WorldWideScience

Sample records for two-qubit quantum phase

  1. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    International Nuclear Information System (INIS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  2. Disentanglement of two qubits coupled to an XY spin chain: Role of quantum phase transition

    International Nuclear Information System (INIS)

    Yuan Zigang; Li Shushen; Zhang Ping

    2007-01-01

    We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed

  3. Entanglement dynamics of two-qubit systems in different quantum noises

    International Nuclear Information System (INIS)

    Pan Chang-Ning; Fang Jian-Shu; Li-Fei; Fang Mao-Fa

    2011-01-01

    The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise. (general)

  4. Two-qubit quantum computing in a projected subspace

    International Nuclear Information System (INIS)

    Bi Qiao; Ruda, H.E.; Zhan, M.S.

    2002-01-01

    A formulation for performing quantum computing in a projected subspace is presented, based on the subdynamical kinetic equation (SKE) for an open quantum system. The eigenvectors of the kinetic equation are shown to remain invariant before and after interaction with the environment. However, the eigenvalues in the projected subspace exhibit a type of phase shift to the evolutionary states. This phase shift does not destroy the decoherence-free (DF) property of the subspace because the associated fidelity is 1. This permits a universal formalism to be presented--the eigenprojectors of the free part of the Hamiltonian for the system and bath may be used to construct a DF projected subspace based on the SKE. To eliminate possible phase or unitary errors induced by the change in the eigenvalues, a cancellation technique is proposed, using the adjustment of the coupling time, and applied to a two-qubit computing system. A general criteria for constructing a DF-projected subspace from the SKE is discussed. Finally, a proposal for using triangulation to realize a decoherence-free subsystem based on SKE is presented. The concrete formulation for a two-qubit model is given exactly. Our approach is general and appears to be applicable to any type of decoherence

  5. Broken symmetry in a two-qubit quantum control landscape

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries

    2018-05-01

    We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.

  6. Quantum discord for two-qubit X states

    International Nuclear Information System (INIS)

    Ali, Mazhar; Rau, A. R. P.; Alber, G.

    2010-01-01

    Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. In general, this correlation is different from entanglement, and quantum discord may be nonzero even for certain separable states. Even in the simple case of bipartite quantum systems, this different kind of quantum correlation has interesting and significant applications in quantum information processing. So far, quantum discord has been calculated explicitly only for a rather limited set of two-qubit quantum states and expressions for more general quantum states are not known. In this article, we derive explicit expressions for quantum discord for a larger class of two-qubit states, namely, a seven-parameter family of so called X states that have been of interest in a variety of contexts in the field. We also study the relation between quantum discord, classical correlation, and entanglement for a number of two-qubit states to demonstrate that they are independent measures of correlation with no simple relative ordering between them.

  7. Scalable quantum computation via local control of only two qubits

    International Nuclear Information System (INIS)

    Burgarth, Daniel; Maruyama, Koji; Murphy, Michael; Montangero, Simone; Calarco, Tommaso; Nori, Franco; Plenio, Martin B.

    2010-01-01

    We apply quantum control techniques to a long spin chain by acting only on two qubits at one of its ends, thereby implementing universal quantum computation by a combination of quantum gates on these qubits and indirect swap operations across the chain. It is shown that the control sequences can be computed and implemented efficiently. We discuss the application of these ideas to physical systems such as superconducting qubits in which full control of long chains is challenging.

  8. Two-qubit logical operations in three quantum dots system.

    Science.gov (United States)

    Łuczak, Jakub; Bułka, Bogdan R

    2018-06-06

    We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.

  9. The two-qubit quantum Rabi model: inhomogeneous coupling

    International Nuclear Information System (INIS)

    Mao, Lijun; Huai, Sainan; Zhang, Yunbo

    2015-01-01

    We revisit the analytic solution of the two-qubit quantum Rabi model with inhomogeneous coupling and transition frequencies using a displaced oscillator basis. This approach enables us to apply the same truncation rules and techniques adopted in the Rabi model to the two qubits system. The derived analytical spectra match perfectly with the numerical solutions in the parameter regime where the qubits’ transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong coupling regime. We further explore the dynamical behavior of the two qubits as well as the evolution of entanglement. The analytical methods provide unexpectedly accurate results in describing the dynamics of the two qubits in the present experimentally accessible coupling regime. The time evolutions of the probability for the qubits show that the collapse-revival phenomena emerge, survive and finally disappear when one coupling strength increases from weak to strong coupling regimes and the other coupling strength is well into the ultrastrong coupling regime. The inhomogeneous coupling system exhibits new dynamics, which are different from the homogeneous coupling case. (paper)

  10. A programmable two-qubit quantum processor in silicon.

    Science.gov (United States)

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  11. A programmable two-qubit quantum processor in silicon

    Science.gov (United States)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  12. Quantum discord for a central two-qubit system coupled to an XY-spin-chain environment

    International Nuclear Information System (INIS)

    Liu Benqiong; Shao Bin; Zou Jian

    2010-01-01

    We investigate the dynamic behaviors of quantum discord for a central two-qubit system coupled to an XY-spin-chain environment. In the weak-coupling regime, we show that the quantum discord for the two central qubits can become minimized rapidly close to the critical point of a quantum phase transition. By considering the two qubits that are initially prepared in the Werner state, we study the evolution of the quantum discord and that of entanglement under the same conditions. Our results imply that entanglement can disappear completely after a finite time, while the quantum discord decreases and tends to be a stable value according to the initial-state parameter for a very-long-time interval. In this sense, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The relation between the quantum correlations and the classical correlation is also shown for two particular cases.

  13. Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel

    Directory of Open Access Journals (Sweden)

    Kan Wang

    2018-03-01

    Full Text Available Quantum teleportation has significant meaning in quantum information. In particular, entangled states can also be used for perfectly teleporting the quantum state with some probability. This is more practical and efficient in practice. In this paper, we propose schemes to use non-symmetric quantum channel combinations for probabilistic teleportation of an arbitrary two-qubit quantum state from sender to receiver. The non-symmetric quantum channel is composed of a two-qubit partially entangled state and a three-qubit partially entangled state, where partially entangled Greenberger–Horne–Zeilinger (GHZ state and W state are considered, respectively. All schemes are presented in detail and the unitary operations required are given in concise formulas. Methods are provided for reducing classical communication cost and combining operations to simplify the manipulation. Moreover, our schemes are flexible and applicable in different situations.

  14. Attacking quantum key distribution with single-photon two-qubit quantum logic

    International Nuclear Information System (INIS)

    Shapiro, Jeffrey H.; Wong, Franco N. C.

    2006-01-01

    The Fuchs-Peres-Brandt (FPB) probe realizes the most powerful individual attack on Bennett-Brassard 1984 quantum key distribution (BB84 QKD) by means of a single controlled-NOT (CNOT) gate. This paper describes a complete physical simulation of the FPB-probe attack on polarization-based BB84 QKD using a deterministic CNOT constructed from single-photon two-qubit quantum logic. Adding polarization-preserving quantum nondemolition measurements of photon number to this configuration converts the physical simulation into a true deterministic realization of the FPB attack

  15. Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control

    Directory of Open Access Journals (Sweden)

    Paul Watts

    2013-05-01

    Full Text Available We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4 in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.

  16. Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang

    2007-01-01

    Recently, Yeo and Chua [Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96 (2006) 060502] gave a protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entangled state, which is not reducible to a pair of Bell state. Here, we present a 'transformation operator' to give a criterion for faithful teleportation of an arbitrary two-qubit state via a four-qubit entangled state. The theoretical explanations of some quantum channels are given in term of transformation operators. The relation between the transformation operators and the Bell base measurement is also obtained. Furthermore, a new four-qubit entangled state quantum channel is presented

  17. Geometric picture of quantum discord for two-qubit quantum states

    International Nuclear Information System (INIS)

    Shi Mingjun; Jiang Fengjian; Sun Chunxiao; Du Jiangfeng

    2011-01-01

    Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find an analytical expression for quantum discord is an intractable task. Exact results are known only for very special states, namely two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results on X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytical results on quantum discord have not yet been obtained. Based on the support of numerical computations, some conjectures are proposed to help us establish the geometric picture. We find that the geometric picture for these states has an intimate relationship with that for X states. Thereby, in some cases, analytical expressions for classical correlations and quantum discord can be obtained.

  18. Definition and evolution of quantum cellular automata with two qubits per cell

    International Nuclear Information System (INIS)

    Karafyllidis, Ioannis G.

    2004-01-01

    Studies of quantum computer implementations suggest cellular quantum computer architectures. These architectures can simulate the evolution of quantum cellular automata, which can possibly simulate both quantum and classical physical systems and processes. It is however known that except for the trivial case, unitary evolution of one-dimensional homogeneous quantum cellular automata with one qubit per cell is not possible. Quantum cellular automata that comprise two qubits per cell are defined and their evolution is studied using a quantum computer simulator. The evolution is unitary and its linearity manifests itself as a periodic structure in the probability distribution patterns

  19. Quantum Discord in Two-Qubit System Constructed from the Yang—Baxter Equation

    International Nuclear Information System (INIS)

    Gou Li-Dan; Wang Xiao-Qian; Sun Yuan-Yuan; Xu Yu-Mei

    2014-01-01

    Quantum correlations among parts of a composite quantum system are a fundamental resource for several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, we investigate the quantum discord of the two-qubit system constructed from the Yang—Baxter Equation. The density matrix of this system is generated through the unitary Yang—Baxter matrix R. The analytical expression and numerical result of quantum discord and geometric measure of quantum discord are obtained for the Yang—Baxter system. These results show that quantum discord and geometric measure of quantum discord are only connect with the parameter θ, which is the important spectral parameter in Yang—Baxter equation. (general)

  20. Note on the quantum correlations of two qubits coupled to photon baths

    International Nuclear Information System (INIS)

    Quintana, Claudia; Rosas-Ortiz, Oscar

    2015-01-01

    The time-evolution of the quantum correlations between two qubits that are coupled to a pair of photon baths is studied. We show that conditioned transitions occurring in the entire system have influence on the time-evolution of the subsystems. Then, we show that the study of the population inversion of each of the qubits is a measure of the correlations between them that is in agreement with the notion of concurrence. (paper)

  1. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    International Nuclear Information System (INIS)

    Metwally, N

    2014-01-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol. (paper)

  2. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    International Nuclear Information System (INIS)

    Curilef, S; Zander, C; Plastino, A R

    2008-01-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time τ required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.

  3. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  4. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn

    2008-04-14

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.

  5. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2008-01-01

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J z and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing

  6. Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yeo Ye [Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Liu Tongqi [Department of Engineering, Trumpington Street, Cambridge CB3 1PZ (United Kingdom); Lu Yuen [Computer Laboratory, William Gates Building, 15 J J Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Yang Qizhong [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2005-04-08

    In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains.

  7. Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Yeo Ye; Liu Tongqi; Lu Yuen; Yang Qizhong

    2005-01-01

    In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains

  8. Quantum correlations of coupled superconducting two-qubit system in various cavity environments

    International Nuclear Information System (INIS)

    Yu, Yanxia; Fu, Guolan; Guo, L.P.; Pan, Hui; Wang, Z.S.

    2013-01-01

    Highlights: •We investigate dynamic evolutions of quantum and classical correlations for coupled superconducting system with various cavity environments. •We show that the quantum discord continues to reflect quantum information. •A transition of quantum discord is founded between classical loss and quantum increasing of correlations for a purely dephasing mode. •We show that the environment-dependent models can delay the loss of quantum discord. •We find that the results depend strongly on the initial angle. -- Abstract: Dynamic evolutions of quantum discord, concurrence, and classical correlation are investigated in coupled superconducting system with various cavity environments, focusing on the two-qubit system at an initially entangling X-state and Y-state. We find that for a smaller photon number, the quantum discord, concurrence and classical correlation show damped oscillations for all different decay modes. Differently from the sudden death or the dark and bright periods emerging in evolving processing of the concurrence and classical correlation, however, the quantum discord decreases gradually to zero. The results reveal that the quantum entanglement and classical correlation are lost, but the quantum discord continues to reflect quantum information in the same evolving period. For a larger photon number, the oscillations disappear. It is surprised that there exists a transition of quantum discord between classical loss and quantum increasing of correlations for a purely dephasing mode. For a larger photon number in the Y-state, the transition disappears. Moreover, we show that the environment-dependent models can delay the loss of quantum discord. The results depend strongly on the initial angle, which provide a clue to control the quantum gate of superconducting circuit

  9. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  10. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    Science.gov (United States)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  11. Three-Party Quantum State Sharing of an Arbitrary Unknown Two-Qubit State Based on Entanglement Swapping and Bell-State Measurements

    International Nuclear Information System (INIS)

    Yuan Hao; Song Jun; Hou Kui; Hu Xiaoyuan; Shi Shouhua; Han Lianfang

    2009-01-01

    We propose a scheme for sharing an arbitrary unknown two-qubit state among three parties by using a four-qubit cluster-class state and a Bell state as a quantum channel. With a quantum controlled phase gate (QCPG) operation and a local unitary operation, any one of the two agents has the access to reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information. As all quantum resource can be used to carry the useful information, the intrinsic efficiency of qubits approaches the maximal value. Moreover, the present scheme is more feasible with present-day technique.

  12. Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model

    Science.gov (United States)

    Guo-Hui, Yang

    2017-02-01

    Using the concurrence (C) and quantum discord (QD) criterions, the quantum correlation properties in two qubits one-axis spin squeezing model with an external magnetic field are investigated. It is found that one obvious difference in the limit case T → 0 (ground state) is the sudden disappearance phenomenon (SDP) occured in the behavior of C, while not in QD. In order to further explain the SDP, we obtain the analytic expressions of ground state C and QD which reveal that the SDP is not really "entanglement sudden disappeared", it is decayed to zero very quickly. Proper tuning the parameters μ(the spin squeezing interaction in x direction) and Ω(the external magnetic field in z direction) not only can obviously broaden the scope of ground state C exists but also can enhance the value of ground state QD. For the finite temperature case, one evident difference is that the sudden birth phenomenon (SBP) is appeared in the evolution of C, while not in QD, and decreasing the coupling parameters μ or Ω can obviously prolong the time interval before entanglement sudden birth. The value of C and QD are both enhanced by increasing the parameters μ or Ω in finite temperature case. In addition, through investigating the effects of temperature T on the quantum correlation properties with the variation of Ω and μ, one can find that the temperature scope of C and QD exists are broadened with increasing the parameters μ or Ω, and one can obtain the quantum correlation at higher temperature through changing these parameters.

  13. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  14. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  15. Thermal quantum and classical correlations in a two-qubit XX model in a nonuniform external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ali Saif M [Department of Physics, University of Amran, Amran (Yemen); Lari, Behzad; Joag, Pramod S, E-mail: alisaif73@gmail.co, E-mail: behzadlari1979@yahoo.co, E-mail: pramod@physics.unipune.ac.i [Department of Physics, University of Pune, Pune 411007 (India)

    2010-12-03

    We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B{sub 1} = -B{sub 2}), we find that QD and CC are equal for all values of (B{sub 1} = -B{sub 2}) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B{sub 1} and B{sub 2}. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.

  16. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  17. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  18. Entanglement, purity, and energy: Two qubits versus two modes

    International Nuclear Information System (INIS)

    McHugh, Derek; Ziman, Mario; Buzek, Vladimir

    2006-01-01

    We study the relationship between the entanglement, mixedness, and energy of two-qubit and two-mode Gaussian quantum states. We parametrize the set of allowed states of these two fundamentally different physical systems using measures of entanglement, mixedness, and energy that allow us to compare and contrast the two systems using a phase diagram. This phase diagram enables one to clearly identify not only the physically allowed states, but the set of states connected under an arbitrary quantum operation. We pay particular attention to the maximally entangled mixed states of each system. Following this we investigate how efficiently one may transfer entanglement from two-mode to two-qubit states

  19. The quantum dynamics of two qubits inside two distant microcavities connected via a single-mode optical fiber

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Duong, Hai Trieu

    2010-01-01

    For application to studying the transmission of quantum information, also called quantum communication, between two identical qubits placed inside two identical single-mode microcavities connected via a single-mode optical fiber, the time evolution of this system is investigated. In the Markovian approximation, the von Neumann equation for its reduced density matrix contains a completely positive linear operator called the Liouvillian operator describing the decoherence of this system due to its interaction with the environment. By using the Linblad formula for the Liouvillian operator, a system of rate equations can be derived. In the special case of resonance between the energy difference of two states in each qubit and the energy of the fiber mode, the rate equations for the system excited up to the first level are solved in first order approximation with respect to the decoherence constants. It is shown that when there is no decoherence, the perfect quantum state transmission between two qubits can take place if the physical parameters of the system satisfy definite conditions. A possible extension to studying the system excited to high energy states is also discussed

  20. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  1. Gatemon Benchmarking and Two-Qubit Operation

    Science.gov (United States)

    Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles

    Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.

  2. Applications of Singh-Rajput Mes in Recall Operations of Quantum Associative Memory for a Two- Qubit System

    Science.gov (United States)

    Singh, Manu Pratap; Rajput, B. S.

    2016-03-01

    Recall operations of quantum associative memory (QuAM) have been conducted separately through evolutionary as well as non-evolutionary processes in terms of unitary and non- unitary operators respectively by separately choosing our recently derived maximally entangled states (Singh-Rajput MES) and Bell's MES as memory states for various queries and it has been shown that in each case the choices of Singh-Rajput MES as valid memory states are much more suitable than those of Bell's MES. it has been demonstrated that in both the types of recall processes the first and the fourth states of Singh-Rajput MES are most suitable choices as memory states for the queries `11' and `00' respectively while none of the Bell's MES is a suitable choice as valid memory state in these recall processes. It has been demonstrated that all the four states of Singh-Rajput MES are suitable choice as valid memory states for the queries `1?', `?1', `?0' and `0?' while none of the Bell's MES is suitable choice as the valid memory state for these queries also.

  3. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.

  4. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    Science.gov (United States)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-03-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  5. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  6. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    International Nuclear Information System (INIS)

    Akibue, Seiseki; Murao, Mio

    2014-01-01

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder

  7. Local correlations of mixed two-qubit states

    International Nuclear Information System (INIS)

    Zhang Fulin; Chen Jingling; Ren Changliang; Shi Mingjun

    2010-01-01

    The quantum probability distribution arising from single-copy von Neumann measurements on an arbitrary two-qubit state is decomposed into the local and nonlocal parts, in the approach of Elitzur, Popescu and Rohrlich [A. Elitzur, S. Popescu, D. Rohrlich, Phys. Lett. A 162 (1992) 25]. A lower bound of the local weight is proved being connected with the concurrence of the state p L max =1-C(ρ). The local probability distributions for two families of mixed states are constructed independently, which accord with the lower bound.

  8. Assessment of a quantum phase-gate operation based on nonlinear optics

    International Nuclear Information System (INIS)

    Rebic, S.; Ottaviani, C.; Di Giuseppe, G.; Vitali, D.; Tombesi, P.

    2006-01-01

    We analyze in detail the proposal for a two-qubit gate for travelling single-photon qubits recently presented by Ottaviani et al. [Phys. Rev. A 73, 010301(R) (2006)]. The scheme is based on an ensemble of five-level atoms coupled to two quantum and two classical light fields. The two quantum fields undergo cross-phase modulation induced by electromagnetically induced transparency. The performance of this two-qubit quantum phase gate for travelling single-photon qubits is thoroughly examined in the steady-state and transient regimes, by means of a full quantum treatment of the system dynamics. In the steady-state regime, we find a general trade-off between the size of the conditional phase shift and the fidelity of the gate operation. However, this trade-off can be bypassed in the transient regime, where a satisfactory gate operation is found to be possible, significantly reducing the gate operation time

  9. Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit

    International Nuclear Information System (INIS)

    Brito, Frederico; DiVincenzo, David P; Koch, Roger H; Steffen, Matthias

    2008-01-01

    We present theoretical schemes for performing high-fidelity one- and two-qubit pulsed gates for a superconducting flux qubit. The 'IBM qubit' consists of three Josephson junctions, three loops and a superconducting transmission line. Assuming a fixed inductive qubit-qubit coupling, we show that the effective qubit-qubit interaction is tunable by changing the applied fluxes, and can be made negligible, allowing one to perform high-fidelity single qubit gates. Our schemes are tailored to alleviate errors due to 1/f noise; we find gates with only 1% loss of fidelity due to this source, for pulse times in the range of 20-30 ns for one-qubit gates (Z rotations, Hadamard) and 60 ns for a two-qubit gate (controlled-Z). Our relaxation and dephasing time estimates indicate a comparable loss of fidelity from this source. The control of leakage plays an important role in the design of our shaped pulses, preventing shorter pulse times. However, we have found that imprecision in the control of the quantum phase plays a major role in the limitation of the fidelity of our gates

  10. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  11. Four-level and two-qubit systems, subalgebras, and unitary integration

    International Nuclear Information System (INIS)

    Rau, A.R.P.; Selvaraj, G.; Uskov, D.

    2005-01-01

    Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations. In particular, by exploiting su(2)+su(2) and su(2)+su(2)+u(1) subalgebras of the full SU(4) dynamical group of the system, the nontrivial part of the final calculation is reduced to a single Riccati (first-order, quadratically nonlinear) equation, itself simply solved. Examples are provided of two-qubit problems from the recent literature, including implementation of two-qubit gates with Josephson junctions

  12. Secret key distillation from shielded two-qubit states

    International Nuclear Information System (INIS)

    Bae, Joonwoo

    2010-01-01

    The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

  13. Characterization of two-qubit perfect entanglers

    International Nuclear Information System (INIS)

    Rezakhani, A.T.

    2004-01-01

    Here we consider perfect entanglers from another perspective. It is shown that there are some special perfect entanglers which can maximally entangle a full product basis. We explicitly construct a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as controlled-NOT (CNOT) and double-CNOT, but not √(SWAP). In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value (2/9) are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate

  14. Two-qubit Bell inequality for which positive operator-valued measurements are relevant

    International Nuclear Information System (INIS)

    Vertesi, T.; Bene, E.

    2010-01-01

    A bipartite Bell inequality is derived which is maximally violated on the two-qubit state space if measurements describable by positive operator valued measure (POVM) elements are allowed, rather than restricting the possible measurements to projective ones. In particular, the presented Bell inequality requires POVMs in order to be maximally violated by a maximally entangled two-qubit state. This answers a question raised by N. Gisin [in Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony, edited by W. C. Myrvold and J. Christian (Springer, The Netherlands, 2009), pp. 125-138].

  15. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  16. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  17. Two qubits in pure nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Furman, G.B.; Goren, S.D.; Meerovich, V.M.; Sokolovsky, V.L.

