WorldWideScience

Sample records for two-qubit quantum states

  1. Extremal quantum correlations: Experimental study with two-qubit states

    Energy Technology Data Exchange (ETDEWEB)

    Chiuri, A.; Mataloni, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica (INO-CNR), L.go E. Fermi 6, I-50125 Firenze (Italy); Vallone, G. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, Compendio del Viminale, I-00184 Roma (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)

    2011-08-15

    We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.

  2. Quantum discord for two-qubit X-states

    CERN Document Server

    Ali, Mazhar; Alber, Gernot

    2010-01-01

    Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. In general, this correlation is different from entanglement, and quantum discord may be nonzero even for certain separable states. Even in the simple case of bipartite quantum systems, this different kind of quantum correlation has interesting and significant applications in quantum information processing. So far, quantum discord has been calculated explicitly only for a rather limited set of two-qubit quantum states and expressions for more general quantum states are not known. In this paper, we derive explicit expressions for quantum discord for a larger class of two-qubit states, namely, a seven-parameter family of so called X-states that have been of interest in a variety of contexts in the field. We also study the relation between quantum discord, classical correlation, and entanglement for a number of two-qubit states to demonstrate that they ar...

  3. Controlled Remote Preparation of a Two-Qubit State via an Asymmetric Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-Yin

    2011-01-01

    I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers.The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zeilinger (GHZ) state and a W-type state.I try to realize the remote two-qubit preparation by using the usual projective measurement and the method of positive operator-valued measure, respectively.The corresponding success probabilities of the scheme with different methods as well as the total classical communication cost required in this scheme are also calculated.

  4. On the quantum discord of two-qubit X-states

    CERN Document Server

    Chen, Qing; Yu, Sixia; Yi, X X; Oh, C H

    2011-01-01

    Quantum discord provides a measure for quantifying quantum correlations beyond entanglement and is very hard to compute even for two-qubit states because of the minimization over all possible measurements. Recently a simple algorithm to evaluate the quantum discord for two-qubit X-states is proposed by Ali, Rau and Alber [Phys. Rev. A 81, 042105 (2010)] with minimization taken over only a few cases. Here we shall at first identify a class of X-states, whose quantum discord can be evaluated analytically without any minimization, for which their algorithm is valid, and also identify a family of X-states for which their algorithm fails. And then we demonstrate that this special family of X-states provides furthermore an explicit example for the inequivalence between the minimization over positive operator-valued measures and that over von Neumann measurements.

  5. Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels

    Science.gov (United States)

    Adepoju, Adenike Grace; Falaye, Babatunde James; Sun, Guo-Hua; Camacho-Nieto, Oscar; Dong, Shi-Hai

    2017-02-01

    This letter reports the influence of noisy channels on JRSP of two-qubit equatorial state. We present a protocol for JRSP of two-qubit equatorial state. Afterward, we investigate the effects of five quantum noises on the protocol. We find that the system loses some of its properties as consequence of unwanted interactions with environment. For instance, within the domain 0 < λ < 0.65, the information lost via transmission of qubits in amplitude channel is most minimal, while for 0.65 < λ ≤ 1, the information lost in phase flip channel becomes the most minimal. Also, for any given λ, the information transmitted through depolarizing channel has the least chance of success.

  6. Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Fu; Zhang Shou

    2009-01-01

    This paper proposes a method to measure directly the concurrence of an arbitrary two-qubit pure state based on a generalized Grover quantum iteration algorithm and a phase estimation algorithm. The concurrence can be calculated by applying quantum algorithms to two available copies of the bipartite system, and a final measurement on the auxiliary working qubits gives a better estimation of the concurrence. This method opens new prospects of entanglement measure by the application of quantum algorithms. The implementation of the protocol would be an important step toward quantum information processing and more complex entanglement measure of the finite-dimensional quantum system with an arbitrary number of qubits.

  7. Conditional purity and quantum correlation measures in two qubit mixed states

    Science.gov (United States)

    Rebón, L.; Rossignoli, R.; Varga, J. J. M.; Gigena, N.; Canosa, N.; Iemmi, C.; Ledesma, S.

    2016-11-01

    We analyze and show experimental results of the conditional purity, the quantum discord and other related measures of quantum correlation in mixed two-qubit states constructed from a pair of photons in identical polarization states. The considered states are relevant for the description of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean analytical expressions for the conditional local purity and other correlation measures obtained as a result of a remote local projective measurement, which are fully verified by the experimental results. A simple exact expression for the quantum discord of these states in terms of the maximum conditional purity is also derived.

  8. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    Energy Technology Data Exchange (ETDEWEB)

    Curilef, S [Departamento de Fisica, Universidad Catolica del Norte, Antofagasta (Chile); Zander, C; Plastino, A R [Physics Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: arplastino@maple.up.ac.za

    2008-11-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time {tau} required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.

  9. Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state

    Indian Academy of Sciences (India)

    Prasanta K Panigrahi; Siddharth Karumanchi; Sreraman Muralidharan

    2009-09-01

    We investigate the usefulness of the highly entangled five-partite cluster and Brown states for the quantum information splitting (QIS) of a special kind of two-qubit state using remote state preparation. In our schemes, the information that is to be shared is known to the sender. We show that, QIS can be accomplished with just two classical bits, as opposed to four classical bits, when the information that is to be shared is unknown to the sender. The present algorithm, demonstrated through the cluster and Brown states is deterministic as compared to the previous works in which it was probabilistic.

  10. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    Science.gov (United States)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  11. Exact two-qubit universal quantum circuit

    CERN Document Server

    Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar

    2003-01-01

    We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit gates. Each block in this circuit is given in a closed form solution. We also analyze the efficiency of different entangling gates, and find that exactly half of all the controlled-unitary gates can be used to implement two-qubit operations as efficiently as the commonly used CNOT gate.

  12. Properties on the distant distribution of entanglement for arbitrary two-qubit pure states via noisy quantum channels

    Institute of Scientific and Technical Information of China (English)

    Wang Qiong; Li Ji-Xin; Zeng Hao-Sheng

    2009-01-01

    This paper investigates the change of entanglement for transmitting an arbitrarily entangled two-qubit pure state via one of three typical kinds of noisy quantum channels:amplitude damping quantum channel,phase damping quantum channel and depolarizing quantum channel.It finds,in all these three cases,that the output distant entanglement(measured by concurrence)reduces proportionately with respect to its initial amount,and the decaying ratio is determined only by the noisy characteristics of quantum channels and independent of the form of initial input state.

  13. A Robust Scheme for Two-Qubit Grover Quantum Search Alogrithm Based on the Motional and Internal States of a Single Cold Trapped Ion

    Institute of Scientific and Technical Information of China (English)

    秦涛; 高克林

    2003-01-01

    We propose a scheme to implement a two-qubit Grover quantum search algorithm.The novelty in the proposal is that the motional state is introduced into the computation and the internal state within a single cold trapped ion.The motional and internal states of the ion are manipulated as two qubits by the laser pulses to accomplish an example of a Grover algorithm based on the two qubits.The composite laser pulses that are applied to implement the Grover algorithm have been designed in detail.The issues concerning measurement and decoherence are discussed.

  14. Quantum Entanglement and Correlation of Two Qubit Atoms Interacting with the Coherent State Optical Field

    Science.gov (United States)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2017-10-01

    Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.

  15. Quantum Entanglement and Correlation of Two Qubit Atoms Interacting with the Coherent State Optical Field

    Science.gov (United States)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2017-08-01

    Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.

  16. Dynamical Suppression of Decoherence in Two-Qubit Quantum Memory

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.

  17. Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu

    2017-02-01

    In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs.

  18. Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu

    2017-01-01

    In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs. PMID:28145467

  19. Two-qubit quantum cloning machine and quantum correlation broadcasting

    Science.gov (United States)

    Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad

    2016-11-01

    Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.

  20. Robust two-qubit quantum registers.

    Science.gov (United States)

    Grigorenko, I A; Khveshchenko, D V

    2005-02-04

    We carry out a systematic analysis of a pair of coupled qubits, each of which is subject to its own dissipative environment, and argue that a combination of the interqubit couplings which provides for the lowest possible decoherence rates corresponds to the incidence of a double spectral degeneracy in the two-qubit system. We support this general argument by the results of an evolutionary genetic algorithm which can also be used for optimizing time-dependent processes (gates) and their sequences that implement various quantum computing protocols.

  1. Optimal copying of entangled two-qubit states

    CERN Document Server

    Novotny, J; Jex, I

    2004-01-01

    We investigate the problem of copying pure two-qubit states of a given degree of entanglement in an optimal way. Completely positive covariant quantum operations are constructed which maximize the fidelity of the output states with respect to two separable copies. These optimal copying processes hint at the intricate relationship between fundamental laws of quantum theory and entanglement.

  2. Quantum state tomography for quadrupole nuclei and its applications on a two-qubit system

    Energy Technology Data Exchange (ETDEWEB)

    Bonk, F.A.; Azevedo, E.R. de; Mantovani, G.L.; Bonagamba, T.J. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica]. E-mail: azevedo@if.sc.usp.br; Sarthour, R.S.; Bulnes, J.D.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: sarthour@cbpf.br; apguima@cbpf.br; ivan@cbpf.br; Freitas, J.C.C. [Espirito Santo Univ., Vitoria (Brazil). Dept. de Fisica

    2004-05-01

    A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First, it is shown that upon appropriate phase cycling, the NMR intensities of quadrupole nuclei depend only on diagonal elements of the density matrix. Thus, a method for obtaining the density matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine phase-controlled selective radiofrequency pulses, was derived. The use of the method is exemplified through {sup 23} Na NMR (nuclear spin I = 3/2) in a lyotropic liquid-crystal at room temperature, in three applications: (a) the tomography of pseudo-pure states; (b) the tomography of the quadrupole free evolution of the density matrix, and (c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information processing, as well as generalizations for higher spins, are discussed. (author)

  3. Entangled Bloch Spheres: Bloch Matrix And Two Qubit State Space

    CERN Document Server

    Gamel, Omar

    2016-01-01

    We represent a two qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parameterize and visualize the two qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single ...

  4. Minimum construction of two-qubit quantum operations

    CERN Document Server

    Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar

    2003-01-01

    Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. We also demonstrate that for the highly scalable Josephson junction charge qubits, the B gate is also more easily and quickly generated than the CNOT gate for physically feasible parameters.

  5. Completely positive covariant two-qubit quantum processes and optimal quantum NOT operations for entangled qubit pairs

    CERN Document Server

    Novotny, J; Jex, I

    2006-01-01

    The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.

  6. Einstein-Podolsky-Rosen steering and quantum steering ellipsoids: Optimal two-qubit states and projective measurements

    Science.gov (United States)

    McCloskey, R.; Ferraro, A.; Paternostro, M.

    2017-01-01

    We identify the families of states that maximize some recently proposed quantifiers of Einstein-Podolsky-Rosen (EPR) steering and the volume of the quantum steering ellipsoid (QSE). The optimal measurements which maximize genuine EPR steering measures are discussed and we develop a way to find them using the QSE. We thus explore the links between genuine EPR steering and the QSE and introduce states that can be the most useful for one-sided device-independent quantum cryptography for a given amount of noise.

  7. Quantum entanglement for two qubits in a nonstationary cavity

    Science.gov (United States)

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2016-11-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  8. Quantum entanglement for two qubits in a nonstationary cavity

    CERN Document Server

    Berman, Oleg L; Lozovik, Yurii E

    2016-01-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by non-adiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  9. Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    CERN Document Server

    Cabello, A

    2002-01-01

    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.

  10. Assisted Cloning and Orthogonal Complementing of an Arbitrary Unknown Two-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    FANG Ming; LIU Yi-Min; LIU Jun; SHI Shou-Hua; ZHANG Zhan-Jun

    2006-01-01

    Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.

  11. Engineering extremal two-qubit entangled states with maximally entangled Gaussian light

    CERN Document Server

    Adesso, G; Illuminati, F; Paternostro, M

    2010-01-01

    We study state engineering induced by bilinear interactions between two remote qubits and light fields prepared in two-mode Gaussian states. The attainable two-qubit states span the entire physically allowed region in the entanglement-vs-global-purity plane. We show that two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. The target two-qubit entanglement is determined quantitatively only by the purities of the two-mode Gaussian resource. Thus, a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control completely the engineering of extremally entangled two-qubit states, which can be realized in realistic scenarios of cavity and circuit quantum electrodynamics.

  12. Remote two-qubit state creation and its robustness

    Science.gov (United States)

    Stolze, J.; Zenchuk, A. I.

    2016-08-01

    We consider the problem of remote two-qubit state creation using the two-qubit excitation pure initial state of the sender. The communication line is based on the optimized boundary-controlled chain with two pairs of properly adjusted coupling constants. We show that the communication line can be characterized by a set of parameters independent of the initial state of the sender. These parameters are permanent attributes of a communication line and can be either calculated theoretically or measured in experiment. In particular, they determine the creatable subregion of the receiver's state space. The creation of a particular state within the creatable region is achieved by a proper choice of the independent parameters of the sender's initial state (control parameters) and reduces to the solvability of a certain system of algebraic equations. The creation of the two-qubit Werner state is considered as an example. We also study the effects of imperfections of the chain on the state creation.

  13. Tomographic causal analysis of two-qubit states and tomographic discord

    Energy Technology Data Exchange (ETDEWEB)

    Kiktenko, Evgeny [Bauman Moscow State Technical University, 2nd Baumanskaya St., 5, Moscow 105005 (Russian Federation); Geoelectromagnetic Research Center of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, PO Box 30, Troitsk, Moscow Region 142190 (Russian Federation); Fedorov, Aleksey, E-mail: akf@rqc.ru [Bauman Moscow State Technical University, 2nd Baumanskaya St., 5, Moscow 105005 (Russian Federation); Russian Quantum Center, Novaya St. 100, Skolkovo, Moscow 143025 (Russian Federation)

    2014-05-01

    We study a behavior of two-qubit states subject to tomographic measurement. In this Letter we propose a novel approach to definition of asymmetry in quantum bipartite state based on its tomographic Shannon entropies. We consider two types of measurement bases: the first is one that diagonalizes density matrices of subsystems and is used in a definition of tomographic discord, and the second is one that maximizes Shannon mutual information and relates to symmetrical form quantum discord. We show how these approaches relate to each other and then implement them to the different classes of two-qubit states. Consequently, new subclasses of X-states are revealed.

  14. Quantum and classical correlations for a two-qubit X structure density matrix

    Institute of Scientific and Technical Information of China (English)

    Ding Bang-Fu; Wang Xiao-Yun; Zhao He-Ping

    2011-01-01

    We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix.Based on the characteristics of the expressions,the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method.We explain the relationships among quantum discord,classical correlation,and entanglement,and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state.The new method,which is different from previous approaches,has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state,such as a mixed state.

  15. Entanglement dynamics of two-qubit systems in different quantum noises

    Institute of Scientific and Technical Information of China (English)

    Pan Chang-Ning; Li-Fei; Fang Jian-Shu; Fang Mao-Fa

    2011-01-01

    The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise.

  16. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  17. Note on Entanglement of an Arbitrary State of Two Qubits

    Institute of Scientific and Technical Information of China (English)

    WANG An-Min

    2000-01-01

    It is shown that the norm of the polarization vector of the reduced density matrix can characterize the entangle ment of two qubits and so it is defined as a simple measure of entanglement. It is then extended to the generalized entanglement of polarization vector. It is proved that the entanglement of formation belongs to the generalized entanglement of polarization vector. Under the local general measurement and classical communication how this generalized entanglement of polarization vector changes is proved strictly and so the first and second laws of quantum information processing are verified clearly.

  18. Teleportation of an Arbitrary Two-qubit State *

    Institute of Scientific and Technical Information of China (English)

    庞霖; 严瑛白; 金国藩; 韦辉; 郭履容

    2001-01-01

    A scheme to teleport an unknown two-qubit state from Alice (the sender) to Bob (the receiver) using two Einstein-Podolsky-Rosen (EPR) pairs is presented, each EPR pair being shared by both Alice and Bob. Firstly, Alice combines each of the two particles in the teleported state with an EPR particle and makes Bell state measurement on each combination. Then she transmits the outcomes of her measurements to Bob classically. According to Alice′s measurement results, Bob can perform appropriate unitary operations on his two EPR particles to retrieve the initial state.

  19. Effects of Noise on Joint Remote State Preparation of an Arbitrary Equatorial Two-Qubit State

    Science.gov (United States)

    Zhao, Hong-xia; Huang, Li

    2017-03-01

    By using a six-qubit cluster state as the quantum channel, we investigat the joint remote state preparation of an arbitrary equatorial two-qubit state. We analytically obtain the fidelities of the joint remote state preparation process in noisy environments, such as the amplitude-damping noise and phase-damping noise. In our scheme, the two different noise including amplitude-damping noise and the phase-damping noise only affect the travel qubits of the quantum channel, and then we show that the fidelities in these two noisy cases only depend on the decoherence noisy rate.

  20. Deterministic Joint Remote Preparation of an Arbitrary Two-Qubit State Using the Cluster State

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-Ming; CHEN Xiu-Bo; YANG Yi-Xian

    2013-01-01

    Recently,deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability.In this paper,we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource.Compared with previous schemes,our scheme has high efficiency since less quantum resource is required,some additional unitary operations and measurements are unnecessary.We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.

  1. The two-qubit amplitude damping channel: Characterization using quantum stabilizer codes

    Science.gov (United States)

    Omkar, S.; Srikanth, R.; Banerjee, Subhashish; Shaji, Anil

    2016-10-01

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  2. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  3. System-environment correlations for dephasing two-qubit states coupled to thermal baths

    Science.gov (United States)

    Costa, A. C. S.; Beims, M. W.; Strunz, W. T.

    2016-05-01

    Based on the exact dynamics of a two-qubit system and environment, we investigate system-environment (SE) quantum and classical correlations. The coupling is chosen to represent a dephasing channel for one of the qubits and the environment is a proper thermal bath. First we discuss the general issue of dilation for qubit phase damping. Based on the usual thermal bath of harmonic oscillators, we derive criteria of separability and entanglement between an initial X state and the environment. Applying these criteria to initial Werner states, we find that entanglement between the system and environment is built up in time for temperatures below a certain critical temperature Tcrit. On the other hand, the total state remains separable during those short times that are relevant for decoherence and loss of entanglement in the two-qubit state. Close to Tcrit the SE correlations oscillate between separable and entangled. Even though these oscillations are also observed in the entanglement between the two qubits, no simple relation between the loss of entanglement in the two-qubit system and the build-up of entanglement between the system and environment is found.

  4. Two-Qubit Quantum Logic Gate in Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HOU Jing-Min; TIAN Li-Jun; GE Mo-Lin

    2005-01-01

    @@ We propose a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled singlemolecule magnets, [Mn4]2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between a pair of the four quantum computing bases and between the quantum computing bases and excited states are evaluated and analysed.

  5. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    Science.gov (United States)

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  6. Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level on an NMR quantum-information processor

    OpenAIRE

    Dorai, Kavita; Arvind; Kumar, Anil

    2001-01-01

    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.

  7. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    OpenAIRE

    Stefanie Barz; Ivan Kassal; Martin Ringbauer; Yannick Ole Lipp; Borivoje Dakić; Alán Aspuru-Guzik; Philip Walther

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, w...

  8. One-Way Information Deficit and Geometry for a Class of Two-Qubit States

    Institute of Scientific and Technical Information of China (English)

    WANG Yao-Kun; MA Teng; LI Bo; WANG Zhi-Xi

    2013-01-01

    The work deficit,as introduced by Jonathan Oppenheim et al.[Phys.Rev.Lett.89 (2002) 180402]is a good measure of the quantum correlations in a state and provides a new standpoint for understanding quantum non-locality.In this paper,we analytically evaluate the one-way information deficit (OWID) for the Bell-diagonal states and a class of two-qubit states and further give the geometry picture for OWID.The dynamic behavior of the OWID under decoherence channel is investigated and it is shown that the OWID of some classes of X states is more robust against the decoherence than the entanglement.

  9. Entangled Bloch spheres: Bloch matrix and two-qubit state space

    Science.gov (United States)

    Gamel, Omar

    2016-06-01

    We represent a two-qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parametrize and visualize the two-qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single sign. The formalism is used to characterize maximally entangled states, and generalize two qubit isotropic and Werner states.

  10. Scheme for Remote Implementation of Partially Unknown Quantum Operation of Two Qubits in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; WANG An-Min

    2008-01-01

    By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits [An-Min Wang: Phys. Rev. A 74 (2006) 032317] with two-qubit Cnot gate and single qubit logic gates, we present a scheme to implement it in cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction between the atoms and the field of cavity is a nonresonant one. Finally, we analyze the experimental feasibility of this scheme.

  11. Probabilistically Controlled Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measure

    Institute of Scientific and Technical Information of China (English)

    XU Hai-Feng; HAN Lian-Fang

    2013-01-01

    We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit duster-class state and a Bell-class state as the quantum channels.In the scheme,the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs.With their measurement results,the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement.Moreover,the total success probability and classical communication cost of the present protocol are also worked out.

  12. Thermal quantum and classical correlations in two qubit XX model in a nonuniform external magnetic field

    CERN Document Server

    Hassan, Ali Saif M; Joag, Pramod S

    2010-01-01

    We investigate how thermal quantum discord $(QD)$ and classical correlations $(CC)$ of a two qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behaviour of $QD$ differs in many unexpected ways from thermal entanglement $(EN)$. For the nonuniform case, $(B_1= - B_2)$ we find that $QD$ and $CC$ are equal for all values of $(B_1=-B_2)$ and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which $QD$ and $CC$ are equal. The specification of this class and the corresponding conditions is completely general and apply to any quantum system in a state in this class and satisfying these conditions. We further find the relative contributions of $QD$ and $CC$ can be controlled easily by changing the relative magnitudes of $B_1$ and $B_2$.

  13. Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state

    Science.gov (United States)

    Wang, Ming-Ming; Qu, Zhi-Guo; Wang, Wei; Chen, Jin-Guang

    2017-05-01

    Quantum communication has attracted much attention in recent years. Deterministic joint remote state preparation (DJRSP) is an important branch of quantum secure communication which could securely transmit a quantum state with 100% success probability. In this paper, we study DJRSP of an arbitrary two-qubit state in noisy environment. Taking a GHZ based DJRSP scheme of a two-qubit state as an example, we study how the scheme is influenced by all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. We demonstrate that there are four different output states in the amplitude-damping noise, while there is the same output state in each of the other three types of noise. The state-independent average fidelity is presented to measure the effect of noise, and it is shown that the depolarizing noise has the worst effect on the DJRSP scheme, while the amplitude-damping noise or the phase-flip has the slightest effect depending on the noise rate. Our results are also suitable for JRSP and RSP.

  14. A two-qubit photonic quantum processor and its application to solving systems of linear equations.

    Science.gov (United States)

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-08-19

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations.

  15. Bidirectional Mapping between a Biphoton Polarization State and a Single-Photon Two-Qubit State

    Institute of Scientific and Technical Information of China (English)

    LIN Qing

    2010-01-01

    @@ How to manipulate(operate or measure)single photons efficiently and simply is the basic problem in optical quantum information processing.We first present an efficient scheme to transform a biphoton polarization state to a corresponding single-photon state encoded by its polarization and spatial modes.This single-photon state carries both the information of the controlled and target photons.It will make the realization of bipartite positive-operator-valued measurements efficiently and simply.Moreover,the inverse transformation from the single-photon state back to the corresponding biphoton polarization state is also proposed.Using both the transformations,the realization of the arbitrary two-qubit unitary operation is simple with an M-Z interferometer.All the schemes are feasible with the current experimental technology.

  16. Two-Qubit Geometric Phase Gate for Quantum Dot Spins using Cavity Polariton Resonance

    CERN Document Server

    Puri, Shruti; Yamamoto, Yoshihisa

    2012-01-01

    We describe a design to implement a two-qubit geometric phase gate, by which a pair of electrons confined in adjacent quantum dots are entangled. The entanglement is a result of the Coulomb exchange interaction between the optically excited exciton-polaritons and the localized spins. This optical coupling, resembling the electron-electron Ruderman-Kittel-Kasuya-Yosida (RKKY) inter- actions, offers high speed, high fidelity two-qubit gate operation with moderate cavity quality factor Q. The errors due to the finite lifetime of the polaritons can be minimized by optimizing the optical pulse parameters (duration and energy). The proposed design, using electrostatic quantum dots, maximizes entanglement and ensures scalability.

  17. Testing Evolution Equation for Entanglement of Two-Qubit Systems in Noisy Channels on Ensemble Quantum Computers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Han; LUO Jun; REN Ting-Ting; SUN Xian-Ping

    2010-01-01

    @@ We report the experimental demonstration of decoherence dynamics of entanglement for the four Bell states in two-qubit nuclear-spin systems on ensemble quantum computers.Using artificial error operators to simulate noisy channels,we experimentally investigate the effect of noises on the four Bell states,and furthermore observe the time evolution of entanglement for the four Bell states in different noisy channels by calculating concurrences.Our experimental results show that the concurrences of the different Bell states under the same artificial error operations have the same values within the experimental error,and are independent of the different Bell states.These experimental results verify the theoretical evolution equation developed by Konrad et al.[Nature Phys.4 (2008) 99]for two-qubit entanglement.

  18. Nonlocality without inequalities for two-qubit mixed states based on Cabello's nonlocality [rapid communication

    Science.gov (United States)

    Liang, Lin-mei; Li, Cheng-zu

    2005-02-01

    This Letter presents nonlocality without inequalities for two-qubit mixed states. This Letter was mainly sparked by Cabello's work [Phys. Rev. A 65 (2003) 032108] and is an extension of our recent work [Phys. Lett. A 318 (2003) 300].

  19. Controlled Remote State Preparation of an Arbitrary Two-Qubit State via a Six-Qubit Cluster State

    Science.gov (United States)

    Sang, Ming-huang; Nie, Li-ping

    2017-07-01

    In this work, we have demonstrated that a six-qubit cluster state can be used to realize the deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only the special two-qubit projective measurements.

  20. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain

    Institute of Scientific and Technical Information of China (English)

    惠小强; 郝三如; 陈文学; 岳瑞宏

    2002-01-01

    We derive the analytic expression of the concurrence in the quantum Heisenberg XY Z model and discuss the influence of parameters J, △ and Γ on the concurrence. By choosing different values of Γ and △, we obtain the XX, XY, XXX and XXZ chains. The concurrence decreases with increasing temperature. When entanglement. For the XXZ chain, when Γ→∞, the concurence will meet its maximum value Cmax= sinh(1/T)--cosh(1/T)@

  1. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  2. Thermal quantum and classical correlations in a two-qubit XX model in a nonuniform external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ali Saif M [Department of Physics, University of Amran, Amran (Yemen); Lari, Behzad; Joag, Pramod S, E-mail: alisaif73@gmail.co, E-mail: behzadlari1979@yahoo.co, E-mail: pramod@physics.unipune.ac.i [Department of Physics, University of Pune, Pune 411007 (India)

    2010-12-03

    We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B{sub 1} = -B{sub 2}), we find that QD and CC are equal for all values of (B{sub 1} = -B{sub 2}) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B{sub 1} and B{sub 2}. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.

  3. New Maximally Entangled States for Pattern-Association Through Evolutionary Processes in a Two-Qubit System

    Science.gov (United States)

    Singh, Manu Pratap; Rajput, Balwant S.

    2017-04-01

    New set of maximally entangled states (Singh-Rajput MES), constituting orthonormal eigen bases, has been revisited and its superiority and suitability in pattern-association (Quantum Associative Memory, QuAM) have been demonstrated. Using these MES as memory states in the evolutionary process of pattern storage in a two-qubit system, it has been shown that the first two states of Singh-Rajput MES are useful for storing the pattern |11> and the last two of these MES are useful in storing the pattern |10> Recall operations of quantum associate memory (QuAM) have been conducted through evolutionary process in terms of unitary operators by separately choosing Singh-Rajput MES and Bell's MES as memory states and it has been shown that Singh-Rajput MES as valid memory states for recalling the patterns in a two-qubit system are much more suitable than Bell's MES.

  4. A practical scheme for quantum computation with any two-qubit entangling gate

    CERN Document Server

    Bremner, M J; Dodd, J L; Gilchrist, A; Harrow, A W; Mortimer, D; Nielsen, M A; Osborne, T J; Bremner, Michael J.; Dawson, Christopher M.; Dodd, Jennifer L.; Gilchrist, Alexei; Harrow, Aram W.; Mortimer, Duncan; Nielsen, Michael A.; Osborne, Tobias J.

    2002-01-01

    Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not (CNOT), are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. Here we present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this important result for systems of arbitrary finite dimension has been provided by J. L. and R. Brylinski [arXiv:quant-ph/0108062, 2001]; however, their proof relies upon a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical [C. M. Dawson and A. Gilchrist, online implementation of the procedure described herein (2002), http://www.physics.uq.edu.au/gqc/].

