances. Whether these associations are causal or due to overlapping underlying influences remains an important question in addiction research. Methodological advances have made it possible to use published genetic associations to infer causal relationships between phenotypes. In this exploratory study, we used Mendelian randomization (MR) to examine the causality of well-established associations between nicotine, alcohol, caffeine and cannabis use. Two-sample MR was employed to estimate bidirectional causal effects between four addictive substances: nicotine (smoking initiation and cigarettes smoked per day), caffeine (cups of coffee per day), alcohol (units per week) and cannabis (initiation). Based on existing genome-wide association results we selected genetic variants associated with the exposure measure as an instrument to estimate causal effects. Where possible we applied sensitivity analyses (MR-Egger and weighted median) more robust to horizontal pleiotropy. Most MR tests did not reveal causal associations. There was some weak evidence for a causal positive effect of genetically instrumented alcohol use on smoking initiation and of cigarettes per day on caffeine use, but these were not supported by the sensitivity analyses. There was also some suggestive evidence for a positive effect of alcohol use on caffeine use (only with MR-Egger) and smoking initiation on cannabis initiation (only with weighted median). None of the suggestive causal associations survived corrections for multiple testing. Two-sample Mendelian randomization analyses found little evidence for causal relationships between nicotine, alcohol, caffeine and cannabis use. © 2018 Society for the Study of Addiction.
PageRank as a method to rank biomedical literature by importance.
Yates, Elliot J; Dixon, Louise C
2015-01-01
Optimal ranking of literature importance is vital in overcoming article overload. Existing ranking methods are typically based on raw citation counts, giving a sum of 'inbound' links with no consideration of citation importance. PageRank, an algorithm originally developed for ranking webpages at the search engine, Google, could potentially be adapted to bibliometrics to quantify the relative importance weightings of a citation network. This article seeks to validate such an approach on the freely available, PubMed Central open access subset (PMC-OAS) of biomedical literature. On-demand cloud computing infrastructure was used to extract a citation network from over 600,000 full-text PMC-OAS articles. PageRanks and citation counts were calculated for each node in this network. PageRank is highly correlated with citation count (R = 0.905, P PageRank can be trivially computed on commodity cluster hardware and is linearly correlated with citation count. Given its putative benefits in quantifying relative importance, we suggest it may enrich the citation network, thereby overcoming the existing inadequacy of citation counts alone. We thus suggest PageRank as a feasible supplement to, or replacement of, existing bibliometric ranking methods.
RANK/RANK-Ligand/OPG: Ein neuer Therapieansatz in der Osteoporosebehandlung
Directory of Open Access Journals (Sweden)
Preisinger E
2007-01-01
Full Text Available Die Erforschung der Kopplungsmechanismen zur Osteoklastogenese, Knochenresorption und Remodellierung eröffnete neue mögliche Therapieansätze in der Behandlung der Osteoporose. Eine Schlüsselrolle beim Knochenabbau spielt der RANK- ("receptor activator of nuclear factor (NF- κB"- Ligand (RANKL. Durch die Bindung von RANKL an den Rezeptor RANK wird die Knochenresorption eingeleitet. OPG (Osteoprotegerin sowie der für den klinischen Gebrauch entwickelte humane monoklonale Antikörper (IgG2 Denosumab blockieren die Bindung von RANK-Ligand an RANK und verhindern den Knochenabbau.
Country-specific determinants of world university rankings
Pietrucha, Jacek
2017-01-01
This paper examines country-specific factors that affect the three most influential world university rankings (the Academic Ranking of World Universities, the QS World University Ranking, and the Times Higher Education World University Ranking). We run a cross sectional regression that covers 42–71 countries (depending on the ranking and data availability). We show that the position of universities from a country in the ranking is determined by the following country-specific variables: econom...
Wang, Jing; Liu, Yao; Wang, Lihua; Sun, Xiao; Wang, Yudong
2016-02-02
RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.
Group social rank is associated with performance on a spatial learning task.
Langley, Ellis J G; van Horik, Jayden O; Whiteside, Mark A; Madden, Joah R
2018-02-01
Dominant individuals differ from subordinates in their performances on cognitive tasks across a suite of taxa. Previous studies often only consider dyadic relationships, rather than the more ecologically relevant social hierarchies or networks, hence failing to account for how dyadic relationships may be adjusted within larger social groups. We used a novel statistical method: randomized Elo-ratings, to infer the social hierarchy of 18 male pheasants, Phasianus colchicus , while in a captive, mixed-sex group with a linear hierarchy. We assayed individual learning performance of these males on a binary spatial discrimination task to investigate whether inter-individual variation in performance is associated with group social rank. Task performance improved with increasing trial number and was positively related to social rank, with higher ranking males showing greater levels of success. Motivation to participate in the task was not related to social rank or task performance, thus indicating that these rank-related differences are not a consequence of differences in motivation to complete the task. Our results provide important information about how variation in cognitive performance relates to an individual's social rank within a group. Whether the social environment causes differences in learning performance or instead, inherent differences in learning ability predetermine rank remains to be tested.
Diversity rankings among bacterial lineages in soil.
Youssef, Noha H; Elshahed, Mostafa S
2009-03-01
We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.
Social class rank, essentialism, and punitive judgment.
Kraus, Michael W; Keltner, Dacher
2013-08-01
Recent evidence suggests that perceptions of social class rank influence a variety of social cognitive tendencies, from patterns of causal attribution to moral judgment. In the present studies we tested the hypotheses that upper-class rank individuals would be more likely to endorse essentialist lay theories of social class categories (i.e., that social class is founded in genetically based, biological differences) than would lower-class rank individuals and that these beliefs would decrease support for restorative justice--which seeks to rehabilitate offenders, rather than punish unlawful action. Across studies, higher social class rank was associated with increased essentialism of social class categories (Studies 1, 2, and 4) and decreased support for restorative justice (Study 4). Moreover, manipulated essentialist beliefs decreased preferences for restorative justice (Study 3), and the association between social class rank and class-based essentialist theories was explained by the tendency to endorse beliefs in a just world (Study 2). Implications for how class-based essentialist beliefs potentially constrain social opportunity and mobility are discussed.
RANK und RANKL - Vom Knochen zum Mammakarzinom
Directory of Open Access Journals (Sweden)
Sigl V
2012-01-01
Full Text Available RANK (Receptor Activator of NF-κB und sein Ligand RANKL sind Schlüsselmoleküle im Knochenmetabolismus und spielen eine essenzielle Rolle in der Entstehung von pathologischen Knochenveränderungen. Die Deregulation des RANK/RANKL-Systems ist zum Beispiel ein Hauptgrund für das Auftreten von postmenopausaler Osteoporose bei Frauen. Eine weitere wesentliche Funktion von RANK und RANKL liegt in der Entwicklung von milchsekretierenden Drüsen während der Schwangerschaft. Dabei regulieren Sexualhormone, wie zum Beispiel Progesteron, die Expression von RANKL und induzieren dadurch die Proliferation von epithelialen Zellen der Brust. Seit Längerem war schon bekannt, dass RANK und RANKL in der Metastasenbildung von Brustkrebszellen im Knochengewebe beteiligt sind. Wir konnten nun das RANK/RANKLSystem auch als essenziellen Mechanismus in der Entstehung von hormonellem Brustkrebs identifizieren. In diesem Beitrag werden wir daher den neuesten Erkenntnissen besondere Aufmerksamkeit schenken und diese kritisch in Bezug auf Brustkrebsentwicklung betrachten.
Time Series Analysis Based on Running Mann Whitney Z Statistics
A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...
Low Rank Approximation Algorithms, Implementation, Applications
Markovsky, Ivan
2012-01-01
Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...
Resolution of ranking hierarchies in directed networks
Barucca, Paolo; Lillo, Fabrizio
2018-01-01
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit. PMID:29394278
Ranking beta sheet topologies of proteins
DEFF Research Database (Denmark)
Fonseca, Rasmus; Helles, Glennie; Winter, Pawel
2010-01-01
One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...
Data envelopment analysis of randomized ranks
Directory of Open Access Journals (Sweden)
Sant'Anna Annibal P.
2002-01-01
Full Text Available Probabilities and odds, derived from vectors of ranks, are here compared as measures of efficiency of decision-making units (DMUs. These measures are computed with the goal of providing preliminary information before starting a Data Envelopment Analysis (DEA or the application of any other evaluation or composition of preferences methodology. Preferences, quality and productivity evaluations are usually measured with errors or subject to influence of other random disturbances. Reducing evaluations to ranks and treating the ranks as estimates of location parameters of random variables, we are able to compute the probability of each DMU being classified as the best according to the consumption of each input and the production of each output. Employing the probabilities of being the best as efficiency measures, we stretch distances between the most efficient units. We combine these partial probabilities in a global efficiency score determined in terms of proximity to the efficiency frontier.
Ranking spreaders by decomposing complex networks
International Nuclear Information System (INIS)
Zeng, An; Zhang, Cheng-Jun
2013-01-01
Ranking the nodes' ability of spreading in networks is crucial for designing efficient strategies to hinder spreading in the case of diseases or accelerate spreading in the case of information dissemination. In the well-known k-shell method, nodes are ranked only according to the links between the remaining nodes (residual links) while the links connecting to the removed nodes (exhausted links) are entirely ignored. In this Letter, we propose a mixed degree decomposition (MDD) procedure in which both the residual degree and the exhausted degree are considered. By simulating the epidemic spreading process on real networks, we show that the MDD method can outperform the k-shell and degree methods in ranking spreaders.
Sadovskii, Michael V
2012-01-01
This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.
Sign rank versus Vapnik-Chervonenkis dimension
Alon, N.; Moran, Sh; Yehudayoff, A.
2017-12-01
This work studies the maximum possible sign rank of sign (N × N)-matrices with a given Vapnik-Chervonenkis dimension d. For d=1, this maximum is three. For d=2, this maximum is \\widetilde{\\Theta}(N1/2). For d >2, similar but slightly less accurate statements hold. The lower bounds improve on previous ones by Ben-David et al., and the upper bounds are novel. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given Vapnik-Chervonenkis dimension, and the number of maximum classes of a given Vapnik-Chervonenkis dimension--answering a question of Frankl from 1989, and (ii) design an efficient algorithm that provides an O(N/log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the adjacency (N × N)-matrix of a Δ-regular graph with a second eigenvalue of absolute value λ and Δ ≤ N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ. We use this connection to prove the existence of a maximum class C\\subseteq\\{+/- 1\\}^N with Vapnik-Chervonenkis dimension 2 and sign rank \\widetilde{\\Theta}(N1/2). This answers a question of Ben-David et al. regarding the sign rank of large Vapnik-Chervonenkis classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics. Bibliography: 69 titles.
RankProdIt: A web-interactive Rank Products analysis tool
Directory of Open Access Journals (Sweden)
Laing Emma
2010-08-01
Full Text Available Abstract Background The first objective of a DNA microarray experiment is typically to generate a list of genes or probes that are found to be differentially expressed or represented (in the case of comparative genomic hybridizations and/or copy number variation between two conditions or strains. Rank Products analysis comprises a robust algorithm for deriving such lists from microarray experiments that comprise small numbers of replicates, for example, less than the number required for the commonly used t-test. Currently, users wishing to apply Rank Products analysis to their own microarray data sets have been restricted to the use of command line-based software which can limit its usage within the biological community. Findings Here we have developed a web interface to existing Rank Products analysis tools allowing users to quickly process their data in an intuitive and step-wise manner to obtain the respective Rank Product or Rank Sum, probability of false prediction and p-values in a downloadable file. Conclusions The online interactive Rank Products analysis tool RankProdIt, for analysis of any data set containing measurements for multiple replicated conditions, is available at: http://strep-microarray.sbs.surrey.ac.uk/RankProducts
Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models
Hallin, M.; van den Akker, R.; Werker, B.J.M.
2012-01-01
Abstract: This paper introduces rank-based tests for the cointegrating rank in an Error Correction Model with i.i.d. elliptical innovations. The tests are asymptotically distribution-free, and their validity does not depend on the actual distribution of the innovations. This result holds despite the
When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores
Wang, Jim Jing-Yan
2017-06-28
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.
Goodman, Joseph W
2015-01-01
This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
International Nuclear Information System (INIS)
Eliazar, Iddo
2017-01-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
Szulc, Stefan
1965-01-01
Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then
... Testing Treatment & Outcomes Health Professionals Statistics More Resources Candidiasis Candida infections of the mouth, throat, and esophagus Vaginal candidiasis Invasive candidiasis Definition Symptoms Risk & Prevention Sources Diagnosis ...
Sittig, Dean F; McCoy, Allison B; Wright, Adam; Lin, Jimmy
2015-01-01
We developed the Biomedical Informatics Researchers ranking website (rank.informatics-review.com) to overcome many of the limitations of previous scientific productivity ranking strategies. The website is composed of four key components that work together to create an automatically updating ranking website: (1) list of biomedical informatics researchers, (2) Google Scholar scraper, (3) display page, and (4) updater. The site has been useful to other groups in evaluating researchers, such as tenure and promotions committees in interpreting the various citation statistics reported by candidates. Creation of the Biomedical Informatics Researchers ranking website highlights the vast differences in scholarly productivity among members of the biomedical informatics research community.
Learning to rank for information retrieval
Liu, Tie-Yan
2011-01-01
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as coll
Cointegration rank testing under conditional heteroskedasticity
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.
2010-01-01
We analyze the properties of the conventional Gaussian-based cointegrating rank tests of Johansen (1996, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models) in the case where the vector of series under test is driven by globally stationary, conditionally heteroskedastic......, relative to tests based on the asymptotic critical values or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small samples under a variety of conditionally heteroskedastic innovation processes. An empirical application to the term structure of interest rates is given....
Ranking health between countries in international comparisons
DEFF Research Database (Denmark)
Brønnum-Hansen, Henrik
2014-01-01
Cross-national comparisons and ranking of summary measures of population health sometimes give rise to inconsistent and diverging conclusions. In order to minimise confusion, international comparative studies ought to be based on well-harmonised data with common standards of definitions and docum......Cross-national comparisons and ranking of summary measures of population health sometimes give rise to inconsistent and diverging conclusions. In order to minimise confusion, international comparative studies ought to be based on well-harmonised data with common standards of definitions...
Preference Learning and Ranking by Pairwise Comparison
Fürnkranz, Johannes; Hüllermeier, Eyke
This chapter provides an overview of recent work on preference learning and ranking via pairwise classification. The learning by pairwise comparison (LPC) paradigm is the natural machine learning counterpart to the relational approach to preference modeling and decision making. From a machine learning point of view, LPC is especially appealing as it decomposes a possibly complex prediction problem into a certain number of learning problems of the simplest type, namely binary classification. We explain how to approach different preference learning problems, such as label and instance ranking, within the framework of LPC. We primarily focus on methodological aspects, but also address theoretical questions as well as algorithmic and complexity issues.
Compressed Sensing with Rank Deficient Dictionaries
DEFF Research Database (Denmark)
Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn
2012-01-01
In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...
Ranking mutual funds using Sortino method
Directory of Open Access Journals (Sweden)
Khosro Faghani Makrani
2014-04-01
Full Text Available One of the primary concerns on most business activities is to determine an efficient method for ranking mutual funds. This paper performs an empirical investigation to rank 42 mutual funds listed on Tehran Stock Exchange using Sortino method over the period 2011-2012. The results of survey have been compared with market return and the results have confirmed that there were some positive and meaningful relationships between Sortino return and market return. In addition, there were some positive and meaningful relationship between two Sortino methods.
Research of Subgraph Estimation Page Rank Algorithm for Web Page Rank
Directory of Open Access Journals (Sweden)
LI Lan-yin
2017-04-01
Full Text Available The traditional PageRank algorithm can not efficiently perform large data Webpage scheduling problem. This paper proposes an accelerated algorithm named topK-Rank，which is based on PageRank on the MapReduce platform. It can find top k nodes efficiently for a given graph without sacrificing accuracy. In order to identify top k nodes，topK-Rank algorithm prunes unnecessary nodes and edges in each iteration to dynamically construct subgraphs，and iteratively estimates lower/upper bounds of PageRank scores through subgraphs. Theoretical analysis shows that this method guarantees result exactness. Experiments show that topK-Rank algorithm can find k nodes much faster than the existing approaches.
Buchman-Schmitt, Jennifer M; Chu, Carol; Michaels, Matthew S; Hames, Jennifer L; Silva, Caroline; Hagan, Christopher R; Ribeiro, Jessica D; Selby, Edward A; Joiner, Thomas E
2017-10-01
Stressful life events (SLEs) are associated with increased risk for suicidal behavior. Less is known regarding the intensity of SLEs and how this may vary as a function of suicide attempt history. As a large percentage of suicide decedents do not have a history of suicidal behavior, SLEs precipitating suicide may help characterize suicidality in this understudied population. This paper examines the intensity, number, and accumulation of SLEs preceding death by suicide among decedents with varying suicide attempt histories. Suicide attempts, SLEs, and suicide methods were examined in two samples: 62 prison-based and 117 community-based suicide decedents. Regression was used to compare the level of stressor precipitating death by suicide in decedents who died on a first attempt versus multiple previous attempts. A non-significant trend was observed in the prison population which was supported by significant findings in the community-based sample. Decedents who died on a first attempt experienced a stressor of a lower magnitude when compared to decedents with multiple previous suicide attempts. We discuss the implications of these findings in relation to the stress-diathesis model for suicide. Copyright © 2017 Elsevier B.V. All rights reserved.