    2002-01-01

    It is shown theoretically that by the use of two radio-frequency fields of the same resonance frequency but with the different phases and directions the degeneracy of the energy spectrum of a spin system with I=3/2 is removed. This leads to four non-degenerate spin states which can be used as a platform for quantum computing. The feasibility of quantum computing based on a pure (without DC magnetic fields) nuclear quadrupole resonance technique is investigated in detail. Various quantum logic gates can be constructed by using different excitation techniques allowing different manipulations with the spin system states. Three realizations of quantum logic gates are considered: the application of an additional magnetic field with the resonance frequency, the amplitude modulation of one of the applied RF fields by the resonance frequency field, and the level-crossing method. It is shown that the probabilities of the resonance transitions depend on the method of excitation and on the direction of the excitation field. Feasibility of quantum computing is demonstrated with the examples of constructing a controlled-NOT logic gate using the resonance excitation technique and SWAP and NOT2 logic gates using the level-crossing method. (author)

  18. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  19. State tomography for two qubits using reduced densities

    International Nuclear Information System (INIS)

    Petz, D; Hangos, K M; Szanto, A; Szoellosi, F

    2006-01-01

    The optimal state determination (or tomography) is studied for a composite system of two qubits when measurements can be performed on one of the qubits and interactions of the two qubits can be implemented. The goal is to minimize the number of interactions to be implemented. The algebraic method used in the paper leads to an extension of the concept of mutually unbiased measurements

  20. Geometric steering criterion for two-qubit states

    Science.gov (United States)

    Yu, Bai-Chu; Jia, Zhih-Ahn; Wu, Yu-Chun; Guo, Guang-Can

    2018-01-01

    According to the geometric characterization of measurement assemblages and local hidden state (LHS) models, we propose a steering criterion which is both necessary and sufficient for two-qubit states under arbitrary measurement sets. A quantity is introduced to describe the required local resources to reconstruct a measurement assemblage for two-qubit states. We show that the quantity can be regarded as a quantification of steerability and be used to find out optimal LHS models. Finally we propose a method to generate unsteerable states, and construct some two-qubit states which are entangled but unsteerable under all projective measurements.

  1. Manipulating the sudden death of entanglement in two-qubit atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor [COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-10-15

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider {sigma}{sub x} and bath switching operations that change the disentanglement time from finite to infinite.

  2. Manipulating the sudden death of entanglement in two-qubit atomic systems

    International Nuclear Information System (INIS)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor

    2011-01-01

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider σ x and bath switching operations that change the disentanglement time from finite to infinite.

  3. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  4. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  5. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations

    International Nuclear Information System (INIS)

    Xiao, Y-F; Gao, J; McMillan, J F; Yang, X; Wong, C W; Zou, X-B; Chen, Y-L; Han, Z-F; Guo, G-C

    2008-01-01

    In this paper, a scalable photonic crystal cavity array, in which single embedded quantum dots (QDs) are coherently interacting, is studied theoretically. Firstly, we examine the spectral character and optical delay brought about by the coupled cavities interacting with single QDs, in an optical analogue to electromagnetically induced transparency. Secondly, we then examine the usability of this coupled QD-cavity system for quantum phase gate operation and our numerical examples suggest that a two-qubit system with fidelity above 0.99 and photon loss below 0.04 is possible.

  6. Multihop teleportation of two-qubit state via the composite GHZ–Bell channel

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhen-Zhen [State Key Lab. of Millimeter Waves, Southeast University, Nanjing, 210096 (China); Yu, Xu-Tao, E-mail: yuxutao@seu.edu.cn [State Key Lab. of Millimeter Waves, Southeast University, Nanjing, 210096 (China); Gong, Yan-Xiao [Department of Physics, Southeast University, Nanjing, 211189 (China); Zhang, Zai-Chen [National Mobile Communications Research Lab, Southeast University, Nanjing, 210096 (China)

    2017-01-15

    A multihop teleportation protocol in quantum communication network is introduced to teleport an arbitrary two-qubit state, between two nodes without directly sharing entanglement pairs. Quantum channels are built among neighbor nodes based on a five-qubit entangled system composed of GHZ and Bell pairs. The von Neumann measurements in all intermediate nodes and the source node are implemented, and then the measurement outcomes are sent to the destination node independently. After collecting all the measurement outcomes at the destination node, an efficient method is proposed to calculate the unitary operations for transforming the receiver's states to the state teleported. Therefore, only adopting the proper unitary operations at the destination node, the desired quantum state can be recovered perfectly. The transmission flexibility and efficiency of quantum network with composite GHZ–Bell channel are improved by transmitting measurement outcomes of all nodes in parallelism and reducing hop-by-hop teleportation delay. - Highlights: • A multihop teleportation protocol is introduced to teleport two-qubit state. • Quantum channels are built by composite of GHZ and Bell pairs. • Measurement outcomes are sent to the destination node independently. • Destination node calculates and adopts unitary operations to recover initial state.

  7. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  8. Negativity of Two-Qubit System Through Spin Coherent States

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.

    2009-12-01

    Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)

  9. Demonstration of Multisetting One-Way Einstein-Podolsky-Rosen Steering in Two-Qubit Systems

    Science.gov (United States)

    Xiao, Ya; Ye, Xiang-Jun; Sun, Kai; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-01

    Einstein-Podolsky-Rosen (EPR) steering describes the ability of one party to remotely affect another's state through local measurements. One of the most distinguishable properties of EPR steering is its asymmetric aspect. Steering can work in one direction but fail in the opposite direction. This type of one-way steering, which is different from the symmetry concepts of entanglement and Bell nonlocality, has garnered much interest. However, an experimental demonstration of genuine one-way EPR steering in the simplest scenario, i.e., one that employs two-qubit systems, is still lacking. In this Letter, we experimentally demonstrate one-way EPR steering with multimeasurement settings for a class of two-qubit states, which are still one-way steerable even with infinite settings. The steerability is quantified by the steering radius, which represents a necessary and sufficient steering criterion. The demonstrated one-way steering in the simplest bipartite quantum system is of fundamental interest and may provide potential applications in one-way quantum information tasks.

  10. A quantum logic network for implementing optimal symmetric universal and phase-covariant telecloning of a bipartite entangled state

    International Nuclear Information System (INIS)

    Meng Fanyu; Zhu Aidong

    2008-01-01

    A quantum logic network to implement quantum telecloning is presented in this paper. The network includes two parts: the first part is used to create the telecloning channel and the second part to teleport the state. It can be used not only to implement universal telecloning for a bipartite entangled state which is completely unknown, but also to implement the phase-covariant telecloning for one that is partially known. Furthermore, the network can also be used to construct a tele-triplicator. It can easily be implemented in experiment because only single- and two-qubit operations are used in the network.

  11. Phase transitions and quantum entropy

    International Nuclear Information System (INIS)

    Arrachea, L.; Canosa, N.; Plastino, A.; Portesi, M.; Rossignoli, R.

    1990-01-01

    An examination is made of the possibility to predict phase transitions of the fundamental state of finite quantum system, knowing the quantum entropy of these states, defined on the basis of the information theory. (Author). 7 refs., 3 figs

  12. Formulas for Rational-Valued Separability Probabilities of Random Induced Generalized Two-Qubit States

    Directory of Open Access Journals (Sweden)

    Paul B. Slater

    2015-01-01

    Full Text Available Previously, a formula, incorporating a 5F4 hypergeometric function, for the Hilbert-Schmidt-averaged determinantal moments ρPTnρk/ρk of 4×4 density-matrices (ρ and their partial transposes (|ρPT|, was applied with k=0 to the generalized two-qubit separability probability question. The formula can, furthermore, be viewed, as we note here, as an averaging over “induced measures in the space of mixed quantum states.” The associated induced-measure separability probabilities (k=1,2,… are found—via a high-precision density approximation procedure—to assume interesting, relatively simple rational values in the two-re[al]bit (α=1/2, (standard two-qubit (α=1, and two-quater[nionic]bit (α=2 cases. We deduce rather simple companion (rebit, qubit, quaterbit, … formulas that successfully reproduce the rational values assumed for general  k. These formulas are observed to share certain features, possibly allowing them to be incorporated into a single master formula.

  13. Quantum computers in phase space

    International Nuclear Information System (INIS)

    Miquel, Cesar; Paz, Juan Pablo; Saraceno, Marcos

    2002-01-01

    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to measure directly the Wigner function in a given phase-space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm

  14. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  15. Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection

    International Nuclear Information System (INIS)

    Liu Jiong; Zhou Lan; Sheng Yu-Bo

    2015-01-01

    We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement (PCM) which is constructed by two polarization beam splitters (PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation. (paper)

  16. Distributed quantum information processing via quantum dot spins

    International Nuclear Information System (INIS)

    Jun, Liu; Qiong, Wang; Le-Man, Kuang; Hao-Sheng, Zeng

    2010-01-01

    We propose a scheme to engineer a non-local two-qubit phase gate between two remote quantum-dot spins. Along with one-qubit local operations, one can in principal perform various types of distributed quantum information processing. The scheme employs a photon with linearly polarisation interacting one after the other with two remote quantum-dot spins in cavities. Due to the optical spin selection rule, the photon obtains a Faraday rotation after the interaction process. By measuring the polarisation of the final output photon, a non-local two-qubit phase gate between the two remote quantum-dot spins is constituted. Our scheme may has very important applications in the distributed quantum information processing

  17. Two dimensional kicked quantum Ising model: dynamical phase transitions

    International Nuclear Information System (INIS)

    Pineda, C; Prosen, T; Villaseñor, E

    2014-01-01

    Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)

  18. Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui-Zhi; Li, Chao; Yang, Qing; Yang, Ming, E-mail: mingyang@ahu.edu.cn [Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University Hefei (China); Cao, Zhuo-Liang [School of Electronic Information Engineering, Hefei Normal University (China)

    2012-08-15

    The operator entanglement of two-qubit joint unitary operations is revisited. The Schmidt number, an important attribute of a two-qubit unitary operation, may have connection with the entanglement measure of the unitary operator. We find that the entanglement measure of a two-qubit unitary operators is classified by the Schmidt number of the unitary operators. We also discuss the exact relation between the operator entanglement and the parameters of the unitary operator. (author)

  19. Formation of multipartite entanglement using random quantum gates

    International Nuclear Information System (INIS)

    Most, Yonatan; Shimoni, Yishai; Biham, Ofer

    2007-01-01

    The formation of multipartite quantum entanglement by repeated operation of one- and two-qubit gates is examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and the Groverian measure. A comparison is made between two geometries of the quantum register: a one-dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a nonlocal geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination of random single-qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that in the nonlocal geometry the entanglement is generated at a higher rate. In both geometries, the Groverian measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results are expected to have implications on different proposed geometries of future quantum computers with local and nonlocal interactions between the qubits

  20. Quantum Optics in Phase Space

    Science.gov (United States)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  1. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  2. Entanglement Teleportation via a Two-Qubit System with Anisotropic Couplings under a Different Nonuniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng

    2013-01-01

    We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.

  3. Entanglement of two-qubit photon beam by magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.D.; Castro, R.A. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2014-09-15

    We study the possibility of affecting the entanglement in a two-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, with the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact both with the photons and the magnetic field. The possibility of an exact theoretical analysis of this scheme is based on well-known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measures (the information and the Schmidt ones) of the photon beam as functions of the applied magnetic field and the parameters of the electron medium. (orig.)

  4. Geometric phases and quantum computation

    International Nuclear Information System (INIS)

    Vedral, V.

    2005-01-01

    Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)

  5. New 'phase' of quantum gravity.

    Science.gov (United States)

    Wang, Charles H-T

    2006-12-15

    The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.

  6. Quantum rewinding via phase estimation

    Science.gov (United States)

    Tabia, Gelo Noel

    2015-03-01

    In cryptography, the notion of a zero-knowledge proof was introduced by Goldwasser, Micali, and Rackoff. An interactive proof system is said to be zero-knowledge if any verifier interacting with an honest prover learns nothing beyond the validity of the statement being proven. With recent advances in quantum information technologies, it has become interesting to ask if classical zero-knowledge proof systems remain secure against adversaries with quantum computers. The standard approach to show the zero-knowledge property involves constructing a simulator for a malicious verifier that can be rewinded to a previous step when the simulation fails. In the quantum setting, the simulator can be described by a quantum circuit that takes an arbitrary quantum state as auxiliary input but rewinding becomes a nontrivial issue. Watrous proposed a quantum rewinding technique in the case where the simulation's success probability is independent of the auxiliary input. Here I present a more general quantum rewinding scheme that employs the quantum phase estimation algorithm. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

  7. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  8. Development and Application of Semiconductor Quantum Dots to Quantum Computing

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... Several major milestones were achieved during the present program including the demonstration of optically induced and detected quantum entanglement of two qubits, Rabi oscillation (one bit rotation...

  9. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  10. Integrability and solvability of the simplified two-qubit Rabi model

    International Nuclear Information System (INIS)

    Peng Jie; Ren Zhongzhou; Guo Guangjie; Ju Guoxing

    2012-01-01

    The simplified two-qubit Rabi model is proposed and its analytical solution is presented. There are no level crossings in the spectral graph of the model, which indicates that it is not integrable. The criterion of integrability for the Rabi model proposed by Braak (2011 Phys. Rev. Lett. 107 100401) is also used for the simplified two-qubit Rabi model and the same conclusion, consistent with what the spectral graph shows, can be drawn, which indicates that the criterion remains valid when applied to the two-qubit case. The simplified two-qubit Rabi model is another example of a non-integrable but exactly solvable system except for the generalized Rabi model. (paper)

  11. Quantum discord and quantum phase transition in spin chains

    OpenAIRE

    Dillenschneider, Raoul

    2008-01-01

    Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.

  12. Role of initial coherence on entanglement dynamics of two qubit X states

    Science.gov (United States)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  13. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  14. Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

    International Nuclear Information System (INIS)

    Zhang, Guo-Feng

    2007-01-01

    Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its dependences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferromagnetic or ferromagnetic

  15. Phase-quantum tunnel device

    International Nuclear Information System (INIS)

    Sugahara, M.; Ando, N.; Kaneda, H.; Nagai, M.; Ogawa, Y.; Yoshikawa, N.

    1985-01-01

    Theoretical and Experimental study on granular superconductors shows that they are classified into two groups; fixed-phase superconductor (theta-superconductor) and fixed-pair-number superconductor (N-superconductor) and that a new macroscopic quantum device with conjugate property to Josephson effect can be made by use of N-superconductors

  16. Quantum Shuttle in Phase Space

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Jauho, Antti-Pekka

    2003-01-01

    Abstract: We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus...

  17. Fermion condensation quantum phase transition versus conventional quantum phase transitions

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Han, J.G.; Lee, J.

    2004-01-01

    The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn 5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances

  18. Quantum mechanics in phase space

    DEFF Research Database (Denmark)

    Hansen, Frank

    1984-01-01

    A reformulation of quantum mechanics for a finite system is given using twisted multiplication of functions on phase space and Tomita's theory of generalized Hilbert algebras. Quantization of a classical observable h is achieved when the twisted exponential Exp0(-h) is defined as a tempered....... Generalized Weyl-Wigner maps related to the notion of Hamiltonian weight are studied and used in the formulation of a twisted spectral theory for functions on phase space. Some inequalities for Wigner functions on phase space are proven. A brief discussion of the classical limit obtained through dilations...

  19. Quantum Phase Extraction in Isospectral Electronic Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    Quantum phase is not a direct observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures possessing matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these 'quantum drums' [degenerate two-dimensional electron states on the Cu(111) surface confined by individually positioned CO molecules] reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

  20. Topological phases: Wormholes in quantum matter

    NARCIS (Netherlands)

    Schoutens, K.

    2009-01-01

    Proliferation of so-called anyonic defects in a topological phase of quantum matter leads to a critical state that can be visualized as a 'quantum foam', with topology-changing fluctuations on all length scales.

  1. Phase-covariant quantum cloning of qudits

    International Nuclear Information System (INIS)

    Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin

    2003-01-01

    We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation

  2. Phase-space quantum control

    International Nuclear Information System (INIS)

    Fechner, Susanne

    2008-01-01

    The von Neumann-representation introduced in this thesis describes each laser pulse in a one-to-one manner as a sum of bandwidth-limited, Gaussian laser pulses centered around different points in phase space. These pulses can be regarded as elementary building blocks from which every single laser pulse can be constructed. The von Neumann-representation combines different useful properties for applications in quantum control. First, it is a one-to-one map between the degrees of freedom of the pulse shaper and the phase-space representation of the corresponding shaped laser pulse. In other words: Every possible choice of pulse shaper parameters corresponds to exactly one von Neumann-representation and vice versa. Moreover, since temporal and spectral structures become immediately sizable, the von Neumann-representation, as well as the Husimi- or the Wigner-representations, allows for an intuitive interpretation of the represented laser pulse. (orig.)

  3. Driven Phases of Quantum Matter

    Science.gov (United States)

    Khemani, Vedika; von Keyserlingk, Curt; Lazarides, Achilleas; Moessner, Roderich; Sondhi, Shivaji

    Clean and interacting periodically driven quantum systems are believed to exhibit a single, trivial ``infinite-temperature'' Floquet-ergodic phase. By contrast, I will show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases with spontaneously broken symmetries delineated by sharp transitions. Some of these are analogs of equilibrium states, while others are genuinely new to the Floquet setting. I will show that a subset of these novel phases are absolutely stableto all weak local deformations of the underlying Floquet drives, and spontaneously break Hamiltonian dependent emergent symmetries. Strikingly, they simultaneously also break the underlying time-translation symmetry of the Floquet drive and the order parameter exhibits oscillations at multiples of the fundamental period. This ``time-crystallinity'' goes hand in hand with spatial symmetry breaking and, altogether, these phases exhibit a novel form of simultaneous long-range order in space and time. I will describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.

  4. Operational geometric phase for mixed quantum states

    International Nuclear Information System (INIS)

    Andersson, O; Heydari, H

    2013-01-01

    The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)

  5. Exploring topological phases with quantum walks

    International Nuclear Information System (INIS)

    Kitagawa, Takuya; Rudner, Mark S.; Berg, Erez; Demler, Eugene

    2010-01-01

    The quantum walk was originally proposed as a quantum-mechanical analog of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete-time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigations. In particular, we demonstrate that recent experimental realizations of quantum walks with cold atoms, photons, and ions simulate a nontrivial one-dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases, which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the nontrivial topological character of the system.

  6. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  7. Dynamics of a quantum phase transition

    International Nuclear Information System (INIS)

    Zurek, W.H.

    2005-01-01

    We present two approaches to the non-equilibrium dynamics of a quench-induced phase transition in quantum Ising model. First approach retraces steps of the standard calculation to thermodynamic second order phase transitions in the quantum setting. The second calculation is purely quantum, based on the Landau-Zener formula for transition probabilities in processes that involve avoided level crossings. We show that the two approaches yield compatible results for the scaling of the defect density with the quench rate. We exhibit similarities between them, and comment on the insights they give into dynamics of quantum phase transitions. (author)

  8. Multiparametric quantum symplectic phase space

    International Nuclear Information System (INIS)

    Parashar, P.; Soni, S.K.

    1992-07-01

    We formulate a consistent multiparametric differential calculus on the quadratic coordinate algebra of the quantum vector space and use this as a tool to obtain a deformation of the associated symplectic phase space involving n(n-1)/2+1 deformation parameters. A consistent calculus on the relation subspace is also constructed. This is achieved with the help of a restricted ansatz and solving the consistency conditions to directly arrive at the main commutation structures without any reference to the R-matrix. However, the non-standard R-matrices for GL r,qij (n) and Sp r,qij (2n) can be easily read off from the commutation relations involving coordinates and derivatives. (author). 9 refs

  9. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  10. Dynamical quantum phase transitions in the quantum Potts chain

    NARCIS (Netherlands)

    Karrasch, C.; Schuricht, D.|info:eu-repo/dai/nl/369284690

    2017-01-01

    We analyze the dynamics of the return amplitude following a sudden quench in the three-state quantum Potts chain. For quenches crossing the quantum critical point from the paramagnetic to the ferromagnetic phase, the corresponding rate function is non-analytic at critical times and behaves linearly

  11. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  12. Relativistic implications of the quantum phase

    International Nuclear Information System (INIS)

    Low, Stephen G

    2012-01-01

    The quantum phase leads to projective representations of symmetry groups in quantum mechanics. The projective representations are equivalent to the unitary representations of the central extension of the group. A celebrated example is Wigner's formulation of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group. However, Wigner's formulation makes no mention of the Weyl-Heisenberg group and the hermitian representation of its algebra that are the Heisenberg commutation relations fundamental to quantum physics. We put aside the relativistic symmetry and show that the maximal quantum symmetry that leaves the Heisenberg commutation relations invariant is the projective representations of the conformally scaled inhomogeneous symplectic group. The Weyl-Heisenberg group and noncommutative structure arises directly because the quantum phase requires projective representations. We then consider the relativistic implications of the quantum phase that lead to the Born line element and the projective representations of an inhomogeneous unitary group that defines a noninertial quantum theory. (Understanding noninertial quantum mechanics is a prelude to understanding quantum gravity.) The remarkable properties of this symmetry and its limits are studied.

  13. Scaling of the local quantum uncertainty at quantum phase transitions

    International Nuclear Information System (INIS)

    Coulamy, I.B.; Warnes, J.H.; Sarandy, M.S.; Saguia, A.

    2016-01-01

    We investigate the local quantum uncertainty (LQU) between a block of L qubits and one single qubit in a composite system of n qubits driven through a quantum phase transition (QPT). A first-order QPT is analytically considered through a Hamiltonian implementation of the quantum search. In the case of second-order QPTs, we consider the transverse-field Ising chain via a numerical analysis through density matrix renormalization group. For both cases, we compute the LQU for finite-sizes as a function of L and of the coupling parameter, analyzing its pronounced behavior at the QPT. - Highlights: • LQU is suitable for the analysis of block correlations. • LQU exhibits pronounced behavior at quantum phase transitions. • LQU exponentially saturates in the quantum search. • Concavity of LQU indicates criticality in the Ising chain.

  14. Generic two-qubit photonic gates implemented by number-resolving photodetection

    International Nuclear Information System (INIS)

    Uskov, Dmitry B.; Smith, A. Matthew; Kaplan, Lev

    2010-01-01

    We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79, 042326 (2009)] with symmetries of the Weyl chamber to obtain optimal implementations of generic linear-optical Knill-Laflamme-Milburn-type two-qubit entangling gates. We find that while any two-qubit controlled-U gate, including controlled-NOT (CNOT) and controlled-sign gates, can be implemented using only two ancilla resources with a success probability S>0.05, a generic SU(4) operation requires three unentangled ancilla photons, with success S>0.0063. Specifically, we obtain a maximal success probability close to 0.0072 for the B gate. We show that single-shot implementation of a generic SU(4) gate offers more than an order of magnitude increase in the success probability and a two-fold reduction in overhead ancilla resources compared to standard triple-CNOT and double-B gate decompositions.

  15. Dynamical quantum phase transitions: a review

    Science.gov (United States)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  16. Dynamical quantum phase transitions: a review.

    Science.gov (United States)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  17. Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System

    International Nuclear Information System (INIS)

    Hu Baolin; Di Yaomin

    2007-01-01

    The entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α 1 = α 2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α 3 may play active role to the entanglement capacity when auxiliary systems are allowed.

  18. Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators

    Science.gov (United States)

    Qin, Wei; Wang, Xin; Miranowicz, Adam; Zhong, Zhirong; Nori, Franco

    2017-07-01

    Heralded near-deterministic multiqubit controlled-phase gates with integrated error detection have recently been proposed by Borregaard et al. [Phys. Rev. Lett. 114, 110502 (2015), 10.1103/PhysRevLett.114.110502]. This protocol is based on a single four-level atom (a heralding quartit) and N three-level atoms (operational qutrits) coupled to a single-resonator mode acting as a cavity bus. Here we generalize this method for two distant resonators without the cavity bus between the heralding and operational atoms. Specifically, we analyze the two-qubit controlled-Z gate and its multiqubit-controlled generalization (i.e., a Toffoli-like gate) acting on the two-lowest levels of N qutrits inside one resonator, with their successful actions being heralded by an auxiliary microwave-driven quartit inside the other resonator. Moreover, we propose a circuit-quantum-electrodynamics realization of the protocol with flux and phase qudits in linearly coupled transmission-line resonators with dissipation. These methods offer a quadratic fidelity improvement compared to cavity-assisted deterministic gates.

