WorldWideScience

Sample records for two-qubit circuits calls

  1. Exact two-qubit universal quantum circuit

    CERN Document Server

    Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar

    2003-01-01

    We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit gates. Each block in this circuit is given in a closed form solution. We also analyze the efficiency of different entangling gates, and find that exactly half of all the controlled-unitary gates can be used to implement two-qubit operations as efficiently as the commonly used CNOT gate.

  2. Recognizing Small-Circuit Structure in Two-Qubit Operators

    CERN Document Server

    Shende, V V; Markov, I L; Shende, Vivek V.; Bullock, Stephen S.; Markov, Igor L.

    2003-01-01

    This work describes numerical tests which determine whether a two-qubit quantum computation has an atypically simple quantum circuit. Specifically, we describe forumulae, written in terms of matrix coefficients, characterizing operators implementable with exactly zero, one, or two controlled-not gates with all other gates being local unitary. Circuit diagrams are provided in each case. We expect significant impact in physical implementations where controlled-not's are more difficult than one-qubit computations. Our results can be contrasted with those by Zhang et al., Bullock and Markov, Vidal and Dawson, and Shende et al. In these works, small quantum circuits are achieved for arbitrary two-qubit operators, and the latter two prove three controlled-not's suffice. However, unitary operators with the sort of structure described above may not be detected. Our work provides results similar to those by Song and Klappenecker but for a wider range of operators.

  3. On Universal Gate Libraries and Generic Minimal Two-qubit Quantum Circuits

    CERN Document Server

    Shende, V V; Bullock, S S; Shende, Vivek V.; Markov, Igor L.; Bullock, Stephen S.

    2003-01-01

    We show how to implement exactly an arbitrary two-qubit unitary operation in several universal gate libraries using the smallest possible number of gates. To this end, we prove that n-qubit circuits using CNOT and one-qubit gates require at least ceil((4^n - 3n -1)/4) CNOT gates in the worst case. For two-qubit operators, this yields a lower bound of three gates, which we match with an upper bound of three gates. Using quantum circuit identities, we improve an earlier lower bound of 17 elementary gates by Bullock and Markov to 18, and their upper bound of 23 elementary gates to 18. We also improve upon the generic circuit with six CNOT gates by Zhang et al. (our circuit uses three), and that by Vidal and Dawson with 11 basic gates (we use 10). Given the available results, it appears that some universal gate libraries are at a disadvantage, at least in the sense that no construction is known to produce smallest possible circuits.

  4. Symmetric two qubit gates

    CERN Document Server

    Sirsi, Swarnamala; Hegde, Subramanya

    2011-01-01

    Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...

  5. The Veldkamp Space of Two-Qubits

    Directory of Open Access Journals (Sweden)

    Metod Saniga

    2007-06-01

    Full Text Available Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, W(2, it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements - the so-called Veldkamp space of W(2. An intriguing novelty is the recognition of (uni- and tri-centric triads and specific pentads of the Pauli operators in addition to the ''classical'' subsets answering to geometric hyperplanes of W(2.

  6. Minimum construction of two-qubit quantum operations

    CERN Document Server

    Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar

    2003-01-01

    Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. We also demonstrate that for the highly scalable Josephson junction charge qubits, the B gate is also more easily and quickly generated than the CNOT gate for physically feasible parameters.

  7. Two qubits in the Dirac representation

    Science.gov (United States)

    Rajagopal, A. K.; Rendell, R. W.

    2001-08-01

    The Dirac-matrix representation of a general two-qubit system is shown to exhibit quite interesting features. The relativistic symmetries of time reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the Bell states. It is shown that only C does not mix the Bell states whereas all others do. The various logic gates of quantum information theory are also expressed in terms of the Dirac matrices. For example, the NOT gate is related to the product of T and P. A two-qubit density matrix is found to be entangled if it is invariant under C.

  8. Engineering extremal two-qubit entangled states with maximally entangled Gaussian light

    CERN Document Server

    Adesso, G; Illuminati, F; Paternostro, M

    2010-01-01

    We study state engineering induced by bilinear interactions between two remote qubits and light fields prepared in two-mode Gaussian states. The attainable two-qubit states span the entire physically allowed region in the entanglement-vs-global-purity plane. We show that two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. The target two-qubit entanglement is determined quantitatively only by the purities of the two-mode Gaussian resource. Thus, a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control completely the engineering of extremally entangled two-qubit states, which can be realized in realistic scenarios of cavity and circuit quantum electrodynamics.

  9. Quantum discord for two-qubit X-states

    CERN Document Server

    Ali, Mazhar; Alber, Gernot

    2010-01-01

    Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. In general, this correlation is different from entanglement, and quantum discord may be nonzero even for certain separable states. Even in the simple case of bipartite quantum systems, this different kind of quantum correlation has interesting and significant applications in quantum information processing. So far, quantum discord has been calculated explicitly only for a rather limited set of two-qubit quantum states and expressions for more general quantum states are not known. In this paper, we derive explicit expressions for quantum discord for a larger class of two-qubit states, namely, a seven-parameter family of so called X-states that have been of interest in a variety of contexts in the field. We also study the relation between quantum discord, classical correlation, and entanglement for a number of two-qubit states to demonstrate that they ar...

  10. Robust two-qubit quantum registers.

    Science.gov (United States)

    Grigorenko, I A; Khveshchenko, D V

    2005-02-04

    We carry out a systematic analysis of a pair of coupled qubits, each of which is subject to its own dissipative environment, and argue that a combination of the interqubit couplings which provides for the lowest possible decoherence rates corresponds to the incidence of a double spectral degeneracy in the two-qubit system. We support this general argument by the results of an evolutionary genetic algorithm which can also be used for optimizing time-dependent processes (gates) and their sequences that implement various quantum computing protocols.

  11. Two Qubits in the Dirac Representation

    CERN Document Server

    Rajagopal, A K

    2000-01-01

    A general two qubit system expressed in terms of the complete set of unit and fifteen traceless, Hermitian Dirac matrices, is shown to exhibit novel features of this system. The well-known physical interpretations associated with the relativistic Dirac equation involving the symmetry operations of time-reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the basic Bell states. The transformation properties of the Bell basis states under these symmetry operations also reveal that C is the only operator that does not mix the Bell states whereas all others do. In a similar fashion, expressing the various logic gates introduced in the subject of quantum computers in terms of the Dirac matrices shows for example, that the NOT gate is related to the product of time-reversal and parity operators.

  12. Projective Ring Line Encompassing Two-Qubits

    CERN Document Server

    Saniga, M; Pracna, P; Planat, Michel; Pracna, Petr; Saniga, Metod

    2006-01-01

    The projective line over the (non-commutative) ring of two-by-two matrices with coefficients in GF(2) is found to fully accommodate the algebra of 15 operators -- generalized Pauli matrices -- characterizing two-qubit systems. The relevant sub-configuration consits of 15 points each of which is either simultaneusly distant or simultaneously neighbour to (any) two given distant points of the line. The operators can be identified with the points in such a one-to-one manner that their commutation relations are exactly reproduced by the underlying geometry of the points, with the ring geometrical notions of neighbour/distant answering, respectively, to the operational ones of commuting/non-commuting. This finding opens up rather unexpected vistas for an algebraic geometrical modelling of finite-dimensional quantum systems and gives their numerous applications a wholy new perspective.

  13. Optimal two qubit gate for generation of random bipartite entanglement

    CERN Document Server

    Znidaric, M

    2007-01-01

    We study protocols for generation of random pure states consisting of repeated applications of two qubit transformations. Necessary number of steps needed in order to generate states displaying bipartite entanglement typical of random states is obtained. We also find the optimal two qubit gate for which the convergence is the fastest. Perhaps surprisingly, applying the same good two qubit gate in addition to a random single qubit rotations at each step leads to a faster generation of entanglement than applying a random two qubit transformation at each step.

  14. Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions

    Science.gov (United States)

    Lloyd, Seth; Terhal, Barbara M.

    2016-02-01

    We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.

  15. Two-qubit correlations via a periodic plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, Nikos; Terzis, Andreas F. [Department of Physics, School of Natural Sciences, University of Patras, Patras 265 04 (Greece); Yannopapas, Vassilios [Department of Physics, National Technical University of Athens, Athens 157 80 (Greece); Paspalakis, Emmanuel, E-mail: paspalak@upatras.gr [Materials Science Department, School of Natural Sciences, University of Patras, Patras 265 04 (Greece)

    2016-02-15

    We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.

  16. Enhancing the fidelity of two-qubit gates by measurements

    Science.gov (United States)

    Gefen, Tuvia; Cohen, Daniel; Cohen, Itsik; Retzker, Alex

    2017-03-01

    Dynamical decoupling techniques are the method of choice for increasing gate fidelities. While these methods have produced very impressive results in terms of decreasing local noise and increasing the fidelities of single-qubit operations, dealing with the noise of two-qubit gates has proven more challenging. The main obstacle is that the noise time scale is shorter than the two-qubit gate itself, so that refocusing methods do not work. We present a measurement- and feedback-based method to suppress two-qubit-gate noise, which cannot be suppressed by conventional methods. We analyze in detail this method for an error model, which is relevant for trapped-ion quantum information.

  17. Remote two-qubit state creation and its robustness

    Science.gov (United States)

    Stolze, J.; Zenchuk, A. I.

    2016-08-01

    We consider the problem of remote two-qubit state creation using the two-qubit excitation pure initial state of the sender. The communication line is based on the optimized boundary-controlled chain with two pairs of properly adjusted coupling constants. We show that the communication line can be characterized by a set of parameters independent of the initial state of the sender. These parameters are permanent attributes of a communication line and can be either calculated theoretically or measured in experiment. In particular, they determine the creatable subregion of the receiver's state space. The creation of a particular state within the creatable region is achieved by a proper choice of the independent parameters of the sender's initial state (control parameters) and reduces to the solvability of a certain system of algebraic equations. The creation of the two-qubit Werner state is considered as an example. We also study the effects of imperfections of the chain on the state creation.

  18. Dynamical Suppression of Decoherence in Two-Qubit Quantum Memory

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.

  19. Towards optimizing two-qubit operations in three-electron double quantum dots

    Science.gov (United States)

    Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.

    The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  20. Coxeter groups $A_{4}$, $B_{4}$ and $D_{4}$ for two-qubit systems

    Indian Academy of Sciences (India)

    Ramazan Koç; M Yakup Haciibrahimoğlu; Mehmet Koca

    2013-08-01

    The Coxeter–Weyl groups $W(A_{4})$, $W(B_{4})$ and $W(D_{4})$ have proven very useful for two-qubit systems in quantum information theory. A simple technique is employed to construct the unitary matrix representations of the groups, based on quaternionic transformation of the usual reflection matrices. The von Neumann entropy of each reduced density matrix is calculated. It is shown that these unitary matrix representations are naturally related to various universal quantum gates and they lead to entangled states. Canonical decomposition of generators in terms of fundamental gate representations is given to construct the quantum circuits.

  1. Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level on an NMR quantum-information processor

    OpenAIRE

    Dorai, Kavita; Arvind; Kumar, Anil

    2001-01-01

    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.

  2. Optimal copying of entangled two-qubit states

    CERN Document Server

    Novotny, J; Jex, I

    2004-01-01

    We investigate the problem of copying pure two-qubit states of a given degree of entanglement in an optimal way. Completely positive covariant quantum operations are constructed which maximize the fidelity of the output states with respect to two separable copies. These optimal copying processes hint at the intricate relationship between fundamental laws of quantum theory and entanglement.

  3. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  4. Entangled Bloch Spheres: Bloch Matrix And Two Qubit State Space

    CERN Document Server

    Gamel, Omar

    2016-01-01

    We represent a two qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parameterize and visualize the two qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single ...

  5. Systematically Generated Two-Qubit Braids for Fibonacci Anyons

    Science.gov (United States)

    Zeuch, Daniel; Carnahan, Caitlin; Bonesteel, N. E.

    We show how two-qubit Fibonacci anyon braids can be generated using a simple iterative procedure which, in contrast to previous methods, does not require brute force search. Our construction is closely related to that of, but with the new feature that it can be used for three-anyon qubits as well as four-anyon qubits. The iterative procedure we use, which was introduced by Reichardt, generates sequences of three-anyon weaves that asymptotically conserve the total charge of two of the three anyons, without control over the corresponding phase factors. The resulting two-qubit gates are independent of these factors and their length grows as log 1/ ɛ, where ɛ is the error, which is asymptotically better than the Solovay-Kitaev method.

  6. Extremal quantum correlations: Experimental study with two-qubit states

    Energy Technology Data Exchange (ETDEWEB)

    Chiuri, A.; Mataloni, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica (INO-CNR), L.go E. Fermi 6, I-50125 Firenze (Italy); Vallone, G. [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, Compendio del Viminale, I-00184 Roma (Italy); Paternostro, M. [Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)

    2011-08-15

    We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.

  7. Quantum entanglement for two qubits in a nonstationary cavity

    Science.gov (United States)

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2016-11-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  8. Quantum entanglement for two qubits in a nonstationary cavity

    CERN Document Server

    Berman, Oleg L; Lozovik, Yurii E

    2016-01-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by non-adiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  9. Entanglement Dynamics of Two Qubits Coupled to a Noise Environmen

    Institute of Scientific and Technical Information of China (English)

    LIU Jin; XIANG Shao-Hua; CUI Hui-Ping; LI Jian

    2009-01-01

    We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise.It is shown that due to environment noise, all quantum entangled states axe very fragile and become a classical mixed state in a short-time limit.But the environment can affect entanglement in very different ways.The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherence.

  10. Note on Entanglement of an Arbitrary State of Two Qubits

    Institute of Scientific and Technical Information of China (English)

    WANG An-Min

    2000-01-01

    It is shown that the norm of the polarization vector of the reduced density matrix can characterize the entangle ment of two qubits and so it is defined as a simple measure of entanglement. It is then extended to the generalized entanglement of polarization vector. It is proved that the entanglement of formation belongs to the generalized entanglement of polarization vector. Under the local general measurement and classical communication how this generalized entanglement of polarization vector changes is proved strictly and so the first and second laws of quantum information processing are verified clearly.

  11. Entanglement Dynamics of Two Qubits in a Common Bath

    CERN Document Server

    Ma, Jian; Wang, Xiaoguang; Nori, Franco

    2012-01-01

    We derive a set of hierarchical equations for qubits interacting with a Lorentz-broadened cavity mode at zero temperature, without using the rotating-wave, Born, and Markovian approximations. We use this exact method to reexamine the entanglement dynamics of two qubits interacting with a common bath, which was previously solved only under the rotating-wave and single-excitation approximations. With the exact hierarchy equation method used here, we observe significant differences in the resulting physics, compared to the previous results with various approximations. Double excitations due to counter-rotating-wave terms are also found to have remarkable effects on the dynamics of entanglement.

  12. Teleportation of an Arbitrary Two-qubit State *

    Institute of Scientific and Technical Information of China (English)

    庞霖; 严瑛白; 金国藩; 韦辉; 郭履容

    2001-01-01

    A scheme to teleport an unknown two-qubit state from Alice (the sender) to Bob (the receiver) using two Einstein-Podolsky-Rosen (EPR) pairs is presented, each EPR pair being shared by both Alice and Bob. Firstly, Alice combines each of the two particles in the teleported state with an EPR particle and makes Bell state measurement on each combination. Then she transmits the outcomes of her measurements to Bob classically. According to Alice′s measurement results, Bob can perform appropriate unitary operations on his two EPR particles to retrieve the initial state.

  13. Decoherence of two-qubit systems: a random matrix description

    Science.gov (United States)

    Pineda, C.; Gorin, T.; Seligman, T. H.

    2007-04-01

    We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one-qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the above relation.

  14. Decoherence of two qubit systems: A random matrix description

    CERN Document Server

    Pineda, C; Seligman, T H

    2007-01-01

    We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the relation above.

  15. Two-qubit quantum cloning machine and quantum correlation broadcasting

    Science.gov (United States)

    Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad

    2016-11-01

    Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.

  16. Entanglement dynamics of two-qubit systems in different quantum noises

    Institute of Scientific and Technical Information of China (English)

    Pan Chang-Ning; Li-Fei; Fang Jian-Shu; Fang Mao-Fa

    2011-01-01

    The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise.

  17. Decoherence of Two-qubits Coupled with Reservoirs Studied with New Ket-Bra Entangled State Method

    Science.gov (United States)

    Ren, Yi-Chong; Fan, Hong-Yi

    2016-04-01

    For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.

  18. The two-qubit amplitude damping channel: Characterization using quantum stabilizer codes

    Science.gov (United States)

    Omkar, S.; Srikanth, R.; Banerjee, Subhashish; Shaji, Anil

    2016-10-01

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  19. Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    CERN Document Server

    Cabello, A

    2002-01-01

    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.

  20. Nonlocality without inequalities for two-qubit mixed states based on Cabello's nonlocality [rapid communication

    Science.gov (United States)

    Liang, Lin-mei; Li, Cheng-zu

    2005-02-01

    This Letter presents nonlocality without inequalities for two-qubit mixed states. This Letter was mainly sparked by Cabello's work [Phys. Rev. A 65 (2003) 032108] and is an extension of our recent work [Phys. Lett. A 318 (2003) 300].

  1. Einstein-Podolsky-Rosen Steerability Criterion for Two-Qubit Density Matrices

    CERN Document Server

    Chen, Jing-Ling; Ye, Xiang-Jun; Wu, Chunfeng; Kwek, L C; Oh, C H

    2011-01-01

    We propose a criterion ${S}=\\lambda_1+\\lambda_2-(\\lambda_1-\\lambda_2)^2<0$ to detect Einstein-Podolsky-Rosen (EPR) steering for arbitrary two-qubit density matrix $\\rho_{AB}$. Here $\\lambda_1,\\lambda_2$ are respectively the minimal and the second minimal eigenvalues of $\\rho^{T_B}_{AB}$, which is the partial transpose of $\\rho_{AB}$. Numerical results suggest that this criterion is a necessary and sufficient condition for demonstrating steerability of two qubits.

  2. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    OpenAIRE

    Stefanie Barz; Ivan Kassal; Martin Ringbauer; Yannick Ole Lipp; Borivoje Dakić; Alán Aspuru-Guzik; Philip Walther

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, w...

  3. Assisted Cloning and Orthogonal Complementing of an Arbitrary Unknown Two-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    FANG Ming; LIU Yi-Min; LIU Jun; SHI Shou-Hua; ZHANG Zhan-Jun

    2006-01-01

    Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.

  4. Scheme for Remote Implementation of Partially Unknown Quantum Operation of Two Qubits in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    QIU Liang; WANG An-Min

    2008-01-01

    By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits [An-Min Wang: Phys. Rev. A 74 (2006) 032317] with two-qubit Cnot gate and single qubit logic gates, we present a scheme to implement it in cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction between the atoms and the field of cavity is a nonresonant one. Finally, we analyze the experimental feasibility of this scheme.

  5. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  6. Tomographic causal analysis of two-qubit states and tomographic discord

    Energy Technology Data Exchange (ETDEWEB)

    Kiktenko, Evgeny [Bauman Moscow State Technical University, 2nd Baumanskaya St., 5, Moscow 105005 (Russian Federation); Geoelectromagnetic Research Center of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, PO Box 30, Troitsk, Moscow Region 142190 (Russian Federation); Fedorov, Aleksey, E-mail: akf@rqc.ru [Bauman Moscow State Technical University, 2nd Baumanskaya St., 5, Moscow 105005 (Russian Federation); Russian Quantum Center, Novaya St. 100, Skolkovo, Moscow 143025 (Russian Federation)

    2014-05-01

    We study a behavior of two-qubit states subject to tomographic measurement. In this Letter we propose a novel approach to definition of asymmetry in quantum bipartite state based on its tomographic Shannon entropies. We consider two types of measurement bases: the first is one that diagonalizes density matrices of subsystems and is used in a definition of tomographic discord, and the second is one that maximizes Shannon mutual information and relates to symmetrical form quantum discord. We show how these approaches relate to each other and then implement them to the different classes of two-qubit states. Consequently, new subclasses of X-states are revealed.

  7. Relative Entropy of Entanglement of One Class of Two-Qubit System

    Institute of Scientific and Technical Information of China (English)

    LIANG Lin-Mei; CHEN Ping-Xing; LI Cheng-Zu; HUANG Ming-Qiu

    2001-01-01

    The relative entropy of entanglement of a mixed state σ for a bipartite quantum system can be defined as the minimum of the quantum relative entropy over the set of completely disentangled states. Vedral et al. [Phys.Rev. A 57(1998)1619] have recently proposed a numerical method to obtain the relative entropy of entanglement Ere for two-qubit systems. This letter shows that the convex programming method can be applied to calculate Ere of two-qubit systems analytically, and discusses the conditions under which the method can be adopted.

  8. A two-qubit photonic quantum processor and its application to solving systems of linear equations.

    Science.gov (United States)

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-08-19

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations.

  9. Two-Qubit Geometric Phase Gate for Quantum Dot Spins using Cavity Polariton Resonance

    CERN Document Server

    Puri, Shruti; Yamamoto, Yoshihisa

    2012-01-01

    We describe a design to implement a two-qubit geometric phase gate, by which a pair of electrons confined in adjacent quantum dots are entangled. The entanglement is a result of the Coulomb exchange interaction between the optically excited exciton-polaritons and the localized spins. This optical coupling, resembling the electron-electron Ruderman-Kittel-Kasuya-Yosida (RKKY) inter- actions, offers high speed, high fidelity two-qubit gate operation with moderate cavity quality factor Q. The errors due to the finite lifetime of the polaritons can be minimized by optimizing the optical pulse parameters (duration and energy). The proposed design, using electrostatic quantum dots, maximizes entanglement and ensures scalability.

  10. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  11. Controlled Remote Preparation of a Two-Qubit State via an Asymmetric Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-Yin

    2011-01-01

    I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers.The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zeilinger (GHZ) state and a W-type state.I try to realize the remote two-qubit preparation by using the usual projective measurement and the method of positive operator-valued measure, respectively.The corresponding success probabilities of the scheme with different methods as well as the total classical communication cost required in this scheme are also calculated.

  12. A geometric theory of non-local two-qubit operations

    CERN Document Server

    Zhang, J; Whaley, K B; Sastry, S; Zhang, Jun; Vala, Jiri; Sastry, Shankar

    2003-01-01

    We study non-local two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of non-local gates is a 3-Torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-Torus. Since different points on the 3-Torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of non-local gates. We find that exactly half the non-local ga...

  13. Entanglement capacity of two-qubit unitary operator for rank two mixed states

    Institute of Scientific and Technical Information of China (English)

    DI; YaoMin

    2007-01-01

    The entanglement capacity of two-qubit unitary operator acting on rank two mixed states in concurrence is discussed. The condition of perfect entangler is the same as that acting on pure states and the entanglement capacity is the mixing parameter v1. For non-perfect entangler, the upper and lower bound of the entanglement capacity are given.……

  14. System-environment correlations for dephasing two-qubit states coupled to thermal baths

    Science.gov (United States)

    Costa, A. C. S.; Beims, M. W.; Strunz, W. T.