Papini, Paolo; Faustini, Annunziata; Manganello, Rosa; Borzacchi, Giancarlo; Spera, Domenico; Perucci, Carlo A
2005-01-01
To determine the frequency of sampling in small water distribution systems (distribution. We carried out two sampling programs to monitor the water distribution system in a town in Central Italy between July and September 1992; the Poisson distribution assumption implied 4 water samples, the assumption of negative binomial distribution implied 21 samples. Coliform organisms were used as indicators of water safety. The network consisted of two pipe rings and two wells fed by the same water source. The number of summer customers varied considerably from 3,000 to 20,000. The mean density was 2.33 coliforms/100 ml (sd= 5.29) for 21 samples and 3 coliforms/100 ml (sd= 6) for four samples. However the hypothesis of homogeneity was rejected (p-value samples (beta= 0.24) than with 21 (beta= 0.05). For this small network, determining the samples' size according to heterogeneity hypothesis strengthens the statement that water is drinkable compared with homogeneity assumption.
Petocz, Peter; Sowey, Eric
2012-01-01
The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the…
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
Glaz, Joseph
2009-01-01
Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.
Lyons, L.
2016-01-01
Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.
PageRank for low frequency earthquake detection
Aguiar, A. C.; Beroza, G. C.
2013-12-01
We have analyzed Hi-Net seismic waveform data during the April 2006 tremor episode in the Nankai Trough in SW Japan using the autocorrelation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise waveform matching. We have generalized this to exploit the fact that waveforms may repeat multiple times, on more than just a pair-wise basis. We are working towards developing a sound statistical basis for event detection, but that is complicated by two factors. First, the statistical behavior of the autocorrelations varies between stations. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Second, the positive detections do not satisfy "closure." That is, if window A correlates with window B, and window B correlates with window C, then window A and window C do not necessarily correlate with one another. We want to evaluate whether or not a linked set of windows are correlated due to chance. To do this, we map our problem on to one that has previously been solved for web search, and apply Google's PageRank algorithm. PageRank is the probability of a 'random surfer' to visit a particular web page; it assigns a ranking for a webpage based on the amount of links associated with that page. For windows of seismic data instead of webpages, the windows with high probabilities suggest likely LFE signals. Once identified, we stack the matched windows to improve the snr and use these stacks as template signals to find other LFEs within continuous data. We compare the results among stations and declare a detection if they are found in a statistically significant number of stations, based on multinomial statistics. We compare our detections using the single-station method to detections found by Shelly et al. (2007) for the April 2006 tremor sequence in Shikoku, Japan. We find strong similarity between the results, as well as many new detections that were not found using
Nick, Todd G
2007-01-01
Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.
Subject Gateway Sites and Search Engine Ranking.
Thelwall, Mike
2002-01-01
Discusses subject gateway sites and commercial search engines for the Web and presents an explanation of Google's PageRank algorithm. The principle question addressed is the conditions under which a gateway site will increase the likelihood that a target page is found in search engines. (LRW)
Rank reduction of correlation matrices by majorization
R. Pietersz (Raoul); P.J.F. Groenen (Patrick)
2004-01-01
textabstractIn this paper a novel method is developed for the problem of finding a low-rank correlation matrix nearest to a given correlation matrix. The method is based on majorization and therefore it is globally convergent. The method is computationally efficient, is straightforward to implement,
Ranking related entities: components and analyses
Bron, M.; Balog, K.; de Rijke, M.
2010-01-01
Related entity finding is the task of returning a ranked list of homepages of relevant entities of a specified type that need to engage in a given relationship with a given source entity. We propose a framework for addressing this task and perform a detailed analysis of four core components;
Ranking Very Many Typed Entities on Wikipedia
Zaragoza, Hugo; Rode, H.; Mika, Peter; Atserias, Jordi; Ciaramita, Massimiliano; Attardi, Guiseppe
2007-01-01
We discuss the problem of ranking very many entities of different types. In particular we deal with a heterogeneous set of types, some being very generic and some very specific. We discuss two approaches for this problem: i) exploiting the entity containment graph and ii) using a Web search engine
International Nuclear Information System (INIS)
Ferreira, P.L.; Alcaras, J.A.C.
1980-01-01
The group theoretical properties of the Dirac groups of rank n are discussed together with the properties and construction of their IR's. The cases n even and n odd show distinct features. Furthermore, for n odd, the cases n=4K+1 and n=4K+3 exhibit some different properties too. (Author) [pt
On rank 2 Seiberg-Witten equations
International Nuclear Information System (INIS)
Massamba, F.; Thompson, G.
2004-02-01
We introduce and study a set of rank 2 Seiberg-Witten equations. We show that the moduli space of solutions is a compact, orientational and smooth manifold. For minimal surfaces of general type we are able to determine the basic classes. (author)
Texture Repairing by Unified Low Rank Optimization
Institute of Scientific and Technical Information of China (English)
Xiao Liang; Xiang Ren; Zhengdong Zhang; Yi Ma
2016-01-01
In this paper, we show how to harness both low-rank and sparse structures in regular or near-regular textures for image completion. Our method is based on a unified formulation for both random and contiguous corruption. In addition to the low rank property of texture, the algorithm also uses the sparse assumption of the natural image: because the natural image is piecewise smooth, it is sparse in certain transformed domain (such as Fourier or wavelet transform). We combine low-rank and sparsity properties of the texture image together in the proposed algorithm. Our algorithm based on convex optimization can automatically and correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. This algorithm integrates texture rectification and repairing into one optimization problem. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Our method demonstrates significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.
Semantic association ranking schemes for information retrieval ...
Indian Academy of Sciences (India)
retrieval applications using term association graph representation ... Department of Computer Science and Engineering, Government College of ... Introduction ... leads to poor precision, e.g., model, python, and chip. ...... The approaches proposed in this paper focuses on the query-centric re-ranking of search results.
Efficient Rank Reduction of Correlation Matrices
I. Grubisic (Igor); R. Pietersz (Raoul)
2005-01-01
textabstractGeometric optimisation algorithms are developed that efficiently find the nearest low-rank correlation matrix. We show, in numerical tests, that our methods compare favourably to the existing methods in the literature. The connection with the Lagrange multiplier method is established,
Zero forcing parameters and minimum rank problems
Barioli, F.; Barrett, W.; Fallat, S.M.; Hall, H.T.; Hogben, L.; Shader, B.L.; Driessche, van den P.; Holst, van der H.
2010-01-01
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero
A note on ranking assignments using reoptimization
DEFF Research Database (Denmark)
Pedersen, Christian Roed; Nielsen, L.R.; Andersen, K.A.
2005-01-01
We consider the problem of ranking assignments according to cost in the classical linear assignment problem. An algorithm partitioning the set of possible assignments, as suggested by Murty, is presented where, for each partition, the optimal assignment is calculated using a new reoptimization...
Language Games: University Responses to Ranking Metrics
Heffernan, Troy A.; Heffernan, Amanda
2018-01-01
League tables of universities that measure performance in various ways are now commonplace, with numerous bodies providing their own rankings of how institutions throughout the world are seen to be performing on a range of metrics. This paper uses Lyotard's notion of language games to theorise that universities are regaining some power over being…
Ranking Thinning Potential of Lodgepole Pine Stands
United States Department of Agriculture, Forest Service
1987-01-01
This paper presents models for predicting edge-response of dominant and codominant trees to clearing. Procedures are given for converting predictions to a thinning response index, for ranking stands for thinning priority. Data requirements, sampling suggestions, examples of application, and suggestions for management use are included to facilitate use as a field guide.
Primate Innovation: Sex, Age and Social Rank
Reader, S.M.; Laland, K.N.
2001-01-01
Analysis of an exhaustive survey of primate behavior collated from the published literature revealed significant variation in rates of innovation among individuals of different sex, age and social rank. We searched approximately 1,000 articles in four primatology journals, together with other
Biomechanics Scholar Citations across Academic Ranks
Directory of Open Access Journals (Sweden)
Knudson Duane
2015-11-01
Full Text Available Study aim: citations to the publications of a scholar have been used as a measure of the quality or influence of their research record. A world-wide descriptive study of the citations to the publications of biomechanics scholars of various academic ranks was conducted.
An algorithm for ranking assignments using reoptimization
DEFF Research Database (Denmark)
Pedersen, Christian Roed; Nielsen, Lars Relund; Andersen, Kim Allan
2008-01-01
We consider the problem of ranking assignments according to cost in the classical linear assignment problem. An algorithm partitioning the set of possible assignments, as suggested by Murty, is presented where, for each partition, the optimal assignment is calculated using a new reoptimization...... technique. Computational results for the new algorithm are presented...
Probabilistic relation between In-Degree and PageRank
Litvak, Nelli; Scheinhardt, Willem R.W.; Volkovich, Y.
2008-01-01
This paper presents a novel stochastic model that explains the relation between power laws of In-Degree and PageRank. PageRank is a popularity measure designed by Google to rank Web pages. We model the relation between PageRank and In-Degree through a stochastic equation, which is inspired by the
Nominal versus Attained Weights in Universitas 21 Ranking
Soh, Kaycheng
2014-01-01
Universitas 21 Ranking of National Higher Education Systems (U21 Ranking) is one of the three new ranking systems appearing in 2012. In contrast with the other systems, U21 Ranking uses countries as the unit of analysis. It has several features which lend it with greater trustworthiness, but it also shared some methodological issues with the other…
The effect of new links on Google PageRank
Avrachenkov, Konstatin; Litvak, Nelli
2004-01-01
PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer and thus it reflects the popularity of a Web page. We study the effect of newly created links on Google PageRank. We discuss to
VaRank: a simple and powerful tool for ranking genetic variants
Directory of Open Access Journals (Sweden)
Véronique Geoffroy
2015-03-01
Full Text Available Background. Most genetic disorders are caused by single nucleotide variations (SNVs or small insertion/deletions (indels. High throughput sequencing has broadened the catalogue of human variation, including common polymorphisms, rare variations or disease causing mutations. However, identifying one variation among hundreds or thousands of others is still a complex task for biologists, geneticists and clinicians.Results. We have developed VaRank, a command-line tool for the ranking of genetic variants detected by high-throughput sequencing. VaRank scores and prioritizes variants annotated either by Alamut Batch or SnpEff. A barcode allows users to quickly view the presence/absence of variants (with homozygote/heterozygote status in analyzed samples. VaRank supports the commonly used VCF input format for variants analysis thus allowing it to be easily integrated into NGS bioinformatics analysis pipelines. VaRank has been successfully applied to disease-gene identification as well as to molecular diagnostics setup for several hundred patients.Conclusions. VaRank is implemented in Tcl/Tk, a scripting language which is platform-independent but has been tested only on Unix environment. The source code is available under the GNU GPL, and together with sample data and detailed documentation can be downloaded from http://www.lbgi.fr/VaRank/.
Blakemore, J S
1962-01-01
Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co
Wannier, Gregory Hugh
1966-01-01
Until recently, the field of statistical physics was traditionally taught as three separate subjects: thermodynamics, statistical mechanics, and kinetic theory. This text, a forerunner in its field and now a classic, was the first to recognize the outdated reasons for their separation and to combine the essentials of the three subjects into one unified presentation of thermal physics. It has been widely adopted in graduate and advanced undergraduate courses, and is recommended throughout the field as an indispensable aid to the independent study and research of statistical physics.Designed for
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
Model of Decision Making through Consensus in Ranking Case
Tarigan, Gim; Darnius, Open
2018-01-01
The basic problem to determine ranking consensus is a problem to combine some rankings those are decided by two or more Decision Maker (DM) into ranking consensus. DM is frequently asked to present their preferences over a group of objects in terms of ranks, for example to determine a new project, new product, a candidate in a election, and so on. The problem in ranking can be classified into two major categories; namely, cardinal and ordinal rankings. The objective of the study is to obtin the ranking consensus by appying some algorithms and methods. The algorithms and methods used in this study were partial algorithm, optimal ranking consensus, BAK (Borde-Kendal)Model. A method proposed as an alternative in ranking conssensus is a Weighted Distance Forward-Backward (WDFB) method, which gave a little difference i ranking consensus result compare to the result oethe example solved by Cook, et.al (2005).
International Ranking of Infant Mortality Rates: Taiwan Compared with European Countries
Directory of Open Access Journals (Sweden)
Fu-Wen Liang
2016-08-01
Conclusion: The ranking of Taiwan was similar (11th vs. 12th according the two definitions. However, after consideration of the confidence interval, only six countries (Sweden, Finland, Czech Republic, Belgium, Austria, and Germany had infant mortality rates statistically significantly lower than those of Taiwan in 2004.
The Seven Deadly Sins of World University Ranking: A Summary from Several Papers
Soh, Kaycheng
2017-01-01
World university rankings use the weight-and-sum approach to process data. Although this seems to pass the common sense test, it has statistical problems. In recent years, seven such problems have been uncovered: spurious precision, weight discrepancies, assumed mutual compensation, indictor redundancy, inter-system discrepancy, negligence of…
Optimal data collection for informative rankings expose well-connected graphs
Osting, Braxton; Brune, Christoph; Osher, Stanley J.
2014-01-01
Given a graph where vertices represent alternatives and arcs represent pairwise comparison data, the statistical ranking problem is to find a potential function, defined on the vertices, such that the gradient of the potential function agrees with the pairwise comparisons. Our goal in this paper is
Differential invariants for higher-rank tensors. A progress report
International Nuclear Information System (INIS)
Tapial, V.
2004-07-01
We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)
Beyond Low Rank: A Data-Adaptive Tensor Completion Method
Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning
2017-01-01
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...
Energy Technology Data Exchange (ETDEWEB)
Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-08
In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.
Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...
U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Data about the usage of the WPRDC site and its various datasets, obtained by combining Google Analytics statistics with information from the WPRDC's data portal.
Serdobolskii, Vadim Ivanovich
2007-01-01
This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...
... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Gonorrhea Statistics Recommend on Facebook Tweet Share Compartir Gonorrhea ...
DEFF Research Database (Denmark)
Tryggestad, Kjell
2004-01-01
The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...
MacKenzie, Dana
2004-01-01
The drawbacks of using 19th-century mathematics in physics and astronomy are illustrated. To continue with the expansion of the knowledge about the cosmos, the scientists will have to come in terms with modern statistics. Some researchers have deliberately started importing techniques that are used in medical research. However, the physicists need to identify the brand of statistics that will be suitable for them, and make a choice between the Bayesian and the frequentists approach. (Edited abstract).
Aspects of analysis of small-sample right censored data using generalized Wilcoxon rank tests
Öhman, Marie-Louise
1994-01-01
The estimated bias and variance of commonly applied and jackknife variance estimators and observed significance level and power of standardised generalized Wilcoxon linear rank sum test statistics and tests, respectively, of Gehan and Prentice are compared in a Monte Carlo simulation study. The variance estimators are the permutational-, the conditional permutational- and the jackknife variance estimators of the test statistic of Gehan, and the asymptotic- and the jackknife variance estimator...
TWO MEASURES OF THE DEPENDENCE OF PREFERENTIAL RANKINGS ON CATEGORICAL VARIABLES
Directory of Open Access Journals (Sweden)
Lissowski Grzegorz
2017-06-01
Full Text Available The aim of this paper is to apply a general methodology for constructing statistical methods, which is based on decision theory, to give a statistical description of preferential rankings, with a focus on the rankings’ dependence on categorical variables. In the paper, I use functions of description errors that are based on the Kemeny and Hamming distances between preferential orderings, but the proposed methodology can also be applied to other methods of estimating description errors.
Ranking of delay factors in construction projects after Egyptian revolution
Directory of Open Access Journals (Sweden)
Remon Fayek Aziz
2013-09-01
Full Text Available Time is one of the major considerations throughout project management life cycle and can be regarded as one of the most important parameters of a project and the driving force of project success. Time delay is a very frequent phenomenon and is almost associated with nearly all constructing projects. However, little effort has been made to curtail the phenomenon, this research work attempts to identify, investigate, and rank factors perceived to affect delays in the Egyptian construction projects with respect to their relative importance so as to proffer possible ways of coping with this phenomenon. To achieve this objective, researcher invited practitioners and experts, comprising a statistically representative sample to participate in a structured questionnaire survey. Brain storming was taken into consideration, through which a number of delay factors were identified in construction projects. Totally, ninety-nine (99 factors were short-listed to be made part of the questionnaire survey and were identified and categorized into nine (9 major categories. The survey was conducted with experts and representatives from private, public, and local general construction firms. The data were analyzed using Relative Importance Index (RII, ranking and simple percentages. Ranking of factors and categories was demonstrated according to their importance level on delay, especially after 25/1/2011 (Egyptian revolution. According to the case study results, the most contributing factors and categories (those need attention to delays were discussed, and some recommendations were made in order to minimize and control delays in construction projects. Also, this paper can serve as a guide for all construction parties with effective management in construction projects to achieve a competitive level of quality and a time effective project.