  19. Characterizing quantum phase transition by teleportation

    Science.gov (United States)

    Wu, Meng-He; Ling, Yi; Shu, Fu-Wen; Gan, Wen-Cong

    2018-04-01

    In this paper we provide a novel way to explore the relation between quantum teleportation and quantum phase transition. We construct a quantum channel with a mixed state which is made from one dimensional quantum Ising chain with infinite length, and then consider the teleportation with the use of entangled Werner states as input qubits. The fidelity as a figure of merit to measure how well the quantum state is transferred is studied numerically. Remarkably we find the first-order derivative of the fidelity with respect to the parameter in quantum Ising chain exhibits a logarithmic divergence at the quantum critical point. The implications of this phenomenon and possible applications are also briefly discussed.

  20. Quantum phase transitions in semilocal quantum liquids

    Science.gov (United States)

    Iqbal, Nabil; Liu, Hong; Mezei, Márk

    2015-01-01

    We consider several types of quantum critical phenomena from finite-density gauge-gravity duality which to different degrees lie outside the Landau-Ginsburg-Wilson paradigm. These include: (i) a "bifurcating" critical point, for which the order parameter remains gapped at the critical point, and thus is not driven by soft order parameter fluctuations. Rather it appears to be driven by "confinement" which arises when two fixed points annihilate and lose conformality. On the condensed side, there is an infinite tower of condensed states and the nonlinear response of the tower exhibits an infinite spiral structure; (ii) a "hybridized" critical point which can be described by a standard Landau-Ginsburg sector of order parameter fluctuations hybridized with a strongly coupled sector; (iii) a "marginal" critical point which is obtained by tuning the above two critical points to occur together and whose bosonic fluctuation spectrum coincides with that postulated to underly the "Marginal Fermi Liquid" description of the optimally doped cuprates.

  1. Deep Neural Network Detects Quantum Phase Transition

    Science.gov (United States)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  2. Stochastic inflation: Quantum phase-space approach

    International Nuclear Information System (INIS)

    Habib, S.

    1992-01-01

    In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to left-angle Φ 2 right-angle). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence

  3. Ultrafast quantum random number generation based on quantum phase fluctuations.

    Science.gov (United States)

    Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong

    2012-05-21

    A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.

  4. Linear entropy in quantum phase space

    International Nuclear Information System (INIS)

    Rosales-Zarate, Laura E. C.; Drummond, P. D.

    2011-01-01

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  5. Linear entropy in quantum phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Zarate, Laura E. C.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-10-15

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  6. Quantum mechanics and dynamics in phase space

    International Nuclear Information System (INIS)

    Zlatev, I.S.

    1979-01-01

    Attention is paid to formal similarity of quantum mechanics and classical statistical physics. It is supposed that quantum mechanics can be reformulated by means of the quasiprobabilistic distributions (QPD). The procedure of finding a possible dynamics of representative points in a phase space is described. This procedure would lead to an equation of the Liouville type for the given QPD. It is shown that there is always a dynamics for which the phase volume is preserved and there is another dynamics for which the equations of motion are ''canonical''. It follows from the paper that in terms of the QPD the quantum mechanics is analogous to the classical statistical mechanics and it can be interpreted as statistics of phase points, their motion obeying the canonical equations. The difference consists in the fact that in the classical statistical physics constructed is statistics of points in a phase space which depict real, existing, observable states of the system under consideration. In the quantum mechanics constructed is statistics of points in a phase space which correspond to the ''substrate'' of quantum-mechanical objects which have no any physical sense and cannot be observed separately

  7. Quantum algorithms for phase-space tomography

    International Nuclear Information System (INIS)

    Paz, Juan Pablo; Roncaglia, Augusto Jose; Saraceno, Marcos

    2004-01-01

    We present efficient circuits that can be used for the phase-space tomography of quantum states. The circuits evaluate individual values or selected averages of the Wigner, Kirkwood, and Husimi distributions. These quantum gate arrays can be programmed by initializing appropriate computational states. The Husimi circuit relies on a subroutine that is also interesting in its own right: the efficient preparation of a coherent state, which is the ground state of the Harper Hamiltonian

  8. Thermodynamics and phases in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Mann, R B

    2009-01-01

    We give an approach for studying quantum gravity effects on black hole thermodynamics. This combines a quantum framework for gravitational collapse with quasi-local definitions of energy and surface gravity. Our arguments suggest that (i) the specific heat of a black hole becomes positive after a phase transition near the Planck scale,(ii) its entropy acquires a logarithmic correction and (iii) the mass loss rate is modified such that Hawking radiation stops near the Planck scale. These results are due essentially to a realization of fundamental discreteness in quantum gravity, and are in this sense potentially theory independent.

  9. The geometric phase in quantum physics

    International Nuclear Information System (INIS)

    Bohm, A.

    1993-03-01

    After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase

  10. Quantum phase from s-parametrized quasidistributions

    International Nuclear Information System (INIS)

    Perinova, V; Luks, A

    2005-01-01

    It is familiar that a well behaved operator of the harmonic oscillator phase does not exist. Therefore, Turski's phase operator and the operator of Garrison and Wong may be at most defined in an interesting fashion and yield useful quantum expectation values. In this paper we touch on a recent incomplete definition of a phase operator which has also failed in the respect that it can be completed only to a definition of an 'incomplete' phase operator. We discuss, however, a possibility of completion of the definition and a relationship to the phase operator from an s-parametrized quasidistribution

  11. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, D.; Bandyopadhyay, P.

    2005-11-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them results the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states. (author)

  12. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, Dipti; Bandyopadhyay, Pratul

    2006-01-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has a spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them allows the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states

  13. Entropic Phase Maps in Discrete Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Benjamin F. Dribus

    2017-06-01

    Full Text Available Path summation offers a flexible general approach to quantum theory, including quantum gravity. In the latter setting, summation is performed over a space of evolutionary pathways in a history configuration space. Discrete causal histories called acyclic directed sets offer certain advantages over similar models appearing in the literature, such as causal sets. Path summation defined in terms of these histories enables derivation of discrete Schrödinger-type equations describing quantum spacetime dynamics for any suitable choice of algebraic quantities associated with each evolutionary pathway. These quantities, called phases, collectively define a phase map from the space of evolutionary pathways to a target object, such as the unit circle S 1 ⊂ C , or an analogue such as S 3 or S 7 . This paper explores the problem of identifying suitable phase maps for discrete quantum gravity, focusing on a class of S 1 -valued maps defined in terms of “structural increments” of histories, called terminal states. Invariants such as state automorphism groups determine multiplicities of states, and induce families of natural entropy functions. A phase map defined in terms of such a function is called an entropic phase map. The associated dynamical law may be viewed as an abstract combination of Schrödinger’s equation and the second law of thermodynamics.

  14. Quantum trajectory phase transitions in the micromaser.

    Science.gov (United States)

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  15. Novel Quantum Phases at Interfaces

    Science.gov (United States)

    2014-12-12

    defined quasiparticle and the system cannot be adequately described by an electronic band structure. The chief theoretical challenges for the study of...electronic quasiparticle weight is proportional to the expectation value of the rotor field. The resulting theory typically has two dis- tinct stable phases...band structure is well defined, while in the strongly interacting phase the quasiparticle weight vanishes due to strong rotor fluc- tuations

  16. Quantum disentanglement and phase measurements

    International Nuclear Information System (INIS)

    Buzek, V.; Hillery, M.

    1995-01-01

    A 50:50 beam splitter disentangles a two-mode squeezed vacuum state into two single-mode squeezed vacuum states. With the proper choice of parameters these two single-mode states will be identical. If one is passed through a device which shifts its phase, then the phases of the shifted and reference (unshifted) modes can be determined by the Vogel-Schleich technique. In this way the phase difference, i.e. the phase shift, can be measured to an accuracy of 1/N, where N is the total number of photons coming into the beam splitter. An improved scheme is also proposed involving the disentanglement of a shifted two-mode squeezed vacuum state. This leads to two shifted squeezed vacuum states at the output of the beam splitter. If one of these is passed through the phase shifter, then by performing homodyne measurements on the shifted and unshifted modes the phase shift can again be determined to an accuracy of 1/N. (author) 4 figs., 14 refs

  17. Foundations of phase-space quantum mechanics

    International Nuclear Information System (INIS)

    Guz, W.

    1984-01-01

    In the present paper a general concept of a phase-space representation of the ordinary Hilbert-space quantum theory is formulated, and then, by using some elementary facts of functional analysis, several equivalent forms of that concept are analyzed. Several important physical examples are presented in Section 3 of the paper. (author)

  18. Quantum phase transitions in atomic nuclei

    International Nuclear Information System (INIS)

    Zamfir, N.V.

    2005-01-01

    Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)

  19. Teleportation of a two-mode entangled coherent state encoded with two-qubit information

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Manoj K; Prakash, Hari, E-mail: manoj.qit@gmail.co, E-mail: prakash_hari123@rediffmail.co [Department of physics, University of Allahabad, Allahabad (India)

    2010-09-28

    We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | {+-} {alpha}), minimum average fidelity in our case is {>=}0.99 for |{alpha}| {>=} 1.6 (i.e. |{alpha}|{sup 2} {>=} 2.6), while previously proposed schemes referred above report the same for |{alpha}| {>=} 5 (i.e. |{alpha}|{sup 2} {>=} 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|{alpha}|), our teleportation scheme is at the reach of modern technology.

  20. Berry phase via quantum Zeno effect

    International Nuclear Information System (INIS)

    Pascazio, S.; Instituto Nazionale di Fisica Nucleare, Bari

    1999-01-01

    Full text: The 'quantum Zeno effect' is an interesting quantum phenomenon, deeply rooted in some fundamental features of the quantum mechanical laws. It consists in the hindrance of the temporal evolution of a quantum system due to a frequent series of measurements. During the last few years there has been much interest in this issue, mainly because of an idea due to Cook, who proposed using two-level systems to check this effect, and the subsequent experiment performed by Itano et al. Most of the work on this subject has dealt with what might be called the 'static' version of the quantum Zeno effect. However, the most potent action of the observer is not only to stop time evolution (e.g., by repeatedly checking if a system has decayed), but to guide it. In this talk we will be concerned with a 'dynamical' version of the phenomenon: we will show how guiding a system through a closed loop in its state space (projective Hilbert space) leads to a geometrical phase. This was predicted on general grounds by Aharonov and Anandan, but here we use a specific implementation on a neutron spin and propose a particular experimental context in which to see this effect. However, our proposal is valid for any system with the same two-level structure. It is remarkable that the Berry phase to be discussed is due to measurements only: no Hamiltonian is needed. Copyright (1999) Australian Optical Society

  1. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...

  2. Study of incommensurable phases in quantum chains

    International Nuclear Information System (INIS)

    Vollmer, J.

    1990-12-01

    The phases of quantum chains with spin-1/2 and spin-1-respresentations of the SU(2) algebra and the phases of a mixed spin-1/2 / spin-1 chain are reported and investigated. These chains are models with an XX-interaction in a magnetic field. In a certain range of the magnetic field the groundstate magnetisation depends continuously on the magnetic field and the energy gaps vanish, this is a so called 'floating phase'. Within this phase the energy spectrum is a conformal spectrum, comparable to the spectrum of the Gauss-model, but the momenta have a macroscopic part. These macroscopic momenta are connected to oscillating correlation functions, whose periods are determined by the magnetic field. The transition from the floating phase to an existing phase with constant groundstate magnetisation is a Pokrovsky-Talapov-transition, it is a universal transition in all three models. (orig.) [de

  3. Characterizing the dynamics of quantum discord under phase damping with POVM measurements

    International Nuclear Information System (INIS)

    Jiang Feng-Jian; Jian-Feng Ye; Yan Xin-Hu; Lü Hai-Jiang

    2015-01-01

    In the analysis of quantum discord, the minimization of average entropy traditionally involved over orthogonal projective measurements may be attained at more optimal decompositions by using the positive-operator-valued measure (POVM) measurements. Taking advantage of the quantum steering ellipsoid in combination with three-element POVM optimization, we show that, for a family of two-qubit X states locally interacting with Markovian non-dissipative environments, the decay rates of quantum discord show smooth dynamical evolutions without any sudden change. This is in contrast to two-element orthogonal projective measurements, in which case the sudden change of the decay rates of quantum and classical decoherences may be a common phenomenon. Notwithstanding this, we find that a subset of X states (including the Bell diagonal states) involving POVM optimization can still preserve the sudden change character as usual. (paper)

  4. Quantum Phase Transition and Entanglement in Topological Quantum Wires.

    Science.gov (United States)

    Cho, Jaeyoon; Kim, Kun Woo

    2017-06-05

    We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.

  5. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  6. Dynamics of quantum discord in a quantum critical environment

    International Nuclear Information System (INIS)

    Xi Zhengjun; Li Yongming; Lu Xiaoming; Sun Zhe

    2011-01-01

    We study the dynamics of quantum discord (QD) of two qubits independently coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. For this model, we drive the corresponding Kraus operators, obtain the analytic results of QD and compare the dynamics of QD with the dynamics of relative entropy of entanglement nearby the critical point. It is shown that the impact of the quantum criticality environment on QD can be concentrated in a very narrow region nearby the critical point, so it supplies an efficient way to detect the critical points. In the vicinity of the critical point, the evolution of QD is shown to be more complicated than that of entanglement. Furthermore, we find that separable states can also be used to reflect the quantum criticality of the environment.

  7. Scaling of quantum Fisher information close to the quantum phase transition in the XY spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Ye, En-Jia, E-mail: yeenjia@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Wu, Wei [Zhejiang Institute of Modern Physics and Physics Department, Zhejiang University, Hangzhou 310027 (China)

    2016-12-01

    The quantum phase transition of an XY spin chain is investigated by employing the quantum Fisher information encoded in the ground state. It is shown that the quantum Fisher information is an effective tool for characterizing the quantum criticality. The quantum Fisher information, its first and second derivatives versus the transverse field display the phenomena of sudden transition, sudden jump and divergence, respectively. Besides, the analysis of finite size scaling for the second derivative of quantum Fisher information is performed.

  8. Multipartite entanglement characterization of a quantum phase transition

    Science.gov (United States)

    Costantini, G.; Facchi, P.; Florio, G.; Pascazio, S.

    2007-07-01

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  9. Multipartite entanglement characterization of a quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Facchi, P [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Pascazio, S [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy)

    2007-07-13

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  10. On phase-space representations of quantum mechanics using

    Indian Academy of Sciences (India)

    space representations of quantum mechanics using Glauber coherent states. DIÓGENES CAMPOS. Research Article Volume 87 Issue 2 August ... Keywords. Phase-space quantum mechanics, coherent states, Husimi function, Wigner function ...

  11. Generation of phase-covariant quantum cloning

    International Nuclear Information System (INIS)

    Karimipour, V.; Rezakhani, A.T.

    2002-01-01

    It is known that in phase-covariant quantum cloning, the equatorial states on the Bloch sphere can be cloned with a fidelity higher than the optimal bound established for universal quantum cloning. We generalize this concept to include other states on the Bloch sphere with a definite z component of spin. It is shown that once we know the z component, we can always clone a state with a fidelity higher than the universal value and that of equatorial states. We also make a detailed study of the entanglement properties of the output copies and show that the equatorial states are the only states that give rise to a separable density matrix for the outputs

  12. Trajectory phases of a quantum dot model

    International Nuclear Information System (INIS)

    Genway, Sam; Hickey, James M; Garrahan, Juan P; Armour, Andrew D

    2014-01-01

    We present a thermodynamic formalism to study the trajectories of charge transport through a quantum dot coupled to two leads in the resonant-level model. We show that a close analogue of equilibrium phase transitions exists for the statistics of transferred charge; by tuning an appropriate ‘counting field’, crossovers to different trajectory phases are possible. Our description reveals a mapping between the statistics of a given device and current measurements over a range of devices with different dot–lead coupling strengths. Furthermore insight into features of the trajectory phases are found by studying the occupation of the dot conditioned on the transported charge between the leads; this is calculated from first principles using a trajectory biased two-point projective measurement scheme. (paper)

  13. Phase space approach to quantum dynamics

    International Nuclear Information System (INIS)

    Leboeuf, P.

    1991-03-01

    The Schroedinger equation for the time propagation of states of a quantised two-dimensional spherical phase space is replaced by the dynamics of a system of N particles lying in phase space. This is done through factorization formulae of analytic function theory arising in coherent-state representation, the 'particles' being the zeros of the quantum state. For linear Hamiltonians, like a spin in a uniform magnetic field, the motion of the particles is classical. However, non-linear terms induce interactions between the particles. Their time propagation is studied and it is shown that, contrary to integrable systems, for chaotic maps they tend to fill, as their classical counterpart, the whole phase space. (author) 13 refs., 3 figs

  14. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    Science.gov (United States)

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  15. The issue of phases in quantum measurement theory

    International Nuclear Information System (INIS)

    Pati, Arun Kumar

    1999-01-01

    The issue of phases is always very subtle in quantum world and many of the curious phenomena are due to the existence of the phase of the quantum mechanical wave function. We investigate the issue of phases in quantum measurement theory and predict a new effect of fundamental importance. We call a quantum system under goes a quantum Zeno dynamics when the unitary evolution of a quantum system is interrupted by a sequence of measurements. In particular, we investigate the effect of repeated measurements on the geometric phase and show that the quantum Zeno dynamics can inhibit its development under a large number of measurement pulses. It is interesting to see that neither the total phase nor the dynamical phase goes to zero under large number of measurements. This new effect we call as the 'quantum Zeno Phase effect' in analogous to the quantum Zeno effect where the repeated measurements inhibit the transition probability. This 'quantum Zeno Phase effect' can be proved within von Neumann's collapse mechanism as well as using a continuous measurement model. So the effect is really independent of any particular measurement model considered. Since the geometric phase attributes a memory to a quantum system our results also proves that the path dependent memory of a system can be erased by a sequence of measurements. The quantum Zeno Phase effect provides a way to control and manipulate the phase of a wave function in an interference set up. Finally, we stress that the quantum Zeno Phase effect can be tested using neutron, photon and atom interference experiments with the presently available technology. (Author)

  16. Quantum mechanics in coherent algebras on phase space

    International Nuclear Information System (INIS)

    Lesche, B.; Seligman, T.H.

    1986-01-01

    Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)

  17. The Geometric Phase in Quantum Systems

    International Nuclear Information System (INIS)

    Pascazio, S

    2003-01-01

    The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is

  18. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    Science.gov (United States)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  19. Quantum disordered phase in a doped antiferromagnet

    International Nuclear Information System (INIS)

    Kuebert, C.; Muramatsu, A.

    1995-01-01

    A quantitative description of the transition to a quantum disordered phase in a doped antiferromagnet is obtained for the long-wavelength limit of the spin-fermion model, which is given by the O(3) non-linear σ model, a free fermionic part and current-current interactions. By choosing local spin quantization axes for the fermionic spinor we show that the low-energy limit of the model is equivalent to a U(1) gauge theory, where both the bosonic and fermionic degrees of freedom are minimally coupled to a vector gauge field. Within a large-N expansion, the strength of the gauge fields is found to be determined by the gap in the spin-wave spectrum, which is dynamically generated. The explicit doping dependence of the spin-gap is determined as a function of the parameters of the original model. As a consequence of the above, the gauge-fields mediate a long-range interaction among dopant holes and S-1/2 magnetic excitations only in the quantum disordered phase. The possible bound-states in this regime correspond to charge-spin separation and pairing

  20. Lattice quantum phase space and Yang-Baxter equation

    International Nuclear Information System (INIS)

    Djemai, A.E.F.

    1995-04-01

    In this work, we show that it is possible to construct the quantum group which preserves the quantum symplectic structure introduced in the context of the matrix Hamiltonian formalism. We also study the braiding existing behind the lattice quantum phase space, and present another type of non-trivial solution to the resulting Yang-Baxter equation. (author). 20 refs, 1 fig

  1. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    Rotter, Ingrid

    2012-01-01

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  2. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  3. Quantum scaling in many-body systems an approach to quantum phase transitions

    CERN Document Server

    Continentino, Mucio

    2017-01-01

    Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.

  4. Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems

    International Nuclear Information System (INIS)

    Slater, Paul B

    2010-01-01

    We seek to derive the probability-expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric-that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PTs) of the associated 4 x 4 density matrices (ρ). But the full implementation of the test-requiring that the determinant of the PT be nonnegative for separability to hold-appears to be, at least presently, computationally intractable. So, we have previously implemented-using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)-the weaker implied test of nonnegativity of the six 2 x 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of 1024/135π 2 ∼0.76854. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 x 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of 22/35∼0.628571. Then, we conclude that a still further improved upper bound of 1129/2100∼0.537619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors. Numerical simulations-as opposed to exact symbolic calculations-indicate, on the other hand, that the true probability is certainly less than 1/2 . Our analyses lead us to suggest a possible form for the true DESF, yielding a separability probability of 29/64∼0.453125, while the absolute separability probability of (6928-2205π)/(2 9/2 )∼0.0348338 provides the best exact lower bound established so far. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESFs that comes close to reproducing our numerical estimate of the true separability function.

  5. Linear optics and quantum maps

    International Nuclear Information System (INIS)

    Aiello, A.; Puentes, G.; Woerdman, J. P.

    2007-01-01

    We present a theoretical analysis of the connection between classical polarization optics and quantum mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of classical optical processes to the representation of one- and two-qubit quantum operations, becomes straightforward. Second, as a practical application of our classical-vs-quantum formalism, we show how two-qubit maximally entangled mixed states can be generated by using polarization and spatial modes of photons generated via spontaneous parametric down conversion

  6. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  7. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  8. Quantum phase transition of light as a control of the entanglement between interacting quantum dots

    NARCIS (Netherlands)

    Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian

    We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly

  9. Quantum coherence and quantum phase transition in the XY model with staggered Dzyaloshinsky-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)

    2017-04-01

    We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.

  10. Thermal quantum discord of spins in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan

    2011-01-01

    In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.

  11. Cyclotomy and Ramanujan sums in quantum phase locking

    International Nuclear Information System (INIS)

    Planat, Michel; Rosu, Haret C.

    2003-01-01

    Phase-locking governs the phase noise in classical clocks through effects described in precise mathematical terms. We seek here a quantum counterpart of these effects by working in a finite Hilbert space. We use a coprimality condition to define phase-locked quantum states and the corresponding Pegg-Barnett type phase operator. Cyclotomic symmetries in matrix elements are revealed and related to Ramanujan sums in the theory of prime numbers. The employed mathematical procedures also emphasize the isomorphism between algebraic number theory and the theory of quantum entanglement

  12. Phase space quantum mechanics and maximal acceleration

    International Nuclear Information System (INIS)

    Caianiello, E.

    1989-01-01

    My presentation is a synopsis of work done since 1979 in search of connections among information theory, systems theory, quantum mechanics and other matters. The aim was 'to extract geometry from quantum mechanics'. (orig./HSI)

  13. Quantum adiabatic approximation and the geometric phase

    International Nuclear Information System (INIS)

    Mostafazadeh, A.