  5. Entanglement and entropy engineering of atomic two-qubit states

    CERN Document Server

    Clark, S G

    2002-01-01

    We propose a scheme employing quantum-reservoir engineering to controllably entangle the internal states of two atoms trapped in a high finesse optical cavity. Using laser and cavity fields to drive two separate Raman transitions between metastable atomic ground states, a system is realized corresponding to a pair of two-state atoms coupled collectively to a squeezed reservoir. Phase-sensitive reservoir correlations lead to entanglement between the atoms, and, via local unitary transformations and adjustment of the degree and purity of squeezing, one can prepare entangled mixed states with any allowed combination of linear entropy and entanglement of formation.

  6. Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED

    Science.gov (United States)

    Yang, Chui-Ping; Chu, Shih-I.; Han, Siyuan

    2004-10-01

    We propose a method for realizing two-qubit quantum phase gate with 4-level systems in cavity QED. In this proposal, the two logical states of a qubit are represented by the two lowest levels of each system, and two intermediate levels of each system are utilized to facilitate coherent control and manipulation of quantum states of the qubits. The present method does not involve cavity-photon population during the operation. In addition, we show that the gate can be achieved using only two-step operations.

  7. Relaxation of coherent states in a two-qubit NMR quadrupole system

    Energy Technology Data Exchange (ETDEWEB)

    Sarthour, R.S.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Azevedo, E.R. de; Bonk, F.A.; Vidoto, E.L.G.; Bonagamba, T.J. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Freitas, J.C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2003-07-01

    Full text: Pulse Nuclear Magnetic Resonance (NMR) is one of the most serious candidates as an experimental technique for implementing quantum algorithms. To the present date, this technique is in fact the only one where full demonstrations of quantum algorithms implementations have been carried out, in spite of various technical difficulties. On NMR quantum computers, gates and subroutines are encoded as radiofrequency pulse sequences, which must act over coherent states. These sequences usually take tens of milliseconds to be implemented, and during this time the system relax towards equilibrium. Therefore, studies of relaxation times are very important to the realization of quantum algorithms via NMR. In this work we studied the longitudinal relaxation of various coherent states on the NMR quantum computing two-qubit quadrupole system, {sup 23}Na in C{sub 10}H{sub 21}NaO{sub 4}S liquid crystal at room temperature. Relaxation of pseudo-pure states |00>, |01>, |10>, |11>, pseudo-Bell states |01> + |10> and |00> + |11> and Hadamard states |00> + |01> and |10> + |11> were investigated. Experimental curves follow a multi exponential model of relaxation which takes into account mixed, dipolar magnetic and quadrupolar electric interactions. (author)

  8. Study of Concurrence and D-Concurrence on Two-Qubits Resulted in Pair Coherent States in Language of SU(2) Coherent States

    Institute of Scientific and Technical Information of China (English)

    S. Salimi; A. Mohammadzadet

    2011-01-01

    Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU(2) coherent states.

  9. Demonstrating quantum speed-up in a superconducting two-qubit processor

    CERN Document Server

    Dewes, A; Ong, F R; Schmitt, V; Milman, P; Bertet, P; Vion, D; Esteve, D

    2011-01-01

    We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.

  10. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  11. Probabilistic Teleportation of an Arbitrary Unknown Two-Qubit State via Positive Operator-Valued Measure and Two Non-maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-Yin; WANG Dong; LIU Jun; SHI Shou-Hua

    2006-01-01

    We present a scheme for probabilistically teleporting an arbitrary unknown two-qubit state through a quantum channel made up of two nonidentical non-maximally entangled states. In this scheme, the probabilistic teleportation is realized by using a proper positive operator-valued measure instead of usual projective measurement.

  12. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  13. Towards optimizing two-qubit operations in three-electron double quantum dots

    Science.gov (United States)

    Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.

    The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  14. Entanglement capacity of two-qubit unitary operator for rank two mixed states

    Institute of Scientific and Technical Information of China (English)

    DI; YaoMin

    2007-01-01

    The entanglement capacity of two-qubit unitary operator acting on rank two mixed states in concurrence is discussed. The condition of perfect entangler is the same as that acting on pure states and the entanglement capacity is the mixing parameter v1. For non-perfect entangler, the upper and lower bound of the entanglement capacity are given.……

  15. Entanglement capacity of two-qubit unitary operator for rank two mixed states

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The entanglement capacity of two-qubit unitary operator acting on rank two mixed states in concurrence is discussed. The condition of perfect entangler is the same as that acting on pure states and the entanglement capacity is the mixing parameter v1. For non-perfect entangler, the upper and lower bound of the entanglement capacity are given.

  16. Symmetric two qubit gates

    CERN Document Server

    Sirsi, Swarnamala; Hegde, Subramanya

    2011-01-01

    Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...

  17. Relative entropy of entanglement of two-qubit Ux-invariant states

    Science.gov (United States)

    Wang, Zhen; Wang, Zhi-Xi

    2015-01-01

    It is strictly proved that a two-qubit Ux-invariant state reaches its relative entropy of entanglement (REE) by the separable state having the same matrix structure. We also formulate three quadratic equations for the corresponding closest separable state (CSS) of Ux-invariant states by their symmetric property. Thus, the CSS of Ux-invariant state can be provided. Furthermore, to illustrate our result we consider two concrete examples.

  18. One- and two-qubit logic using silicon-MOS quantum dots

    Science.gov (United States)

    Dzurak, Andrew

    Spin qubits in silicon are excellent candidates for scalable quantum information processing due to their long coherence times and the enormous investment in silicon CMOS technology. While our Australian effort in Si QC has largely focused on spin qubits based upon phosphorus dopant atoms implanted in Si, we are also exploring spin qubits based on single electrons confined in SiMOS quantum dots. Such qubits can have long spin lifetimes T1 = 2 s, while electric field tuning of the conduction-band valley splitting removes problems due to spin-valley mixing. In isotopically enriched Si-28 these SiMOS qubits have a control fidelity of 99.6%, consistent with that required for fault-tolerant QC. By gate-voltage tuning the electron g*-factor, the ESR operation frequency can be Stark shifted by >10 MHz, allowing individual addressability of many qubits. Most recently we have coupled two SiMOS qubits to realize a CNOT gate using exchange-based controlled phase (CZ) operations. The speed of the two-qubit CZ-operations is controlled electrically via the detuning energy and over 100 two-qubit gates can be performed within a coherence time of 8 μs. We acknowledge support from the Australian Research Council (CE11E0001017), the US Army Research Office (W911NF-13-1-0024) and the Australian National Fabrication Facility.

  19. On Universal Gate Libraries and Generic Minimal Two-qubit Quantum Circuits

    CERN Document Server

    Shende, V V; Bullock, S S; Shende, Vivek V.; Markov, Igor L.; Bullock, Stephen S.

    2003-01-01

    We show how to implement exactly an arbitrary two-qubit unitary operation in several universal gate libraries using the smallest possible number of gates. To this end, we prove that n-qubit circuits using CNOT and one-qubit gates require at least ceil((4^n - 3n -1)/4) CNOT gates in the worst case. For two-qubit operators, this yields a lower bound of three gates, which we match with an upper bound of three gates. Using quantum circuit identities, we improve an earlier lower bound of 17 elementary gates by Bullock and Markov to 18, and their upper bound of 23 elementary gates to 18. We also improve upon the generic circuit with six CNOT gates by Zhang et al. (our circuit uses three), and that by Vidal and Dawson with 11 basic gates (we use 10). Given the available results, it appears that some universal gate libraries are at a disadvantage, at least in the sense that no construction is known to produce smallest possible circuits.

  20. Simple Scheme for Directly Measuring Concurrence of Two-Qubit Pure States in One Step

    Institute of Scientific and Technical Information of China (English)

    YANG Rong-Can; LIN Xiu; HUANG Zhi-Ping; LI Hong-Cai

    2009-01-01

    In the present work, a simple scheme for the direct measurement of the concurrence of two-qubit pure states is proposed.The scheme is based on trapped ions and only needs one step when the two identical pure states are given.The vibrational mode in our proposal is only virtually excited, which is important in view of decoherence.Furthermore, the scheme is feasible based on current technologies.

  1. Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2015-08-14

    We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.

  2. Two-qubit correlations via a periodic plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, Nikos; Terzis, Andreas F. [Department of Physics, School of Natural Sciences, University of Patras, Patras 265 04 (Greece); Yannopapas, Vassilios [Department of Physics, National Technical University of Athens, Athens 157 80 (Greece); Paspalakis, Emmanuel, E-mail: paspalak@upatras.gr [Materials Science Department, School of Natural Sciences, University of Patras, Patras 265 04 (Greece)

    2016-02-15

    We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.

  3. Teleportation-based realization of an optical quantum two-qubit entangling gate

    CERN Document Server

    Gao, Wei-Bo; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by Gottesman and Chuang [Nature \\textbf{402}, 390 (1999)], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multi-particle entangled states, Bell state measurements and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods we demonstrate the smallest non-trivial module in such a scheme---a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-...

  4. Two qubits in the Dirac representation

    Science.gov (United States)

    Rajagopal, A. K.; Rendell, R. W.

    2001-08-01

    The Dirac-matrix representation of a general two-qubit system is shown to exhibit quite interesting features. The relativistic symmetries of time reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the Bell states. It is shown that only C does not mix the Bell states whereas all others do. The various logic gates of quantum information theory are also expressed in terms of the Dirac matrices. For example, the NOT gate is related to the product of T and P. A two-qubit density matrix is found to be entangled if it is invariant under C.

  5. Most robust and fragile two-qubit entangled states under depolarizing channels

    CERN Document Server

    Pang, Chao-Qian; Jiang, Yue; Liang, Mai-Lin

    2012-01-01

    In the two-qubit system under the local depolarizing channels, the most robust and the most fragile states for a given concurrence or negativity are derived. For the one-sided channel, with the aid of the evolution equation for entanglement given by Konrad \\emph{et al.} [Nat. Phys. 4, 99 (2008)], the pure states are proved to be the most robust. Based on a generalization of the evolution equation, we classify the ansatz states in our investigation by the amount of robustness, and consequently derive the most fragile states. For the two-sided channel, the pure states are proved to be the most robust for a fixed concurrence, but is the most fragile with a given negativity when the channel is uniform. Under the uniform channel, for a given negativity, the most robust states are the ones with the maximal concurrence, which are also the most fragile states when the concurrence is given in the region of [1/2,1]. When the entanglement approaches zero, the most fragile states for a given negativity become the pure st...

  6. Influence of Intrinsic Decoherence on Entanglement in Two-Qubit Quantum Heisenberg XYZ Chain

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZENG Tian-Hai; ZOU Jian

    2005-01-01

    Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.

  7. Classical Emulation of a Two-Qubit Quantum Computer with Analog Electronics

    Science.gov (United States)

    La Cour, Brian; Ostrove, Corey; Ott, Granville; Starkey, Michael; Wilson, Gary

    Abstract: The Hilbert space mathematical structure of a gate-based quantum computer may be reproduced by mapping the computational basis states to corresponding functions in the space of complex exponentials and identifying an inner product between any two such functions. The span of these complex basis exponentials may then identified with the finite-dimensional Hilbert space of a gate-based quantum computer. By using classical analog electronic components, such as four-quadrant multipliers and operational amplifiers, voltage signals representing arbitrary four-dimensional quantum states, along with the equivalent gate and measurement operations of a quantum computer have been physically realized through the corresponding circuitry. The fidelity of the emulation is measured using both a direct evaluation of the signal as well as through an emulation of quantum state tomography to infer the quantum state. We demonstrate that for both state synthesis and gate operations, our quantum emulation device is capable of achieving over 99% fidelity. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.

  8. Weak Measurement-Based Entanglement Protection of Two-Qubit X-States from Amplitude Damping Decoherence

    Science.gov (United States)

    Hu, Yao-Hua; Tao, Ya-Ping; Tan, Yong-Gang; Yang, Hai-Feng

    2017-02-01

    Considering X-states the density matrixes of which look like the letter X, we propose a weak measurement-based entanglement protection protocol of two-qubit X-states under local amplitude damping channels using weak measurement and reversal operation. It is shown that, with increase of the decoherence parameter, the entanglement attenuates rapidly owing to the amplitude damping noise and even experiences entanglement sudden death (ESD). However, the entanglement under the weak measurement and reversal operation is always much stronger than the entanglement undergoing the amplitude damping decoherence. These results reflect that entanglement of two-qubit X-states from amplitude damping decoherence can be protected, and ESD can be circumvented by increasing the weak measurement strength.

  9. Investigations of the Quantum Correlation in Two-Qubit Heisenberg XYZ Model with Decoherence

    Science.gov (United States)

    Guo-Hui, Yang

    2016-12-01

    Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated with the use of concurrence C and quantum discord (QD). With the Werner state as the initial state, we discuss the influence of mixture degree r on the dynamics. There are some difference between the time evolution behaviors of these two correlation measures with different value of r. For 0 ≤ r ≤ 1/3, there exists quantum discord but no entanglement; For 1/3

  10. Relation between initial conditions and entanglement sudden death for two-qubit extended Werner-like states

    Institute of Scientific and Technical Information of China (English)

    Yang Bai-Yuan; Fang Mao-Fa; Huang Jiang

    2013-01-01

    In this paper,the dynamical behavior of entanglement of an uncoupled two-qubit system,which interacts with independent identical amplitude damping environments and is initially prepared in the extended Werner-like (EWL) states,is investigated.The results show that whether entanglement sudden death (ESD) of an EWL state will occur or not depends on initial purity and concurrence.The boundaries between ESD states and ESD-free states for two kinds of EWL states are found to be different.Furthermore,some regions are shown where ESD states can be transformed into ESD-free states by local unitary operations.

  11. Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field

    Science.gov (United States)

    Li, Lei; Yang, Guo-Hui

    2014-07-01

    Quantum correlations in an anisotropic Heisenberg XYZ chain is investigated by use of concurrence C and measurement-induced disturbance (MID). We show that the behaviors of the MID are remarkably different from the concurrence. Firstly, it is shown that there is a revival phenomenon in the concurrence but not in the MID, which is suitable for both the ground state case and the finite temperature case. Based on the analysis of the ground-state C and MID structures, we illustrate the reason why the ground-state MID does not show a revival phenomenon in detail. Then we explore different effects of the external and self parameters on entanglement and MID behaviors. It can be shown that the region of MID is evidently larger than the case of concurrence, and that the concurrence signals a quantum phase transition even at finite T while MID does not. Cases where the concurrence finally maintains one nonzero constant value regardless of the value of the variable B for a constant Jz, while MID decreases monotonously to zero with increasing B. We also show that if B can take a proper range of values, the concurrence decreases with the improvement of the anisotropic parameter γ, whereas an opposite effect for MID behaviors is presented.

  12. Decoherence of Two-qubits Coupled with Reservoirs Studied with New Ket-Bra Entangled State Method

    Science.gov (United States)

    Ren, Yi-Chong; Fan, Hong-Yi

    2016-04-01

    For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.

  13. Three-observer Bell inequality violation on a two-qubit entangled state

    OpenAIRE

    Schiavon, Matteo; Calderaro, Luca; Pittaluga, Mirko; Vallone, Giuseppe; Villoresi, Paolo

    2016-01-01

    Bipartite Bell inequalities can be simultaneously violated by two different pairs of observers when weak measurements and signaling is employed. Here we experimentally demonstrate the violation of two simultaneous CHSH inequalities by exploiting a two-photon polarization maximally entangled state. Our results demonstrate that large double violation is experimentally achievable. Our demonstration may have impact for Quantum Key Distribution or certification of Quantum Random Number generators ...

  14. Three-observer Bell inequality violation on a two-qubit entangled state

    Science.gov (United States)

    Schiavon, Matteo; Calderaro, Luca; Pittaluga, Mirko; Vallone, Giuseppe; Villoresi, Paolo

    2017-03-01

    Bipartite Bell inequalities can simultaneously be violated by two different pairs of observers when weak measurements and signalling is employed. Here, we experimentally demonstrate the violation of two simultaneous CHSH inequalities by exploiting a two-photon polarisation maximally entangled state. Our results demonstrate that large double violation is experimentally achievable. Our demonstration may have impact for Quantum Key Distribution or certification of Quantum Random Number generators based on weak measurements.

  15. Quantum entanglement and quantum operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.

  16. Nonlocality without inequality for almost all two-qubit entangled states based on Cabello's nonlocality argument

    Science.gov (United States)

    Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali; Joag, Pramod

    2006-02-01

    Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy’s nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy’s argument.

  17. Generation of Werner-like stationary states of two qubits in a thermal reservoir

    CERN Document Server

    Jakobczyk, Lech

    2009-01-01

    The dynamics of entanglement between two-level atoms immersed in a common photon reservoir at finite temperature is investigated. It is shown that in the regime of strong correlations there are nontrivial asymptotic states which can be interpreted in terms of thermal generalization of Werner states.

  18. Optimal Lewenstein-Sanpera decomposition of two-qubit states using Semidefinite Programming

    CERN Document Server

    Thiang, Guo Chuan; Englert, Berthold-Georg

    2009-01-01

    We use the language of semidefinite programming and duality to derive necessary and sufficient conditions for the optimal Lewenstein-Sanpera Decomposition (LSD) of 2-qubit states. We first provide a simple and natural derivation of the Wellens-Kus equations for full-rank states. Then, we obtain a set of necessary and sufficient conditions for the optimal decomposition of rank-3 states. This closes the gap between the full-rank case, where optimality conditions are given by the Wellens-Kus equations, and the rank-2 case, where the optimal decomposition is analytically known. We also give an analytic expression for the optimal LSD of a special class of rank-3 states. Finally, our formulation ensures efficient numerical procedures to return the optimal LSD for any arbitrary 2-qubit state.

  19. All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal

    Science.gov (United States)

    Girdhar, Parth; Cavalcanti, Eric G.

    2016-09-01

    We derive an inequality that is necessary and sufficient to show Einstein-Podolsky-Rosen (EPR) steering in a scenario employing only correlations between two arbitrary dichotomic measurements on each party. Thus the inequality is a complete steering analogy of the Clauser-Horne-Shimony-Holt (CHSH) inequality, a generalization of the result of Cavalcanti et al. [E. G. Cavalcanti, C. J. Foster, M. Fuwa, and H. M. Wiseman, JOSA B 32, A74 (2015), 10.1364/JOSAB.32.000A74]. We show that violation of the inequality only requires measuring over equivalence classes of mutually unbiased measurements on the trusted party and that in fact assuming a general two-qubit system arbitrary pairs of distinct projective measurements at the trusted party are equally useful. Via this it is found that for a given state the maximum violation of our EPR-steering inequality is equal to that for the CHSH inequality, so all states that are EPR steerable with CHSH-type correlations are also Bell nonlocal.

  20. Comment on "One-way deficit of two qubit X states"

    Science.gov (United States)

    Jing, Naihuan; Zhang, Xia; Wang, Yao-Kun

    2015-12-01

    We improve the recent method of Wang et. al to calculate exactly the one-way information deficit of any X-state. Analytical formulas of the one-way information deficit are given for several nontrivial regions of the parameters.

  1. Two Qubits in the Dirac Representation

    CERN Document Server

    Rajagopal, A K

    2000-01-01

    A general two qubit system expressed in terms of the complete set of unit and fifteen traceless, Hermitian Dirac matrices, is shown to exhibit novel features of this system. The well-known physical interpretations associated with the relativistic Dirac equation involving the symmetry operations of time-reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the basic Bell states. The transformation properties of the Bell basis states under these symmetry operations also reveal that C is the only operator that does not mix the Bell states whereas all others do. In a similar fashion, expressing the various logic gates introduced in the subject of quantum computers in terms of the Dirac matrices shows for example, that the NOT gate is related to the product of time-reversal and parity operators.

  2. Applications of Singh-Rajput Mes in Recall Operations of Quantum Associative Memory for a Two- Qubit System

    Science.gov (United States)

    Singh, Manu Pratap; Rajput, B. S.

    2016-03-01

    Recall operations of quantum associative memory (QuAM) have been conducted separately through evolutionary as well as non-evolutionary processes in terms of unitary and non- unitary operators respectively by separately choosing our recently derived maximally entangled states (Singh-Rajput MES) and Bell's MES as memory states for various queries and it has been shown that in each case the choices of Singh-Rajput MES as valid memory states are much more suitable than those of Bell's MES. it has been demonstrated that in both the types of recall processes the first and the fourth states of Singh-Rajput MES are most suitable choices as memory states for the queries `11' and `00' respectively while none of the Bell's MES is a suitable choice as valid memory state in these recall processes. It has been demonstrated that all the four states of Singh-Rajput MES are suitable choice as valid memory states for the queries `1?', `?1', `?0' and `0?' while none of the Bell's MES is suitable choice as the valid memory state for these queries also.

  3. Relative Entropy of Entanglement of One Class of Two-Qubit System

    Institute of Scientific and Technical Information of China (English)

    LIANG Lin-Mei; CHEN Ping-Xing; LI Cheng-Zu; HUANG Ming-Qiu

    2001-01-01

    The relative entropy of entanglement of a mixed state σ for a bipartite quantum system can be defined as the minimum of the quantum relative entropy over the set of completely disentangled states. Vedral et al. [Phys.Rev. A 57(1998)1619] have recently proposed a numerical method to obtain the relative entropy of entanglement Ere for two-qubit systems. This letter shows that the convex programming method can be applied to calculate Ere of two-qubit systems analytically, and discusses the conditions under which the method can be adopted.

  4. Entanglement Dynamics of Two Qubits Coupled to a Noise Environmen

    Institute of Scientific and Technical Information of China (English)

    LIU Jin; XIANG Shao-Hua; CUI Hui-Ping; LI Jian

    2009-01-01

    We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise.It is shown that due to environment noise, all quantum entangled states axe very fragile and become a classical mixed state in a short-time limit.But the environment can affect entanglement in very different ways.The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherence.

  5. Pairwise Quantum Correlations for Superpositions of Dicke States

    CERN Document Server

    Xi, Zhengjun; Li, Yongming; Wang, Xiaoguang

    2011-01-01

    Using the concept of quantum discord (QD), we study the quantum correlation for a class of two-qubit X states with exchange and parity symmetries, whose density matrices have complex off-diagonal elements. We derive an upper bound of the QD, which is independent of the arguments of the complex off-diagonal elements of the reduced two-qubit density matricies. Moreover, for the two-qubit X states obtained from Dicke states and their superposition states, we obtain a compact expression of the QD by numerical check. Finally, we apply the expression to discuss the quantum correlation of the reduced two-qubit states of Dicke states and their superpositions, and the results are compared with those obtained by entanglement of formation (EoF), which is a quantum entanglement measure.

  6. Optimal two qubit gate for generation of random bipartite entanglement

    CERN Document Server

    Znidaric, M

    2007-01-01

    We study protocols for generation of random pure states consisting of repeated applications of two qubit transformations. Necessary number of steps needed in order to generate states displaying bipartite entanglement typical of random states is obtained. We also find the optimal two qubit gate for which the convergence is the fastest. Perhaps surprisingly, applying the same good two qubit gate in addition to a random single qubit rotations at each step leads to a faster generation of entanglement than applying a random two qubit transformation at each step.

  7. Quantum entanglement and quantum operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.

  8. Intrinsic Decoherence on Two-Qubit Heisenberg ⅩⅩ Chain

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-Hong; XIONG Zu-Hong; HU Dong-Mei

    2007-01-01

    Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg ⅩⅩ chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsic decoherence on quantum entanglement and quantum teleportation exerts different effects in different initial systems,proper magnetic fields and probabilities of different eigenstates in the initial states can weaken the effects.

  9. Controlled quantum state transfer via parity measurement

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this work,a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system.As two special cases,two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail.An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity.Therefore,the present scheme might be realized in the scope of current experimental technology.

  10. Controlled quantum state transfer via parity measurement

    Institute of Scientific and Technical Information of China (English)

    YUAN Quan; LI JiuHui

    2009-01-01

    In this work, a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system. As two special cases, two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail. An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity. Therefore, the present scheme might be realized in the scope of current experimental technology.

  11. Pairwise Quantum Correlations for Superpositions of Dicke States

    Institute of Scientific and Technical Information of China (English)

    席政军; 熊恒娜; 李永明; 王晓光

    2012-01-01

    Pairwise correlation is really an important property for multi-qubit states.For the two-qubit X states extracted from Dicke states and their superposition states,we obtain a compact expression of the quantum discord by numerical check.We then apply the expression to discuss the quantum correlation of the reduced two-qubit states of Dicke states and their superpositions,and the results are compared with those obtained by entanglement of formation,which is a quantum entanglement measure.

  12. Coxeter groups $A_{4}$, $B_{4}$ and $D_{4}$ for two-qubit systems

    Indian Academy of Sciences (India)

    Ramazan Koç; M Yakup Haciibrahimoğlu; Mehmet Koca

    2013-08-01

    The Coxeter–Weyl groups $W(A_{4})$, $W(B_{4})$ and $W(D_{4})$ have proven very useful for two-qubit systems in quantum information theory. A simple technique is employed to construct the unitary matrix representations of the groups, based on quaternionic transformation of the usual reflection matrices. The von Neumann entropy of each reduced density matrix is calculated. It is shown that these unitary matrix representations are naturally related to various universal quantum gates and they lead to entangled states. Canonical decomposition of generators in terms of fundamental gate representations is given to construct the quantum circuits.

  13. Enhancing the fidelity of two-qubit gates by measurements

    Science.gov (United States)

    Gefen, Tuvia; Cohen, Daniel; Cohen, Itsik; Retzker, Alex

    2017-03-01

    Dynamical decoupling techniques are the method of choice for increasing gate fidelities. While these methods have produced very impressive results in terms of decreasing local noise and increasing the fidelities of single-qubit operations, dealing with the noise of two-qubit gates has proven more challenging. The main obstacle is that the noise time scale is shorter than the two-qubit gate itself, so that refocusing methods do not work. We present a measurement- and feedback-based method to suppress two-qubit-gate noise, which cannot be suppressed by conventional methods. We analyze in detail this method for an error model, which is relevant for trapped-ion quantum information.

  14. Projective Ring Line Encompassing Two-Qubits

    CERN Document Server

    Saniga, M; Pracna, P; Planat, Michel; Pracna, Petr; Saniga, Metod

    2006-01-01

    The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators -- generalized Pauli matrices -- characterizing two-qubit systems. The relevant sub-configuration consits of 15 points each of which is either simultaneusly distant or simultaneously neighbour to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbour/distant answering, respectively, to the operational ones of commuting/non-commuting. This finding opens up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and gives their numerous applications a wholy new perspective.

  15. Recognizing Small-Circuit Structure in Two-Qubit Operators

    CERN Document Server

    Shende, V V; Markov, I L; Shende, Vivek V.; Bullock, Stephen S.; Markov, Igor L.

    2003-01-01

    This work describes numerical tests which determine whether a two-qubit quantum computation has an atypically simple quantum circuit. Specifically, we describe forumulae, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-not gates with all other gates being local unitary. Circuit diagrams are provided in each case. We expect significant impact in physical implementations where controlled-not's are more difficult than one-qubit computations. Our results can be contrasted with those by Zhang et al., Bullock and Markov, Vidal and Dawson, and Shende et al. In these works, small quantum circuits are achieved for arbitrary two-qubit operators, and the latter two prove three controlled-not's suffice. However, unitary operators with the sort of structure described above may not be detected. Our work provides results similar to those by Song and Klappenecker but for a wider range of operators.

  16. Quantum Discord of Non-X State

    Institute of Scientific and Technical Information of China (English)

    YAO Jing-Ying; DONG Yu-Li; ZHU Shi-Qun

    2013-01-01

    The level surfaces of quantum discord for a class of two-qubit states are investigated when the Bloch vectors (r) and (s) are perpendicularly oriented.The geometric objects of tetrahedron T and octahedron O are deformed.The level surfaces of constant discord are formed by three interaction “tubes” along three orthogonal directions.They shrink to the center when the Bloch vectors are increased and are expanded and cut off by the state tetrahedron T when the quantum discord is increased.In the phase damping channel,the quantum discord keeps approximately a constant when the time increases.

  17. Entanglement distillation between solid-state quantum network nodes

    Science.gov (United States)

    Kalb, N.; Reiserer, A. A.; Humphreys, P. C.; Bakermans, J. J. W.; Kamerling, S. J.; Nickerson, N. H.; Benjamin, S. C.; Twitchen, D. J.; Markham, M.; Hanson, R.

    2017-06-01

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.

  18. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.

    Science.gov (United States)

    Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P

    2006-07-21

    We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

  19. Hybrid Quantum Processors: molecular ensembles as quantum memory for solid state circuits

    CERN Document Server

    Rabl, P; Doyle, J M; Lukin, M D; Schölkopf, R J; Zoller, P

    2006-01-01

    We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $\\mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

  20. Thermal entangled quantum Otto engine based on the two qubits Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field

    Science.gov (United States)

    Wang, Hao; Wu, Guoxing; Chen, Daojiong

    2012-07-01

    Based on the isotropic two spin-1/2 qubits Heisenberg model with Dzyaloshinskii-Moriya interaction in a constant external magnetic field, we have constructed the entangled quantum Otto engine. Expressions for the basic thermodynamic quantities, i.e. the amount of heat exchange, the net work output and the efficiency, are derived. The influence of thermal entanglement on these basic thermodynamic quantities is investigated. Moreover, some intriguing features and their qualitative explanations in zero and finite magnetic field are given. The validity of the second law of thermodynamics is confirmed in the system. The results obtained here have general significance and will be useful in increasing understanding of the performance of an entangled quantum engine.