Del Carratore, Francesco; Jankevics, Andris; Eisinga, Rob; Heskes, Tom; Hong, Fangxin; Breitling, Rainer
2017-09-01
The Rank Product (RP) is a statistical technique widely used to detect differentially expressed features in molecular profiling experiments such as transcriptomics, metabolomics and proteomics studies. An implementation of the RP and the closely related Rank Sum (RS) statistics has been available in the RankProd Bioconductor package for several years. However, several recent advances in the understanding of the statistical foundations of the method have made a complete refactoring of the existing package desirable. We implemented a completely refactored version of the RankProd package, which provides a more principled implementation of the statistics for unpaired datasets. Moreover, the permutation-based P -value estimation methods have been replaced by exact methods, providing faster and more accurate results. RankProd 2.0 is available at Bioconductor ( https://www.bioconductor.org/packages/devel/bioc/html/RankProd.html ) and as part of the mzMatch pipeline ( http://www.mzmatch.sourceforge.net ). rainer.breitling@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores
Wang, Jim Jing-Yan; Cui, Xuefeng; Yu, Ge; Guo, Lili; Gao, Xin
2017-01-01
Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays
Population models and simulation methods: The case of the Spearman rank correlation.
Astivia, Oscar L Olvera; Zumbo, Bruno D
2017-11-01
The purpose of this paper is to highlight the importance of a population model in guiding the design and interpretation of simulation studies used to investigate the Spearman rank correlation. The Spearman rank correlation has been known for over a hundred years to applied researchers and methodologists alike and is one of the most widely used non-parametric statistics. Still, certain misconceptions can be found, either explicitly or implicitly, in the published literature because a population definition for this statistic is rarely discussed within the social and behavioural sciences. By relying on copula distribution theory, a population model is presented for the Spearman rank correlation, and its properties are explored both theoretically and in a simulation study. Through the use of the Iman-Conover algorithm (which allows the user to specify the rank correlation as a population parameter), simulation studies from previously published articles are explored, and it is found that many of the conclusions purported in them regarding the nature of the Spearman correlation would change if the data-generation mechanism better matched the simulation design. More specifically, issues such as small sample bias and lack of power of the t-test and r-to-z Fisher transformation disappear when the rank correlation is calculated from data sampled where the rank correlation is the population parameter. A proof for the consistency of the sample estimate of the rank correlation is shown as well as the flexibility of the copula model to encompass results previously published in the mathematical literature. © 2017 The British Psychological Society.
Statistical predictions from anarchic field theory landscapes
International Nuclear Information System (INIS)
Balasubramanian, Vijay; Boer, Jan de; Naqvi, Asad
2010-01-01
Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds on the rank of the gauge group and the amount of matter. We consider landscapes of field theories subject to such to boundedness constraints. We argue that appropriately 'coarse-grained' aspects of the randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a given range, can be statistically predictable. To illustrate our point we show how the uniform measures on simple classes of N=1 quiver gauge theories localize in the vicinity of theories with certain typical structures. Generically, this approach would predict a high energy theory with very many gauge factors, with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom for the latter.
A multivariate rank test for comparing mass size distributions
Lombard, F.
2012-04-01
Particle size analyses of a raw material are commonplace in the mineral processing industry. Knowledge of particle size distributions is crucial in planning milling operations to enable an optimum degree of liberation of valuable mineral phases, to minimize plant losses due to an excess of oversize or undersize material or to attain a size distribution that fits a contractual specification. The problem addressed in the present paper is how to test the equality of two or more underlying size distributions. A distinguishing feature of these size distributions is that they are not based on counts of individual particles. Rather, they are mass size distributions giving the fractions of the total mass of a sampled material lying in each of a number of size intervals. As such, the data are compositional in nature, using the terminology of Aitchison [1] that is, multivariate vectors the components of which add to 100%. In the literature, various versions of Hotelling\\'s T 2 have been used to compare matched pairs of such compositional data. In this paper, we propose a robust test procedure based on ranks as a competitor to Hotelling\\'s T 2. In contrast to the latter statistic, the power of the rank test is not unduly affected by the presence of outliers or of zeros among the data. © 2012 Copyright Taylor and Francis Group, LLC.
Statistical modelling of citation exchange between statistics journals.
Varin, Cristiano; Cattelan, Manuela; Firth, David
2016-01-01
Rankings of scholarly journals based on citation data are often met with scepticism by the scientific community. Part of the scepticism is due to disparity between the common perception of journals' prestige and their ranking based on citation counts. A more serious concern is the inappropriate use of journal rankings to evaluate the scientific influence of researchers. The paper focuses on analysis of the table of cross-citations among a selection of statistics journals. Data are collected from the Web of Science database published by Thomson Reuters. Our results suggest that modelling the exchange of citations between journals is useful to highlight the most prestigious journals, but also that journal citation data are characterized by considerable heterogeneity, which needs to be properly summarized. Inferential conclusions require care to avoid potential overinterpretation of insignificant differences between journal ratings. Comparison with published ratings of institutions from the UK's research assessment exercise shows strong correlation at aggregate level between assessed research quality and journal citation 'export scores' within the discipline of statistics.
Fourth-rank gravity. A progress report
International Nuclear Information System (INIS)
Tapia, V.
1992-04-01
We consider the consequences of describing the metric properties of space-time through a quartic line element. The associated ''metric'' is a fourth-rank tensor. After developing some fundamentals for such geometry, we construct a field theory for the gravitational field. This theory coincides with General Relativity in the vacuum case. Departures from General Relativity are obtained only in the presence of matter. We develop a simple cosmological model which is not in contradiction with the observed value Ω approx. 0.2-0.3 for the energy density parameter. A further application concerns conformal field theory. We are able to prove that a conformal field theory possesses an infinite-dimensional symmetry group only if the dimension of space-time is equal to the rank of the metric. In this case we are able to construct an integrable conformal field theory in four dimensions. The model is renormalisable by power counting. (author). 9 refs
Low-rank quadratic semidefinite programming
Yuan, Ganzhao
2013-04-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Ranking oil sands bitumen recovery techniques
Energy Technology Data Exchange (ETDEWEB)
Lam, A.; Nobes, D.S.; Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering
2009-07-01
The preference ranking organization method (PROMETHEE) was used to assess and rank 3 techniques for in situ bitumen recovery: (1) steam assisted gravity drainage; (2) vapour extraction (VAPEX); and (3) toe-to-heel air injection (THAI). The study used a business scenario where management-type indicators included potential production rates; estimated overall operating costs; energy consumption; facilities requirement; recovery efficiency; and energy loss. Amounts of carbon dioxide (CO{sub 2}) emissions were also considered, as well as the production depth, formation thickness, and API gravity of the produced bitumen. The study showed that THAI recovery methods had the most beneficial criteria weighting of the 3 processes, while SAGD was the least favourable choice. However, SAGD processes are the most widely used of the 3 processes, while THAI has only been demonstrated on a limited scale. It was concluded that the maturity of a technology should be weighted more heavily when using the PROMETHEE method. 8 refs., 2 tabs.
Low-rank quadratic semidefinite programming
Yuan, Ganzhao; Zhang, Zhenjie; Ghanem, Bernard; Hao, Zhifeng
2013-01-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Social Media Impact on Website Ranking
Vaghela, Dushyant
2014-01-01
Internet is fast becoming critically important to commerce, industry and individuals. Search Engine (SE) is the most vital component for communication network and also used for discover information for users or people. Search engine optimization (SEO) is the process that is mostly used to increasing traffic from free, organic or natural listings on search engines and also helps to increase website ranking. It includes techniques like link building, directory submission, classified submission ...
On Locally Most Powerful Sequential Rank Tests
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2017-01-01
Roč. 36, č. 1 (2017), s. 111-125 ISSN 0747-4946 R&D Projects: GA ČR GA17-07384S Grant - others:Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985807 Keywords : nonparametric test s * sequential ranks * stopping variable Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.339, year: 2016
Probabilistic real-time contingency ranking method
International Nuclear Information System (INIS)
Mijuskovic, N.A.; Stojnic, D.
2000-01-01
This paper describes a real-time contingency method based on a probabilistic index-expected energy not supplied. This way it is possible to take into account the stochastic nature of the electric power system equipment outages. This approach enables more comprehensive ranking of contingencies and it is possible to form reliability cost values that can form the basis for hourly spot price calculations. The electric power system of Serbia is used as an example for the method proposed. (author)
Returns to Tenure: Time or Rank?
DEFF Research Database (Denmark)
Buhai, Ioan Sebastian
-specific investment, efficiency-wages or adverse-selection models. However, rent extracting arguments as suggested by the theory of internal labor markets, indicate that the relative position of the worker in the seniority hierarchy of the firm, her 'seniority rank', may also explain part of the observed returns...... relative to their peer workers), as predicted by theories on unionized and insider-outsider markets....
Efficient Low Rank Tensor Ring Completion
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2017-01-01
Using the matrix product state (MPS) representation of the recently proposed tensor ring decompositions, in this paper we propose a tensor completion algorithm, which is an alternating minimization algorithm that alternates over the factors in the MPS representation. This development is motivated in part by the success of matrix completion algorithms that alternate over the (low-rank) factors. In this paper, we propose a spectral initialization for the tensor ring completion algorithm and ana...
Dynamic programming re-ranking for PPI interactor and pair extraction in full-text articles
2011-01-01
Background Experimentally verified protein-protein interactions (PPIs) cannot be easily retrieved by researchers unless they are stored in PPI databases. The curation of such databases can be facilitated by employing text-mining systems to identify genes which play the interactor role in PPIs and to map these genes to unique database identifiers (interactor normalization task or INT) and then to return a list of interaction pairs for each article (interaction pair task or IPT). These two tasks are evaluated in terms of the area under curve of the interpolated precision/recall (AUC iP/R) score because the order of identifiers in the output list is important for ease of curation. Results Our INT system developed for the BioCreAtIvE II.5 INT challenge achieved a promising AUC iP/R of 43.5% by using a support vector machine (SVM)-based ranking procedure. Using our new re-ranking algorithm, we have been able to improve system performance (AUC iP/R) by 1.84%. Our experimental results also show that with the re-ranked INT results, our unsupervised IPT system can achieve a competitive AUC iP/R of 23.86%, which outperforms the best BC II.5 INT system by 1.64%. Compared to using only SVM ranked INT results, using re-ranked INT results boosts AUC iP/R by 7.84%. Statistical significance t-test results show that our INT/IPT system with re-ranking outperforms that without re-ranking by a statistically significant difference. Conclusions In this paper, we present a new re-ranking algorithm that considers co-occurrence among identifiers in an article to improve INT and IPT ranking results. Combining the re-ranked INT results with an unsupervised approach to find associations among interactors, the proposed method can boost the IPT performance. We also implement score computation using dynamic programming, which is faster and more efficient than traditional approaches. PMID:21342534
International Nuclear Information System (INIS)
Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen
2006-01-01
The magnetic properties of two grain-oriented (GO) samples of the same grade were measured under alternating and rotational magnetic flux conditions. Two samples were measured separately and then together in different arrangement to each other. The interaction of magnetic field between two samples were measured by using a coil, which was placed in between. The results show that the H z component influence measured magnetic properties in the x-y plane
Citation ranking versus peer evaluation of senior faculty research performance
DEFF Research Database (Denmark)
Meho, Lokman I.; Sonnenwald, Diane H.
2000-01-01
The purpose of this study is to analyze the relationship between citation ranking and peer evaluation in assessing senior faculty research performance. Other studies typically derive their peer evaluation data directly from referees, often in the form of ranking. This study uses two additional...... indicator of research performance of senior faculty members? Citation data, book reviews, and peer ranking were compiled and examined for faculty members specializing in Kurdish studies. Analysis shows that normalized citation ranking and citation content analysis data yield identical ranking results....... Analysis also shows that normalized citation ranking and citation content analysis, book reviews, and peer ranking perform similarly (i.e., are highly correlated) for high-ranked and low-ranked senior scholars. Additional evaluation methods and measures that take into account the context and content...
Association between Metabolic Syndrome and Job Rank.
Mehrdad, Ramin; Pouryaghoub, Gholamreza; Moradi, Mahboubeh
2018-01-01
The occupation of the people can influence the development of metabolic syndrome. To determine the association between metabolic syndrome and its determinants with the job rank in workers of a large car factory in Iran. 3989 male workers at a large car manufacturing company were invited to participate in this cross-sectional study. Demographic and anthropometric data of the participants, including age, height, weight, and abdominal circumference were measured. Blood samples were taken to measure lipid profile and blood glucose level. Metabolic syndrome was diagnosed in each participant based on ATPIII 2001 criteria. The workers were categorized based on their job rank into 3 groups of (1) office workers, (2) workers with physical exertion, and (3) workers with chemical exposure. The study characteristics, particularly the frequency of metabolic syndrome and its determinants were compared among the study groups. The prevalence of metabolic syndrome in our study was 7.7% (95% CI 6.9 to 8.5). HDL levels were significantly lower in those who had chemical exposure (p=0.045). Diastolic blood pressure was significantly higher in those who had mechanical exertion (p=0.026). The frequency of metabolic syndrome in the office workers, workers with physical exertion, and workers with chemical exposure was 7.3%, 7.9%, and 7.8%, respectively (p=0.836). Seemingly, there is no association between metabolic syndrome and job rank.
Rank-dependant factorization of entanglement evolution
International Nuclear Information System (INIS)
Siomau, Michael
2016-01-01
Highlights: • In some cases the complex entanglement evolution can be factorized on simple terms. • We suggest factorization equations for multiqubit entanglement evolution. • The factorization is solely defined by the rank of the final state density matrices. • The factorization is independent on the local noisy channels and initial pure states. - Abstract: The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.
Fourth-rank gravity and cosmology
International Nuclear Information System (INIS)
Marrakchi, A.L.; Tapia, V.
1992-07-01
We consider the consequences of describing the metric properties of space-time through a quartic line element. The associated ''metric'' is a fourth-rank tensor G μυλπ . In order to recover a Riemannian behaviour of the geometry it is necessary to have G μυλπ = g (μυ g λπ) . We construct a theory for the gravitational field based on the fourth-rank metric G μυλπ . In the absence of matter the fourth-rank metric becomes separable and the theory coincides with General Relativity. In the presence of matter we can maintain Riemmanianicity, but now gravitation couples, as compared to General Relativity, in a different way to matter. We develop a simple cosmological model based on a FRW metric with matter described by a perfect fluid. For the present time the field equations are compatible with k OBS = O and Ω OBS t CLAS approx. 10 20 t PLANCK approx. 10 -23 s. Our final and most important result is the fact that the entropy is an increasing function of time. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. (author). 16 refs, 1 fig
Ranking agility factors affecting hospitals in Iran
Directory of Open Access Journals (Sweden)
M. Abdi Talarposht
2017-04-01
Full Text Available Background: Agility is an effective response to the changing and unpredictable environment and using these changes as opportunities for organizational improvement. Objective: The aim of the present study was to rank the factors affecting agile supply chain of hospitals of Iran. Methods: This applied study was conducted by cross sectional-descriptive method at some point of 2015 for one year. The research population included managers, administrators, faculty members and experts were selected hospitals. A total of 260 people were selected as sample from the health centers. The construct validity of the questionnaire was approved by confirmatory factor analysis test and its reliability was approved by Cronbach's alpha (α=0.97. All data were analyzed by Kolmogorov-Smirnov, Chi-square and Friedman tests. Findings: The development of staff skills, the use of information technology, the integration of processes, appropriate planning, and customer satisfaction and product quality had a significant impact on the agility of public hospitals of Iran (P<0.001. New product introductions had earned the highest ranking and the development of staff skills earned the lowest ranking. Conclusion: The new product introduction, market responsiveness and sensitivity, reduce costs, and the integration of organizational processes, ratings better to have acquired agility hospitals in Iran. Therefore, planners and officials of hospitals have to, through the promotion quality and variety of services customer-oriented, providing a basis for investing in the hospital and etc to apply for agility supply chain public hospitals of Iran.
Estimation of rank correlation for clustered data.
Rosner, Bernard; Glynn, Robert J
2017-06-30
It is well known that the sample correlation coefficient (R xy ) is the maximum likelihood estimator of the Pearson correlation (ρ xy ) for independent and identically distributed (i.i.d.) bivariate normal data. However, this is not true for ophthalmologic data where X (e.g., visual acuity) and Y (e.g., visual field) are available for each eye and there is positive intraclass correlation for both X and Y in fellow eyes. In this paper, we provide a regression-based approach for obtaining the maximum likelihood estimator of ρ xy for clustered data, which can be implemented using standard mixed effects model software. This method is also extended to allow for estimation of partial correlation by controlling both X and Y for a vector U_ of other covariates. In addition, these methods can be extended to allow for estimation of rank correlation for clustered data by (i) converting ranks of both X and Y to the probit scale, (ii) estimating the Pearson correlation between probit scores for X and Y, and (iii) using the relationship between Pearson and rank correlation for bivariate normally distributed data. The validity of the methods in finite-sized samples is supported by simulation studies. Finally, two examples from ophthalmology and analgesic abuse are used to illustrate the methods. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Ranking environmental liabilities at a petroleum refinery
International Nuclear Information System (INIS)
Lupo, M.