    1997-01-01

    A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society

  14. Quantum signature scheme based on a quantum search algorithm

    International Nuclear Information System (INIS)

    Yoon, Chun Seok; Kang, Min Sung; Lim, Jong In; Yang, Hyung Jin

    2015-01-01

    We present a quantum signature scheme based on a two-qubit quantum search algorithm. For secure transmission of signatures, we use a quantum search algorithm that has not been used in previous quantum signature schemes. A two-step protocol secures the quantum channel, and a trusted center guarantees non-repudiation that is similar to other quantum signature schemes. We discuss the security of our protocol. (paper)

  15. Geometric quantum discord and Berry phase between two charge qubits coupled by a quantum transmission line

    International Nuclear Information System (INIS)

    Zhu Han-Jie; Zhang Guo-Feng

    2014-01-01

    Geometric quantum discord (GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system. We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them. (general)

  16. Quantum dynamics of a two-atom-qubit system

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Bich Ha; Le Thi Ha Linh

    2009-01-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  17. Quantum Lattice-Gas Model for the Diffusion Equation

    National Research Council Canada - National Science Library

    Yepez, J

    2001-01-01

    .... It is a minimal model with two qubits per node of a one-dimensional lattice and it is suitable for implementation on a large array of small quantum computers interconnected by nearest-neighbor...

  18. Generation of quantum logic operations from physical Hamiltonians

    International Nuclear Information System (INIS)

    Zhang Jun; Whaley, K. Birgitta

    2005-01-01

    We provide a systematic analysis of the physical generation of single- and two-qubit quantum operations from Hamiltonians available in various quantum systems for scalable quantum information processing. We show that generation of single-qubit operations can be transformed into a steering problem on the Bloch sphere, which represents all R z -equivalence classes of single-qubit operations, whereas the two-qubit problem can be generally transformed into a steering problem in a tetrahedron representing all the local-equivalence classes of two-qubit operations (the Weyl chamber). We use this approach to investigate several physical examples for the generation of two-qubit operations. The steering approach provides useful guidance for the realization of various quantum computation schemes

  19. Quantum phases, supersolids and quantum phase transitions of interacting bosons in frustrated lattices

    International Nuclear Information System (INIS)

    Ye, Jinwu; Chen, Yan

    2013-01-01

    By using the dual vortex method (DVM), we develop systematically a simple and effective scheme to use the vortex degree of freedoms on dual lattices to characterize the symmetry breaking patterns of the boson insulating states in the direct lattices. Then we apply our scheme to study quantum phases and phase transitions in an extended boson Hubbard model slightly away from 1/3 (2/3) filling on frustrated lattices such as triangular and Kagome lattice. In a triangular lattice at 1/3, we find a X-CDW, a stripe CDW phase which was found previously by a density operator formalism (DOF). Most importantly, we also find a new CDW-VB phase which has both local CDW and local VB orders, in sharp contrast to a bubble CDW phase found previously by the DOF. In the Kagome lattice at 1/3, we find a VBS phase and a 6-fold CDW phase. Most importantly, we also identify a CDW-VB phase which has both local CDW and local VB orders which was found in previous QMC simulations. We also study several other phases which are not found by the DVM. By analyzing carefully the saddle point structures of the dual gauge fields in the translational symmetry breaking sides and pushing the effective actions slightly away from the commensurate filling f=1/3(2/3), we classified all the possible types of supersolids and analyze their stability conditions. In a triangular lattice, there are X-CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. In a Kagome lattice, there are 6-fold CDW supersolid, stripe CDW supersolid, but absence of any valence bond supersolid (VB-SS). There are also a new kind of supersolid: CDW-VB supersolid. We show that independent of the types of the SS, the quantum phase transitions from solids to supersolids driven by a chemical potential are in the same universality class as that from a Mott insulator to a superfluid, therefore have exact exponents z=2, ν=1/2, η=0 (with

  20. Quantum Phase Transitions in Conventional Matrix Product Systems

    Science.gov (United States)

    Zhu, Jing-Min; Huang, Fei; Chang, Yan

    2017-02-01

    For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.

  1. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  2. Phase-sensitive atomic dynamics in quantum light

    Science.gov (United States)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  3. Entanglement in a simple quantum phase transition

    International Nuclear Information System (INIS)

    Osborne, Tobias J.; Nielsen, Michael A.

    2002-01-01

    What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice

  4. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations

    Science.gov (United States)

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-01

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  5. Quantum phase transition and critical phenomena

    International Nuclear Information System (INIS)

    Dutta, A.; Chakrabarti, B.K.

    1998-01-01

    We intend to describe briefly the generic features associated with the zero temperature transition in quantum mechanical systems. We elucidate the discussion of the introductory section using the very common example of Ising model in a transverse field. We discuss the method of fermionisation for one dimensional systems. The quantum-classical correspondence is discussed using Suzuki-Trotter method. We then introduce the quantum rotor model and discuss its spherical limit. We finally discuss novel features arising due to the presence of quenched randomness in the quantum Ising and rotor systems. (author)

  6. Quantum entanglement and quantum phase transitions in frustrated Majumdar-Ghosh model

    International Nuclear Information System (INIS)

    Liu Guanghua; Wang Chunhai; Deng Xiaoyan

    2011-01-01

    By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J 2 ∼0.58, but not at the Majumdar-Ghosh point (J 2 =0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point J C 2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 ; Kuboki and Fukuyama, 1987 ; Chitra et al., 1995 ). Across the J C 2 , the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.

  7. Quantum phase transition of a magnet in a spin bath

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Parthasarathy, R.; Jensen, J.

    2005-01-01

    The excitation spectrum of a model magnetic system, LiHoF(4), was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine...

  8. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    Science.gov (United States)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  9. Coxeter groups A4, B4 and D4 for two-qubit systems

    Indian Academy of Sciences (India)

    2008). [40] M Koca, R Koç and M Al-Barwani, J. Math. Phys. 44, 3123 (2003). [41] A Kossakowski and M Ohya, Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 10, 411. (2007). [42] M Koca, R Koç and M Al-Barwani, J. Phys. A: Math. Gen.

  10. Quantum Phase Spase Representation for Double Well Potential

    OpenAIRE

    Babyuk, Dmytro

    2002-01-01

    A behavior of quantum states (superposition of two lowest eigenstates, Gaussian wave packet) in phase space is studied for one and two dimensional double well potential. Two dimensional potential is constructed from double well potential coupled linearly and quadratically to harmonic potential. Quantum trajectories are compared with classical ones. Preferable tunneling path in phase space is found. An influence of energy of initial Gaussian wave packet and trajectory initial condition on tunn...

  11. Quantum trajectory approach to the geometric phase: open bipartite systems

    International Nuclear Information System (INIS)

    Yi, X X; Liu, D P; Wang, W

    2005-01-01

    Through the quantum trajectory approach, we calculate the geometric phase acquired by a bipartite system subjected to decoherence. The subsystems that compose the bipartite system interact with each other and then are entangled in the evolution. The geometric phase due to the quantum jump for both the bipartite system and its subsystems is calculated and analysed. As an example, we present two coupled spin-1/2 particles to detail the calculations

  12. Controlling quantum interference in phase space with amplitude

    OpenAIRE

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-01-01

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...

  13. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....

  14. Quantum phases of dipolar rotors on two-dimensional lattices.

    Science.gov (United States)

    Abolins, B P; Zillich, R E; Whaley, K B

    2018-03-14

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  15. Quantum phases of dipolar rotors on two-dimensional lattices

    Science.gov (United States)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  16. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  17. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  18. A precise error bound for quantum phase estimation.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum computers.

  19. Propagation of Statistical Noise Through a Two-Qubit Maximum Likelihood Tomography

    Science.gov (United States)

    2018-04-01

    entangled mixed states: creation and concentration. Physical Review Letters. 2004;92(13):133601. 4. White AG et al. Nonmaximally entangled states...production, characterization, and utilization. Physical Review Letters. 1999;83(16):3103. 5. Wang SX, Moraw P, Reilly DR, Altepeter JB, Kanter GS...photon Greenberger-Horne-Zeilinger state using quantum state tomography. Physical Review Letters. 2005;94(7):070402. 7. Mikami H et al. New high

  20. Quantum critical matter. Quantum phase transitions with multiple dynamics and Weyl superconductors

    International Nuclear Information System (INIS)

    Meng, Tobias

    2012-01-01

    In this PhD thesis, the physics of quantum critical matter and exotic quantum state close to quantum phase transitions is investigated. We will focus on three different examples that highlight some of the interesting phenomena related to quantum phase transitions. Firstly, we discuss the physics of quantum phase transitions in quantum wires as a function of an external gate voltage when new subbands are activated. We find that at these transitions, strong correlations lead to the formation of an impenetrable gas of polarons, and identify criteria for possible instabilities in the spin- and charge sectors of the model. Our analysis is based on the combination of exact resummations, renormalization group techniques and Luttinger liquid approaches. Secondly, we turn to the physics of multiple divergent time scales close to a quantum critical point. Using an appropriately generalized renormalization group approach, we identify that the presence of multiple dynamics at a quantum phase transition can lead to the emergence of new critical scaling exponents and thus to the breakdown of the usual scaling schemes. We calculate the critical behavior of various thermodynamic properties and detail how unusual physics can arise. It is hoped that these results might be helpful for the interpretation of experimental scaling puzzles close to quantum critical points. Thirdly, we turn to the physics of topological transitions, and more precisely the physics of Weyl superconductors. The latter are the superconducting variant of the topologically non-trivial Weyl semimetals, and emerge at the quantum phase transition between a topological superconductor and a normal insulator upon perturbing the transition with a time reversal symmetry breaking perturbation, such as magnetism. We characterize the topological properties of Weyl superconductors and establish a topological phase diagram for a particular realization in heterostructures. We discuss the physics of vortices in Weyl

  1. Quantum magnification of classical sub-Planck phase space features

    International Nuclear Information System (INIS)

    Hensinger, W.K.; Heckenberg, N.; Rubinsztein-Dunlop, H.; Delande, D.

    2002-01-01

    Full text: To understand the relationship between quantum mechanics and classical physics a crucial question to be answered is how distinct classical dynamical phase space features translate into the quantum picture. This problem becomes even more interesting if these phase space features occupy a much smaller volume than ℎ in a phase space spanned by two non-commuting variables such as position and momentum. The question whether phase space structures in quantum mechanics associated with sub-Planck scales have physical signatures has recently evoked a lot of discussion. Here we will show that sub-Planck classical dynamical phase space structures, for example regions of regular motion, can give rise to states whose phase space representation is of size ℎ or larger. This is illustrated using period-1 regions of regular motion (modes of oscillatory motion of a particle in a modulated well) whose volume is distinctly smaller than Planck's constant. They are magnified in the quantum picture and appear as states whose phase space representation is of size h or larger. Cold atoms provide an ideal test bed to probe such fundamental aspects of quantum and classical dynamics. In the experiment a Bose-Einstein condensate is loaded into a far detuned optical lattice. The lattice depth is modulated resulting in the emergence of regions of regular motion surrounded by chaotic motion in the phase space spanned by position and momentum of the atoms along the standing wave. Sub-Planck scaled phase space features in the classical phase space are magnified and appear as distinct broad peaks in the atomic momentum distribution. The corresponding quantum analysis shows states of size Ti which can be associated with much smaller classical dynamical phase space features. This effect may considered as the dynamical equivalent of the Goldstone and Jaffe theorem which predicts the existence of at least one bound state at a bend in a two or three dimensional spatial potential

  2. Covariant phase difference observables in quantum mechanics

    International Nuclear Information System (INIS)

    Heinonen, Teiko; Lahti, Pekka; Pellonpaeae, Juha-Pekka

    2003-01-01

    Covariant phase difference observables are determined in two different ways, by a direct computation and by a group theoretical method. A characterization of phase difference observables which can be expressed as the difference of two phase observables is given. The classical limits of such phase difference observables are determined and the Pegg-Barnett phase difference distribution is obtained from the phase difference representation. The relation of Ban's theory to the covariant phase theories is exhibited

  3. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    International Nuclear Information System (INIS)

    Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen

    2014-01-01

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)

  4. Crystal Phase Quantum Well Emission with Digital Control

    DEFF Research Database (Denmark)

    Assali, S.; Laehnemann, J.; Vu, Thi Thu Trang

    2017-01-01

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc......-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement...... of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier...

  5. Quantum phase transitions in random XY spin chains

    International Nuclear Information System (INIS)

    Bunder, J.E.; McKenzie, R.H.

    2000-01-01

    Full text: The XY spin chain in a transverse field is one of the simplest quantum spin models. It is a reasonable model for heavy fermion materials such as CeCu 6-x Au x . It has two quantum phase transitions: the Ising transition and the anisotropic transition. Quantum phase transitions occur at zero temperature. We are investigating what effect the introduction of randomness has on these quantum phase transitions. Disordered systems which undergo quantum phase transitions can exhibit new universality classes. The universality class of a phase transition is defined by the set of critical exponents. In a random system with quantum phase transitions we can observe Griffiths-McCoy singularities. Such singularities are observed in regions which have no long range order, so they are not classified as critical regions, yet they display phenomena normally associated with critical points, such as a diverging susceptibility. Griffiths-McCoy phases are due to rare regions with stronger than! average interactions and may be present far from the quantum critical point. We show how the random XY spin chain may be mapped onto a random Dirac equation. This allows us to calculate the density of states without making any approximations. From the density of states we can describe the conditions which should allow a Griffiths-McCoy phase. We find that for the Ising transition the dynamic critical exponent, z, is not universal. It is proportional to the disorder strength and inversely proportional to the energy gap, hence z becomes infinite at the critical point where the energy gap vanishes

  6. Reply to 'Comment on 'Connection between entanglement and the speed of quantum evolution' and on 'Entanglement and the lower bounds on the speed of quantum evolution''

    International Nuclear Information System (INIS)

    Batle, J.; Borras, A.; Casas, M.; Plastino, A. R.; Plastino, A.

    2010-01-01

    Chau's Comment deals with the properties exhibited by a particular set of two-qubit states in connection with entanglement and the quantum evolution of some low-dimensional composite systems. However, there is an important aspect of the previously mentioned two-qubit states and of the role they play in relation with the ''speed'' of quantum evolution that was not mentioned by Chau and deserves to be pointed out: for the two-qubit system under consideration, these states require the longest possible absolute time to evolve to an orthogonal state.

  7. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  8. No-go theorem for passive single-rail linear optical quantum computing.

    Science.gov (United States)

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  9. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.

    Science.gov (United States)

    Yi, Hangmo

    2015-01-01

    I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.

  10. Study on a phase space representation of quantum theory

    International Nuclear Information System (INIS)

    Ranaivoson, R.T.R; Raoelina Andriambololona; Hanitriarivo, R.; Raboanary, R.

    2013-01-01

    A study on a method for the establishment of a phase space representation of quantum theory is presented. The approach utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of quantum mechanics which is based on the use of Hilbert space and linear operators theory. Phase space representation of quantum states and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given.

  11. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases.

    Science.gov (United States)

    Pezzè, Luca; Ciampini, Mario A; Spagnolo, Nicolò; Humphreys, Peter C; Datta, Animesh; Walmsley, Ian A; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto

    2017-09-29

    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

  12. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases

    Science.gov (United States)

    Pezzè, Luca; Ciampini, Mario A.; Spagnolo, Nicolò; Humphreys, Peter C.; Datta, Animesh; Walmsley, Ian A.; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto

    2017-09-01

    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

  13. Quantum Potential and Symmetries in Extended Phase Space

    Directory of Open Access Journals (Sweden)

    Sadollah Nasiri

    2006-06-01

    Full Text Available The behavior of the quantum potential is studied for a particle in a linear and a harmonic potential by means of an extended phase space technique. This is done by obtaining an expression for the quantum potential in momentum space representation followed by the generalization of this concept to extended phase space. It is shown that there exists an extended canonical transformation that removes the expression for the quantum potential in the dynamical equation. The situation, mathematically, is similar to disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates that changes the physical potential to an effective one. The representation where the quantum potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form, is one in which the dynamical equation turns out to be the Wigner equation.

  14. Quantum-deformed geometry on phase-space

    International Nuclear Information System (INIS)

    Gozzi, E.; Reuter, M.

    1992-12-01

    In this paper we extend the standard Moyal formalism to the tangent and cotangent bundle of the phase-space of any hamiltonian mechanical system. In this manner we build the quantum analog of the classical hamiltonian vector-field of time evolution and its associated Lie-derivative. We also use this extended Moyal formalism to develop a quantum analog of the Cartan calculus on symplectic manifolds. (orig.)

  15. Phase matching in quantum searching and the improved Grover algorithm

    International Nuclear Information System (INIS)

    Long Guilu; Li Yansong; Xiao Li; Tu Changcun; Sun Yang

    2004-01-01

    The authors briefly introduced some of our recent work related to the phase matching condition in quantum searching algorithms and the improved Grover algorithm. When one replaces the two phase inversions in the Grover algorithm with arbitrary phase rotations, the modified algorithm usually fails in searching the marked state unless a phase matching condition is satisfied between the two phases. the Grover algorithm is not 100% in success rate, an improved Grover algorithm with zero-failure rate is given by replacing the phase inversions with angles that depends on the size of the database. Other aspects of the Grover algorithm such as the SO(3) picture of quantum searching, the dominant gate imperfections in the Grover algorithm are also mentioned. (author)

  16. Crystal Phase Quantum Well Emission with Digital Control.

    Science.gov (United States)

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  17. Quantum field theoretic properties of nonabelian phase factors

    International Nuclear Information System (INIS)

    Wieczorek, E.

    1984-01-01

    The paper is concerned with quantum field theoretical properies of nonabelian phase factors. The phase factors defining parallel transport in fiber bundle space are the necessary tool for the construction of gauge invariant nonlocal operators describing bound states in QCD. General structures of such operators are discussed and renormalization properties as well as relations between meson and baryon operators are obtained from a study of the underlying phase factors

  18. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    Science.gov (United States)

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  19. Quantum logic gates using Stark-shifted Raman transitions in a cavity

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement

  20. Phase-transition-like behaviour of quantum games

    International Nuclear Information System (INIS)

    Du Jiangfeng; Li Hui; Xu Xiaodong; Zhou Xianyi; Han Rongdian

    2003-01-01

    The discontinuous dependence of the properties of a quantum game on its entanglement has been shown to be very much like phase transitions viewed in the entanglement-payoff diagram (J Du et al 2002 Phys. Rev. Lett. 88 137902). In this paper we investigate such phase-transition-like behaviour of quantum games, by suggesting a method which would help to illuminate the origin of such a kind of behaviour. For the particular case of the generalized Prisoners' Dilemma, we find that, for different settings of the numerical values in the payoff table, even though the classical game behaves the same, the quantum game exhibits different and interesting phase-transition-like behaviour

  1. Phase space view of quantum mechanical systems and Fisher information

    International Nuclear Information System (INIS)

    Nagy, Á.

    2016-01-01

    Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  2. Phase space view of quantum mechanical systems and Fisher information

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Á., E-mail: anagy@madget.atomki.hu

    2016-06-17

    Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.

  3. Dissipation-driven quantum phase transitions in collective spin systems

    International Nuclear Information System (INIS)

    Morrison, S; Parkins, A S

    2008-01-01

    We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)

  4. Phase-transition-like behaviour of quantum games

    CERN Document Server

    Du Jiang Feng; Xu Xiao Dong; Zhou Xian Yi; Han Rong Dian

    2003-01-01

    The discontinuous dependence of the properties of a quantum game on its entanglement has been shown to be very much like phase transitions viewed in the entanglement-payoff diagram (J Du et al 2002 Phys. Rev. Lett. 88 137902). In this paper we investigate such phase-transition-like behaviour of quantum games, by suggesting a method which would help to illuminate the origin of such a kind of behaviour. For the particular case of the generalized Prisoners' Dilemma, we find that, for different settings of the numerical values in the payoff table, even though the classical game behaves the same, the quantum game exhibits different and interesting phase-transition-like behaviour.

  5. General method for realizing the conditional phase-shift gate and a simulation of Grover's algorithm in an ion-trap system

    International Nuclear Information System (INIS)

    Fujiwara, Shingo; Hasegawa, Shuichi

    2005-01-01

    It is well known that, in order to build the universal quantum circuit, one only needs one-qubit rotation gate and two-qubit controlled-NOT gate and until now quantum networks have been built from these gates. However, the minimum components of quantum networks in real experiments are not these quantum gates, so we develop a general method for realizing the conditional phase-shift gate in multiqubit ion-trap quantum computation which has the scalability to N qubits (N≥3). The duration of the laser manipulations for the proposed conditional phase-shift gate is almost the same as that for the controlled-NOT gate in ion-trap quantum computation. Moreover, we simulate Grover's algorithm taking into consideration the real laser fluctuations and analyze the effect of decoherence on the practical search

  6. Mutual information as an order parameter for quantum synchronization

    Science.gov (United States)

    Ameri, V.; Eghbali-Arani, M.; Mari, A.; Farace, A.; Kheirandish, F.; Giovannetti, V.; Fazio, R.

    2015-01-01

    Spontaneous synchronization is a fundamental phenomenon, important in many theoretical studies and applications. Recently, this effect has been analyzed and observed in a number of physical systems close to the quantum-mechanical regime. In this work we propose mutual information as a useful order parameter which can capture the emergence of synchronization in very different contexts, ranging from semiclassical to intrinsically quantum-mechanical systems. Specifically, we first study the synchronization of two coupled Van der Pol oscillators in both classical and quantum regimes and later we consider the synchronization of two qubits inside two coupled optical cavities. In all these contexts, we find that mutual information can be used as an appropriate figure of merit for determining the synchronization phases independently of the specific details of the system.

  7. Anomalous phase shift in a twisted quantum loop

    International Nuclear Information System (INIS)

    Taira, Hisao; Shima, Hiroyuki

    2010-01-01

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  8. Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2012-07-15

    In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.

  9. Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state

    Science.gov (United States)

    Georgiev, Lachezar S.

    2006-12-01

    We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .

  10. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  11. Quantum Phases of Matter in Optical Lattices

    Science.gov (United States)

    2015-06-30

    3.00 5.00 6.00 7.00 8.00 Tin-Lun Ho, Biao Huang. Local spin structure of large spin fermions, Physical Review A, (4 2015): 0. doi: 10.1103/PhysRevA...APS March Meeting, 2013 Eliot Kapit , Erich Mueller, A Vector Potential for Flux Qbits, APS March Meeting, 2013 Yariv Yanay, Erich Mueller...34Bogoliubov- de Gennes Study of Trapped Superfluid Fermi Gas", Workshop on Mathematical and Numerical Methods for Quantum, Kinetic and Nonlocal

  12. Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field

    Science.gov (United States)

    Kholmetskii, Alexander; Yarman, Tolga

    2017-11-01

    We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic field must be composed from more fundamental quantum phases emerging for moving elementary charges. Using this idea, we have found two new fundamental quantum phases, next to the known magnetic and electric Aharonov-Bohm phases, and discuss their general properties and physical meaning.

  13. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  14. A concise treatise on quantum mechanics in phase space

    CERN Document Server

    Curtright, Thomas L; Zachos, Cosmas K

    2014-01-01

    This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions density -- matrices in a special Weyl representation -- and star products are the cornerstones of the formalism. The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative way to formulate and understand quantum mechanics, independent of the conventional Hilbert space or path integral approaches to the subject. In this logically complete and self-standing formula...

  15. Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chapeau-Blondeau, François, E-mail: chapeau@univ-angers.fr

    2017-04-25

    Benefit from entanglement in quantum parameter estimation in the presence of noise or decoherence is investigated, with the quantum Fisher information to asses the performance. When an input probe experiences any (noisy) transformation introducing the parameter dependence, the performance is always maximized by a pure probe. As a generic estimation task, for estimating the phase of a unitary transformation on a qubit affected by depolarizing noise, the optimal separable probe and its performance are characterized as a function of the level of noise. By entangling qubits in pairs, enhancements of performance over that of the optimal separable probe are quantified, in various settings of the entangled pair. In particular, in the presence of the noise, enhancement over the performance of the one-qubit optimal probe can always be obtained with a second entangled qubit although never interacting with the process to be estimated. Also, enhancement over the performance of the two-qubit optimal separable probe can always be achieved by a two-qubit entangled probe, either partially or maximally entangled depending on the level of the depolarizing noise. - Highlights: • Quantum parameter estimation from a noisy qubit pair is investigated. • The quantum Fisher information is used to assess the ultimate best performance. • Theoretical expressions are established and analyzed for the Fisher information. • Enhanced performances are quantified with various entanglements of the pair. • Enhancement is shown even with one entangled qubit noninteracting with the process.