    2016-05-01

    Based on the exact dynamics of a two-qubit system and environment, we investigate system-environment (SE) quantum and classical correlations. The coupling is chosen to represent a dephasing channel for one of the qubits and the environment is a proper thermal bath. First we discuss the general issue of dilation for qubit phase damping. Based on the usual thermal bath of harmonic oscillators, we derive criteria of separability and entanglement between an initial X state and the environment. Applying these criteria to initial Werner states, we find that entanglement between the system and environment is built up in time for temperatures below a certain critical temperature Tcrit. On the other hand, the total state remains separable during those short times that are relevant for decoherence and loss of entanglement in the two-qubit state. Close to Tcrit the SE correlations oscillate between separable and entangled. Even though these oscillations are also observed in the entanglement between the two qubits, no simple relation between the loss of entanglement in the two-qubit system and the build-up of entanglement between the system and environment is found.

  15. Measurement-induced two-qubit entanglement in a bad cavity: Fundamental and practical considerations

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Mølmer, Klaus

    2012-01-01

    An entanglement-generating protocol is described for two qubits coupled to a cavity field in the bad-cavity limit. By measuring the amplitude of a field transmitted through the cavity, an entangled spin-singlet state can be established probabilistically. Both fundamental limitations and practical...

  16. Entanglement capacity of two-qubit unitary operator for rank two mixed states

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The entanglement capacity of two-qubit unitary operator acting on rank two mixed states in concurrence is discussed. The condition of perfect entangler is the same as that acting on pure states and the entanglement capacity is the mixing parameter v1. For non-perfect entangler, the upper and lower bound of the entanglement capacity are given.

  17. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  18. Controlled Remote State Preparation of an Arbitrary Two-Qubit State via a Six-Qubit Cluster State

    Science.gov (United States)

    Sang, Ming-huang; Nie, Li-ping

    2017-07-01

    In this work, we have demonstrated that a six-qubit cluster state can be used to realize the deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only the special two-qubit projective measurements.

  19. Quantum and classical correlations for a two-qubit X structure density matrix

    Institute of Scientific and Technical Information of China (English)

    Ding Bang-Fu; Wang Xiao-Yun; Zhao He-Ping

    2011-01-01

    We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix.Based on the characteristics of the expressions,the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method.We explain the relationships among quantum discord,classical correlation,and entanglement,and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state.The new method,which is different from previous approaches,has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state,such as a mixed state.

  20. On the quantum discord of two-qubit X-states

    CERN Document Server

    Chen, Qing; Yu, Sixia; Yi, X X; Oh, C H

    2011-01-01

    Quantum discord provides a measure for quantifying quantum correlations beyond entanglement and is very hard to compute even for two-qubit states because of the minimization over all possible measurements. Recently a simple algorithm to evaluate the quantum discord for two-qubit X-states is proposed by Ali, Rau and Alber [Phys. Rev. A 81, 042105 (2010)] with minimization taken over only a few cases. Here we shall at first identify a class of X-states, whose quantum discord can be evaluated analytically without any minimization, for which their algorithm is valid, and also identify a family of X-states for which their algorithm fails. And then we demonstrate that this special family of X-states provides furthermore an explicit example for the inequivalence between the minimization over positive operator-valued measures and that over von Neumann measurements.

  1. Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels

    Science.gov (United States)

    Adepoju, Adenike Grace; Falaye, Babatunde James; Sun, Guo-Hua; Camacho-Nieto, Oscar; Dong, Shi-Hai

    2017-02-01

    This letter reports the influence of noisy channels on JRSP of two-qubit equatorial state. We present a protocol for JRSP of two-qubit equatorial state. Afterward, we investigate the effects of five quantum noises on the protocol. We find that the system loses some of its properties as consequence of unwanted interactions with environment. For instance, within the domain 0 < λ < 0.65, the information lost via transmission of qubits in amplitude channel is most minimal, while for 0.65 < λ ≤ 1, the information lost in phase flip channel becomes the most minimal. Also, for any given λ, the information transmitted through depolarizing channel has the least chance of success.

  2. A practical scheme for quantum computation with any two-qubit entangling gate

    CERN Document Server

    Bremner, M J; Dodd, J L; Gilchrist, A; Harrow, A W; Mortimer, D; Nielsen, M A; Osborne, T J; Bremner, Michael J.; Dawson, Christopher M.; Dodd, Jennifer L.; Gilchrist, Alexei; Harrow, Aram W.; Mortimer, Duncan; Nielsen, Michael A.; Osborne, Tobias J.

    2002-01-01

    Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not (CNOT), are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. Here we present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this important result for systems of arbitrary finite dimension has been provided by J. L. and R. Brylinski [arXiv:quant-ph/0108062, 2001]; however, their proof relies upon a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical [C. M. Dawson and A. Gilchrist, online implementation of the procedure described herein (2002), http://www.physics.uq.edu.au/gqc/].

  3. Relative entropy of entanglement of two-qubit Ux-invariant states

    Science.gov (United States)

    Wang, Zhen; Wang, Zhi-Xi

    2015-01-01

    It is strictly proved that a two-qubit Ux-invariant state reaches its relative entropy of entanglement (REE) by the separable state having the same matrix structure. We also formulate three quadratic equations for the corresponding closest separable state (CSS) of Ux-invariant states by their symmetric property. Thus, the CSS of Ux-invariant state can be provided. Furthermore, to illustrate our result we consider two concrete examples.

  4. Intrinsic Decoherence on Two-Qubit Heisenberg ⅩⅩ Chain

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-Hong; XIONG Zu-Hong; HU Dong-Mei

    2007-01-01

    Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg ⅩⅩ chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsic decoherence on quantum entanglement and quantum teleportation exerts different effects in different initial systems,proper magnetic fields and probabilities of different eigenstates in the initial states can weaken the effects.

  5. Manipulating the sudden death of entanglement in two-qubit atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor [COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-10-15

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider {sigma}{sub x} and bath switching operations that change the disentanglement time from finite to infinite.

  6. Simple Scheme for Directly Measuring Concurrence of Two-Qubit Pure States in One Step

    Institute of Scientific and Technical Information of China (English)

    YANG Rong-Can; LIN Xiu; HUANG Zhi-Ping; LI Hong-Cai

    2009-01-01

    In the present work, a simple scheme for the direct measurement of the concurrence of two-qubit pure states is proposed.The scheme is based on trapped ions and only needs one step when the two identical pure states are given.The vibrational mode in our proposal is only virtually excited, which is important in view of decoherence.Furthermore, the scheme is feasible based on current technologies.

  7. Influence of Intrinsic Decoherence on Entanglement in Two-Qubit Quantum Heisenberg XYZ Chain

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZENG Tian-Hai; ZOU Jian

    2005-01-01

    Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.

  8. Two Qubits Entanglement Dynamics in 1D Heisenberg Chain with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Li-li; ZOU Jian

    2006-01-01

    To reveal how the decoherence modifies the time evolution of the entanglement of quantum system,the intrinsic decoherence approach and the entanglement of formation are used, and the time evolution of entanglement for two-qubit 1D quantum Heisenberg model in an external uniform magnetic field is derived. It is shown that the external magnetic field can strengthen the effects of the intrinsic decoherence on the entanglement of the system.

  9. Bipartite entanglement in a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TIAN Dong-Ping

    2009-01-01

    This paper investigates the bipartite entanglement of a two-qubit Heisenberg XXZ chain under an inhomogeneous magnetic field. By the concept of negativity, we find that the inhomogeneity of the magnetic field may induce entanglement and the critical magnetic field is independent of Jz. We also find that the entanglement is symmetric with respect to a zero magnetic field. The anisotropy parameter Jz may enhance the entanglement.

  10. Entangled Bloch spheres: Bloch matrix and two-qubit state space

    Science.gov (United States)

    Gamel, Omar

    2016-06-01

    We represent a two-qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parametrize and visualize the two-qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single sign. The formalism is used to characterize maximally entangled states, and generalize two qubit isotropic and Werner states.

  11. Completely positive covariant two-qubit quantum processes and optimal quantum NOT operations for entangled qubit pairs

    CERN Document Server

    Novotny, J; Jex, I

    2006-01-01

    The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.

  12. Bipartite entanglement of a two-qubit system with anisotropic couplings under nonuniform magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Qin Meng; Tian Dong-Ping

    2009-01-01

    This paper investigates bipartite entanglement of a two-qubit system with anisotropic couplings under all inhomogeneous magnetic field.This work is mainly to investigate the characteristics of a Heisenberg XYZ chain and obtains some meaningful results.By the concept of negativity,it finds that the inhomogeneity of magnetic field may induce entanglement and the critical magnetic field is independent of Jz.The inhomogeneous magnetic field can increase the value of critical magnetic field Bc.It also finds that the magnetic field not only suppresses the entanglement but also can induce it to revival for some time.

  13. Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Fu; Zhang Shou

    2009-01-01

    This paper proposes a method to measure directly the concurrence of an arbitrary two-qubit pure state based on a generalized Grover quantum iteration algorithm and a phase estimation algorithm. The concurrence can be calculated by applying quantum algorithms to two available copies of the bipartite system, and a final measurement on the auxiliary working qubits gives a better estimation of the concurrence. This method opens new prospects of entanglement measure by the application of quantum algorithms. The implementation of the protocol would be an important step toward quantum information processing and more complex entanglement measure of the finite-dimensional quantum system with an arbitrary number of qubits.

  14. One-Way Information Deficit and Geometry for a Class of Two-Qubit States

    Institute of Scientific and Technical Information of China (English)

    WANG Yao-Kun; MA Teng; LI Bo; WANG Zhi-Xi

    2013-01-01

    The work deficit,as introduced by Jonathan Oppenheim et al.[Phys.Rev.Lett.89 (2002) 180402]is a good measure of the quantum correlations in a state and provides a new standpoint for understanding quantum non-locality.In this paper,we analytically evaluate the one-way information deficit (OWID) for the Bell-diagonal states and a class of two-qubit states and further give the geometry picture for OWID.The dynamic behavior of the OWID under decoherence channel is investigated and it is shown that the OWID of some classes of X states is more robust against the decoherence than the entanglement.

  15. Probabilistically Controlled Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measure

    Institute of Scientific and Technical Information of China (English)

    XU Hai-Feng; HAN Lian-Fang

    2013-01-01

    We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit duster-class state and a Bell-class state as the quantum channels.In the scheme,the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs.With their measurement results,the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement.Moreover,the total success probability and classical communication cost of the present protocol are also worked out.

  16. Demonstrating quantum speed-up in a superconducting two-qubit processor

    CERN Document Server

    Dewes, A; Ong, F R; Schmitt, V; Milman, P; Bertet, P; Vion, D; Esteve, D

    2011-01-01

    We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.

  17. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    Energy Technology Data Exchange (ETDEWEB)

    Curilef, S [Departamento de Fisica, Universidad Catolica del Norte, Antofagasta (Chile); Zander, C; Plastino, A R [Physics Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: arplastino@maple.up.ac.za

    2008-11-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time {tau} required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.

  18. Optimal feedback control of two-qubit entanglement in dissipative environments

    Science.gov (United States)

    Rafiee, Morteza; Nourmandipour, Alireza; Mancini, Stefano

    2016-07-01

    We study the correction of errors intervening in two qubits dissipating into their own environments. This is done by resorting to local feedback actions with the aim of preserving as much as possible the initial amount of entanglement. Optimal control is found first by gaining insights from the subsystem purity and then by numerical analysis on the concurrence. This is tantamount to a double optimization on the actuation and on the measurement processes. Repeated feedback action is also investigated, thus paving the way for a continuous-time formulation and a solution of the problem.

  19. Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state

    Indian Academy of Sciences (India)

    Prasanta K Panigrahi; Siddharth Karumanchi; Sreraman Muralidharan

    2009-09-01

    We investigate the usefulness of the highly entangled five-partite cluster and Brown states for the quantum information splitting (QIS) of a special kind of two-qubit state using remote state preparation. In our schemes, the information that is to be shared is known to the sender. We show that, QIS can be accomplished with just two classical bits, as opposed to four classical bits, when the information that is to be shared is unknown to the sender. The present algorithm, demonstrated through the cluster and Brown states is deterministic as compared to the previous works in which it was probabilistic.

  20. Conditional purity and quantum correlation measures in two qubit mixed states

    Science.gov (United States)

    Rebón, L.; Rossignoli, R.; Varga, J. J. M.; Gigena, N.; Canosa, N.; Iemmi, C.; Ledesma, S.

    2016-11-01

    We analyze and show experimental results of the conditional purity, the quantum discord and other related measures of quantum correlation in mixed two-qubit states constructed from a pair of photons in identical polarization states. The considered states are relevant for the description of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean analytical expressions for the conditional local purity and other correlation measures obtained as a result of a remote local projective measurement, which are fully verified by the experimental results. A simple exact expression for the quantum discord of these states in terms of the maximum conditional purity is also derived.

  1. A study of two-qubit density matrices with fermionic purifications

    Energy Technology Data Exchange (ETDEWEB)

    Szalay, Szilard; Levay, Peter; Nagy, Szilvia; Pipek, Janos [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budafoki ut 8 (Hungary)

    2008-12-19

    We study 12 parameter families of two-qubit density matrices, arising from a special class of two-fermion systems with four single-particle states or alternatively from a four-qubit state with amplitudes arranged in an antisymmetric matrix. We calculate the Wootters concurrences and the negativities in a closed form and study their behavior. We use these results to show that the relevant entanglement measures satisfy the generalized Coffman-Kundu-Wootters formula of distributed entanglement. An explicit formula for the residual tangle is also given. The geometry of such density matrices is elaborated in some detail. In particular, an explicit form for the Bures metric is given.

  2. Entanglement Dynamics of Two-Qubit System in Different Types of Noisy Channels

    Institute of Scientific and Technical Information of China (English)

    SHAN Chuan-Jia; LIU Ji-Bing; CHENG Wei-Wen; LIU Tang-Kun; HUANG Yan-Xia; LI Hong

    2009-01-01

    In this paper, we study entanglement dynamics of a two-qubit extended Werner-like state locally interacting with independent noisy channels, i.e., amplitude damping, phase damping, and depolarizing channels. We show that the purity of initial entangled state has direct impacts on the entanglement robustness in each noisy channel. That is, if the initial entangled state is prepared in mixed instead of pure form, the state may exhibit entanglement sudden death (ESD) and/or be decreased for the critical probability at which the entanglement disappear.

  3. Effects of Noise on Joint Remote State Preparation of an Arbitrary Equatorial Two-Qubit State

    Science.gov (United States)

    Zhao, Hong-xia; Huang, Li

    2017-03-01

    By using a six-qubit cluster state as the quantum channel, we investigat the joint remote state preparation of an arbitrary equatorial two-qubit state. We analytically obtain the fidelities of the joint remote state preparation process in noisy environments, such as the amplitude-damping noise and phase-damping noise. In our scheme, the two different noise including amplitude-damping noise and the phase-damping noise only affect the travel qubits of the quantum channel, and then we show that the fidelities in these two noisy cases only depend on the decoherence noisy rate.

  4. Deterministic Joint Remote Preparation of an Arbitrary Two-Qubit State Using the Cluster State

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-Ming; CHEN Xiu-Bo; YANG Yi-Xian

    2013-01-01

    Recently,deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability.In this paper,we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource.Compared with previous schemes,our scheme has high efficiency since less quantum resource is required,some additional unitary operations and measurements are unnecessary.We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.

  5. Thermal quantum and classical correlations in two qubit XX model in a nonuniform external magnetic field

    CERN Document Server

    Hassan, Ali Saif M; Joag, Pramod S

    2010-01-01

    We investigate how thermal quantum discord $(QD)$ and classical correlations $(CC)$ of a two qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behaviour of $QD$ differs in many unexpected ways from thermal entanglement $(EN)$. For the nonuniform case, $(B_1= - B_2)$ we find that $QD$ and $CC$ are equal for all values of $(B_1=-B_2)$ and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which $QD$ and $CC$ are equal. The specification of this class and the corresponding conditions is completely general and apply to any quantum system in a state in this class and satisfying these conditions. We further find the relative contributions of $QD$ and $CC$ can be controlled easily by changing the relative magnitudes of $B_1$ and $B_2$.

  6. Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state

    Science.gov (United States)

    Wang, Ming-Ming; Qu, Zhi-Guo; Wang, Wei; Chen, Jin-Guang

    2017-05-01

    Quantum communication has attracted much attention in recent years. Deterministic joint remote state preparation (DJRSP) is an important branch of quantum secure communication which could securely transmit a quantum state with 100% success probability. In this paper, we study DJRSP of an arbitrary two-qubit state in noisy environment. Taking a GHZ based DJRSP scheme of a two-qubit state as an example, we study how the scheme is influenced by all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. We demonstrate that there are four different output states in the amplitude-damping noise, while there is the same output state in each of the other three types of noise. The state-independent average fidelity is presented to measure the effect of noise, and it is shown that the depolarizing noise has the worst effect on the DJRSP scheme, while the amplitude-damping noise or the phase-flip has the slightest effect depending on the noise rate. Our results are also suitable for JRSP and RSP.

  7. One- and two-qubit logic using silicon-MOS quantum dots

    Science.gov (United States)

    Dzurak, Andrew

    Spin qubits in silicon are excellent candidates for scalable quantum information processing due to their long coherence times and the enormous investment in silicon CMOS technology. While our Australian effort in Si QC has largely focused on spin qubits based upon phosphorus dopant atoms implanted in Si, we are also exploring spin qubits based on single electrons confined in SiMOS quantum dots. Such qubits can have long spin lifetimes T1 = 2 s, while electric field tuning of the conduction-band valley splitting removes problems due to spin-valley mixing. In isotopically enriched Si-28 these SiMOS qubits have a control fidelity of 99.6%, consistent with that required for fault-tolerant QC. By gate-voltage tuning the electron g*-factor, the ESR operation frequency can be Stark shifted by >10 MHz, allowing individual addressability of many qubits. Most recently we have coupled two SiMOS qubits to realize a CNOT gate using exchange-based controlled phase (CZ) operations. The speed of the two-qubit CZ-operations is controlled electrically via the detuning energy and over 100 two-qubit gates can be performed within a coherence time of 8 μs. We acknowledge support from the Australian Research Council (CE11E0001017), the US Army Research Office (W911NF-13-1-0024) and the Australian National Fabrication Facility.

  8. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    Science.gov (United States)

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  9. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    Science.gov (United States)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  10. Critical assessment of two-qubit post-Markovian master equations

    CERN Document Server

    Campbell, S; Mazzola, L; Gullo, N Lo; Vacchini, B; Busch, Th; Paternostro, M

    2012-01-01

    A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.

  11. The sudden Birth and sudden Death of thermal fidelity in a two-qubit XY model

    CERN Document Server

    Qin, Li-Guo; Jiang, Ying; Zhang, Hong-Biao

    2011-01-01

    We study the energy level crossings of the states and thermal fidelity for a two-qubit XY model in the presence of a transverse and inhomogeneous magnetic field. It is shown clearly the effects of the anisotropic factor of the magnetic field through the contour figures of energy level crossing in two subspaces, the isotropy subspace and anisotropy subspace. We calculate the quantum fidelity between the system and the ground state to which the results show the strong effect of the anisotropic factor again. In addition, making use of the transition of Yangian generators in the tensor product space, we study the evolution of the thermal fidelity after the transition. The potential applications of Yangian algebra, as a switch to turn on or off the fidelity, are proposed.

  12. Entanglement dynamics of a two-qubit system coupled individually to Ohmic baths

    CERN Document Server

    Duan, Liwei; Chen, Qinghu; Zhao, Yang

    2013-01-01

    The Davydov D1 ansatz, which assigns an individual bosonic trajectory to each spin state, is an efficient, yet accurate trial state for time-dependent variation of the the spin-boson model [J. Chem. Phys. 138, 084111 (2013)]. In this work, the Dirac-Frenkel time-dependent variational procedure utilizing the Davydov D1 ansatz is implemented to study entanglement dynamics of two qubits under the influence of two independent baths. The Ohmic spectral density is used without the Born-Markov approximation or the rotating-wave approximation. In the strong coupling regime the entanglement sudden death is always found to exist, while at the intermediate coupling regime, the entanglement dynamics calculated by Davydov D1 ansatz displays oscillatory behavior in addition to entanglement sudden death and revival.

  13. Sudden Death, Birth and Stable Entanglement in a Two-Qubit Heisenberg XY Spin Chain

    Institute of Scientific and Technical Information of China (English)

    SHAN Chuan-Jia; CHENG Wei-Wen; LIU Tang-Kun; LIU Ji-Bing; WEI Hua

    2008-01-01

    Taking the decoherence effect due to population relaxation into account, we investigate the entanglement properties for two qubits in the Heisenberg XY interaction and subject to an external magnetic field. It is found that the phenomenon of entanglement sudden death (ESD) as well as sudden birth (ESB) appear during the evolution process for particular initial states. The influence of the external magnetic field and the spin environment on ESD and ESB are addressed in detail. It is shown that the concurrence, a measure of entanglement, can be controlled by tuning the parameters of the spin chain, such as the anisotropic parameter, external magnetic field, and the coupling strength with their environment. In particular, we find that a critical anisotropy constant exists, above which ESB vanishes while ESD appears. It is also notable that stable entanglement, which is independent of different initial states of the qubits, occurs even in the presence or decoherence.

  14. Bidirectional Mapping between a Biphoton Polarization State and a Single-Photon Two-Qubit State

    Institute of Scientific and Technical Information of China (English)

    LIN Qing

    2010-01-01

    @@ How to manipulate(operate or measure)single photons efficiently and simply is the basic problem in optical quantum information processing.We first present an efficient scheme to transform a biphoton polarization state to a corresponding single-photon state encoded by its polarization and spatial modes.This single-photon state carries both the information of the controlled and target photons.It will make the realization of bipartite positive-operator-valued measurements efficiently and simply.Moreover,the inverse transformation from the single-photon state back to the corresponding biphoton polarization state is also proposed.Using both the transformations,the realization of the arbitrary two-qubit unitary operation is simple with an M-Z interferometer.All the schemes are feasible with the current experimental technology.

  15. Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems

    Science.gov (United States)

    Olaya-Castro, Alexandra; Johnson, Neil F.; Quiroga, Luis

    2004-08-01

    We present an efficient scheme for the controlled generation of pure two-qubit states possessing any desired degree of entanglement and a prescribed symmetry. This is achieved in two-qubit-cavity QED systems (e.g., cold-trapped ions and flying atoms) via on-resonance ion- or atom-cavity couplings, which are time dependent and asymmetric, yielding a trapping vacuum state condition which does not arise for identical couplings. A duality in the role of the coupling ratio yields states with a given concurrence but opposing symmetries. Both the trapping state condition and the resulting entanglement power are robust against decoherence channels.

  16. Effects of Dzyaloshinski-Moriya Interaction on Entanglement and Teleportation in a Two-Qubit Ising System with Intrinsic Cecoherence

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; FANG Jian-Xing

    2009-01-01

    We study the effects of Dzyaloshinski-Moriya(DM)interaction on entanglement and teleportation in a two-qubit Ising system with intrinsic decoherence taken into account.It is found that for the unentangled state,DM interaction is a benefit for entanglement and teleportation.