1995-01-01
A new computer model is available to allow the management of a petroleum refinery to prioritize environmental action and construct a holistic approach to remediation. A large refinery may have numerous solid waste management units regulated by the Resource Conservation and Recovery Act (RCRA), as well as process units that emit hazardous chemicals into the environment. These sources can impact several environmental media, potentially including the air, the soil, the groundwater, the unsaturated zone water, and surface water. The number of chemicals of concern may be large. The new model is able to rank the sources by considering the impact of each chemical in each medium from each source in terms of concentration, release rate, and a weighted index based on toxicity. In addition to environmental impact, the sources can be ranked in three other ways: (1) by cost to remediate, (2) by environmental risk reduction caused by the remediation in terms of the decreases in release rate, concentration, and weighted index, and (3) by cost-benefit, which is the environmental risk reduction for each source divided by the cost of the remedy. Ranking each unit in the refinery allows management to use its limited environmental resources in a pro-active strategic manner that produces long-term results, rather than in reactive, narrowly focused, costly, regulatory-driven campaigns that produce only short-term results
Iris Template Protection Based on Local Ranking
Directory of Open Access Journals (Sweden)
Dongdong Zhao
2018-01-01
Full Text Available Biometrics have been widely studied in recent years, and they are increasingly employed in real-world applications. Meanwhile, a number of potential threats to the privacy of biometric data arise. Iris template protection demands that the privacy of iris data should be protected when performing iris recognition. According to the international standard ISO/IEC 24745, iris template protection should satisfy the irreversibility, revocability, and unlinkability. However, existing works about iris template protection demonstrate that it is difficult to satisfy the three privacy requirements simultaneously while supporting effective iris recognition. In this paper, we propose an iris template protection method based on local ranking. Specifically, the iris data are first XORed (Exclusive OR operation with an application-specific string; next, we divide the results into blocks and then partition the blocks into groups. The blocks in each group are ranked according to their decimal values, and original blocks are transformed to their rank values for storage. We also extend the basic method to support the shifting strategy and masking strategy, which are two important strategies for iris recognition. We demonstrate that the proposed method satisfies the irreversibility, revocability, and unlinkability. Experimental results on typical iris datasets (i.e., CASIA-IrisV3-Interval, CASIA-IrisV4-Lamp, UBIRIS-V1-S1, and MMU-V1 show that the proposed method could maintain the recognition performance while protecting the privacy of iris data.
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Guénault, Tony
2007-01-01
In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...
A logical framework for ranking landslide inventory maps
Santangelo, Michele; Fiorucci, Federica; Bucci, Francesco; Cardinali, Mauro; Ardizzone, Francesca; Marchesini, Ivan; Cesare Mondini, Alessandro; Reichenbach, Paola; Rossi, Mauro; Guzzetti, Fausto
2014-05-01
Landslides inventory maps are essential for quantitative landslide hazard and risk assessments, and for geomorphological and ecological studies. Landslide maps, including geomorphological, event based, multi-temporal, and seasonal inventory maps, are most commonly prepared through the visual interpretation of (i) monoscopic and stereoscopic aerial photographs, (ii) satellite images, (iii) LiDAR derived images, aided by more or less extensive field surveys. Landslide inventory maps are the basic information for a number of different scientific, technical and civil protection purposes, such as: (i) quantitative geomorphic analyses, (ii) erosion studies, (iii) deriving landslide statistics, (iv) urban development planning (v) landslide susceptibility, hazard and risk evaluation, and (vi) landslide monitoring systems. Despite several decades of activity in landslide inventory making, still no worldwide-accepted standards, best practices and protocols exist for the ranking and the production of landslide inventory maps. Standards for the preparation (and/or ranking) of landslide inventories should indicate the minimum amount of information for a landslide inventory map, given the scale, the type of images, the instrumentation available, and the available ancillary data. We recently attempted at a systematic description and evaluation of a total of 22 geomorphological inventories, 6 multi-temporal inventories, 10 event inventories, and 3 seasonal inventories, in the scale range between 1:10,000 and 1:500,000, prepared for areas in different geological and geomorphological settings. All of the analysed inventories were carried out by using image interpretation techniques, or field surveys. Firstly, a detailed characterisation was performed for each landslide inventory, mainly collecting metadata related (i) to the amount of information used for preparing the landslide inventory (i.e. images used, instrumentation, ancillary data, digitalisation method, legend, validation
Mandl, Franz
1988-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Rohatgi, Vijay K
2003-01-01
Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth
Levine-Wissing, Robin
2012-01-01
All Access for the AP® Statistics Exam Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the online tools that come with it, will help you personalize your AP® Statistics prep
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
Nanotechnology strength indicators: international rankings based on US patents
Marinova, Dora; McAleer, Michael
2003-01-01
Technological strength indicators (TSIs) based on patent statistics for 1975-2000 are used to analyse patenting of nanotechnology in the USA, and to compile international rankings for the top 12 foreign patenting countries (namely Australia, Canada, France, Germany, Great Britain, Italy, Japan, Korea, the Netherlands, Sweden, Switzerland and Taiwan). As the indicators are not directly observable, various proxy variables are used, namely the technological specialization index for national priorities, patent shares for international presence, citation rate for the contribution of patents to knowledge development and rate of assigned patents for potential commercial benefits. The best performing country is France, followed by Japan and Canada. It is shown that expertise and strength in nanotechnology are not evenly distributed among the technologically advanced countries, with the TSIs revealing different emphases in the development of nanotechnology.
A Ranking Method for Neutral Pion and Eta Selection in Hadronic Events
International Nuclear Information System (INIS)
Bingoel, A.
2004-01-01
The selection of neutral pions and etas with a high purity while maintaining also a high efficiency can be important in the formation of statistically significant mass spectra in the reconstruction of short-lived particles such as the omega meson (ω→π + + π - + π 0 ). In this study a Ranking method has been optimized for data from the ALEPH Experiment, CERN. The results show that the Ranking method, when applied to high multiplicity events, yields significant improvements in the purity of selected pion candidates and facilitates the relaxation of standard cuts thereby avoiding some systematic uncertainties
Tucker tensor analysis of Matern functions in spatial statistics
Litvinenko, Alexander
2018-04-20
Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments
Country-specific determinants of world university rankings.
Pietrucha, Jacek
2018-01-01
This paper examines country-specific factors that affect the three most influential world university rankings (the Academic Ranking of World Universities, the QS World University Ranking, and the Times Higher Education World University Ranking). We run a cross sectional regression that covers 42-71 countries (depending on the ranking and data availability). We show that the position of universities from a country in the ranking is determined by the following country-specific variables: economic potential of the country, research and development expenditure, long-term political stability (freedom from war, occupation, coups and major changes in the political system), and institutional variables, including government effectiveness.
Indian Academy of Sciences (India)
inference and finite population sampling. Sudhakar Kunte. Elements of statistical computing are discussed in this series. ... which captain gets an option to decide whether to field first or bat first ... may of course not be fair, in the sense that the team which wins ... describe two methods of drawing a random number between 0.
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
International Nuclear Information System (INIS)
Singh, K.
1993-11-01
Using a statistical mechanical perturbation theory for isotropic-nematic transition we report a calculation of second and fourth rank orientation order parameters and thermodynamic properties for a model system of prolate ellipsoids of revolution parameterized by its length-to-width ratio. The influence of attractive potential represented by dispersion interaction on a variety of thermodynamic properties is analysed. Inclusion of fourth rank orientational order parameter in calculation slightly changes the transition parameter. (author). 7 refs, 1 tab
Directory of Open Access Journals (Sweden)
Carlos-Roberto Peña-Barrera
2011-08-01
Full Text Available Los principales objetivos de esta investigación son los siguientes: (1 que la comunidad científica nacional e internacional y la sociedad en general co-nozcan los resultados del Ranking U-Sapiens Colombia 2010_2, el cual clasifica a cada institución de educación superior colombiana según puntaje, posición y cuartil; (2 destacar los movimientos más importantes al comparar los resultados del ranking 2010_1 con los del 2010_2; (3 publicar las respuestas de algunos actores de la academia nacional con respecto a la dinámica de la investigación en el país; (4 reconocer algunas instituciones, medios de comunicación e investigadores que se han interesado a modo de reflexión, referenciación o citación por esta investigación; y (5 dar a conocer el «Sello Ranking U-Sapiens Colombia» para las IES clasificadas. El alcance de este estudio en cuanto a actores abordó todas y cada una de las IES nacionales (aunque solo algunas lograran entrar al ranking y en cuanto a tiempo, un periodo referido al primer semestre de 2010 con respecto a: (1 los resultados 2010-1 de revistas indexadas en Publindex, (2 los programas de maestrías y doctorados activos durante 2010-1 según el Ministerio de Educación Nacional, y (3 los resultados de grupos de investigación clasificados para 2010 según Colciencias. El método empleado para esta investigación es el mismo que para el ranking 2010_1, salvo por una especificación aún más detallada en uno de los pasos del modelo (las variables α, β, γ; es completamente cuantitativo y los datos de las variables que fundamentan sus resultados provienen de Colciencias y el Ministerio de Educación Nacional; y en esta ocasión se darán a conocer los resultados por variable para 2010_1 y 2010_2. Los resultados más relevantes son estos: (1 entraron 8 IES al ranking y salieron 3; (2 las 3 primeras IES son públicas; (3 en total hay 6 instituciones universitarias en el ranking; (4 7 de las 10 primeras IES son
Directory of Open Access Journals (Sweden)
Donald W. Zimmerman
2004-01-01
Full Text Available It is well known that the two-sample Student t test fails to maintain its significance level when the variances of treatment groups are unequal, and, at the same time, sample sizes are unequal. However, introductory textbooks in psychology and education often maintain that the test is robust to variance heterogeneity when sample sizes are equal. The present study discloses that, for a wide variety of non-normal distributions, especially skewed distributions, the Type I error probabilities of both the t test and the Wilcoxon-Mann-Whitney test are substantially inflated by heterogeneous variances, even when sample sizes are equal. The Type I error rate of the t test performed on ranks replacing the scores (rank-transformed data is inflated in the same way and always corresponds closely to that of the Wilcoxon-Mann-Whitney test. For many probability densities, the distortion of the significance level is far greater after transformation to ranks and, contrary to known asymptotic properties, the magnitude of the inflation is an increasing function of sample size. Although nonparametric tests of location also can be sensitive to differences in the shape of distributions apart from location, the Wilcoxon-Mann-Whitney test and rank-transformation tests apparently are influenced mainly by skewness that is accompanied by specious differences in the means of ranks.
International Nuclear Information System (INIS)
Anon.
1994-01-01
For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Pivato, Marcus
2013-01-01
We show that, in a sufficiently large population satisfying certain statistical regularities, it is often possible to accurately estimate the utilitarian social welfare function, even if we only have very noisy data about individual utility functions and interpersonal utility comparisons. In particular, we show that it is often possible to identify an optimal or close-to-optimal utilitarian social choice using voting rules such as the Borda rule, approval voting, relative utilitarianism, or a...
Natrella, Mary Gibbons
1963-01-01
Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations
Ranking the Online Documents Based on Relative Credibility Measures
Directory of Open Access Journals (Sweden)
Ahmad Dahlan
2013-09-01
Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.
Ranking the Online Documents Based on Relative Credibility Measures
Directory of Open Access Journals (Sweden)
Ahmad Dahlan
2009-05-01
Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.
Guo, Jiin-Huarng; Luh, Wei-Ming
2009-05-01
When planning a study, sample size determination is one of the most important tasks facing the researcher. The size will depend on the purpose of the study, the cost limitations, and the nature of the data. By specifying the standard deviation ratio and/or the sample size ratio, the present study considers the problem of heterogeneous variances and non-normality for Yuen's two-group test and develops sample size formulas to minimize the total cost or maximize the power of the test. For a given power, the sample size allocation ratio can be manipulated so that the proposed formulas can minimize the total cost, the total sample size, or the sum of total sample size and total cost. On the other hand, for a given total cost, the optimum sample size allocation ratio can maximize the statistical power of the test. After the sample size is determined, the present simulation applies Yuen's test to the sample generated, and then the procedure is validated in terms of Type I errors and power. Simulation results show that the proposed formulas can control Type I errors and achieve the desired power under the various conditions specified. Finally, the implications for determining sample sizes in experimental studies and future research are discussed.
Collins, Brittany; Breithaupt, Lauren; McDowell, Jennifer E; Miller, L Stephen; Thompson, James; Fischer, Sarah
2017-07-01
The impact of acute stress on the neural processing of food cues in bulimia nervosa (BN) is unknown, despite theory that acute stress decreases cognitive control over food and hence increases vulnerability to environmental triggers for binge eating. Thus, the goals of this manuscript were to explore the impact of acute stress on the neural processing of food cues in BN. In Study 1, 10 women with Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) BN and 10 healthy controls participated in an fMRI paradigm examining the neural correlates of visual food cue processing pre and post an acute stress induction. Whole brain analysis indicated that women with BN exhibited significant decreases in activation in the precuneus, associated with self-referential processing, the paracingulate gyrus, and the anterior vermis of the cerebellum. Healthy controls exhibited increased activation in these regions in response to food cues poststress. In Study 2, 17 women with DSM-5 BN or otherwise specified feeding and eating disorder with BN symptoms participated in the same paradigm. A region of interest analysis replicated findings from Study 1. Replication of imaging findings in 2 different samples suggests the potential importance of these regions in relation to BN. Decreased activation in the precuneus, specifically, is consistent with models of BN that posit that binge eating serves as a concrete distraction from aversive internal stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K
2011-10-01
To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods
On Locally Most Powerful Sequential Rank Tests
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2017-01-01
Roč. 36, č. 1 (2017), s. 111-125 ISSN 0747-4946 R&D Projects: GA ČR GA17-07384S Grant - others:Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985556 Keywords : nonparametric test s * sequential ranks * stopping variable Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.339, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/kalina-0474065.pdf
International Nuclear Information System (INIS)
Tapia, V.
1992-04-01
Recently we have explored the consequences of describing the metric properties of our universe through a quartic line element. In this geometry the natural object is a fourth-rank metric, i.e., a tensor with four indices. Based on this geometry we constructed a simple field theory for the gravitational field. The field equations coincide with the Einstein field equations in the vacuum case. This fact, however, does not guarantee the observational equivalence of both theories since one must still verify that, as a consequence of the field equations, test particles move along geodesics. This letter is aimed at establishing this result. (author). 7 refs
Classical impurities associated to high rank algebras
Energy Technology Data Exchange (ETDEWEB)
Doikou, Anastasia, E-mail: A.Doikou@hw.ac.uk [Department of Mathematics, Heriot–Watt University, EH14 4AS, Edinburgh (United Kingdom); Department of Computer Engineering and Informatics, University of Patras, Patras GR-26500 (Greece)
2014-07-15
Classical integrable impurities associated with high rank (gl{sub N}) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution.
Low-rank driving in quantum systems
International Nuclear Information System (INIS)
Burkey, R.S.
1989-01-01
A new property of quantum systems called low-rank driving is introduced. Numerous simplifications in the solution of the time-dependent Schroedinger equation are pointed out for systems having this property. These simplifications are in the areas of finding eigenvalues, taking the Laplace transform, converting Schroedinger's equation to an integral form, discretizing the continuum, generalizing the Weisskopf-Wigner approximation, band-diagonalizing the Hamiltonian, finding new exact solutions to Schroedinger's equation, and so forth. The principal physical application considered is the phenomenon of coherent populations-trapping in continuum-continuum interactions
Classical impurities associated to high rank algebras
International Nuclear Information System (INIS)
Doikou, Anastasia
2014-01-01
Classical integrable impurities associated with high rank (gl N ) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution
Directory of Open Access Journals (Sweden)
Samah Ibrahim Abdel Aal
2018-03-01
Full Text Available The concept of neutrosophic can provide a generalization of fuzzy set and intuitionistic fuzzy set that make it is the best fit in representing indeterminacy and uncertainty. Single Valued Triangular Numbers (SVTrN-numbers is a special case of neutrosophic set that can handle ill-known quantity very difficult problems. This work intended to introduce a framework with two types of ranking methods. The results indicated that each ranking method has its own advantage. In this perspective, the weighted value and ambiguity based method gives more attention to uncertainty in ranking and evaluating ISQ as well as it takes into account cut sets of SVTrN numbers that can reflect the information on Truth-membership-membership degree, false membership-membership degree and Indeterminacy-membership degree. The value index and ambiguity index method can reflect the decision maker's subjectivity attitude to the SVTrN- numbers.
Directory of Open Access Journals (Sweden)
Torres-Salinas, Daniel
2015-12-01
Full Text Available We present the results of the Bibliometric Indicators for Publishers project (also known as BiPublishers. This project represents the first attempt to systematically develop bibliometric publisher rankings. The data for this project was derived from the Book Citation Index and the study time period was 2009-2013. We have developed 42 rankings: 4 by fields and 38 by disciplines. We display six indicators for publishers divided into three types: output, impact and publisher’s profile. The aim is to capture different characteristics of the research performance of publishers. 254 publishers were processed and classified according to publisher type: commercial publishers and university presses. We present the main publishers by field and then discuss the principal challenges presented when developing this type of tool. The BiPublishers ranking is an on-going project which aims to develop and explore new data sources and indicators to better capture and define the research impact of publishers.Presentamos los resultados del proyecto Bibliometric Indicators for Publishers (BiPublishers. Es el primer proyecto que desarrolla de manera sistemática rankings bibliométricos de editoriales. La fuente de datos empleada es el Book Citation Index y el periodo de análisis 2009-2013. Se presentan 42 rankings: 4 por áreas y 38 por disciplinas. Mostramos seis indicadores por editorial divididos según su tipología: producción, impacto y características editoriales. Se procesaron 254 editoriales y se clasificaron según el tipo: comerciales y universitarias. Se presentan las principales editoriales por áreas. Después, se discuten los principales retos a superar en el desarrollo de este tipo de herramientas. El ranking Bipublishers es un proyecto en desarrollo que persigue analizar y explorar nuevas fuentes de datos e indicadores para captar y definir el impacto de las editoriales académicas.