  16. Scaling and Universality at Dynamical Quantum Phase Transitions.

    Science.gov (United States)

    Heyl, Markus

    2015-10-02

    Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.

  17. Experimental studies of the quantum chromodynamics phase ...

    Indian Academy of Sciences (India)

    2015-05-06

    BES) ... Experimental studies of the QCD phase diagram at the STAR experiment .... However, the observed difference between v2 of particles and antiparticles could .... The grey band at the right corresponds to systematic.

  18. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  19. Computational models for the berry phase in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca [M2NeT Lab, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5 (Canada); Sebetci, A. [Department of Mechanical Engineering, Mevlana University, 42003, Konya (Turkey)

    2014-10-06

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  20. Zak Phase in Discrete-Time Quantum Walks

    OpenAIRE

    Puentes, G.; Santillán, O.

    2015-01-01

    We report on a simple scheme that may present a non-trivial geometric Zak phase ($\\Phi_{Zak}$) structure, which is based on a discrete-time quantum walk architecture. By detecting the Zak phase difference between two trajectories connecting adjacent Dirac points where the quasi-energy gap closes for opposite values of quasi-momentum ($k$), it is possible to identify geometric invariants. These geometric invariants correspond to $|\\Phi_{Zak}^{+(-)}-\\Phi_{Zak}^{-(+)}|=\\pi$ and $|\\Phi_{Zak}^{+(-...

  1. Deformation quantization: Quantum mechanics lives and works in phase space

    Directory of Open Access Journals (Sweden)

    Zachos Cosmas K.

    2014-01-01

    A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002, and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space, (Imperial Press & World Scientific, 2014.

  2. Phase-space treatment of the driven quantum harmonic oscillator

    Indian Academy of Sciences (India)

    A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the ...

  3. Lie algebra symmetries and quantum phase transitions in nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... 743–755. Lie algebra symmetries and quantum phase transitions in nuclei .... Applications of this CS to QPT in sdgIBM model will be briefly ..... as a linear combination of ˆC2, ˆC3 and ˆC4 of SUsdg(5) and similarly also for the.

  4. Multiply Degenerate Exceptional Points and Quantum Phase Transitions

    Czech Academy of Sciences Publication Activity Database

    Borisov, D.; Růžička, František; Znojil, Miloslav

    2015-01-01

    Roč. 54, č. 12 (2015), s. 4293-4305 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * Cryptohermitian observbles * spectra and pseudospectra * real exceptional points * phase transitions Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015

  5. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    . We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising...

  6. Effective Hamiltonians in quantum physics: resonances and geometric phase

    International Nuclear Information System (INIS)

    Rau, A R P; Uskov, D

    2006-01-01

    Effective Hamiltonians are often used in quantum physics, both in time-dependent and time-independent contexts. Analogies are drawn between the two usages, the discussion framed particularly for the geometric phase of a time-dependent Hamiltonian and for resonances as stationary states of a time-independent Hamiltonian

  7. Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points.

    Science.gov (United States)

    Goswami, Pallab; Schwab, David; Chakravarty, Sudip

    2008-01-11

    We give a heuristic argument for disorder rounding of a first-order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the N-color quantum Ashkin-Teller model in one spatial dimension, we find that, for N > or =3, the first-order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.

  8. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  9. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    Science.gov (United States)

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  10. Distinguishing quantum from classical oscillations in a driven phase qubit

    International Nuclear Information System (INIS)

    Shevchenko, S N; Omelyanchouk, A N; Zagoskin, A M; Savel'ev, S; Nori, Franco

    2008-01-01

    Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant drive, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently (Groenbech-Jensen N and Cirillo M 2005 Phys. Rev. Lett. 95 067001) that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effects. Firstly, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency ω 10 (multiphoton processes), the classical effect also exists when the system is excited at the overtones, nω 10 . Secondly, the shape of the resonance is, in the classical case, characteristically asymmetric, whereas quantum resonances are described by symmetric Lorentzians. Thirdly, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow us to distinguish confidently the bona fide Rabi oscillations from their classical Doppelgaenger

  11. Dynamical quantum phase transitions in extended transverse Ising models

    Science.gov (United States)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  12. Quantum phase space with a basis of Wannier functions

    Science.gov (United States)

    Fang, Yuan; Wu, Fan; Wu, Biao

    2018-02-01

    A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.

  13. Quantum phases of spinful Fermi gases in optical cavities

    Science.gov (United States)

    Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.

    2018-04-01

    We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g analysis.

  14. Quantum renormalization group approach to geometric phases in spin chains

    International Nuclear Information System (INIS)

    Jafari, R.

    2013-01-01

    A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size

  15. Differential-phase-shift quantum key distribution using coherent light

    International Nuclear Information System (INIS)

    Inoue, K.; Waks, E.; Yamamoto, Y.

    2003-01-01

    Differential-phase-shift quantum key distribution based on two nonorthogonal states is described. A weak coherent pulse train is sent from Alice to Bob, in which the phase of each pulse is randomly modulated by {0,π}. Bob measures the differential phase by a one-bit delay circuit. The system has a simple configuration without the need for an interferometer and a bright reference pulse in Alice's site, unlike the conventional QKD system based on two nonorthogonal states, and has an advantage of improved communication efficiency. The principle of the operation is successfully demonstrated in experiments

  16. Quantum phase transitions of a disordered antiferromagnetic topological insulator

    Science.gov (United States)

    Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.

    2014-01-01

    We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.

  17. Quantum phases of AB2 fermionic chains

    International Nuclear Information System (INIS)

    Murcia-Correa, L S; Franco, R; Silva-Valencia, J

    2016-01-01

    A fermionic chain is a one-dimensional system with fermions that interact locally and can jump between sites in the lattice, in particular an AB n chain type, where A and B are sites that exhibit a difference in energy level of Δ and site B is repeated n-times, such that the unit cell has n +1 sites. A limit case of this model, called the ionic Hubbard model (n = 1), has been widely studied due to its interesting physics and applications. In this paper, we study the ground state of an AB 2 chain, which describes the material R 4 [Pt 2 (P 2 O 5 H 2 ) 4 X] · nH 2 O. Specifically, we consider a filling with two electrons per unit cell, and using the density matrix renormalization group method we found that the system exhibits the band insulator and Mott correlated insulator phases, as well as an intermediate phase between them. For couplings of Δ = 2,10 and 20, we estimate the critical points that separate these phases through the structure factor and the energy gap in the sector of charge and spin, finding that the position of the critical point rises as a function of Δ. (paper)

  18. Quantum gyroscope based on Berry phase of spins in diamond

    Science.gov (United States)

    Song, Xuerui; Wang, Liujun; Diao, Wenting; Duan, Chongdi

    2018-02-01

    Gyroscope is the crucial sensor of the inertial navigation system, there is always high demand to improve the sensitivity and reduce the size of the gyroscopes. Using the NV center electronic spin and nuclear spin qubits in diamond, we introduce the research of new types of quantum gyroscopes based on the Berry phase shifts of the spin states during the rotation of the sensor systems. Compared with the performance of the traditional MEMS gyroscope, the sensitivity of the new types of quantum gyroscopes was highly improved and the spatial resolution was reduced to nano-scale. With the help of micro-manufacturing technology in the semiconductor industry, the quantum gyroscopes introduced here can be further integrated into chip-scale sensors.

  19. Ab initio quantum-enhanced optical phase estimation using real-time feedback control

    DEFF Research Database (Denmark)

    Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt

    2015-01-01

    of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...... noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing....

  20. Quantum Walks on the Line with Phase Parameters

    Science.gov (United States)

    Villagra, Marcos; Nakanishi, Masaki; Yamashita, Shigeru; Nakashima, Yasuhiko

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  1. Geometric phase for N-level systems through unitary integration

    International Nuclear Information System (INIS)

    Uskov, D. B.; Rau, A. R. P.

    2006-01-01

    Geometric phases are important in quantum physics and are now central to fault-tolerant quantum computation. For spin 1/2, the Bloch sphere S 2 , together with a U(1) phase, provides a complete SU(2) description. We generalize to N-level systems and SU(N) in terms of a 2(N-1)-dimensional base space and reduction to a (N-1)-level problem, paralleling closely the two-dimensional case. This iteratively solves the time evolution of an N-level system and gives (N-1) geometric phases explicitly. A complete analytical construction of an S 4 Bloch-like sphere for two qubits is given for the Spin(5) or SO(5) subgroup of SU(4)

  2. Quantum phase transition in strongly correlated many-body system

    Science.gov (United States)

    You, Wenlong

    The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M

  3. Quantum de Finetti theorem in phase-space representation

    International Nuclear Information System (INIS)

    Leverrier, Anthony; Cerf, Nicolas J.

    2009-01-01

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form σ xn . Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states).

  4. Negative thermal expansion near two structural quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion

  5. Efficient quantum walk on a quantum processor

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  6. One-Way Deficit and Quantum Phase Transitions in XX Model

    Science.gov (United States)

    Wang, Yao-Kun; Zhang, Yu-Ran

    2018-02-01

    Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.

  7. Nonperturbative approach to quantum field theories: phase transitions and confinement

    International Nuclear Information System (INIS)

    Yankielowicz, S.

    1976-08-01

    Lectures are given on a nonperturbative approach to quantum field theories. Phenomena are discussed for which the usual weak coupling perturbative approach in terms of Feynman diagrams is of no assistance. Properties associated with large distance behavior, i.e., phase transitions, low lying spectra, coherent excitations which are presumably built out of the long wave structure of the theory are described. These methods are important for the study of strong coupling field theories and the question of quarks confinement. 25 references

  8. Supersymmetric quantum mechanics, phase equivalence, and low energy scattering anomalies

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1991-01-01

    Supersymmetric quantum mechanics links two Hamiltonians with the same scattering (phase equivalence) but different number of bound states. We examine the Green's functions for these Hamiltonians as a prelude to embedding the two-body dynamics in a many-body system. We study the effect of the elimination of a two-body bound state near zero energy for the Efimov effect and Beg's theorem

  9. Hermitian-to-quasi-Hermitian quantum phase transitions

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    Roč. 97, č. 4 ( 2018 ), č. článku 042117. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum phase transition * PT-symmetric * Herimiticity Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  10. The Quantum Space Phase Transitions for Particles and Force Fields

    OpenAIRE

    Chung D.-Y.; Krasnoholovets V.

    2006-01-01

    We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment spac...

  11. Experimental asymmetric phase-covariant quantum cloning of polarization qubits

    Czech Academy of Sciences Publication Activity Database

    Soubusta, Jan; Bartůšková, L.; Černoch, Antonín; Dušek, M.; Fiurášek, J.

    2008-01-01

    Roč. 78, č. 5 (2008), 052323/1-052323/7 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) 1M06002 Grant - others:GAMŠk(CZ) LC06007 Program:LC Institutional research plan: CEZ:AV0Z10100522 Keywords : phase-covariant cloning * quantum information processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.908, year: 2008

  12. Quantum Graph Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  13. Duality, phase structures, and dilemmas in symmetric quantum games

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi

    2007-01-01

    Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided

  14. The Quantum Space Phase Transitions for Particles and Force Fields

    Directory of Open Access Journals (Sweden)

    Chung D.-Y.

    2006-07-01

    Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.

  15. Microscopic analysis of order parameters in nuclear quantum phase transitions

    International Nuclear Information System (INIS)

    Li, Z. P.; Niksic, T.; Vretenar, D.; Meng, J.

    2009-01-01

    Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter, the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number N=90, which is characteristic of a first-order quantum phase transition.

  16. Equivariant topological quantum field theory and symmetry protected topological phases

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)

    2017-03-01

    Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.

  17. Electrically protected resonant exchange qubits in triple quantum dots.

    Science.gov (United States)

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  18. Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes

    International Nuclear Information System (INIS)

    Yoshida, Beni

    2011-01-01

    Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.

  19. Quantum and thermal phase escape in extended Josephson systems

    International Nuclear Information System (INIS)

    Kemp, A.

    2006-01-01

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  20. Quantum and thermal phase escape in extended Josephson systems

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, A.

    2006-07-12

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  1. Applications of Atomic Systems in Quantum Simulation, Quantum Computation and Topological Phases of Matter

    Science.gov (United States)

    Wang, Shengtao

    The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation

  2. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  3. Control of the spin geometric phase in semiconductor quantum rings.

    Science.gov (United States)

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  4. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model

    International Nuclear Information System (INIS)

    Lian Jin-Ling; Zhang Yuan-Wei; Liang Jiu-Qing

    2012-01-01

    The energy spectrum of Dicke Hamiltonians with and without the rotating wave approximation for an arbitrary atom number is obtained analytically by means of the variational method, in which the effective pseudo-spin Hamiltonian resulting from the expectation value in the boson-field coherent state is diagonalized by the spin-coherent-state transformation. In addition to the ground-state energy, an excited macroscopic quantum-state is found corresponding to the south- and north-pole gauges of the spin-coherent states, respectively. Our results of ground-state energies in exact agreement with various approaches show that these models exhibit a zero-temperature quantum phase transition of the second order for any number of atoms, which was commonly considered as a phenomenon of the thermodynamic limit with the atom number tending to infinity. The critical behavior of the geometric phase is analyzed. (general)

  5. An introduction to the tomographic picture of quantum mechanics

    International Nuclear Information System (INIS)

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F

    2009-01-01

    Starting from the famous Pauli problem on the possibility of associating quantum states with probabilities, the formulation of quantum mechanics in which quantum states are described by fair probability distributions (tomograms, i.e. tomographic probabilities) is reviewed in a pedagogical style. The relation between the quantum state description and the classical state description is elucidated. The difference between those sets of tomograms is described by inequalities equivalent to a complete set of uncertainty relations for the quantum domain and to non-negativity of probability density on phase space in the classical domain. The intersection of such sets is studied. The mathematical mechanism that allows us to construct different kinds of tomographic probabilities like symplectic tomograms, spin tomograms, photon number tomograms, etc is clarified and a connection with abstract Hilbert space properties is established. The superposition rule and uncertainty relations in terms of probabilities as well as quantum basic equations like quantum evolution and energy spectra equations are given in an explicit form. A method to check experimentally the uncertainty relations is suggested using optical tomograms. Entanglement phenomena and the connection with semigroups acting on simplexes are studied in detail for spin states in the case of two-qubits. The star-product formalism is associated with the tomographic probability formulation of quantum mechanics.

  6. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  7. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  8. The pure phases, the irreducible quantum fields, and dynamical symmetry breaking in Symanzik--Nelson positive quantum field theories

    International Nuclear Information System (INIS)

    Frohlich, J.

    1976-01-01

    We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models

  9. Quantum phase slips and voltage fluctuations in superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Andrew G. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Zaikin, Andrei D. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physics Institute, Moscow (Russian Federation); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2017-06-15

    We argue that quantum phase slips (QPS) may generate non-equilibrium voltage fluctuations in superconducting nanowires. In the low frequency limit we evaluate all cumulants of the voltage operator which obey Poisson statistics and show a power law dependence on the external bias. We specifically address quantum shot noise which power spectrum S{sub Ω} may depend non-monotonously on temperature. In the long wire limit S{sub Ω} decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T → 0. Our predictions can be directly tested in future experiments with superconducting nanowires. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  11. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  12. Microwave potentials and optimal control for robust quantum gates on an atom chip

    International Nuclear Information System (INIS)

    Treutlein, Philipp; Haensch, Theodor W.; Reichel, Jakob; Negretti, Antonio; Cirone, Markus A.; Calarco, Tommaso

    2006-01-01

    We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes and extensively discuss the impact of technical noise and imperfections that characterize an actual atom chip. We find an overall infidelity compatible with requirements for fault-tolerant quantum computation

  13. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates

  14. Adaptive phase measurements in linear optical quantum computation

    International Nuclear Information System (INIS)

    Ralph, T C; Lund, A P; Wiseman, H M

    2005-01-01

    Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically

  15. Implementing phase-covariant cloning in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Meng-Zheng [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)

    2016-10-15

    An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.

  16. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  17. Interaction effects and quantum phase transitions in topological insulators

    International Nuclear Information System (INIS)

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-01-01

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  18. Quantum phases of electric dipole ensembles in atom chips

    International Nuclear Information System (INIS)

    Pachos, Jiannis K.

    2005-01-01

    We present how a phase factor is generated when an electric dipole moves along a closed trajectory inside a magnetic field gradient. The similarity of this situation with charged particles in a magnetic field can be employed to simulate condensed matter models, such as the quantum Hall effect and chiral spin Hamiltonians, with ultra cold atoms integrated on atom chips. To illustrate this we consider a triangular configuration of a two-dimensional optical lattice, where the chiral spin Hamiltonian σ-> i -bar σ-> j xσ-> k can be generated between any three neighbours on a lattice yielding an experimentally implementable chiral ground state

  19. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    Science.gov (United States)

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  20. Np Incorporation into Uranyl Alteration Phases: A Quantum Mechanical Approach

    International Nuclear Information System (INIS)

    L.C. Huller; R.C. Win; U.Ecker

    2006-01-01

    Neptunium is a major contributor to the long-term radioactivity in a geologic repository for spent nuclear fuel (SNF) due to its long half-life (2.1 million years). The mobility of Np may be decreased by incorporation into the U 6+ phases that form during the corrosion of SNF. The ionic radii of Np (0.089nm) and U (0.087nm) are similar, as is their chemistry. Experimental studies have shown Np can be incorporated into uranyl phases at concentrations of ∼ 100 ppm. The low concentration of Np in the uranyl phases complicates experimental detection and presents a significant challenge for determining the incorporation mechanism. Therefore, we have used quantum mechanical calculations to investigate incorporation mechanisms and evaluate the energetics of Np substituting for U. CASTEP, a density functional theory based code that uses plane waves and pseudo-potentials, was used to calculate optimal H positions, relaxed geometry, and energy of different uranyl phases. The incorporation energy for Np in uranyl alteration phases was calculated for studtite, [(UO 2 )O 2 (H 2 O) 2 ](H 2 ) 2 , and boltwoodite, HK(UO 2 )(SiO 4 )* 1.5(H 2 O). Studtite is the rare case of a stable uranyl hydroxyl-peroxide mineral that forms in the presence of H 2 O 2 from the radiolysis of H 2 O. For studtite, two incorporation mechanisms were evaluated: (1) charge-balanced substitution of Np 5+ and H + for one U 6+ , and (2) direct substitution of Np 6+ for U 6+ . For boltwoodite, the H atomic positions prior to Np incorporation were determined, as well as the Np incorporation mechanisms and the corresponding substitution energies. The preferential incorporation of Np into different structure types of U 6+ minerals was also investigated. Quantum mechanical substitution energies have to be derived at Np concentrations higher than the ones found in experiments or expected in a repository. However, the quantum mechanical results are crucial for subsequent empirical force-field and Monte

  1. BOOK REVIEW: The Geometric Phase in Quantum Systems

    Science.gov (United States)

    Pascazio, S.

    2003-12-01

    The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke `after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is

  2. Photonic quantum simulator for unbiased phase covariant cloning

    Science.gov (United States)

    Knoll, Laura T.; López Grande, Ignacio H.; Larotonda, Miguel A.

    2018-01-01

    We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1→ 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.

  3. Non-cyclic phases for neutrino oscillations in quantum field theory

    International Nuclear Information System (INIS)

    Blasone, Massimo; Capolupo, Antonio; Celeghini, Enrico; Vitiello, Giuseppe

    2009-01-01

    We show the presence of non-cyclic phases for oscillating neutrinos in the context of quantum field theory. Such phases carry information about the non-perturbative vacuum structure associated with the field mixing. By subtracting the condensate contribution of the flavor vacuum, the previously studied quantum mechanics geometric phase is recovered.

  4. On the Activation of Quantum Nonlocality

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Ducuara

    2016-05-01

    Full Text Available We report on some quantum properties of physical systems, namely, entanglement, nonlocality, k-copy nonlocality (superactivation of nonlocality, hidden nonlocality (activation of nonlocality through local filtering and the activation of nonlocality through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.

  5. Threshold quantum cryptograph based on Grover's algorithm

    International Nuclear Information System (INIS)

    Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen

    2007-01-01

    We propose a threshold quantum protocol based on Grover's operator and permutation operator on one two-qubit signal. The protocol is secure because the dishonest parties can only extract 2 bits from 3 bits information of operation on one two-qubit signal while they have to introduce error probability 3/8. The protocol includes a detection scheme to resist Trojan horse attack. With probability 1/2, the detection scheme can detect a multi-qubit signal that is used to replace a single-qubit signal, while it makes every legitimate qubit invariant

  6. Identifying quantum phase transitions with adversarial neural networks

    Science.gov (United States)

    Huembeli, Patrick; Dauphin, Alexandre; Wittek, Peter

    2018-04-01

    The identification of phases of matter is a challenging task, especially in quantum mechanics, where the complexity of the ground state appears to grow exponentially with the size of the system. Traditionally, physicists have to identify the relevant order parameters for the classification of the different phases. We here follow a radically different approach: we address this problem with a state-of-the-art deep learning technique, adversarial domain adaptation. We derive the phase diagram of the whole parameter space starting from a fixed and known subspace using unsupervised learning. This method has the advantage that the input of the algorithm can be directly the ground state without any ad hoc feature engineering. Furthermore, the dimension of the parameter space is unrestricted. More specifically, the input data set contains both labeled and unlabeled data instances. The first kind is a system that admits an accurate analytical or numerical solution, and one can recover its phase diagram. The second type is the physical system with an unknown phase diagram. Adversarial domain adaptation uses both types of data to create invariant feature extracting layers in a deep learning architecture. Once these layers are trained, we can attach an unsupervised learner to the network to find phase transitions. We show the success of this technique by applying it on several paradigmatic models: the Ising model with different temperatures, the Bose-Hubbard model, and the Su-Schrieffer-Heeger model with disorder. The method finds unknown transitions successfully and predicts transition points in close agreement with standard methods. This study opens the door to the classification of physical systems where the phase boundaries are complex such as the many-body localization problem or the Bose glass phase.

  7. Adiabatically steered open quantum systems: Master equation and optimal phase

    International Nuclear Information System (INIS)

    Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.

    2010-01-01

    We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.

  8. Entanglement scaling at first order quantum phase transitions

    Science.gov (United States)

    Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.

    2018-04-01

    First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.

  9. Polarons and Mobile Impurities Near a Quantum Phase Transition

    Science.gov (United States)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  10. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  11. Quantum field theory and phase transitions: universality and renormalization group

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    2003-08-01

    In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)

  12. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    Science.gov (United States)

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  13. Phase Transitions for Quantum XY-Model on the Cayley Tree of Order Three in Quantum Markov Chain Scheme

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Saburov, Mansoor

    2010-06-01

    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators {K }. (author)

  14. Spectral decomposition of single-tone-driven quantum phase modulation

    International Nuclear Information System (INIS)

    Capmany, Jose; Fernandez-Pousa, Carlos R

    2011-01-01

    Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  15. Spectral decomposition of single-tone-driven quantum phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

    2011-02-14

    Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  16. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-04-26

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  17. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  18. Crossover between the dense electron-hole phase and the BCS excitonic phase in quantum dots

    International Nuclear Information System (INIS)

    Rodriguez, B.A.; Gonzalez, A.; Quiroga, L.; Capote, R.; Rodriguez, F.J.