  1. Geometric measure of quantum discord for an arbitrary state of a bipartite quantum system

    CERN Document Server

    Hassan, Ali Saif M; Joag, Pramod S

    2010-01-01

    Quantum discord, as introduced by Olliver and Zurek [Phys. Rev. Lett. \\textbf{88}, 017901 (2001)], is a measure of the discrepancy between quantum versions of two classically equivalent expressions for mutual information. Dakic, Vedral, and Brukner [arXiv:1004.0190 (2010)] introduced a geometric measure of quantum discord and derived an explicit formula for any two-qubit state. Luo and Fu [Phys. Rev. A \\textbf{82}, 034302 (2010)] introduced another form for geometric measure of quantum discord. We find an exact formula for the geometric measure of quantum discord for an arbitrary state of a $m\\times n$ bipartite quantum system.

  2. Generation and protection of steady-state quantum correlations due to quantum channels with memory

    Science.gov (United States)

    Guo, You-neng; Fang, Mao-fa; Wang, Guo-you; Zeng, Ke

    2016-12-01

    We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel μ . The stronger the memory coefficient of channel μ is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of μ → 1.

  3. Generation and protection of steady-state quantum correlations due to quantum channels with memory

    Science.gov (United States)

    Guo, You-neng; Fang, Mao-fa; Wang, Guo-you; Zeng, Ke

    2016-09-01

    We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel μ . The stronger the memory coefficient of channel μ is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of μ → 1.

  4. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  5. Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Tang Jing-Wu; Zhao Guan-Xiang; He Xiong-Hui

    2011-01-01

    Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4)1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.

  6. Quantum coherence of steered states

    Science.gov (United States)

    Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng

    2016-01-01

    Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.

  7. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    Institute of Scientific and Technical Information of China (English)

    GAO Ting

    2004-01-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability.

  8. Dominance of quantum over classical correlations: entropic and geometric approach

    OpenAIRE

    Walczak, Zbigniew; Wintrowicz, Iwona; Zakrzewska, Katarzyna

    2013-01-01

    Recently, it has been shown that there exist quantum states for which quantum correlations dominate over classical correlations. Inspired by this observation, we investigate the problem of quantum correlations dominance for two-qubit Bell diagonal states in the Ollivier--Zurek paradigm, using both entropic and geometric approach to quantification of classical and quantum correlations. In particular, we estimate numerically the amount of two-qubit Bell diagonal states for which quantum correla...

  9. Deterministic Bidirectional Remote State Preparation of a- and Symmetric Quantum States with a Proper Quantum Channel

    Science.gov (United States)

    Song, Yi; Ni, Jiang-Li; Wang, Zhang-Yin; Lu, Yan; Han, Lian-Fang

    2017-10-01

    We present a new scheme for deterministically realizing the mutual interchange of quantum information between two distant parties via selected quantum states as the shared entangled resource. We first show the symmetric bidirectional remote state preparation (BRSP), where two single-qubit quantum states will be simultaneously exchanged in a deterministic manner provided that each of the users performs single-qubit von Neumann measurements with proper measurement bases as well as appropriate unitary operations, depending essentially on the outcomes of the prior measurements. Then we consider to extend the symmetric protocol to an asymmetric case, in which BRSP of a general single-qubit state and an arbitrary two-qubit state is investigated successfully. The necessary quantum operations and the employed quantum resources are feasible according to the present technology, resulting in that this protocol may be realizable in the realm of current physical experiment.

  10. Quantum Logic Networks for Probabilistic Teleportation of an Arbitrary Three-Particle State

    Institute of Scientific and Technical Information of China (English)

    QIAN Xue-Min; FANG Jian-Xing; ZHU Shi-Qun; XI Yong-Jun

    2005-01-01

    The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.

  11. Quantum Contextuality with Stabilizer States

    Directory of Open Access Journals (Sweden)

    Jiri Vala

    2013-06-01

    Full Text Available The Pauli groups are ubiquitous in quantum information theory because of their usefulness in describing quantum states and operations and their readily understood symmetry properties. In addition, the most well-understood quantum error correcting codes—stabilizer codes—are built using Pauli operators. The eigenstates of these operators—stabilizer states—display a structure (e.g., mutual orthogonality relationships that has made them useful in examples of multi-qubit non-locality and contextuality. Here, we apply the graph-theoretical contextuality formalism of Cabello, Severini and Winter to sets of stabilizer states, with particular attention to the effect of generalizing two-level qubit systems to odd prime d-level qudit systems. While state-independent contextuality using two-qubit states does not generalize to qudits, we show explicitly how state-dependent contextuality associated with a Bell inequality does generalize. Along the way we note various structural properties of stabilizer states, with respect to their orthogonality relationships, which may be of independent interest.

  12. Symmetric Telecloning and Entanglement Distribution of Spin Quantum States

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ji-Xin; ZANG Hao-Sheng

    2008-01-01

    @@ We propose a physical realization of symmetric telecloning machine for spin quantum states. The concept of area average fidelity is introduced to describe the telecloning quality. It is indicated that for certain input states this quantity may come to an enough high level to satisfy the need of quantum information processing. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the decay ratio of entanglement for the output states is only determined by the parameters of spin chain and waiting time, independent of the initial input states.

  13. The sudden Birth and sudden Death of thermal fidelity in a two-qubit XY model

    CERN Document Server

    Qin, Li-Guo; Jiang, Ying; Zhang, Hong-Biao

    2011-01-01

    We study the energy level crossings of the states and thermal fidelity for a two-qubit XY model in the presence of a transverse and inhomogeneous magnetic field. It is shown clearly the effects of the anisotropic factor of the magnetic field through the contour figures of energy level crossing in two subspaces, the isotropy subspace and anisotropy subspace. We calculate the quantum fidelity between the system and the ground state to which the results show the strong effect of the anisotropic factor again. In addition, making use of the transition of Yangian generators in the tensor product space, we study the evolution of the thermal fidelity after the transition. The potential applications of Yangian algebra, as a switch to turn on or off the fidelity, are proposed.

  14. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    Science.gov (United States)

    Majd, Nayereh; Ghasemi, Zahra

    2016-10-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  15. The Veldkamp Space of Two-Qubits

    Directory of Open Access Journals (Sweden)

    Metod Saniga

    2007-06-01

    Full Text Available Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, W(2, it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements - the so-called Veldkamp space of W(2. An intriguing novelty is the recognition of (uni- and tri-centric triads and specific pentads of the Pauli operators in addition to the ''classical'' subsets answering to geometric hyperplanes of W(2.

  16. An Electron-Nucleon Double Spin Solid-State Quantum Computer

    CERN Document Server

    Long, G L; Chen, H M; Long, Gui Lu; Ma, Ying-Jun; Chen, Hao-Ming

    2003-01-01

    An electron-nucleon double spin(ENDOS) solid-state quantum computer scheme is proposed. In this scheme, the qubits are the nuclear spins of phosphorus ion implanted on the (111) surface of $^{28}$Si substrate. An $^{13}$C atom on a scanning tunnelling probe tip is used both to complete single qubit and two-qubit control-not operation, and single qubit measurement. The scheme does not require interactions between qubits, and can accomplish two qubits without the use of SWAP gate. This scheme is scalable, and can be implemented with present-day or near-future technologies.

  17. Scalable solid-state quantum processor using subradiant two-atom states.

    Science.gov (United States)

    Petrosyan, David; Kurizki, Gershon

    2002-11-11

    We propose a realization of a scalable, high-performance quantum processor whose qubits are represented by the ground and subradiant states of effective dimers formed by pairs of two-level systems coupled by resonant dipole-dipole interaction. The dimers are implanted in low-temperature solid host material at controllable nanoscale separations. The two-qubit entanglement either relies on the coherent excitation exchange between the dimers or is mediated by external laser fields.

  18. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering

    Science.gov (United States)

    Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng

    2016-07-01

    Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.

  19. Decoherence of two-qubit systems: a random matrix description

    Science.gov (United States)

    Pineda, C.; Gorin, T.; Seligman, T. H.

    2007-04-01

    We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one-qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the above relation.

  20. Decoherence of two qubit systems: A random matrix description

    CERN Document Server

    Pineda, C; Seligman, T H

    2007-01-01

    We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the relation above.

  1. Two Qubits Entanglement Dynamics in 1D Heisenberg Chain with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Li-li; ZOU Jian

    2006-01-01

    To reveal how the decoherence modifies the time evolution of the entanglement of quantum system,the intrinsic decoherence approach and the entanglement of formation are used, and the time evolution of entanglement for two-qubit 1D quantum Heisenberg model in an external uniform magnetic field is derived. It is shown that the external magnetic field can strengthen the effects of the intrinsic decoherence on the entanglement of the system.

  2. Partial Teleportation of Entanglement Through Natural Thermal Entanglement in Two-Qubit Heisenberg ⅩⅩⅩ Chain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; LONG Gui-Lu; WU Yu-Chun; GUO Guang-Can

    2007-01-01

    Natural thermal entanglement between two qubits with ⅩⅩⅩ Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement.Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost during the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.

  3. Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions

    Science.gov (United States)

    Lloyd, Seth; Terhal, Barbara M.

    2016-02-01

    We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.

  4. Entanglement Preserving in Quantum Copying of Three-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    TONGZhao-Yang; KUANGLe-Man

    2002-01-01

    We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes,respectively,and investigate iterating quantum copying for the three-qubit system.There may exist inter-three-qubit entanglement and inter-two-qubit entanglement for the three-qubit system.We show that both local and non-local copying processes degrade quantum entanglement in the three-particle system due to a residual correlation between the copied output and the copying machine.we also show that the inter-two-qubit entanglement is preserved better than the inter-three-qubit entanglement in the local cloning process.We find that non-local cloning is much more efficient than the local copying for broadcasting entanglement,and output state via non-local cloning exhiits the fidelity better than local cloning.

  5. Effects of Dzyaloshinski-Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Mian; Liu Jin-Ming

    2009-01-01

    Quantum teleportation via the entangled channel composed of a two-qubit Heisenberg XYZ model with Dzyaloshinski-Moriya (DM) interaction in the presence of intrinsic decoherenee has been investigated. We find that the initial state of the channel plays an important role in the teleported state and the average fidelity of teleportation. When the initial channel is in the state [ψ1(0)>=a|00> + b|11>, the average fidelity is equal to 1/3 constantly, which is independent of the DM interaction and the intrinsic decoherence effect. But when the channel is initially in the state [ψ2(0)> = c|01) + d|10>, the average fidelity is always larger than 2/3. Moreover, under a certain condition, the average fidelity can be enhanced by adjusting the DM interaction, and the intrinsic decoherence leads to a suppression of the fluctuation of the average fidelity.

  6. Theoretically extensible quantum digital signature with starlike cluster states

    Science.gov (United States)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2017-01-01

    Chen et al. (Phys Rev A 73:012303, 2006) constructed this "starlike cluster" state, which involves one qubit located at the center and n neighboring two-qubit arms. This genuine entangled state has been used for the construction of 2D and 3D cluster states, topological one-way computation, and dynamical quantum secret sharing. In this paper, we investigate the usefulness of this starlike cluster state and propose a theoretically extensible quantum digital signature scheme. The proposed scheme can be theoretically generalized to more than three participants. Moreover, it retains the merits of no requirements such as authenticated quantum channels and long-term quantum memory. We also give a security proof for the proposed scheme against repudiation and forgery.

  7. Measurement-induced two-qubit entanglement in a bad cavity: Fundamental and practical considerations

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Mølmer, Klaus

    2012-01-01

    An entanglement-generating protocol is described for two qubits coupled to a cavity field in the bad-cavity limit. By measuring the amplitude of a field transmitted through the cavity, an entangled spin-singlet state can be established probabilistically. Both fundamental limitations and practical...

  8. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  9. Quantum Operations as Quantum States

    CERN Document Server

    Arrighi, P; Arrighi, Pablo; Patricot, Christophe

    2004-01-01

    In this article we formalize the correspondence between quantum states and quantum operations, and harness its consequences. This correspondence was already implicit in Choi's proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived as simple corollaries of those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we search for more results to arise from the correspondence. Thus we propose a factorizability condition and an extremal trace-preservedness condition for quantum operations, give two novel Schmidt-type decompositions of bipartite pure states and two interesting composition laws for which the set of quantum operations and quantum states remain stable. The latter enables us to define a group structure upon the set of totally entangled state...

  10. Manipulating the sudden death of entanglement in two-qubit atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor [COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-10-15

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider {sigma}{sub x} and bath switching operations that change the disentanglement time from finite to infinite.

  11. A geometric theory of non-local two-qubit operations

    CERN Document Server

    Zhang, J; Whaley, K B; Sastry, S; Zhang, Jun; Vala, Jiri; Sastry, Shankar

    2003-01-01

    We study non-local two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of non-local gates is a 3-Torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-Torus. Since different points on the 3-Torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of non-local gates. We find that exactly half the non-local ga...

  12. Improving quantum state estimation with mutually unbiased bases.

    Science.gov (United States)

    Adamson, R B A; Steinberg, A M

    2010-07-16

    When used in quantum state estimation, projections onto mutually unbiased bases have the ability to maximize information extraction per measurement and to minimize redundancy. We present the first experimental demonstration of quantum state tomography of two-qubit polarization states to take advantage of mutually unbiased bases. We demonstrate improved state estimation as compared to standard measurement strategies and discuss how this can be understood from the structure of the measurements we use. We experimentally compared our method to the standard state estimation method for three different states and observe that the infidelity was up to 1.84 ± 0.06 times lower by using our technique than it was by using standard state estimation methods.

  13. Quantum Networks for Generating Arbitrary Quantum States

    OpenAIRE

    Kaye, Phillip; Mosca, Michele

    2004-01-01

    Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.

  14. Experimental demonstration of a programmable quantum computer by NMR.

    Science.gov (United States)

    Kim, Jaehyun; Lee, Jae-Seung; Hwang, Taesoon; Lee, Soonchil

    2004-01-01

    A programmable quantum computer is experimentally demonstrated by nuclear magnetic resonance using one qubit for the program and two qubits for data. A non-separable two-qubit operation is performed in a programmable way to show the successful demonstration. Projective measurements required in the programmable quantum computer are simulated by averaging the results of experiments just like when producing an effective pure state.

  15. Controllable gaussian-qubit interface for extremal quantum state engineering.

    Science.gov (United States)

    Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro

    2010-06-18

    We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.

  16. Deterministic quantum teleportation with feed-forward in a solid state system.

    Science.gov (United States)

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  17. Linear optics and quantum maps

    CERN Document Server

    Aiello, A; Woerdman, J P

    2006-01-01

    We present a theoretical analysis of the connection between classical polarization optics and quantum mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of classical optical processes to the representation of one- and two-qubit quantum operations, becomes straightforward. Second, as a practical application of our classical-\\emph{vs}-quantum formalism, we show how two-qubit maximally entangled mixed states (MEMS), can be generated by using polarization and spatial modes of photons generated via spontaneous parametric down conversion.

  18. Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography.

    Science.gov (United States)

    Bonk, F A; deAzevedo, E R; Sarthour, R S; Bulnes, J D; Freitas, J C C; Guimarães, A P; Oliveira, I S; Bonagamba, T J

    2005-08-01

    This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems. Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseudo-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses, on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings.

  19. Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems

    Science.gov (United States)

    Olaya-Castro, Alexandra; Johnson, Neil F.; Quiroga, Luis

    2004-08-01

    We present an efficient scheme for the controlled generation of pure two-qubit states possessing any desired degree of entanglement and a prescribed symmetry. This is achieved in two-qubit-cavity QED systems (e.g., cold-trapped ions and flying atoms) via on-resonance ion- or atom-cavity couplings, which are time dependent and asymmetric, yielding a trapping vacuum state condition which does not arise for identical couplings. A duality in the role of the coupling ratio yields states with a given concurrence but opposing symmetries. Both the trapping state condition and the resulting entanglement power are robust against decoherence channels.

  20. Extremal properties of conditional entropy and quantum discord for XXZ, symmetric quantum states

    Science.gov (United States)

    Yurischev, M. A.

    2017-10-01

    For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy S_{cond} as a function of measurement angle θ \\in [0,π /2]. Numerical calculations show that the function S_{cond}(θ ) for X states can have at most one local extremum in the open interval from zero to π /2 (unimodality property). If the extremum is a minimum, the quantum discord displays region with variable (state-dependent) optimal measurement angle θ ^*. Such θ -regions (phases, fractions) are very tiny in the space of X-state parameters. We also discover the cases when the conditional entropy has a local maximum inside the interval (0,π /2). It is remarkable that the maxima exist in surprisingly wide regions, and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum.

  1. Quantum chimera states

    Energy Technology Data Exchange (ETDEWEB)

    Viennot, David, E-mail: david.viennot@utinam.cnrs.fr; Aubourg, Lucile

    2016-02-15

    We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.

  2. Dissipative preparation of entanglement in quantum optical and solid state systems

    DEFF Research Database (Denmark)

    Reiter, Florentin

    Quantum mechanics is an immensely successful theory which is essential for the explanation of numerous phenomena in atomic physics, solid state physics, nuclear physics and elementary particle physics. Quantum theory also involves effects which have no analogy in the classical world. In particular...... superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of two qubits. We find that high fidelities......, quantum entanglement is a correlation predicted by quantum mechanics, but not by classical physics. As an observable property it is indispensable for our understanding of nature. In addition, entangled states are important in quantum computation, quantum communication and quantum measurement protocols...

  3. Backward Evolving Quantum States

    CERN Document Server

    Vaidman, L

    2006-01-01

    The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.

  4. Implementation of a two-qubit controlled-U gate based on unconventional geometric phase with a constant gating time

    CERN Document Server

    Yabu-uti, Bruno F C

    2011-01-01

    We propose an alternative scheme to implement a two-qubits Controlled-U gate in the hybrid system atom-$CCA$ (coupled cavities array). Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular transformation $U$ on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation.

  5. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    Science.gov (United States)

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  6. Bell inequalities and linear entropy. Comment on the paper of E. Santos "Entropy inequalities and Bell inequalities fro two-qubit systems"

    CERN Document Server

    Jakobczyk, L

    2004-01-01

    It is shown that even if the linear entropy of mixed two-qubit state is not smaller then 0.457, Bell - CHSH inequalities can be violated. This contradicts the result obtained in the paper of E. Santos [1].

  7. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states.

    Science.gov (United States)

    Chen, Kai; Li, Che-Ming; Zhang, Qiang; Chen, Yu-Ao; Goebel, Alexander; Chen, Shuai; Mair, Alois; Pan, Jian-Wei

    2007-09-21

    We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special source, we implemented a highly efficient Grover's search algorithm and high-fidelity two-qubit quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.

  8. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    Energy Technology Data Exchange (ETDEWEB)

    Yabu-uti, B.F.C., E-mail: yabuuti@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil); Roversi, J.A., E-mail: roversi@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil)

    2011-08-22

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  9. Quantum Correlations in Heisenberg XY Chain

    Institute of Scientific and Technical Information of China (English)

    ZHU Yin-Yan; ZHANG Yong

    2013-01-01

    Quantum correlations measured by quantum discord (QD),measurement-induced distance (MID),and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated.The effects of DM interaction and anisotropic on the three correlations are considered.Characteristics of various correlation measures for the two-qubit states are compared.The increasing Dz increases QD,MID and GMQD monotonously while the increasing anisotropy both increases and decreases QD and GMQD.The three quantum correlations are always existent at very high temperature.MID is always larger than QD,but there is no definite ordering between QD and GMQD.

  10. Geometry of Quantum States

    Science.gov (United States)

    Bengtsson, Ingemar; Zyczkowski, Karol

    2007-12-01

    Preface; 1. Convexity, colours and statistics; 2. Geometry of probability distributions; 3. Much ado about spheres; 4. Complex projective spaces; 5. Outline of quantum mechanics; 6. Coherent states and group actions; 7. The stellar representation; 8. The space of density matrices; 9. Purification of mixed quantum states; 10. Quantum operations; 11. Duality: maps versus states; 12. Density matrices and entropies; 13. Distinguishability measures; 14. Monotone metrics and measures; 15. Quantum entanglement; Epilogue; Appendices; References; Index.

  11. Entanglement Dynamics of Two-Qubit System in Different Types of Noisy Channels

    Institute of Scientific and Technical Information of China (English)

    SHAN Chuan-Jia; LIU Ji-Bing; CHENG Wei-Wen; LIU Tang-Kun; HUANG Yan-Xia; LI Hong

    2009-01-01

    In this paper, we study entanglement dynamics of a two-qubit extended Werner-like state locally interacting with independent noisy channels, i.e., amplitude damping, phase damping, and depolarizing channels. We show that the purity of initial entangled state has direct impacts on the entanglement robustness in each noisy channel. That is, if the initial entangled state is prepared in mixed instead of pure form, the state may exhibit entanglement sudden death (ESD) and/or be decreased for the critical probability at which the entanglement disappear.

  12. Systematically Generated Two-Qubit Braids for Fibonacci Anyons

    Science.gov (United States)

    Zeuch, Daniel; Carnahan, Caitlin; Bonesteel, N. E.

    We show how two-qubit Fibonacci anyon braids can be generated using a simple iterative procedure which, in contrast to previous methods, does not require brute force search. Our construction is closely related to that of, but with the new feature that it can be used for three-anyon qubits as well as four-anyon qubits. The iterative procedure we use, which was introduced by Reichardt, generates sequences of three-anyon weaves that asymptotically conserve the total charge of two of the three anyons, without control over the corresponding phase factors. The resulting two-qubit gates are independent of these factors and their length grows as log 1/ ɛ, where ɛ is the error, which is asymptotically better than the Solovay-Kitaev method.

  13. Solid state multi-ensemble quantum computer in waveguide circuit model

    CERN Document Server

    Moiseev, Sergey A; Gubaidullin, Firdus F

    2010-01-01

    The first realization of solid state quantum computer was demonstrated recently by using artificial atoms -- transmons in superconducting resonator. Here, we propose a novel architecture of flexible and scalable quantum computer based on a waveguide circuit coupling many quantum nodes of controlled atomic ensembles. For the first time, we found the optimal practically attainable parameters of the atoms and circuit for 100{%} efficiency of quantum memory for multi qubit photon fields and confirmed experimentally the predicted perfect storage. Then we revealed self modes for reversible transfer of qubits between the quantum memory node and arbitrary other nodes. We found a realization of iSWAP gate via direct coupling of two arbitrary nodes with a processing rate accelerated proportionally to number of atoms in the node. A large number of the two-qubit gates can be simultaneously realized in the circuit for implementation of parallel quantum processing. Dynamic coherent elimination procedure of excess quantum s...

  14. High-concurrence steady-state entanglement of two hole spins in a quantum dot molecular

    CERN Document Server

    Yang, Song; Li, ChuanFeng; Zou, XuBo; Guo, GuangCan

    2009-01-01

    Entanglement, a non-trivial phenomena manifested in composite quantum system, can be served as a new type of physical resource in the emerging technology of quantum information and quantum computation. However, a quantum entanglement is fragile to the environmental-induced decoherence. Here, we present a novel way to prepare a high-concurrence steady-state entanglement of two hole spins in a quantum dot molecular via optical pumping of trion levels. In this scheme, the spontaneous dispassion is used to induce and stabilize the entanglement with rapid rate. It is firstly shown that under certain conditions, two-qubit singlet state can be generated without requiring the state initialization. Then we study the effect of acoustic phonons and electron tunnelings on the scheme, and show that the concurrence of entangled state can be over 0.95 at temperature $T = 1 $K.

  15. Effects of Dzyaloshinski-Moriya Interaction on Entanglement and Teleportation in a Two-Qubit Ising System with Intrinsic Cecoherence

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; FANG Jian-Xing

    2009-01-01

    We study the effects of Dzyaloshinski-Moriya(DM)interaction on entanglement and teleportation in a two-qubit Ising system with intrinsic decoherence taken into account.It is found that for the unentangled state,DM interaction is a benefit for entanglement and teleportation.

  16. Quantum steering without inequalities

    CERN Document Server

    Chen, Jing-Ling; Wu, Chunfeng; Su, Hong-Yi; Cabello, Adan; Kwek, L C; Oh, C H

    2012-01-01

    We show that, for any two-qubit state, quantum steering can be proven without testing the violation of steering inequalities. We show that steerability is proven if Bob's normalized conditional states after Alice's measurements are pure. This method, which may be seen as the quantum steering analog of Greenberger-Horne-Zeilinger-like tests of Bell nonlocality without Bell inequalities, offers advantages with respect to the existing methods for experimentally testing quantum steering.

  17. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    Science.gov (United States)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  18. Quantum correlations and distinguishability of quantum states

    Science.gov (United States)

    Spehner, Dominique

    2014-07-01

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  19. Two-band model as a quantum data bus for quantum state transfer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We study the dynamics of an electron spin state transfer along a half-filled two-band model(TBM).It is shown that this solvable and realistic medium has an energy gap between the ground and first-excited states in the half-filled case.By connecting two qubits to two sites of the TBM,the system can accomplish a high-fidelity and long-distance quantum state transfer(QST).Moreover,numerical simulations have been performed for a finite system.The results show that the numerical and analytical results of the effective coupling strength agree well with each other.Furthermore,the investigation shows that the reduced density matrix also has high fidelity beyond the range of perturbation.

  20. A study of two-qubit density matrices with fermionic purifications

    Energy Technology Data Exchange (ETDEWEB)

    Szalay, Szilard; Levay, Peter; Nagy, Szilvia; Pipek, Janos [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budafoki ut 8 (Hungary)

    2008-12-19

    We study 12 parameter families of two-qubit density matrices, arising from a special class of two-fermion systems with four single-particle states or alternatively from a four-qubit state with amplitudes arranged in an antisymmetric matrix. We calculate the Wootters concurrences and the negativities in a closed form and study their behavior. We use these results to show that the relevant entanglement measures satisfy the generalized Coffman-Kundu-Wootters formula of distributed entanglement. An explicit formula for the residual tangle is also given. The geometry of such density matrices is elaborated in some detail. In particular, an explicit form for the Bures metric is given.

  1. Reconstructing quantum states efficiently

    OpenAIRE

    Cramer, M; Plenio, M. B.

    2010-01-01

    Quantum state tomography, the ability to deduce the density matrix of a quantum system from measured data, is of fundamental importance for the verification of present and future quantum devices. It has been realized in systems with few components but for larger systems it becomes rapidly infeasible because the number of quantum measurements and computational resources required to process them grow exponentially in the system size. Here we show that we can gain an exponential advantage over d...

  2. Entanglement Dynamics of Two Qubits in a Common Bath

    CERN Document Server

    Ma, Jian; Wang, Xiaoguang; Nori, Franco

    2012-01-01

    We derive a set of hierarchical equations for qubits interacting with a Lorentz-broadened cavity mode at zero temperature, without using the rotating-wave, Born, and Markovian approximations. We use this exact method to reexamine the entanglement dynamics of two qubits interacting with a common bath, which was previously solved only under the rotating-wave and single-excitation approximations. With the exact hierarchy equation method used here, we observe significant differences in the resulting physics, compared to the previous results with various approximations. Double excitations due to counter-rotating-wave terms are also found to have remarkable effects on the dynamics of entanglement.

  3. Ultrafast control of nuclear spins using only microwave pulses: towards switchable solid-state quantum gates

    CERN Document Server

    Mitrikas, George; Papavassiliou, Georgios

    2009-01-01

    Since the idea of quantum information processing (QIP) fascinated the scientific community, electron and nuclear spins have been regarded as promising candidates for quantum bits (qubits). A fundamental challenge in the realization of a solid-state quantum computer is the construction of fast and reliable two-qubit quantum gates. Of particular interest in this direction are hybrid systems of electron and nuclear spins, where the two qubits are coupled through the hyperfine interaction. However, the significantly different gyromagnetic ratios of electron and nuclear spins do not allow for their coherent manipulation at the same time scale. Here we demonstrate the control of the alpha-proton nuclear spin, I=1/2, coupled to the stable radical CH(COOH)2, S=1/2, in a gamma-irradiated malonic acid single crystal using only microwave pulses. We show that, depending on the state of the electron spin (mS=+1/2 or -1/2), the nuclear spin can be locked in a desired state or oscillate between mI=+1/2 and mI=-1/2 on the na...

  4. Quantum states of light

    CERN Document Server

    Furusawa, Akira

    2015-01-01

    This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.

  5. Quantum Networks with Chiral-Light-Matter Interaction in Waveguides

    Science.gov (United States)

    Mahmoodian, Sahand; Lodahl, Peter; Sørensen, Anders S.

    2016-12-01

    We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F ˜0.998 achievable in state-of-the-art quantum dot systems.

  6. Investigating Quantum Modulation States

    Science.gov (United States)

    2016-03-01

    3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE INVESTIGATING QUANTUM MODULATION STATES 5a. CONTRACT NUMBER IN-HOUSE 5b...Coherent states are the most classical of quantum states. Generation and detection of their polarization and phase modulations are well...stream cipher maps message bits onto random blocks of bits producing modulated states that are intrinsically noisy. The ciphertext so generated is

  7. Hilbert space structure of a solid state quantum computer two-electron states of a double quantum dot artificial molecule

    CERN Document Server

    Hu, X; Hu, Xuedong

    2000-01-01

    We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope funct...