Generalized PageRank on Directed Configuration Networks
Chen, Ningyuan; Litvak, Nelli; Olvera-Cravioto, Mariana
2017-01-01
Note: formula is not displayed correctly. This paper studies the distribution of a family of rankings, which includes Google’s PageRank, on a directed configuration model. In particular, it is shown that the distribution of the rank of a randomly chosen node in the graph converges in distribution to
PageRank in scale-free random graphs
Chen, Ningyuan; Litvak, Nelli; Olvera-Cravioto, Mariana; Bonata, Anthony; Chung, Fan; Pralat, Paweł
2014-01-01
We analyze the distribution of PageRank on a directed configuration model and show that as the size of the graph grows to infinity, the PageRank of a randomly chosen node can be closely approximated by the PageRank of the root node of an appropriately constructed tree. This tree approximation is in
Ranking Quality in Higher Education: Guiding or Misleading?
Bergseth, Brita; Petocz, Peter; Abrandt Dahlgren, Madeleine
2014-01-01
The study examines two different models of measuring, assessing and ranking quality in higher education. Do different systems of quality assessment lead to equivalent conclusions about the quality of education? This comparative study is based on the rankings of 24 Swedish higher education institutions. Two ranking actors have independently…
Revisiting the Relationship between Institutional Rank and Student Engagement
Zilvinskis, John; Louis Rocconi
2018-01-01
College rankings dominate the conversation regarding quality in postsecondary education. However, the criteria used to rank institutions often have nothing to do with the quality of education students receive. A decade ago, Pike (2004) demonstrated that institutional rank had little association with student involvement in educational activities.…
Academic Ranking--From Its Genesis to Its International Expansion
Vieira, Rosilene C.; Lima, Manolita C.
2015-01-01
Given the visibility and popularity of rankings that encompass the measurement of quality of post-graduate courses, for instance, the MBA (Master of Business Administration) or graduate studies program (MSc and PhD) as do global academic rankings--Academic Ranking of World Universities-ARWU, Times Higher/Thomson Reuters World University Ranking…
7 CFR 1491.6 - Ranking considerations and proposal selection.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Ranking considerations and proposal selection. 1491.6... PROGRAM General Provisions § 1491.6 Ranking considerations and proposal selection. (a) Before the State.... The national ranking criteria will be established by the Chief and the State criteria will be...
46 CFR 282.11 - Ranking of flags.
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Ranking of flags. 282.11 Section 282.11 Shipping... COMMERCE OF THE UNITED STATES Foreign-Flag Competition § 282.11 Ranking of flags. The operators under each... priority of costs which are representative of the flag. For liner cargo vessels, the ranking of operators...
10 CFR 455.131 - State ranking of grant applications.
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false State ranking of grant applications. 455.131 Section 455... State ranking of grant applications. (a) Except as provided by § 455.92 of this part, all eligible... audit or energy use evaluation pursuant to § 455.20(k). Each State shall develop separate rankings for...
Control by Numbers: New Managerialism and Ranking in Higher Education
Lynch, Kathleen
2015-01-01
This paper analyses the role of rankings as an instrument of new managerialism. It shows how rankings are reconstituting the purpose of universities, the role of academics and the definition of what it is to be a student. The paper opens by examining the forces that have facilitated the emergence of the ranking industry and the ideologies…
Extracting Rankings for Spatial Keyword Queries from GPS Data
DEFF Research Database (Denmark)
Keles, Ilkcan; Jensen, Christian Søndergaard; Saltenis, Simonas
2018-01-01
Studies suggest that many search engine queries have local intent. We consider the evaluation of ranking functions important for such queries. The key challenge is to be able to determine the “best” ranking for a query, as this enables evaluation of the results of ranking functions. We propose...
Tutorial: Calculating Percentile Rank and Percentile Norms Using SPSS
Baumgartner, Ted A.
2009-01-01
Practitioners can benefit from using norms, but they often have to develop their own percentile rank and percentile norms. This article is a tutorial on how to quickly and easily calculate percentile rank and percentile norms using SPSS, and this information is presented for a data set. Some issues in calculating percentile rank and percentile…
Variation in rank abundance replicate samples and impact of clustering
Neuteboom, J.H.; Struik, P.C.
2005-01-01
Calculating a single-sample rank abundance curve by using the negative-binomial distribution provides a way to investigate the variability within rank abundance replicate samples and yields a measure of the degree of heterogeneity of the sampled community. The calculation of the single-sample rank
Akbudak, Kadir; Ltaief, Hatem; Mikhalev, Aleksandr; Keyes, David E.
2017-01-01
Covariance matrices are ubiquitous in computational science and engineering. In particular, large covariance matrices arise from multivariate spatial data sets, for instance, in climate/weather modeling applications to improve prediction using statistical methods and spatial data. One of the most time-consuming computational steps consists in calculating the Cholesky factorization of the symmetric, positive-definite covariance matrix problem. The structure of such covariance matrices is also often data-sparse, in other words, effectively of low rank, though formally dense. While not typically globally of low rank, covariance matrices in which correlation decays with distance are nearly always hierarchically of low rank. While symmetry and positive definiteness should be, and nearly always are, exploited for performance purposes, exploiting low rank character in this context is very recent, and will be a key to solving these challenging problems at large-scale dimensions. The authors design a new and flexible tile row rank Cholesky factorization and propose a high performance implementation using OpenMP task-based programming model on various leading-edge manycore architectures. Performance comparisons and memory footprint saving on up to 200K×200K covariance matrix size show a gain of more than an order of magnitude for both metrics, against state-of-the-art open-source and vendor optimized numerical libraries, while preserving the numerical accuracy fidelity of the original model. This research represents an important milestone in enabling large-scale simulations for covariance-based scientific applications.
Ranking Tehran’s Stock Exchange Top Fifty Stocks Using Fundamental Indexes and Fuzzy TOPSIS
Directory of Open Access Journals (Sweden)
E. S. Saleh
2017-08-01
Full Text Available Investment through the purchase of securities, constitute an important part of countries economic exchange. Therefore, making decisions about investing in a particular stock has become one of the most controversial areas of economic and financial research and various institutions have began to rank companies stock and determine priorities of stock purchase to investment. The current research, with the determination of important required indexes for companies ranking based on their shares value on the Tehran stock exchange, can greatly help to the accurate ranking of fifty premier listed companies. Initial ranking indicators are extracted and then a decision-making group (exchange experts with the use of the Delphi method and also non-parametric statistic methods, determines the final indexes. Then, by using Fuzzy ANP, weight criteria are obtained with taking into account their interaction with each other. Finally, using fuzzy TOPSIS and information extraction about the premier fifty listed companies of Tehran stock exchange in 2014 are ranked with the software "Rahavard Novin”. Sensitivity analysis to criteria weight and relevant analysis presentation was conducted at the end of the study procedures.
Akbudak, Kadir
2017-05-11
Covariance matrices are ubiquitous in computational science and engineering. In particular, large covariance matrices arise from multivariate spatial data sets, for instance, in climate/weather modeling applications to improve prediction using statistical methods and spatial data. One of the most time-consuming computational steps consists in calculating the Cholesky factorization of the symmetric, positive-definite covariance matrix problem. The structure of such covariance matrices is also often data-sparse, in other words, effectively of low rank, though formally dense. While not typically globally of low rank, covariance matrices in which correlation decays with distance are nearly always hierarchically of low rank. While symmetry and positive definiteness should be, and nearly always are, exploited for performance purposes, exploiting low rank character in this context is very recent, and will be a key to solving these challenging problems at large-scale dimensions. The authors design a new and flexible tile row rank Cholesky factorization and propose a high performance implementation using OpenMP task-based programming model on various leading-edge manycore architectures. Performance comparisons and memory footprint saving on up to 200K×200K covariance matrix size show a gain of more than an order of magnitude for both metrics, against state-of-the-art open-source and vendor optimized numerical libraries, while preserving the numerical accuracy fidelity of the original model. This research represents an important milestone in enabling large-scale simulations for covariance-based scientific applications.
Rank hypocrisies the insult of the REF
Sayer, Derek
2015-01-01
"The REF is right out of Havel's and Kundera's Eastern Europe: a state-administered exercise to rank academic research like hotel chains dependent on the active collaboration of the UK professoriate. In crystalline text steeped in cold rage, Sayer takes aim at the REF's central claim, that it is a legitimate process of expert peer review. He critiques university and national-level REF processes against actual practices of scholarly review as found in academic journals, university presses, and North American tenure procedures. His analysis is damning. If the REF fails as scholarly review, how can academics and universities continue to participate? And how can government use its rankings as a basis for public policy?" - Tarak Barkawi, Reader in the Department of International Relations, London School of Economics "Many academics across the world have come to see the REF as an arrogant attempt to raise national research standards that has resulted in a variety of self-inflicted wounds to UK higher education. Der...
Demographic Ranking of the Baltic Sea States
Directory of Open Access Journals (Sweden)
Sluka N.
2014-06-01
Full Text Available The relevance of the study lies in the acute need to modernise the tools for a more accurate and comparable reflection of the demographic reality of spatial objects of different scales. This article aims to test the methods of “demographic rankings” developed by Yermakov and Shmakov. The method is based on the principles of indirect standardisation of the major demographic coefficients relative to the age structure.The article describes the first attempt to apply the method to the analysis of birth and mortality rates in 1995 and 2010 for 140 countries against the global average, and for the Baltic Sea states against the European average. The grouping of countries and the analysis of changes over the given period confirmed a number of demographic development trends and the persistence of wide territorial disparities in major indicators. The authors identify opposite trends in ranking based on the standardised birth (country consolidation at the level of averaged values and mortality (polarisation rates. The features of demographic process development in the Baltic regions states are described against the global and European background. The study confirmed the validity of the demographic ranking method, which can be instrumental in solving not only scientific but also practical tasks, including those in the field of demographic and social policy.
International Nuclear Information System (INIS)
Anon.
1989-01-01
World data from the United Nation's latest Energy Statistics Yearbook, first published in our last issue, are completed here. The 1984-86 data were revised and 1987 data added for world commercial energy production and consumption, world natural gas plant liquids production, world LP-gas production, imports, exports, and consumption, world residual fuel oil production, imports, exports, and consumption, world lignite production, imports, exports, and consumption, world peat production and consumption, world electricity production, imports, exports, and consumption (Table 80), and world nuclear electric power production
International Nuclear Information System (INIS)
McColl, S.; Gower, S.; Hicks, J.; Shortreed, J.; Craig, L.
2004-01-01
This paper presents the concept and methodologies behind the development of a health effects priority ranking tool for the reduction of air emissions from oil refineries. The Health Effects Indicators Decision Index- Versions 2 (Heidi II) was designed to assist policy makers in prioritizing air emissions reductions on the basis of estimated risk to human health. Inputs include facility level rankings of potential health impacts associated with carcinogenic air toxics, non-carcinogenic air toxics and criteria air contaminants for each of the 20 refineries in Canada. Rankings of estimated health impacts are presented on predicted incidence of health effects. Heidi II considers site-specific annual pollutant emission data, ambient air concentrations associated with releases and concentration response functions for various types of health effects. Additional data includes location specific background air concentrations, site-specific population densities, and the baseline incidence of different health effects endpoints, such as cancer, non-cancer illnesses and cardiorespiratory illnesses and death. Air pollutants include the 29 air toxics reported annually in Environment Canada's National Pollutant Release Inventory. Three health impact ranking outputs are provided for each facility: ranking of pollutants based on predicted number of annual cases of health effects; ranking of pollutants based on simplified Disability Adjusted Life Years (DALYs); and ranking of pollutants based on more complex DALYs that consider types of cancer, systemic disease or types of cardiopulmonary health effects. Rankings rely on rough statistical estimates of predicted incidence rates for health endpoints. The models used to calculate rankings can provide useful guidance by comparing estimated health impacts. Heidi II has demonstrated that it is possible to develop a consistent and objective approach for ranking priority reductions of air emissions. Heidi II requires numerous types and
Adaptive designs for the one-sample log-rank test.
Schmidt, Rene; Faldum, Andreas; Kwiecien, Robert
2017-09-22
Traditional designs in phase IIa cancer trials are single-arm designs with a binary outcome, for example, tumor response. In some settings, however, a time-to-event endpoint might appear more appropriate, particularly in the presence of loss to follow-up. Then the one-sample log-rank test might be the method of choice. It allows to compare the survival curve of the patients under treatment to a prespecified reference survival curve. The reference curve usually represents the expected survival under standard of the care. In this work, convergence of the one-sample log-rank statistic to Brownian motion is proven using Rebolledo's martingale central limit theorem while accounting for staggered entry times of the patients. On this basis, a confirmatory adaptive one-sample log-rank test is proposed where provision is made for data dependent sample size reassessment. The focus is to apply the inverse normal method. This is done in two different directions. The first strategy exploits the independent increments property of the one-sample log-rank statistic. The second strategy is based on the patient-wise separation principle. It is shown by simulation that the proposed adaptive test might help to rescue an underpowered trial and at the same time lowers the average sample number (ASN) under the null hypothesis as compared to a single-stage fixed sample design. © 2017, The International Biometric Society.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
OPG/RANKL/RANK cytokine system in renal osteodystrophy
Directory of Open Access Journals (Sweden)
Ivica Avberšek-Lužnik
2007-11-01
Full Text Available Background: Renal osteodystrophy is one of the most common complications affecting patients with endstage renal disease treated with hemodialysis (HD. The action of calciotropic hormones in renal osteodystrophy is regulated by the OPG/RANKL/RANK system. Its function is modulated by interleukines, calcitriol and parathyroid hormone (PTH.The aim of our study was to confirm that this system is involved in the pathogenesis of renal osteodystrophy and supports the mechanism of PTH action on bone.Methods: 106 HD patients (mean age 60 years and 50 healthy volunteers (mean age 64 years were enrolled in the study. In serum samples of patients and controls we determined concentrations of OPG, RANKL, tartarat resistant acid phosphatase 5b (TRAP 5b, serum Cterminal telopeptide cross-links of type I collagen (CTx, bone specific alkaline phosphatase (BALP, osteocalcin (OC and parathyroid hormone (PTH. We compared serum measurements of HD patients and controls and assessed the correlation of OPG and RANKL with bone markers. The most frequent OPG promotor gene polymorphisms were also determined. SPSS 12.1 for Windows was used for statistical analysis.Results: Median OPG concentrations were approximately three times higher in HD patients (0.804 µg/l than in healthy volunteers (0.272 µg/l. Mean serum RANKL concentrations were 1.66- fold higher in HD patients (1.36 pmol/l than in controls (0.82 pmol/l. Serum RANKL levels significantly differed between patients with and without calcitriol therapy (p = 0.001. After dividing HD patients into tertiles according to PTH, we observed significantly higher OPG values in the lower and RANKL in the upper tertile (p < 0.001. OPG did not correlate with bone resorption markers. Only weak correlation of bone formation markers with osteocalcin was noted. In contrast to OPG, RANKL correlated well with PTH, OC and CTX. OPG promoter gene polymorphisms (149 T → C, 163 A → G, 950 T → C do not influence OPG expression and
Poortvliet, P. Marijn; Janssen, Onne; Van Yperen, N.W.; Van de Vliert, E.
This investigation tested the joint effect of achievement goals and ranking information on information exchange intentions with a commensurate exchange partner. Results showed that individuals with performance goals were less inclined to cooperate with an exchange partner when they had low or high
Inhibition of osteoclastogenesis by RNA interference targeting RANK
Directory of Open Access Journals (Sweden)
Ma Ruofan
2012-08-01
Full Text Available Abstract Background Osteoclasts and osteoblasts regulate bone resorption and formation to allow bone remodeling and homeostasis. The balance between bone resorption and formation is disturbed by abnormal recruitment of osteoclasts. Osteoclast differentiation is dependent on the receptor activator of nuclear factor NF-kappa B (RANK ligand (RANKL as well as the macrophage colony-stimulating factor (M-CSF. The RANKL/RANK system and RANK signaling induce osteoclast formation mediated by various cytokines. The RANK/RANKL pathway has been primarily implicated in metabolic, degenerative and neoplastic bone disorders or osteolysis. The central role of RANK/RANKL interaction in osteoclastogenesis makes RANK an attractive target for potential therapies in treatment of osteolysis. The purpose of this study was to assess the effect of inhibition of RANK expression in mouse bone marrow macrophages on osteoclast differentiation and bone resorption. Methods Three pairs of short hairpin RNAs (shRNA targeting RANK were designed and synthesized. The optimal shRNA was selected among three pairs of shRNAs by RANK expression analyzed by Western blot and Real-time PCR. We investigated suppression of osteoclastogenesis of mouse bone marrow macrophages (BMMs using the optimal shRNA by targeting RANK. Results Among the three shRANKs examined, shRANK-3 significantly suppressed [88.3%] the RANK expression (p Conclusions These findings suggest that retrovirus-mediated shRNA targeting RANK inhibits osteoclast differentiation and osteolysis. It may appear an attractive target for preventing osteolysis in humans with a potential clinical application.