  17. Most robust and fragile two-qubit entangled states under depolarizing channels

    CERN Document Server

    Pang, Chao-Qian; Jiang, Yue; Liang, Mai-Lin

    2012-01-01

    In the two-qubit system under the local depolarizing channels, the most robust and the most fragile states for a given concurrence or negativity are derived. For the one-sided channel, with the aid of the evolution equation for entanglement given by Konrad \\emph{et al.} [Nat. Phys. 4, 99 (2008)], the pure states are proved to be the most robust. Based on a generalization of the evolution equation, we classify the ansatz states in our investigation by the amount of robustness, and consequently derive the most fragile states. For the two-sided channel, the pure states are proved to be the most robust for a fixed concurrence, but is the most fragile with a given negativity when the channel is uniform. Under the uniform channel, for a given negativity, the most robust states are the ones with the maximal concurrence, which are also the most fragile states when the concurrence is given in the region of [1/2,1]. When the entanglement approaches zero, the most fragile states for a given negativity become the pure st...

  18. Relaxation of coherent states in a two-qubit NMR quadrupole system

    Energy Technology Data Exchange (ETDEWEB)

    Sarthour, R.S.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Azevedo, E.R. de; Bonk, F.A.; Vidoto, E.L.G.; Bonagamba, T.J. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Freitas, J.C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2003-07-01

    Full text: Pulse Nuclear Magnetic Resonance (NMR) is one of the most serious candidates as an experimental technique for implementing quantum algorithms. To the present date, this technique is in fact the only one where full demonstrations of quantum algorithms implementations have been carried out, in spite of various technical difficulties. On NMR quantum computers, gates and subroutines are encoded as radiofrequency pulse sequences, which must act over coherent states. These sequences usually take tens of milliseconds to be implemented, and during this time the system relax towards equilibrium. Therefore, studies of relaxation times are very important to the realization of quantum algorithms via NMR. In this work we studied the longitudinal relaxation of various coherent states on the NMR quantum computing two-qubit quadrupole system, {sup 23}Na in C{sub 10}H{sub 21}NaO{sub 4}S liquid crystal at room temperature. Relaxation of pseudo-pure states |00>, |01>, |10>, |11>, pseudo-Bell states |01> + |10> and |00> + |11> and Hadamard states |00> + |01> and |10> + |11> were investigated. Experimental curves follow a multi exponential model of relaxation which takes into account mixed, dipolar magnetic and quadrupolar electric interactions. (author)

  19. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  20. New Maximally Entangled States for Pattern-Association Through Evolutionary Processes in a Two-Qubit System

    Science.gov (United States)

    Singh, Manu Pratap; Rajput, Balwant S.

    2017-04-01

    New set of maximally entangled states (Singh-Rajput MES), constituting orthonormal eigen bases, has been revisited and its superiority and suitability in pattern-association (Quantum Associative Memory, QuAM) have been demonstrated. Using these MES as memory states in the evolutionary process of pattern storage in a two-qubit system, it has been shown that the first two states of Singh-Rajput MES are useful for storing the pattern |11> and the last two of these MES are useful in storing the pattern |10> Recall operations of quantum associate memory (QuAM) have been conducted through evolutionary process in terms of unitary operators by separately choosing Singh-Rajput MES and Bell's MES as memory states and it has been shown that Singh-Rajput MES as valid memory states for recalling the patterns in a two-qubit system are much more suitable than Bell's MES.

  1. Testing Evolution Equation for Entanglement of Two-Qubit Systems in Noisy Channels on Ensemble Quantum Computers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Han; LUO Jun; REN Ting-Ting; SUN Xian-Ping

    2010-01-01

    @@ We report the experimental demonstration of decoherence dynamics of entanglement for the four Bell states in two-qubit nuclear-spin systems on ensemble quantum computers.Using artificial error operators to simulate noisy channels,we experimentally investigate the effect of noises on the four Bell states,and furthermore observe the time evolution of entanglement for the four Bell states in different noisy channels by calculating concurrences.Our experimental results show that the concurrences of the different Bell states under the same artificial error operations have the same values within the experimental error,and are independent of the different Bell states.These experimental results verify the theoretical evolution equation developed by Konrad et al.[Nature Phys.4 (2008) 99]for two-qubit entanglement.

  2. Weak Measurement-Based Entanglement Protection of Two-Qubit X-States from Amplitude Damping Decoherence

    Science.gov (United States)

    Hu, Yao-Hua; Tao, Ya-Ping; Tan, Yong-Gang; Yang, Hai-Feng

    2017-02-01

    Considering X-states the density matrixes of which look like the letter X, we propose a weak measurement-based entanglement protection protocol of two-qubit X-states under local amplitude damping channels using weak measurement and reversal operation. It is shown that, with increase of the decoherence parameter, the entanglement attenuates rapidly owing to the amplitude damping noise and even experiences entanglement sudden death (ESD). However, the entanglement under the weak measurement and reversal operation is always much stronger than the entanglement undergoing the amplitude damping decoherence. These results reflect that entanglement of two-qubit X-states from amplitude damping decoherence can be protected, and ESD can be circumvented by increasing the weak measurement strength.

  3. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    Energy Technology Data Exchange (ETDEWEB)

    Yabu-uti, B.F.C., E-mail: yabuuti@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil); Roversi, J.A., E-mail: roversi@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil)

    2011-08-22

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  4. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    Science.gov (United States)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  5. Implementation of a two-qubit controlled-U gate based on unconventional geometric phase with a constant gating time

    CERN Document Server

    Yabu-uti, Bruno F C

    2011-01-01

    We propose an alternative scheme to implement a two-qubits Controlled-U gate in the hybrid system atom-$CCA$ (coupled cavities array). Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular transformation $U$ on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation.

  6. Thermal quantum and classical correlations in a two-qubit XX model in a nonuniform external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ali Saif M [Department of Physics, University of Amran, Amran (Yemen); Lari, Behzad; Joag, Pramod S, E-mail: alisaif73@gmail.co, E-mail: behzadlari1979@yahoo.co, E-mail: pramod@physics.unipune.ac.i [Department of Physics, University of Pune, Pune 411007 (India)

    2010-12-03

    We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B{sub 1} = -B{sub 2}), we find that QD and CC are equal for all values of (B{sub 1} = -B{sub 2}) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B{sub 1} and B{sub 2}. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.

  7. A Robust Scheme for Two-Qubit Grover Quantum Search Alogrithm Based on the Motional and Internal States of a Single Cold Trapped Ion

    Institute of Scientific and Technical Information of China (English)

    秦涛; 高克林

    2003-01-01

    We propose a scheme to implement a two-qubit Grover quantum search algorithm.The novelty in the proposal is that the motional state is introduced into the computation and the internal state within a single cold trapped ion.The motional and internal states of the ion are manipulated as two qubits by the laser pulses to accomplish an example of a Grover algorithm based on the two qubits.The composite laser pulses that are applied to implement the Grover algorithm have been designed in detail.The issues concerning measurement and decoherence are discussed.

  8. Bell inequalities and linear entropy. Comment on the paper of E. Santos "Entropy inequalities and Bell inequalities fro two-qubit systems"

    CERN Document Server

    Jakobczyk, L

    2004-01-01

    It is shown that even if the linear entropy of mixed two-qubit state is not smaller then 0.457, Bell - CHSH inequalities can be violated. This contradicts the result obtained in the paper of E. Santos [1].

  9. Relation between initial conditions and entanglement sudden death for two-qubit extended Werner-like states

    Institute of Scientific and Technical Information of China (English)

    Yang Bai-Yuan; Fang Mao-Fa; Huang Jiang

    2013-01-01

    In this paper,the dynamical behavior of entanglement of an uncoupled two-qubit system,which interacts with independent identical amplitude damping environments and is initially prepared in the extended Werner-like (EWL) states,is investigated.The results show that whether entanglement sudden death (ESD) of an EWL state will occur or not depends on initial purity and concurrence.The boundaries between ESD states and ESD-free states for two kinds of EWL states are found to be different.Furthermore,some regions are shown where ESD states can be transformed into ESD-free states by local unitary operations.

  10. Properties on the distant distribution of entanglement for arbitrary two-qubit pure states via noisy quantum channels

    Institute of Scientific and Technical Information of China (English)

    Wang Qiong; Li Ji-Xin; Zeng Hao-Sheng

    2009-01-01

    This paper investigates the change of entanglement for transmitting an arbitrarily entangled two-qubit pure state via one of three typical kinds of noisy quantum channels:amplitude damping quantum channel,phase damping quantum channel and depolarizing quantum channel.It finds,in all these three cases,that the output distant entanglement(measured by concurrence)reduces proportionately with respect to its initial amount,and the decaying ratio is determined only by the noisy characteristics of quantum channels and independent of the form of initial input state.

  11. Entanglement Teleportation via a Two-Qubit System with Anisotropic Couplings under a Different Nonuniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng

    2013-01-01

    We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.

  12. Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED

    Science.gov (United States)

    Yang, Chui-Ping; Chu, Shih-I.; Han, Siyuan

    2004-10-01

    We propose a method for realizing two-qubit quantum phase gate with 4-level systems in cavity QED. In this proposal, the two logical states of a qubit are represented by the two lowest levels of each system, and two intermediate levels of each system are utilized to facilitate coherent control and manipulation of quantum states of the qubits. The present method does not involve cavity-photon population during the operation. In addition, we show that the gate can be achieved using only two-step operations.

  13. High-fidelity two-qubit gates via dynamical decoupling of local 1 /f noise at the optimal point

    Science.gov (United States)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2016-08-01

    We investigate the possibility of achieving high-fidelity universal two-qubit gates by supplementing optimal tuning of individual qubits with dynamical decoupling (DD) of local 1 /f noise. We consider simultaneous local pulse sequences applied during the gate operation and compare the efficiencies of periodic, Carr-Purcell, and Uhrig DD with hard π pulses along two directions (πz /y pulses). We present analytical perturbative results (Magnus expansion) in the quasistatic noise approximation combined with numerical simulations for realistic 1 /f noise spectra. The gate efficiency is studied as a function of the gate duration, of the number n of pulses, and of the high-frequency roll-off. We find that the gate error is nonmonotonic in n , decreasing as n-α in the asymptotic limit, α ≥2 , depending on the DD sequence. In this limit πz-Urhig is the most efficient scheme for quasistatic 1 /f noise, but it is highly sensitive to the soft UV cutoff. For small number of pulses, πz control yields anti-Zeno behavior, whereas πy pulses minimize the error for a finite n . For the current noise figures in superconducting qubits, two-qubit gate errors ˜10-6 , meeting the requirements for fault-tolerant quantum computation, can be achieved. The Carr-Purcell-Meiboom-Gill sequence is the most efficient procedure, stable for 1 /f noise with UV cutoff up to gigahertz.

  14. Entanglement of a two-qubit anisotropic Heisenberg XYZ chain in nonuniform magnetic fields with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Xu Xiao-Bo; Liu Jin-Ming; Yu Peng-Fei

    2008-01-01

    Taking the intrinsic decoherence effect into account,this paper investigates the entanglement of a two-qubit anisotropic Heisenberg XY Z model in the presence of nonuniform external magnetic fields by employing the concurrence as entanglement measure.It is found that both the intrinsic decoherence and the anisotropy of the system give a significant suppression to the entanglement.Moreover it finds that the initial state of the system plays an important role in the time evolution of the entanglement,which means that the entanglement of the system is independent of the nonuniformity and uniformity of the magnetic field when the system is in the initial state |ψ(0)>=|00>and |ψ(0)>=m |01>+n|10>,respectively.

  15. Partial Teleportation of Entanglement Through Natural Thermal Entanglement in Two-Qubit Heisenberg ⅩⅩⅩ Chain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; LONG Gui-Lu; WU Yu-Chun; GUO Guang-Can

    2007-01-01

    Natural thermal entanglement between two qubits with ⅩⅩⅩ Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement.Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost during the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.

  16. Effects of Dzyaloshinski-Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Mian; Liu Jin-Ming

    2009-01-01

    Quantum teleportation via the entangled channel composed of a two-qubit Heisenberg XYZ model with Dzyaloshinski-Moriya (DM) interaction in the presence of intrinsic decoherenee has been investigated. We find that the initial state of the channel plays an important role in the teleported state and the average fidelity of teleportation. When the initial channel is in the state [ψ1(0)>=a|00> + b|11>, the average fidelity is equal to 1/3 constantly, which is independent of the DM interaction and the intrinsic decoherence effect. But when the channel is initially in the state [ψ2(0)> = c|01) + d|10>, the average fidelity is always larger than 2/3. Moreover, under a certain condition, the average fidelity can be enhanced by adjusting the DM interaction, and the intrinsic decoherence leads to a suppression of the fluctuation of the average fidelity.

  17. Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2015-08-14

    We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.

  18. Demonstration of a Tuneable Coupler for Superconducting Qubits Using Coherent, Time Domain, Two-Qubit Operations

    CERN Document Server

    Bialczak, R C; Hofheinz, M; Lenander, M; Lucero, E; Neeley, M; O'Connell, A D; Sank, D; Wang, H; Weides, M; Wenner, J; Yamamoto, T; Cleland, A N; Martinis, J M

    2010-01-01

    A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the inter-qubit coupling strength can be arbitrarily tuned over nanosecond timescales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over long distances. Such design flexibility is likely to be essential for a scalable quantum computer.

  19. Study of Concurrence and D-Concurrence on Two-Qubits Resulted in Pair Coherent States in Language of SU(2) Coherent States

    Institute of Scientific and Technical Information of China (English)

    S. Salimi; A. Mohammadzadet

    2011-01-01

    Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU(2) coherent states.

  20. Dynamic Entanglement Evolution of Two-qubit XYZ Spin Chain in Markovian Environment

    CERN Document Server

    Yi-Chong, Ren

    2015-01-01

    We propose a new approach called Ket-Bra Entangled State (KBES) Method for converting master equation into Schr\\"{o}dinger-like equation. With this method, we investigate decoherence process and entanglement dynamics induced by a $2$-qubit spin chain that each qubit coupled with reservoir. The spin chain is an anisotropy $XYZ$ Heisenberg model in the external magnetic field $B$, the corresponding master equation is solved concisely by KBES method; Furthermore, the effects of anisotropy, temperature, external field and initial state on concurrence dynamics is analyzed in detail for the case that initial state is Extended Wenger-Like(EWL) state. Finally we research the coherence and concurrence of the final state (namely the density operator for time tend to infinite)

  1. Probabilistic Teleportation of an Arbitrary Unknown Two-Qubit State via Positive Operator-Valued Measure and Two Non-maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-Yin; WANG Dong; LIU Jun; SHI Shou-Hua

    2006-01-01

    We present a scheme for probabilistically teleporting an arbitrary unknown two-qubit state through a quantum channel made up of two nonidentical non-maximally entangled states. In this scheme, the probabilistic teleportation is realized by using a proper positive operator-valued measure instead of usual projective measurement.

  2. The influence of atomic coherence and dipole–dipole interaction on entanglement of two qubits with nondegenerate two-photon transitions

    Indian Academy of Sciences (India)

    E K Bashkirov; M S Mastyugin

    2015-01-01

    Considering two artificial identical atoms interacting with two-mode thermal field through non-degenerate two-photon transitions, this paper studies the influence of atomic coherence and dipole–dipole interaction on the entanglement of two qubits. It is found that the entanglement is greatly enhanced by these mechanisms.

  3. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  4. All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal

    Science.gov (United States)

    Girdhar, Parth; Cavalcanti, Eric G.

    2016-09-01

    We derive an inequality that is necessary and sufficient to show Einstein-Podolsky-Rosen (EPR) steering in a scenario employing only correlations between two arbitrary dichotomic measurements on each party. Thus the inequality is a complete steering analogy of the Clauser-Horne-Shimony-Holt (CHSH) inequality, a generalization of the result of Cavalcanti et al. [E. G. Cavalcanti, C. J. Foster, M. Fuwa, and H. M. Wiseman, JOSA B 32, A74 (2015), 10.1364/JOSAB.32.000A74]. We show that violation of the inequality only requires measuring over equivalence classes of mutually unbiased measurements on the trusted party and that in fact assuming a general two-qubit system arbitrary pairs of distinct projective measurements at the trusted party are equally useful. Via this it is found that for a given state the maximum violation of our EPR-steering inequality is equal to that for the CHSH inequality, so all states that are EPR steerable with CHSH-type correlations are also Bell nonlocal.

  5. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  6. A zero-mean entanglement index and related Hilbert-Schmidt moment computations for real two-qubit density matrices

    CERN Document Server

    Slater, Paul B

    2010-01-01

    We study the moments of probability distributions generated by certain determinantal functions of generic two-qubit density matrices (rho) with real entries over the associated nine-dimensional convex domain, assigned Hilbert-Schmidt measure. It is found that the mean of the (nonnegative) determinant |rho| is 1/2288, the mean of the determinant of the partial transpose |rho^{PT}|--negative values indicating entanglement--is -1/858, while the mean of the product of these two determinants is zero. We ascertain the exact values--also rational numbers--of the succeeding eight moments of |rho^{PT}|. At intermediate steps in the derivation of the m-th moment, rational functions C_{2 j}(m) emerge, yielding the coefficients of the 2j-th power of even polynomials of total degree 4 m. These functions possess poles at finite series of consecutive half-integers, and certain (trivial) roots at finite series of consecutive natural numbers. The (nontrivial) dominant roots of C_{2 j}(m) appear to converge to the same half-in...

  7. Entanglement Genesis by Ancilla-Based Parity Measurement in 2D Circuit QED

    NARCIS (Netherlands)

    Saira, O.P.; Groen, J.P.; Cramer, J.; Meretska, M.; De Lange, G.; DiCarlo, L.

    2014-01-01

    We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measur

  8. Non-Markovian Entanglement Sudden Death and Rebirth of a Two-Qubit System in the Presence of System-Bath Coherence

    CERN Document Server

    Wang, Hao-Tian; Zou, Yang; Ge, Rong-Chun; Guo, Guang-Can

    2010-01-01

    We present a detailed study of the entanglement dynamics of a two-qubit system coupled to independent non-Markovian environments, employing hierarchy equations. This recently developed theoretical treatment can conveniently solve non-Markovian problems and take into consideration the correlation between the system and bath in an initial state. We concentrate on calculating the death and rebirth time points of the entanglement to obtain a general view of the concurrence curve and explore the behavior of entanglement dynamics with respect to the coupling strength, the characteristic frequency of the noise bath and the environment temperature.

  9. Dynamical matrix for arbitrary quadratic fermionic bath Hamiltonians and non-Markovian dynamics of one and two qubits in an Ising model environment

    Science.gov (United States)

    Iemini, Fernando; da Silva Souza, Leonardo; Debarba, Tiago; Cesário, André T.; Maciel, Thiago O.; Vianna, Reinaldo O.

    2017-05-01

    We obtain the analytical expression for the Kraus decomposition of the quantum map of an environment modeled by an arbitrary quadratic fermionic Hamiltonian acting on one or two qubits, and derive simple functions to check the non-positivity of the intermediate map. These functions correspond to two different sufficient criteria for non-Markovianity. In the particular case of an environment represented by the Ising Hamiltonian, we discuss the two sources of non-Markovianity in the model, one due to the finite size of the lattice, and another due to the kind of interactions.

  10. Measurement Saves CNOT Gates in Optimal 2-Qubit Circuits

    CERN Document Server

    Shende, V V; Shende, Vivek V.; Markov, Igor L.

    2005-01-01

    It has been shown in recent papers that any 2-qubit unitary operator can be realized, up to global phase, by a quantum circuit with at most three CNOT gates. Three CNOT gates are also necessary for many operators. However, these results do not fully account for the effect of measurement. Intuitively, the fact that information is lost during measurement should allow some flexibility during circuit synthesis. In our present work, we formalize this in the case of two-qubit operators followed by projective measurements with respect to the computational basis. We show that, in this context, two CNOT gates and six one-qubit gates suffice to simulate an arbitrary two-qubit operator. We also show that for several types of measurement, two CNOT gates are also necessary. In one case, we show that one CNOT gate is necessary and sufficient.

  11. Evolving Quantum Circuits using Genetic Algorithms

    CERN Document Server

    Prashant

    2005-01-01

    This paper describes an application of genetic algorithm for evolving quantum computing circuits. The circuits use reversible one qubit and two qubit gates which are applied on a multi-qubit system having some initial state. The genetic algorithm automatically searches the space and comes out with the appropriate circuit design, which yields desired output state. The fitness function used matches the output with desired output and the search stops when it is found. The fitness value becomes higher if the output is close to the desired output. The paper briefly discusses the operation of a quantum gate over the multi-qubit system. The paper also demonstrates some examples of the evolved circuits using the algorithm.

  12. Ultrafast Quantum Gates in Circuit QED

    CERN Document Server

    Romero, G; Wang, Y M; Scarani, V; Solano, E

    2011-01-01

    We present a method of implementing ultrafast two-qubit gates valid for the ultrastrong coupling (USC) and deep strong coupling (DSC) regimes of light-matter interaction, considering state-of-the-art circuit quantum electrodynamics (QED) technology. Our proposal includes a suitable qubit architecture and is based on a four-step sequential displacement of an intracavity mode, operating at a time proportional to the inverse of the resonator frequency. Through ab initio calculations, we show that these quantum gates can be performed at subnanosecond time scales, while keeping the fidelity above 99%.

  13. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    Science.gov (United States)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  14. Dynamics of Measurement-Induced Non-Locality and Geometric Measure of Discord in a Two-Qubit Heisenberg XY Chain

    Science.gov (United States)

    Guo-Hui, Yang; Le, Song

    2016-02-01

    By taking into account the Dzyaloshinsky-Moriya (DM) interaction under uniform magnetic field, quantum correlation behaviors measured by the measurement-induced nonlocality (MIN) and the geometric measure of discord (GMOD) in a two-qubit XY model are investigated in detail. Turning the different parameters can lead the two kinds of measurements to present different properties. For example, increasing the parameter B(uniform magnetic field), the existing region of MIN is larger than GMOD; MIN can appear the phenomenon of monotonous reduction when the parameter D(Dzyaloshinsky-Moriya interaction) is smaller than one threshold value, while GMOD cannot; MIN monotonously reduces with enhancive value of T(temperature), while GMOD initial experiences a slightly increasing and then decreases. One interesting point is that the more obvious and complicated difference between them are shown from the initial values. This property is both true for the zero temperature and the finite temperature. Through analyzing the limit case of the temperature approaching zero, the analytic solutions give the detailed reasons why have different effect on the initial values. Moreover, from the analytic solutions, we know the initial value of MIN is always larger than or equal to GMOD.

  15. Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Matteo A. C., E-mail: matteo.rossi@unimi.it [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano (Italy); Paris, Matteo G. A., E-mail: matteo.paris@fisica.unimi.it [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano (Italy); CNISM, Unità Milano Statale, I-20133 Milano (Italy)

    2016-01-14

    We address the interaction of single- and two-qubit systems with an external transverse fluctuating field and analyze in detail the dynamical decoherence induced by Gaussian noise and random telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the existence of (state dependent) regions of the parameter space where the two noises lead to very similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e., the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect of one kind of noise may be simulated with high fidelity by the other one.