  8. Cavity quantum networks for quantum information processing in decoherence-free subspace

    Institute of Scientific and Technical Information of China (English)

    Hua WEI; Zhi-jiao DENG; Wan-li YANG; Fei ZHOU

    2009-01-01

    We give a brief review on the quantum infor- mation processing in decoherence-free subspace (DFS). We show how to realize the initialization of the entangled quantum states, information transfer and teleportation of quantum states, two-qubit Grover search and how to construct the quantum network in DFS, within the cav- ity QED regime based on a cavity-assisted interaction by single-photon pulses.

  9. Quantum State Tomography and Quantum Games

    Institute of Scientific and Technical Information of China (English)

    Ahmad Nawaz

    2012-01-01

    A technique is developed for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In this technique,Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself.It is shown that for a particular set of unitary operators,these payoffs are equal to Stokes parameters for an unknown quantum state.In this way an unknown quantum state can be measured and reconstructed.Strictly speaking,this technique is not a game as no strategic competitions are involved.

  10. Stability of Mixed Nash Equilibria in Symmetric Quantum Games

    Institute of Scientific and Technical Information of China (English)

    A.Iqbal; A.H.Toor

    2004-01-01

    In bimatrix games the Bishop-Cannings theorem of the classical evolutionary game theory does not permit pure evolutionarily stable strategies (ESSs) when a mixed ESS exists. We find the necessary form of two-qubit initial quantum states when a switch-over to a quantum version of the game also changes the evolutionary stability of a mixed symmetric Nash equilibrium.

  11. Generation of Entanglement, Measure of Multipartite Entanglement in Fermionic Systems and Quantum Discord in Bipartite Systems and Heisenberg Chains

    CERN Document Server

    Lari, Behzad

    2011-01-01

    This is a thesis submitted to university of Pune, India, for the Ph.D. degree. This work deals with entanglement production in two qubit, two qutrit and three qubit systems, entanglement in indistinguishable fermionic systems, quantum discord in a Heisenberg chain and geometric measure of quantum discord in an arbitrary state of a bipartite quantum system.

  12. A study of Quantum Correlations in Open Quantum Systems

    CERN Document Server

    Chakrabarty, Indranil; Siddharth, Nana

    2010-01-01

    In this work, we study quantum correlations in mixed states. The states studied are modelled by a two-qubit system interacting with its environment via a quantum nondemolition (purely dephasing) as well as dissipative type of interaction. The entanglement dynamics of this two qubit system is analyzed and the existence of entangled states which do not violate Bell's inequality, but can still be useful as a potential resource for teleportation are reported. In addition, a comparative study of various measures of quantum correlations, like Concurrence, Bell's inequality, Discord and Teleportation fidelity, is made on these states, generated by the above evolutions. Interestingly, examples are found, of states, where entanglement is vanishing, but discord is non-vanishing, bringing out the fact that entanglement is a subset of quantum correlations.

  13. Memory cost of quantum contextuality

    CERN Document Server

    Kleinmann, Matthias; Portillo, José R; Larsson, Jan-Åke; Cabello, Adán

    2010-01-01

    The simulation of quantum effects requires certain classical resources, and quantifying them is an important step in order to understand the difference between quantum and classical physics. We investigate the minimum classical memory needed to simulate the phenomenon of state-independent quantum contextuality in sequential measurements. We derive optimal simulation strategies for several important cases and prove that two bits of classical memory do not suffice to reproduce the results of sequential measurements on a two-qubit system.

  14. Design and optimisation of quantum logic circuits for a three-qubit Deutsch-Jozsa algorithm implemented with optically-controlled, solid-state quantum logic gates

    CERN Document Server

    Del Duce, A; Bayvel, P

    2009-01-01

    We analyse the design and optimisation of quantum logic circuits suitable for the experimental demonstration of a three-qubit quantum computation prototype based on optically-controlled, solid-state quantum logic gates. In these gates, the interaction between two qubits carried by the electron-spin of donors is mediated by the optical excitation of a control particle placed in their proximity. First, we use a geometrical approach for analysing the entangling characteristics of these quantum gates. Then, using a genetic programming algorithm, we develop circuits for the refined Deutsch-Jozsa algorithm investigating different strategies for obtaining short total computational times. We test two separate approaches based on using different sets of entangling gates with the shortest possible gate computation time which, however, does not introduce leakage of quantum information to the control particles. The first set exploits fast approximations of controlled-phase gates as entangling gates, while the other one a...

  15. Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2016-05-01

    Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a SU(2 )⊗SU(2 ) group structure. Using the correspondence of the method of simulating a 3 +1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies the SU(2 )⊗SU(2 ) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which, in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an overall suppression of the quantum entanglement.

  16. Entanglement Preserving in Quantum Copying of Three-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    TONG Zhao-Yang; KUANG Le-Man

    2002-01-01

    We study the degree to which quantum entanglement survives when a three-qubit entangled state iscopied by using local and non-local processes, respectively, and investigate iterating quantum copyingfor the three-qubitsystem. There may exist inter-three-qubit entanglement and inter-two-qubit entanglement for the three-qubit system.We show that both local and non-local copying processes degrade quantum entanglement in the three-particle systemdue to a residual correlation between the copied output and the copying machine. We also show that the inter-two-qubitentanglement is preserved better than the inter-three-qubit entanglement in the local cloning process. We find thatnon-local cloning is much more efficient than the local copying for broadcasting entanglement, and output state vianon-local cloning exhibits the fidelity better than local cloning.

  17. Experimental estimation of entanglement at the quantum limit.

    Science.gov (United States)

    Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G A; Shurupov, Alexander

    2010-03-12

    Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.

  18. Entanglement dynamics of a two-qubit system coupled individually to Ohmic baths

    CERN Document Server

    Duan, Liwei; Chen, Qinghu; Zhao, Yang

    2013-01-01

    The Davydov D1 ansatz, which assigns an individual bosonic trajectory to each spin state, is an efficient, yet accurate trial state for time-dependent variation of the the spin-boson model [J. Chem. Phys. 138, 084111 (2013)]. In this work, the Dirac-Frenkel time-dependent variational procedure utilizing the Davydov D1 ansatz is implemented to study entanglement dynamics of two qubits under the influence of two independent baths. The Ohmic spectral density is used without the Born-Markov approximation or the rotating-wave approximation. In the strong coupling regime the entanglement sudden death is always found to exist, while at the intermediate coupling regime, the entanglement dynamics calculated by Davydov D1 ansatz displays oscillatory behavior in addition to entanglement sudden death and revival.

  19. Sudden Death, Birth and Stable Entanglement in a Two-Qubit Heisenberg XY Spin Chain

    Institute of Scientific and Technical Information of China (English)

    SHAN Chuan-Jia; CHENG Wei-Wen; LIU Tang-Kun; LIU Ji-Bing; WEI Hua

    2008-01-01

    Taking the decoherence effect due to population relaxation into account, we investigate the entanglement properties for two qubits in the Heisenberg XY interaction and subject to an external magnetic field. It is found that the phenomenon of entanglement sudden death (ESD) as well as sudden birth (ESB) appear during the evolution process for particular initial states. The influence of the external magnetic field and the spin environment on ESD and ESB are addressed in detail. It is shown that the concurrence, a measure of entanglement, can be controlled by tuning the parameters of the spin chain, such as the anisotropic parameter, external magnetic field, and the coupling strength with their environment. In particular, we find that a critical anisotropy constant exists, above which ESB vanishes while ESD appears. It is also notable that stable entanglement, which is independent of different initial states of the qubits, occurs even in the presence or decoherence.

  20. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Myhr, Geir Ove

    2010-11-08

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  1. Entanglement Teleportation via a Two-Qubit System with Anisotropic Couplings under a Different Nonuniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng

    2013-01-01

    We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.

  2. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum state diffusion approach

    CERN Document Server

    Zhao, Xinyu; Corn, Brittany; Yu, Ting; 10.1103/PhysRevA.84.032101

    2011-01-01

    Non-Markovian dynamics is studied for two interacting quibts strongly coupled to a dissipative bosonic environment. For the first time, we have derived the non-Markovian quantum state diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we studied the residual entanglement in the steady state by analyzing the steady state solution of the QSD equation. Finally, we have discussed an approximate QSD equation.

  3. Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Xia; Zhang Jian-Qi; Yu Ya-Fei; Zhang Zhi-Ming

    2011-01-01

    We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities.In our scheme,each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields.During the gate operation,the quantum dots undergo no transition,while the system can acquire different phases conditional on different states of the quantum dots.With the application of the single-qubit operations,two-qubit controlled phase gates can be realized.

  4. Realizing Controllable Quantum States

    Science.gov (United States)

    Takayanagi, Hideaki; Nitta, Junsaku

    1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara

  5. Decoherence-protected quantum gates for a hybrid solid-state spin register.

    Science.gov (United States)

    van der Sar, T; Wang, Z H; Blok, M S; Bernien, H; Taminiau, T H; Toyli, D M; Lidar, D A; Awschalom, D D; Hanson, R; Dobrovitski, V V

    2012-04-04

    Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle quantum bit (qubit) can be efficiently insulated from the outside world by dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protecting qubit coherence during a multi-qubit gate is a non-trivial problem: in general, the decoupling disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, in which different types of qubit evolve and decohere at very different rates. Here we present the integration of dynamical decoupling into quantum gates for a standard hybrid system, the electron-nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates using a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We also perform Grover's quantum search algorithm, and achieve fidelities of more than 90% even though the algorithm run-time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly allow decoherence-protected interface gates between different types of solid-state qubit. Ultimately, quantum gates with integrated decoupling may reach the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.

  6. Perfect Biparticle Teleportation by Using Multi-particle Quantum Channel with Joint Measurement

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-Qing; NIE Jing; REN Zhong-Zhou; LI Chong; CHEN Yu-Qing; YI Xue-Xi

    2008-01-01

    In this paper, we reinvestigate the faithful quantum teleportation of an arbitrary two-qubit state by a multi-particle channel with multi-particle joint measurements. The relationship between multi-particle quantum channel and the multi-particle joint measurement bases has been found. In addition, we show how to construct the multi-particle joint measurement bases.

  7. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Swarnamala Sirsi; Veena Adiga; Subramanya Hegde

    2014-08-01

    Our work addresses the problem of generating maximally entangled two spin-1/2 (qubit) symmetric states using NMR, NQR, Lipkin–Meshkov–Glick Hamiltonians. Time evolution of such Hamiltonians provides various logic gates which can be used for quantum processing tasks. Pairs of spin-1/2s have modelled a wide range of problems in physics. Here, we are interested in two spin-1/2 symmetric states which belong to a subspace spanned by the angular momentum basis $\\{|j = 1,\\langle; = + 1, 0, -12\\}$. Our technique relies on the decomposition of a Hamiltonian in terms of (3) basis matrices. In this context, we define a set of linearly independent, traceless, Hermitian operators which provides an alternate set of () generators. These matrices are constructed out of angular momentum operators J$_x$, J$_y$, J$_z$. We construct and study the properties of perfect entanglers acting on a symmetric subspace, i.e., spin-1 operators that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power.

  8. Discorrelated quantum states

    Science.gov (United States)

    Meyer-Scott, Evan; Tiedau, Johannes; Harder, Georg; Shalm, Lynden K.; Bartley, Tim J.

    2017-01-01

    The statistical properties of photons are fundamental to investigating quantum mechanical phenomena using light. In multiphoton, two-mode systems, correlations may exist between outcomes of measurements made on each mode which exhibit useful properties. Correlation in this sense can be thought of as increasing the probability of a particular outcome of a measurement on one subsystem given a measurement on a correlated subsystem. Here, we show a statistical property we call “discorrelation”, in which the probability of a particular outcome of one subsystem is reduced to zero, given a measurement on a discorrelated subsystem. We show how such a state can be constructed using readily available building blocks of quantum optics, namely coherent states, single photons, beam splitters and projective measurement. We present a variety of discorrelated states, show that they are entangled, and study their sensitivity to loss. PMID:28134333

  9. Unbound states in quantum heterostructures

    Directory of Open Access Journals (Sweden)

    Ferreira R

    2006-01-01

    Full Text Available AbstractWe report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.

  10. Quantum engineering of continuous variable quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sabuncu, Metin

    2009-10-29

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  11. One Lyapunov control for quantum systems and its application to entanglement generation

    Science.gov (United States)

    Yang, Wei; Sun, Jitao

    2013-05-01

    In this Letter, we investigate the control of finite dimensional ideal quantum systems in which the quantum states are represented by the density operators. A new Lyapunov function based on the Hilbert-Schmidt distance and mechanical quantity of the quantum system is given. We present a theoretical convergence result using LaSalle invariance principle. Applying the proposed Lyapunov method, the generation of the maximally entangled quantum states of two qubits is obtained.

  12. One Lyapunov control for quantum systems and its application to entanglement generation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: 09yw@tongji.edu.cn [Department of Mathematics, Tongji University, Shanghai, 200092 (China); Sun, Jitao, E-mail: sunjt@sh163.net [Department of Mathematics, Tongji University, Shanghai, 200092 (China)

    2013-05-03

    In this Letter, we investigate the control of finite dimensional ideal quantum systems in which the quantum states are represented by the density operators. A new Lyapunov function based on the Hilbert–Schmidt distance and mechanical quantity of the quantum system is given. We present a theoretical convergence result using LaSalle invariance principle. Applying the proposed Lyapunov method, the generation of the maximally entangled quantum states of two qubits is obtained.

  13. Experimental realization of programmable quantum gate array for directly probing commutation relations of Pauli operators.

    Science.gov (United States)

    Yao, Xing-Can; Fiurásek, Jaromír; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-09-17

    We experimentally demonstrate an advanced linear-optical programmable quantum processor that combines two elementary single-qubit programmable quantum gates. We show that this scheme enables direct experimental probing of quantum commutation relations for Pauli operators acting on polarization states of single photons. Depending on a state of two-qubit program register, we can probe either commutation or anticommutation relations. Very good agreement between theory and experiment is observed, indicating high-quality performance of the implemented quantum processor.

  14. A scheme for conditional quantum phase gate via bimodal cavity and a Λ-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    Cai Jian-Wu; Fang Mao-Fa; Liao Xiang-Ping; Zheng Xiao-Juan

    2006-01-01

    We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level Λ-type atom driven by two modes in a high-Q cavity. The quantum information is encoded on the Fock states of the bimodal cavity. The gate's averaged fidelity is expected to reach 99.8%.

  15. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  16. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  17. Einstein-Podolsky-Rosen Steerability Criterion for Two-Qubit Density Matrices

    CERN Document Server

    Chen, Jing-Ling; Ye, Xiang-Jun; Wu, Chunfeng; Kwek, L C; Oh, C H

    2011-01-01

    We propose a criterion ${S}=\\lambda_1+\\lambda_2-(\\lambda_1-\\lambda_2)^2<0$ to detect Einstein-Podolsky-Rosen (EPR) steering for arbitrary two-qubit density matrix $\\rho_{AB}$. Here $\\lambda_1,\\lambda_2$ are respectively the minimal and the second minimal eigenvalues of $\\rho^{T_B}_{AB}$, which is the partial transpose of $\\rho_{AB}$. Numerical results suggest that this criterion is a necessary and sufficient condition for demonstrating steerability of two qubits.

  18. Comment on "Deterministic six states protocol for quantum communication" [Phys. Lett. A 358 (2006) 85

    CERN Document Server

    El-Orany, Faisal A A

    2011-01-01

    In [J.S. Shaari, M. Lucamarini, M.R.B. Wahiddin, Phys. Lett. A 358 (2006) 85-90] the deterministic six states protocol (6DP) for quantum communication has been developed. This protocol is based on three mutually unbiased bases and four encoding operators. Information is transmitted between the users via two qubits from different bases. Three attacks have been studied; namely intercept-resend attack (IRA), double-CNOT attack (2CNOTA) and quantum man-in-the-middle attack. In this Letter, we show that the IRA and 2CNOTA are not properly addressed. For instance, we show that the probability of detecting Eve in the control mode of the IRA is 70% instead of 50% in the previous study. Moreover, in the 2CNOTA, Eve can only obtain 50% of the data not all of it as argued earlier.

  19. Quantum cobwebs: Universal entangling of quantum states

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    2002-08-01

    Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA states, local operations and classical communication, we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state.

  20. An Introduction to Quantum Entanglement: a Geometric Approach

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Bengtsson, Ingemar

    2006-01-01

    We present a concise introduction to quantum entanglement. Concentrating on bipartite systems we review the separability criteria and measures of entanglement. We focus our attention on geometry of the sets of separable and maximally entangled states. We treat in detail the two-qubit system and emphasise in what respect this case is a special one.

  1. Stability of Mixed Nash Equilibria in Symmetric Quantum Games

    Institute of Scientific and Technical Information of China (English)

    A. Iqbal; A.H. Toor

    2004-01-01

    In bimatrix games the Bishop-Cannings theorem of the classical evolutionary game theory does not permitpure evolutionarily stable strategies (ESSs) when a mixed ESS exists. We find the necessary form of two-qubit initialquantum states when a switch-over to a quantum version of the game also changes the evolutionary stability of a mixedsymmetric Nash equilibrium.

  2. High-fidelity two-qubit gates via dynamical decoupling of local 1 /f noise at the optimal point

    Science.gov (United States)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2016-08-01

    We investigate the possibility of achieving high-fidelity universal two-qubit gates by supplementing optimal tuning of individual qubits with dynamical decoupling (DD) of local 1 /f noise. We consider simultaneous local pulse sequences applied during the gate operation and compare the efficiencies of periodic, Carr-Purcell, and Uhrig DD with hard π pulses along two directions (πz /y pulses). We present analytical perturbative results (Magnus expansion) in the quasistatic noise approximation combined with numerical simulations for realistic 1 /f noise spectra. The gate efficiency is studied as a function of the gate duration, of the number n of pulses, and of the high-frequency roll-off. We find that the gate error is nonmonotonic in n , decreasing as n-α in the asymptotic limit, α ≥2 , depending on the DD sequence. In this limit πz-Urhig is the most efficient scheme for quasistatic 1 /f noise, but it is highly sensitive to the soft UV cutoff. For small number of pulses, πz control yields anti-Zeno behavior, whereas πy pulses minimize the error for a finite n . For the current noise figures in superconducting qubits, two-qubit gate errors ˜10-6 , meeting the requirements for fault-tolerant quantum computation, can be achieved. The Carr-Purcell-Meiboom-Gill sequence is the most efficient procedure, stable for 1 /f noise with UV cutoff up to gigahertz.

  3. Maximally entangled mixed states made easy

    CERN Document Server

    Aiello, A; Voigt, D; Woerdman, J P

    2006-01-01

    We show that, contrarily to a recent claim [M. Ziman and V. Bu\\v{z}ek, Phys. Rev. A. \\textbf{72}, 052325 (2005)], it is possible to achieve maximally entangled mixed states of two qubits from the singlet state via the action of local nonunital quantum channels. Moreover, we present a simple, feasible linear optical implementation of one of such channels.

  4. Multiparty Quantum Secret Sharing of Quantum States with Quantum Registers

    Institute of Scientific and Technical Information of China (English)

    GUO Ying; ZENG Gui-Hua; CHEN Zhi-Gang

    2007-01-01

    A quantum secret sharing scheme is proposed by making use of quantum registers.In the proposed scheme,secret message state is encoded into multipartite entangled states.Several identical multi-particle entanglement states are generated and each particle of the entanglement state is filled in different quantum registers which act as shares of the secret message.Two modes,j.e.the detecting mode and the message mode,are employed so that the eavesdropping can be detected easily and the secret message may be recovered.The seeurity analysis shows that the proposed scheme is secure against eavesdropping of eavesdropper and cheating of participants.

  5. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Arvind

    2001-02-01

    The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically

  6. Multiphoton Quantum Optics and Quantum State Engineering

    CERN Document Server

    Dell'Anno, F; Illuminati, F; 10.1016/j.physrep.2006.01.004

    2009-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states...

  7. Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Matteo A. C., E-mail: matteo.rossi@unimi.it [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano (Italy); Paris, Matteo G. A., E-mail: matteo.paris@fisica.unimi.it [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano (Italy); CNISM, Unità Milano Statale, I-20133 Milano (Italy)

    2016-01-14

    We address the interaction of single- and two-qubit systems with an external transverse fluctuating field and analyze in detail the dynamical decoherence induced by Gaussian noise and random telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the existence of (state dependent) regions of the parameter space where the two noises lead to very similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e., the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect of one kind of noise may be simulated with high fidelity by the other one.

  8. Quantum Transition-State Theory

    CERN Document Server

    Hele, Timothy J H

    2014-01-01

    This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.

  9. Geometric measure of quantum discord under decoherence

    CERN Document Server

    Xiao-Ming, Lu; Sun, Zhe; Wang, Xiaoguang

    2010-01-01

    The dynamics of a geometric measure of the quantum discord (GMQD) under decoherence is investigated. We show that the GMQD of a two-qubit state can be alternatively obtained through the singular values of a 3\\times4 matrix whose elements are the expectation values of Pauli matrices of the two qubits. By using Heisenberg picture, the analytic results of the GMQD is obtained for three typical kinds of the quantum decoherence channels. We compare the dynamics of the GMQD with that of the quantum discord and of entanglement and show that a sudden change in the decay rate of the GMQD does not always imply the sudden change in the decay rate of the quantum discord.

  10. Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States

    Institute of Scientific and Technical Information of China (English)

    GUO Ying; HUANG Da-Zu; ZENG Gui-Hua; LEE Moon Ho

    2008-01-01

    A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security.In this scheme,the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles.The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states,the participants'secret polarizations,and the disorder of the travelling particles.Moreover,the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack.It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.

  11. Monge Distance between Quantum States

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Slomczynski, Wojciech

    1998-01-01

    We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.

  12. Direct scheme for measuring the geometric quantum discord

    CERN Document Server

    Jin, Jia-sen; Yu, Chang-shui; Song, He-shan

    2011-01-01

    We propose a scheme to directly measure the exact value of geometric quantum discord of an arbitrary two-qubit state. We only need to perform the projective measurement in the all anti-symmetric subspace and our scheme is parametrically efficient in contrast to the widely adopted quantum state tomography scheme in the sense of less parameter estimations and projectors. Moreover, the present scheme can be easily realized with the current experimental techniques.

  13. Quantum Computer Using Coupled Quantum Dot Molecules

    CERN Document Server

    Wu, N J; Natori, A; Yasunaga, H; Wu*, Nan-Jian

    1999-01-01

    We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can...

  14. Dynamics of Super Quantum Correlations and Quantum Correlations for a System of Three Qubits

    Science.gov (United States)

    Siyouri, F.; El Baz, M.; Rfifi, S.; Hassouni, Y.

    2016-04-01

    The dynamics of quantum discord for two qubits independently interacting with dephasing reservoirs have been studied recently. The authors [Phys. Rev. A 88 (2013) 034304] found that for some Bell-diagonal states (BDS) which interact with their environments the calculation of quantum discord could experience a sudden transition in its dynamics, this phenomenon is known as the sudden change. Here in the present paper, we analyze the dynamics of normal quantum discord and super quantum discord for tripartite Bell-diagonal states independently interacting with dephasing reservoirs. Then, we find that basis change does not necessary mean sudden change of quantum correlations.

  15. One step to generate quantum controlled phase-shift gate using a trapped ion

    Institute of Scientific and Technical Information of China (English)

    Zhang Shi-Jun; Ma Chi; Zhang Wen-Hai; Ye Liu

    2008-01-01

    This paper presents a very simple scheme for generating quantum controlled phase-shift gate with only one step by using the two vibrational modes of a trapped ion as the two qubits.The scheme couples two vibration degrees of freedom coupled with a suitable chosen laser excitation via the ionic states.

  16. Quantum networks with chiral light--matter interaction in waveguides

    CERN Document Server

    Mahmoodian, Sahand; Sørensen, Anders S

    2016-01-01

    We design and analyze a simple on-chip photonic circuit that can form a universal building block of a quantum network. The circuit consists of a single-photon source, and two quantum emitters positioned in two arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to act as photon sources to herald internode entanglement, and to perform high-fidelity intranode two-qubit gates within a single chip without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities ${\\cal F} \\sim 0.998$ achievable in state-of-the-art quantum dot systems.

  17. A Geometric Algebra Perspective On Quantum Computational Gates And Universality In Quantum Computing

    CERN Document Server

    Cafaro, Carlo

    2010-01-01

    We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO(3) and SU(2) based on the rotor group Spin+(3, 0) formalism, we reexamine Boykin's proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectoria...

  18. Quantum States as Ordinary Information

    Directory of Open Access Journals (Sweden)

    Ken Wharton

    2014-03-01

    Full Text Available Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge about. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time. By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed “all-at-once” (as in classical action principles. From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.

  19. Quantum gates with topological phases

    CERN Document Server

    Ionicioiu, R

    2003-01-01

    We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid state implementation are briefly discussed.

  20. Schrödinger cat and Werner state disentanglement simulated by trapped ion systems

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.

    2017-04-01

    Disentanglement and loss of quantum correlations due to one global collective noise effect are described for two-qubit Schrödinger cat and Werner states of a four level trapped ion quantum system. Once the Jaynes–Cummings ionic interactions are mapped onto a Dirac spinor structure, the elementary tools for computing quantum correlations of two-qubit ionic states are provided. With two-qubit quantum numbers related to the total angular momentum and to its projection onto the direction of an external magnetic field (which lifts the degeneracy of the ion’s internal levels), a complete analytical profile of entanglement for the Schrödinger cat and Werner states is obtained. Under vacuum noise (during spontaneous emission), the two-qubit entanglement in the Schrödinger cat states is shown to vanish asymptotically. Otherwise, the robustness of Werner states is concomitantly identified, with the entanglement content recovered by their noiseless-like evolution. Most importantly, our results point to a firstly reported sudden transition between classical and quantum decay regimes driven by a classical collective noise on the Schrödinger cat states, which has been quantified by the geometric discord.

  1. Continuous Variable Quantum State Sharing via Quantum Disentanglement

    CERN Document Server

    Lance, A M; Bowen, W P; Sanders, B C; Tyc, T; Ralph, T C; Lam, P K; Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Tyc, Tomas; Ralph, Timothy C.; Lam, Ping Koy

    2004-01-01

    Quantum state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multi-partite quantum networks. Quantum state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret state distribution, and a class of "quantum disentangling" protocols for the state reconstruction. We demonstrate a quantum state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, whilst individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F = 0.73. A result achievable only by using quan...

  2. Adiabatic phase-conserving processes for executing quantum operations with ultracold atoms

    Science.gov (United States)

    Beterov, I. I.; Tret'yakov, D. B.; Entin, V. M.; Yakshina, E. A.; Khamzina, G. N.; Ryabtsev, I. I.

    2017-06-01

    We have studied the regimes of deterministic single-atom Rydberg excitation in the conditions of Rydberg blockade and the methods of compensation for the dynamic phase of the wave function during the adiabatic passage. Using these methods, we have proposed schemes of single-qubit and two-qubit quantum states with mesoscopic atomic ensembles containing a random number of atoms, considred as quibits. The double adiabatic passage of the Förster resonance for two interacting atoms with a deterministic phase shift can be used for the implementation of two-qubit gates with reduced sensitivity of the gate fidelity to the fluctuations of the interatomic distance.

  3. Dark states in quantum photosynthesis

    CERN Document Server

    Kozyrev, S V

    2016-01-01

    We discuss a model of quantum photosynthesis with degeneracy in the light-harvesting system. We consider interaction of excitons in chromophores with light and phonons (vibrations of environment). These interactions have dipole form but are different (are related to non-parallel vectors of "bright" states). We show that this leads to excitation of non-decaying "dark" states. We discuss relation of this model to the known from spectroscopical experiments phenomenon of existence of photonic echo in quantum photosynthesis.

  4. Entanglement of a two-qubit anisotropic Heisenberg XYZ chain in nonuniform magnetic fields with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Xu Xiao-Bo; Liu Jin-Ming; Yu Peng-Fei

    2008-01-01

    Taking the intrinsic decoherence effect into account,this paper investigates the entanglement of a two-qubit anisotropic Heisenberg XY Z model in the presence of nonuniform external magnetic fields by employing the concurrence as entanglement measure.It is found that both the intrinsic decoherence and the anisotropy of the system give a significant suppression to the entanglement.Moreover it finds that the initial state of the system plays an important role in the time evolution of the entanglement,which means that the entanglement of the system is independent of the nonuniformity and uniformity of the magnetic field when the system is in the initial state |ψ(0)>=|00>and |ψ(0)>=m |01>+n|10>,respectively.

  5. A quantum Fredkin gate (Conference Presentation)

    Science.gov (United States)

    Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.