Are university rankings useful to improve research? A systematic review.
Vernon, Marlo M; Balas, E Andrew; Momani, Shaher
2018-01-01
Concerns about reproducibility and impact of research urge improvement initiatives. Current university ranking systems evaluate and compare universities on measures of academic and research performance. Although often useful for marketing purposes, the value of ranking systems when examining quality and outcomes is unclear. The purpose of this study was to evaluate usefulness of ranking systems and identify opportunities to support research quality and performance improvement. A systematic review of university ranking systems was conducted to investigate research performance and academic quality measures. Eligibility requirements included: inclusion of at least 100 doctoral granting institutions, be currently produced on an ongoing basis and include both global and US universities, publish rank calculation methodology in English and independently calculate ranks. Ranking systems must also include some measures of research outcomes. Indicators were abstracted and contrasted with basic quality improvement requirements. Exploration of aggregation methods, validity of research and academic quality indicators, and suitability for quality improvement within ranking systems were also conducted. A total of 24 ranking systems were identified and 13 eligible ranking systems were evaluated. Six of the 13 rankings are 100% focused on research performance. For those reporting weighting, 76% of the total ranks are attributed to research indicators, with 24% attributed to academic or teaching quality. Seven systems rely on reputation surveys and/or faculty and alumni awards. Rankings influence academic choice yet research performance measures are the most weighted indicators. There are no generally accepted academic quality indicators in ranking systems. No single ranking system provides a comprehensive evaluation of research and academic quality. Utilizing a combined approach of the Leiden, Thomson Reuters Most Innovative Universities, and the SCImago ranking systems may provide
Asynchronous Gossip for Averaging and Spectral Ranking
Borkar, Vivek S.; Makhijani, Rahul; Sundaresan, Rajesh
2014-08-01
We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.
Fuzzy-set based contingency ranking
International Nuclear Information System (INIS)
Hsu, Y.Y.; Kuo, H.C.
1992-01-01
In this paper, a new approach based on fuzzy set theory is developed for contingency ranking of Taiwan power system. To examine whether a power system can remain in a secure and reliable operating state under contingency conditions, those contingency cases that will result in loss-of-load, loss-of generation, or islanding are first identified. Then 1P-1Q iteration of fast decoupled load flow is preformed to estimate post-contingent quantities (line flows, bus voltages) for other contingency cases. Based on system operators' past experience, each post-contingent quantity is assigned a degree of severity according to the potential damage that could be imposed on the power system by the quantity, should the contingency occurs. An approach based on fuzzy set theory is developed to deal with the imprecision of linguistic terms
Motif discovery in ranked lists of sequences
DEFF Research Database (Denmark)
Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias
2016-01-01
Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... advantage of the regular expression feature, including enrichments for combinations of different microRNA seed sites. The method is implemented and made publicly available as an R package and supports high parallelization on multi-core machinery....... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...
Mallik, Saurav; Maulik, Ujjwal
2015-10-01
Gene ranking is an important problem in bioinformatics. Here, we propose a new framework for ranking biomolecules (viz., miRNAs, transcription-factors/TFs and genes) in a multi-informative uterine leiomyoma dataset having both gene expression and methylation data using (statistical) eigenvector centrality based approach. At first, genes that are both differentially expressed and methylated, are identified using Limma statistical test. A network, comprising these genes, corresponding TFs from TRANSFAC and ITFP databases, and targeter miRNAs from miRWalk database, is then built. The biomolecules are then ranked based on eigenvector centrality. Our proposed method provides better average accuracy in hub gene and non-hub gene classifications than other methods. Furthermore, pre-ranked Gene set enrichment analysis is applied on the pathway database as well as GO-term databases of Molecular Signatures Database with providing a pre-ranked gene-list based on different centrality values for comparing among the ranking methods. Finally, top novel potential gene-markers for the uterine leiomyoma are provided. Copyright © 2015 Elsevier Inc. All rights reserved.
Ranked retrieval of Computational Biology models.
Henkel, Ron; Endler, Lukas; Peters, Andre; Le Novère, Nicolas; Waltemath, Dagmar
2010-08-11
The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.
Chan, Kwun Chuen Gary; Qin, Jing
2015-10-01
Existing linear rank statistics cannot be applied to cross-sectional survival data without follow-up since all subjects are essentially censored. However, partial survival information are available from backward recurrence times and are frequently collected from health surveys without prospective follow-up. Under length-biased sampling, a class of linear rank statistics is proposed based only on backward recurrence times without any prospective follow-up. When follow-up data are available, the proposed rank statistic and a conventional rank statistic that utilizes follow-up information from the same sample are shown to be asymptotically independent. We discuss four ways to combine these two statistics when follow-up is present. Simulations show that all combined statistics have substantially improved power compared with conventional rank statistics, and a Mantel-Haenszel test performed the best among the proposal statistics. The method is applied to a cross-sectional health survey without follow-up and a study of Alzheimer's disease with prospective follow-up. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
National Statistical Commission and Indian Official Statistics*
Indian Academy of Sciences (India)
IAS Admin
a good collection of official statistics of that time. With more .... statistical agencies and institutions to provide details of statistical activities .... ing several training programmes. .... ful completion of Indian Statistical Service examinations, the.
Ranking of psychosocial and traditional risk factors by importance for coronary heart disease
DEFF Research Database (Denmark)
Schnohr, Peter; Marott, Jacob L; Kristensen, Tage S.
2015-01-01
.001] and systolic blood pressure (≥160 mmHg or blood pressure medication vs. never smoker; HR 1.74; 95% CI, 1.43-2.11; P ...-statistics and net reclassification improvement. During the follow-up, 1731 non-fatal and fatal coronary events were registered. In men, the highest ranking risk factors for coronary heart disease were vital exhaustion [high vs. low; hazard ratio (HR) 2.36; 95% confidence interval (CI), 1.70-3.26; P
GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists
Directory of Open Access Journals (Sweden)
Steinfeld Israel
2009-02-01
Full Text Available Abstract Background Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set. A few tools also exist that support analyzing ranked lists. The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results. Results GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets. This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (e.g. by level of expression or of differential expression. GOrilla employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the top of a ranked gene list. Building on a complete theoretical characterization of the underlying distribution, called mHG, GOrilla computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations. This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds. The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms. Conclusion GOrilla is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools. GOrilla's unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation. GOrilla is publicly available at: http://cbl-gorilla.cs.technion.ac.il
Equivalent statistics and data interpretation.
Francis, Gregory
2017-08-01
Recent reform efforts in psychological science have led to a plethora of choices for scientists to analyze their data. A scientist making an inference about their data must now decide whether to report a p value, summarize the data with a standardized effect size and its confidence interval, report a Bayes Factor, or use other model comparison methods. To make good choices among these options, it is necessary for researchers to understand the characteristics of the various statistics used by the different analysis frameworks. Toward that end, this paper makes two contributions. First, it shows that for the case of a two-sample t test with known sample sizes, many different summary statistics are mathematically equivalent in the sense that they are based on the very same information in the data set. When the sample sizes are known, the p value provides as much information about a data set as the confidence interval of Cohen's d or a JZS Bayes factor. Second, this equivalence means that different analysis methods differ only in their interpretation of the empirical data. At first glance, it might seem that mathematical equivalence of the statistics suggests that it does not matter much which statistic is reported, but the opposite is true because the appropriateness of a reported statistic is relative to the inference it promotes. Accordingly, scientists should choose an analysis method appropriate for their scientific investigation. A direct comparison of the different inferential frameworks provides some guidance for scientists to make good choices and improve scientific practice.
Tellinghuisen, Joel
2008-01-01
The method of least squares is probably the most powerful data analysis tool available to scientists. Toward a fuller appreciation of that power, this work begins with an elementary review of statistics fundamentals, and then progressively increases in sophistication as the coverage is extended to the theory and practice of linear and nonlinear least squares. The results are illustrated in application to data analysis problems important in the life sciences. The review of fundamentals includes the role of sampling and its connection to probability distributions, the Central Limit Theorem, and the importance of finite variance. Linear least squares are presented using matrix notation, and the significance of the key probability distributions-Gaussian, chi-square, and t-is illustrated with Monte Carlo calculations. The meaning of correlation is discussed, including its role in the propagation of error. When the data themselves are correlated, special methods are needed for the fitting, as they are also when fitting with constraints. Nonlinear fitting gives rise to nonnormal parameter distributions, but the 10% Rule of Thumb suggests that such problems will be insignificant when the parameter is sufficiently well determined. Illustrations include calibration with linear and nonlinear response functions, the dangers inherent in fitting inverted data (e.g., Lineweaver-Burk equation), an analysis of the reliability of the van't Hoff analysis, the problem of correlated data in the Guggenheim method, and the optimization of isothermal titration calorimetry procedures using the variance-covariance matrix for experiment design. The work concludes with illustrations on assessing and presenting results.
Testing for Statistical Discrimination based on Gender
DEFF Research Database (Denmark)
Lesner, Rune Vammen
. It is shown that the implications of both screening discrimination and stereotyping are consistent with observable wage dynamics. In addition, it is found that the gender wage gap decreases in tenure but increases in job transitions and that the fraction of women in high-ranking positions within a firm does......This paper develops a model which incorporates the two most commonly cited strands of the literature on statistical discrimination, namely screening discrimination and stereotyping. The model is used to provide empirical evidence of statistical discrimination based on gender in the labour market...... not affect the level of statistical discrimination by gender....
Tomei, Krystal L; Nahass, Meghan M; Husain, Qasim; Agarwal, Nitin; Patel, Smruti K; Svider, Peter F; Eloy, Jean Anderson; Liu, James K
2014-07-01
The number of women pursuing training opportunities in neurological surgery has increased, although they are still underrepresented at senior positions relative to junior academic ranks. Research productivity is an important component of the academic advancement process. We sought to use the h-index, a bibliometric previously analyzed among neurological surgeons, to evaluate whether there are gender differences in academic rank and research productivity among academic neurological surgeons. The h-index was calculated for 1052 academic neurological surgeons from 84 institutions, and organized by gender and academic rank. Overall men had statistically higher research productivity (mean 13.3) than their female colleagues (mean 9.5), as measured by the h-index, in the overall sample (p0.05) in h-index at the assistant professor (mean 7.2 male, 6.3 female), associate professor (11.2 male, 10.8 female), and professor (20.0 male, 18.0 female) levels based on gender. There was insufficient data to determine significance at the chairperson rank, as there was only one female chairperson. Although overall gender differences in scholarly productivity were detected, these differences did not reach statistical significance upon controlling for academic rank. Women were grossly underrepresented at the level of chairpersons in this sample of 1052 academic neurological surgeons, likely a result of the low proportion of females in this specialty. Future studies may be needed to investigate gender-specific research trends for neurosurgical residents, a cohort that in recent years has seen increased representation by women. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rank-k Maximal Statistics for Divergence and Probability of Misclassification
Decell, H. P., Jr.
1972-01-01
A technique is developed for selecting from n-channel multispectral data some k combinations of the n-channels upon which to base a given classification technique so that some measure of the loss of the ability to distinguish between classes, using the compressed k-dimensional data, is minimized. Information loss in compressing the n-channel data to k channels is taken to be the difference in the average interclass divergences (or probability of misclassification) in n-space and in k-space.
A Statistical Ontology-Based Approach to Ranking for Multiword Search
Kim, Jinwoo
2013-01-01
Keyword search is a prominent data retrieval method for the Web, largely because the simple and efficient nature of keyword processing allows a large amount of information to be searched with fast response. However, keyword search approaches do not formally capture the clear meaning of a keyword query and fail to address the semantic relationships…
Improving Statistical Machine Translation Through N-best List Re-ranking and Optimization
2014-03-27
Linguistics, Boulder, Colorado, June 2009. URL http://www.aclweb.org/ anthology /N/N09/ N09-1025. [31] Dahlgren, Peter. “The Internet, public spheres, and...Computational Linguis- tics, Prague, Czech Republic, June 2007. URL http://www.aclweb.org/ anthology /W/ W07/W07-0232. [36] Duh, Kevin and Katrin Kirchhoff. “Beyond...Computational Linguistics, Columbus, Ohio, June 2008. URL http://www.aclweb.org/ anthology /P/P08/P08-2010. [37] Felice, Mariano and Lucia Specia
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among
Using incomplete citation data for MEDLINE results ranking.
Herskovic, Jorge R; Bernstam, Elmer V
2005-01-01
Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.
Social Rank, Stress, Fitness, and Life Expectancy in Wild Rabbits
von Holst, Dietrich; Hutzelmeyer, Hans; Kaetzke, Paul; Khaschei, Martin; Schönheiter, Ronald
Wild rabbits of the two sexes have separate linear rank orders, which are established and maintained by intensive fights. The social rank of individuals strongly influence their fitness: males and females that gain a high social rank, at least at the outset of their second breeding season, have a much higher lifetime fitness than subordinate individuals. This is because of two separate factors: a much higher fecundity and annual reproductive success and a 50% longer reproductive life span. These results are in contrast to the view in evolutionary biology that current reproduction can be increased only at the expense of future survival and/or fecundity. These concepts entail higher physiological costs in high-ranking mammals, which is not supported by our data: In wild rabbits the physiological costs of social positions are caused predominantly by differential psychosocial stress responses that are much lower in high-ranking than in low-ranking individuals.
Directory of Open Access Journals (Sweden)
Bouchra Sojod
2017-05-01
Full Text Available Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.
Sojod, Bouchra; Chateau, Danielle; Mueller, Christopher G.; Babajko, Sylvie; Berdal, Ariane; Lézot, Frédéric; Castaneda, Beatriz
2017-01-01
Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases. PMID:28596739
Discovering author impact: A PageRank perspective
Yan, Erjia; Ding, Ying
2010-01-01
This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International So...
Convolutional Codes with Maximum Column Sum Rank for Network Streaming
Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish
2015-01-01
The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a network with link failures. We prove rank analogues of several known column Hamming distance properties and introduce a new family of convolutional codes that maximize the column sum rank up to the code memory. Our construction invol...
Ranking agricultural, environmental and natural resource economics journals: A note
Halkos, George; Tzeremes, Nickolaos
2012-01-01
This paper by applying Data Envelopment Analysis (DEA) ranks for the first time Economics journals in the field of Agricultural, Environmental and Natural Resource. Specifically, by using one composite input and one composite output the paper ranks 32 journals. In addition for the first time three different quality ranking reports have been incorporated to the DEA modelling problem in order to classify the journals into four categories (‘A’ to ‘D’). The results reveal that the journals with t...
Is there a 'Mid-Rank Trap' for Universities'
Chang Da Wan
2015-01-01
The middle-income trap is an economic phenomenon to describe economies that have stagnated at the middle-income level and failed to progress into the high-income level. Inspired by this economic concept, this paper explores a hypothesis: is there a 'mid-rank trap' for universities in the exercise to rank universities globally' Using the rankings between 2004 and 2014 that were jointly and separately developed by Times Higher Education and Quacquarelli Symonds Company, this paper argues that t...
Reduced Rank Adaptive Filtering in Impulsive Noise Environments
Soury, Hamza
2014-01-06
An impulsive noise environment is used in this paper. A new aspect of signal truncation is deployed to reduce the harmful effect of the impulsive noise to the signal. A full rank direct solution is derived followed by an iterative solution. The reduced rank adaptive filter is presented in this environment by using two methods for rank reduction. The minimized objective function is defined using the Lp norm. The results are presented and the efficiency of each algorithm is discussed.
Reduced Rank Adaptive Filtering in Impulsive Noise Environments
Soury, Hamza; Abed-Meraim, Karim; Alouini, Mohamed-Slim
2014-01-01
An impulsive noise environment is used in this paper. A new aspect of signal truncation is deployed to reduce the harmful effect of the impulsive noise to the signal. A full rank direct solution is derived followed by an iterative solution. The reduced rank adaptive filter is presented in this environment by using two methods for rank reduction. The minimized objective function is defined using the Lp norm. The results are presented and the efficiency of each algorithm is discussed.
A Citation-Based Ranking of Strategic Management Journals
Azar, Ofer H.; Brock, David M.
2007-01-01
Rankings of strategy journals are important for authors, readers, and promotion and tenure committees. We present several rankings, based either on the number of articles that cited the journal or the per-article impact. Our analyses cover various periods between 1991 and 2006, for most of which the Strategic Management Journal was in first place and Journal of Economics & Management Strategy (JEMS) second, although JEMS ranked first in certain instances. Long Range Planning and Technology An...