  16. Quantum computer of wire circuit architecture

    CERN Document Server

    Moiseev, S A; Andrianov, S N

    2010-01-01

    First solid state quantum computer was built using transmons (cooper pair boxes). The operation of the computer is limited because of using a number of the rigit cooper boxes working with fixed frequency at temperatures of superconducting material. Here, we propose a novel architecture of quantum computer based on a flexible wire circuit of many coupled quantum nodes containing controlled atomic (molecular) ensembles. We demonstrate wide opportunities of the proposed computer. Firstly, we reveal a perfect storage of external photon qubits to multi-mode quantum memory node and demonstrate a reversible exchange of the qubits between any arbitrary nodes. We found optimal parameters of atoms in the circuit and self quantum modes for quantum processing. The predicted perfect storage has been observed experimentally for microwave radiation on the lithium phthalocyaninate molecule ensemble. Then also, for the first time we show a realization of the efficient basic two-qubit gate with direct coupling of two arbitrary...

  17. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  18. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-06-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  19. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  20. Quantum chemistry and charge transport in biomolecules with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Las Heras, U; Mezzacapo, A; Sanz, M; Solano, E; Lamata, L

    2016-06-21

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  1. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

    Science.gov (United States)

    Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.

    2016-03-01

    We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.

  2. One-step quantum phase gate in the ultrastrong coupling regime of circuit QED

    Science.gov (United States)

    Xu, Xuexin; Liu, Xin; Liao, Qinghong; Zhou, Keya; Liu, Shutian

    2017-09-01

    In a previous publication (Phys Rev Lett 108: 120501, 2012), Romero et al. proposed an ultrastrong coupling circuit QED system that can implement a two-qubit quantum phase gate with four controlling pulses. Based on this architecture, we demonstrate that an ultrafast two-qubit phase gate can also be realized with only one oscillation and lower coupling strengths. In our operation scheme, two identical qubits evolve synchronously under a single pulse with a duration determined by a specific coupling strength. The phase gate can also be obtained periodically. The influences of parameter fluctuations are estimated. We demonstrate that the fidelities can be greater than 99% if the parameter fluctuations are controlled within 5%.

  3. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems.

    Science.gov (United States)

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-03-10

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases.

  4. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    Science.gov (United States)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  5. EMERGENCY CALLS

    CERN Multimedia

    2001-01-01

    IN URGENT NEED OF A DOCTOR GENEVA EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME, open 24h/24h 748-49-50 Association Of Geneva Doctors Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin EMERGENCIES 719-61-11 URGENCES PEDIATRIQUES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112 FRANCE EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ANTI-POISONS CENTRE Open 24h/24h 04-72-11-69-11 All doctors ...

  6. Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control

    CERN Document Server

    Liu, Zhuo; Hu, Kai; Xu, Luting; Wei, Suhua; Guo, Lingzhen; Li, Xin-Qi

    2010-01-01

    In the solid-state circuit QED system and based on the homodyne measurement in dispersive regime, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved filtered-current-based feedback scheme. We show that this is essential for us to achieve the desirable control effect in present system.

  7. Effect of Multiphoton Processes on Geometric Quantum Computation in Superconducting Circuit QED

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong

    2012-01-01

    We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.

  8. Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.

    Science.gov (United States)

    Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P

    2006-07-21

    We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

  9. Hybrid Quantum Processors: molecular ensembles as quantum memory for solid state circuits

    CERN Document Server

    Rabl, P; Doyle, J M; Lukin, M D; Schölkopf, R J; Zoller, P

    2006-01-01

    We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $\\mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

  10. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  11. Statistical circuit design for yield improvement in CMOS circuits

    Science.gov (United States)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  12. Solid state multi-ensemble quantum computer in waveguide circuit model

    CERN Document Server

    Moiseev, Sergey A; Gubaidullin, Firdus F

    2010-01-01

    The first realization of solid state quantum computer was demonstrated recently by using artificial atoms -- transmons in superconducting resonator. Here, we propose a novel architecture of flexible and scalable quantum computer based on a waveguide circuit coupling many quantum nodes of controlled atomic ensembles. For the first time, we found the optimal practically attainable parameters of the atoms and circuit for 100{%} efficiency of quantum memory for multi qubit photon fields and confirmed experimentally the predicted perfect storage. Then we revealed self modes for reversible transfer of qubits between the quantum memory node and arbitrary other nodes. We found a realization of iSWAP gate via direct coupling of two arbitrary nodes with a processing rate accelerated proportionally to number of atoms in the node. A large number of the two-qubit gates can be simultaneously realized in the circuit for implementation of parallel quantum processing. Dynamic coherent elimination procedure of excess quantum s...

  13. Optimal Control of 1D and 2D Circuit QED

    CERN Document Server

    Fisher, R; Glaser, S J; Marquardt, F; Schulte-Herbrueggen, T

    2009-01-01

    Optimal control can be used to significantly improve multi-qubit gates in quantum information processing hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not only to dispersive gates of two qubits inside a cavity, but, more generally, to architectures based on two-dimensional arrays of cavities and qubits. For high-fidelity gate operations, simultaneous evolutions of controls and couplings in the two coupling dimensions of cavity grids are shown to be significantly faster than conventional sequential implementations. Even under experimentally realistic conditions speedups by a factor of three can be gained. The methods immediately scale to large grids and indirect gates between arbitrary pairs of qubits on the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of controllable qubits.

  14. A Practical Top-down Approach to Quantum Circuit Synthesis

    CERN Document Server

    Shende, V V; Markov, I L

    2004-01-01

    Operators acting on a collection of two-level quantum-mechanical systems can be represented by quantum circuits. In this work we develop a decomposition of such unitary operators which reveals their top-down structure and can be implemented numerically with well-known primitives. It leads to simultaneous improvements by a factor of two over (i) the best known n-qubit circuit synthesis algorithms for large n, and (ii) the best known three-qubit circuits. In the worst case, our algorithm NQ produces circuits that differ from known lower bounds by approximately a factor of two. Thus, the required number of quantum controlled-not's (i.e. two-qubit interactions) is only half of the number of real degrees of freedom (4^n-1) of a generic unitary operator. This is desirable since CNOTs are typically slower and more error-prone than one-qubit rotations, and they may in addition may require physically coupling distant two-level systems.

  15. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  16. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  17. Local Random Quantum Circuits are Approximate Polynomial-Designs

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  18. Implementation of a quantum controlled-SWAP gate with photonic circuits

    Science.gov (United States)

    Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki

    2017-01-01

    Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks. PMID:28361950

  19. GATING CIRCUITS

    Science.gov (United States)

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  20. Logic Circuit Design Selected Methods

    CERN Document Server

    Vingron, Shimon P

    2012-01-01

        In three main divisions the  book covers combinational circuits, latches, and asynchronous sequential circuits. Combinational circuits have  no memorising ability, while sequential circuits have such an ability to various degrees. Latches are the simplest sequential circuits, ones with the shortest memory. The presentation is decidedly non-standard.         The design of combinational circuits is discussed in an orthodox manner using normal forms and in an unorthodox manner using set-theoretical evaluation formulas relying heavily on Karnaugh maps. The latter approach allows for a new design technique called composition.          Latches are covered very extensively. Their memory functions are expressed mathematically in a time-independent manner allowing the use of (normal, non-temporal) Boolean logic in their calculation. The theory of latches is then used as the basis for calculating asynchronous circuits.         Asynchronous circuits are specified in a tree-representation, eac...

  1. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  2. GLITCH ANALYSIS AND REDUCTION IN DIGITAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Ronak Shah

    2016-08-01

    Full Text Available Hazard in digital circuits is unnecessary transitions due to gate propagation delay in that circuit. Hazards occur due to uneven delay offered in the path of the various ongoing signals. One of the important reasons for power dissipation in CMOS circuits is the switching activity .This include activities such as spurious pulses, called glitches. Power optimization techniques that concentrate on the reduction of switching power dissipation of a given circuit are called glitch reduction techniques. In this paper, we analyse various Glitch reduction techniques such as Hazard filtering Technique, Balanced Path Technique, Multiple Threshold Technique and Gate Freezing Technique. We also measure the parameters such as noise and delay of the circuits on application of various techniques to check the reliability of different circuits in various situations.

  3. Exact Synthesis of 3-Qubit Quantum Circuits from Non-Binary Quantum Gates Using Multiple-Valued Logic and Group Theory

    CERN Document Server

    Yang, Guowu; Song, Xiaoyu; Perkowski, Marek

    2011-01-01

    We propose an approach to optimally synthesize quantum circuits from non-permutative quantum gates such as Controlled-Square-Root-of-Not (i.e. Controlled-V). Our approach reduces the synthesis problem to multiple-valued optimization and uses group theory. We devise a novel technique that transforms the quantum logic synthesis problem from a multi-valued constrained optimization problem to a group permutation problem. The transformation enables us to utilize group theory to exploit the properties of the synthesis problem. Assuming a cost of one for each two-qubit gate, we found all reversible circuits with quantum costs of 4, 5, 6, etc, and give another algorithm to realize these reversible circuits with quantum gates.

  4. Generating and stabilizing the GHZ state in circuit QED: Joint measurement, Zeno effect and feedback

    CERN Document Server

    Feng, Wei; Ding, Xinmei; Xu, Luting; Li, Xin-Qi

    2011-01-01

    In solid-state circuit QED system, we extend the previous study of generating and stabilizing two-qubit Bell state [Phys. Rev. A 82, 032335 (2010)], to three-qubit GHZ state. In dispersive regime, we employ the homodyne joint readout for multiple qubits to infer the state for further processing, and in particular use it to stabilize the state directly by means of an alternate-flip-interrupted Zeno (AFIZ) scheme. Moreover, the state-of-the-art feedback action based on the filtered current enables not only a deterministic generation of the pre-GHZ state in the initial stage, but also a fast recovery from the environment-caused degradation in the later stabilization process. We show that the proposed scheme can maintain the state with high fidelity if the efficient quantum measurement and rapid single-qubit rotations are available.

  5. A circuit QED controlled-Z ``AMP'' gate (Adiabatic MultiPole gate)

    Science.gov (United States)

    McKay, David C.; Naik, Ravi; Bishop, Lev S.; Schuster, David I.

    2014-03-01

    Circuit quantum electrodynamics -- superconducting Josephson junction ``transmon'' qubits coupled via microwave cavities -- is a promising route towards scalable quantum computing. Here we report on experiments coupling two transmon qubits through multiple strongly coupled planar superconducting cavities -- the multipole cavity QED architecture. This design enables large interactions (mediated by real cavity photons) when the transmons are resonant with the cavities, and low off rates when the qubits are tuned away from the cavity resonance. In this talk we will discuss our gate protocol -- the AMP gate -- and report on producing a high fidelity Bell state (| gg > + | ee >) measured from state and process tomography. We will discuss future plans for scaling this architecture beyond two qubits.

  6. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  7. A call center primer.

    Science.gov (United States)

    Durr, W

    1998-01-01

    Call centers are strategically and tactically important to many industries, including the healthcare industry. Call centers play a key role in acquiring and retaining customers. The ability to deliver high-quality and timely customer service without much expense is the basis for the proliferation and expansion of call centers. Call centers are unique blends of people and technology, where performance indicates combining appropriate technology tools with sound management practices built on key operational data. While the technology is fascinating, the people working in call centers and the skill of the management team ultimately make a difference to their companies.

  8. Circuit Connectors

    Science.gov (United States)

    1979-01-01

    The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.

  9. LOGIC CIRCUIT

    Science.gov (United States)

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  10. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  11. Evaluation of call options

    Institute of Scientific and Technical Information of China (English)

    陈道平

    2002-01-01

    The European and American call options,for which the prices of their underlying asset follow compound Poisson process,are evaluated by a probability method.Formulas that can be used to evaluate the options are obtained,which include not only the elements of an option:the price of the call option,the exercise price and the expiration date,but also the riskless interest rate,nevertheless exclude the volatility of the underlying asset.In practice,the evaluated results obtained by these formulas can proved references of making strategic decision for an investor who buys the call option and a company who sells the call option.

  12. Callings and Organizational Behavior

    Science.gov (United States)

    Elangovan, A. R.; Pinder, Craig C.; McLean, Murdith

    2010-01-01

    Current literature on careers, social identity and meaning in work tends to understate the multiplicity, historical significance, and nuances of the concept of calling(s). In this article, we trace the evolution of the concept from its religious roots into secular realms and develop a typology of interpretations using occupation and religious…

  13. Dimensioning large call centers

    NARCIS (Netherlands)

    S.C. Borst (Sem); A. Mandelbaum; M.I. Reiman

    2000-01-01

    textabstractWe develop a framework for asymptotic optimization of a queueing system. The motivation is the staffing problem of call centers with 100's of agents (or more). Such a call center is modeled as an M/M/N queue, where the number of agents~$N$ is large. Within our framework, we determine the

  14. Callings and Organizational Behavior

    Science.gov (United States)

    Elangovan, A. R.; Pinder, Craig C.; McLean, Murdith

    2010-01-01

    Current literature on careers, social identity and meaning in work tends to understate the multiplicity, historical significance, and nuances of the concept of calling(s). In this article, we trace the evolution of the concept from its religious roots into secular realms and develop a typology of interpretations using occupation and religious…

  15. Making telephone calls

    Institute of Scientific and Technical Information of China (English)

    任民

    2007-01-01

    @@ 1.常见用语 a.请找某人接电话 Hello!May/Could/Can I speak to…,please? b.问对方是不是某人 Is that…(speaking)? c.问对方是谁 1)Who's speaking(calling)? 2)Who's that(speaking/calling)?

  16. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  17. Design and optimisation of quantum logic circuits for a three-qubit Deutsch-Jozsa algorithm implemented with optically-controlled, solid-state quantum logic gates

    CERN Document Server

    Del Duce, A; Bayvel, P

    2009-01-01

    We analyse the design and optimisation of quantum logic circuits suitable for the experimental demonstration of a three-qubit quantum computation prototype based on optically-controlled, solid-state quantum logic gates. In these gates, the interaction between two qubits carried by the electron-spin of donors is mediated by the optical excitation of a control particle placed in their proximity. First, we use a geometrical approach for analysing the entangling characteristics of these quantum gates. Then, using a genetic programming algorithm, we develop circuits for the refined Deutsch-Jozsa algorithm investigating different strategies for obtaining short total computational times. We test two separate approaches based on using different sets of entangling gates with the shortest possible gate computation time which, however, does not introduce leakage of quantum information to the control particles. The first set exploits fast approximations of controlled-phase gates as entangling gates, while the other one a...

  18. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  19. A Telephone Call

    Institute of Scientific and Technical Information of China (English)

    王晓兰

    2004-01-01

    At about two o'clock on a cold winter morning, a doctor drove seven miles in answer to a telephone call. On his coming the man who had called him in said, “Doctor, I don't have a sore throat, I don't cough.I have no pain either in the side or in the back, I'm not running a temperature, but still I feel that death is near.”

  20. Analog circuit design designing waveform processing circuits

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  1. Dynamical compensation in physiological circuits.

    Science.gov (United States)

    Karin, Omer; Swisa, Avital; Glaser, Benjamin; Dor, Yuval; Alon, Uri

    2016-11-08

    Biological systems can maintain constant steady-state output despite variation in biochemical parameters, a property known as exact adaptation. Exact adaptation is achieved using integral feedback, an engineering strategy that ensures that the output of a system robustly tracks its desired value. However, it is unclear how physiological circuits also keep their output dynamics precise-including the amplitude and response time to a changing input. Such robustness is crucial for endocrine and neuronal homeostatic circuits because they need to provide a precise dynamic response in the face of wide variation in the physiological parameters of their target tissues; how such circuits compensate their dynamics for unavoidable natural fluctuations in parameters is unknown. Here, we present a design principle that provides the desired robustness, which we call dynamical compensation (DC). We present a class of circuits that show DC by means of a nonlinear feedback loop in which the regulated variable controls the functional mass of the controlling endocrine or neuronal tissue. This mechanism applies to the control of blood glucose by insulin and explains several experimental observations on insulin resistance. We provide evidence that this mechanism may also explain compensation and organ size control in other physiological circuits.

  2. Enhanced nurse call systems.

    Science.gov (United States)

    2001-04-01

    This Evaluation focuses on high-end computerized nurse call systems--what we call enhanced systems. These are highly flexible systems that incorporate microprocessor and communications technologies to expand the capabilities of the nurse call function. Enhanced systems, which vary in configuration from one installation to the next, typically consist of a basic system that provides standard nurse call functionality and a combination of additional enhancements that provide the added functionality the facility desires. In this study, we examine the features that distinguish enhanced nurse call systems from nonenhanced systems, focusing on their application and benefit to healthcare facilities. We evaluated seven systems to determine how well they help (1) improve patient care, as well as increase satisfaction with the care provided, and (2) improve caregiver efficiency, as well as increase satisfaction with the work environment. We found that all systems meet these objectives, but not all systems perform equally well for all implementations. Our ratings will help facilities identify those systems that offer the most effective features for their intended use. The study also includes a Technology Management Guide to help readers (1) determine whether they'll benefit from the capabilities offered by enhanced systems and (2) target a system for purchase and equip the system for optimum performance and cost-effective operation.

  3. Assessing call centers’ success:

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2013-07-01

    This paper introduces a model to evaluate the performance of call centers based on the Delone and McLean Information Systems success model. A number of indicators are identified to track the call center’s performance. Mapping of the proposed indicators to the six dimensions of the D&M model is presented. A Weighted Call Center Performance Index is proposed to assess the call center performance; the index is used to analyze the effect of the identified indicators. Policy-Weighted approach was used to assume the weights with an analysis of different weights for each dimension. The analysis of the different weights cases gave priority to the User satisfaction and net Benefits dimension as the two outcomes from the system. For the input dimensions, higher priority was given to the system quality and the service quality dimension. Call centers decision makers can use the tool to tune the different weights in order to reach the objectives set by the organization. Multiple linear regression analysis was used in order to provide a linear formula for the User Satisfaction dimension and the Net Benefits dimension in order to be able to forecast the values for these two dimensions as function of the other dimensions

  4. Preparation and measurement of three-qubit entanglement in a superconducting circuit.

    Science.gov (United States)

    Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J

    2010-09-30

    Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.

  5. Call Center Capacity Planning

    DEFF Research Database (Denmark)

    Nielsen, Thomas Bang

    in modern call centers allows for a high level of customization, but also induces complicated operational processes. The size of the industry together with the complex and labor intensive nature of large call centers motivates the research carried out to understand the underlying processes. The customizable...... groups are further analyzed. The design of the overflow policies is optimized using Markov Decision Processes and a gain with regard to service levels is obtained. Also, the fixed threshold policy is investigated and found to be appropriate when one class is given high priority and when it is desired...

  6. CALLING AQUARIUM LOVERS...

    CERN Multimedia

    2002-01-01

    CERN's anemones will soon be orphans. We are looking for someone willing to look after the aquarium in the main building, for one year. If you are interested, or if you would like more information, please call 73830. (The anemones living in the aquarium thank you in anticipation.)

  7. A call for surveys

    DEFF Research Database (Denmark)

    Bernstein, Philip A.; Jensen, Christian S.; Tan, Kian-Lee

    2012-01-01

    The database field is experiencing an increasing need for survey papers. We call on more researchers to set aside time for this important writing activity. The database field is growing in population, scope of topics covered, and the number of papers published. Each year, thousands of new papers...

  8. A call for surveys

    DEFF Research Database (Denmark)

    Bernstein, Philip A.; Jensen, Christian S.; Tan, Kian-Lee

    2012-01-01

    The database field is experiencing an increasing need for survey papers. We call on more researchers to set aside time for this important writing activity. The database field is growing in population, scope of topics covered, and the number of papers published. Each year, thousands of new papers ...

  9. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  10. Simple Autonomous Chaotic Circuits

    Science.gov (United States)

    Piper, Jessica; Sprott, J.

    2010-03-01

    Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.

  11. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  12. Current limiter circuit system

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  13. Solenoid-Simulation Circuit

    Science.gov (United States)

    Simon, R. A.

    1986-01-01

    Electrical properties of solenoids imitated for tests of control circuits. Simulation circuit imitates voltage and current responses of two engine-controlling solenoids. Used in tests of programs of digital engine-control circuits, also provides electronic interface with circuits imitating electrical properties of pressure sensors and linear variable-differential transformers. Produces voltages, currents, delays, and discrete turnon and turnoff signals representing operation of solenoid in engine-control relay. Many such circuits used simulating overall engine circuitry.

  14. RF Circuit Design in Nanometer CMOS

    OpenAIRE

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern multi-band communication systems as these systems move toward software-defined radio. These trends in technology and system design call for a re-thinking of analog and RF circuit design in nanometer C...

  15. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  16. Calling Dunbar's Numbers

    CERN Document Server

    MacCarron, Pádraig; Dunbar, Robin

    2016-01-01

    The social brain hypothesis predicts that humans have an average of about 150 relationships at any given time. Within this 150, there are layers of friends of an ego, where the number of friends in a layer increases as the emotional closeness decreases. Here we analyse a mobile phone dataset, firstly, to ascertain whether layers of friends can be identified based on call frequency. We then apply different clustering algorithms to break the call frequency of egos into clusters and compare the number of alters in each cluster with the layer size predicted by the social brain hypothesis. In this dataset we find strong evidence for the existence of a layered structure. The clustering yields results that match well with previous studies for the innermost and outermost layers, but for layers in between we observe large variability.

  17. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  18. Call centres: constructing flexibility

    OpenAIRE

    Arzbächer, Sandra; Holtgrewe, Ursula; Kerst, Christian

    2002-01-01

    "The development of call centres as a flexible interface between firms and their environments has been seen as exemplary or even symptomatic of flexible capitalism (Sennett 1998). We are going to point out that they do not just stand for organisational change but also for changes of institutions towards deregulation. Employers and managers hoped for gains of flexibility, decreasing labour costs, and market gains by an expanded 24-hour-service. Surveillance and control by flexib...

  19. Hidden circuits and argumentation

    Science.gov (United States)

    Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.

    2016-11-01

    Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.

  20. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  1. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    2013-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  2. How Dolphins Call

    Institute of Scientific and Technical Information of China (English)

    马加芬

    2007-01-01

    <正>与人类一样,海豚能通过声音相互称呼"名字"。A high-pitched"wee-o-wee-o-wee-o-wee"whistle might not soundlike much to you,but it6s exactly how a dolphin might introduce itself.Because sight is limited in the ocean,dolphins create individual"name"calls to communicate their whereabouts to friends and families.But it6snot as simple as just recognizing a voice,

  3. Heed the Calls

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ THE bombing of Libya by some of the world's major powers, including France, the United States and Britain brought a new dimension to the protests that have washed over North Africa and the Middle East in the past months.Following the UN Security Council passing the imposition of a no-fly zone over Libyan air-space, a move supported by Nigeria, South Africa and Gabon, air and sea strikes pounded Muammar Gadhafi's strongholds.The AU called for an immediate stop to hostilities on both sides.