    2016-10-01

    One of the greatest challenges in modern science is the realisation of quantum computers which, as their scale increases, will allow enhanced performance of tasks across many areas of quantum information processing. Quantum logic gates play a vital role in realising these applications by carrying out the elementary operations on the qubits; a key aim is minimising the resources needed to build these gates into useful circuits. While the salient features of a quantum computer have been shown in proof-of-principle experiments, e.g., single- and two-qubit gates, difficulties in scaling quantum systems to encode and manipulate multiple qubits has hindered demonstrations of more complex operations. This is exemplified by the classical Fredkin (or controlled-SWAP) gate [1] for which, despite many theoretical proposals [2,3] relying on concatenating multiple two-qubit gates, a quantum analogue has yet to be realised. Here, by directly adding control to a two-qubit SWAP unitary [4], we use photonic qubit logic to report the first experimental demonstration of a quantum Fredkin gate [5]. Our scheme uses linear optics and improves on the overall probability of success by an order of magnitude over previous proposals [2,3]. This optical approach allows us to add control an arbitrary black-box unitary which is otherwise forbidden in the standard circuit model [6]. Additionally, the action of our gate exhibits quantum coherence allowing the generation of the highest fidelity three-photon GHZ states to date. The quantum Fredkin gate has many applications in quantum computing, quantum measurements [7] and cryptography [8,9]. Using our scheme, we apply the Fredkin gate to the task of direct measurements of the purity and state overlap of a quantum system [7] without recourse to quantum state tomography.

  6. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    Science.gov (United States)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  7. Dynamical matrix for arbitrary quadratic fermionic bath Hamiltonians and non-Markovian dynamics of one and two qubits in an Ising model environment

    Science.gov (United States)

    Iemini, Fernando; da Silva Souza, Leonardo; Debarba, Tiago; Cesário, André T.; Maciel, Thiago O.; Vianna, Reinaldo O.

    2017-05-01

    We obtain the analytical expression for the Kraus decomposition of the quantum map of an environment modeled by an arbitrary quadratic fermionic Hamiltonian acting on one or two qubits, and derive simple functions to check the non-positivity of the intermediate map. These functions correspond to two different sufficient criteria for non-Markovianity. In the particular case of an environment represented by the Ising Hamiltonian, we discuss the two sources of non-Markovianity in the model, one due to the finite size of the lattice, and another due to the kind of interactions.

  8. Backwards-induction Outcome in a Quantum Game

    CERN Document Server

    Iqbal, A

    2002-01-01

    In economics duopoly is a market dominated by two firms large enough to influence the market price. Stackelberg presented a dynamic form of duopoly that is also called `leader-follower' model. We give a quantum perspective on Stackelberg duopoly that gives a backwards-induction outcome same as the Nash equilibrium in static form of duopoly also known as Cournot's duopoly. We find two qubit quantum pure states required for this purpose.

  9. Decoy State Quantum Key Distribution

    Science.gov (United States)

    Lo, Hoi-Kwong

    2005-10-01

    Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution

  10. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity

    Institute of Scientific and Technical Information of China (English)

    S. P. Toh; Hishamuddin Zainuddin; Kim Eng Foo

    2012-01-01

    A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2√2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one.%A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known.As a subset of two-qubit systems,Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2(√2).Based on this geometric representation,we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one.

  11. Quantum Memory as Light Pulses Quantum States Transformer

    Directory of Open Access Journals (Sweden)

    Vetlugin A.N.

    2015-01-01

    Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.

  12. Quantum state revivals in quantum walks on cycles

    Directory of Open Access Journals (Sweden)

    Phillip R. Dukes

    2014-01-01

    Full Text Available Recurrence in the classical random walk is well known and described by the Pólya number. For quantum walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin operators which are constant in time and uniform across the path have been described before but only incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.

  13. Schemes of implementation in NMR of quantum processors and Deutsch-Jozsa algorithm by using virtual spin representation

    OpenAIRE

    Kessel, Alexander R.; Yakovleva, Natalia M.

    2002-01-01

    Schemes of experimental realization of the main two qubit processors for quantum computers and Deutsch-Jozsa algorithm are derived in virtual spin representation. The results are applicable for every four quantum states allowing the required properties for quantum processor implementation if for qubit encoding virtual spin representation is used. Four dimensional Hilbert space of nuclear spin 3/2 is considered in details for this aim

  14. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    Ashok Vudayagiri

    2011-12-01

    A scheme is proposed for achieving a controlled phase gate using interaction between atomic spin dipoles. Further, the spin states are prepared in coherent population trap states (CPTs), which are robust against perturbations, laser fluctuations etc. We show that one-qubit and two-qubit operations can easily be obtained in this scheme. The scheme is also robust against decoherences due to spontaneous emissions as the CPT states used are dressed states formed out of Zeeman sublevels of ground states of the bare atom. However, certain practical issues are of concern in actually obtaining the scheme, which are also discussed at the end of this paper.

  15. Nonlocality of quantum correlations

    CERN Document Server

    Streltsov, A; Roga, W; Bruß, D; Illuminati, F

    2012-01-01

    We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.

  16. Quantum logic networks for probabilistic teleportation

    Institute of Scientific and Technical Information of China (English)

    刘金明; 张永生; 郭光灿

    2003-01-01

    By means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neuman measurement and classically controlled operations, we construct efficient quantum logic networks for implementing probabilistic teleportation of a single qubit, atwo-particle entangled state, and an N-particle entanglement. Based on the quantum networks, we show that after the partially entangled states are concentrated into maximal entanglement,the above three kinds of probabilistic teleportation are the same as the standard teleportation using the corresponding maximally entangled states as the quantum channels.

  17. Quantum logic networks for probabilistic teleportation

    Institute of Scientific and Technical Information of China (English)

    刘金明; 张永生; 等

    2003-01-01

    By eans of the primitive operations consisting of single-qubit gates.two-qubit controlled-not gates,Von Neuman measurement and classically controlled operations.,we construct efficient quantum logic networks for implementing probabilistic teleportation of a single qubit,a two-particle entangled state,and an N-particle entanglement.Based on the quantum networks,we show that after the partially entangled states are concentrated into maximal entanglement,the above three kinds of probabilistic teleportation are the same as the standard teleportation using the corresponding maximally entangled states as the quantum channels.

  18. Holographic quantum computing.

    Science.gov (United States)

    Tordrup, Karl; Negretti, Antonio; Mølmer, Klaus

    2008-07-25

    We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.

  19. Remote creation of quantum coherence

    Science.gov (United States)

    Ma, Teng; Zhao, Ming-Jing; Fei, Shao-Ming; Long, Gui-Lu

    2016-10-01

    We study remote creation of coherence (RCC) for a quantum system, A, with the help of quantum operations on another system, B, and one-way classical communication. We show that all the nonincoherent quantum states are useful for RCC and all the incoherent-quantum states are not. The necessary and sufficient conditions of RCC for the quantum operations on system B are presented for pure states. The upper bound of average RCC is derived, giving a relation among the entanglement (concurrence), the RCC of the given quantum state, and the RCC of the corresponding maximally entangled state. Moreover, for two-qubit systems we find a simple factorization law for the average remote-created coherence.

  20. Bipartite entanglement in a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TIAN Dong-Ping

    2009-01-01

    This paper investigates the bipartite entanglement of a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field. By the concept of negativity, we find that the inhomogeneity of the magnetic field may induce entanglement and the critical magnetic field is independent of Jz. We also find that the entanglement is symmetric with respect to a zero magnetic field. The anisotropy parameter Jz may enhance the entanglement.

  1. Unknowability of Quantum State forbids perfectly quantum operations

    Institute of Scientific and Technical Information of China (English)

    CAIQing-yu; LIBai-wen

    2004-01-01

    We analyze the oonnection between quantum operations and accessible information. And we find that the accessible information decreases under quantum operations. We show that it is impossible to perfectly manipulate an unknown state in an open quantum system. That the accessible information decreases under quantum operations gives a fundamental limitation in the microscopic world.

  2. Unknowability of Quantum State forbids perfectly quantum operations

    Institute of Scientific and Technical Information of China (English)

    CAI Qing-yu; LI Bai-wen

    2004-01-01

    We analyze the connection between quantum operations and accessible information. And we find that the accessible information decreases under quantum operations. We show that it is impossible to perfectly manipulate an unknown state in an open quantum system. That the accessible information decreases under quantum operations gives a fundamental limitation in the microscopic world.

  3. Quantum Error-Correction-Enhanced Magnetometer Overcoming the Limit Imposed by Relaxation.

    Science.gov (United States)

    Herrera-Martí, David A; Gefen, Tuvia; Aharonov, Dorit; Katz, Nadav; Retzker, Alex

    2015-11-13

    When incorporated in quantum sensing protocols, quantum error correction can be used to correct for high frequency noise, as the correction procedure does not depend on the actual shape of the noise spectrum. As such, it provides a powerful way to complement usual refocusing techniques. Relaxation imposes a fundamental limit on the sensitivity of state of the art quantum sensors which cannot be overcome by dynamical decoupling. The only way to overcome this is to utilize quantum error correcting codes. We present a superconducting magnetometry design that incorporates approximate quantum error correction, in which the signal is generated by a two qubit Hamiltonian term. This two-qubit term is provided by the dynamics of a tunable coupler between two transmon qubits. For fast enough correction, it is possible to lengthen the coherence time of the device beyond the relaxation limit.

  4. Algorithmic complexity and entanglement of quantum states.

    Science.gov (United States)

    Mora, Caterina E; Briegel, Hans J

    2005-11-11

    We define the algorithmic complexity of a quantum state relative to a given precision parameter, and give upper bounds for various examples of states. We also establish a connection between the entanglement of a quantum state and its algorithmic complexity.

  5. Remote preparation of quantum states

    CERN Document Server

    Bennett, C H; Leung, D W; Shor, P W; Winter, A; Bennett, Charles H; Hayden, Patrick; Leung, Debbie W.; Shor, Peter W.; Winter, Andreas

    2003-01-01

    Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. This then yields the exact trade-off c...

  6. Quantum state transfer via Bloch oscillations.

    Science.gov (United States)

    Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G A

    2016-05-18

    The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.

  7. Quantum State Tomography Based on Quantum Games Theoretic Setup

    CERN Document Server

    Nawaz, Ahmad

    2009-01-01

    We develop a technique for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In our technique Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself. It is shown that for a particular set of unitary operators these elements become equal to Stokes parameters for an unknown quantum state. In this way an unknown quantum state can be measured and reconstructed. Strictly speaking this technique is not a game as no strategic competitions are involved.

  8. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  9. Entanglement for All Quantum States

    Science.gov (United States)

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  10. Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers

    CERN Document Server

    Miranowicz, A; Miranowicz, Adam; Leonski, Wieslaw

    2006-01-01

    Schemes for optical-state truncation of two cavity modes are analysed. The systems, referred to as the nonlinear quantum scissors devices, comprise two coupled nonlinear oscillators (Kerr nonlinear coupler) with one or two of them pumped by external classical fields. It is shown that the quantum evolution of the pumped couplers can be closed in a two-qubit Hilbert space spanned by vacuum and single-photon states only. Thus, the pumped couplers can behave as a two-qubit system. Analysis of time evolution of the quantum entanglement shows that Bell states can be generated. A possible implementation of the couplers is suggested in a pumped double-ring cavity with resonantly enhanced Kerr nonlinearities in an electromagnetically-induced transparency scheme. The fragility of the generated states and their entanglement due to the standard dissipation and phase damping are discussed by numerically solving two types of master equations.

  11. Polarization controlled quantum phase gate based on cross-phase modulation in GaAs/AlGaAs semiconductor quantum wells

    CERN Document Server

    Luo, Xiao-Qing; Fan, Heng; Liu, Wu-Ming

    2012-01-01

    We investigate the linear and nonlinear properties of the probe and signal optical pulses based on intersubband transitions in an asymmetric GaAs/AlGaAs double quantum wells. It shows that, in the presence of cross-phase modulation, a giant cross-Kerr nonlinearity and mutually matched group velocities of the probe and signal optical pulses can be achieved while realizing the suppression of linear and self-Kerr optical absorption synchronously. These characteristics serve to exhibit an all-optical two-qubit polarization controlled quantum phase gate within efficiently controllable photon-photon entanglement by semiconductor mediation. In addition, by using just polarizing beam and half-wave plates, we propose a practical experimental scheme to discriminate the maximally entangled polarization state of two-qubit through distinguishing two out of the four Bell states. This proposal potentially enables the realization of solid states mediated all-optical quantum computation and information processing.

  12. Entropy of Quantum States: Ambiguities

    CERN Document Server

    Balachandran, A P; Vaidya, S

    2012-01-01

    The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.

  13. Cluster态的量子签名方案%Cluster state quantum entangled signature scheme

    Institute of Scientific and Technical Information of China (English)

    王郁武

    2012-01-01

    提出一种利用Cluster state纠缠态实现的量子签名方案.该方案中用Cluster态作为量子信道,每一组量子比特串分别分发给消息拥有和签名者Alice、公证人TA、验签名者Bob.加载消息的方法是Alice在TA规定量子比特串序列下,分别对拥有的量子比特对的第一个量子比特进行幺正变换操作而进行.对拥有的量子比特对进行的Bell测量结果是消息的签名.Bob对拥有的对应的两个量子比特对进行Bell测量来验证签名,但要得到公证人TA对其约束才能完成.Cluster state纠缠态在纠缠特性、局域操作保真性和安全性有较好的性能.%A scheme of using Cluster quantum entangled state to quantum signature is presented. Cluster state of the program is used as a quantum channel, and each group of quantum bit string signed by Alice is distributed to Alice, notaries TA and inspection signer Bob. The way of loading message is that Alice does transformation operation on the first qubit unitary respectively, and the Bell measurement results of quantum bits are the signature of a message. Bob does the Bell measurement on the corresponding two-qubit to verify the signature, but it must be restricted by the notary TA. It is verified that Cluster state entanglement properties of entangled state, security, local operators have better performance.

  14. Quantum state of the multiverse

    OpenAIRE

    Robles Pérez, Salvador; González-Díaz, Pedro F.

    2010-01-01

    A third quantization formalism is applied to a simplified multiverse scenario. A well-defined quantum state of the multiverse is obtained which agrees with standard boundary condition proposals. These states are found to be squeezed, and related to accelerating universes: they share similar properties to those obtained previously by Grishchuk and Siderov. We also comment on related works that have criticized the third quantization approach. © 2010 The American Physical Society.

  15. Quantum State Detection Via Elimination

    CERN Document Server

    Ettinger, J M; Hoyer, Peter

    1999-01-01

    We present the view of quantum algorithms as a search-theoretic problem. We show that the Fourier transform, used to solve the Abelian hidden subgroup problem, is an example of an efficient elimination observable which eliminates a constant fraction of the candidate secret states with high probability. Finally, we show that elimination observables do not always exist by considering the geometry of the hidden subgroup states of the dihedral group D_N.

  16. Experimental realization of Deutsch's algorithm in a one-way quantum computer.

    Science.gov (United States)

    Tame, M S; Prevedel, R; Paternostro, M; Böhi, P; Kim, M S; Zeilinger, A

    2007-04-06

    We report the first experimental demonstration of an all-optical one-way implementation of Deutsch's quantum algorithm on a four-qubit cluster state. All the possible configurations of a balanced or constant function acting on a two-qubit register are realized within the measurement-based model for quantum computation. The experimental results are in excellent agreement with the theoretical model, therefore demonstrating the successful performance of the algorithm.

  17. On the Brodutch and Modi method of constructing geometric measures of classical and quantum correlations

    Science.gov (United States)

    Walczak, Zbigniew; Wintrowicz, Iwona

    2017-03-01

    Recently, Brodutch and Modi proposed a general method of constructing meaningful measures of classical and quantum correlations. We systematically apply this method to obtain geometric classical and quantum correlations based on the Bures and the trace distances for two-qubit Bell diagonal states. Moreover, we argue that in general the Brodutch and Modi method may provide non-unique results, and we show how to modify this method to avoid this issue.

  18. Centrifugal quantum states of neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.

    2008-09-01

    We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  19. A reconfigurable spintronic device for quantum and classical logic

    CERN Document Server

    Bhowmik, Debanjan; Sarkar, Angik; Bhattacharyya, Tarun Kanti

    2010-01-01

    Quantum superposition and entanglement of physical states can be harnessed to solve some problems which are intractable on a classical computer implementing binary logic. Several algorithms have been proposed to utilize the quantum nature of physical states and solve important problems. For example, Shor's quantum algorithm is extremely important in the field of cryptography since it factors large numbers exponentially faster than any known classical algorithm. Another celebrated example is the Grovers quantum algorithm. These algorithms can only be implemented on a quantum computer which operates on quantum bits (qubits). Rudimentary implementations of quantum processor have already been achieved through linear optical components, ion traps, NMR etc. However demonstration of a solid state quantum processor had been elusive till DiCarlo et al demonstrated two qubit algorithms in superconducting quantum processor. Though this has been a significant step, scalable semiconductor based room temperature quantum co...

  20. Unknown Quantum States The Quantum de Finetti Representation

    CERN Document Server

    Caves, C M; Schack, R; Caves, Carlton M.; Fuchs, Christopher A.; Schack, Ruediger

    2002-01-01

    We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti's classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. The quantum de Finetti theorem, in a closely analogous fashion, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an ``unknown quantum state'' in quantum-state tomography. This result is especially important for information-based interpretations of quantum mechanics, where quantum states, like probabilities, are taken to be states of knowledge rather than...

  1. Robust Quantum Secure Direct Communication and Deterministic Secure Quantum Communication over Collective Dephasing Noisy Channel

    Institute of Scientific and Technical Information of China (English)

    YUAN Hao; SONG Jun; HE Qin; HAN Lian-Fang; HOU Kui; HU Xiao-Yuan; SHI Shou-Hua

    2008-01-01

    We propose two schemes for quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit states are used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks can be ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-day technique.

  2. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

    Science.gov (United States)

    Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.

    2016-03-01

    We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.

  3. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    Science.gov (United States)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  4. Photon-assisted entanglement creation by minimum-error generalized quantum measurements in the strong coupling regime

    CERN Document Server

    Bernád, J Z

    2012-01-01

    In generalization of the hydbrid quantum repeater model of van Loock et al. \\cite{vanLoock1} we explore possibilities of entangling two distant material qubits with the help of a single-mode optical radiation field in the strong quantum electrodynamical coupling regime of almost resonant interaction. The optimum generalized field measurements are determined which are capable of preparing a two-qubit Bell state by postselection with minimum error. It is demonstrated that in the strong coupling regime some of the recently found limitations of the non-resonant weak coupling regime can be circumvented successfully due to characteristic quantum electrodynamical quantum interference effects. In particular, in the absence of photon loss it is possible to postselect two-qubit Bell states with fidelities close to unity by a proper choice of the relevant interaction time. Even in the presence of photon loss this strong coupling regime offers interesting perspectives for creating spatially well separated Bell pairs with...

  5. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  6. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  7. Non-Markovian Entanglement Sudden Death and Rebirth of a Two-Qubit System in the Presence of System-Bath Coherence

    CERN Document Server

    Wang, Hao-Tian; Zou, Yang; Ge, Rong-Chun; Guo, Guang-Can

    2010-01-01

    We present a detailed study of the entanglement dynamics of a two-qubit system coupled to independent non-Markovian environments, employing hierarchy equations. This recently developed theoretical treatment can conveniently solve non-Markovian problems and take into consideration the correlation between the system and bath in an initial state. We concentrate on calculating the death and rebirth time points of the entanglement to obtain a general view of the concurrence curve and explore the behavior of entanglement dynamics with respect to the coupling strength, the characteristic frequency of the noise bath and the environment temperature.

  8. Bipartite entanglement of a two-qubit system with anisotropic couplings under nonuniform magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Qin Meng; Tian Dong-Ping

    2009-01-01

    This paper investigates bipartite entanglement of a two-qubit system with anisotropic couplings under all inhomogeneous magnetic field.This work is mainly to investigate the characteristics of a Heisenberg XYZ chain and obtains some meaningful results.By the concept of negativity,it finds that the inhomogeneity of magnetic field may induce entanglement and the critical magnetic field is independent of Jz.The inhomogeneous magnetic field can increase the value of critical magnetic field Bc.It also finds that the magnetic field not only suppresses the entanglement but also can induce it to revival for some time.

  9. Optimal feedback control of two-qubit entanglement in dissipative environments

    Science.gov (United States)

    Rafiee, Morteza; Nourmandipour, Alireza; Mancini, Stefano

    2016-07-01

    We study the correction of errors intervening in two qubits dissipating into their own environments. This is done by resorting to local feedback actions with the aim of preserving as much as possible the initial amount of entanglement. Optimal control is found first by gaining insights from the subsystem purity and then by numerical analysis on the concurrence. This is tantamount to a double optimization on the actuation and on the measurement processes. Repeated feedback action is also investigated, thus paving the way for a continuous-time formulation and a solution of the problem.

  10. Creating a Superposition of Unknown Quantum States.

    Science.gov (United States)

    Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni

    2016-03-18

    The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.

  11. Entanglement for all quantum states

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, A C; Goyeneche, D; Leitao, L [IFIMAR, (CONICET-UNMDP) Departamento de Fisica, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata (Argentina)], E-mail: delatorre@mdp.edu.ar, E-mail: dgoyene@mdp.edu.ar, E-mail: lleitao@mdp.edu.ar

    2010-03-15

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.

  12. Entanglement for all quantum states

    CERN Document Server

    de la Torre, A C; Leitao, L; 10.1088/0143-0807/31/2/010

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom, becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.

  13. Quantum approach to Bertrand duopoly

    Science.gov (United States)

    Fraçkiewicz, Piotr; Sładkowski, Jan

    2016-09-01

    The aim of the paper is to study the Bertrand duopoly example in the quantum domain. We use two ways to write the game in terms of quantum theory. The first one adapts the Li-Du-Massar scheme for the Cournot duopoly. The second one is a simplified model that exploits a two qubit entangled state. In both cases, we focus on finding Nash equilibria in the resulting games. Our analysis allows us to take another look at the classic model of Bertrand.

  14. Advanced quantum communication systems

    Science.gov (United States)

    Jeffrey, Evan Robert

    Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.

  15. Cavity QED quantum phase gates for a single longitudinal mode of the intracavity field

    CERN Document Server

    García-Maraver, R; Eckert, K; Rebic, S; Artoni, M; Mompart, J

    2004-01-01

    A single three-level atom driven by a longitudinal mode of a high-Q cavity is used to implement two-qubit quantum phase gates for the intracavity field. The two qubits are associated to the zero-and one-photon Fock states of each of the two opposite circular polarization states of the field. The three-level atom yields the conditional phase gate provided the two polarization states and the atom interact in a $V$-type configuration and the two photon resonance condition is fulfilled. Microwave and optical implementations are discussed with gate fidelities being evaluated against several decoherence mechanisms such as atomic velocity fluctuations or the presence of a weak magnetic field. The use of coherent states for both polarization states is investigated to assess the entanglement capability of the proposed quantum gates.

  16. Cavity QED quantum phase gates for a single longitudinal mode of the intracavity field

    Science.gov (United States)

    García-Maraver, R.; Corbalán, R.; Eckert, K.; Rebić, S.; Artoni, M.; Mompart, J.

    2004-12-01

    A single three-level atom driven by a longitudinal mode of a high- Q cavity is used to implement two-qubit quantum phase gates for the intracavity field. The two qubits are associated with the zero- and one-photon Fock states of each of the two opposite circular polarization states of the field. The three-level atom mediates the conditional phase gate provided the two polarization states and the atom interact in a V-type configuration and the two-photon resonance condition is satisfied. Microwave and optical implementations are discussed with gate fidelities being evaluated against several decoherence mechanisms such as atomic velocity fluctuations or the presence of a weak magnetic field. The use of coherent states for both polarization states is investigated to assess the entanglement capability of the proposed quantum gates.

  17. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  18. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  19. Nonclassicality of noisy quantum states

    CERN Document Server

    Semenov, A A; Vasylyev, D Y

    2005-01-01

    Nonclassicality conditions for an oscillator-like system interacting with a hot thermal bath are considered. Nonclassical properties of quantum states can be conserved up to a certain temperature threshold only. In this case affection of the thermal noise can be compensated via transformation of an observable, which tests the nonclassicality (witness function). Possibilities for experimental implementations based on unbalanced homodyning are discussed. At the same time we demonstrate that the scheme based on balanced homodyning cannot be improved for noisy states with proposed technique and should be applied directly.

  20. Quantum cryptography with squeezed states

    CERN Document Server

    Hillery, M

    1999-01-01

    A quantum key distribution scheme based on the use of displaced squeezed vacuum states is presented. The states are squeezed in one of two field quadrature components, and the value of the squeezed component is used to encode a character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper from determining both with enough precision to determine the character being sent. Losses degrade the performance of this scheme, but it is possible to use phase-sensitive amplifiers to boost the signal and partially compensate for their effect.

  1. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  2. Scattering Induced Quantum Interference of Multiple Quantum Optical States

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;

    2011-01-01

    Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...... interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples....

  3. Quantum learning of coherent states

    CERN Document Server

    Sentís, Gael; Adesso, Gerardo

    2014-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian es...

  4. Quantum Brachistochrone for Mixed States

    CERN Document Server

    Carlini, A; Koike, T; Okudaira, Y

    2007-01-01

    We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The problem reduces to solving first a fundamental equation (the {\\it quantum brachistochrone}) for the Hamiltonian, which can be written down once the constraints are specified, and then solving the constraints and the master equation for the Lindblad and the density operators. As an application of our formalism, we study a simple one-qubit model where the optimal Lindblad operators control decoherence and can be simulated by a tunable coupling with an ancillary qubit. It is found that the evolution through mixed states can be more efficient than the unitary evolution between given pure states. We also discuss the mixed state evolution as a finite time unitary evolution of the system plus an environment followed by a single measurement. For the simplest choice of the c...

  5. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  6. Teleportations of Mixed States and Multipartite Quantum States

    Institute of Scientific and Technical Information of China (English)

    YU Chang-Shui; WANG Ya-Hong; SONG He-Shan

    2007-01-01

    In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ifa non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 - √1 - C2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation,Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.

  7. Quantum information processing through nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bulnes, J.D.; Sarthour, R.S.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Bonk, F.A.; Azevedo, E.R. de; Bonagamba, T.J. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Freitas, J.C.C. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica

    2005-09-15

    We discuss the applications of Nuclear Magnetic Resonance (NMR) to quantum information processing, focusing on the use of quadrupole nuclei for quantum computing. Various examples of experimental implementation of logic gates are given and compared to calculated NMR spectra and their respective density matrices. The technique of Quantum State Tomography for quadrupole nuclei is briefly described, and examples of measured density matrices in a two-qubit I = 3/2 spin system are shown. Experimental results of density matrices representing pseudo-Bell states are given, and an analysis of the entropy of theses states is made. Considering an NMR experiment as a depolarization quantum channel we calculate the entanglement fidelity and discuss the criteria for entanglement in liquid state NMR quantum information. A brief discussion on the perspectives for NMR quantum computing is presented at the end. (author)

  8. Teleportation of Two Quantum States via the Quantum Computation

    Institute of Scientific and Technical Information of China (English)

    FENG Mang; ZHU Xi-Wen; FANG Xi-Ming; YAN Min; SHI Lei

    2000-01-01

    A scheme of teleportation of two unknown quantum states via quantum computation is proposed. The comparison with the former proposals shows that our scheme is more in tune with the original teleportation proposal and the effciency is higher. The teleportation of an unknown entangled state is also discussed.

  9. Distinguishability of quantum states and shannon complexity in quantum cryptography

    Science.gov (United States)

    Arbekov, I. M.; Molotkov, S. N.

    2017-07-01

    The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.

  10. Past Quantum States of a Monitored System

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus

    2013-01-01

    A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times tstate Ξ(t) is composed of two objects, ρ......(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...

  11. Entanglement and coherence in quantum state merging

    CERN Document Server

    Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-01-01

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...

  12. Quantum state transfer through noisy quantum cellular automata

    Science.gov (United States)

    Avalle, Michele; Genoni, Marco G.; Serafini, Alessio

    2015-05-01

    We model the transport of an unknown quantum state on one dimensional qubit lattices by means of a quantum cellular automata (QCA) evolution. We do this by first introducing a class of discrete noisy dynamics, in the first excitation sector, in which a wide group of classical stochastic dynamics is embedded within the more general formalism of quantum operations. We then extend the Hilbert space of the system to accommodate a global vacuum state, thus allowing for the transport of initial on-site coherences besides excitations, and determine the dynamical constraints that define the class of noisy QCA in this subspace. We then study the transport performance through numerical simulations, showing that for some instances of the dynamics perfect quantum state transfer is attainable. Our approach provides one with a natural description of both unitary and open quantum evolutions, where the homogeneity and locality of interactions allow one to take into account several forms of quantum noise in a plausible scenario.

  13. Reducing computational complexity of quantum correlations

    Science.gov (United States)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2015-12-01

    We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.

  14. Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions

    CERN Document Server

    Bittencourt, Victor A S V; Blasone, Massimo

    2016-01-01

    Quantum transition probabilities and quantum entanglement for two-qubit states of a four level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a $\\mbox{SU}(2)\\otimes \\mbox{SU}(2)$ group structure. Using the correspondence of the method of simulating a $3+1$ dimensional Dirac-like Hamiltonian for bi-spinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincar\\'e classes of coupling potentials, one also identifies the $\\mbox{SU}(2)\\otimes \\mbox{SU}(2)$ internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the qu...