    1999-09-01

    Second order perturbation theory and a Lipkin-Nogami scheme combined with an exact Monte Carlo projection after variation are applied to compute the ground-state energy of 6 ≤ N ≤ 210 electron-hole pairs confined in a parabolic two-dimensional quantum dot. The energy shows nice scaling properties as N or the confinement strength is varied. A crossover from the high-density electron-hole phase to the BCS excitonic phase is found at a density which is roughly four times the close-packing density of excitons. (author)

  19. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  20. Quantum logic gates generated by SC-charge qubits coupled to a resonator

    International Nuclear Information System (INIS)

    Obada, A-S F; Hessian, H A; Mohamed, A-B A; Homid, Ali H

    2012-01-01

    We propose some quantum logic gates by using SC-charge qubits coupled to a resonator to study two types of quantum operation. By applying a classical magnetic field with the flux, a simple rotation on the target qubit is generated. Single and two-qubit gates of quantum logic gates are realized. Two-qubit joint operations are firstly generated by applying a classical magnetic field with the flux, and secondly by applying a classical magnetic field with the flux when qubits are placed a quarter of the distance along the resonator. A short discussion of fidelity is given to prove the success of the operations in implementing these gates. (paper)

  1. Twist effects in quantum vortices and phase defects

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L.

    2018-02-01

    In this paper we show that twist, defined in terms of rotation of the phase associated with quantum vortices and other physical defects effectively deprived of internal structure, is a property that has observable effects in terms of induced axial flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation (GPE) and perform a number of test cases to investigate and compare the effects of twist in two different contexts: (i) when this is artificially superimposed on an initially untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous presence of a central straight vortex. In the first case large amplitude perturbations quickly develop, generated by the unnatural setting of the initial condition that is not an analytical solution of the GPE. In the second case much milder perturbations emerge, signature of a genuine physical process. This scenario is confirmed by other test cases performed at higher twist values. Since the second setting corresponds to essential linking, these results provide new evidence of the influence of topology on physics.

  2. Holographic RG flows on curved manifolds and quantum phase transitions

    Science.gov (United States)

    Ghosh, J. K.; Kiritsis, E.; Nitti, F.; Witkowski, L. T.

    2018-05-01

    Holographic RG flows dual to QFTs on maximally symmetric curved manifolds (dS d , AdS d , and S d ) are considered in the framework of Einstein-dilaton gravity in d + 1 dimensions. A general dilaton potential is used and the flows are driven by a scalar relevant operator. The general properties of such flows are analyzed and the UV and IR asymptotics computed. New RG flows can appear at finite curvature which do not have a zero curvature counterpart. The so-called `bouncing' flows, where the β-function has a branch cut at which it changes sign, are found to persist at finite curvature. Novel quantum first-order phase transitions are found, triggered by a variation in the d-dimensional curvature in theories allowing multiple ground states.

  3. Frame transforms, star products and quantum mechanics on phase space

    International Nuclear Information System (INIS)

    Aniello, P; Marmo, G; Man'ko, V I

    2008-01-01

    Using the notions of frame transform and of square integrable projective representation of a locally compact group G, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group G x G. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed

  4. Slowing Quantum Decoherence by Squeezing in Phase Space

    Science.gov (United States)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  5. Two-point entanglement near a quantum phase transition

    International Nuclear Information System (INIS)

    Chen, Han-Dong

    2007-01-01

    In this work, we study the two-point entanglement S(i, j), which measures the entanglement between two separated degrees of freedom (ij) and the rest of system, near a quantum phase transition. Away from the critical point, S(i, j) saturates with a characteristic length scale ξ E , as the distance |i - j| increases. The entanglement length ξ E agrees with the correlation length. The universality and finite size scaling of entanglement are demonstrated in a class of exactly solvable one-dimensional spin model. By connecting the two-point entanglement to correlation functions in the long range limit, we argue that the prediction power of a two-point entanglement is universal as long as the two involved points are separated far enough

  6. Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase

    Science.gov (United States)

    Bruno, Patrick

    2012-06-01

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  7. Unconventional geometric quantum computation in a two-mode cavity

    International Nuclear Information System (INIS)

    Wu Chunfeng; Wang Zisheng; Feng Xunli; Lai, C. H.; Oh, C. H.; Goan, H.-S.; Kwek, L. C.

    2007-01-01

    We propose a scheme for implementing unconventional geometric quantum computation by using the interaction of two atoms with a two-mode cavity field. The evolution of the system results in a nontrivial two-qubit phase gate. The operation of the proposed gate involves only metastable states of the atom and hence is not affected by spontaneous emission. The effect of cavity decay on the gate is investigated. It is shown that the evolution time of the gate in the two-mode case is less than that in the single-mode case proposed by Feng et al. [Phys. Rev. A 75, 052312 (2007)]. Thus the gate can be more decay tolerant than the previous one. The scheme can also be generalized to a system consisting of two atoms interacting with an N-mode cavity field

  8. Magneto-transport study of quantum phases in wide GaAs quantum wells

    Science.gov (United States)

    Liu, Yang

    In this thesis we study several quantum phases in very high quality two-dimensional electron systems (2DESs) confined to GaAs single wide quantum wells (QWs). In these systems typically two electric subbands are occupied. By controlling the electron density as well as the QW symmetry, we can fine tune the cyclotron and subband separation energies, so that Landau levels (LLs) belonging to different subbands cross at the Fermi energy EF. The additional subband degree of freedom enables us to study different quantum phases. Magneto-transport measurements at fixed electron density n and various QW symmetries reveal a remarkable pattern for the appearance and disappearance of fractional quantum Hall (FQH) states at LL filling factors nu = 10/3, 11/3, 13/3, 14/3, 16/3, and 17/3. These q/3 states are stable and strong as long as EF lies in a ground-state (N = 0) LL, regardless of whether that level belongs to the symmetric or the anti-symmetric subband. We also observe subtle and distinct evolutions near filling factors nu = 5/2 and 7/2, as we change the density n, or the symmetry of the charge distribution. The even-denominator FQH states are observed at nu = 5/2, 7/2, 9/2 and 11/2 when EF lies in the N= 1 LLs of the symmetric subband (the S1 levels). As we increase n, the nu = 5/2 FQH state suddenly disappears and turns into a compressible state once EF moves to the spin-up, N = 0, anti-symmetric LL (the A0 ↑ level). The sharpness of this disappearance suggests a first-order transition from a FQH to a compressible state. Moreover, thanks to the renormalization of the susbband energy separation in a well with asymmetric change distribution, two LLs can get pinned to each other when they are crossing at E F. We observe a remarkable consequence of such pinning: There is a developing FQH state when the LL filling factor of the symmetric subband nuS equals 5/2 while the antisymmetric subband has filling 1 < nuA <2. Next, we study the evolution of the nu=5/2 and 7/2 FQH

  9. First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot

    Directory of Open Access Journals (Sweden)

    Romain Maurand

    2012-02-01

    Full Text Available We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device loop in order to investigate the competition of strong electron correlations with a proximity effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum dot will exhibit a positive or a negative supercurrent, referred to as a 0 or π Josephson junction, respectively. In the regime of a strong Coulomb blockade, the 0-to-π transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling amplitude, the Kondo effect develops for an odd-charge (magnetic dot in the normal state, and quenches magnetism. In this situation, we find that a first-order 0-to-π quantum phase transition can be triggered at a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The superconducting-quantum-interference-device geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, which we associate with the two accessible superconducting states. Our results finally demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far from the mixed-valence regime in odd-charge superconducting quantum dots.

  10. Quantum computational capability of a 2D valence bond solid phase

    International Nuclear Information System (INIS)

    Miyake, Akimasa

    2011-01-01

    Highlights: → Our model is the 2D valence bond solid phase of a quantum antiferromagnet. → Universal quantum computation is processed by measurements of quantum correlations. → An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

  11. Speeding up transmissions of unknown quantum information along Ising-type quantum channels

    International Nuclear Information System (INIS)

    Guo W J; Wei L F

    2017-01-01

    Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearest-neighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones, by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing. (paper)

  12. Strain-induced topological quantum phase transition in phosphorene oxide

    Science.gov (United States)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  13. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks.

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L; Carr, Lincoln D

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z_{2}, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  14. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  15. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    Science.gov (United States)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  16. Quantum phase transition of light in the Rabi–Hubbard model

    International Nuclear Information System (INIS)

    Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E

    2013-01-01

    We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)

  17. Remarks on the formulation of quantum mechanics on noncommutative phase spaces

    International Nuclear Information System (INIS)

    Muthukumar, Balasundaram

    2007-01-01

    We consider the probabilistic description of nonrelativistic, spinless one-particle classical mechanics, and immerse the particle in a deformed noncommutative phase space in which position coordinates do not commute among themselves and also with canonically conjugate momenta. With a postulated normalized distribution function in the quantum domain, the square of the Dirac delta density distribution in the classical case is properly realised in noncommutative phase space and it serves as the quantum condition. With only these inputs, we pull out the entire formalisms of noncommutative quantum mechanics in phase space and in Hilbert space, and elegantly establish the link between classical and quantum formalisms and between Hilbert space and phase space formalisms of noncommutative quantum mechanics. Also, we show that the distribution function in this case possesses 'twisted' Galilean symmetry

  18. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  19. Quantum critical scaling for field-induced quantum phase transition in a periodic Anderson-like model polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.J., E-mail: dinglinjie82@126.com; Zhong, Y.

    2017-07-15

    Highlights: • The quantum critical scaling is investigated by Green’s function theory. • The obtained power-law critical exponents (β, δ and α) obey the critical scaling relation α + β(1 + δ) = 2. • The scaling hypothesis equations are proposed to verify the scaling analysis. - Abstract: The quantum phase transition and thermodynamics of a periodic Anderson-like polymer chain in a magnetic field are investigated by Green’s function theory. The T-h phase diagram is explored, wherein a crossover temperature T{sup ∗} denoting the gapless phase crossover into quantum critical regimes, smoothly connects near the critical fields to the universal linear line T{sup ∗} ∼ (h − h{sub c,s}), and ends at h{sub c,s}, providing a new route to capture quantum critical point (QCP). The quantum critical scaling around QCPs is demonstrated by analyzing magnetization, specific heat and Grüneisen parameter Γ{sub h}, which provide direct access to distill the power-law critical exponents (β, δ and α) obeying the critical scaling relation α + β(1 + δ) = 2, analogous to the quantum spin system. Furthermore, scaling hypothesis equations are proposed to check the scaling analysis, for which all the data collapse onto a single curve or two independent branches for the plot against an appropriate scaling variable, indicating the self-consistency and reliability of the obtained critical exponents.

  20. Phase locking and quantum statistics in a parametrically driven nonlinear resonator

    OpenAIRE

    Hovsepyan, G. H.; Shahinyan, A. R.; Chew, Lock Yue; Kryuchkyan, G. Yu.

    2016-01-01

    We discuss phase-locking phenomena at low-level of quanta for parametrically driven nonlinear Kerr resonator (PDNR) in strong quantum regime. Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the Wigner functions of cavity mode showing two-fold symmetry in phase space and analyse formation of phase-locked states in the regular as well as the quantum chaotic regime.

  1. Deep learning the quantum phase transitions in random two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-01-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed. (author)

  2. Comparison of phase space dynamics of Kopenhagen and causal interpretations of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, Christoph; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2013-07-01

    Recent publications pursue the attempt to reconstruct Bohm trajectories experimentally utilizing the technique of weak measurements. We study the phase space dynamics of a specific double slit setup in terms of the Bohm de-Broglie formulation of quantum mechanics. We want to compare the results of those Bohmian phase space dynamics to the usual quantum mechanical phase space formulation with the Wigner function as a quasi probability density.

  3. Quantum critical phase and Lifshitz transition in an extended periodic Anderson model

    International Nuclear Information System (INIS)

    Laad, M S; Koley, S; Taraphder, A

    2012-01-01

    We study the quantum phase transition in f-electron systems as a quantum Lifshitz transition driven by selective-Mott localization in a realistic extended Anderson lattice model. Using dynamical mean-field theory (DMFT), we find that a quantum critical phase with anomalous ω/T scaling separates a heavy Landau-Fermi liquid from ordered phase(s). This non-Fermi liquid state arises from a lattice orthogonality catastrophe originating from orbital-selective Mott localization. Fermi surface reconstruction occurs via the interplay between and penetration of the Green function zeros to the poles, leading to violation of Luttinger’s theorem in the strange metal. We show how this naturally leads to scale-invariant responses in transport. Thus, our work represents a specific DMFT realization of the hidden-FL and FL* theories, and holds promise for the study of ‘strange’ metal phases in quantum matter. (fast track communication)

  4. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  5. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    International Nuclear Information System (INIS)

    Thapliyal, Kishore; Banerjee, Subhashish; Pathak, Anirban

    2016-01-01

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.

  6. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Kishore, E-mail: tkishore36@yahoo.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India)

    2016-03-15

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.

  7. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.

    Science.gov (United States)

    Wang, Hai Tao; Cho, Sam Young

    2015-01-14

    In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

  8. Force law in material media, hidden momentum and quantum phases

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-01-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  9. Quantum quincunx for walk on circles in phase space with indirect coin flip

    International Nuclear Information System (INIS)

    Xue Peng; Sanders, Barry C

    2008-01-01

    The quincunx, or Galton board, has a long history as a tool for demonstrating and investigating random walk processes, but a quantum quincunx (QQ) for demonstrating a coined quantum walk (QW) is yet to be realized experimentally. We propose a variant of the QQ in cavity quantum electrodynamics, designed to eliminate the onerous requirement of directly flipping the coin. Instead, we propose driving the cavity in such a way that cavity field displacements are minimized and the coin is effectively flipped via this indirect process. An effect of this indirect flipping is that the walker's location is no longer confined to a single circle in the planar phase space, but we show that the phase distribution nonetheless shows quadratic enhancement of phase diffusion for the quantum versus classical walk despite this small complication. Thus our scheme leads to coined QW behaviour in cavity quantum electrodynamics without the need to flip the coin directly

  10. Young Investigator Program: Modular Paradigm for Scalable Quantum Information

    Science.gov (United States)

    2016-03-04

    actuator When both direct driving and a quantum controller are available, one can take advantage of both to achieve faster driving of the qubit. In...pointing to advantages to be found in particular geometries for larger quantum information architectures. • We investigated the effect of dephasing and...Montangero, T. Calarco, F. Nori, and M. B. Plenio, “Scal- able quantum computation via local control of only two qubits,” Phys. Rev. A, vol. 81, no. 4, p

  11. Quantum phase transitions in matrix product states of one-dimensional spin-1 chains

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2014-01-01

    We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement. (author)

  12. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  13. Quantum Phase Shift of a Moving Dipole under a Magnetic Field at a Distance

    Science.gov (United States)

    Lee, Kang-Ho; Kim, Young-Wan; Kang, Kicheon

    2018-03-01

    We predict a quantum phase shift of a moving electric dipole in the presence of an external magnetic field at a distance. On the basis of the Lorentz-covariant field interaction approach, we show that a phase shift appears in the internal dipole state under the condition that the dipole is moving in the field-free region, which is distinct from the topological He-McKellar-Wilkens phase generated by a direct overlap of the dipole and the field. We discuss the experimental feasibility of detecting this phase with atomic interferometry and argue that detection of this phase will resolve the question of the locality in quantum electromagnetic interaction.

  14. Adding control to arbitrary unknown quantum operations

    Science.gov (United States)

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  15. Adiabatic evolution, quantum phases, and Landau-Zener transitions in strong radiation fields

    International Nuclear Information System (INIS)

    Breuer, H.P.; Dietz, K.; Holthaus, M.

    1990-07-01

    We develop a method that allows the investigation of adiabatic evolution in periodically driven quantum systems. It is shown how Berry's geometrical phase emerges in quantum optics. We analyse microwave experiments performed on Rydberg atoms and suggest a new, non-perturbative mechanism to produce excited atomic states. (orig.)

  16. Observing a scale anomaly and a universal quantum phase transition in graphene.

    Science.gov (United States)

    Ovdat, O; Mao, Jinhai; Jiang, Yuhang; Andrei, E Y; Akkermans, E

    2017-09-11

    One of the most interesting predictions resulting from quantum physics, is the violation of classical symmetries, collectively referred to as anomalies. A remarkable class of anomalies occurs when the continuous scale symmetry of a scale-free quantum system is broken into a discrete scale symmetry for a critical value of a control parameter. This is an example of a (zero temperature) quantum phase transition. Such an anomaly takes place for the quantum inverse square potential known to describe 'Efimov physics'. Broken continuous scale symmetry into discrete scale symmetry also appears for a charged and massless Dirac fermion in an attractive 1/r Coulomb potential. The purpose of this article is to demonstrate the universality of this quantum phase transition and to present convincing experimental evidence of its existence for a charged and massless fermion in an attractive Coulomb potential as realized in graphene.When the continuous scale symmetry of a quantum system is broken, anomalies occur which may lead to quantum phase transitions. Here, the authors provide evidence for such a quantum phase transition in the attractive Coulomb potential of vacancies in graphene, and further envision its universality for diverse physical systems.

  17. Perturbation theory of a superconducting 0−π impurity quantum phase transition

    Czech Academy of Sciences Publication Activity Database

    Žonda, M.; Pokorný, Vladislav; Janiš, Václav; Novotný, T.

    2015-01-01

    Roč. 5, Mar (2015), s. 8821 ISSN 2045-2322 R&D Projects: GA ČR GCP204/11/J042 Institutional support: RVO:68378271 Keywords : quantum dot * superconductivity * Josephson current * quantum phase transition * perturbation expansion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.228, year: 2015

  18. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    Science.gov (United States)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  19. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J. N.; Adam, A. J. L.; Kašalynas, I.; Gao, J. R.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ˜2.7THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current. Phase

  20. Computing prime factors with a Josephson phase qubit quantum processor

    Science.gov (United States)

    Lucero, Erik; Barends, R.; Chen, Y.; Kelly, J.; Mariantoni, M.; Megrant, A.; O'Malley, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Yin, Y.; Cleland, A. N.; Martinis, John M.

    2012-10-01

    A quantum processor can be used to exploit quantum mechanics to find the prime factors of composite numbers. Compiled versions of Shor's algorithm and Gauss sum factorizations have been demonstrated on ensemble quantum systems, photonic systems and trapped ions. Although proposed, these algorithms have yet to be shown using solid-state quantum bits. Using a number of recent qubit control and hardware advances, here we demonstrate a nine-quantum-element solid-state quantum processor and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produce coherent interactions between five qubits and verify bi- and tripartite entanglement through quantum state tomography. In the final experiment, we run a three-qubit compiled version of Shor's algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.

  1. Relation between quantum phase transitions and classical instability points in the pairing model

    International Nuclear Information System (INIS)

    Reis, Mauricio; Terra Cunha, M.O.; Oliveira, Adelcio C.; Nemes, M.C.

    2005-01-01

    A quantum phase transition, characterized by an accumulation of energy levels in the espectrum of the model, is associated with a qualitative change in the corresponding classical dynamic obtained upon generalized coherent states of angular momentum

  2. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address

  3. Recent advances in exciton-based quantum information processing in quantum dot nanostructures

    International Nuclear Information System (INIS)

    Krenner, Hubert J; Stufler, Stefan; Sabathil, Matthias; Clark, Emily C; Ester, Patrick; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Zrenner, Artur

    2005-01-01

    Recent experimental developments in the field of semiconductor quantum dot (QD) spectroscopy are discussed. Firstly, we report about single QD exciton two-level systems and their coherent properties in terms of single-qubit manipulations. In the second part, we report on coherent quantum coupling in a prototype 'two-qubit' system consisting of a vertically stacked pair of QDs. The interaction can be tuned in such QD molecule devices using an applied voltage as external parameter

  4. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    Institute of Scientific and Technical Information of China (English)

    GAO Ting

    2004-01-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability.

  5. On the epistemic view of quantum states

    International Nuclear Information System (INIS)

    Skotiniotis, Michael; Roy, Aidan; Sanders, Barry C.

    2008-01-01

    We investigate the strengths and limitations of the Spekkens toy model, which is a local hidden variable model that replicates many important properties of quantum dynamics. First, we present a set of five axioms that fully encapsulate Spekkens' toy model. We then test whether these axioms can be extended to capture more quantum phenomena by allowing operations on epistemic as well as ontic states. We discover that the resulting group of operations is isomorphic to the projective extended Clifford group for two qubits. This larger group of operations results in a physically unreasonable model; consequently, we claim that a relaxed definition of valid operations in Spekkens' toy model cannot produce an equivalence with the Clifford group for two qubits. However, the new operations do serve as tests for correlation in a two toy bit model, analogous to the well known Horodecki criterion for the separability of quantum states

  6. Memory cost of quantum contextuality

    International Nuclear Information System (INIS)

    Kleinmann, Matthias; Gühne, Otfried; Portillo, José R; Larsson, Jan-Åke; Cabello, Adán

    2011-01-01

    The simulation of quantum effects requires certain classical resources, and quantifying them is an important step to characterize the difference between quantum and classical physics. For a simulation of the phenomenon of state-independent quantum contextuality, we show that the minimum amount of memory used by the simulation is the critical resource. We derive optimal simulation strategies for important cases and prove that reproducing the results of sequential measurements on a two-qubit system requires more memory than the information-carrying capacity of the system. (paper)

  7. Master Lovas-Andai and equivalent formulas verifying the 8/33 two-qubit Hilbert-Schmidt separability probability and companion rational-valued conjectures

    Science.gov (United States)

    Slater, Paul B.

    2018-04-01

    We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of

  8. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    Science.gov (United States)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  9. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  10. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  11. Decoherence in a dynamical quantum phase transition of the transverse Ising chain

    International Nuclear Information System (INIS)

    Mostame, Sarah; Schaller, Gernot; Schuetzhold, Ralf

    2007-01-01

    For the prototypical example of the Ising chain in a transverse field, we study the impact of decoherence on the sweep through a second-order quantum phase transition. Apart from the advance in the general understanding of the dynamics of quantum phase transitions, these findings are relevant for adiabatic quantum algorithms due to the similarities between them. It turns out that (in contrast to first-order transitions studied previously) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins or qubits), which might limit the scalability of the system

  12. Analysis of the interplay of quantum phases and nonlinearity applied to dimers with anharmonic interactions

    International Nuclear Information System (INIS)

    Raghavan, S.

    1997-06-01

    We extend our analysis of the effects of the interplay of quantum phases and nonlinearity to address saturation effects in small quantum systems. We find that initial phases dramatically control the dependence of self-trapping on initial asymmetry of quasiparticle population and can compete or act with nonlinearity as well as saturation effects. We find that there is a minimum finite saturation value in order to obtain self-trapping that crucially depends on the initial quasiparticle phases and present a detailed phase-diagram in terms of the control parameters of the system: nonlinearity and saturation. (author). 14 refs, 3 figs

  13. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    Science.gov (United States)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  14. High Efficiency Quantum Well Waveguide Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  15. Ge Quantum Dot Infrared Imaging Camera, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  16. Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence

    International Nuclear Information System (INIS)

    Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.

    2003-01-01

    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity

  17. Quantum phase-space analysis of the pendular cavity

    International Nuclear Information System (INIS)

    Olsen, M.K.; Melo, A.B.; Dechoum, K.; Khoury, A.Z.