Automatic vowels selection and ranking in Russian enciphered texts
Directory of Open Access Journals (Sweden)
Yuri I. Petrenko
2018-01-01
, defined as the difference between the conditional probabilities of vowel-consonant and vowelvowel diagram’s types. For an alphabet consisted of N characters the program defines a combination of a given number k of “vowels” by exhaustive search. This combination of k symbols maximizes Markov criterion. The order relation of the new “vowels” for k = 1, 2, 3... characterizes the descending of their “strength” and can be used to separate vowels from consonants. In texts of sufficient volume there are possible approximate ranking of the vowel’s set. A more accurate ranking is possible when as a measure of “symbol power” Markov criterion’s increments are used. The algorithm speed can be greatly accelerated by using some tricks of steepest descent method. The test program discovered the independence of Markov criterion from the text’s author as well as its unimodality for long texts. Using this criterion, the algorithm can separate vowels from consonants for short (up to 100 characters texts as well as the ranking of vowels for texts as small as 250-500 letters. The similarity of Markov criterion’s statistics of letters “ь”, “ъ” and standard vowels is discovered. These two letters are inseparable by Markov criterion method from the standard vowels. The test results showed that Markov criterion method can be used for cryptanalysis of short Russian texts as well as texts of the other consonant languages.
Connectivity ranking of heterogeneous random conductivity models
Rizzo, C. B.; de Barros, F.
2017-12-01
To overcome the challenges associated with hydrogeological data scarcity, the hydraulic conductivity (K) field is often represented by a spatial random process. The state-of-the-art provides several methods to generate 2D or 3D random K-fields, such as the classic multi-Gaussian fields or non-Gaussian fields, training image-based fields and object-based fields. We provide a systematic comparison of these models based on their connectivity. We use the minimum hydraulic resistance as a connectivity measure, which it has been found to be strictly correlated with early time arrival of dissolved contaminants. A computationally efficient graph-based algorithm is employed, allowing a stochastic treatment of the minimum hydraulic resistance through a Monte-Carlo approach and therefore enabling the computation of its uncertainty. The results show the impact of geostatistical parameters on the connectivity for each group of random fields, being able to rank the fields according to their minimum hydraulic resistance.
Multirelational Social Recommendations via Multigraph Ranking.
Mao, Mingsong; Lu, Jie; Zhang, Guangquan; Zhang, Jinlong
2017-12-01
Recommender systems aim to identify relevant items for particular users in large-scale online applications. The historical rating data of users is a valuable input resource for many recommendation models such as collaborative filtering (CF), but these models are known to suffer from the rating sparsity problem when the users or items under consideration have insufficient rating records. With the continued growth of online social networks, the increased user-to-user relationships are reported to be helpful and can alleviate the CF rating sparsity problem. Although researchers have developed a range of social network-based recommender systems, there is no unified model to handle multirelational social networks. To address this challenge, this paper represents different user relationships in a multigraph and develops a multigraph ranking model to identify and recommend the nearest neighbors of particular users in high-order environments. We conduct empirical experiments on two real-world datasets: 1) Epinions and 2) Last.fm, and the comprehensive comparison with other approaches demonstrates that our model improves recommendation performance in terms of both recommendation coverage and accuracy, especially when the rating data are sparse.
Improving CBIR Systems Using Automated Ranking
Directory of Open Access Journals (Sweden)
B. D. Reljin
2012-11-01
Full Text Available The most common way of searching images on the Internet and in private collections is based on a similarity measuring of a series of text words that are assigned to each image with users query series. This method imposes strong constraints (the number of words to describe the image, the time necessary to thoroughly describe the subjective experience of images, the level of details in the picture, language barrier, etc., and is therefore very inefficient. Modern researches in this area are focused on the contentbased searching images (CBIR. In this way, all described disadvantages are overcome and the quality of searching results is improved. This paper presents a solution for CBIR systems where the search procedure is enhanced using sophisticated extraction and ranking of extracted images. The searching procedure is based on extraction and preprocessing of a large number of low level image features. Thus, when the user defines a query image, the proposed algorithm based on artificial intelligence, shows to the user a group of images which are most similar to a query image by content. The proposed algorithm is iterative, so the user can direct the searching procedure to an expected outcome and get a set of images that are more similar to the query one.
Method ranks competing projects by priorities, risk
International Nuclear Information System (INIS)
Moeckel, D.R.
1993-01-01
A practical, objective guide for ranking projects based on risk-based priorities has been developed by Sun Pipe Line Co. The deliberately simple system guides decisions on how to allocate scarce company resources because all managers employ the same criteria in weighing potential risks to the company versus benefits. Managers at all levels are continuously having to comply with an ever growing amount of legislative and regulatory requirements while at the same time trying to run their businesses effectively. The system primarily is designed for use as a compliance oversight and tracking process to document, categorize, and follow-up on work concerning various issues or projects. That is, the system consists of an electronic database which is updated periodically, and is used by various levels of management to monitor progress of health, safety, environmental and compliance-related projects. Criteria used in determining a risk factor and assigning a priority also have been adapted and found useful for evaluating other types of projects. The process enables management to better define potential risks and/or loss of benefits that are being accepted when a project is rejected from an immediate work plan or budget. In times of financial austerity, it is extremely important that the right decisions are made at the right time
A Note on the PageRank of Undirected Graphs
Grolmusz, Vince
2012-01-01
The PageRank is a widely used scoring function of networks in general and of the World Wide Web graph in particular. The PageRank is defined for directed graphs, but in some special cases applications for undirected graphs occur. In the literature it is widely noted that the PageRank for undirected graphs are proportional to the degrees of the vertices of the graph. We prove that statement for a particular personalization vector in the definition of the PageRank, and we also show that in gene...
Multidimensional ranking the design and development of U-Multirank
Ziegele, Frank
2012-01-01
During the last decades ranking has become one of the most controversial issues in higher education and research. It is widely recognized now that, although some of the current rankings can be severely criticized, they seem to be here to stay. In addition, rankings appear to have a great impact on decision-makers at all levels of higher education and research systems worldwide, including in universities. Rankings reflect a growing international competition among universities for talent and resources; at the same time they reinforce competition by their very results. Yet major concerns remain a
Tensor rank of the tripartite state |W>xn
International Nuclear Information System (INIS)
Yu Nengkun; Guo Cheng; Duan Runyao; Chitambar, Eric
2010-01-01
Tensor rank refers to the number of product states needed to express a given multipartite quantum state. Its nonadditivity as an entanglement measure has recently been observed. In this Brief Report, we estimate the tensor rank of multiple copies of the tripartite state |W>=(1/√(3))(|100>+|010>+|001>). Both an upper bound and a lower bound of this rank are derived. In particular, it is proven that the rank of |W> x 2 is 7, thus resolving a previously open problem. Some implications of this result are discussed in terms of transformation rates between |W> xn and multiple copies of the state |GHZ>=(1/√(2))(|000>+|111>).
Quantum probability ranking principle for ligand-based virtual screening
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Proceedings of the sixteenth biennial low-rank fuels symposium
International Nuclear Information System (INIS)
1991-01-01
Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium
Learning to rank for information retrieval and natural language processing
Li, Hang
2014-01-01
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on its problems recently, and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, major approaches, theories, applications, and future work.The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as tw
Rank of quantized universal enveloping algebras and modular functions
International Nuclear Information System (INIS)
Majid, S.; Soibelman, Ya.S.
1991-01-01
We compute an intrinsic rank invariant for quasitriangular Hopf algebras in the case of general quantum groups U q (g). As a function of q the rank has remarkable number theoretic properties connected with modular covariance and Galois theory. A number of examples are treated in detail, including rank (U q (su(3)) and rank (U q (e 8 )). We briefly indicate a physical interpretation as relating Chern-Simons theory with the theory of a quantum particle confined to an alcove of g. (orig.)
Extreme learning machine for ranking: generalization analysis and applications.
Chen, Hong; Peng, Jiangtao; Zhou, Yicong; Li, Luoqing; Pan, Zhibin
2014-05-01
The extreme learning machine (ELM) has attracted increasing attention recently with its successful applications in classification and regression. In this paper, we investigate the generalization performance of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations of activation functions in ELM. The generalization analysis is established for the ELM-based ranking (ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treatment plan ranking using physical and biological indices
International Nuclear Information System (INIS)
Ebert, M. A.; University of Western Asutralia, WA
2001-01-01
Full text: The ranking of dose distributions is of importance in several areas such as i) comparing rival treatment plans, ii) comparing iterations in an optimisation routine, and iii) dose-assessment of clinical trial data. This study aimed to investigate the influence of choice of objective function in ranking tumour dose distributions. A series of physical (mean, maximum, minimum, standard deviation of dose) dose-volume histogram (DVH) reduction indices and biologically-based (tumour-control probability - TCP; equivalent uniform dose -EUD) indices were used to rank a series of hypothetical DVHs, as well as DVHs obtained from a series of 18 prostate patients. The distribution in ranking and change in distribution with change in indice parameters were investigated. It is found that not only is the ranking of DVHs dependent on the actual model used to perform the DVH reduction, it is also found to depend on the inherent characteristics of each model (i.e., selected parameters). The adjacent figure shows an example where the 18 prostate patients are ranked (grey-scale from black to white) by EUD when an α value of 0.8 Gy -1 is used in the model. The change of ranking as α varies is evident. Conclusion: This study has shown that the characteristics of the model selected in plan optimisation or DVH ranking will have an impact on the ranking obtained. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine
Quantum probability ranking principle for ligand-based virtual screening.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Ranking accounting, banking and finance journals: A note
Halkos, George; Tzeremes, Nickolaos
2012-01-01
This paper by applying Data Envelopment Analysis (DEA) ranks Economics journals in the field of Accounting, Banking and Finance. By using one composite input and one composite output the paper ranks 57 journals. In addition for the first time three different quality ranking reports have been incorporated to the DEA modelling problem in order to classify the journals into four categories (‘A’ to ‘D’). The results reveal that the journals with the highest rankings in the field are Journal of Fi...
Proceedings of the sixteenth biennial low-rank fuels symposium
Energy Technology Data Exchange (ETDEWEB)
1991-01-01
Low-rank coals represent a major energy resource for the world. The Low-Rank Fuels Symposium, building on the traditions established by the Lignite Symposium, focuses on the key opportunities for this resource. This conference offers a forum for leaders from industry, government, and academia to gather to share current information on the opportunities represented by low-rank coals. In the United States and throughout the world, the utility industry is the primary user of low-rank coals. As such, current experiences and future opportunities for new technologies in this industry were the primary focuses of the symposium.
Econophysics of a ranked demand and supply resource allocation problem
Priel, Avner; Tamir, Boaz
2018-01-01
We present a two sided resource allocation problem, between demands and supplies, where both parties are ranked. For example, in Big Data problems where a set of different computational tasks is divided between a set of computers each with its own resources, or between employees and employers where both parties are ranked, the employees by their fitness and the employers by their package benefits. The allocation process can be viewed as a repeated game where in each iteration the strategy is decided by a meta-rule, based on the ranks of both parties and the results of the previous games. We show the existence of a phase transition between an absorbing state, where all demands are satisfied, and an active one where part of the demands are always left unsatisfied. The phase transition is governed by the ratio between supplies and demand. In a job allocation problem we find positive correlation between the rank of the workers and the rank of the factories; higher rank workers are usually allocated to higher ranked factories. These all suggest global emergent properties stemming from local variables. To demonstrate the global versus local relations, we introduce a local inertial force that increases the rank of employees in proportion to their persistence time in the same factory. We show that such a local force induces non trivial global effects, mostly to benefit the lower ranked employees.
Low-Rank Matrix Factorization With Adaptive Graph Regularizer.
Lu, Gui-Fu; Wang, Yong; Zou, Jian
2016-05-01
In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.
Eliciting conditional and unconditional rank correlations from conditional probabilities
International Nuclear Information System (INIS)
Morales, O.; Kurowicka, D.; Roelen, A.
2008-01-01
Causes of uncertainties may be interrelated and may introduce dependencies. Ignoring these dependencies may lead to large errors. A number of graphical models in probability theory such as dependence trees, vines and (continuous) Bayesian belief nets [Cooke RM. Markov and entropy properties of tree and vine-dependent variables. In: Proceedings of the ASA section on Bayesian statistical science, 1997; Kurowicka D, Cooke RM. Distribution-free continuous Bayesian belief nets. In: Proceedings of mathematical methods in reliability conference, 2004; Bedford TJ, Cooke RM. Vines-a new graphical model for dependent random variables. Ann Stat 2002; 30(4):1031-68; Kurowicka D, Cooke RM. Uncertainty analysis with high dimensional dependence modelling. New York: Wiley; 2006; Hanea AM, et al. Hybrid methods for quantifying and analyzing Bayesian belief nets. In: Proceedings of the 2005 ENBIS5 conference, 2005; Shachter RD, Kenley CR. Gaussian influence diagrams. Manage Sci 1998; 35(5) .] have been developed to capture dependencies between random variables. The input for these models are various marginal distributions and dependence information, usually in the form of conditional rank correlations. Often expert elicitation is required. This paper focuses on dependence representation, and dependence elicitation. The techniques presented are illustrated with an application from aviation safety
Perils of parsimony: properties of reduced-rank estimates of genetic covariance matrices.
Meyer, Karin; Kirkpatrick, Mark
2008-10-01
Eigenvalues and eigenvectors of covariance matrices are important statistics for multivariate problems in many applications, including quantitative genetics. Estimates of these quantities are subject to different types of bias. This article reviews and extends the existing theory on these biases, considering a balanced one-way classification and restricted maximum-likelihood estimation. Biases are due to the spread of sample roots and arise from ignoring selected principal components when imposing constraints on the parameter space, to ensure positive semidefinite estimates or to estimate covariance matrices of chosen, reduced rank. In addition, it is shown that reduced-rank estimators that consider only the leading eigenvalues and -vectors of the "between-group" covariance matrix may be biased due to selecting the wrong subset of principal components. In a genetic context, with groups representing families, this bias is inverse proportional to the degree of genetic relationship among family members, but is independent of sample size. Theoretical results are supplemented by a simulation study, demonstrating close agreement between predicted and observed bias for large samples. It is emphasized that the rank of the genetic covariance matrix should be chosen sufficiently large to accommodate all important genetic principal components, even though, paradoxically, this may require including a number of components with negligible eigenvalues. A strategy for rank selection in practical analyses is outlined.
Susarla, Srinivas M; Dodson, Thomas B; Lopez, Joseph; Swanson, Edward W; Calotta, Nicholas; Peacock, Zachary S
2015-08-01
Academic promotion is linked to research productivity. The purpose of this study was to assess the correlation between quantitative measures of academic productivity and academic rank among academic oral and maxillofacial surgeons. This was a cross-sectional study of full-time academic oral and maxillofacial surgeons in the United States. The predictor variables were categorized as demographic (gender, medical degree, research doctorate, other advanced degree) and quantitative measures of academic productivity (total number of publications, total number of citations, maximum number of citations for a single article, I-10 index [number of publications with ≥ 10 citations], and h-index [number of publications h with ≥ h citations each]). The outcome variable was current academic rank (instructor, assistant professor, associate professor, professor, or endowed professor). Descriptive, bivariate, and multiple regression statistics were computed to evaluate associations between the predictors and academic rank. Receiver-operator characteristic curves were computed to identify thresholds for academic promotion. The sample consisted of 324 academic oral and maxillofacial surgeons, of whom 11.7% were female, 40% had medical degrees, and 8% had research doctorates. The h-index was the most strongly correlated with academic rank (ρ = 0.62, p research activity.