  4. Heed the Calls

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    THE bombing of Libya by some of the world’s major powers,including France, the United States and Britain brought a new dimension to the protests that have washed over North Africa and the Middle East in the past months.Following the UN Security Council passing the imposition of a no-fly zone over Libyan air-space,a move supported by Nigeria,South Africa and Gabon,air and sea strikes pounded Muammar Gadhafi’s strongholds.The AU called for an immediate stop to hostilities

  5. Emergency Call Reform

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China merges several hotline call services in an effort to streamline the urban emergency system Chances are that if you find yourself in a crisis situation in China, dialing the correct emergency number could be a problem. Not because there isn't one, but quite the opposite. China has four main emergency response numbers-110 summons police help in a life-threatening situation, 119 brings out firefighters, 122 gets police activated to sort out traffic accidents and 120 ensures medical help. Along with th...

  6. An Island Called Cuba

    Directory of Open Access Journals (Sweden)

    Jean Stubbs

    2011-06-01

    Full Text Available Review of: An Island Called Home: Returning to Jewish Cuba. Ruth Behar, photographs by Humberto Mayol. New Brunswick NJ: Rutgers University Press, 2007. xiii + 297 pp. (Cloth US$ 29.95 Fidel Castro: My Life: A Spoken Autobiography. Fidel Castro & Ignacio Ramonet. New York: Scribner/Simon & Schuster, 2008. vii + 724 pp. (Paper US$ 22.00, e-book US$ 14.99 Cuba: What Everyone Needs to Know. Julia E. Sweig. New York: Oxford University Press, 2009. xiv + 279 pp. (Paper US$ 16.95 [First paragraph] These three ostensibly very different books tell a compelling story of each author’s approach, as much as the subject matter itself. Fidel Castro: My Life: A Spoken Autobiography is based on a series of long interviews granted by the then-president of Cuba, Fidel Castro, to Spanish-Franco journalist Ignacio Ramonet. Cuba: What Everyone Needs to Know, by U.S. political analyst Julia Sweig, is one of a set country series, and, like Ramonet’s, presented in question/answer format. An Island Called Home: Returning to Jewish Cuba, with a narrative by Cuban-American anthropologist Ruth Behar and photographs by Cuban photographer Humberto Mayol, is a retrospective/introspective account of the Jewish presence in Cuba. While from Ramonet and Sweig we learn much about the revolutionary project, Behar and Mayol convey the lived experience of the small Jewish community against that backdrop.

  7. Too close to call

    DEFF Research Database (Denmark)

    Kurrild-Klitgaard, Peter

    2012-01-01

    The note briefly outlines a new model for the explanation of US presidential elections, founded on (a) recent economic growth and (b) a measure of what may be called “’the cost of ruling”. The former is based in changes in real disposable income for the period following a mid-term election, while...... the latter combines factors of incumbency and terms-in-office. The model is applied to data from the US presidential elections 1932-2008 and has considerable explanatory power for the variation in the incumbent party’s candidate’s share of the two-party vote (R2=0.74). The model is controlled against...... a number of other frequent explanations and is found to be quite robust. When augmented with approval ratings for incumbent presidents, the explanatory power increases to 83 pct. and only incorrectly calls one of the last 15 US presidential elections. Applied to the 2012 election as a forecasting model...

  8. MEDICAL SERVICE - URGENT CALLS

    CERN Multimedia

    Service Médical

    2000-01-01

    IN URGENT NEED OF A DOCTOR GENEVA: EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME: Open 24h/24h 748-49-50 AMG- Association Of Geneva Doctors: Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin 719-61-11 EMERGENCIES 719-61-11 CHILDREN'S EMERGENCIES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112   FRANCE: EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ...

  9. Call for volunteers

    CERN Multimedia

    2008-01-01

    CERN is calling for volunteers from all members of the Laboratory for organizing the two exceptional Open days.CERN is calling for volunteers from all members of the Laboratory’s personnel to help with the organisation of these two exceptional Open Days, for the visits of CERN personnel and their families on the Saturday and above all for the major public Open Day on the Sunday. As for the 50th anniversary in 2004, the success of the Open Days will depend on a large number of volunteers. All those working for CERN as well as retired members of the personnel can contribute to making this event a success. Many guides will be needed at the LHC points, for the activities at the surface and to man the reception and information points. The aim of these major Open Days is to give the local populations the opportunity to discover the fruits of almost 20 years of work carried out at CERN. We are hoping for some 2000 volunteers for the two Open Days, on the Saturday from 9 a.m. to ...

  10. Relativistic causality and clockless circuits

    CERN Document Server

    Matherat, Philippe; 10.1145/2043643.2043650

    2011-01-01

    Time plays a crucial role in the performance of computing systems. The accurate modelling of logical devices, and of their physical implementations, requires an appropriate representation of time and of all properties that depend on this notion. The need for a proper model, particularly acute in the design of clockless delay-insensitive (DI) circuits, leads one to reconsider the classical descriptions of time and of the resulting order and causal relations satisfied by logical operations. This questioning meets the criticisms of classical spacetime formulated by Einstein when founding relativity theory and is answered by relativistic conceptions of time and causality. Applying this approach to clockless circuits and considering the trace formalism, we rewrite Udding's rules which characterize communications between DI components. We exhibit their intrinsic relation with relativistic causality. For that purpose, we introduce relativistic generalizations of traces, called R-traces, which provide a pertinent des...

  11. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  12. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching...... program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0....

  13. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  14. Too close to call

    DEFF Research Database (Denmark)

    Kurrild-Klitgaard, Peter

    2012-01-01

    The note briefly outlines a new model for the explanation of US presidential elections, founded on (a) recent economic growth and (b) a measure of what may be called “’the cost of ruling”. The former is based in changes in real disposable income for the period following a mid-term election, while...... the latter combines factors of incumbency and terms-in-office. The model is applied to data from the US presidential elections 1932-2008 and has considerable explanatory power for the variation in the incumbent party’s candidate’s share of the two-party vote (R2=0.74). The model is controlled against...

  15. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  16. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  17. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  18. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  19. Short-circuit logic

    NARCIS (Netherlands)

    Bergstra, J.A.; Ponse, A.

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of p

  20. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  1. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  2. Complete synchronization of the noise-perturbed Chua's circuits

    Science.gov (United States)

    Lin, Wei; He, Yangbo

    2005-06-01

    In this paper, complete synchronization between unidirectionally coupled Chua's circuits within stochastic perturbation is investigated. Sufficient conditions of complete synchronization between these noise-perturbed circuits are established by means of the so-called LaSalle-type invariance principle for stochastic differential equations. Specific examples and their numerical simulations are also provided to demonstrate the feasibility of these conditions. Furthermore, the results obtained for the coupled Chua's circuits are further generalized to the wide class of coupled systems within stochastic perturbation.

  3. Segmented circuits of academic recognition: the journals of social sciences and humanities in Argentina/Circuitos segmentados de consagracion academica: las revistas de Ciencias Sociales y Humanas en la Argentina

    National Research Council Canada - National Science Library

    Beigel, Fernanda; Salatino, Maximiliano

    2015-01-01

    ... institution of origin, language and discipline. The so-called "mainstream" circuit was based on the distinction between internationalized scientists and researchers restricted to domestic or "marginal" circuits...

  4. Computer science: Nanoscale connections for brain-like circuits

    Science.gov (United States)

    Legenstein, Robert

    2015-05-01

    Tiny circuit elements called memristors have been used as connections in an artificial neural network - enabling the system to learn to recognize letters of the alphabet from imperfect images. See Letter p.61

  5. On Multiplicative Linear Logic, Modality and Quantum Circuits

    Directory of Open Access Journals (Sweden)

    Ugo Dal Lago

    2012-10-01

    Full Text Available A logical system derived from linear logic and called QMLL is introduced and shown able to capture all unitary quantum circuits. Conversely, any proof is shown to compute, through a concrete GoI interpretation, some quantum circuits. The system QMLL, which enjoys cut-elimination, is obtained by endowing multiplicative linear logic with a quantum modality.

  6. Reversible Logic Circuit Synthesis

    CERN Document Server

    Shende, V V; Markov, I L; Prasad, A K; Hayes, John P.; Markov, Igor L.; Prasad, Aditya K.; Shende, Vivek V.

    2002-01-01

    Reversible, or information-lossless, circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement for quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We propose new constructions for reversible circuits composed of NOT, Controlled-NOT, and TOFFOLI gates (the CNT gate library) based on permutation theory. A new algorithm is given to synthesize optimal reversible circuits using an arbitrary gate library. We also describe much faster heuristic algorithms. We also pursue applications of the proposed techniques to the synthesis of quantum circuits.

  7. Exact Threshold Circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2010-01-01

    We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the ......We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave...... with the well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass...

  8. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  9. Observation of topological transitions in interacting quantum circuits.

    Science.gov (United States)

    Roushan, P; Neill, C; Chen, Yu; Kolodrubetz, M; Quintana, C; Leung, N; Fang, M; Barends, R; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Kelly, J; Megrant, A; Mutus, J; O'Malley, P J J; Sank, D; Vainsencher, A; Wenner, J; White, T; Polkovnikov, A; Cleland, A N; Martinis, J M

    2014-11-13

    Topology, with its abstract mathematical constructs, often manifests itself in physics and has a pivotal role in our understanding of natural phenomena. Notably, the discovery of topological phases in condensed-matter systems has changed the modern conception of phases of matter. The global nature of topological ordering, however, makes direct experimental probing an outstanding challenge. Present experimental tools are mainly indirect and, as a result, are inadequate for studying the topology of physical systems at a fundamental level. Here we employ the exquisite control afforded by state-of-the-art superconducting quantum circuits to investigate topological properties of various quantum systems. The essence of our approach is to infer geometric curvature by measuring the deflection of quantum trajectories in the curved space of the Hamiltonian. Topological properties are then revealed by integrating the curvature over closed surfaces, a quantum analogue of the Gauss-Bonnet theorem. We benchmark our technique by investigating basic topological concepts of the historically important Haldane model after mapping the momentum space of this condensed-matter model to the parameter space of a single-qubit Hamiltonian. In addition to constructing the topological phase diagram, we are able to visualize the microscopic spin texture of the associated states and their evolution across a topological phase transition. Going beyond non-interacting systems, we demonstrate the power of our method by studying topology in an interacting quantum system. This required a new qubit architecture that allows for simultaneous control over every term in a two-qubit Hamiltonian. By exploring the parameter space of this Hamiltonian, we discover the emergence of an interaction-induced topological phase. Our work establishes a powerful, generalizable experimental platform to study topological phenomena in quantum systems.

  10. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  11. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  12. Parallelizing quantum circuit synthesis

    OpenAIRE

    Di Matteo, Olivia; Mosca, Michele

    2016-01-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools which can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in t...

  13. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  14. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  15. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  16. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  17. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  18. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  19. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  20. Printed circuit board industry.

    Science.gov (United States)

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts.

  1. Entanglement and entropy engineering of atomic two-qubit states

    CERN Document Server

    Clark, S G

    2002-01-01

    We propose a scheme employing quantum-reservoir engineering to controllably entangle the internal states of two atoms trapped in a high finesse optical cavity. Using laser and cavity fields to drive two separate Raman transitions between metastable atomic ground states, a system is realized corresponding to a pair of two-state atoms coupled collectively to a squeezed reservoir. Phase-sensitive reservoir correlations lead to entanglement between the atoms, and, via local unitary transformations and adjustment of the degree and purity of squeezing, one can prepare entangled mixed states with any allowed combination of linear entropy and entanglement of formation.

  2. Two-Qubit Quantum Logic Gate in Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HOU Jing-Min; TIAN Li-Jun; GE Mo-Lin

    2005-01-01

    @@ We propose a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled singlemolecule magnets, [Mn4]2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between a pair of the four quantum computing bases and between the quantum computing bases and excited states are evaluated and analysed.

  3. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain

    Institute of Scientific and Technical Information of China (English)

    惠小强; 郝三如; 陈文学; 岳瑞宏

    2002-01-01

    We derive the analytic expression of the concurrence in the quantum Heisenberg XY Z model and discuss the influence of parameters J, △ and Γ on the concurrence. By choosing different values of Γ and △, we obtain the XX, XY, XXX and XXZ chains. The concurrence decreases with increasing temperature. When entanglement. For the XXZ chain, when Γ→∞, the concurence will meet its maximum value Cmax= sinh(1/T)--cosh(1/T)@

  4. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Swarnamala Sirsi; Veena Adiga; Subramanya Hegde

    2014-08-01

    Our work addresses the problem of generating maximally entangled two spin-1/2 (qubit) symmetric states using NMR, NQR, Lipkin–Meshkov–Glick Hamiltonians. Time evolution of such Hamiltonians provides various logic gates which can be used for quantum processing tasks. Pairs of spin-1/2s have modelled a wide range of problems in physics. Here, we are interested in two spin-1/2 symmetric states which belong to a subspace spanned by the angular momentum basis $\\{|j = 1,\\langle; = + 1, 0, -12\\}$. Our technique relies on the decomposition of a Hamiltonian in terms of (3) basis matrices. In this context, we define a set of linearly independent, traceless, Hermitian operators which provides an alternate set of () generators. These matrices are constructed out of angular momentum operators J$_x$, J$_y$, J$_z$. We construct and study the properties of perfect entanglers acting on a symmetric subspace, i.e., spin-1 operators that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power.

  5. Parallel basal ganglia circuits for decision making.

    Science.gov (United States)

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2017-02-02

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  6. Two railway circuits: a universal circuit and an NP-difficult one

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2001-05-01

    Full Text Available In this paper, first we construct a railway circuit based on three types of switches and on crossings. Such a circuit is able to simulate the computation of any Turing machine, in particular of a universal one. That result was proved by Ian Stewart in [3]. In this paper, we give another construction, indeed a simpler one: here we show that it is possible to simulate the computation of any register machine, from which the same conclusion can be derived. The switches that are used in the universality result are re-used in order to prove another result. Define the accessibility problem for railway circuits to consist in the following. The circuit is given with, at the same time, two points of the circuit, one is called the source point, the other one is called the target point and a fixed number of other points, called flip-flop switches, that can be initialized arbitrarily. The problem is to decide, whether or not there is an initialization of the flip-flop switches such that it is then possible to go from the source to the target. This problem is proved to be NP-complete.

  7. Call Centre- Computer Telephone Integration

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Call centre largely came into being as a result of consumerneeds converging with enabling technology- and by the companiesrecognising the revenue opportunities generated by meetingthose needs thereby increasing customer satisfaction. Regardlessof the specific application or activity of a Call centre, customersatisfaction with the interaction is critical to the revenuegenerated or protected by the Call centre. Physical(v, Call centreset up is a place that includes computer, telephone and supervisorstation. Call centre can be available 24 hours a day - whenthe customer wants to make a purchase, needs information, orsimply wishes to register a complaint.

  8. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  9. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...... characterized by multiple positive Lyapunov exponents are reviewd....

  10. Genetic circuit design automation.

    Science.gov (United States)

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.

  11. A Virtual Circuits Lab

    Science.gov (United States)

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  12. Superconducting quantum circuits at the surface code threshold for fault tolerance.

    Science.gov (United States)

    Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M

    2014-04-24

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.

  13. Gate-Level Simulation of Quantum Circuits

    CERN Document Server

    Viamontes, G F; Markov, I L; Hayes, J P; Viamontes, George F.; Rajagopalan, Manoj; Markov, Igor L.; Hayes, John P.

    2002-01-01

    While thousands of experimental physicists and chemists are currently trying to build scalable quantum computers, it appears that simulation of quantum computation will be at least as critical as circuit simulation in classical VLSI design. However, since the work of Richard Feynman in the early 1980s little progress was made in practical quantum simulation. Most researchers focused on polynomial-time simulation of restricted types of quantum circuits that fall short of the full power of quantum computation. Simulating quantum computing devices and useful quantum algorithms on classical hardware now requires excessive computational resources, making many important simulation tasks infeasible. In this work we propose a new technique for gate-level simulation of quantum circuits which greatly reduces the difficulty and cost of such simulations. The proposed technique is implemented in a simulation tool called the Quantum Information Decision Diagram (QuIDD) and evaluated by simulating Grover's quantum search al...

  14. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  15. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  16. Plasmonic Nanoguides and Circuits

    CERN Document Server

    Bozhevolnyi, Sergey

    2008-01-01

    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  17. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  18. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  19. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  20. Pragmatic circuits frequency domain

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Frequency Domain goes through the Laplace transform to get from the time domain to topics that include the s-plane, Bode diagrams, and the sinusoidal steady state. This second of three volumes ends with a-c power, which, although it is just a special case of the sinusoidal steady state, is an important topic with unique techniques and terminology. Pragmatic Circuits: Frequency Domain is focused on the frequency domain. In other words, time will no longer be the independent variable in our analysis. The two other volumes in the Pragmatic Circuits series include titles on DC

  1. Gallium Arsenide Domino Circuit

    Science.gov (United States)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  2. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  3. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  4. Application of Affect to CALL

    Institute of Scientific and Technical Information of China (English)

    李露

    2006-01-01

    This essay mainly attempts to discuss some affective factors in CALL, with focus on affective influence on English (foreign language) learning and thus concludes that in the process of CALL related affect should be activated and made good use of to better foreign language teaching and learning.

  5. The difficult medical emergency call

    DEFF Research Database (Denmark)

    Møller, Thea Palsgaard; Kjærulff, Thora Majlund; Viereck, Søren

    2017-01-01

    BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories and the ......BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories...... and the effect of categorization on mortality. METHODS: Register-based study in a 2-year period based on emergency call data from the emergency medical dispatch center in Copenhagen combined with nationwide register data. Logistic regression analysis (N = 78,040 individuals) was used for identification...

  6. The difficult medical emergency call

    DEFF Research Database (Denmark)

    Møller, Thea Palsgaard; Kjærulff, Thora Majlund; Viereck, Søren

    2017-01-01

    BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories and the ......BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories...... and the effect of categorization on mortality. METHODS: Register-based study in a 2-year period based on emergency call data from the emergency medical dispatch center in Copenhagen combined with nationwide register data. Logistic regression analysis (N = 78,040 individuals) was used for identification...

  7. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  8. Latching overcurrent circuit breaker

    Science.gov (United States)

    Moore, M. L.

    1970-01-01

    Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes.

  9. High temperature circuit breaker

    Science.gov (United States)

    Edwards, R. N.; Travis, E. F.

    1970-01-01

    Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given.

  10. Overriding Faulty Circuit Breakers

    Science.gov (United States)

    Robbins, Richard L.; Pierson, Thomas E.

    1987-01-01

    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  11. Heterogeneous photonic integrated circuits

    Science.gov (United States)

    Fang, Alexander W.; Fish, Gregory; Hall, Eric

    2012-01-01

    Photonic Integrated Circuits (PICs) have been dichotomized into circuits with high passive content (silica and silicon PLCs) and high active content (InP tunable lasers and transceivers) due to the trade-off in material characteristics used within these two classes. This has led to restrictions in the adoption of PICs to systems in which only one of the two classes of circuits are required to be made on a singular chip. Much work has been done to create convergence in these two classes by either engineering the materials to achieve the functionality of both device types on a single platform, or in epitaxial growth techniques to transfer one material to the next, but have yet to demonstrate performance equal to that of components fabricated in their native substrates. Advances in waferbonding techniques have led to a new class of heterogeneously integrated photonic circuits that allow for the concurrent use of active and passive materials within a photonic circuit, realizing components on a transferred substrate that have equivalent performance as their native substrate. In this talk, we review and compare advances made in heterogeneous integration along with demonstrations of components and circuits enabled by this technology.

  12. Circuit simulation: some humbling thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; /Fermilab

    2006-01-01

    A short, very personal note on circuit simulation is presented. It does neither include theoretical background on circuit simulation, nor offers an overview of available software, but just gives some general remarks for a discussion on circuit simulator needs in context to the design and development of accelerator beam instrumentation circuits and systems.

  13. Equivalence Checking of Combinational Circuits using Boolean Expression Diagrams

    DEFF Research Database (Denmark)

    Hulgaard, Henrik; Williams, Poul Frederick; Andersen, Henrik Reif

    1999-01-01

    The combinational logic-level equivalence problem is to determine whether two given combinational circuits implement the same Boolean function. This problem arises in a number of CAD applications, for example when checking the correctness of incremental design changes (performed either manually...... similarities between the two circuits that are compared. These properties make BEDs suitable for verifying the equivalence of combinational circuits. BEDs can be seen as an intermediate representation between circuits (which are compact) and OBDDs (which are canonical).Based on a large number of combinational...... or by a design automation tool).This paper introduces a data structure called Boolean Expression Diagrams (BEDs) and two algorithms for transforming a BED into a Reduced Ordered Binary Decision Diagram (OBDD). BEDs are capable of representing any Boolean circuit in linear space and can exploit structural...

  14. Low latency asynchronous interface circuits

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, Greg

    2017-06-20

    In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.

  15. A semiconductor laser excitation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kaadzunari, O.; Masaty, K.

    1984-03-27

    A semiconductor laser excitation circuit is patented that is designed for operation in a pulsed mode with a high pulse repetition frequency. This circuit includes, in addition to a semiconductor laser, a high speed photodetector, a reference voltage source, a comparator, and a pulse oscillator and modulator. If the circuit is built using standard silicon integrated circuits, its speed amounts to several hundred megahertz, if it is constructed using gallium arsenide integrated circuits, its speed is several gigahertz.

  16. Practical design of digital circuits basic logic to microprocessors

    CERN Document Server

    Kampel, Ian

    1983-01-01

    Practical Design of Digital Circuits: Basic Logic to Microprocessors demonstrates the practical aspects of digital circuit design. The intention is to give the reader sufficient confidence to embark upon his own design projects utilizing digital integrated circuits as soon as possible. The book is organized into three parts. Part 1 teaches the basic principles of practical design, and introduces the designer to his """"tools"""" - or rather, the range of devices that can be called upon. Part 2 shows the designer how to put these together into viable designs. It includes two detailed descriptio

  17. The Mind Grows Circuits

    CERN Document Server

    Panigrahy, Rina

    2012-01-01

    There is a vast supply of prior art that study models for mental processes. Some studies in psychology and philosophy approach it from an inner perspective in terms of experiences and percepts. Others such as neurobiology or connectionist-machines approach it externally by viewing the mind as complex circuit of neurons where each neuron is a primitive binary circuit. In this paper, we also model the mind as a place where a circuit grows, starting as a collection of primitive components at birth and then builds up incrementally in a bottom up fashion. A new node is formed by a simple composition of prior nodes when we undergo a repeated experience that can be described by that composition. Unlike neural networks, however, these circuits take "concepts" or "percepts" as inputs and outputs. Thus the growing circuits can be likened to a growing collection of lambda expressions that are built on top of one another in an attempt to compress the sensory input as a heuristic to bound its Kolmogorov Complexity.

  18. The defect-centric perspective of device and circuit reliability—From gate oxide defects to circuits

    Science.gov (United States)

    Kaczer, B.; Franco, J.; Weckx, P.; Roussel, Ph. J.; Simicic, M.; Putcha, V.; Bury, E.; Cho, M.; Degraeve, R.; Linten, D.; Groeseneken, G.; Debacker, P.; Parvais, B.; Raghavan, P.; Catthoor, F.; Rzepa, G.; Waltl, M.; Goes, W.; Grasser, T.