    2004-01-01

    We perform a quantum-mechanical analysis of the pendular cavity, using the positive-P representation, showing that the quantum state of the moving mirror, a macroscopic object, has noticeable effects on the dynamics. This system has previously been proposed as a candidate for the quantum-limited measurement of small displacements of the mirror due to radiation pressure, for the production of states with entanglement between the mirror and the field, and even for superposition states of the mirror. However, when we treat the oscillating mirror quantum mechanically, we find that it always oscillates, has no stationary steady state, and exhibits uncertainties in position and momentum which are typically larger than the mean values. This means that previous linearized fluctuation analyses which have been used to predict these highly quantum states are of limited use. We find that the achievable accuracy in measurement is far worse than the standard quantum limit due to thermal noise, which, for typical experimental parameters, is overwhelming even at 2 mK

  18. Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2014-03-01

    Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  19. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    International Nuclear Information System (INIS)

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-01-01

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection

  20. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  1. Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal

    Science.gov (United States)

    Li, Xin; Wang, Jing-Rong; Liu, Guo-Zhu

    2018-05-01

    When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the fermion spectral function and specific heat.

  2. Energy localization in maximally entangled two- and three-qubit phase space

    International Nuclear Information System (INIS)

    Pashaev, Oktay K; Gurkan, Zeynep N

    2012-01-01

    Motivated by the Möbius transformation for symmetric points under the generalized circle in the complex plane, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. In terms of these states, we construct the maximally entangled complete set of two-qubit coherent states, which in the limiting cases reduces to the Bell basis. A specific property of our symmetric coherent states is that they never become unentangled for any value of ψ from the complex plane. Entanglement quantifications of our states are given by the reduced density matrix and the concurrence determinant, and it is shown that our basis is maximally entangled. Universal one- and two-qubit gates in these new coherent state basis are calculated. As an application, we find the Q symbol of the XY Z model Hamiltonian operator H as an average energy function in maximally entangled two- and three-qubit phase space. It shows regular finite-energy localized structure with specific local extremum points. The concurrence and fidelity of quantum evolution with dimerization of double periodic patterns are given. (paper)

  3. Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy

    Science.gov (United States)

    Ren, Jie; Wang, Yimin; You, Wen-Long

    2018-04-01

    We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 X X Z chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical points of quantum phase transitions. Results drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy Δ and the rhombic single-ion anisotropy E .

  4. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J.N.; Adam, A.J.L.; Kašalynas, I.; Gao, J.R.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ? 2.7?THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8?GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current.

  5. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  6. Manifestations of classical phase space structures in quantum mechanics

    International Nuclear Information System (INIS)

    Bohigas, O.; Ullmo, D.; Tomsovic, S.; Paris-11 Univ., 91 - Orsay

    1992-11-01

    Using two coupled quartic oscillators for illustration, the quantum mechanics of simple systems whose classical analogues have varying degrees of non-integrability is investigated. By taking advantage of discrete symmetries and dynamical quasidegeneracies it is shown that Percival's semiclassical classification scheme, i.e. eigenstates may be separated into a regular or an irregular group, basically works. Some observations of intermediate status states are made. Generalized ensembles are constructed which apply equally well to both spectral and eigenstate properties. They typically show non-universal, but nevertheless characteristic level fluctuations. In addition, they predict 'semiclassical localization' of eigenfunctions and 'quantum suppression of chaos' which are quantitatively borne out in the quantum systems. (author) 101 refs.; 27 figs.; 6 tabs

  7. Decoy state method for quantum cryptography based on phase coding into faint laser pulses

    Science.gov (United States)

    Kulik, S. P.; Molotkov, S. N.

    2017-12-01

    We discuss the photon number splitting attack (PNS) in systems of quantum cryptography with phase coding. It is shown that this attack, as well as the structural equations for the PNS attack for phase encoding, differs physically from the analogous attack applied to the polarization coding. As far as we know, in practice, in all works to date processing of experimental data has been done for phase coding, but using formulas for polarization coding. This can lead to inadequate results for the length of the secret key. These calculations are important for the correct interpretation of the results, especially if it concerns the criterion of secrecy in quantum cryptography.

  8. Deterministic quantum controlled-PHASE gates based on non-Markovian environments

    Science.gov (United States)

    Zhang, Rui; Chen, Tian; Wang, Xiang-Bin

    2017-12-01

    We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.

  9. Evidence of a fractional quantum Hall nematic phase in a microscopic model

    Science.gov (United States)

    Regnault, N.; Maciejko, J.; Kivelson, S. A.; Sondhi, S. L.

    2017-07-01

    At small momenta, the Girvin-MacDonald-Platzman (GMP) mode in the fractional quantum Hall (FQH) effect can be identified with gapped nematic fluctuations in the isotropic FQH liquid. This correspondence would be exact as the GMP mode softens upon approach to the putative point of a quantum phase transition to a FQH nematic. Motivated by these considerations as well as by suggestive evidence of an FQH nematic in tilted field experiments, we have sought evidence of such a nematic FQHE in a microscopic model of interacting electrons in the lowest Landau level at filling factor 1/3. Using a family of anisotropic Laughlin states as trial wave functions, we find a continuous quantum phase transition between the isotropic Laughlin liquid and the FQH nematic. Results of numerical exact diagonalization also suggest that rotational symmetry is spontaneously broken, and that the phase diagram of the model contains both a nematic and a stripe phase.

  10. A scheme of measurement of quantum-vacuum geometric phases in a noncoplanar fibre system

    International Nuclear Information System (INIS)

    Shen Jianqi

    2004-01-01

    We study the quantum-vacuum geometric phases resulting from the vacuum fluctuation of photon fields in a Tomita-Chiao-Wu noncoplanar curved fibre system, and suggest a scheme to test for the potential existence of such a vacuum effect. Since the signs of the quantum-vacuum geometric phases of left- and right-handed (LRH) circularly polarized light are opposite, the sum of the geometric phases at the vacuum level is necessarily zero in the fibre experiments performed previously by other authors. By using the present approach where a fibre made of gyroelectric media is employed, the quantum-vacuum geometric phases of LRH light cannot be exactly cancelled, and it may therefore be possible to test this experimentally. (letter to the editor)

  11. Event-phase-space structure: an alternative to quantum logic

    International Nuclear Information System (INIS)

    Guz, W.

    1980-01-01

    The main aim of this paper is to examine two new possibilities in the axiomatic foundations of quantum mechanics: first, the possibility of introducing a non-symmetric transition probability between pure states, and second, showing that the concept of orthocomplementation in the logic of events is unnecessary and of secondary importance. Presented here is an axiomatic scheme, which does not involve the concept of orthocomplementation and yet has all the advantages of the well-known quantum logic axiomatics, because the generalised logic of events admits an extension, which is a complete orthocomplemented orthomodular lattice with the covering law holding in it. (author)

  12. Demonstration of blind quantum computing.

    Science.gov (United States)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  13. Evidence of quantum phase transition in real-space vacuum entanglement of higher derivative scalar quantum field theories.

    Science.gov (United States)

    Kumar, S Santhosh; Shankaranarayanan, S

    2017-11-17

    In a bipartite set-up, the vacuum state of a free Bosonic scalar field is entangled in real space and satisfies the area-law- entanglement entropy scales linearly with area of the boundary between the two partitions. In this work, we show that the area law is violated in two spatial dimensional model Hamiltonian having dynamical critical exponent z = 3. The model physically corresponds to next-to-next-to-next nearest neighbour coupling terms on a lattice. The result reported here is the first of its kind of violation of area law in Bosonic systems in higher dimensions and signals the evidence of a quantum phase transition. We provide evidence for quantum phase transition both numerically and analytically using quantum Information tools like entanglement spectra, quantum fidelity, and gap in the energy spectra. We identify the cause for this transition due to the accumulation of large number of angular zero modes around the critical point which catalyses the change in the ground state wave function due to the next-to-next-to-next nearest neighbor coupling. Lastly, using Hubbard-Stratanovich transformation, we show that the effective Bosonic Hamiltonian can be obtained from an interacting fermionic theory and provide possible implications for condensed matter systems.

  14. States in the Hilbert space formulation and in the phase space formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Tosiek, J.; Brzykcy, P.

    2013-01-01

    We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type. -- Highlights: ► Methods of testing whether a given matrix represents a quantum state. ► The Stratonovich–Weyl correspondence on an arbitrary symplectic manifold. ► Criteria for checking whether a function on a symplectic space is a Wigner function

  15. Geometric measure of quantum discord and total quantum correlations in an N-partite quantum state

    International Nuclear Information System (INIS)

    Hassan, Ali Saif M; Joag, Pramod S

    2012-01-01

    Quantum discord, as introduced by Ollivier and Zurek (2001 Phys. Rev. Lett. 88 017901), is a measure of the discrepancy between quantum versions of two classically equivalent expressions for mutual information and is found to be useful in quantification and application of quantum correlations in mixed states. It is viewed as a key resource present in certain quantum communication tasks and quantum computational models without containing much entanglement. An early step toward the quantification of quantum discord in a quantum state was by Dakic et al (2010 Phys. Rev. Lett. 105 190502) who introduced a geometric measure of quantum discord and derived an explicit formula for any two-qubit state. Recently, Luo and Fu (2010 Phys. Rev. A 82 034302) introduced a generic form of the geometric measure of quantum discord for a bipartite quantum state. We extend these results and find generic forms of the geometric measure of quantum discord and total quantum correlations in a general N-partite quantum state. Further, we obtain computable exact formulas for the geometric measure of quantum discord and total quantum correlations in an N-qubit quantum state. The exact formulas for the N-qubit quantum state can be used to get experimental estimates of the quantum discord and the total quantum correlation. (paper)

  16. Compact and highly stable quantum dots through optimized aqueous phase transfer

    Science.gov (United States)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  17. 0 - π Quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy

    Science.gov (United States)

    Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.

    2018-05-01

    In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.

  18. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  19. Quantum and classical mechanics in the phase space representation

    International Nuclear Information System (INIS)

    Shirokov, Yu.M.

    1979-01-01

    The theory of the hamiltonian mechanical systems has been formulated in terms of only such physical and mathematical concepts which are meaningful in both mechanics. For instance the observables in both mechanics are represented as c-number functions of coordinates and momenta. The operations of the usual multiplication of observables as well as Poisson bracket (also treated as a sort of multiplication) are singled out as separate objects which can possess their own structure including h-dependence. This leads to the conclusion that the only primary distinction between classical and quantum mechanics is reduced to the distinction in the form of the algebraic identity for the multiplication operations. All other distinctions are proved to be of the secondary origin. The formalism developed in the paper is especially useful for quantizations and for the transitions (including partial ones) to the classical limits. The transitions in both directions are transparent and accessible for analysis for any quantity at any step of calculations. The unified quantum-classical scattering theory is constructed. The integral quantum Lippman-Schwinder type equation is derived where the free solution term is replaced by the solution of the corresponding classical problem. The iteration of this equation gives the quantum corrections to the classical solution

  20. Broken dynamical symmetries in quantum mechanics and phase transition phenomena

    International Nuclear Information System (INIS)

    Guenther, N.J.

    1979-12-01

    This thesis describes applications of dynamical symmetries to problems in quantum mechanics and many-body physics where the latter is formulated as a Euclidean scalar field theory in d-space dimensions. By invoking the concept of a dynamical symmetry group a unified understanding of apparently disparate results is achieved. (author)

  1. Novel interference effects and a new quantum phase in mesoscopic ...

    Indian Academy of Sciences (India)

    Mesoscopic systems have provided an opportunity to study quantum effects beyond the ... tance [2], normal electron persistent currents [3], non-local current and voltage relations .... If both Б½ and Б¾ are positive or flow in the same direction of the potential drop then the ..... Fermi distribution function ¼(¯) = (1 + exp[(¯ - ) М]).

  2. Characterization of the Quantized Hall Insulator Phase in the Quantum Critical Regime

    OpenAIRE

    Song, Juntao; Prodan, Emil

    2013-01-01

    The conductivity $\\sigma$ and resistivity $\\rho$ tensors of the disordered Hofstadter model are mapped as functions of Fermi energy $E_F$ and temperature $T$ in the quantum critical regime of the plateau-insulator transition (PIT). The finite-size errors are eliminated by using the non-commutative Kubo-formula. The results reproduce all the key experimental characteristics of this transition in Integer Quantum Hall (IQHE) systems. In particular, the Quantized Hall Insulator (QHI) phase is det...

  3. Q-learning-based adjustable fixed-phase quantum Grover search algorithm

    International Nuclear Information System (INIS)

    Guo Ying; Shi Wensha; Wang Yijun; Hu, Jiankun

    2017-01-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one. (author)

  4. On a phase space quantum description of the spherical 2-brane

    International Nuclear Information System (INIS)

    Cordero, R; Turrubiates, F J; Vera, J C

    2014-01-01

    The quantum properties of the two-dimensional relativistic spherical membrane in phase space are analyzed using the Wigner function. Specifically, the true vacuum and rigid bubble nucleation cases are treated. Inspired by quantum cosmology, the Hartle–Hawking, Linde and Vilenkin boundary conditions are employed to calculate the bubble wave functions and their corresponding Wigner functions. Furthermore, the asymptotic behavior of the wave function using three different methods is explored and the Wigner functions are calculated numerically. Some aspects of the semiclassical properties for each boundary condition and their possible implications for quantum cosmology are discussed. (papers)

  5. Backwards-induction outcome in a quantum game

    International Nuclear Information System (INIS)

    Iqbal, A.; Toor, A.H.

    2002-01-01

    In economics, duopoly is a market dominated by two firms large enough to influence the market price. Stackelberg presented a dynamic form of duopoly that is also called the 'leader-follower' model. We give a quantum perspective on the Stackelberg duopoly that gives a backwards-induction outcome same as the Nash equilibrium in the static form of duopoly also known as the Cournot's duopoly. We find the two-qubit quantum pure states required for this purpose

  6. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    Science.gov (United States)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  7. On the role of complex phases in the quantum statistics of weak measurements

    International Nuclear Information System (INIS)

    Hofmann, Holger F

    2011-01-01

    Weak measurements carried out between quantum state preparation and post-selection result in complex values for self-adjoint operators, corresponding to complex conditional probabilities for the projections on specific eigenstates. In this paper it is shown that the complex phases of these weak conditional probabilities describe the dynamic response of the system to unitary transformations. Quantum mechanics thus unifies the statistical overlap of different states with the dynamical structure of transformations between these states. Specifically, it is possible to identify the phase of weak conditional probabilities directly with the action of a unitary transform that maximizes the overlap of initial and final states. This action provides a quantitative measure of how much quantum correlations can diverge from the deterministic relations between physical properties expected from classical physics or hidden variable theories. In terms of quantum information, the phases of weak conditional probabilities thus represent the logical tension between sets of three quantum states that is at the heart of quantum paradoxes. (paper)

  8. Quantum phase transition of Bose-Einstein condensates on a nonlinear ring lattice

    International Nuclear Information System (INIS)

    Zhou Zhengwei; Zhang Shaoliang; Zhou Xiangfa; Guo Guangcan; Zhou Xingxiang; Pu Han

    2011-01-01

    We study the phase transitions in a one-dimensional Bose-Einstein condensate on a ring whose atomic scattering length is modulated periodically along the ring. By using a modified Bogoliubov method to treat such a nonlinear lattice in the mean-field approximation, we find that the phase transitions are of different orders when the modulation period is 2 and greater than 2. We further perform a full quantum mechanical treatment based on the time-evolving block decimation algorithm which confirms the mean-field results and reveals interesting quantum behavior of the system. Our studies yield important knowledge of competing mechanisms behind the phase transitions and the quantum nature of this system.

  9. Nonclassical disordered phase in the strong quantum limit of frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Ceccatto, H.A.; Gazza, C.J.; Trumper, A.E.

    1992-07-01

    The Schwinger boson approach to quantum helimagnets is discussed. It is shown that in order to get quantitative agreement with exact results on finite lattices, parity-breaking pairing of bosons must be allowed. The so-called J 1 - J 2 - J 3 model is studied, particularly on the special line J 2 = 2J 3 . A quantum disordered phase is found between the Neel and spiral phases, though notably only in the strong quantum limit S = 1/2, and for the third-neighbor coupling J 3 ≥ 0.038 J 1 . For spins S≥1 the spiral phase goes continuously to an antiferromagnetic order. (author). 19 refs, 3 figs

  10. Phases, quantum interferences and effective vector meson masses in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Soyeur, M.

    1996-12-31

    We discuss the prospects for observing the mass of {rho}- and {omega}-mesons around nuclear matter density by studying their coherent photoproduction in nuclear targets and subsequent in-medium decay into e{sup +}e{sup -}pairs. The quantum interference of {rho} and {omega}-mesons in the e{sup +}e{sup -}channel and the interference between Bethe-Heitler pairs and dielectrons from vector meson decays are of particular interest. (author). 21 refs.

  11. Quantum revivals, geometric phases and circle map recurrences

    International Nuclear Information System (INIS)

    Seshadri, S.; Lakshmibala, S.; Balakrishnan, V.

    1999-01-01

    Revivals of the coherent states of a deformed, adiabatically and cyclically varying oscillator Hamiltonian are examined. The revival time distribution is exactly that of Poincare recurrences for a rotation map: only three distinct revival times can occur, with specified weights. A link is thus established between quantum revivals and recurrences in a coarse-grained discrete-time dynamical system. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Quantum Riemannian geometry of phase space and nonassociativity

    Directory of Open Access Journals (Sweden)

    Beggs Edwin J.

    2017-04-01

    Full Text Available Noncommutative or ‘quantum’ differential geometry has emerged in recent years as a process for quantizing not only a classical space into a noncommutative algebra (as familiar in quantum mechanics but also differential forms, bundles and Riemannian structures at this level. The data for the algebra quantisation is a classical Poisson bracket while the data for quantum differential forms is a Poisson-compatible connection. We give an introduction to our recent result whereby further classical data such as classical bundles, metrics etc. all become quantised in a canonical ‘functorial’ way at least to 1st order in deformation theory. The theory imposes compatibility conditions between the classical Riemannian and Poisson structures as well as new physics such as typical nonassociativity of the differential structure at 2nd order. We develop in detail the case of ℂℙn where the commutation relations have the canonical form [wi, w̄j] = iλδij similar to the proposal of Penrose for quantum twistor space. Our work provides a canonical but ultimately nonassociative differential calculus on this algebra and quantises the metric and Levi-Civita connection at lowest order in λ.

  13. The phase of an oscillator in quantum theory. What is it 'in reality'?

    International Nuclear Information System (INIS)

    Vorontsov, Yurii I

    2002-01-01

    An analysis of the current theory of the quantum oscillator phase is presented. Predictions using existing approaches to the phase problem differ not only quantitatively but also qualitatively. The question in the title has not yet been given a generally accepted answer. However, it is logical to argue that all the theoretically predicted properties of the phase are physically meaningful if appropriate measurements are possible. Current phase measurement methods either involve the simultaneous (approximate) measurement of the amplitude and the phase or rely on the simultaneous measurement of quadrature amplitudes. (reviews of topical problems)

  14. The phase of an oscillator in quantum theory. What is in reality?

    CERN Document Server

    Vorontsov, Y I

    2002-01-01

    An analysis of the current theory of the quantum oscillator phase is presented. Predictions using existing approaches to the phase problem differ not only quantitatively but also qualitatively. The question in the title has not yet been given a generally accepted answer. However, it is logical to argue that all the theoretically predicted properties of the phase are physically meaningful if appropriate measurements are possible. Current phase measurement methods either involve the simultaneous (approximate) measurement of the amplitude and the phase or rely on the simultaneous measurement of quadrature amplitudes

  15. Quantum Logic Networks for Probabilistic Teleportation of an Arbitrary Three-Particle State

    Institute of Scientific and Technical Information of China (English)

    QIAN Xue-Min; FANG Jian-Xing; ZHU Shi-Qun; XI Yong-Jun

    2005-01-01

    The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.

  16. Quantum phase diagram of the integrable px+ipy fermionic superfluid

    DEFF Research Database (Denmark)

    Rombouts, Stefan; Dukelsky, Jorge; Ortiz, Gerardo

    2010-01-01

    transition, separating a strong-pairing from a weak-pairing phase. The mean-field solution allows to connect these results to other models with px+ipy pairing order. We define an experimentally accessible characteristic length scale, associated with the size of the Cooper pairs, that diverges......We determine the zero-temperature quantum phase diagram of a px+ipy pairing model based on the exactly solvable hyperbolic Richardson-Gaudin model. We present analytical and large-scale numerical results for this model. In the continuum limit, the exact solution exhibits a third-order quantum phase...... at the transition point, indicating that the phase transition is of a confinement-deconfinement type without local order parameter. We propose an experimental measurement to detect the transition. We show that this phase transition is not limited to the px+ipy pairing model but can be found in any representation...

  17. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Departments of Physics and Astronomy, University College London, Thomas Young Center, London Centre for Nanotechnology, London WC1E 6BT (United Kingdom); Cohen, R. E. [Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015 (United States); Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333 (Germany); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-08-14

    We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  18. Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3

    Science.gov (United States)

    Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2018-05-01

    Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.

  19. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    Science.gov (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  20. Resonant Pump-dump Quantum Control of Solvated Dye Molecules with Phase Jumps

    Science.gov (United States)

    Konar, Arkaprabha; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    Quantum coherent control of two photon and multiphoton excitation processes in atomic and condensed phase systems employing phase jumps has been well studied and understood. Here we demonstrate coherent quantum control of a two photon resonant pump-dump process in a complex solvated dye molecule. Phase jump in the frequency domain via a pulse shaper is employed to coherently enhance the stimulated emission by an order of magnitude when compared to transform limited pulses. Red shifted stimulated emission from successive low energy Stokes shifted excited states leading to narrowband emission are observed upon scanning the pi step across the excitation spectrum. A binary search space routine was also employed to investigate the effects of other types of phase jumps on stimulated emission and to determine the optimum phase that maximizes the emission. Understanding the underlying mechanism of this kind of enhancement will guide us in designing pulse shapes for enhancing stimulated emission, which can be further applied in the field of imaging.

  1. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  2. Effects of systematic phase errors on optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover’s algorithm. (paper)

  3. Phase space and black-hole entropy of higher genus horizons in loop quantum gravity

    International Nuclear Information System (INIS)

    Kloster, S; Brannlund, J; DeBenedictis, A

    2008-01-01

    In the context of loop quantum gravity, we construct the phase space of isolated horizons with genus greater than 0. Within the loop quantum gravity framework, these horizons are described by genus g surfaces with N punctures and the dimension of the corresponding phase space is calculated including the genus cycles as degrees of freedom. From this, the black-hole entropy can be calculated by counting the microstates which correspond to a black hole of fixed area. We find that the leading term agrees with the A/4 law and that the sub-leading contribution is modified by the genus cycles

  4. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System.

    Science.gov (United States)

    Jurcevic, P; Shen, H; Hauke, P; Maier, C; Brydges, T; Hempel, C; Lanyon, B P; Heyl, M; Blatt, R; Roos, C F

    2017-08-25

    The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

  5. Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System

    Science.gov (United States)

    Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.

    2017-08-01

    The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.