  15. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.

    Science.gov (United States)

    Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P

    2015-01-02

    The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. Copyright © 2015, American Association for the Advancement of Science.

  16. Quantum Secret Sharing with Error Correction

    Institute of Scientific and Technical Information of China (English)

    Aziz Mouzali; Fatiha Merazka; Damian Markham

    2012-01-01

    We investigate in this work a quantum error correction on a five-qubits graph state used for secret sharing through five noisy channels. We describe the procedure for the five, seven and nine qubits codes. It is known that the three codes always allow error recovery if only one among the sent qubits is disturbed in the transmitting channel. However, if two qubits and more are disturbed, then the correction will depend on the used code. We compare in this paper the three codes by computing the average fidelity between the sent secret and that measured by the receivers. We will treat the case where, at most, two qubits are affected in each one of five depolarizing channels.

  17. Wigner-Yanase skew information as tests for quantum entanglement

    CERN Document Server

    Chen, Z

    2004-01-01

    A Bell-type inequality is proposed in terms of Wigner-Yanase skew information, which is quadratic and involves only one local spin observable at each site. This inequality presents a hierarchic classification of all states of multipartite quantum systems from separable to fully entangled states, which is more powerful than the one presented by quadratic Bell inequalities from 2-entangled to fully entangled states. In particular, it is proved that the inequality provides an exact test to distinguish entangled from nonentangled pure states of two qubits. Our inequality sheds considerable new light on relationships between quantum entanglement and information theory.

  18. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  19. Quantum communication based on orthogonal states enables quantum bit commitment

    CERN Document Server

    He, Guang Ping

    2011-01-01

    For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But basing on a formerly proposed quantum communication scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the impossibility proofs of QBC are based. Thus unconditional security can be achieved. Our protocol is very feasible with currently available technology. It re-opens the venue for other "post-cold-war" multi-party cryptographic protocols, e.g., unconditionally secure quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.

  20. Critical assessment of two-qubit post-Markovian master equations

    CERN Document Server

    Campbell, S; Mazzola, L; Gullo, N Lo; Vacchini, B; Busch, Th; Paternostro, M

    2012-01-01

    A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.

  1. Complete multiple round quantum dense coding with quantum logical network

    Institute of Scientific and Technical Information of China (English)

    LI ChunYan; LI XiHan; DENG FuGuo; ZHOU Ping; ZHOU HongYu

    2007-01-01

    We present a complete multiple round quantum dense coding scheme for improving the source capacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary operations in each round.

  2. Maximal entanglement versus entropy for mixed quantum states

    CERN Document Server

    Wei, T C; Goldbart, P M; Kwiat, P G; Munro, W J; Verstraete, F; Wei, Tzu-Chieh; Nemoto, Kae; Goldbart, Paul M.; Kwiat, Paul G.; Munro, William J.; Verstraete, Frank

    2003-01-01

    Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures, the form of the corresponding maximally entangled mixed states is determined primarily analytically. As measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms of the maximally entangled mixed states can vary with the combination of (entanglement and mixedness) measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can change discontinuously at a specific value of the entropy.

  3. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  4. Tuned Transition from Quantum to Classical for Macroscopic Quantum States

    NARCIS (Netherlands)

    Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.

    2011-01-01

    The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1  μA carried by a

  5. Quantum computation with classical light: The Deutsch Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, Benjamin [Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849 (Mexico); University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Francis, Jason [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); McLaren, Melanie [University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Hernandez-Aranda, Raul I. [Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849 (Mexico); Forbes, Andrew [University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Konrad, Thomas, E-mail: konradt@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); National Institute of Theoretical Physics, Durban Node, Private Bag X54001, Durban 4000 (South Africa)

    2015-08-28

    We present an implementation of the Deutsch Algorithm using linear optical elements and laser light. We encoded two quantum bits in form of superpositions of electromagnetic fields in two degrees of freedom of the beam: its polarisation and orbital angular momentum. Our approach, based on a Sagnac interferometer, offers outstanding stability and demonstrates that optical quantum computation is possible using classical states of light. - Highlights: • We implement the Deutsh Algorithm using linear optical elements and classical light. • Our qubits are encoded in the polarisation and orbital angular momentum of the beam. • We show that it is possible to achieve quantum computation with two qubits in the classical domain of light.

  6. Quantum Sensors: Improved Optical Measurement via Specialized Quantum States

    Directory of Open Access Journals (Sweden)

    David S. Simon

    2016-01-01

    Full Text Available Classical measurement strategies in many areas are approaching their maximum resolution and sensitivity levels, but these levels often still fall far short of the ultimate limits allowed by the laws of physics. To go further, strategies must be adopted that take into account the quantum nature of the probe particles and that optimize their quantum states for the desired application. Here, we review some of these approaches, in which quantum entanglement, the orbital angular momentum of single photons, and quantum interferometry are used to produce optical measurements beyond the classical limit.

  7. Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Kampermann, H; Veeman, W S

    2005-06-01

    NMR quantum computing with qubit systems represented by nuclear spins (I=12) in small molecules in liquids has led to the most successful experimental quantum information processors so far. We use the quadrupolar spin-32 sodium nuclei of a NaNO3 single crystal as a virtual two-qubit system. The large quadrupolar coupling in comparison with the environmental interactions and the usage of strongly modulating pulses allow us to manipulate the system fast enough and at the same time keeping the decoherence reasonably slow. The experimental challenge is to characterize the "calculation" behavior of the quantum processor by process tomography which is here adapted to the quadrupolar spin system. The results of a selection of quantum gates and algorithms are presented as well as a detailed analysis of experimental results.

  8. Purifying Quantum States: Quantum and Classical Algorithms

    CERN Document Server

    Dennis, E

    2005-01-01

    I give analytical estimates and numerical simulation results for the performance of Kitaev's 2d topological error-correcting codes. By providing methods for the execution of an encoded three-qubit Toffoli gate, I complete a universal gate set for these codes. I also examine the utility of Bohm's and Bohm-inspired interpretations of quantum mechanics for numerical solution of many-body dynamics and ``mechanism identification'' heuristics in discrete systems. Further, I show an unexpected quantitative correspondence between the previously known continuum of stochastic-Bohm trajectory theories on the one hand and extant path integral Monte Carlo methods on the other hand.

  9. Quantum discord of states arising from graphs

    Science.gov (United States)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish

    2017-08-01

    Quantum discord refers to an important aspect of quantum correlations for bipartite quantum systems. In our earlier works, we have shown that corresponding to every graph (combinatorial) there are quantum states whose properties are reflected in the structure of the corresponding graph. Here, we attempt to develop a graph theoretic study of quantum discord that corresponds to a necessary and sufficient condition of zero quantum discord states which says that the blocks of density matrix corresponding to a zero quantum discord state are normal and commute with each other. These blocks have a one-to-one correspondence with some specific subgraphs of the graph which represents the quantum state. We obtain a number of graph theoretic properties representing normality and commutativity of a set of matrices which are indeed arising from the given graph. Utilizing these properties, we define graph theoretic measures for normality and commutativity that results in a formulation of graph theoretic quantum discord. We identify classes of quantum states with zero discord using the developed formulation.

  10. Ultrafast Quantum Gates in Circuit QED

    CERN Document Server

    Romero, G; Wang, Y M; Scarani, V; Solano, E

    2011-01-01

    We present a method of implementing ultrafast two-qubit gates valid for the ultrastrong coupling (USC) and deep strong coupling (DSC) regimes of light-matter interaction, considering state-of-the-art circuit quantum electrodynamics (QED) technology. Our proposal includes a suitable qubit architecture and is based on a four-step sequential displacement of an intracavity mode, operating at a time proportional to the inverse of the resonator frequency. Through ab initio calculations, we show that these quantum gates can be performed at subnanosecond time scales, while keeping the fidelity above 99%.

  11. Disentanglement of Two Qubits Coupled to an XY Spin Chain at Finite Temperature

    Institute of Scientific and Technical Information of China (English)

    NIE Jing; WANG Lin-Cheng; YI Xue-Xi

    2009-01-01

    The disentanglement evolution of bipartite spin-1/2 system coupled to a common surrounding XY chain in transverse fields at nonzero temperature is studied in this letter. The dynamical process of the entanglement is numerically and anaiytically investigated. We find that thermal effects can enhance disentanglement if the entangled initial state of the central spins does not in the decoherenee free space. The critical phenomenon of quantum phase transitions reflected in the disentanglement can be washed out by the thermal effect eventually.

  12. Quantum walks outside of boolean domain as a gate for one, two, or three qubits

    Science.gov (United States)

    Cavin, Thomas; Solenov, Dmitry

    Quantum computing needs entangling quantum gates to perform computation and error correction. We will discuss a novel way to implement quantum gates, such as CNOT, using quantum walks that are directed through a network of states outside of the boolean domain. In such implementations it is important to investigate walks on networks of different connectivities. Specifically, we will discuss solutions to non-symmetric linear chain networks and demonstrate how solutions to more complex networks that have branching, such as cubes, can be expressed in terms of linear chain solutions. We then show examples of implementing single qubit and two-qubit entangling gates.

  13. Quantum states preparation in cavity optomechanics

    Science.gov (United States)

    Ge, Wenchao

    Quantum entanglement and quantum superposition are fundamental properties of quantum mechanics, which underline quantum information and quantum computation. Preparing quantum states in the macroscopic level is both conceptually interesting for extending quantum physics to a broader sense and fundamentally important for testing the validity of quantum mechanics. In this dissertation, schemes of preparing macroscopic entanglement and macroscopic superposition states in cavity optomechanics are studied using the unitary evolution method in the nonlinear regime or Lyapunov equation in the linearized regime. Quantum entanglement and quantum superposition states can be realized using experimentally feasible parameters with the proposals in this dissertation. Firstly, a scheme of entangling two movable end mirrors in a Fabry-Perot cavity that are coupled to a common single photon superposition state is studied. It is shown that strong entanglement can be obtained either in the single-photon strong coupling regime deterministically or in the single-photon weak coupling regime conditionally. Secondly, a scheme of entangling two movable end mirrors, that are coupled to two-mode entangled fields generated from a correlated-emission laser is investigated. By tuning the input driving laser frequencies at the Stokes sidebands of the cavity, the radiation-pressure coupling can be linearized as an effective beam-splitter-like interaction. Hence entanglement can be transferred from the two-mode fields to the two mechanical mirrors. Macroscopic entanglement between macroscopic mirrors persists at temperature ~ 1K. Thirdly, a scheme of creating macroscopic quantum superpositions of a mechanical mirror via periodically flipping a photonic qubit is proposed. Quantum superposition states of a mechanical mirror can be obtained via the nonlinear radiation coupling with a single-photon superposition state. However, the difference between two superposed mechanical states is very small due

  14. Entangled States, Holography and Quantum Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chapline, G F

    2003-08-13

    Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.

  15. Quantum state diffusion, localization and computation

    CERN Document Server

    Schack, R; Percival, I C

    1995-01-01

    Numerical simulation of individual open quantum systems has proven advantages over density operator computations. Quantum state diffusion with a moving basis (MQSD) provides a practical numerical simulation method which takes full advantage of the localization of quantum states into wave packets occupying small regions of classical phase space. Following and extending the original proposal of Percival, Alber and Steimle, we show that MQSD can provide a further gain over ordinary QSD and other quantum trajectory methods of many orders of magnitude in computational space and time. Because of these gains, it is even possible to calculate an open quantum system trajectory when the corresponding isolated system is intractable. MQSD is particularly advantageous where classical or semiclassical dynamics provides an adequate qualitative picture but is numerically inaccurate because of significant quantum effects. The principles are illustrated by computations for the quantum Duffing oscillator and for second harmonic...

  16. Secret Sharing of a Quantum State.

    Science.gov (United States)

    Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei

    2016-07-15

    Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.

  17. Quantum information theory of the Bell-state quantum eraser

    Science.gov (United States)

    Glick, Jennifer R.; Adami, Christoph

    2017-01-01

    Quantum systems can display particle- or wavelike properties, depending on the type of measurement that is performed on them. The Bell-state quantum eraser is an experiment that brings the duality to the forefront, as a single measurement can retroactively be made to measure particlelike or wavelike properties (or anything in between). Here we develop a unitary information-theoretic description of this and several related quantum measurement situations that sheds light on the trade-off between the quantum and classical features of the measurement. In particular, we show that both the coherence of the quantum state and the classical information obtained from it can be described using only quantum-information-theoretic tools and that those two measures satisfy an equality on account of the chain rule for entropies. The coherence information and the which-path information have simple interpretations in terms of state preparation and state determination and suggest ways to account for the relationship between the classical and the quantum world.

  18. Introduction to quantum-state estimation

    CERN Document Server

    Teo, Yong Siah

    2016-01-01

    Quantum-state estimation is an important field in quantum information theory that deals with the characterization of states of affairs for quantum sources. This book begins with background formalism in estimation theory to establish the necessary prerequisites. This basic understanding allows us to explore popular likelihood- and entropy-related estimation schemes that are suitable for an introductory survey on the subject. Discussions on practical aspects of quantum-state estimation ensue, with emphasis on the evaluation of tomographic performances for estimation schemes, experimental realizations of quantum measurements and detection of single-mode multi-photon sources. Finally, the concepts of phase-space distribution functions, which compatibly describe these multi-photon sources, are introduced to bridge the gap between discrete and continuous quantum degrees of freedom. This book is intended to serve as an instructive and self-contained medium for advanced undergraduate and postgraduate students to gra...

  19. Quantum states of the bouncing universe

    CERN Document Server

    Gazeau, Jean Pierre; Piechocki, Wlodzimierz

    2013-01-01

    In this paper we study quantum dynamics of the bouncing cosmological model. We focus on the model of the flat Friedman-Robertson-Walker universe with a free scalar field. The bouncing behavior, which replaces classical singularity, appears due to the modification of general relativity along the methods of loop quantum cosmology. We show that there exist a unitary transformation that enables to describe the system as a free particle with Hamiltonian equal to canonical momentum. We examine properties of the various quantum states of the Universe: boxcar state, standard coherent state, and soliton-like state, as well as Schr{\\"o}dinger's cat states constructed from these states. Characteristics of the states such as quantum moments and Wigner functions are investigated. We show that each of these states have, for some range of parameters, a proper semiclassical limit fulfilling the correspondence principle. Decoherence of the superposition of two universes is described and possible interpretations in terms of tr...

  20. Entanglement and Coherence in Quantum State Merging.

    Science.gov (United States)

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  1. The Monge distance between quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zyczkowski, Karol [Institute for Plasma Research, University of Maryland, College Park, MD (United States); Slomczynski, Wojciech [Instytut Matematyki, Uniwersytet Jagiellonski, Cracow (Poland)

    1998-11-13

    We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q-functions). This quantity fulfils the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states. (author)

  2. Free spin quantum computation with semiconductor nanostructures

    CERN Document Server

    Zhang, W M; Soo, C; Zhang, Wei-Min; Wu, Yin-Zhong; Soo, Chopin

    2005-01-01

    Taking the excess electron spin in a unit cell of semiconductor multiple quantum-dot structure as a qubit, we can implement scalable quantum computation without resorting to spin-spin interactions. The technique of single electron tunnelings and the structure of quantum-dot cellular automata (QCA) are used to create a charge entangled state of two electrons which is then converted into spin entanglement states by using single spin rotations. Deterministic two-qubit quantum gates can also be manipulated using only single spin rotations with help of QCA. A single-short read-out of spin states can be realized by coupling the unit cell to a quantum point contact.

  3. Quantum teleportation with continuous measurements

    Science.gov (United States)

    Greplova, Eliska; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-10-01

    We propose a scheme for quantum teleportation between two qubits, coupled sequentially to a cavity field. An implementation of the scheme is analyzed with superconducting qubits and a transmission line resonator, where measurements are restricted to continuous probing of the field leaking from the resonator rather than instantaneous projective Bell state measurement. We show that the past quantum state formalism S. Gammelmark, B. Julsgaard, and K. Mølmer, Phys. Rev. Lett. 111, 160401 (2013), 10.1103/PhysRevLett.111.160401 can be successfully applied to estimate what would have been the most likely Bell measurement outcome conditioned on our continuous signal record. This information determines which local operation on the target qubit yields the optimal teleportation fidelity. Our results emphasize the significance of applying a detailed analysis of quantum measurements in feedforward protocols in nonideal leaky quantum systems.

  4. Quantum state transfer and network engineering

    CERN Document Server

    Nikolopoulos, Georgios M

    2013-01-01

    Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the en

  5. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  6. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  7. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    S KHAN; N A KHAN

    2016-10-01

    The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the spincorrelations of entangled fermions are studied. In the limit of small average momentum, regardless of the size of the wave packet and the rapidity, the classical and the quantum correlations are equally weighted. On the otherhand, in the limit of large average momentum, the only correlations that exist in the system are the quantum correlations. For every value of the average momentum, the quantum correlations maximize at an optimal size of the wave packet. It is shown that after reaching a minimum value, the revival of quantum discord occurs with increasing rapidity.

  8. Quantum information processing with mesoscopic photonic states

    DEFF Research Database (Denmark)

    Madsen, Lars Skovgaard

    2012-01-01

    The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...

  9. Controllable coherent population transfers in superconducting qubits for quantum computing.

    Science.gov (United States)

    Wei, L F; Johansson, J R; Cen, L X; Ashhab, S; Nori, Franco

    2008-03-21

    We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.

  10. Remote Operation on Quantum State Among Multiparty

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a scheme is proposed for performing remote operation on quantum state among multiparty.We use three-particle GHZ state as quantum channels to prepare a state operator, which describes quantum correlation between states and operations. Based on the special characteristic of the state operator, observers can perform unitary operation on a system that is away from observers. Our studies show this process is deterministic. We further consider remote operation among N spatially distributed observers, and the results show the successful realization of remote operation needs collective participation of N parties, that is, there exists strong correlation among multiparty. In addition, we investigate the case in which observers share a three-particle W state as quantum channels to perform remote operation and studies find this process is probabilistic.

  11. Multi-state Quantum Teleportation via One Entanglement State

    Institute of Scientific and Technical Information of China (English)

    GUO Ying; ZENG Gui-Hua; Moon Ho Lee

    2008-01-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quan-tum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.

  12. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  13. Quantum computer of wire circuit architecture

    CERN Document Server

    Moiseev, S A; Andrianov, S N

    2010-01-01

    First solid state quantum computer was built using transmons (cooper pair boxes). The operation of the computer is limited because of using a number of the rigit cooper boxes working with fixed frequency at temperatures of superconducting material. Here, we propose a novel architecture of quantum computer based on a flexible wire circuit of many coupled quantum nodes containing controlled atomic (molecular) ensembles. We demonstrate wide opportunities of the proposed computer. Firstly, we reveal a perfect storage of external photon qubits to multi-mode quantum memory node and demonstrate a reversible exchange of the qubits between any arbitrary nodes. We found optimal parameters of atoms in the circuit and self quantum modes for quantum processing. The predicted perfect storage has been observed experimentally for microwave radiation on the lithium phthalocyaninate molecule ensemble. Then also, for the first time we show a realization of the efficient basic two-qubit gate with direct coupling of two arbitrary...

  14. Entanglement of Formation for Quantum States

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; WANG Zhi-Xi

    2007-01-01

    We investigate the entanglement of formation for a class of high-dimensional quantum mixed states. We present a kind of generalized concurrence for a class of high-dimensional quantum pure states such that the entanglement of formation is a monotonically increasing convex function of the generalized concurrence. From the monotonicity and convexity the entanglement of formation for a class of high-dimensional mixed states has been calculated analytically.

  15. Edge states of periodically kicked quantum rotors

    CERN Document Server

    Floß, Johannes

    2015-01-01

    We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  16. Characteristic parameters and dynamics of two-qubit system in self-assembled monolayers

    CERN Document Server

    Rinkevicius, Z; Tsifrinovich, V I; Tretiak, S; Rinkevicius, Zilvinas; Berman, Gennady P.; Tsifrinovich, Vladimir I.; Tretiak, Sergei

    2004-01-01

    We suggest the application of nitronylnitroxide substituted with methyl group and 2,2,6,6-tetramethylpiperidin organic radicals as 1/2-spin qubits for self-assembled monolayer quantum devices. We show that the oscillating cantilever driven adiabatic reversals technique can provide the read-out of the spin states. We compute components of the $g$-tensor and dipole-dipole interaction tensor for these radicals. We show that the delocalization of the spin in the radical may significantly influence the dipole-dipole interaction between the spins.

  17. Adaptive Quantum State Detection through Repetitive Mapping

    Science.gov (United States)

    Hume, David; Rosenband, Till; Wineland, David; Bergquist, Jim

    2007-06-01

    State detection plays an important role in quantum information processing and quantum-limited metrology. In some quantum systems direct detection is impossible or inefficient. This can be overcome by coupling the primary quantum system to an ancillary system used for measurement [1]. The measurement process consists of mapping the primary state to the ancilla followed by ancilla detection. If the measurement does not affect the projected populations of the primary system, it may be repeated yielding higher fidelity. Using two trapped ion species (^27Al^+ and ^9Be^+) as the primary and ancillary systems, we demonstrate high-fidelity measurement despite imperfect information transfer and ancilla detection. An adaptive measurement strategy allows for multiple qubit state discrimination with one ancilla. This opens the way for several applications in quantum information processing and advances our optical clock effort. [1] P.O. Schmidt, et. al. Science 309 749 (2005)

  18. Quantum State Detection through Repetitive Mapping

    Science.gov (United States)

    Hume, D. B.; Rosenband, T.; Bergquist, J. C.; Wineland, D. J.

    2007-03-01

    State detection plays an important role in quantum information processing and quantum-limited metrology. In some cases the quantum system of interest can only be detected with poor efficiency. One approach to overcoming this limitation is to couple the primary quantum system to an ancillary quantum system used for measurement [1]. The measurement process consists of mapping the primary state to the ancilla followed by ancilla detection. If this can be done without affecting the projected populations of the primary system, the measurement may be repeated. In this case, detection fidelity can be significantly higher than both the fidelity of state transfer and the intrinsic measurement fidelity of the ancillary system. Using two ions as the primary and ancillary systems (^27Al^+ and ^9Be^+ respectively) held in a harmonic trap, we demonstrate near unit fidelity measurement despite imperfect information transfer and ancilla detection. [1] P.O. Schmidt, et. al. Science 309 749 (2005)

  19. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2008-01-01

    The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding(1-3). However, owing to the unavoidable loss in any real optical...

  20. Duality constructions from quantum state manifolds

    CERN Document Server

    Kriel, J N; Scholtz, F G

    2015-01-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS_2/CFT_1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et. al. the corresponding state manifol...

  1. Construction of nonlocal multipartite quantum states

    Science.gov (United States)

    Zhang, Zhi-Chao; Zhang, Ke-Jia; Gao, Fei; Wen, Qiao-Yan; Oh, C. H.

    2017-05-01

    For general bipartite quantum systems, many sets of locally indistinguishable orthogonal product states have been constructed so far. Here, we first present a general method to construct multipartite orthogonal product states in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥4 ) by using some locally indistinguishable bipartite orthogonal product states. And we prove that these multipartite orthogonal quantum states cannot be distinguished by local operations and classical communication. Furthermore, in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥5 ) , we give a general method to construct a much smaller number of locally indistinguishable multipartite orthogonal product states for even and odd n separately. In addition, we also present a general method to construct complete orthogonal product bases for the multipartite quantum systems. Our results demonstrate the phenomenon of nonlocality without entanglement for the multipartite quantum systems.

  2. Invariant measures on multimode quantum Gaussian states

    Science.gov (United States)

    Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.

    2012-12-01

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  3. Invariant measures on multimode quantum Gaussian states

    CERN Document Server

    Lupo, C; De Pasquale, A; Facchi, P; Florio, G; Pascazio, S

    2012-01-01

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest or applications in quantum optics and quantum information.

  4. Invariant measures on multimode quantum Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)

    2012-12-15

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  5. Quantum secure direct communication over the collective amplitude damping channel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An efficient quantum secure direct communication protocol is presented over the amplitude damping channel.The protocol encodes logical bits in two-qubit noiseless states,and so it can function over a quantum channel subjected to collective amplitude damping.The feature of this protocol is that the sender encodes the secret directly on the quantum states,the receiver decodes the secret by performing determinate measurements,and there is no basis mismatch.The transmission’s safety is ensured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel.Moreover,we construct the efficient quantum circuits to implement channel encoding and information encoding by means of primitive operations in quantum computation.

  6. Quantum secure direct communication over the collective amplitude damping channel

    Institute of Scientific and Technical Information of China (English)

    QIN Suduan; WEN QiaoYan; MENG LuoMing; ZHU FuChen

    2009-01-01

    An efficient quantum secure direct communication protocol is presented over the amplitude damping channel. The protocol encodes logical bits in two-qubit noiseless states, and so it can function over a quantum channel subjected to collective amplitude damping. The feature of this protocol is that the sender encodes the secret directly on the quantum states, the receiver decodes the secret by per-forming determinate measurements, and there is no basis mismatch. The transmission's safely is en-sured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel. Moreover, we construct the efficient quantum circuits to implement channel encoding and information enooding by means of primitive operations in quantum computation.

  7. Quantum state transfer and network engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nikolopoulos, Georgios M. [Institute of Electronic Structure and Laser Foundation for Research and Technology, Hellas (Greece); Jex, Igor (ed.) [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering

    2014-03-01

    Presents the basics of large-scale quantum information processing and networking. Covers most aspects of the problems of state transfer and quantum network engineering. Reflects the interdisciplinary nature of the field. Presents various theoretical approaches as well as possible implementations and related experiments. Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.

  8. Concurrent remote entanglement with quantum error correction against photon losses

    Science.gov (United States)

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-09-01

    Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.

  9. Quantum repeaters with entangled coherent states

    CERN Document Server

    Sangouard, Nicolas; Gisin, Nicolas; Laurat, Julien; Tualle-Brouri, Rosa; Grangier, Philippe

    2009-01-01

    Entangled coherent states can be prepared remotely by subtracting non-locally a single photon from two quantum superpositions of coherent states, the so-called "Schroedinger's cat" state. Such entanglement can further be distributed over longer distances by successive entanglement swapping operations using linear optics and photon-number resolving detectors. The aim of this paper is to evaluate the performance of this approach to quantum repeaters for long distance quantum communications. Despite many attractive features at first sight, we show that, when using state-of-the-art photon counters and quantum memories, they do not achieve higher entanglement generation rates than repeaters based on single-photon entanglement. We discuss potential developments which may take better advantage of the richness of entanglement based on continuous variables, including in particular efficient parity measurements.

  10. Nonorthogonal Decoy-State Quantum Key Distribution

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Bo; FANG Xi-Ming

    2006-01-01

    @@ In practical quantum key distribution (QKD), weak coherent states as the photon source have a limit in the secure key rate and transmission distance because of the existence of multi-photon pulses and heavy loss in transmission line.

  11. Classical topology and quantum states

    Indian Academy of Sciences (India)

    A P Balachandran

    2001-02-01

    Any two infinite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if all self-adjoint operators can be observed, and if there is no further major axiom in quantum physics than those formulated for example in Dirac’s ‘quantum mechanics’, then a quantum physicist would not be able to tell a torus from a hole in the ground. We argue that there are indeed such axioms involving observables with smooth time evolution: they contain commutative subalgebras from which the spatial slice of spacetime with its topology (and with further refinements of the axiom, its - and ∞ - structures) can be reconstructed using Gel’fand–Naimark theory and its extensions. Classical topology is an attribute of only certain quantum observables for these axioms, the spatial slice emergent from quantum physics getting progressively less differentiable with increasingly higher excitations of energy and eventually altogether ceasing to exist. After formulating these axioms, we apply them to show the possibility of topology change and to discuss quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum physics are also addressed.

  12. Quantum Teleportation of Tripartite Arbitrary State via W State

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2005-01-01

    A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.

  13. LOCC indistinguishable orthogonal product quantum states

    Science.gov (United States)

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-07-01

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.

  14. Affine Coherent States in Quantum Cosmology

    CERN Document Server

    Malkiewicz, Przemyslaw

    2015-01-01

    A brief summary of the application of coherent states in the examination of quantum dynamics of cosmological models is given. We discuss quantization maps, phase space probability distributions and semiclassical phase spaces. The implementation of coherent states based on the affine group resolves the hardest singularities, renders self-adjoint Hamiltonians without boundary conditions and provides a completely consistent semi-classical description of the involved quantum dynamics. We consider three examples: the closed Friedmann model, the anisotropic Bianchi Type I model and the deep quantum domain of the Bianchi Type IX model.

  15. Quantum state transfer in optomechanical arrays

    Science.gov (United States)

    de Moraes Neto, G. D.; Andrade, F. M.; Montenegro, V.; Bose, S.

    2016-06-01

    Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can achieve quantum state transfer with a high fidelity between sites in a cavity quantum optomechanical network. In our lattice, each individual site is composed of a localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, while photons hop between neighboring sites. After diagonalization of the Hamiltonian of each cell, we show that the system can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the well-known results in quantum state transfer together with an additional condition on the transfer times. In fact, we show that our transfer protocol works for any arbitrary joint quantum state of a mechanical and an optical mode. Finally, in order to analyze a more realistic scenario we take into account the effects of independent thermal reservoirs for each site. By solving the standard master equation within the Born-Markov approximation, we reassure both the effective model and the feasibility of our protocol.