    2016-11-01

    As-fabricated (time-zero) variability and mean device aging are nowadays routinely considered in circuit simulations and design. Time-dependent variability (reliability-related variability) is an emerging concern that needs to be considered in circuit design as well. This phenomenon in deeply scaled devices can be best understood within the so-called defect-centric picture in terms of an ensemble of individual defects. The properties of gate oxide defects are discussed. It is further shown how in particular the electrical properties can be used to construct time-dependent variability distributions and can be propagated up to transistor-level circuits.

  19. The Call of Humanity in The Call of the Wild

    Institute of Scientific and Technical Information of China (English)

    朱露; 张磊

    2011-01-01

    Jack London is one of the greatest American novelists. Many of his works are very popular among readers all over the world. This paper firstly gives a brief introduction of Jack London and The Call of the Wild. Then it analyzes the theme and main Characters of this novel. At last the implied meaning is discussed.

  20. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Xu Jian-Ping; Zhou Guo-Hua; Ma Zheng-Hua; Zou Ling

    2011-01-01

    In this paper,a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented.The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor.The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits,bifurcation diagrams and Lyapunov exponents.Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.

  1. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  2. Current Conveyor Equivalent Circuits

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-02-01

    Full Text Available An equivalence between a class of (current conveyor CC II+ and CC II- circuits is established. CC IIequivalent circuit uses one extra element. However, under certain condition, the extra element can be eliminated. As an illustration of the application of this equivalence, minimal first and second order all-pass filters are derived. Incertain cases, it is possible to compensate the effect of the input resistor of CC at port X. At the end, an open problem of realizing an Nth order (N > 2 minimal all-pass filter is stated.

  3. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  4. Inrush Current Control Circuit

    Science.gov (United States)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  5. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  6. The Wireless Nursing Call System

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2006-01-01

    This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight into the cha......This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight...

  7. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    Science.gov (United States)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  8. LS1 Report: short-circuit tests

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the LS1 draws to an end, teams move from installation projects to a phase of intense testing. Among these are the so-called 'short-circuit tests'. Currently under way at Point 7, these tests verify the cables, the interlocks, the energy extraction systems, the power converters that provide current to the superconducting magnets and the cooling system.   Thermal camera images taken during tests at point 4 (IP4). Before putting beam into the LHC, all of the machine's hardware components need to be put to the test. Out of these, the most complicated are the superconducting circuits, which have a myriad of different failure modes with interlock and control systems. While these will be tested at cold - during powering tests to be done in August - work can still be done beforehand. "While the circuits in the magnets themselves cannot be tested at warm, what we can do is verify the power converter and the circuits right up to the place the cables go into the magn...

  9. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  10. Learning as Calling and Responding

    Science.gov (United States)

    Jons, Lotta

    2014-01-01

    According to Martin Buber's philosophy of dialogue, our being-in-the-world is to be conceived of as an existential dialogue. Elsewhere, I have conceptualized the teacher-student-relation accordingly (see Jons 2008), as a matter of calling and responding. The conceptualization rests on a secularised notion of vocation, paving way for…

  11. An Evaluation Framework for CALL

    Science.gov (United States)

    McMurry, Benjamin L.; Williams, David Dwayne; Rich, Peter J.; Hartshorn, K. James

    2016-01-01

    Searching prestigious Computer-assisted Language Learning (CALL) journals for references to key publications and authors in the field of evaluation yields a short list. The "American Journal of Evaluation"--the flagship journal of the American Evaluation Association--is only cited once in both the "CALICO Journal and Language…

  12. Bioluminescent bioreporter integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  13. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  14. Quantum secure circuit evaluation

    Institute of Scientific and Technical Information of China (English)

    CHEN Huanhuan; LI Bin; ZHUANG Zhenquan

    2004-01-01

    In order to solve the problem of classical secure circuit evaluation, this paper proposes a quantum approach. In this approach, the method of inserting redundant entangled particles and quantum signature has been employed to strengthen the security of the system. Theoretical analysis shows that our solution is secure against classical and quantum attacks.

  15. Fault localization when testing complex circuits

    Science.gov (United States)

    Velazco, Raoul

    An approach to state functional diagnoses when testing complex integrated circuits is presented. The test environment is described. The tester is monitored by a computer which manages test sequencing. The test programs produced by the GAPT (French acronym for automatic generation of test programs) generators may be used to state a functional diagnosis, when testing microprocessors. In some cases, it may help in finding design or manufacturing faults. The test programs generated by GAPT are used as go/no go test programs. Significant experiments, using the so called a posteriori approach were carried out, with regard to simple testing and design validation of a second source 68000, with a view to comparing the second source circuit with the original one. The test system is currently used to test a sample of Intel 8086 microprocessors, which will be implemented in a space environment.

  16. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  17. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    Science.gov (United States)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  18. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented.......The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  19. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  20. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  1. Calle y Saberes en Movimiento

    Directory of Open Access Journals (Sweden)

    Laura Daniela Aguirre Aguilar

    2010-01-01

    Full Text Available En México el rezago, el ausentismo, la deserción escolar, el trabajo a temprana edad y el inicio de una vida en la calle, en repetidas ocasiones son consecuencia de un núcleo familiar desarticulado o de una débil relación intrafamiliar, así como de una condición socioeconómica en desventaja. Ante esta problemática, la Secretaría de Educación Pública, instancia gubernamental encargada de garantizar una educación de calidad para la población, trabaja coordinadamente con organizaciones de la sociedad civil e instancias públicas, para la reintegración a los espacios educativos de los niños, niñas y jóvenes en situación de calle.

  2. Call for improving air quality

    Science.gov (United States)

    Showstack, Randy

    2013-01-01

    The European Environmental Bureau (EEB), a federation of citizen organizations, has called for stricter policies in Europe to protect human health and the environment. "Air pollution emanates from sources all around us, be they cars, industrial plants, shipping, agriculture, or waste. The [European Union] must propose ambitious legislation to address all of these sources if it is to tackle the grave public health consequences of air pollution," EEB secretary general Jeremy Wates said on 8 January.

  3. Ultrasound call detection in capybara

    Directory of Open Access Journals (Sweden)

    Selene S.C. Nogueira

    2012-07-01

    Full Text Available The vocal repertoire of some animal species has been considered a non-invasive tool to predict distress reactivity. In rats ultrasound emissions were reported as distress indicator. Capybaras[ vocal repertoire was reported recently and seems to have ultrasound calls, but this has not yet been confirmed. Thus, in order to check if a poor state of welfare was linked to ultrasound calls in the capybara vocal repertoire, the aim of this study was to track the presence of ultrasound emissions in 11 animals under three conditions: 1 unrestrained; 2 intermediately restrained, and 3 highly restrained. The ultrasound track identified frequencies in the range of 31.8±3.5 kHz in adults and 33.2±8.5 kHz in juveniles. These ultrasound frequencies occurred only when animals were highly restrained, physically restrained or injured during handling. We concluded that these calls with ultrasound components are related to pain and restraint because they did not occur when animals were free of restraint. Thus we suggest that this vocalization may be used as an additional tool to assess capybaras[ welfare.

  4. Circuit Bodging: Atari Punk Console

    NARCIS (Netherlands)

    Allen, B.

    2009-01-01

    Circuit bodging is back! Maxwell is proud to present small, simple, but ultimately lovable little circuits to build for your own, personal pleasure. In this edition we are featuring: The Atari Punk Console. The Atari Punk Console (or APC) is a 555 timer IC based noise maker circuit. The original was

  5. Circuit Bodging: Atari Punk Console

    NARCIS (Netherlands)

    Allen, B.

    2009-01-01

    Circuit bodging is back! Maxwell is proud to present small, simple, but ultimately lovable little circuits to build for your own, personal pleasure. In this edition we are featuring: The Atari Punk Console. The Atari Punk Console (or APC) is a 555 timer IC based noise maker circuit. The original was

  6. Selective Manipulation of Neural Circuits.

    Science.gov (United States)

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  7. LC-Circuit Calorimetry

    CERN Document Server

    Bossen, Olaf

    2011-01-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  8. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  9. Cartography of serotonergic circuits.

    Science.gov (United States)

    Sparta, Dennis R; Stuber, Garret D

    2014-08-06

    Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al. (2014) and Pollak Dorocic et al. (2014) in this issue of Neuron and Ogawa et al. (2014) in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons, highlighting the complexity and diversity of potential upstream cellular regulators. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  11. Inkjet deposited circuit components

    Science.gov (United States)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  12. Digital integrated circuits

    Science.gov (United States)

    Polasek, P.; Halamik, J.

    1984-05-01

    The term semicustom designed integrated circuits denotes integrated circuits of an all purpose character in which the production of chips is completed by using one to three custom design stencil type exposure masks. This involves in most cases interconnecting masks that are used to devise the circuit function desired by the customer. Silicon plates with an all purpose gate matrix are produced up to the interconnection level and can be kept at this phase in storage, after which a customer's specific demands can be met very expediently. All purpose logic fields containing 200 logic gates on a chip and an all purpose chip to be expanded to 1,000 logic gates are discussed. The technology facilitates the devising of fast gates with a delay of approximately 5 ns and power dissipation of 1 mW. In assembly it will be possible to make use of the entire assortment of the currently used casings with 16, 18, 20, 24, 28 and 40 outlets. In addition to the development of the mentioned technology, a general methodology for design of the mentioned gate fields is currently under way.

  13. Oscillation-based test in mixed-signal circuits

    CERN Document Server

    Sánchez, Gloria Huertas; Rueda, Adoración Rueda

    2007-01-01

    This book presents the development and experimental validation of the structural test strategy called Oscillation-Based Test - OBT in short. The results presented here assert, not only from a theoretical point of view, but also based on a wide experimental support, that OBT is an efficient defect-oriented test solution, complementing the existing functional test techniques for mixed-signal circuits.

  14. SEAS: A simulated evolution approach for analog circuit synthesis

    NARCIS (Netherlands)

    Ning, Zhen-Qiu; Mouthaan, Ton; Wallinga, Hans

    1991-01-01

    The authors present a simulated evolution approach for analog circuit synthesis based on an analogy with the natural selection process in biological environments and on the iterative improvements in solving engineering problems. A prototype framework based on this idea, called SEAS, has been impleme

  15. About Nested Circuits Markov in one Parametric Queueing Model

    Directory of Open Access Journals (Sweden)

    Rafik A. Simonyan

    2013-01-01

    Full Text Available In operation the single-channel queuing system with several Poisson entering flows and with Kleynrok's parametric discipline is considered. The Markov circuit which is received on a basis a vector of processes of the maximum priorities of flows of calls is completely studied

  16. Short Circuit Tests First Step of LHC Hardware Commissioning Completion

    CERN Document Server

    Barbero-Soto, E; Bordry, Frederick; Casas Lino, M P; Coelingh, G J; Cumer, G; Dahlerup-Petersen, K; Guillaume, J C; Inigo-Golfin, J; Montabonnet, V; Nisbet, D; Pojer, M; Principe, R; Rodríguez-Mateos, F; Saban, R; Schmidt, R; Thiesen, H; Vergara-Fernández, A; Zerlauth, M; Castaneda Serra, A; Romera Ramirez, I

    2008-01-01

    For the two counter rotating beams in the Large Hadron Collider (LHC) about 8000 magnets (main dipole and quadrupole magnets, corrector magnets, separation dipoles, matching section quadrupoles etc.) are powered in about 1500 superconducting electrical circuits. The magnets are powered by power converters that have been designed for the LHC with a current between 60 and 13000A. Between October 2005 and September 2007 the so-called Short Circuit Tests were carried-out in 15 underground zones where the power converters of the superconducting circuits are placed. The tests aimed to qualify the normal conducting equipments of the circuits such as power converters and normal conducting high current cables. The correct operation of interlock and energy extraction systems was validated. The infrastructure systems including AC distribution, water and air cooling and the control systems was also commissioned. In this paper the results of the two year test campaign are summarized with particular attention to problems e...

  17. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  18. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  19. Voice over internet protocol with prepaid calling card solutions

    Science.gov (United States)

    Gunadi, Tri

    2001-07-01

    The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.

  20. First order devices, hybrid memristors, and the frontiers of nonlinear circuit theory

    CERN Document Server

    Riaza, Ricardo

    2010-01-01

    Several devices exhibiting memory effects have shown up in nonlinear circuit theory in recent years. Among others, these circuit elements include Chua's memristors, as well as memcapacitors and meminductors. These and other related devices seem to be beyond the, say, classical scope of circuit theory, which is formulated in terms of resistors, capacitors, inductors, and voltage and current sources. We explore in this paper the potential extent of nonlinear circuit theory by classifying such mem-devices in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. Within this framework, the frontier of first order circuit theory is defined by so-called hybrid memristors, which are proposed here to accommodate a characteristic relating all four fundamental circuit variables. Devices with differential order two and mem-systems are discussed in less detail. We allow for fully nonlinear characteristics in all circuit elements, arriving at a...

  1. Advanced Call Center Supporting WAP Access

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional call centers can be accessed via speech only, and the call center based on web provides both data and speech access, but it needs a powerful terminal-computer. By analyzing traditional call centers and call centers based on web, this paper presents the framework of an advanced call center supporting WAP access. A typical service is also described in detail.

  2. Memristor based startup circuit for self biased circuits

    Science.gov (United States)

    Das, Mangal; Singh, Amit Kumar; Rathi, Amit; Singhal, Sonal

    2016-04-01

    This paper presents the design of a Memristor based startup circuit for self biased circuits. Memristor has many advantages over conventional CMOS devices such as low leakage current at nanometer scale, easy to manufacture. In this work the switching characteristics of memristor is utilized. First the theoretical equations describing the switching behavior of memristor are investigated. To prove the switching capability of Memristor, a startup circuit based on memristor is proposed which uses series combination of Memristor and capacitor. Proposed circuit is compared with the previously reported MOSFET based startup circuits. Comparison of different circuits was done to validate the results. Simulation results show that memristor based circuit can attain on (I = 12.94 µA) to off state (I = 1 .2 µA) in 25 ns while the MOSFET based startup circuits take on (I = 14.19 µA) to off state (I = 1.4 µA) in more than 90 ns. The benefit comes in terms of area because the number of components used in the circuit are lesser than the conventional startup circuits.

  3. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  4. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  5. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    1999-01-01

    This manual is a useful single-volume guide specifically aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available types, with universally recognised type numbers.The second edition

  6. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  7. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  8. Electronic logic circuits

    CERN Document Server

    Gibson, J

    2013-01-01

    Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate

  9. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  10. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  11. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T.; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  12. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Science.gov (United States)

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  13. Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.

    Science.gov (United States)

    Dallidis, Stylianos E; Karafyllidis, Ioannis G

    2014-09-01

    To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system.

  14. Quasi-Linear Circuit

    Science.gov (United States)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  15. Automated Design of Quantum Circuits

    Science.gov (United States)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  16. Large-scale circuit simulation

    Science.gov (United States)

    Wei, Y. P.

    1982-12-01

    The simulation of VLSI (Very Large Scale Integration) circuits falls beyond the capabilities of conventional circuit simulators like SPICE. On the other hand, conventional logic simulators can only give the results of logic levels 1 and 0 with the attendent loss of detail in the waveforms. The aim of developing large-scale circuit simulation is to bridge the gap between conventional circuit simulation and logic simulation. This research is to investigate new approaches for fast and relatively accurate time-domain simulation of MOS (Metal Oxide Semiconductors), LSI (Large Scale Integration) and VLSI circuits. New techniques and new algorithms are studied in the following areas: (1) analysis sequencing (2) nonlinear iteration (3) modified Gauss-Seidel method (4) latency criteria and timestep control scheme. The developed methods have been implemented into a simulation program PREMOS which could be used as a design verification tool for MOS circuits.

  17. Integrated circuit cooled turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  18. CMOS Nonlinear Signal Processing Circuits

    OpenAIRE

    2010-01-01

    The chapter describes various nonlinear signal processing CMOS circuits, including a high reliable WTA/LTA, simple MED cell, and low-voltage arbitrary order extractor. We focus the discussion on CMOS analog circuit design with reliable, programmable capability, and low voltage operation. It is a practical problem when the multiple identical cells are required to match and realized within a single chip using a conventional process. Thus, the design of high-reliable circuit is indeed needed. Th...

  19. Analog electronic neural network circuits

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-07-01

    The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.

  20. 47 CFR 2.302 - Call signs.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Call signs. 2.302 Section 2.302... RULES AND REGULATIONS Call Signs and Other Forms of Identifying Radio Transmissions § 2.302 Call signs. The table which follows indicates the composition and blocks of international call signs available...

  1. Transistor switching and sequential circuits

    CERN Document Server

    Sparkes, John J

    1969-01-01

    Transistor Switching and Sequential Circuits presents the basic ideas involved in the construction of computers, instrumentation, pulse communication systems, and automation. This book discusses the design procedure for sequential circuits. Organized into two parts encompassing eight chapters, this book begins with an overview of the ways on how to generate the types of waveforms needed in digital circuits, principally ramps, square waves, and delays. This text then considers the behavior of some simple circuits, including the inverter, the emitter follower, and the long-tailed pair. Other cha

  2. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  3. Advanced Call Center Supporting WAP Access

    Institute of Scientific and Technical Information of China (English)

    YUANXiao-hua; CHENJun-liang

    2001-01-01

    Traditional call centers can be accessed via speech only, and the call center based on web provides both da-ta and speech access,but it needs a powerful terminal-computer.By analyzing traditional call centers and call cen-ters based on web, this paper presents the framework of an advanced call center supporting WAP access.A typical service is also described in detail.

  4. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution.

    Science.gov (United States)

    Keys, D N; Lewis, D L; Selegue, J E; Pearson, B J; Goodrich, L V; Johnson, R L; Gates, J; Scott, M P; Carroll, S B

    1999-01-22

    The origin of new morphological characters is a long-standing problem in evolutionary biology. Novelties arise through changes in development, but the nature of these changes is largely unknown. In butterflies, eyespots have evolved as new pattern elements that develop from special organizers called foci. Formation of these foci is associated with novel expression patterns of the Hedgehog signaling protein, its receptor Patched, the transcription factor Cubitus interruptus, and the engrailed target gene that break the conserved compartmental restrictions on this regulatory circuit in insect wings. Redeployment of preexisting regulatory circuits may be a general mechanism underlying the evolution of novelties.

  5. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    Science.gov (United States)

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  6. VLSI circuits implementing computational models of neocortical circuits.

    Science.gov (United States)

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling.

  7. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  8. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for

  9. A dishwasher for circuits

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher.   The circuit dishwasher. Credit: Clara Nellist.  If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...

  10. Basic electronic circuits

    CERN Document Server

    Buckley, P M

    1980-01-01

    In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli­ cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...

  11. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  12. A nanoCryotron comparator can connect single-flux quantum circuits to conventional electronics

    CERN Document Server

    Zhao, Qing-Yuan; Dane, Andrew E; Berggren, Karl K; Ortlepp, Thomas

    2016-01-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realiz...

  13. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  14. Sequential Polarity-Reversing Circuit

    Science.gov (United States)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  15. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interface...

  16. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  17. Dive In to Aquatic Circuits.

    Science.gov (United States)

    Goldfarb, Joseph M.

    1995-01-01

    The article presents a method for swimming teachers and coaches to stave off workout boredom in their students by using a circuit in the pool. After explaining how to set up a training circuit, the article describes sample stations and notes important safety precautions. (SM)

  18. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interfac...

  19. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  20. 46 CFR 169.670 - Circuit breakers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Circuit breakers. 169.670 Section 169.670 Shipping COAST... Gross Tons § 169.670 Circuit breakers. Each circuit breaker must be of the manually reset type designed... the circuit without damage to the circuit breaker....

  1. Photodiode circuits for retinal prostheses.

    Science.gov (United States)

    Loudin, J D; Cogan, S F; Mathieson, K; Sher, A; Palanker, D V

    2011-10-01

    Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

  2. An auditory feature detection circuit for sound pattern recognition.

    Science.gov (United States)

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-09-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

  3. Quantum circuit physical design methodology with emphasis on physical synthesis

    Science.gov (United States)

    Mohammadzadeh, Naser; Saheb Zamani, Morteza; Sedighi, Mehdi

    2013-11-01

    In our previous works, we have introduced the concept of "physical synthesis" as a method to consider the mutual effects of quantum circuit synthesis and physical design. While physical synthesis can involve various techniques to improve the characteristics of the resulting quantum circuit, we have proposed two techniques (namely gate exchanging and auxiliary qubit selection) to demonstrate the effectiveness of the physical synthesis. However, the previous contributions focused mainly on the physical synthesis concept, and the techniques were proposed only as a proof of concept. In this paper, we propose a methodological framework for physical synthesis that involves all previously proposed techniques along with a newly introduced one (called auxiliary qubit insertion). We will show that the entire flow can be seen as one monolithic methodology. The proposed methodology is analyzed using a large set of benchmarks. Experimental results show that the proposed methodology decreases the average latency of quantum circuits by about 36.81 % for the attempted benchmarks.

  4. On the Possibility of the Jerk Derivative in Electrical Circuits

    Directory of Open Access Journals (Sweden)

    J. F. Gómez-Aguilar

    2016-01-01

    Full Text Available A subclass of dynamical systems with a time rate of change of acceleration are called Newtonian jerky dynamics. Some mechanical and acoustic systems can be interpreted as jerky dynamics. In this paper we show that the jerk dynamics are naturally obtained for electrical circuits using the fractional calculus approach with order γ. We consider fractional LC and RL electrical circuits with 1⩽γ<2 for different source terms. The LC circuit has a frequency ω dependent on the order of the fractional differential equation γ, since it is defined as ω(γ=ω0γγ1-γ, where ω0 is the fundamental frequency. For γ=3/2, the system is described by a third-order differential equation with frequency ω~ω03/2, and assuming γ=2 the dynamics are described by a fourth differential equation for jerk dynamics with frequency ω~ω02.

  5. The function of migratory bird calls

    DEFF Research Database (Denmark)

    Reichl, Thomas; Andersen, Bent Bach; Larsen, Ole Næsbye

    the experimental bird could be activated successively to simulate a migrating Robin cruising E-W, W-E, S-N or N-S at a chosen height (mostly about 40 m), at 10 m/s and emitting Robin flight calls of 80 dB(A) at 1 m. The simulated flight of a "ding" sound served as a control. During an experiment the bird was first...... Denmark, Odense, DK-5230 Odense M, Denmark   Many migrating passerines emit special calls during nocturnal flight, the so-called flight calls. Several functions of the calls have been suggested but largely remain speculative. Flight calls have been hypothesized to maintain groups during nocturnal...... migration and to stimulate migratory restlessness in conspecifics. We wished to test if conspecific flight calls influence the flight direction of a nocturnal migrant, the European Robin (Erithacus rubecula), i.e. if flight calls help migrants keeping course. Wild caught birds showing migratory restlessness...

  6. 76 FR 17934 - Infrastructure Protection Data Call

    Science.gov (United States)

    2011-03-31

    ... SECURITY Infrastructure Protection Data Call AGENCY: National Protection and Programs Directorate, DHS...: Infrastructure Protection Data Call. OMB Number: 1670-NEW. Frequency: On occasion. Affected Public: Federal...: The Department of Homeland Security (DHS), National Protection and Programs Directorate (NPPD),...