  6. CdZnTe quantum dots study: energy and phase relaxation process

    International Nuclear Information System (INIS)

    Viale, Yannick

    2004-01-01

    We present a study of the electron-hole pair energy and phase relaxation processes in a CdTe/ZnTe heterostructure, in which quantum dots are embedded. CdZnTe quantum wells with a high Zinc concentration, separated by ZnTe barriers, contain islands with a high cadmium concentration. In photoluminescence excitation spectroscopy experiments, we evidence two types of electron hole pair relaxation processes. After being excited in the CdZnTe quantum well, the pairs relax their energy by emitting a cascade of longitudinal optical phonons until they are trapped in the quantum dots. Before their radiative recombination follows an intra-dot relaxation, which is attributed to a lattice polarization mechanism of the quantum dots. It is related to the coupling between the electronic and the vibrational states. Both relaxation mechanisms are reinforced by the strong polar character of the chemical bond in II-VI compounds. Time resolved measurements of transmission variations in a pump-probe configuration allowed us to investigate the population dynamics of the electron-hole pairs during the relaxation process. We observe a relaxation time of about 2 ps for the longitudinal phonon emission cascade in the quantum well before a saturation of the quantum dot transition. We also measured an intra-box relaxation time of 25 ps. The comparison of various cascades allows us to estimate the emission time of a longitudinal optical phonon in the quantum well to be about 100 fs. In four waves mixing experiments, we observe oscillations that we attribute to quantum beats between excitonic and bi-excitonic transitions. The dephasing times that we measure as function of the density of photons shows that excitons are strongly localized in the quantum dots. The excitonic dephasing time is much shorter than the radiative lifetime and is thus controlled by the intra-dot relaxation time. (author) [fr

  7. Quarks-bags phase transition in quantum chromodynamics

    International Nuclear Information System (INIS)

    Gorenshtejn, M.I.

    1981-01-01

    Phase transitions in the quark-gluon plasma are considered at finite temperatures and chemical potentials. A phenomenological account for a complicated structure of the QCD vacuum results in the necessity to use the formalism of isobaric ensembles to describe the system. The phase transition curve separating the regions of the quark-gluon plasma and the hadronic bag phase in the μT plane is calculated [ru

  8. Geodesic paths and topological charges in quantum systems

    Science.gov (United States)

    Grangeiro Souza Barbosa Lima, Tiago Aecio

    This dissertation focuses on one question: how should one drive an experimentally prepared state of a generic quantum system into a different target-state, simultaneously minimizing energy dissipation and maximizing the fidelity between the target and evolved-states? We develop optimal adiabatic driving protocols for general quantum systems, and show that these are geodesic paths. Geometric ideas have always played a fundamental role in the understanding and unification of physical phenomena, and the recent discovery of topological insulators has drawn great interest to topology from the field of condensed matter physics. Here, we discuss the quantum geometric tensor, a mathematical object that encodes geometrical and topological properties of a quantum system. It is related to the fidelity susceptibility (an important quantity regarding quantum phase transitions) and to the Berry curvature, which enables topological characterization through Berry phases. A refined understanding of the interplay between geometry and topology in quantum mechanics is of direct relevance to several emergent technologies, such as quantum computers, quantum cryptography, and quantum sensors. As a demonstration of how powerful geometric and topological ideas can become when combined, we present the results of an experiment that we recently proposed. This experimental work was done at the Google Quantum Lab, where researchers were able to visualize the topological nature of a two-qubit system in sharp detail, a startling contrast with earlier methods. To achieve this feat, the optimal protocols described in this dissertation were used, allowing for a great improvement on the experimental apparatus, without the need for technical engineering advances. Expanding the existing literature on the quantum geometric tensor using notions from differential geometry and topology, we build on the subject nowadays known as quantum geometry. We discuss how slowly changing a parameter of a quantum

  9. Experimental realization of a programmable quantum-state discriminator and a phase-covariant quantum multimeter

    Czech Academy of Sciences Publication Activity Database

    Soubusta, Jan; Černoch, Antonín; Fiurášek, J.; Dušek, M.

    2004-01-01

    Roč. 69, č. 5 (2004), 052321/1-052321/7 ISSN 1050-2947 R&D Projects: GA MŠk LN00A015 Grant - others:CHIC(XX) IST-2001-33578 Keywords : quantum measurement devices * unambiguous state discrimination * positive operator valued measure Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.902, year: 2004

  10. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    Science.gov (United States)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  11. Abnormal screening in the quantum disordered phases of nonlinear σ-models

    International Nuclear Information System (INIS)

    Wen, X.G.; Zee, A.

    1989-01-01

    We study some properties of the quantum disordered phase of nonlinear σ-models, focussing on the quantum numbers of the quasi-particles and possible experimental implications. We find that the quasi-particles in the quantum disordered phase may, in many cases, carry new quantum numbers which do not appear in any finite combination of the fundamental fields. We call this phenomenon abnormal screening. Abnormal screening is shown to appear in (1+1)-dimensional systems. Using a large N mean field approach to the quantum disordered state, we show that abnormal screening may also appear in (1+2)-dimensional nonlinear σ-models. In 1+2 dimensions abnormal screening is closely related to spin-charge separation, which was proposed to occur in the spin liquid state relevant in some theories of high T c superconductivity. We compare the mean field approach with bosonization and other exact results for (1+1)-dimensional systems and find exact agreement for the quantum numbers of the quasi-particles. This suggests that mean field analysis of high T c superconductivity may yield a qualitatively reliable picture. Our result also gives an alternative way of understanding some novel properties of the antiferromagnetic spin chain. We estimate the density and temperature at which deconfinement and abnormal screening occur. Finally, we suggest some experimental signatures for this phenomenon. (orig.)

  12. Critical current anomaly at the topological quantum phase transition in a Majorana Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-28

    Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.

  13. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  14. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    Science.gov (United States)

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  15. From superconductivity near a quantum phase transition to superconducting graphite

    Directory of Open Access Journals (Sweden)

    S. S. Saxena

    2006-09-01

    Full Text Available   The collapse of antiferromagnetic order as a function of some quantum tuning parameter such as carrier density or hydrostatic pressure is often accompanied by a region of superconductivity. The corresponding phenomenon in the potentially simpler case of itinerant-electron ferromagnetism, however, remains more illusive. In this paper we consider the reasons why this may be so and summaries evidence suggesting that the obstacles to observing the phenomenon are apparently overcome in a few metallic ferromagnets. A new twist to the problem presented by the recent discoveries in ferroelectric symmetric systems and new graphite intercalate superconductors will also be discussed.

  16. Phase space dynamics and control of the quantum particles associated to hypergraph states

    Directory of Open Access Journals (Sweden)

    Berec Vesna

    2015-01-01

    Full Text Available As today’s nanotechnology focus becomes primarily oriented toward production and manipulation of materials at the subatomic level, allowing the performance and complexity of interconnects where the device density accepts more than hundreds devices on a single chip, the manipulation of semiconductor nanostructures at the subatomic level sets its prime tasks on preserving and adequate transmission of information encoded in specified (quantum states. The presented study employs the quantum communication protocol based on the hypergraph network model where the numerical solutions of equations of motion of quantum particles are associated to vertices (assembled with device chip, which follow specific controllable paths in the phase space. We address these findings towards ultimate quest for prediction and selective control of quantum particle trajectories. In addition, presented protocols could represent valuable tool for reducing background noise and uncertainty in low-dimensional and operationally meaningful, scalable complex systems.

  17. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    Science.gov (United States)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-09-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  18. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    International Nuclear Information System (INIS)

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-01-01

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  19. Classical and quantum investigations of four-dimensional maps with a mixed phase space

    International Nuclear Information System (INIS)

    Richter, Martin

    2012-01-01

    Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.

  20. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  1. Prospects and applications near ferroelectric quantum phase transitions: a key issues review

    Science.gov (United States)

    Chandra, P.; Lonzarich, G. G.; Rowley, S. E.; Scott, J. F.

    2017-11-01

    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c’s to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

  2. Spin-wave utilization in a quantum computer

    Science.gov (United States)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  3. Wigner's dynamical transition state theory in phase space: classical and quantum

    International Nuclear Information System (INIS)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    2008-01-01

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs the evolution from reactants to products in high dimensional systems. In the classical case this is the standard Poincaré–Birkhoff normal form. In the quantum case we develop a normal form based on the Weyl calculus and an explicit algorithm for computing this quantum normal form. The classical normal form allows us to discover and compute the phase space structures that govern classical reaction dynamics. From this knowledge we are able to provide a direct construction of an energy dependent dividing surface in phase space having the properties that trajectories do not locally 're-cross' the surface and the directional flux across the surface is minimal. Using this, we are able to give a formula for the directional flux through the dividing surface that goes beyond the harmonic approximation. We relate this construction to the flux–flux autocorrelation function which is a standard ingredient in the expression for the reaction rate in the chemistry community. We also give a classical mechanical interpretation of the activated complex as a normally hyperbolic invariant manifold (NHIM), and further describe the structure of the NHIM. The quantum normal form provides us with an efficient algorithm to compute quantum reaction rates and we relate this algorithm to the quantum version of the flux–flux autocorrelation function formalism. The significance of the classical phase space structures for the quantum mechanics of reactions is elucidated by studying the phase space distribution of scattering states. The quantum normal form also provides an efficient way of computing Gamov–Siegert resonances. We relate these resonances to the lifetimes of the quantum activated

  4. Quantum logic networks for probabilistic teleportation

    Institute of Scientific and Technical Information of China (English)

    刘金明; 张永生; 等

    2003-01-01

    By eans of the primitive operations consisting of single-qubit gates.two-qubit controlled-not gates,Von Neuman measurement and classically controlled operations.,we construct efficient quantum logic networks for implementing probabilistic teleportation of a single qubit,a two-particle entangled state,and an N-particle entanglement.Based on the quantum networks,we show that after the partially entangled states are concentrated into maximal entanglement,the above three kinds of probabilistic teleportation are the same as the standard teleportation using the corresponding maximally entangled states as the quantum channels.

  5. Universal dephasing control during quantum computation

    International Nuclear Information System (INIS)

    Gordon, Goren; Kurizki, Gershon

    2007-01-01

    Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage and single- and two-qubit operators. We show that (a) tailoring multifrequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counterintuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity

  6. Quantum entangling power of adiabatically connected Hamiltonians

    International Nuclear Information System (INIS)

    Hamma, Alioscia; Zanardi, Paolo

    2004-01-01

    The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied

  7. Secure quantum private information retrieval using phase-encoded queries

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Lukasz [CERN, 1211 Geneva 23, Switzerland and Poznan Supercomputing and Networking Center, Noskowskiego 12/14, PL-61-704 Poznan (Poland)

    2011-08-15

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  8. Secure quantum private information retrieval using phase-encoded queries

    International Nuclear Information System (INIS)

    Olejnik, Lukasz

    2011-01-01

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  9. On the measurement of time-dependent quantum phases

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.; Klarsfeld, S.; Maric, Z.

    1991-11-01

    We have evaluated the exact (Pancharatnam) phase differences between the final state l ψ(t) > and various initial states for a spin 1/2-particle in a rotating magnetic field B(t). For the initial states l n; B ef (0) >, which are eigenstates of the spin component along the direction of the initial effective field B ef (0), the exact phase has an energy dependent part, and an energy independent part. It is shown that these states l n; B ef (0) > are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we discuss different choices of time-dependent bases and the relationship between the exact phase, the Born-Fock-Schiff phase and Berry's phase. We propose experiments (neutron) to verify separately the exact and the adiabatic evolution laws, as well as to measure the adiabatic phases associated with different choices of time-dependent basis vectors. (author). 37 refs, 5 figs, 1 tab

  10. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  11. Quantum sensing of the phase-space-displacement parameters using a single trapped ion

    Science.gov (United States)

    Ivanov, Peter A.; Vitanov, Nikolay V.

    2018-03-01

    We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.

  12. Quantum phase transition by employing trace distance along with the density matrix renormalization group

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2015-01-01

    We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs

  13. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  14. Mesoscopic effects in quantum phases of ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Carr, L. D.; Schirmer, D. G.; Wall, M. L.; Brown, R. C.; Williams, J. E.; Clark, Charles W.

    2010-01-01

    We present a wide array of quantum measures on numerical solutions of one-dimensional Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite-size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated 'wedding cake' structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von Neumann entropy, generalized entanglement or Q measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical versus grand canonical ensembles and Gutzwiller versus entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.

  15. The Spacetime Memory of Geometric Phases and Quantum Computing

    CERN Document Server

    Binder, B

    2002-01-01

    Spacetime memory is defined with a holonomic approach to information processing, where multi-state stability is introduced by a non-linear phase-locked loop. Geometric phases serve as the carrier of physical information and geometric memory (of orientation) given by a path integral measure of curvature that is periodically refreshed. Regarding the resulting spin-orbit coupling and gauge field, the geometric nature of spacetime memory suggests to assign intrinsic computational properties to the electromagnetic field.

  16. Quantum gates by inverse engineering of a Hamiltonian

    Science.gov (United States)

    Santos, Alan C.

    2018-01-01

    Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.

  17. Study on linear canonical transformation in a framework of a phase space representation of quantum mechanics

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.

    2015-04-01

    We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.

  18. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  19. Hydrogen atom in the phase-space formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Gracia-Bondia, J.M.

    1984-01-01

    Using a coordinate transformation which regularizes the classical Kepler problem, we show that the hydrogen-atom case may be analytically solved via the phase-space formulation of nonrelativistic quantum mechanics. The problem is essentially reduced to that of a four-dimensional oscillator whose treatment in the phase-space formulation is developed. Furthermore, the method allows us to calculate the Green's function for the H atom in a surprisingly simple way

  20. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    International Nuclear Information System (INIS)

    Myhr, Geir Ove

    2010-01-01

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  1. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Myhr, Geir Ove

    2010-11-08

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  2. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  3. Berry phase dependent quantum trajectories of electron-hole pairs in semiconductors under intense terahertz fields

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2013-03-01

    Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  4. Effect of Earth's rotation on the quantum mechanical phase of the neutron

    International Nuclear Information System (INIS)

    Werner, S.A.; Staudenmann, J.; Colella, R.

    1979-01-01

    Using a neutron interferometer of the type first developed by Bonse and Hart for x rays, we have observed the effect of Earth's rotation on the phase of the neutron wave function. This experiment is the quantum mechanical analog of the optical interferometry observations of Michelson, Gale, and Pearson

  5. Wigner's dynamical transition state theory in phase space : classical and quantum

    NARCIS (Netherlands)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs

  6. Quantum phase space points for Wigner functions in finite-dimensional spaces

    OpenAIRE

    Luis Aina, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.

  7. Quantum phase space points for Wigner functions in finite-dimensional spaces

    International Nuclear Information System (INIS)

    Luis, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas

  8. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Paveliev, D.G.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.; Klein, B.; Hesler, J.L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal–metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain

  9. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain

  10. Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard.

    Science.gov (United States)

    Estrecho, E; Gao, T; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Truscott, A G; Ostrovskaya, E A

    2016-11-25

    Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles-exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.

  11. Unusual vortex dynamics in the quantum-liquid phase of a-MoxSi1 ...

    Indian Academy of Sciences (India)

    liquid (QVL) phase has been well-determined in the field–temperature plane, δV (t) origi- ... [19], the field-driven SI transition corresponds to the VG transition from the VG to ... DC current I were measured using a four-terminal method. ..... tions is determined by T/Tc0, for these 'high-Tc' materials the quantum fluctuation.

  12. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  13. Phase holonomy, zero-point energy cancellation and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Iida, Shinji; Kuratsuji, Hiroshi

    1987-01-01

    We show that the zero-point energy of bosons is cancelled out by the phase holonomy which is induced by the adiabatic deformation of a boson system coupled with a fermion. This mechanism results in a supersymmetric quantum mechanics as a special case and presents a possible dynamical origin of supersymmetry. (orig.)

  14. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    Science.gov (United States)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  15. Fiber-optics implementation of an asymmetric phase-covariant quantum cloner

    Czech Academy of Sciences Publication Activity Database

    Bartůšková, L.; Dušek, M.; Černoch, Antonín; Soubusta, Jan; Fiurášek, J.

    2007-01-01

    Roč. 99, č. 12 (2007), 120505/1-120505/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : asymmetric phase-covariant cloner * Mach-Zehnder interferometer * quantum information processing Subject RIV: BH - Optics , Masers, Lasers Impact factor: 6.944, year: 2007

  16. Theory of phase-sensitive measurement of photon-assisted tunneling through a quantum dot

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.

    1998-01-01

    Recent double-slit interference experiments [Schuster et al., Nature (London) 385, 417 (1997)] have demonstrated the possibility of probing the phase of the complex transmission coefficient of a quantum dot via the Aharonov-Bohm effect. We propose an extension of these experiments: an ac voltage ...

  17. Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments

    International Nuclear Information System (INIS)

    Zhang Xiu-Xing; Li Fu-Li

    2011-01-01

    The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments. (general)

  18. Read-only-memory-based quantum computation: Experimental explorations using nuclear magnetic resonance and future prospects

    International Nuclear Information System (INIS)

    Sypher, D.R.; Brereton, I.M.; Wiseman, H.M.; Hollis, B.L.; Travaglione, B.C.

    2002-01-01

    Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less 'magical', and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature 'real-world' problem relating to the lengths of paths in a network

  19. Ultrafast optical control of individual quantum dot spin qubits.

    Science.gov (United States)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  20. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    International Nuclear Information System (INIS)

    Gottwald, Tobias

    2010-01-01

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  1. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  2. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  3. On phase-space representations of quantum mechanics using ...

    Indian Academy of Sciences (India)

    2016-07-16

    Jul 16, 2016 ... (2016) 87: 27 c Indian Academy of Sciences ..... converted to the language of the phase-space, and in .... as Husimi function, a name given in recognition of the work of .... the equations only differ from each other in the sign.

  4. Quantum dynamics via a time propagator in Wigner's phase space

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1995-01-01

    We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown that ...... as a part of the sampling function. ©1995 American Institute of Physics....

  5. Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels

    International Nuclear Information System (INIS)

    Goodenough, K; Elkouss, D; Wehner, S

    2016-01-01

    One of the most sought-after goals in experimental quantum communication is the implementation of a quantum repeater. The performance of quantum repeaters can be assessed by comparing the attained rate with the quantum and private capacity of direct transmission, assisted by unlimited classical two-way communication. However, these quantities are hard to compute, motivating the search for upper bounds. Takeoka, Guha and Wilde found the squashed entanglement of a quantum channel to be an upper bound on both these capacities. In general it is still hard to find the exact value of the squashed entanglement of a quantum channel, but clever sub-optimal squashing channels allow one to upper bound this quantity, and thus also the corresponding capacities. Here, we exploit this idea to obtain bounds for any phase-insensitive Gaussian bosonic channel. This bound allows one to benchmark the implementation of quantum repeaters for a large class of channels used to model communication across fibers. In particular, our bound is applicable to the realistic scenario when there is a restriction on the mean photon number on the input. Furthermore, we show that the squashed entanglement of a channel is convex in the set of channels, and we use a connection between the squashed entanglement of a quantum channel and its entanglement assisted classical capacity. Building on this connection, we obtain the exact squashed entanglement and two-way assisted capacities of the d -dimensional erasure channel and bounds on the amplitude-damping channel and all qubit Pauli channels. In particular, our bound improves on the previous best known squashed entanglement upper bound of the depolarizing channel. (paper)

  6. Implementation schemes in NMR of quantum processors and the Deutsch-Jozsa algorithm by using virtual spin representation

    International Nuclear Information System (INIS)

    Kessel, Alexander R.; Yakovleva, Natalia M.

    2002-01-01

    Schemes of experimental realization of the main two-qubit processors for quantum computers and the Deutsch-Jozsa algorithm are derived in virtual spin representation. The results are applicable for every four quantum states allowing the required properties for quantum processor implementation if for qubit encoding, virtual spin representation is used. A four-dimensional Hilbert space of nuclear spin 3/2 is considered in detail for this aim

  7. Quantum corrections for the phase diagram of systems with competing order

    Science.gov (United States)

    Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.

    2018-06-01

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  8. Quantum corrections for the phase diagram of systems with competing order.

    Science.gov (United States)

    Silva, N L; Continentino, Mucio A; Barci, Daniel G

    2018-06-06

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  9. Quantum phase transitions of light in a dissipative Dicke-Bose-Hubbard model

    Science.gov (United States)

    Wu, Ren-Cun; Tan, Lei; Zhang, Wen-Xuan; Liu, Wu-Ming

    2017-09-01

    The impact that the environment has on the quantum phase transition of light in the Dicke-Bose-Hubbard model is investigated. Based on the quasibosonic approach, mean-field theory, and perturbation theory, the formulation of the Hamiltonian, the eigenenergies, and the superfluid order parameter are obtained analytically. Compared with the ideal cases, the order parameter of the system evolves with time as the photons naturally decay in their environment. When the system starts with the superfluid state, the dissipation makes the photons more likely to localize, and a greater hopping energy of photons is required to restore the long-range phase coherence of the localized state of the system. Furthermore, the Mott lobes depend crucially on the numbers of atoms and photons (which disappear) of each site, and the system tends to be classical with the number of atoms increasing; however, the atomic number is far lower than that expected under ideal circumstances. As there is an inevitable interaction between the coupled-cavity array and its surrounding environment in the actual experiments, the system is intrinsically dissipative. The results obtained here provide a more realistic image for characterizing the dissipative nature of quantum phase transitions in lossy platforms, which will offer valuable insight into quantum simulation of a dissipative system and which are helpful in guiding experimentalists in open quantum systems.

  10. Strange metals and quantum phase transitions from gauge/gravity duality

    Science.gov (United States)

    Liu, Hong

    2011-03-01

    Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.

  11. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity.

    Science.gov (United States)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-30

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

  12. Hacking on decoy-state quantum key distribution system with partial phase randomization

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  13. Hacking on decoy-state quantum key distribution system with partial phase randomization.

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-23

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  14. Quantum phase transition and quench dynamics in the anisotropic Rabi model

    Science.gov (United States)

    Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2017-01-01

    We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.

  15. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    Science.gov (United States)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  16. Quantum chaos and chiral symmetry at the QCD and QED phase transition

    International Nuclear Information System (INIS)

    Bittner, Elmar; Markum, Harald; Pullirsch, Rainer

    2001-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory. As a measure of the fluctuation properties of the eigenvalues, we consider the nearest-neighbor spacing distribution. We find that in all regions of their phase diagrams, compact lattice gauge theories have bulk spectral correlations given by random matrix theory, which is an indication for quantum chaos. In the confinement phase, the low-lying Dirac spectrum of these quantum field theories is well described by random matrix theory, exhibiting universal behavior. Related results for gauge theories with minimal coupling are now discussed also in the chirally symmetric phase

  17. Influence of the Dzyaloshinskii-Moriya exchange interaction on quantum phase interference of spins

    Science.gov (United States)

    Wernsdorfer, Wolfgang; Stamatatos, T. C.; Christou, G.

    2009-03-01

    Magnetization measurements of a Mn12mda wheel single-molecule magnet (SMM) with a spin ground state of S = 7 show resonant tunneling and quantum phase interference, which are established by studying the tunnel rates as a function of a transverse field applied along the hard magnetization axis. We show how the Dzyaloshinskii-Moriya (DM) exchange interaction can affect the tunneling transitions and quantum phase interference of a SMM. Of particular novelty and importance is the phase-shift observed in the tunnel probabilities of some transitions as a function of the DM vector orientation. Such observations are of importance to potential applications of SMMs that hope to take advantage of the tunneling processes that such molecules can undergo. Ref.: W. Wernsdorfer, T.C. Stamatatos, G. Christou, Phys. Rev. Lett., 101, (28 Nov. 2008).

  18. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity

    Science.gov (United States)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-01

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

  19. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    Science.gov (United States)

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  20. Topological phase transitions and quantum Hall effect in the graphene family

    Science.gov (United States)

    Ledwith, P.; Kort-Kamp, W. J. M.; Dalvit, D. A. R.

    2018-04-01

    Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaks which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. This complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.