  16. Experimental one-way quantum computing.

    Science.gov (United States)

    Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A

    2005-03-10

    Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

  17. The symmetric extendibility of quantum states

    Science.gov (United States)

    Nowakowski, Marcin L.

    2016-09-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.

  18. Entanglement and the shareability of quantum states

    Science.gov (United States)

    Doherty, Andrew C.

    2014-10-01

    This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  19. Provable entanglement and information cost for qubit-based quantum key-distribution protocols

    CERN Document Server

    Nikolopoulos, G M; Khalique, A

    2005-01-01

    Provable entanglement has been shown to be a necessary precondition for unconditionally secure key generation in the context of quantum cryptographic protocols. We estimate the maximal threshold disturbance up to which the two legitimate users can prove the presence of quantum correlations in their data, in the context of the four- and six-state quantum key-distribution protocols, under the assumption of coherent attacks. Moreover, we investigate the conditions under which an eavesdropper can saturate these bounds, by means of incoherent and two-qubit coherent attacks. A direct connection between entanglement distillation and classical advantage distillation is also presented.

  20. Optimal sequential state discrimination between two mixed quantum states

    Science.gov (United States)

    Namkung, Min; Kwon, Younghun

    2017-08-01

    Recently, sequential state discrimination, as a quantum-key distribution protocol, has been proposed for multiple receivers. A previous study [J. A. Bergou et al., Phys. Rev. Lett. 111, 100501 (2013), 10.1103/PhysRevLett.111.100501] showed that every receiver could successfully perform a sequential state discrimination of two pure states with identical prior probabilities. In this study, we extend the sequential state discrimination to mixed states with arbitrary prior probability. First, we analytically obtain the condition of the receiver's optimal measurement. In addition, we show that the optimal probability for every receiver to share the mixed state prepared by the sender is not zero. Furthermore, we compare the sequential state discrimination to the strategies of quantum reproducing and quantum broadcasting. We find that there are cases in which, unlike that of the pure state, the sequential state discrimination of mixed states shows a better performance than the other strategies.

  1. Quantum Correlation Coefficients for Angular Coherent States

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; HE Yan; GUO Hao

    2009-01-01

    Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations.These results explicitly verify that the angular coherent states minimize the Robertson-Schrodinger uncertainty relation for all spins, which means that they are the so-called intelligent states.The same results can be obtained by the Schwinger representation approach.

  2. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  3. Generalized BF state in quantum gravity

    CERN Document Server

    Yamashita, Shinji; Fukuda, Makoto

    2014-01-01

    The BF state is known as a simple wave function which satisfies three constraints in canonical quantum gravity without a cosmological constant. It is constructed from a product of the group delta functions. Applying the chiral asymmetric extension, the BF state is generalized to the state for the real values of the Barbero-Immirzi parameter.

  4. Decoherence of quantum states in QCD vacuum

    Science.gov (United States)

    Kuvshinov, V.; Bagashov, E.

    2017-09-01

    The stochastic vacuum of quantum chromodynamics is used as an environment for quarks considered as color state vectors. It is shown that during interaction with the stochastic vacuum information of the quark color state is lost with time (decoherence of the quark state vector occurs), which effectively means that it is impossible to observe the quark as a free color particle (confinement).

  5. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits

    CERN Document Server

    Bonderson, Parsa

    2010-01-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  6. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    Science.gov (United States)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  7. Observation of time-invariant coherence in a room temperature quantum simulator

    CERN Document Server

    Silva, Isabela A; Bromley, Thomas R; Cianciaruso, Marco; Sarthour, Roberto S; Oliveira, Ivan S; Franco, Rosario Lo; deAzevedo, Eduardo R; Soares-Pinto, Diogo O; Adesso, Gerardo

    2015-01-01

    The ability to live in coherent superposition states is a signature trait of quantum systems and constitutes an unexpendable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. Here we show that, in a composite quantum system exposed to decohering noise, quantum coherence in a reference basis can stay protected for indefinite time. This occurs for a class of quantum states independently of the measure used to quantify coherence, and requires no control on the system during the dynamics. Such an invariant coherence phenomenon is observed experimentally in a two-qubit room temperature nuclear magnetic resonance quantum simulator. Our study reveals a novel interplay between coherence and various forms of correlations, and highlights the natural resilience of quantum effects in complex systems.

  8. Quantum superreplication of states and gates

    Science.gov (United States)

    Chiribella, Giulio; Yang, Yuxiang

    2016-06-01

    Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O( M/ N 2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/ N 2, and iii) a protocol that generates O( N 2) nearly perfect copies of a generic pure state U |0> while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M 2/ N 2.

  9. Radiative corrections and quantum gates in molecular systems

    CERN Document Server

    Huffenberger, Kevin M

    2004-01-01

    We propose a method for quantum information processing using molecules coupled to an external laser field. This utilizes molecular interactions, control of the external field and an effective energy shift of the doubly-excited state of two coupled molecules. Such a level shift has been seen in the two-photon resonance experiments recently reported in Ref. [1]. Here we show that this can be explained in terms of the QED Lamb shift. We quantify the performance of the proposed quantum logic gates in the presence of dissipative mechanisms. The unitary transformations required for performing one- and two-qubit operations can be implemented with present day technology.

  10. Unknown Quantum States and Operations, a Bayesian View

    CERN Document Server

    Fuchs, C; Fuchs, Christopher A.; Schack, Ruediger

    2004-01-01

    The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti's theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an "unknown quantum state" in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an "unknown quantum operation" in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states ...

  11. Quantum states with strong positive partial transpose

    Science.gov (United States)

    Chruściński, Dariusz; Jurkowski, Jacek; Kossakowski, Andrzej

    2008-02-01

    We construct a large class of bipartite M⊗N quantum states which defines a proper subset of states with positive partial transposes (PPTs). Any state from this class has PPT but the positivity of its partial transposition is recognized with respect to canonical factorization of the original density operator. We propose to call elements from this class states with strong positive partial transposes (SPPTs). We conjecture that all SPPT states are separable.

  12. Quantum repeater based on cavity QED evolutions and coherent light

    Science.gov (United States)

    Gonţa, Denis; van Loock, Peter

    2016-05-01

    In the framework of cavity QED, we propose a quantum repeater scheme that uses coherent light and chains of atoms coupled to optical cavities. In contrast to conventional repeater schemes, in our scheme there is no need for an explicit use of two-qubit quantum logical gates by exploiting solely the cavity QED evolution. In our previous work (Gonta and van Loock in Phys Rev A 88:052308, 2013), we already proposed a quantum repeater in which the entanglement between two neighboring repeater nodes was distributed using controlled displacements of input coherent light, while the produced low-fidelity entangled pairs were purified using ancillary (four-partite) entangled states. In the present work, the entanglement distribution is realized using a sequence of controlled phase shifts and displacements of input coherent light. Compared to previous coherent-state-based distribution schemes for two-qubit entanglement, our scheme here relies only upon a simple discrimination of two coherent states with opposite signs, which can be performed in a quantum mechanically optimal fashion via a beam splitter and two on-off detectors. For the entanglement purification, we employ a method that avoids the use of extra entangled ancilla states. Our repeater scheme exhibits reasonable fidelities and repeater rates providing an attractive platform for long-distance quantum communication.

  13. Deterministic joint remote state preparation

    Energy Technology Data Exchange (ETDEWEB)

    An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn [Center for Theoretical Physics, Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Bich, Cao Thi [Center for Theoretical Physics, Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Physics Department, University of Education No. 1, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Don, Nung Van [Center for Theoretical Physics, Institute of Physics, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Physics Department, Hanoi National University, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam)

    2011-09-26

    We put forward a new nontrivial three-step strategy to execute joint remote state preparation via Einstein-Podolsky-Rosen pairs deterministically. At variance with all existing protocols, in ours the receiver contributes actively in both preparation and reconstruction steps, although he knows nothing about the quantum state to be prepared. -- Highlights: → Deterministic joint remote state preparation via EPR pairs is proposed. → Both general single- and two-qubit states are studied. → Differently from all existing protocols, in ours the receiver participates actively. → This is for the first time such a strategy is adopted.

  14. Quantum fidelity for arbitrary Gaussian states

    CERN Document Server

    Banchi, Leonardo; Pirandola, Stefano

    2015-01-01

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  15. Quantum information processing with noisy cluster states

    CERN Document Server

    Tame, M S; Kim, M S; Vedral, V

    2005-01-01

    We provide an analysis of basic quantum information processing protocols under the effect of intrinsic non-idealities in cluster states. These non-idealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise, is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.

  16. Optimal conclusive teleportation of quantum states

    CERN Document Server

    Roa, L; Fuentes-Guridi, I

    2003-01-01

    Quantum teleportation of qudits is revisited. In particular, we analyze the case where the quantum channel corresponds to a non-maximally entangled state and show that the success of the protocol is directly related to the problem of distinguishing non-orthogonal quantum states. The teleportation channel can be seen as a coherent superposition of two channels, one of them being a maximally entangled state thus, leading to perfect teleportation and the other, corresponding to a non-maximally entangled state living in a subspace of the d-dimensional Hilbert space. The second channel leads to a teleported state with reduced fidelity. We calculate the average fidelity of the process and show its optimality.

  17. Characterization of conditional state-engineering quantum processes by coherent state quantum process tomography

    OpenAIRE

    Cooper, Merlin; Slade, Eirion; Karpinski, Michal; Smith, Brian J.

    2014-01-01

    Conditional quantum optical processes enable a wide range of technologies from generation of highly non-classical states to implementation of quantum logic operations. The process fidelity that can be achieved in a realistic implementation depends on a number of system parameters. Here we experimentally examine Fock-state filtration, a canonical example of a broad class of conditional quantum operations acting on a single optical field mode. This operation is based upon interference of the mo...

  18. Quantum typicality in spin network states of quantum geometry

    CERN Document Server

    Anzà, Fabio

    2016-01-01

    In this letter we extend the so-called typicality approach, originally formulated in statistical mechanics contexts, to SU(2) invariant spin network states. Our results do not depend on the physical interpretation of the spin-network, however they are mainly motivated by the fact that spin-network states can describe states of quantum geometry, providing a gauge-invariant basis for the kinematical Hilbert space of several background independent approaches to quantum gravity. The first result is, by itself, the existence of a regime in which we show the emergence of a typical state. We interpret this as the prove that, in that regime there are certain (local) properties of quantum geometry which are "universal". Such set of properties is heralded by the typical state, of which we give the explicit form. This is our second result. In the end, we study some interesting properties of the typical state, proving that the area-law for the entropy of a surface must be satisfied at the local level, up to logarithmic c...

  19. Effective pure states for bulk quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Chuang, I.; Laflamme, R.

    1997-11-01

    In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.

  20. Quantum Gravity, CPT symmetry and Entangled States

    CERN Document Server

    Mavromatos, Nick E

    2008-01-01

    There may unique ("smoking-gun") signatures of the breakdown of CPT symmetry, induced in some models of Quantum Gravity entailing decoherence for quantum matter. Such effects can be observed in entangled states of neutral mesons via modifications of the respective Einstein-Podolsky-Rosen (EPR) correlators ("omega"-effect). In the talk I discuss experimental signatures and bounds of the omega-effect in Phi- and B-factories, and argue that the effect might be falsifiable at the next generation facilities.

  1. Locking classical correlation in quantum states

    CERN Document Server

    Di Vincenzo, D P; Leung, D; Smolin, J A; Terhal, B M; Vincenzo, David Di; Horodecki, Michal; Leung, Debbie; Smolin, John; Terhal, Barbara

    2003-01-01

    We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are $(2n+1)$-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from $n/2$ bits to $n$ bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  2. A Scheme of Controlled Quantum State Swapping

    Institute of Scientific and Technical Information of China (English)

    查新未; 邹志纯; 祁建霞; 朱海洋

    2012-01-01

    A scheme for controlled quantum state swapping is presented using maximally entangled five-qubit state, i.e., Alice wants to transmit an entangled state of particle a to Bob and at the same time Bob wants to transmit an entangled state of particle b to Alice via the control of the supervisor Charlie. The operations used in this swapping process including C-not operation and a series of single-qubit measurements performed by Alice. Bob. and Charlie.

  3. Quantum chaos in open systems a quantum state diffusion analysis

    CERN Document Server

    Brun, T A; Schack, R; Brun, Todd A; Percival, Ian C; Schack, Rudiger

    1995-01-01

    Except for the universe, all quantum systems are open, and according to quantum state diffusion theory, many systems localize to wave packets in the neighborhood of phase space points. This is due to decoherence from the interaction with the environment, and makes the quasiclassical limit of such systems both more realistic and simpler in many respects than the more familiar quasiclassical limit for closed systems. A linearized version of this theory leads to the correct classical dynamics in the macroscopic limit, even for nonlinear and chaotic systems. We apply the theory to the forced, damped Duffing oscillator, comparing the numerical results of the full and linearized equations, and argue that this can be used to make explicit calculations in the decoherent histories formalism of quantum mechanics.

  4. Solid-State Quantum Refrigeration

    Science.gov (United States)

    2013-03-01

    determine the tilt angle of the ridge waveguide with respect to the cleavage plane. MQW Design: The designs which demonstrate the blueshift of...Photoluminescence (PL) by the photogenerated carriers are introduced. In this section the mechanisms which lead to the blueshift are explained. The...subject of this report. We propose the use of quantum confined stark shift as a method to blueshift the spectra of Matrix element of transition by

  5. A Note on Coriolis Quantum States

    OpenAIRE

    Dattoli, G.; Quattromini, M.

    2010-01-01

    We introduce the Coriolis quantum states in analogy to the Landau states. We discuss their physical meaning and their role within the context of gravito-magnetic theory. We also analyse the experimental conditions under which they can be observed and their link with the Aharanov-Carmi effect.

  6. Average fidelity between random quantum states

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Jurgen

    2003-01-01

    We analyze mean fidelity between random density matrices of size N, generated with respect to various probability measures in the space of mixed quantum states: Hilbert-Schmidt measure, Bures (statistical) measure, the measures induced by partial trace and the natural measure on the space of pure states. In certain cases explicit probability distributions for fidelity are derived.

  7. Experimentally testable state-independent quantum contextuality.

    Science.gov (United States)

    Cabello, Adán

    2008-11-21

    We show that there are Bell-type inequalities for noncontextual theories that are violated by any quantum state. One of these inequalities between the correlations of compatible measurements is particularly suitable for testing this state-independent violation in an experiment.

  8. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  9. Quantum locking of classical correlations and quantum discord of classical-quantum states

    CERN Document Server

    Boixo, S; Cavalcanti, D; Modi, K; Winter, A

    2011-01-01

    A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.

  10. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  11. Duality constructions from quantum state manifolds

    Science.gov (United States)

    Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.

    2015-11-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.

  12. Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate

    Energy Technology Data Exchange (ETDEWEB)

    Poyatos, J.; Cirac, J. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Zoller, P. [Institut fuer Theoretisch Physik, Universitaet Innsbruck, A-6020, Innsbruck (Austria)

    1997-01-01

    We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer. {copyright} {ital 1997} {ital The American Physical Society}

  13. Complete Characterization of a Quantum Process the Two-Bit Quantum Gate

    CERN Document Server

    Poyatos, J F; Zoller, P

    1997-01-01

    We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer.

  14. Simulating decoherence behavior of a system in entangled state using nuclear magnetic resonance

    CERN Document Server

    Zhang, J; Shan, L; Deng, Z; Zhang, Jingfu; Lu, Zhiheng; Shan, Lu; Deng, Zhiwei

    2002-01-01

    By choosing H nucleus in Carbon-13 labelled trichloroethylene as one qubit environment, and two C nuclei as a two-qubit system, we have simulated quantum decoherence when the system lies in an entangled state using nuclear magnetic resonance (NMR). Decoupling technique is used to trace over the environment degrees of freedom. Experimental results show agreements with the theoretical predictions. Our experiment scheme can be generalized to the case that environment is composed of multiple qubits.

  15. Conversion from Single Photon to Single Electron Spin Using Electrically Controllable Quantum Dots

    Science.gov (United States)

    Oiwa, Akira; Fujita, Takafumi; Kiyama, Haruki; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2017-01-01

    Polarization is a fundamental property of light and could provide various solutions to the development of secure optical communications with high capacity and high speed. In particular, the coherent quantum state conversion between single photons and single electron spins is a prerequisite for long-distance quantum communications and distributed quantum computation. Electrically defined quantum dots have already been proven to be suitable for scalable solid state qubits by demonstrations of single-spin coherent manipulations and two-qubit gate operations. Thus, their capacity for quantum information technologies would be considerably extended by the achievement of entanglement between an electron spin in the quantum dots and a photon. In this review paper, we show the basic technologies for trapping single electrons generated by single photons in quantum dots and for detecting their spins using the Pauli effect with sensitive charge sensors.

  16. The four-qubit singlet state and decoherence-free subspaces

    CERN Document Server

    Cabello, A

    2002-01-01

    It is pointed out that the recent experimental preparation of the four-qubit singlet state by Weinfurter's group is a fundamental achievement for the encoding of quantum information in decoherence-free (DF) subspaces. This state is the DF state orthogonal to the tensor product of two two-qubit singlet states, whose DF properties were experimentally checked by P. G. Kwiat et al. [Science 290, 498 (2000)], and thus provides the missing state for the simplest nontrivial encoding of quantum information in a DF subspace. An experiment to study this DF subspace is suggested.

  17. Dynamics of Measurement-Induced Non-Locality and Geometric Measure of Discord in a Two-Qubit Heisenberg XY Chain

    Science.gov (United States)

    Guo-Hui, Yang; Le, Song

    2016-02-01

    By taking into account the Dzyaloshinsky-Moriya (DM) interaction under uniform magnetic field, quantum correlation behaviors measured by the measurement-induced nonlocality (MIN) and the geometric measure of discord (GMOD) in a two-qubit XY model are investigated in detail. Turning the different parameters can lead the two kinds of measurements to present different properties. For example, increasing the parameter B(uniform magnetic field), the existing region of MIN is larger than GMOD; MIN can appear the phenomenon of monotonous reduction when the parameter D(Dzyaloshinsky-Moriya interaction) is smaller than one threshold value, while GMOD cannot; MIN monotonously reduces with enhancive value of T(temperature), while GMOD initial experiences a slightly increasing and then decreases. One interesting point is that the more obvious and complicated difference between them are shown from the initial values. This property is both true for the zero temperature and the finite temperature. Through analyzing the limit case of the temperature approaching zero, the analytic solutions give the detailed reasons why have different effect on the initial values. Moreover, from the analytic solutions, we know the initial value of MIN is always larger than or equal to GMOD.

  18. Composition of quantum states and dynamical subadditivity

    Energy Technology Data Exchange (ETDEWEB)

    Roga, Wojciech [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland); Fannes, Mark [Instituut voor Theoretische Fysica, Universiteit Leuven, B-3001 Leuven (Belgium); Zyczkowski, Karol [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland)

    2008-01-25

    We introduce a composition of quantum states of a bipartite system which is based on the reshuffling of density matrices. This non-Abelian product is associative and stems from the composition of quantum maps acting on a simple quantum system. It induces a semi-group in the subset of states with maximally mixed partial traces. Subadditivity of the von Neumann entropy with respect to this product is proved. It is equivalent to subadditivity of the entropy of bistochastic maps with respect to their composition, where the entropy of a map is the entropy of the corresponding state under the Jamiolkowski isomorphism. Strong dynamical subadditivity of a concatenation of three bistochastic maps is established. Analogous bounds for the entropy of a composition are derived for general stochastic maps. In the classical case they lead to new bounds for the entropy of a product of two stochastic matrices.

  19. Convex polytopes and quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Wilmott, Colin; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2010-07-01

    A convex polytope is defined as the convex hull of a finite non-empty set of vectors. We present a theorem of Rado (1952) which characterizes the convex hull of the collection of all permutations of a given real d-tuple in terms of the Hardy-Littlewood-Polya spectral order relation prec. We give a necessary and sufficient condition to construct a d-dimensional convex polytope which utilizes Rado's original (d-1)-dimensional characterization, and we describe how the resulting polytope may be placed in a quantum mechanical framework.

  20. An Arbitrated Quantum Signature with Bell States

    Science.gov (United States)

    Liu, Feng; Qin, Su-Juan; Huang, Wei

    2014-05-01

    Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

  1. Quantum Correlations in Mixed-State Metrology

    Directory of Open Access Journals (Sweden)

    Kavan Modi

    2011-12-01

    Full Text Available We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits and time (number of gates requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.

  2. Construction of quantum states by special superpositions of coherent states

    Science.gov (United States)

    Adam, P.; Molnar, E.; Mogyorosi, G.; Varga, A.; Mechler, M.; Janszky, J.

    2015-06-01

    We consider the optimal approximation of certain quantum states of a harmonic oscillator with the superposition of a finite number of coherent states in phase space placed either on an ellipse or on a certain lattice. These scenarios are currently experimentally feasible. The parameters of the ellipse and the lattice and the coefficients of the constituent coherent states are optimized numerically, via a genetic algorithm, in order to obtain the best approximation. It is found that for certain quantum states the obtained approximation is better than the ones known from the literature thus far.

  3. Projective loop quantum gravity. I. State space

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2016-12-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.

  4. Exotic states in quantum nanostructures

    CERN Document Server

    2002-01-01

    Mesoscopic physics has made great strides in the last few years It is an area of research that is attractive to many graduate students of theoretical condensed matter physics The techniques that are needed to understand it go beyond the conventional perturbative approaches that still form the bulk of the graduate lectures that are given to students Even when the non-perturbative techniques are presented, they often are presented within an abstract context It is important to have lectures given by experts in the field, which present both theory and experiment in an illuminating and inspiring way, so that the impact of new methodology on novel physics is clear It is an apt time to have such a volume since the field has reached a level of maturity The pedagogical nature of the articles and the variety of topics makes it an important resource for newcomers to the field The topics range from the newly emerging area of quantum computers and quantum information using Josephson junctions to the formal mathematical me...

  5. Superadiabatic quantum state transfer in spin chains

    Science.gov (United States)

    Agundez, R. R.; Hill, C. D.; Hollenberg, L. C. L.; Rogge, S.; Blaauboer, M.

    2017-01-01

    In this paper we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain. We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin-exchange coupling values of μ eV . Furthermore, by building a superadiabatic formalism on top of this protocol, we propose an effective superadiabatic protocol that retains the minimal control over the spin chain and further improves the fidelity.

  6. Quantum key distribution using three basis states

    Indian Academy of Sciences (India)

    Subhash Kak

    2000-05-01

    This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum method of Bennett and Brassard (BB84) where the transmission states have been decreased from 4 to 3 and the detector states have been increased from 2 to 3. Under certain assumptions regarding method of attack, it provides superior performance (in terms of the number of usable key bits) for < 18, where is the number of key bits used to verify the integrity of the process in the BB84-protocol.

  7. Towards room temperature solid state quantum devices at the edge of quantum chaos for long-living quantum states

    Science.gov (United States)

    Prati, Enrico

    2015-07-01

    Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics.

  8. Entanglement purification of unknown quantum states

    Science.gov (United States)

    Brun, Todd A.; Caves, Carlton M.; Schack, Rüdiger

    2001-04-01

    A concern has been expressed that ``the Jaynes principle can produce fake entanglement'' [R. Horodecki et al., Phys. Rev. A 59, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from N copies of a bipartite quantum system about which only partial information is known, for instance, in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state ρ(N) of the N copies of the quantum system is exchangeable, one can write down a simple general expression for ρ(N). By measuring one or more of the subsystems, one can gain information and update the state estimate for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.

  9. Quantum dynamics of a two-atom-qubit system

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Hieu; Nguyen Bich Ha [Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden (Germany); Le Thi Ha Linh [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)], E-mail: nvhieu@iop.vast.ac.vn

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  10. Quantum States for Black Holes

    Science.gov (United States)

    Vargas Moniz, Paulo

    2002-12-01

    Interest in quantum black holes have been increasing1-2 in order to better understand the latest stages of gravitational collapse. Our starting point is the 4-dimensional action S4-D = ∫ {d4 x√ {-g} [{R4}/{16}} - {(∇ 4 ψ 4)2 }/{2}}, associated with a 4-dimensional spherically symmetric metric ds2 = hab (τ ,r)dxa dxb + φ 2 (dθ 2 + sin 2 θ dω 2), with det(hab) = -α2β In addition hat{psi}_4 (tau ,r,theta ,omega) is a scalar field depending on all space-time coordinates, with ψ 4 = ψ 0 (τ ,r) + ∑ limits n {Cn ψ n (τ,r) Qn (θ ,ω )}, where Qn are usual harmonics on S2 forming a complete orthonormal set ...

  11. Quantum Key Distribution Using Decoy State Protocol

    Directory of Open Access Journals (Sweden)

    Sellami Ali

    2009-01-01

    Full Text Available Problem statement: Quantum key distribution provides unconditional security guaranteed by the fundamental laws of quantum physics. Unfortunately, for real-life experimental set-ups, which mainly based on faint laser pulses, the occasional production of multi-photons and channel loss make it possible for sophisticated eavesdroppers to launch various subtle eavesdropping attacks including the Photon Number Splitting (PNS attack. The decoy state protocols recently proposed to beat PNS attack and to improve dramatically distance and secure key generation rate of Quantum Key Distribution (QKD. Approach: Objective of this study was experimental implementation of weak decoy + vacuum states QKD for increasing the performance of QKD system. To show conceptually how simple it was to apply the weak decoy + vacuum state idea to a commercial QKD system, we chosen ID-3000 commercial quantum key distribution system manufactured by id quantique. To implement the weak decoy + vacuum state protocol, we had to add some new optical and electronics components to id quantique and to attenuate each signal to the intensity of either signal state or weak decoy or vacuum state randomly. Results: In our implementation, the attenuation will be done by placing a VOA (variable optical attenuator in Alice’s side. Specifically, our QKD system required the polarizations of 2 pulses from the same signal to be orthogonal. Therefore the VOA must be polarization independent so as to attenuate the two pulses equally. The VOA utilized in experiment to attenuate signals dynamically was Intensity Modulator (IM. We had implemented weak + vacuum protocol on a modified commercial QKD system over a 25 km of telecom fibers with an unconditionally secure key rate of 6.2931x10-4 per pulse. Conclusion: By making simple modifications to a commercial quantum key distribution system, we could achieve much better performance with substantially higher key generation rate and longer distance than

  12. Quantum Entanglement in Neural Network States

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the

  13. Non-Markovian Quantum State Diffusion

    CERN Document Server

    Diósi, L; Strunz, W T

    1998-01-01

    We present a nonlinear stochastic Schroedinger equation for pure states describing non-Markovian diffusion of quantum trajectories. It provides an unravelling of the evolution of a quantum system coupled to a finite or infinite number of harmonic oscillators, without any approximation. Its power is illustrated by several examples, including measurement-like situations, dissipation, and quantum Brownian motion. In some examples, we treat the environment phenomenologically as an infinite reservoir with fluctuations of arbitrary correlation. In other examples the environment consists of a finite number of oscillators. In these quasi-periodic cases we see the reversible decay of a `Schroedinger cat' state. Finally, our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.

  14. Quantum state of the black hole interior

    CERN Document Server

    Brustein, Ram

    2015-01-01

    If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object th...

  15. Generation of Quantum Cluster States using Surface Acoustic Waves

    CERN Document Server

    Majumdar, Mrittunjoy Guha

    2016-01-01

    One-way quantum computation, also known as Cluster State Quantum Computation, provides a robust and efficient tool to perform universal quantum computation using only single-qubit projective measurements, given a highly entangled cluster state. The cluster-state approach to quantum computation also leads to certain practical advantages such as robustness against errors. In this paper, we propose a SAW-driven One-Way Quantum Computation approach that is realizable using a mentioned architecture and elements.

  16. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  17. Semigroup of positive maps for qudit states and entanglement in tomographic probability representation

    Energy Technology Data Exchange (ETDEWEB)

    Man' ko, V.I. [P.N.Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation)], E-mail: manko@na.infn.it; Marmo, G. [Dipartimento Sc. Fisiche dell' Universita Federico II e Sez. INFN di Napoli, Compl. Universita di Monte S.Angelo, I-80126 Naples (Italy)], E-mail: marmo@na.infn.it; Simoni, A. [Dipartimento Sc. Fisiche dell' Universita Federico II e Sez. INFN di Napoli, Compl. Universita di Monte S.Angelo, I-80126 Naples (Italy)], E-mail: simoni@na.infn.it; Ventriglia, F. [Dipartimento Sc. Fisiche dell' Universita Federico II e Sez. INFN di Napoli, Compl. Universita di Monte S.Angelo, I-80126 Naples (Italy)], E-mail: ventriglia@na.infn.it

    2008-10-20

    Stochastic and bistochastic matrices providing positive maps for spin states (for qudits) are shown to form semigroups with dense intersection with the Lie groups IGL(n,R) and GL(n,R) respectively. The density matrix of a qudit state is shown to be described by a spin tomogram determined by an orbit of the bistochastic semigroup acting on a simplex. A class of positive maps acting transitively on quantum states is introduced by relating stochastic and quantum stochastic maps in the tomographic setting. Finally, the entangled states of two qubits and Bell inequalities are given in the framework of the tomographic probability representation using the stochastic semigroup properties.