  7. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  8. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  9. Performance analysis of electrical circuits /PANE/

    Science.gov (United States)

    Johnson, K. L.; Steinberg, L. L.

    1968-01-01

    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations.

  10. Development of a call alert system for paging mine personnel. Contract research report Jun 76-Jun 77

    Energy Technology Data Exchange (ETDEWEB)

    Trombly, J.E.; Lipoff, S.; O' Brien, P.

    1979-06-01

    This report presents system objectives and design criteria for an in-mine ultralow frequency radio paging system. Coding formats, frequency and bandwidth selection criteria leading to the system design are discussed. The prototype call alert transmitter and pocket page receiver is functionally described. The report includes circuit descriptions, schematics, parts lists, printed circuit fabrication, and assembly drawings. The report concludes with an estimate of the manufacturing cost for each assembly.

  11. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  12. How to call the Fire Brigade

    CERN Multimedia

    2003-01-01

    The telephone numbers for the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from "wired" telephones, however, from mobile phones it leads to non-CERN emergency services.

  13. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2002-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  14. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2002-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.  

  15. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Multimedia

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note: the number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  16. HOW TO CALL THE CERN FIRE BRIGADE

    CERN Document Server

    2001-01-01

    The telephone numbers of the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from 'wired' telephones, however, from mobile phones it leads to non-CERN emergency services.

  17. How to call the Fire Brigade

    CERN Multimedia

    2003-01-01

    The telephone numbers for the CERN Fire Brigade are: 74444 for emergency calls 74848 for other calls Note The number 112 will stay in use for emergency calls from "wired" telephones, however, from mobile phones it leads to non-CERN emergency services.

  18. Do market participants learn from conference calls?

    NARCIS (Netherlands)

    Roelofsen, E.; Verbeeten, F.; Mertens, G.

    2014-01-01

    We examine whether market participants learn from the information that is disseminated during the Q-and-A section of conference calls. Specifically, we investigate whether stock prices react to information on intangible assets provided during conference calls, and whether conference calls interactio

  19. Variational integrators for electric circuits

    Energy Technology Data Exchange (ETDEWEB)

    Ober-Blöbaum, Sina, E-mail: sinaob@math.upb.de [Computational Dynamics and Optimal Control, University of Paderborn (Germany); Tao, Molei [Courant Institute of Mathematical Sciences, New York University (United States); Cheng, Mulin [Applied and Computational Mathematics, California Institute of Technology (United States); Owhadi, Houman; Marsden, Jerrold E. [Control and Dynamical Systems, California Institute of Technology (United States); Applied and Computational Mathematics, California Institute of Technology (United States)

    2013-06-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

  20. Overpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  1. Counterpulse railgun energy recovery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  2. The Maplin electronic circuits handbook

    CERN Document Server

    Tooley, Michael

    2015-01-01

    The Maplin Electronic Circuits Handbook provides pertinent data, formula, explanation, practical guidance, theory and practical guidance in the design, testing, and construction of electronic circuits. This book discusses the developments in electronics technology techniques.Organized into 11 chapters, this book begins with an overview of the common types of passive component. This text then provides the reader with sufficient information to make a correct selection of passive components for use in the circuits. Other chapters consider the various types of the most commonly used semiconductor

  3. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  4. Determining Covers in Combinational Circuits

    Directory of Open Access Journals (Sweden)

    Ljubomir Cvetkovic

    2011-05-01

    Full Text Available In this paper we propose a procedure for determining 0- or 1-cover of an arbitrary line in a combinational circuit. When determining a cover we do not need Boolean expression for the line; only the circuit structure is used. Within the proposed procedure we use the tools of the cube theory, in particular, some operations defined on cubes. The procedure can be applied for determining 0- and 1- covers of output lines in programmable logic devices. Basically, this procedure is a method for the analysis of a combinational circuit.

  5. Static analysis of function calls in Erlang

    Directory of Open Access Journals (Sweden)

    Dániel Horpácsi

    2013-06-01

    Full Text Available Functions and their relations can affect numerous properties and metrics of a functional program. To identify and represent the functions and their calling connections, software analysers commonly apply semantic function analysis, which derives the static call graph of the program, based on its source code. Function calls however may be dynamic and complex, making it difficult to statically identify the callee. Dynamic calls are determined just at run-time, static analysis therefore cannot be expected to fully identify every call. Nevertheless, by utilising the results of a properly performed data-flow analysis as well as taking ambiguous references into account, numerous dynamic calls are discoverable and representable. We consider cases where the identifiers of the callee are statically determined, but they flow into the call expression from a different program point, and also, we manage to handle function calls whose identifiers are not fully identifiable at compile-time. By utilising the improved reference analysis, we extend the static call graph with various information about dynamic function calls. We investigate such a function call analysis in the programming language Erlang.

  6. Bonobos extract meaning from call sequences.

    Directory of Open Access Journals (Sweden)

    Zanna Clay

    Full Text Available Studies on language-trained bonobos have revealed their remarkable abilities in representational and communication tasks. Surprisingly, however, corresponding research into their natural communication has largely been neglected. We address this issue with a first playback study on the natural vocal behaviour of bonobos. Bonobos produce five acoustically distinct call types when finding food, which they regularly mix together into longer call sequences. We found that individual call types were relatively poor indicators of food quality, while context specificity was much greater at the call sequence level. We therefore investigated whether receivers could extract meaning about the quality of food encountered by the caller by integrating across different call sequences. We first trained four captive individuals to find two types of foods, kiwi (preferred and apples (less preferred at two different locations. We then conducted naturalistic playback experiments during which we broadcasted sequences of four calls, originally produced by a familiar individual responding to either kiwi or apples. All sequences contained the same number of calls but varied in the composition of call types. Following playbacks, we found that subjects devoted significantly more search effort to the field indicated by the call sequence. Rather than attending to individual calls, bonobos attended to the entire sequences to make inferences about the food encountered by a caller. These results provide the first empirical evidence that bonobos are able to extract information about external events by attending to vocal sequences of other individuals and highlight the importance of call combinations in their natural communication system.

  7. DC Arc Plasma Disposal of Printed Circuit Board

    Institute of Scientific and Technical Information of China (English)

    黄建军; 施嘉标; 孟月东; 刘正之

    2004-01-01

    A new solid waste disposal technology setup with DC arc plasma is presented. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled high-temperature pyrolysis, the thermal destruction and recovery process. The results of vitrification of the circuit board is presented. The properties of vitrified product including hardness and leaching test results are presented. The final product (vitrified material) and air emission from the plasma treatment is environmentally acceptable.

  8. Call of the Wild and the Ethics of Narrative Strategies

    Directory of Open Access Journals (Sweden)

    Roman Bartosch

    2010-01-01

    Full Text Available How can the analysis of narrative structures contribute to the understanding of what makes a text´s "environmentality" (see Buell 2005:25? By reading Call of the Wild from a narratological perspective and against the historicist foil of its discursive context, this paper seeks to illuminate how strategies of narration lend to an eco-centred reading - even despite the text´s apparent ethical orientation. The discursive circuit thus established enables a textual negotiation of diverging ethical convictions and aspects of compassion and giving voice to an animal. Eventually, reading and interpreting texts can thus be described as an "applied ethics" (Iovino 2010: 41 the features of which this essay seeks to describe as the "ethics of narrative strategies".

  9. RD53A Integrated Circuit Specifications

    CERN Document Server

    Garcia-Sciveres, Mauricio

    2015-01-01

    Specifications for the RD53 collaboration’s first engineering wafer run of an integrated circuit (IC) for hybrid pixel detector readout, called RD53A. RD53A is intended to demonstrate in a large format IC the suitability of the technology (including radiation tolerance), the stable low threshold operation, and the high hit and trigger rate capabilities, required for HL-LHC upgrades of ATLAS and CMS. The wafer scale production will permit the experiments to prototype bump bonding assembly with realistic sensors in this new technology and to measure the performance of hybrid assemblies. RD53A is not intended to be a final production IC for use in an experiment, and will contain design variations for testing purposes, making the pixel matrix non-uniform.

  10. CADAT integrated circuit mask analysis

    Science.gov (United States)

    1981-01-01

    CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.

  11. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  12. Chaos Control for Chua's Circuits

    Science.gov (United States)

    Tôrres, L. A. B.; Aguirre, L. A.; Palhares, R. M.; Mendes, E. M. A. M.

    The practical implementation of Chua's circuit control methods is discussed in this chapter. In order to better address this subject, an inductorless Chua's circuit realization is first presented, followed by practical issues related to data analysis, mathematical modelling, and dynamical characterization associated to this electronic chaotic oscillator. As a consequence of the investigation of different control strategies applied to Chua's circuit, a tradeoff among control objective, control energy, and model complexity is devised, which quite naturally leads to a principle that seems to be of general nature: the Information Transmission Via Control (ITVC) for nonlinear oscillators. The main purpose of the present chapter is to serve as an introductory guide to the universe of Chua's circuit control, synchronization, and mathematical modelling.

  13. Logic circuits from zero forcing

    CERN Document Server

    Burgarth, Daniel; Hogben, Leslie; Severini, Simone; Young, Michael

    2011-01-01

    We design logical circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity.

  14. Magnetomicrofluidics Circuits for Organizing Bioparticle Arrays

    Science.gov (United States)

    Abedini-Nassab, Roozbeh

    integrated circuits, I have built devices which are capable of organizing a precise number of cells into individually addressable array sites, similar to how a random access memory (RAM) stores electronic data. My programmable magnetic circuits allow for the organization of both cells and single-cell pairs into large arrays. Single cells can also potentially be retrieved for downstream high-throughput genomic analysis. In order to enhance the efficiency of the tool and to increase the delivery speed of the particles, I have also developed microfluidics systems that are combined with the magnetophoretic circuits. This hybrid system, called magnetomicrofluidics, is capable of rapidly organizing an array of particles and cells with the high precision and control. I have also shown that cells can be grown inside these chips for multiple days, enabling the long-term phenotypic analysis of rare cellular events. These types of studies can reveal important insights about the intercellular signaling networks and answer crucial questions in biology and immunology.

  15. Spinal sensory circuits in motion

    OpenAIRE

    2016-01-01

    International audience; The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this ...

  16. Optimizing Transmission Line Matching Circuits

    OpenAIRE

    Novak, S.

    1996-01-01

    When designing transmission line matching circuits, there exist often overlooked, additional, not much used, degree of choice in the selection of the transmission line impedance. In this work are presented results of CAD analysis for the two element transmission line matching networks, demonstrating that selecting matching circuits transmission lines with higher impedance, than usually used 50 or 75 ohms, can in most cases substantially decrease the physical dimension of the final matching ci...

  17. Neural Circuits on a Chip

    Directory of Open Access Journals (Sweden)

    Md. Fayad Hasan

    2016-09-01

    Full Text Available Neural circuits are responsible for the brain’s ability to process and store information. Reductionist approaches to understanding the brain include isolation of individual neurons for detailed characterization. When maintained in vitro for several days or weeks, dissociated neurons self-assemble into randomly connected networks that produce synchronized activity and are capable of learning. This review focuses on efforts to control neuronal connectivity in vitro and construct living neural circuits of increasing complexity and precision. Microfabrication-based methods have been developed to guide network self-assembly, accomplishing control over in vitro circuit size and connectivity. The ability to control neural connectivity and synchronized activity led to the implementation of logic functions using living neurons. Techniques to construct and control three-dimensional circuits have also been established. Advances in multiple electrode arrays as well as genetically encoded, optical activity sensors and transducers enabled highly specific interfaces to circuits composed of thousands of neurons. Further advances in on-chip neural circuits may lead to better understanding of the brain.

  18. Difference-Equation/Flow-Graph Circuit Analysis

    Science.gov (United States)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  19. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  20. 30 CFR 56.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403... Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate the circuits to be used....

  1. Equivalence Checking of Hierarchical Combinational Circuits

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif

    1999-01-01

    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  2. Multidimensional views on mobile call network

    Institute of Scientific and Technical Information of China (English)

    Shengqi YANG; Bin WU; Bai WANG

    2009-01-01

    Recent studies on social network have spurred significant interests in human behaviors. Nowadays, various kinds of interpersonal human interactions, from mobile calls to emalls, provide particular avenues to explore the inher-ent properties of communication patterns. In this article, we present a comprehensive study on a massive anonymous call records obtained from a major mobile service operator. The important difference laid in our work and previous mainly topological analyses is that we report on multiple aspects of the dataset. By investigating the calls of the users, we find out that most calls tend to last within one minute. Call du-ration between two females is much longer than that of two males. But calls of males generally involve more stations than that of female, indicating a larger mobile range of the males. We also observed that people tend to communicate more with each other when they share similar characters. Besides, the network is well-connected and robust to random attack. We also demonstrate that the close-knit sub-groups with little discrepancy in the characteristics of its involved users usually evoke more calls. Another interesting discov-ery is that call behaviors among people between workdays and weekends is obviously distinct. Generally speaking, the goal that we research on call network through multidimen-sional analyses is to uncover the intricate patterns of human communications and put up reasonable insights into future service intelligence.

  3. Call Duration Characteristics based on Customers Location

    Directory of Open Access Journals (Sweden)

    Žvinys Karolis

    2014-05-01

    Full Text Available Nowadays a lot of different researches are performed based on call duration distributions (CDD analysis. However, the majority of studies are linked with social relationships between the people. Therefore the scarcity of information, how the call duration is associated with a user's location, is appreciable. The goal of this paper is to reveal the ties between user's voice call duration and the location of call. For this reason we analyzed more than 5 million calls from real mobile network, which were made over the base stations located in rural areas, roads, small towns, business and entertainment centers, residential districts. According to these site types CDD’s and characteristic features for call durations are given and discussed. Submitted analysis presents the users habits and behavior as a group (not an individual. The research showed that CDD’s of customers being them in different locations are not equal. It has been found that users at entertainment, business centers are tend to talk much shortly, than people being at home. Even more CDD can be distorted strongly, when machinery calls are evaluated. Hence to apply a common CDD for a whole network it is not recommended. The study also deals with specific parameters of call duration for distinguished user groups, the influence of network technology for call duration is considered.

  4. When They Talk about CALL: Discourse in a Required CALL Class

    Science.gov (United States)

    Kessler, Greg

    2010-01-01

    This study investigates preservice teachers' discourse about CALL in a required CALL class which combines theory and practice. Thirty-three students in a Linguistics MA program CALL course were observed over a 10-week quarter. For all of these students, it was their first formal exposure to CALL as a discipline. Communication in the class…

  5. Evolution of vocal patterns: tuning hindbrain circuits during species divergence.

    Science.gov (United States)

    Barkan, Charlotte L; Zornik, Erik; Kelley, Darcy B

    2017-03-01

    The neural circuits underlying divergent courtship behaviors of closely related species provide a framework for insight into the evolution of motor patterns. In frogs, male advertisement calls serve as unique species identifiers and females prefer conspecific to heterospecific calls. Advertisement calls of three relatively recently (∼8.5 Mya) diverged species - Xenopus laevis, X. petersii and X. victorianus - include rapid trains of sound pulses (fast trills). We show that while fast trills are similar in pulse rate (∼60 pulses s(-1)) across the three species, they differ in call duration and period (time from the onset of one call to the onset of the following call). Previous studies of call production in X. laevis used an isolated brain preparation in which the laryngeal nerve produces compound action potentials that correspond to the advertisement call pattern (fictive calling). Here, we show that serotonin evokes fictive calling in X. petersii and X. victorianus as it does in X. laevis As in X. laevis, fictive fast trill in X. petersii and X. victorianus is accompanied by an N-methyl-d-aspartate receptor-dependent local field potential wave in a rostral hindbrain nucleus, DTAM. Across the three species, wave duration and period are strongly correlated with species-specific fast trill duration and period, respectively. When DTAM is isolated from the more rostral forebrain and midbrain and/or more caudal laryngeal motor nucleus, the wave persists at species-typical durations and periods. Thus, intrinsic differences within DTAM could be responsible for the evolutionary divergence of call patterns across these related species. © 2017. Published by The Company of Biologists Ltd.

  6. Automatic test pattern generation for logic circuits using the Boolean tree

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Taegwon.

    1991-01-01

    The goal of this study was to develop an algorithm that can generate test patterns for combinational circuits and sequential logic circuits automatically. The new proposed algorithm generates a test pattern by using a special tree called a modified Boolean tree. In this algorithm, the construction of a modified Boolean tree is the most time-consuming step. Following the construction of a modified Boolean tree, a test pattern can be found by simply assigning a logic value 1 for even primary inputs and a logic value 0 for odd primary inputs of the constructed modified Boolean tree. The algorithm is applied to several benchmark circuits. The results showed the following: (1) for combinational circuits, the algorithm can generate test patterns 10-15% faster than the FAN algorithm, which is known as one of the most efficient algorithms to-date; (2) for sequential circuits, the algorithm shows more fault coverage than the nine valued algorithm.

  7. Hierarchical Symbolic Analysis of Large Analog Circuits with Totally Coded Method

    Institute of Scientific and Technical Information of China (English)

    XU Jing-bo

    2006-01-01

    Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-ofproduct form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.

  8. Comparison between four piezoelectric energy harvesting circuits

    Institute of Scientific and Technical Information of China (English)

    Jinhao QIU; Hao JIANG; Hongli JI; Kongjun ZHU

    2009-01-01

    This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

  9. Using Combinational Circuits for Control Purposes

    Directory of Open Access Journals (Sweden)

    Maher A. Nabulsi

    2009-01-01

    Full Text Available Problem statement: Combinational circuits are used in computers for generating binary control decisions and for providing digital components for data processing. Approach: The use of combinational circuits and logic gates to control other circuits was discussed. Different systems that use logic gates, multiplexers, decoders and encoders to control different circuits were presented. This study presented a design and implementation of some combinational circuits such as a decoder, an encoder, a multiplexer, a bus system and read/write memory operations. Results: When we connected some types of combinational circuits to the inputs/outputs of digital circuit, these combinational circuits can help us to manage and flow a different types of control signals through a large digital circuit. Conclusion: Many combinational circuits had a good function which can be used for controlling different parts of any digital system and they produce a suitable way to transfer a control signals between different digital components of any large digital system.

  10. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  11. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed...

  12. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  13. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the...

  14. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  15. Dynamic companion harmonic circuit models for analysis of power systems with embedded power electronics devices

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, H.; Madrigal, M. [Programa de Graduados e Investigacion en Ingenieria Electrica, Instituto Tecnologico de Morelia, Morelia (Mexico); Vyakaranam, B.; Rarick, R.; Villaseca, F.E. [Department of Electrical and Computer Engineering, Cleveland State University, OH (United States)

    2011-02-15

    In this paper a methodology that extends the dynamic harmonic domain (DHD) analysis of large networks is presented. The method combines DHD analysis and discrete companion circuit modeling resulting in a powerful analytic technique called dynamic companion harmonic circuit modeling. It provides for a complete dynamic harmonic analysis of the system while preserving the advantages of discrete companion circuit models. The methodology is illustrated by its application to a three-node power system, where reactive power compensation is achieved using a fixed-capacitor, thyristor-controlled reactor (FC-TCR) and its control system. (author)

  16. Dynamics of Hamiltonian Systems and Memristor Circuits

    Science.gov (United States)

    Itoh, Makoto; Chua, Leon

    In this paper, we show that any n-dimensional autonomous systems can be regarded as subsystems of 2n-dimensional Hamiltonian systems. One of the two subsystems is identical to the n-dimensional autonomous system, which is called the driving system. Another subsystem, called the response system, can exhibit interesting behaviors in the neighborhood of infinity. That is, the trajectories approach infinity with complicated nonperiodic (chaotic-like) behaviors, or periodic-like behavior. In order to show the above results, we project the trajectories of the Hamiltonian systems onto n-dimensional spheres, or n-dimensional balls by using the well-known central projection transformation. Another interesting behavior is that the transient regime of the subsystems can exhibit Chua corsage knots. We next show that generic memristors can be used to realize the above Hamiltonian systems. Finally, we show that the internal state of two-element memristor circuits can have the same dynamics as n-dimensional autonomous systems.

  17. Logic circuits from zero forcing.

    Science.gov (United States)

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  18. Introduction to lethal circuit transformations

    Science.gov (United States)

    Fišer, Petr; Schmidt, Jan

    2015-12-01

    Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest actions to mitigate the disturbing effects.

  19. The Call to Teach and Teacher Hopefulness

    Science.gov (United States)

    Bullough, Robert V., Jr.; Hall-Kenyon, Kendra M.

    2011-01-01

    The purpose of this paper is to explore teacher motivation and well-being. Our analysis focuses on two central concepts, the notion of a "calling to teach" and of teacher "hopefulness." Data from 205 preservice and inservice teachers were collected to determine teachers' sense of calling and level of hope. Results indicate that overwhelmingly,…

  20. A CALL for Improved School Leadership

    Science.gov (United States)

    Halverson, Richard; Kelley, Carolyn; Shaw, James

    2014-01-01

    The Comprehensive Assessment of Leadership for Learning (CALL) is a formative assessment that provides feedback to schools on the research-based leadership practices necessary to improve teaching and learning. Instead of focusing on an individual leader, CALL measures leadership practices in tasks carried out by actors across the school and…

  1. Answering the "Call of the Mountain"

    NARCIS (Netherlands)

    Chaves Villegas, Martha

    2016-01-01

    In response to the age of the ‘anthropocene,’ as some authors are calling this epoch in which one single species is disrupting major natural systems (Steffen et al 2011), there are calls for more radical, learning-based sustainability that generates deep transformations in individuals an

  2. Integrated Language Skills CALL Course Design

    Science.gov (United States)

    Watson, Kevin; Agawa, Grant

    2013-01-01

    The importance of a structured learning framework or interrelated frameworks is the cornerstone of a solid English as a foreign language (EFL) computer-assisted language learning (CALL) curriculum. While the benefits of CALL are widely promoted in the literature, there is often an endemic discord separating theory and practice. Oftentimes the…

  3. 33 CFR 401.64 - Calling in.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Calling in. 401.64 Section 401.64... SEAWAY REGULATIONS AND RULES Regulations Radio Communications § 401.64 Calling in. (a) Every vessel, intending to transit or in transit, shall report on the assigned frequency to the designated Seaway...

  4. Answering the "Call of the Mountain"

    NARCIS (Netherlands)

    Chaves Villegas, Martha

    2016-01-01

    In response to the age of the ‘anthropocene,’ as some authors are calling this epoch in which one single species is disrupting major natural systems (Steffen et al 2011), there are calls for more radical, learning-based sustainability that generates deep transformations in individuals

  5. 78 FR 76218 - Rural Call Completion

    Science.gov (United States)

    2013-12-17

    ... providers of VoIP service, other providers could circumvent the rules by working with a VoIP service... expect the Commission will obtain the data we need to identify and analyze patterns of call completion... below will allow the Commission to better identify patterns of rural call completion problems and...

  6. CALL in Lebanese Elementary ESL Writing Classrooms

    Science.gov (United States)

    Fidaoui, Diana; Bahous, Rima; Bacha, Nahla N.