Computational Methods for Large Spatio-temporal Datasets and Functional Data Ranking
Huang, Huang
2017-07-16
This thesis focuses on two topics, computational methods for large spatial datasets and functional data ranking. Both are tackling the challenges of big and high-dimensional data. The first topic is motivated by the prohibitive computational burden in fitting Gaussian process models to large and irregularly spaced spatial datasets. Various approximation methods have been introduced to reduce the computational cost, but many rely on unrealistic assumptions about the process and retaining statistical efficiency remains an issue. We propose a new scheme to approximate the maximum likelihood estimator and the kriging predictor when the exact computation is infeasible. The proposed method provides different types of hierarchical low-rank approximations that are both computationally and statistically efficient. We explore the improvement of the approximation theoretically and investigate the performance by simulations. For real applications, we analyze a soil moisture dataset with 2 million measurements with the hierarchical low-rank approximation and apply the proposed fast kriging to fill gaps for satellite images. The second topic is motivated by rank-based outlier detection methods for functional data. Compared to magnitude outliers, it is more challenging to detect shape outliers as they are often masked among samples. We develop a new notion of functional data depth by taking the integration of a univariate depth function. Having a form of the integrated depth, it shares many desirable features. Furthermore, the novel formation leads to a useful decomposition for detecting both shape and magnitude outliers. Our simulation studies show the proposed outlier detection procedure outperforms competitors in various outlier models. We also illustrate our methodology using real datasets of curves, images, and video frames. Finally, we introduce the functional data ranking technique to spatio-temporal statistics for visualizing and assessing covariance properties, such as
Directory of Open Access Journals (Sweden)
Salomon Joshua A
2003-12-01
Full Text Available Abstract Background In survey studies on health-state valuations, ordinal ranking exercises often are used as precursors to other elicitation methods such as the time trade-off (TTO or standard gamble, but the ranking data have not been used in deriving cardinal valuations. This study reconsiders the role of ordinal ranks in valuing health and introduces a new approach to estimate interval-scaled valuations based on aggregate ranking data. Methods Analyses were undertaken on data from a previously published general population survey study in the United Kingdom that included rankings and TTO values for hypothetical states described using the EQ-5D classification system. The EQ-5D includes five domains (mobility, self-care, usual activities, pain/discomfort and anxiety/depression with three possible levels on each. Rank data were analysed using a random utility model, operationalized through conditional logit regression. In the statistical model, probabilities of observed rankings were related to the latent utilities of different health states, modeled as a linear function of EQ-5D domain scores, as in previously reported EQ-5D valuation functions. Predicted valuations based on the conditional logit model were compared to observed TTO values for the 42 states in the study and to predictions based on a model estimated directly from the TTO values. Models were evaluated using the intraclass correlation coefficient (ICC between predictions and mean observations, and the root mean squared error of predictions at the individual level. Results Agreement between predicted valuations from the rank model and observed TTO values was very high, with an ICC of 0.97, only marginally lower than for predictions based on the model estimated directly from TTO values (ICC = 0.99. Individual-level errors were also comparable in the two models, with root mean squared errors of 0.503 and 0.496 for the rank-based and TTO-based predictions, respectively. Conclusions
Forward projections of energy market competitiveness rankings
International Nuclear Information System (INIS)
2008-01-01
By July 2007, the provisions of the second Internal Market Directives for Electricity and Gas had been implemented in the majority of EU Member States. These fundamental changes in market opening, ownership structures and network access conditions, together with the increasing maturity of liberalised trading and retail markets, can be expected to affect the behaviour of existing and potential market participants, consequently affecting the energy market competitiveness of alternative countries. While the UK was the most competitive of the EU and G7 energy markets in 2006, the dynamic effect of the liberalisation programme across Continental Europe may challenge that position in the future. This report assesses how competitiveness rankings may evolve in the future, identifying changes that could take place in the UK and the rest of the EU from 2007 to 201 1. It goes on to explore the potential risk that the competitiveness of the UK's energy markets will decline relative to those of other countries in the EU and G7, to the extent that the PSA target will not be met. A detailed analysis of the potential changes in the UK markets is undertaken, including the development of upside and downside scenarios showing the positive and negative effects of changes in market structure and behaviour on the UK's competitiveness score. Changes in market structures required for energy markets in both the 2006 comparator group and the rest of the EU to become as competitive as the UK are then assessed, along with the plausibility of these changes given the current and future market, legislative and regulatory environments
Development and first application of an operating events ranking tool
International Nuclear Information System (INIS)
Šimić, Zdenko; Zerger, Benoit; Banov, Reni
2015-01-01
Highlights: • A method using analitycal hierarchy process for ranking operating events is developed and tested. • The method is applied for 5 years of U.S. NRC Licensee Event Reports (1453 events). • Uncertainty and sensitivity of the ranking results are evaluated. • Real events assessment shows potential of the method for operating experience feedback. - Abstract: The operating experience feedback is important for maintaining and improving safety and availability in nuclear power plants. Detailed investigation of all events is challenging since it requires excessive resources, especially in case of large event databases. This paper presents an event groups ranking method to complement the analysis of individual operating events. The basis for the method is the use of an internationally accepted events characterization scheme that allows different ways of events grouping and ranking. The ranking method itself consists of implementing the analytical hierarchy process (AHP) by means of a custom developed tool which allows events ranking based on ranking indexes pre-determined by expert judgment. Following the development phase, the tool was applied to analyze a complete set of 5 years of real nuclear power plants operating events (1453 events). The paper presents the potential of this ranking method to identify possible patterns throughout the event database and therefore to give additional insights into the events as well as to give quantitative input for the prioritization of further more detailed investigation of selected event groups
University Rankings: How Well Do They Measure Library Service Quality?
Jackson, Brian
2015-01-01
University rankings play an increasingly large role in shaping the goals of academic institutions and departments, while removing universities themselves from the evaluation process. This study compares the library-related results of two university ranking publications with scores on the LibQUAL+™ survey to identify if library service quality--as…
Monte Carlo methods of PageRank computation
Litvak, Nelli
2004-01-01
We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink
Positioning Open Access Journals in a LIS Journal Ranking
Xia, Jingfeng
2012-01-01
This research uses the h-index to rank the quality of library and information science journals between 2004 and 2008. Selected open access (OA) journals are included in the ranking to assess current OA development in support of scholarly communication. It is found that OA journals have gained momentum supporting high-quality research and…
Feeding rank in the Derby eland: lessons for management ...
African Journals Online (AJOL)
High-ranking individuals in good condition limited access to supplementary feeding to their lower-ranking herdmates. Effective supplementary feeding should therefore be provided in excess amounts to enable younger and weaker individuals in need to benefit from it, despite their lower positions in the hierarchy. Keywords: ...
Balancing exploration and exploitation in learning to rank online
Hofmann, K.; Whiteson, S.; de Rijke, M.
2011-01-01
As retrieval systems become more complex, learning to rank approaches are being developed to automatically tune their parameters. Using online learning to rank approaches, retrieval systems can learn directly from implicit feedback, while they are running. In such an online setting, algorithms need
Ranking production units according to marginal efficiency contribution
DEFF Research Database (Denmark)
Ghiyasi, Mojtaba; Hougaard, Jens Leth
League tables associated with various forms of service activities from schools to hospitals illustrate the public need for ranking institutions by their productive performance. We present a new method for ranking production units which is based on each units marginal contribution to the technical...
Trachomatous Scar Ranking: A Novel Outcome for Trachoma Studies.
Baldwin, Angela; Ryner, Alexander M; Tadesse, Zerihun; Shiferaw, Ayalew; Callahan, Kelly; Fry, Dionna M; Zhou, Zhaoxia; Lietman, Thomas M; Keenan, Jeremy D
2017-06-01
AbstractWe evaluated a new trachoma scarring ranking system with potential use in clinical research. The upper right tarsal conjunctivas of 427 individuals from Ethiopian villages with hyperendemic trachoma were photographed. An expert grader first assigned a scar grade to each photograph using the 1981 World Health Organization (WHO) grading system. Then, all photographs were ranked from least (rank = 1) to most scarring (rank = 427). Photographic grading found 79 (18.5%) conjunctivae without scarring (C0), 191 (44.7%) with minimal scarring (C1), 105 (24.6%) with moderate scarring (C2), and 52 (12.2%) with severe scarring (C3). The ranking method demonstrated good internal validity, exhibiting a monotonic increase in the median rank across the levels of the 1981 WHO grading system. Intrarater repeatability was better for the ranking method (intraclass correlation coefficient = 0.84, 95% CI = 0.74-0.94). Exhibiting better internal and external validity, this ranking method may be useful for evaluating the difference in scarring between groups of individuals.
Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions
The Optimal Ranking Regime (ORR) method was used to identify 6-100 year time windows containing significant ranking sequences in 55 western U.S. streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method’s ability t...
The Ranking Phenomenon and the Experience of Academics in Taiwan
Lo, William Yat Wai
2014-01-01
The primary aim of the paper is to examine how global university rankings have influenced the higher education sector in Taiwan from the perspective of academics. A qualitative case study method was used to examine how university ranking influenced the Taiwanese higher education at institutional and individual levels, respectively, thereby…
Ranking Regime and the Future of Vernacular Scholarship
Ishikawa, Mayumi
2014-01-01
World university rankings and their global popularity present a number of far-reaching impacts for vernacular scholarship. This article employs a multidimensional approach to analyze the ranking regime's threat to local scholarship and knowledge construction through a study of Japanese research universities. First, local conditions that have led…
The Distribution of the Sum of Signed Ranks
Albright, Brian
2012-01-01
We describe the calculation of the distribution of the sum of signed ranks and develop an exact recursive algorithm for the distribution as well as an approximation of the distribution using the normal. The results have applications to the non-parametric Wilcoxon signed-rank test.
Ranking Exponential Trapezoidal Fuzzy Numbers by Median Value
Directory of Open Access Journals (Sweden)
S. Rezvani
2013-12-01
Full Text Available In this paper, we want represented a method for ranking of two exponential trapezoidal fuzzy numbers. A median value is proposed for the ranking of exponential trapezoidal fuzzy numbers. For the validation the results of the proposed approach are compared with different existing approaches.
Rank dependent expected utility models of tax evasion.
Erling Eide
2001-01-01
In this paper the rank-dependent expected utility theory is substituted for the expected utility theory in models of tax evasion. It is demonstrated that the comparative statics results of the expected utility, portfolio choice model of tax evasion carry over to the more general rank dependent expected utility model.
Doerr, Timothy; Alves, Gelio; Yu, Yi-Kuo
2006-03-01
Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time. This suggests a way to efficiently find approximate solutions - - find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the fininte number of high- ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks - - peptide sequencing using tandem mass spectrometry data.
An Improved Fuzzy Based Missing Value Estimation in DNA Microarray Validated by Gene Ranking
Directory of Open Access Journals (Sweden)
Sujay Saha
2016-01-01
Full Text Available Most of the gene expression data analysis algorithms require the entire gene expression matrix without any missing values. Hence, it is necessary to devise methods which would impute missing data values accurately. There exist a number of imputation algorithms to estimate those missing values. This work starts with a microarray dataset containing multiple missing values. We first apply the modified version of the fuzzy theory based existing method LRFDVImpute to impute multiple missing values of time series gene expression data and then validate the result of imputation by genetic algorithm (GA based gene ranking methodology along with some regular statistical validation techniques, like RMSE method. Gene ranking, as far as our knowledge, has not been used yet to validate the result of missing value estimation. Firstly, the proposed method has been tested on the very popular Spellman dataset and results show that error margins have been drastically reduced compared to some previous works, which indirectly validates the statistical significance of the proposed method. Then it has been applied on four other 2-class benchmark datasets, like Colorectal Cancer tumours dataset (GDS4382, Breast Cancer dataset (GSE349-350, Prostate Cancer dataset, and DLBCL-FL (Leukaemia for both missing value estimation and ranking the genes, and the results show that the proposed method can reach 100% classification accuracy with very few dominant genes, which indirectly validates the biological significance of the proposed method.
UTV Expansion Pack: Special-Purpose Rank-Revealing Algorithms
DEFF Research Database (Denmark)
Fierro, Ricardo D.; Hansen, Per Christian
2005-01-01
This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank-r...... values of a sparse or structured matrix. These new algorithms have applications in signal processing, optimization and LSI information retrieval.......This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank......-revealing VSV decompositions, we expand the algorithms for the ULLV decomposition of a matrix pair to handle interference-type problems with a rank-deficient covariance matrix, and we provide a robust and reliable Lanczos algorithm which - despite its simplicity - is able to capture all the dominant singular...
Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.
Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A
2017-11-01
Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.
A model-based approach to operational event groups ranking
Energy Technology Data Exchange (ETDEWEB)
Simic, Zdenko [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)
2014-04-15
The operational experience (OE) feedback provides improvements in all industrial activities. Identification of the most important and valuable groups of events within accumulated experience is important in order to focus on a detailed investigation of events. The paper describes the new ranking method and compares it with three others. Methods have been described and applied to OE events utilised by nuclear power plants in France and Germany for twenty years. The results show that different ranking methods only roughly agree on which of the event groups are the most important ones. In the new ranking method the analytical hierarchy process is applied in order to assure consistent and comprehensive weighting determination for ranking indexes. The proposed method allows a transparent and flexible event groups ranking and identification of the most important OE for further more detailed investigation in order to complete the feedback. (orig.)
A Case-Based Reasoning Method with Rank Aggregation
Sun, Jinhua; Du, Jiao; Hu, Jian
2018-03-01
In order to improve the accuracy of case-based reasoning (CBR), this paper addresses a new CBR framework with the basic principle of rank aggregation. First, the ranking methods are put forward in each attribute subspace of case. The ordering relation between cases on each attribute is got between cases. Then, a sorting matrix is got. Second, the similar case retrieval process from ranking matrix is transformed into a rank aggregation optimal problem, which uses the Kemeny optimal. On the basis, a rank aggregation case-based reasoning algorithm, named RA-CBR, is designed. The experiment result on UCI data sets shows that case retrieval accuracy of RA-CBR algorithm is higher than euclidean distance CBR and mahalanobis distance CBR testing.So we can get the conclusion that RA-CBR method can increase the performance and efficiency of CBR.
Feasibility study of component risk ranking for plant maintenance
International Nuclear Information System (INIS)
Ushijima, Koji; Yonebayashi, Kenji; Narumiya, Yoshiyuki; Sakata, Kaoru; Kumano, Tetsuji
1999-01-01
Nuclear power is the base load electricity source in Japan, and reduction of operation and maintenance cost maintaining or improving plant safety is one of the major issues. Recently, Risk Informed Management (RIM) is focused as a solution. In this paper, the outline regarding feasibility study of component risk ranking for plant maintenance for a typical Japanese PWR plant is described. A feasibility study of component risk raking for plant maintenance optimization is performed on check valves and motor-operated valves. Risk ranking is performed in two steps using probabilistic analysis (quantitative method) for risk ranking of components, and deterministic examination (qualitative method) for component review. In this study, plant components are ranked from the viewpoint of plant safety / reliability, and the applicability for maintenance is assessed. As a result, distribution of maintenance resources using risk ranking is considered effective. (author)
CNN-based ranking for biomedical entity normalization.
Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong
2017-10-03
Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.
Risk-informed ranking of engineering projects
International Nuclear Information System (INIS)
Jyrkama, M.; Pandey, M.
2011-01-01
Refurbishment planning requires prudent investment decisions with respect to the various systems and components at the station. These decisions are influenced by many factors, including engineering, safety, regulatory, economic, and political constraints. From an engineering perspective, the concept of cost-benefit analysis is a common way to allocate capital among various projects. Naturally, the 'best' or optimal project should have the lowest cost and the highest benefit. In the context of risk-informed decision making (RIDM), a process that has been widely embraced by the global nuclear community, the costs and benefits must further be 'weighted' by probabilities to estimate the underlying risk associated with the various planning alternatives. The main purpose of this study is to illustrate how risk and reliability information can be integrated into the refurbishment planning process to facilitate more objective and transparent investment decisions. The methodology is based on the concept of generation risk assessment (GRA) which provides a systematic approach for balancing investment costs with the reduction in overall financial risk. In addition to reliability predictions, the model provides estimates for the level of risk reduction associated with each system/project and also the break-even point for investment. This information is vital for project ranking, and helps to address the key question of whether capital investment should be made in the most risk critical systems, or in systems that reduce the overall risk the most. The application of the proposed methodology requires only basic information regarding the current reliability of each engineering system, which should be readily available from plant records and routine condition assessments. Because the methodology can be readily implemented in a Microsoft Excel spreadsheet, all plausible (e.g., bounding) planning scenarios, with or without investment, can also be generated quickly and easily, while
Ranking and validation of spallation models for isotopic production cross sections of heavy residua
Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef
2017-07-01
The production cross sections of isotopically identified residual nuclei of spallation reactions induced by 136Xe projectiles at 500AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed.
Ranking and validation of spallation models for isotopic production cross sections of heavy residua
Energy Technology Data Exchange (ETDEWEB)
Sharma, Sushil K.; Kamys, Boguslaw [Jagiellonian University, The Marian Smoluchowski Institute of Physics, Krakow (Poland); Goldenbaum, Frank; Filges, Detlef [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany)
2017-07-15
The production cross sections of isotopically identified residual nuclei of spallation reactions induced by {sup 136}Xe projectiles at 500 AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed. (orig.)
U.S. nuclear plant statistics, 8th Edition
International Nuclear Information System (INIS)
Anon.
1993-01-01
Wolf Creek was the lowest cost nuclear plant in 1992 according to the annual plant rankings in UDI's comprehensive annual statistical factbook for US nuclear power plants (operating, under construction, deferred, canceled or retired). The book covers operating and maintenance expenses for the past year (1992), annual and lifetime performance statistics, capitalization expenses and changes in capitalization, construction cost information, joint ownership of plants and canceled plants. First published for CY1984 statistics
Expert opinion on landslide susceptibility elicted by probabilistic inversion from scenario rankings
Lee, Katy; Dashwood, Claire; Lark, Murray
2016-04-01
For many natural hazards the opinion of experts, with experience in assessing susceptibility under different circumstances, is a valuable source of information on which to base risk assessments. This is particularly important where incomplete process understanding, and limited data, limit the scope to predict susceptibility by mechanistic or statistical modelling. The expert has a tacit model of a system, based on their understanding of processes and their field experience. This model may vary in quality, depending on the experience of the expert. There is considerable interest in how one may elicit expert understanding by a process which is transparent and robust, to provide a basis for decision support. One approach is to provide experts with a set of scenarios, and then to ask them to rank small overlapping subsets of these with respect to susceptibility. Methods of probabilistic inversion have been used to compute susceptibility scores for each scenario, implicit in the expert ranking. It is also possible to model these scores as functions of measurable properties of the scenarios. This approach has been used to assess susceptibility of animal populations to invasive diseases, to assess risk to vulnerable marine environments and to assess the risk in hypothetical novel technologies for food production. We will present the results of a study in which a group of geologists with varying degrees of expertise in assessing landslide hazards were asked to rank sets of hypothetical simplified scenarios with respect to land slide susceptibility. We examine the consistency of their rankings and the importance of different properties of the scenarios in the tacit susceptibility model that their rankings implied. Our results suggest that this is a promising approach to the problem of how experts can communicate their tacit model of uncertain systems to those who want to make use of their expertise.
Meaney, Christopher; Moineddin, Rahim
2014-01-24
In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the
Handling missing data in ranked set sampling
Bouza-Herrera, Carlos N
2013-01-01
The existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called R