  18. Quantum teleportation with a quantum dot single photon source.

    Science.gov (United States)

    Fattal, D; Diamanti, E; Inoue, K; Yamamoto, Y

    2004-01-23

    We report the experimental demonstration of a quantum teleportation protocol with a semiconductor single photon source. Two qubits, a target and an ancilla, each defined by a single photon occupying two optical modes (dual-rail qubit), were generated independently by the single photon source. Upon measurement of two modes from different qubits and postselection, the state of the two remaining modes was found to reproduce the state of the target qubit. In particular, the coherence between the target qubit modes was transferred to the output modes to a large extent. The observed fidelity is 80%, in agreement with the residual distinguishability between consecutive photons from the source. An improved version of this teleportation scheme using more ancillas is the building block of the recent Knill, Laflamme, and Milburn proposal for efficient linear optics quantum computation.

  19. Evaluating quantum teleportation of coherent states

    CERN Document Server

    Grangier, P

    2000-01-01

    By using an argument based upon EPR non-separability of the entanglement resource, it was recently argued that a fidelity value larger than 2/3 is required for successful quantum teleportation of coherent states (arXiv:quant-ph/0009079). Here we recover this same conclusion from simple considerations about information exchange during the teleportation process.

  20. Quantum state smoothing for classical mixtures

    CERN Document Server

    Tan, D; Mølmer, K; Murch, K W

    2016-01-01

    In quantum mechanics, wave functions and density matrices represent our knowledge about a quantum system and give probabilities for the outcomes of measurements. If the combined dynamics and measurements on a system lead to a density matrix $\\rho(t)$ with only diagonal elements in a given basis $\\{|n\\rangle\\}$, it may be treated as a classical mixture, i.e., a system which randomly occupies the basis states $|n\\rangle$ with probabilities $\\rho_{nn}(t)$. Fully equivalent to so-called smoothing in classical probability theory, subsequent probing of the occupation of the states $|n\\rangle$ improves our ability to retrodict what was the outcome of a projective state measurement at time $t$. Here, we show with experiments on a superconducting qubit that the smoothed probabilities do not, in the same way as the diagonal elements of $\\rho$, permit a classical mixture interpretation of the state of the system at the past time $t$.

  1. Quantum Mechanical Nature in Liquid NMR Quantum Computing

    Institute of Scientific and Technical Information of China (English)

    LONGGui-Lu; YANHai-Yang; 等

    2002-01-01

    The quantum nature of bulk ensemble NMR quantum computing-the center of recent heated debate,is addressed.Concepts of the mixed state and entanglement are examined,and the data in a two-qubit liquid NMR quantum computation are analyzed.the main points in this paper are;i) Density matrix describes the "state" of an average particle in an ensemble.It does not describe the state of an individual particle in an ensemble;ii) Entanglement is a property of the wave function of a microscopic particle(such as a molecule in a liquid NMR sample),and separability of the density matrix canot be used to measure the entanglement of mixed ensemble;iii) The state evolution in bulkensemble NMR quantum computation is quantum-mechanical;iv) The coefficient before the effective pure state density matrix,ε,is a measure of the simultaneity of the molecules in an ensemble,It reflets the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system.The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangeld.We conclude that effective-pure-state NMR quantum computation is genuine,not just classical simulations.

  2. Entangled States and the Gravitational Quantum Well

    CERN Document Server

    Alves, Rui; Bertolami, Orfeu

    2016-01-01

    We study the continuous variable entanglement of a system of two particles under the influence of Earth's gravitational field. We determine a phase-space description of this bipartite system by calculating its Wigner function and verify its entanglement by applying a generalization of the PPT criterion for non-Gaussian states. We also examine the influence of gravity on an idealized entanglement protocol to be shared between stations at different potentials based on the correlation of states of the gravitational quantum well.

  3. Continuous variable quantum cryptography using coherent states.

    Science.gov (United States)

    Grosshans, Frédéric; Grangier, Philippe

    2002-02-04

    We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.

  4. Continuous variable quantum cryptography using coherent states

    CERN Document Server

    Grosshans, F; Grosshans, Fr\\'ed\\'eric; Grangier, Philippe

    2002-01-01

    We propose several methods for quantum key distribution (QKD), based upon the generation and transmission of random distributions of coherent or squeezed states. We show that these protocols are secure against individual eavesdropping attacks, provided that the transmission of the optical line between Alice and Bob is larger than 50 %. The security of the protocol is related to the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line, even though the transmitted light has no "non-classical" feature such as squeezing. We show also that our approach can be used for evaluating any QKD protocol using light with gaussian statistics.

  5. Nuclear numerical range and quantum error correction codes for non-unitary noise models

    Science.gov (United States)

    Lipka-Bartosik, Patryk; Życzkowski, Karol

    2017-01-01

    We introduce a notion of nuclear numerical range defined as the set of expectation values of a given operator A among normalized pure states, which belong to the nucleus of an auxiliary operator Z. This notion proves to be applicable to investigate models of quantum noise with block-diagonal structure of the corresponding Kraus operators. The problem of constructing a suitable quantum error correction code for this model can be restated as a geometric problem of finding intersection points of certain sets in the complex plane. This technique, worked out in the case of two-qubit systems, can be generalized for larger dimensions.

  6. Optical control of electron spin qubit in InAs self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Emary, Clive [TU Berlin, Sekr. PN 7-1, Institut fuer Theoretische Physik, Hardenbergstr. 36, D-10623 Berlin (Germany); Sham, Lu Jeu [Department of Physics, University of California San Diego, La Jolla, California 92093 (United States)

    2008-07-01

    The spin of an electron trapped in a self-assembled quantum dot is viewed as a promising quantum bit. We present here a theory of the control of such qubits using short laser pulses to excite virtual trion states within the dots. We describe mechanisms for qubit initialisation and for performing universal one and two qubit operations. We show that, for InAs dots, initialisation can be achieved on the nanosecond time-scale, and that coherent operations can performed with laser pulses with durations of tens of picoseconds. These results are of direct relevance to current experiments.

  7. Quantum Mutual Information Along Unitary Orbits

    CERN Document Server

    Jevtic, Sania; Rudolph, Terry

    2011-01-01

    Motivated by thermodynamic considerations, we analyse the variation of the quantum mutual information on a unitary orbit of a bipartite system state, with and without global constraints such as energy conservation. We solve the full optimisation problem for the smallest system of two qubits, and explore thoroughly the effect of unitary operations on the space of reduced-state spectra. We then provide applications of these ideas to physical processes within closed quantum systems, such as a generalized collision model approach to thermal equilibrium and a global Maxwell demon playing tricks on local observers. For higher dimensions, the maximization of correlations is relatively straightforward, however the minimisation of correlations displays non-trivial structures. We characterise a set of separable states in which the minimally correlated state resides, and find a collection of classically correlated states admitting a particular "Young tableau" form. Furthermore, a partial order exists on this set with re...

  8. Self-calibrating Quantum State Tomography

    CERN Document Server

    Branczyk, Agata M; Rozema, Lee A; Darabi, Ardavan; Steinberg, Aephraim M; James, Daniel F V

    2011-01-01

    We introduce and experimentally demonstrate a technique for performing quantum state tomography on multiple-qubit states using unknown unitary operations to perform measurements in different bases. Using our method, it is possible to reconstruct the density matrix of the state up to local sigma-z rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet--an inexpensive smartphone screen protector--or alternatively a liquid crystal wave plate with a tuneable retardance.

  9. New schemes for manipulating quantum states using a Kerr cell

    CERN Document Server

    Genovèse, M

    2000-01-01

    In this proceeding we describe various proposals of application of an high coefficient Kerr cell to quantum states manipulation, ranging from fast modulation of quantum interference, GHZ states generation, Schroedinger cats creation, translucent eavesdropping, etc.

  10. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  11. Quantum Metrology: Surpassing the shot-noise limit with Dzyaloshinskii-Moriya interaction.

    Science.gov (United States)

    Ozaydin, Fatih; Altintas, Azmi Ali

    2015-11-09

    Entanglement is at the heart of quantum technologies such as quantum information and quantum metrology. Providing larger quantum Fisher information (QFI), entangled systems can be better resources than separable systems in quantum metrology. However the effects on the entanglement dynamics such as decoherence usually decrease the QFI considerably. On the other hand, Dzyaloshinskii-Moriya (DM) interaction has been shown to excite entanglement. Since an increase in entanglement does not imply an increase in QFI, and also there are cases where QFI decreases as entanglement increases, it is interesting to study the influence of DM interaction on quantum metrology. In this work, we study the QFI of thermal entanglement of two-qubit and three-qubit Heisenberg models with respect to SU(2) rotations. We show that even at high temperatures, DM interaction excites QFI of both ferromagnetic and antiferromagnetic models. We also show that QFI of the ferromagnetic model of two qubits can surpass the shot-noise limit of the separable states, while QFI of the antiferromagnetic model in consideration can only approach to the shot-noise limit. Our results open new insights in quantum metrology with Heisenberg models.

  12. Rydberg-interaction-based quantum gates free from blockade error

    CERN Document Server

    Shi, Xiao-Feng

    2016-01-01

    Accurate quantum gates are basic elements for building quantum computers. There has been great interest in designing quantum gates by using blockade effect of Rydberg atoms recently. The fidelity and operation speed of these gates, however, are fundamentally limited by the blockade error. Here we propose another type of quantum gates, which are based on Rydberg blockade effect, yet free from any blockade error. In contrast to the `blocking' method in previous schemes, we use Rydberg energy shift to realise a rational generalised Rabi frequency so that a novel $\\pi$ phase for one input state of the gate emerges. This leads to an accurate Rydberg-blockade based two-qubit quantum gate that can operate in a $0.1\\mu s$ timescale or faster thanks to that it operates by a Rabi frequency which is comparable to the blockade shift.

  13. Spatially resolving valley quantum interference of a donor in silicon.

    Science.gov (United States)

    Salfi, J; Mol, J A; Rahman, R; Klimeck, G; Simmons, M Y; Hollenberg, L C L; Rogge, S

    2014-06-01

    Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 ± 0.45 nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.

  14. Control aspects of quantum computing using pure and mixed states.

    Science.gov (United States)

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  15. Optimal state estimation for d-dimensional quantum systems

    CERN Document Server

    Bruss, D

    1999-01-01

    We establish a connection between optimal quantum cloning and optimal state estimation for d-dimensional quantum systems. In this way we derive an upper limit on the fidelity of state estimation for d-dimensional pure quantum states and, furthermore, for generalized inputs supported on the symmetric subspace.

  16. Stationary states in quantum walk search

    Science.gov (United States)

    PrÅ«sis, Krišjānis; Vihrovs, Jevgěnijs; Wong, Thomas G.

    2016-09-01

    When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state closest to the initial uniform state of the walk. We further prove theorems on the existence of stationary states, with them conditionally existing if the marked vertices form a bipartite connected component and always existing if nonbipartite. These results utilize the standard oracle in Grover's algorithm, but we show that a different type of oracle prevents stationary states from interfering with the search algorithm.

  17. Quantum correlations support probabilistic pure state cloning

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)

    2014-02-01

    The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.

  18. Quantum filtering of optical coherent states

    DEFF Research Database (Denmark)

    Wittmann, C.; Elser, D.; Andersen, Ulrik Lund

    2008-01-01

    We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis......, probabilistically filtered out. We consider three different filters based on on-off detection, phase stabilized, and phase randomized homodyne detection. We find that on-off detection, optimal in the ideal theoretical setting, is superior to the homodyne strategy also in a practical setting....

  19. Manipulation of quantum states in a memory cell: controllable Mach-Zehnder interferometer

    Science.gov (United States)

    Losev, A. S.; Golubeva, T. Yu; Golubev, Yu M.

    2017-05-01

    In this article, we consider the possibility of manipulation of quantum signals, ensured by the use of the tripod-type atomic memory cell. We show that depending on a configuration of driving fields at the writing and reading, such a cell allows the signal to both be stored and transformed. It is possible to provide the operation of the memory cell in a Mach-Zehnder interferometer mode passing two successive pulses at the input. We proposed a procedure of partial signal readout that provides entanglement between the retrieved light and the atomic ensemble. Thus, we have shown that a tripod atomic cell is a promising candidate to implement quantum logical operations, including two-qubit ones, which can be performed on the basis of only one cell.

  20. Extreme Violation of Local Realism in Quantum Hypergraph States.

    Science.gov (United States)

    Gachechiladze, Mariami; Budroni, Costantino; Gühne, Otfried

    2016-02-19

    Hypergraph states form a family of multiparticle quantum states that generalizes the well-known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal properties of quantum hypergraph states. We demonstrate that the correlations in hypergraph states can be used to derive various types of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially increasing violation of local realism which is robust against loss of particles. Our results suggest that certain classes of hypergraph states are novel resources for quantum metrology and measurement-based quantum computation.

  1. Projective Loop Quantum Gravity I. State Space

    CERN Document Server

    Lanéry, Suzanne

    2014-01-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In [Oko{\\l}\\'ow 2013, arXiv:1304.6330] the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, wh...

  2. Decoy State Quantum Key Distribution with Odd Coherent State

    Institute of Scientific and Technical Information of China (English)

    SUN Shi-Hai; GAO Ming; DAI Hong-Yi; CHEN Ping-Xing; LI Cheng-Zu

    2008-01-01

    We propose a decoy state quantum key distribution scheme with odd coherent state which follows sub-Poissonian distributed photon count and has low probability of the multi-photon event and vacuum event in each pulse. The numerical calculations show that our scheme can improve efficiently the key generation rate and secure communication distance. Furthermore, only one decoy state is necessary to approach to the perfect asymptotic limit with infinite decoy states in our scheme, but at least two decoy states are needed in other scheme.

  3. Quantum state of the black hole interior

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.

    2015-08-01

    If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a "firewall", as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.

  4. Quantum state of the black hole interior

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University,Beer-Sheva 84105 (Israel); Medved, A.J.M. [Department of Physics & Electronics, Rhodes University,Grahamstown 6140 (South Africa); National Institute for Theoretical Physics (NITheP),Western Cape 7602 (South Africa)

    2015-08-17

    If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of “Fermi sea” of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a “firewall”, as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.

  5. Efficient Quantum Information Transfer Through a Uniform Channel

    Directory of Open Access Journals (Sweden)

    Paola Verrucchi

    2011-06-01

    Full Text Available Effective quantum-state and entanglement transfer can be obtained by inducing a coherent dynamics in quantum wires with homogeneous intrawire interactions. This goal is accomplished by optimally tuning the coupling between the wire endpoints and the two qubits there attached. A general procedure to determine such value is devised, and scaling laws between the optimal coupling and the length of the wire are found. The procedure is implemented in the case of a wire consisting of a spin-1/2 XY chain: results for the time dependence of the quantities which characterize quantum-state and entanglement transfer are found of extremely good quality also for very long wires. The present approach does not require engineered intrawire interactions nor a specific initial pulse shaping, and can be applied to a vast class of quantum channels.

  6. Teleportation of the one-qubit state with environment-disturbed recovery operations

    CERN Document Server

    Hu, Ming-Liang

    2011-01-01

    We study standard protocol $\\mathcal{P}_0$ for teleporting the one-qubit state with both the transmission process of the two qubits constitute the quantum channel and the recovery operations performed by Bob disturbed by the decohering environment. The results revealed that Bob's imperfect operations do not eliminate the possibility of nonclassical teleportation fidelity provided he shares an ideal channel state with Alice, while the transmission process is constrained by a critical time $t_{0,c}$ longer than which will result in failure of $\\mathcal{P}_0$ if the two qubits are corrupted by the decohering environment. Moreover, we found that under the condition of the same decoherence rate $\\gamma$, the teleportation protocol is significantly more fragile when it is executed under the influence of the noisy environment than those under the influence of the dissipative and dephasing environments.

  7. Experimental demonstration of graph-state quantum secret sharing

    CERN Document Server

    Bell, B A; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S

    2014-01-01

    Distributed quantum communication and quantum computing offer many new opportunities for quantum information processing. Here networks based on highly nonlocal quantum resources with complex entanglement structures have been proposed for distributing, sharing and processing quantum information. Graph states in particular have emerged as powerful resources for such tasks using measurement-based techniques. We report an experimental demonstration of graph-state quantum secret sharing, an important primitive for a quantum network. We use an all-optical setup to encode quantum information into photons representing a five-qubit graph state. We are able to reliably encode, distribute and share quantum information between four parties. In our experiment we demonstrate the integration of three distinct secret sharing protocols, which allow for security and protocol parameters not possible with any single protocol alone. Our results show that graph states are a promising approach for sophisticated multi-layered protoc...

  8. Demonstration of a Tuneable Coupler for Superconducting Qubits Using Coherent, Time Domain, Two-Qubit Operations

    CERN Document Server

    Bialczak, R C; Hofheinz, M; Lenander, M; Lucero, E; Neeley, M; O'Connell, A D; Sank, D; Wang, H; Weides, M; Wenner, J; Yamamoto, T; Cleland, A N; Martinis, J M

    2010-01-01

    A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the inter-qubit coupling strength can be arbitrarily tuned over nanosecond timescales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over long distances. Such design flexibility is likely to be essential for a scalable quantum computer.

  9. Unconventional geometric quantum phase gates with a cavity QED system

    Science.gov (United States)

    Zheng, Shi-Biao

    2004-11-01

    We propose a scheme for realizing two-qubit quantum phase gates via an unconventional geometric phase shift with atoms in a cavity. In the scheme the atoms interact simultaneously with a highly detuned cavity mode and a classical field. The atoms undergo no transitions during the gate operation, while the cavity mode is displaced along a circle in the phase space, aquiring a geometric phase conditional upon the atomic state. Under certain conditions, the atoms are disentangled with the cavity mode and thus the gate is insensitive to both the atomic spontaneous emission and the cavity decay.

  10. Exact Quantum Logic Gates with a Single Trapped Cold Ion

    Institute of Scientific and Technical Information of China (English)

    韦联福; 刘世勇; 雷啸霖

    2001-01-01

    We present an alternative scheme to exactly implement one-qubit and two-qubit quantum gates with a single trapped cold ion driven by a travelling laser field. The internal degree of freedom of the ion acts as the target qubit and the control qubit is encoded by two Fock states of the external vibration of the ion. The conditions to realize these operations, including the duration of each applied laser pulse and Lamb-Dicke parameter, are derived. In our scheme neither the auxiliary atomic level nor the Lamb-Dicke approximation is required. The multiquantum transition between the internal and external degrees of freedom of the ion is considered.

  11. Repeat-until-success linear optics distributed quantum computing.

    Science.gov (United States)

    Lim, Yuan Liang; Beige, Almut; Kwek, Leong Chuan

    2005-07-15

    We demonstrate the possibility to perform distributed quantum computing using only single-photon sources (atom-cavity-like systems), linear optics, and photon detectors. The qubits are encoded in stable ground states of the sources. To implement a universal two-qubit gate, two photons should be generated simultaneously and pass through a linear optics network, where a measurement is performed on them. Gate operations can be repeated until a success is heralded without destroying the qubits at any stage of the operation. In contrast with other schemes, this does not require explicit qubit-qubit interactions, a priori entangled ancillas, nor the feeding of photons into photon sources.

  12. Aligning Reference Frames Using Quantum States

    CERN Document Server

    Bagán, E; Muñoz-Tàpia, R

    2001-01-01

    We analyze the problem of sending, in a single transmission, the information required to specify an orthogonal trihedron or reference frame through a quantum channel made out of N elementary spins. We analytically obtain the optimal strategy, i.e., the best encoding state and the best measurement. For large N, we show that the average error goes to zero linearly in 1/N. Finally, we discus the construction of finite optimal measurements.

  13. Quantum Darwinism for mixed-state environment

    Science.gov (United States)

    Quan, Haitao; Zwolak, Michael; Zurek, Wojciech

    2009-03-01

    We exam quantum darwinism when a system is in the presence of a mixed environment, and we find a general relation between the mutual information for the mixed-state environment and the change of the entropy of the fraction of the environment. We then look at a particular solvable model, and we numerically exam the time evolution of the ``mutual information" for large environment. Finally we discuss about the exact expressions for all entropies and the mutual information at special time.

  14. Telecloning Quantum States with Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for telecloning quantum states with trapped ions. The scheme is based on a single ion interacting with a single laser pulse. In the protocol, an ion is firstly measured to determine whether the telecloning succeeds or not, and then another ion is detected to complete the whole procedure. The required experimental techniques are within the scope of what can be obtained in the ion-trap setup.

  15. Quantum Enhanced Imaging by Entangled States

    Science.gov (United States)

    2009-07-01

    REMOTE SENSING; LIDAR ; RADAR; SYNTHETIC APERTURE RADAR (SAR); SENSORS USING PHOTONS IN A NON- CLASSICAL STATE; EG SQUEEZED, ENTANGLED 16. SECURITY...idler photodetectors are ηs and ηi, respectively, we have, for the number of coincidence counts, islocalwaypairccoinc fN ηηηημ −= 2 . (13...in the square root comes from the beam splitter relation for photons incident on an inefficient photodetector in the quantum model of direct

  16. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  17. A conditional quantum phase gate between two 3-state atoms

    CERN Document Server

    Yi, X X; You, L

    2002-01-01

    We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data-bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data-bus. In addition, it only requires common addressing of the two atoms by external laser fields.

  18. Arbitrated quantum signature scheme based on cluster states

    Science.gov (United States)

    Yang, Yu-Guang; Lei, He; Liu, Zhi-Chao; Zhou, Yi-Hua; Shi, Wei-Min

    2016-06-01

    Cluster states can be exploited for some tasks such as topological one-way computation, quantum error correction, teleportation and dense coding. In this paper, we investigate and propose an arbitrated quantum signature scheme with cluster states. The cluster states are used for quantum key distribution and quantum signature. The proposed scheme can achieve an efficiency of 100 %. Finally, we also discuss its security against various attacks.

  19. Conditional quantum phase gate between two 3-state atoms.

    Science.gov (United States)

    Yi, X X; Su, X H; You, L

    2003-03-07

    We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data bus. In addition, it requires only common addressing of the two atoms by external laser fields.

  20. Quantum Computation with Nonlinear Optics

    Science.gov (United States)

    Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu

    2008-01-01

    We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.

  1. Quantum Computation with Nonlinear Optics

    Institute of Scientific and Technical Information of China (English)

    LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu

    2008-01-01

    We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.

  2. Block-free optical quantum Banyan network based on quantum state fusion and fission

    Science.gov (United States)

    Zhu, Chang-Hua; Meng, Yan-Hong; Quan, Dong-Xiao; Zhao, Nan; Pei, Chang-Xing

    2014-12-01

    Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper.

  3. Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities

    CERN Document Server

    Miranowicz, A; Liu, Yu-xi; Chimczak, G; Koashi, M; Imoto, N; 10.1380/ejssnt.2007.51

    2009-01-01

    Generation and control of quantum entanglement are studied in an equivalent-neighbor system of spatially-separated semiconductor quantum dots coupled by a single-mode cavity field. Generation of genuinely multipartite entanglement of qubit states realized by conduction-band electron-spin states in quantum dots is discussed. A protocol for quantum teleportation of electron-spin states via cavity decay is briefly described.

  4. Dissipative Quantum Metrology with Spin Cat States

    CERN Document Server

    Huang, Jiahao; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong

    2014-01-01

    We present a robust high-precision phase estimation scheme via spin cat states in the presence of particle losses. The input Greenberger-Horne-Zeilinger (GHZ) state, which may achieve the Heisenberg-limited measurement in the absence of particle losses, becomes fragile against particle losses and its achieved precision becomes even worse than the standard quantum limit (SQL). However, the input spin cat states, a kind of non-Gaussian entangled states in superposition of two spin coherent states, are of excellent robustness against particle losses and the achieved precision may still beat the SQL. For realistic measurements based upon our scheme, comparing with the population measurement, the parity measurement is more suitable for yielding higher precisions. In phase measurement with realistic dissipative systems of bosonic particles, our scheme provides a robust and realizable way to achieve high-precision measurements beyond the SQL.

  5. A quantum Fredkin gate.

    Science.gov (United States)

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  6. Witnessing Quantum Coherence: from solid-state to biological systems

    CERN Document Server

    Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885

    2012-01-01

    Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.

  7. Generating quantum states through spin chain dynamics

    Science.gov (United States)

    Kay, Alastair

    2017-04-01

    The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.

  8. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  9. A Quantum Version of Wigner's Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    2009-01-01

    A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit algor

  10. A Quantum Version of Wigner’s Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    2009-01-01

    A quantum version of a recent realization of Wigner’s transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in ħ. This leads to an explicit algorithm to com

  11. Preparing projected entangled pair states on a quantum computer.

    Science.gov (United States)

    Schwarz, Martin; Temme, Kristan; Verstraete, Frank

    2012-03-16

    We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.

  12. Controlling the quantum state of trapped ions

    CERN Document Server

    Roos, C

    2000-01-01

    brace quadrupole transition enables the transfer of the ion's motional state into the ground state with up to 99.9 % probability. Different aspects of the cooling process are investigated. In particular, a measurement of the length of time that the ion spends on average in the final state after switching off the cooling lasers (heating time) is made. In contrast to prior experiments, this time is found to be orders of magnitude longer than the time required to manipulate the ion's quantum state. By coherently exciting the ion after preparing it in Fock states of motion, the coherence time is probed and found to be on the order of a millisecond, thus allowing the realization of a few quantum gates. Coherence-limiting processes have been investigated, as well as first steps towards extending the experiments to the case of two trapped ions. In addition to the experiments mentioned above, the possibility of performing cavity-QED experiments with trapped ions is explored. How to efficiently couple the quadrupole t...

  13. New ground state for quantum gravity

    CERN Document Server

    Magueijo, Joao

    2012-01-01

    In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...

  14. Implementation of a quantum controlled-SWAP gate with photonic circuits

    Science.gov (United States)

    Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki

    2017-01-01

    Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks. PMID:28361950

  15. Constructing Dualities from Quantum State Manifolds

    CERN Document Server

    van Zyl, H J R

    2015-01-01

    The thesis develops a systematic procedure to construct semi-classical gravitational duals from quantum state manifolds. Though the systems investigated are simple quantum mechanical systems without gauge symmetry many familiar concepts from the conventional gauge/gravity duality come about in a very natural way. The investigation of the low-dimensional manifolds link existing results in the $AdS_2/CFT_1$ literature. We are able to extend these in various ways and provide an explicit dictionary. The higher dimensional investigation is also concluded with a simple dictionary, but this dictionary requires the inclusion of many bulk coordinates. Consequently further work is needed to relate these results to existing literature. Possible ways to achieve this are discussed.

  16. Geometric Defects in Quantum Hall States

    CERN Document Server

    Gromov, Andrey

    2016-01-01

    We describe a geometric (or gravitational) analogue of the Laughlin quasiholes in the fractional quantum Hall states. Analogously to the quasiholes these defects can be constructed by an insertion of an appropriate vertex operator into the conformal block representation of a trial wavefunction, however, unlike the quasiholes these defects are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wavefunction in the presence of such defects and explain how to assign an electric charge and a spin to each defect, and calculate the adiabatic, non-abelian statistics of the defects. The defects turn out to be equivalent to the genons in that their adiabatic exchange statistics can be described in terms of representations of the mapping class group of an appropriate higher genus Riemann surface. We present a general construction that, in principle, allows to calculate the statistics of $\\mathbb Z_n$ genons for any "parent" topological phase. We illustrate the construction on the ex...

  17. Hadamard states for quantum Abelian duality

    CERN Document Server

    Benini, Marco; Dappiaggi, Claudio

    2016-01-01

    Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a C$^*$-algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states to such algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three C$^*$-algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors we obtain a state for the full theory, providing ultimately a unitary implementation of Abelian duality.

  18. Quantum state transfer between light and matter via teleportation

    DEFF Research Database (Denmark)

    Krauter, Hanna; Sherson, Jacob; Polzik, Eugene Simon

    2010-01-01

    Quantum teleportation is an interesting feature of quantum mechanics. Entanglement is used as a link between two remote locations to transfer a quantum state without physically sending it - a process that cannot be realized utilizing merely classical tools. Furthermore it has become evident...... that teleportation is also an important element of future quantum networks and it can be an ingredient for quantum computation. This article reports for the first time the teleportation from light to atoms. In the experiment discussed, the quantum state of a light beam is transferred to an atomic ensemble. The key...

  19. Quantum state preparation in semiconductor dots by adiabatic rapid passage

    OpenAIRE

    Wu, Yanwen; Piper, I.M.; Ediger, M.; Brereton, P.; Schmidgall, E. R.; Hugues, M.; Hopkinson, M.; Phillips, R.T.

    2010-01-01

    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We d...

  20. Quantum Privacy Amplification for a Sequence of Single Qubits

    Institute of Scientific and Technical Information of China (English)

    DENG Fu-Guo; LONG Gui-Lu

    2006-01-01

    We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.