    2010-01-01

    This article discusses the effectiveness of using computer assisted language learning (CALL) in motivating fourth-grade English as a second language (ESL) students to develop better writing skills. It also seeks to explore the perceptions of ESL teachers and students regarding the use of CALL in the ESL classroom. The study involved 48 fourth…

  7. Communication cliques in mobile phone calling networks

    CERN Document Server

    Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2015-01-01

    People in modern societies form different social networks through numerous means of communication. These communication networks reflect different aspects of human's societal structure. The billing records of calls among mobile phone users enable us to construct a directed calling network (DCN) and its Bonferroni network (SVDCN) in which the preferential communications are statistically validated. Here we perform a comparative investigation of the cliques of the original DCN and its SVDCN constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that the statistical properties of the cliques of the two calling networks are qualitatively similar and the clique members in the DCN and the SVDCN exhibit idiosyncratic behaviors quantitatively. Members in large cliques are found to be spatially close to each other. Based on the clique degree profile of each mobile phone user, the most active users in the two calling networks can be classified in to seve...

  8. Call Admission Control in Mobile Cellular Networks

    CERN Document Server

    Ghosh, Sanchita

    2013-01-01

    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  9. Grounded coplanar waveguide defected ground structure enabled mulitlayered passive circuits

    Science.gov (United States)

    Schlieter, Daniel Benjamin

    Passive circuits are essential to microwave and millimeter-wave (mm-wave) frequency design, especially as new commercial applications emerge for complementary metal-oxide semiconductor (CMOS) integrated circuits. However, it is challenging to design distributed passive circuits for CMOS due to the substrate loss and thin dielectric layers of the back-end-of-line (BEOL). Furthermore, distributed passive circuits need to be adapted for compactness and integration while overcoming these challenges and maintaining high performance. Grounded coplanar waveguide defected ground structures meet this need for compact and integrable passive circuits by utilizing the top and bottom ground planes of the transmission line to implement circuit elements. Defected ground structures (DGS) are distributed elements realized by etching specific patterns into the ground planes of transmission lines. These structures can be used in conjunction with the center conductor of planar transmission lines to reduce circuit size and/or improve performance. By implementing DGS in grounded coplanar waveguide (GCPW) multiple resonances and higher impedances can be achieved. The resonant-based GCPW DGS are more compact than their microstrip and CPW counterparts and fit well into the vertical technology of back-end-of-line CMOS. This research demonstrates up to 80% size reduction at 5.8GHz by realizing spiral-shaped DGS in GCPW and applying the resulting GCPW DGS unit cell to a dual-behavior band-pass filter. The filter has been scaled to 60GHz and realized in a 130nm CMOS process by using floating metal strips to reduce the impact of the lossy silicon substrate. The impedance-based GCPW DGS, called EG-GCPW, have up to a 20:1 impedance ratio on Rogers RT/DuroidRTM 5880 and an impedance ratio of 15:1 on a benzocyclobutene post-CMOS process. These high impedance ratios increased the power division ratio of an unequal Wilkinson power divider to 7:1 and reduced the size of a stepped impedance low

  10. Call cultures in orang-utans?

    Directory of Open Access Journals (Sweden)

    Serge A Wich

    Full Text Available BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects. Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval, individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might

  11. Electronically Tunable Sinusoidal Oscillator Circuit

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2012-01-01

    Full Text Available This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25 μm CMOS process parameters.

  12. Optimization of reversible sequential circuits

    CERN Document Server

    Sayem, Abu Sadat Md

    2010-01-01

    In recent years reversible logic has been considered as an important issue for designing low power digital circuits. It has voluminous applications in the present rising nanotechnology such as DNA computing, Quantum Computing, low power VLSI and quantum dot automata. In this paper we have proposed optimized design of reversible sequential circuits in terms of number of gates, delay and hardware complexity. We have designed the latches with a new reversible gate and reduced the required number of gates, garbage outputs, and delay and hardware complexity. As the number of gates and garbage outputs increase the complexity of reversible circuits, this design will significantly enhance the performance. We have proposed reversible D-latch and JK latch which are better than the existing designs available in literature.

  13. Chua's Circuit: Control and Synchronization

    Science.gov (United States)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  14. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  15. Vertically Integrated Circuits at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  16. Nuclear sensor signal processing circuit

    Science.gov (United States)

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  17. Zebra finch mates use their forebrain song system in unlearned call communication.

    Directory of Open Access Journals (Sweden)

    Andries Ter Maat

    Full Text Available Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which "stack" calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.

  18. Zebra finch mates use their forebrain song system in unlearned call communication.

    Science.gov (United States)

    Ter Maat, Andries; Trost, Lisa; Sagunsky, Hannes; Seltmann, Susanne; Gahr, Manfred

    2014-01-01

    Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which "stack" calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.

  19. Endogenous money, circuits and financialization

    OpenAIRE

    Malcolm Sawyer

    2013-01-01

    This paper locates the endogenous money approach in a circuitist framework. It argues for the significance of the credit creation process for the evolution of the economy and the absence of any notion of ‘neutrality of money’. Clearing banks are distinguished from other financial institutions as the providers of initial finance in a circuit whereas other financial institutions operate in a final finance circuit. Financialization is here viewed in terms of the growth of financial assets an...

  20. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  1. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  2. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio

    2012-01-01

    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  3. Integrated circuits for multimedia applications

    DEFF Research Database (Denmark)

    Vandi, Luca

    2007-01-01

    This work presents several key aspects in the design of RF integrated circuits for portable multimedia devices. One chapter is dedicated to the application of negative-feedback topologies to receiver frontends. A novel feedback technique suitable for common multiplier-based mixers is described......, and it is applied to a broad-band dual-loop receiver architecture in order to boost the linearity performances of the stage. A simplified noise- and linearity analysis of the circuit is derived, and a comparison is provided with a more traditional dual-loop topology (a broad-band stage based on shunt...

  4. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  5. Circuit, Thermal and Cost Characteristics of Impulse Magnetizing Circuits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development of circuit, thermal and cost model for a capacitor discharge impulse megnetizer and compares simulations to measurements from an actual system. We used a cost structure consisting of five major subsystems for cost modeling. Especially, we estimated the potential for cost reductions impulse magnetizer as a function of time using the learning curve.

  6. External GSM phone calls now made simpler

    CERN Multimedia

    2007-01-01

    On 2 July, the IT/CS Telecom Service introduced a new service making external calls from CERN GSM phones easier. A specific prefix is no longer needed for calls outside CERN. External calls from CERN GSM phones are to be simplified. It is no longer necessary to use a special prefix to call an external number from the CERN GSM network.The Telecom Section of the IT/CS Group is introducing a new system that will make life easier for GSM users. It is no longer necessary to use a special prefix (333) to call an external number from the CERN GSM network. Simply dial the number directly like any other Swiss GSM customer. CERN currently has its own private GSM network with the Swiss mobile operator, Sunrise, covering the whole of Switzerland. This network was initially intended exclusively for calls between CERN numbers (replacing the old beeper system). A special system was later introduced for external calls, allowing them to pass thr...

  7. Relaxation Based Electrical Simulation for VLSI Circuits

    Directory of Open Access Journals (Sweden)

    S. Rajkumar

    2012-06-01

    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  8. An Approach to Simplify Reversible Logic Circuits

    Directory of Open Access Journals (Sweden)

    Pabitra Roy

    2012-09-01

    Full Text Available Energy loss is one of the major problems in traditional irreversible circuits. For every bit of information loss kTln2 joules of heat is lost. In order to reduce the energy loss the concept of reversible logic circuits are introduced. Here we have described an algorithm for simplifying the reversible logic circuit and hence reduction of circuit cost and energy. The algorithm considers sub_circuit with respect to their number of lines and contiguous gates. The resulting sub_circuits are re-synthesized with smaller equivalent implementation. The process continues until circuit cost reaches good enough for Application or until a given computation budget has been exhausted. The circuit is constructed by NOT, CNOT and Toffoli gates only. By applying the algorithm and using the equivalent implementation we will get significant reduction of circuit cost and hence energy.

  9. Retropath: automated pipeline for embedded metabolic circuits.

    Science.gov (United States)

    Carbonell, Pablo; Parutto, Pierre; Baudier, Claire; Junot, Christophe; Faulon, Jean-Loup

    2014-08-15

    Metabolic circuits are a promising alternative to other conventional genetic circuits as modular parts implementing functionalities required for synthetic biology applications. To date, metabolic design has been mainly focused on production circuits. Emergent applications such as smart therapeutics, however, require circuits that enable sensing and regulation. Here, we present RetroPath, an automated pipeline for embedded metabolic circuits that explores the circuit design space from a given set of specifications and selects the best circuits to implement based on desired constraints. Synthetic biology circuits embedded in a chassis organism that are capable of controlling the production, processing, sensing, and the release of specific molecules were enumerated in the metabolic space through a standard procedure. In that way, design and implementation of applications such as therapeutic circuits that autonomously diagnose and treat disease, are enabled, and their optimization is streamlined.

  10. Development of circuit model for arcing on solar panels

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Bhoomi K; Deshpande, S P; Mukherjee, S; Gupta, S B; Ranjan, M; Rane, R; Vaghela, N; Acharya, V [FCIPT, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Sudhakar, M; Sankaran, M; Suresh, E P, E-mail: bhoomi@ipr.res.i [ISRO Satellite Centre (ISAC), Bangalore 560017 (India)

    2010-02-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 {mu}s duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between

  11. Arginine vasotocin promotes calling behavior and call changes in male túngara frogs.

    Science.gov (United States)

    Kime, Nicole M; Whitney, Tina K; Davis, Ellen S; Marler, Catherine A

    2007-01-01

    In the túngara frog, Physalaemus pustulosus, males alter calling behavior with changes in their social environment, adding 'chucks' to their advertisement calls in response to the calls of conspecific males. Other studies demonstrate that adding chucks increases the attractiveness of calls to females but also increases the risk of bat predation. In the current study, subcutaneous injections of the neuropeptide hormone arginine vasotocin (AVT) significantly increased chuck production in male túngara frogs. The effects of AVT on chuck production did not depend on the presence of playback stimuli, suggesting that AVT increased either the males' general motivation to produce chucks or their responsiveness to the calls of distant males. Injections of AVT also increased the probability that males would call and decreased the latency to call after injection, supporting the hypothesis that AVT influences motivation to call. Finally, AVT inhibited a drop in call rate after the termination of a playback stimulus and increased call rate at a lower dose of AVT. The effects of AVT on chucks and call rate appear to be independent of each other, as there was no correlation between change in chuck production and change in call rate in individual males. We conclude that AVT may play an important role in socially-mediated call changes that result from competition for mates. The behavioral changes induced by AVT might increase a male's attractiveness to females, and also may be consistent with an aggressive response to another túngara frog male. Copyright 2007 S. Karger AG, Basel.

  12. Tomonaga-Luttinger physics in electronic quantum circuits.

    Science.gov (United States)

    Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F

    2013-01-01

    In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.

  13. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells.

    Science.gov (United States)

    Weinberg, Benjamin H; Pham, N T Hang; Caraballo, Leidy D; Lozanoski, Thomas; Engel, Adrien; Bhatia, Swapnil; Wong, Wilson W

    2017-05-01

    Engineered genetic circuits for mammalian cells often require extensive fine-tuning to perform as intended. We present a robust, general, scalable system, called 'Boolean logic and arithmetic through DNA excision' (BLADE), to engineer genetic circuits with multiple inputs and outputs in mammalian cells with minimal optimization. The reliability of BLADE arises from its reliance on recombinases under the control of a single promoter, which integrates circuit signals on a single transcriptional layer. We used BLADE to build 113 circuits in human embryonic kidney and Jurkat T cells and devised a quantitative, vector-proximity metric to evaluate their performance. Of 113 circuits analyzed, 109 functioned (96.5%) as intended without optimization. The circuits, which are available through Addgene, include a 3-input, two-output full adder; a 6-input, one-output Boolean logic look-up table; circuits with small-molecule-inducible control; and circuits that incorporate CRISPR-Cas9 to regulate endogenous genes. BLADE enables execution of sophisticated cellular computation in mammalian cells, with applications in cell and tissue engineering.

  14. Avalanche photodiodes and quenching circuits for single-photon detection.

    Science.gov (United States)

    Cova, S; Ghioni, M; Lacaita, A; Samori, C; Zappa, F

    1996-04-20

    Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called singlephoton avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

  15. Avalanche photodiodes and quenching circuits for single-photon detection

    Science.gov (United States)

    Cova, S.; Ghioni, M.; Lacaita, A.; Samori, C.; Zappa, F.

    1996-04-01

    Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called single-photon avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540-to 850-nm wavelength and still approximately 3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

  16. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  17. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  18. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  19. 76 FR 4896 - Call for Candidates

    Science.gov (United States)

    2011-01-27

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ACCOUNTING STANDARDS ADVISORY BOARD Call for Candidates AGENCY: Federal Accounting Standards Advisory Board. ACTION: Notice... Federal Accounting Standards Advisory Board (FASAB) is currently seeking candidates (candidates must...

  20. Mourning Dove Call-count Survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Mourning Dove (Zenaida macroura) Call-Count Survey was developed to provide an index to population size and to detect annual changes in mourning dove breeding...

  1. Computer Assisted Language Learning (CALL) Software: Evaluation ...

    African Journals Online (AJOL)

    Computer Assisted Language Learning (CALL) Software: Evaluation of its Influence in a Language Learning Process. ... Current Issue · Archives · Journal Home > Vol 12, No 1 (2011) >. Log in or Register to get access to full text downloads.

  2. The function of migratory bird calls

    DEFF Research Database (Denmark)

    Reichl, Thomas; Andersen, Bent Bach; Larsen, Ole Næsbye

    The function of migratory bird calls: do they influence orientation and navigation?   Thomas Reichl1, Bent Bach Andersen2, Ole Naesbye Larsen2, Henrik Mouritsen1   1Institute of Biology, University of Oldenburg, Oldenburg, D-26111 Oldenburg, Germany 2Institute of Biology, University of Southern...... migration and to stimulate migratory restlessness in conspecifics. We wished to test if conspecific flight calls influence the flight direction of a nocturnal migrant, the European Robin (Erithacus rubecula), i.e. if flight calls help migrants keeping course. Wild caught birds showing migratory restlessness...... the experimental bird could be activated successively to simulate a migrating Robin cruising E-W, W-E, S-N or N-S at a chosen height (mostly about 40 m), at 10 m/s and emitting Robin flight calls of 80 dB(A) at 1 m. The simulated flight of a "ding" sound served as a control. During an experiment the bird was first...

  3. A Low Noise Electronic Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Leenaerts, Dominicus M.W.; de Vreede, Petrus W.H.

    2002-01-01

    An electronic circuit, which can be used as a Low Noise Amplifier (LNA), comprises two complementary Field Effect Transistors (M1, M2; M5, M6), each having a gate, a source and a drain. The gates are connected together as a common input terminal, and the drains are connected together as a

  4. A circuit mechanism for neurodegeneration.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-10-12

    How deficiency in SMN1 selectively affects motoneurons in spinal muscular atrophy is poorly understood. Here, Imlach et al. and Lotti et al. show that aberrant splicing of Stasimon in cholinergic sensory neurons and interneurons leads to motoneuron degeneration, suggesting that altered circuit function may underlie the disorder.

  5. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  6. Structural Testing of RSFQ Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.; Flokstra, Jakob; Rogalla, Horst; Brinkman, Alexander

    2005-01-01

    The RSFQ family of logic circuits built in Niobium (Nb) tri-layer processes are being widely used for designs in Superconductor Electronics (SCE). But little information is available about the defects and fault mechanisms occurring in an RSFQ Nb process.

  7. Partition Decomposition for Roll Call Data

    CERN Document Server

    Leibon, Greg; Rockmore, Daniel N; Savell, Robert

    2011-01-01

    In this paper we bring to bear some new tools from statistical learning on the analysis of roll call data. We present a new data-driven model for roll call voting that is geometric in nature. We construct the model by adapting the "Partition Decoupling Method," an unsupervised learning technique originally developed for the analysis of families of time series, to produce a multiscale geometric description of a weighted network associated to a set of roll call votes. Central to this approach is the quantitative notion of a "motivation," a cluster-based and learned basis element that serves as a building block in the representation of roll call data. Motivations enable the formulation of a quantitative description of ideology and their data-dependent nature makes possible a quantitative analysis of the evolution of ideological factors. This approach is generally applicable to roll call data and we apply it in particular to the historical roll call voting of the U.S. House and Senate. This methodology provides a...

  8. Communication cliques in mobile phone calling networks

    Science.gov (United States)

    Li, Ming-Xia; Xie, Wen-Jie; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2015-11-01

    People in modern societies form different social networks through numerous means of communication. These communication networks reflect different aspects of human's societal structure. The billing records of calls among mobile phone users enable us to construct a directed calling network (DCN) and its Bonferroni network (SVDCN) in which the preferential communications are statistically validated. Here we perform a comparative investigation of the cliques of the original DCN and its SVDCN constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that the statistical properties of the cliques of the two calling networks are qualitatively similar and the clique members in the DCN and the SVDCN exhibit idiosyncratic behaviors quantitatively. Members in large cliques are found to be spatially close to each other. Based on the clique degree profile of each mobile phone user, the most active users in the two calling networks can be classified in to several groups. The users in different groups are found to have different calling behaviors. Our study unveils interesting communication behaviors among mobile phone users that are densely connected to each other.

  9. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false 911 call processing procedures; 911-only calling mode. 22.921 Section 22.921 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call...

  10. The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example,upon which the voltage-current relationships (VCRs) between two parallel memristive circuits-a parallel memristor and capacitor circuit (the parallel MC circuit),and a parallel memristor and inductor circuit (the parallel ML circuit)-are investigated.The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters,and the frequency and amplitude of the sinusoidal voltage stimulus.An equivalent circuit model of the memristor is built,upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed,and the results verify the theoretical analysis results.

  11. SACSR:a low power BIST method for sequential circuits

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel built-in-self-test (BIST) method called seeded autonomous cyclic shift register (SACSR) is presented to reduce test power of the sequential circuit. The key idea is to use a pseudorandom pattern generator and several XOR gates to generate seeds that share fewer test vectors. The generated seed is taken XOR operation with a cyclic shift register, and the single input change (SIC) sequence is generated. The proposed scheme is easily implemented and can reduce the switching activities of the circuit under test (CUT) greatly. Experimental results on ISCAS89 benchmarks show that on average more than 63% power reduction can be achieved. It also demonstrates that the generated test vectors attain high fault coverage for stuck-at fault and transition fault coverage with short test length.

  12. Modelling a river catchment using an electrical circuit analogue

    Directory of Open Access Journals (Sweden)

    C. G. Collier

    1998-01-01

    Full Text Available An electrical circuit analogue of a river catchment is described from which is derived an hydrological model of river flow called the River Electrical Water Analogue Research and Development (REWARD model. The model is based upon an analytic solution to the equation governing the flow of electricity in an inductance-capacitance-resistance (LCR circuit. An interpretation of L, C and R in terms of catchment parameters and physical processes is proposed, and tested for the River Irwell catchment in northwest England. Hydrograph characteristics evaluated using the model are compared with observed hydrographs, confirming that the modelling approach does provide a reliable framework within which to investigate the impact of variations in model input data.

  13. Developing a Domain Model for Relay Circuits

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth

    2009-01-01

    the statics as well as the dynamics of relay circuits, i.e. how a relay circuit can be composed legally from electrical components as well as how the components may change state over time. Finally the circuit model is transformed into an executable model, and we show how a concrete circuit can be defined......In this paper we stepwise develop a domain model for relay circuits as used in railway control systems. First we provide an abstract, property-oriented model of networks consisting of components that can be glued together with connectors. This model is strongly inspired by a network model...... for railways madeby Bjørner et.al., however our model is more general: the components can be of any kind and can later be refined to e.g. railway components or circuit components. Then we show how the abstract network model can be refined into an explicit model for relay circuits. The circuit model describes...

  14. Driver circuit for solid state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  15. Fabric circuits and method of manufacturing fabric circuits

    Science.gov (United States)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  16. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  17. DC operating points of transistor circuits

    Science.gov (United States)

    Trajkovic, Ljiljana

    Finding a circuit's dc operating points is an essential step in its design and involves solving systems of nonlinear algebraic equations. Of particular research and practical interests are dc analysis and simulation of electronic circuits consisting of bipolar junction and field-effect transistors (BJTs and FETs), which are building blocks of modern electronic circuits. In this paper, we survey main theoretical results related to dc operating points of transistor circuits and discuss numerical methods for their calculation.

  18. An Improved Squaring Circuit for Binary Numbers

    Directory of Open Access Journals (Sweden)

    Kabiraj Sethi

    2012-02-01

    Full Text Available In this paper, a high speed squaring circuit for binary numbers is proposed. High speed Vedic multiplier is used for design of the proposed squaring circuit. The key to our success is that only one Vedic multiplier is used instead of four multipliers reported in the literature. In addition, one squaring circuit is used twice. Our proposed Squaring Circuit seems to have better performance in terms of speed.

  19. Solid-State dc Circuit Breaker

    Science.gov (United States)

    Harvey, P.

    1983-01-01

    Circuit breaker with no moving parts protects direct-current (dc) loads. Current which circuit breaker opens (trip current) is adjustable and so is time delay before breaker trips. Forward voltage drop rises from 0.6 to 1.2 V as current rises to trip point. Breaker has two terminals, like fuse, therefore replaces fuse in dc circuit. Powered by circuit it protects and reset by either turning off power source or disconnecting load.

  20. Calling patterns in human communication dynamics

    CERN Document Server

    Jiang, Zhi-Qiang; Li, Ming-Xia; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H Eugene; 10.1073/pnas.1220433110

    2013-01-01

    Modern technologies not only provide a variety of communication modes, e.g., texting, cellphone conversation, and online instant messaging, but they also provide detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study the inter-call durations of the 100,000 most-active cellphone users of a Chinese mobile phone operator. We confirm that the inter-call durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the inter-call durations follow a power-law distribution for only 3460 individuals (3.46%). The inter-call durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cellphone users with a power-law...

  1. Dynamic routing based on call quality

    CERN Document Server

    Hammami, Oussama; Gabrielyan, Emin

    2009-01-01

    The telephony over IP (ToIP) is becoming a new trend in technology widely used nowadays in almost all business sectors. Its concepts rely on transiting the telephone communications through the IP network. Today, this technology is deployed increasingly what the cause of emergence of companies is offering this service as Switzernet. For several highly demanded destinations, recently fake vendors appeared in the market offering voice termination but providing only false answer supervision. The answered signal is returned immediately and calls are being charged without being connected. Different techniques are used to keep the calling party on the line. One of these techniques is to play a record of a ring back tone (while the call is already being charged). Another, more sophisticated technique is to play a human voice randomly picked up from a set of records containing contents similar to: hello, hello, I cannot hear you Apart the fact that the fallaciously established calls are charged at rates of real calls,...

  2. 49 CFR 236.721 - Circuit, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  3. New Logic Circuit with DC Parametric Excitation

    Science.gov (United States)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  4. An eigenvalue study of the MLC circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.

    1998-01-01

    The MLC (Murali-Lakshmanan-Chua) circuit is the simplest non-autonomous chaotic circuit. Insight in the behaviour of the circuit is obtained by means of a study of the eigenvalues of the linearized Jacobian of the nonlinear differential equations. The trajectories of the eigenvalues as functions...

  5. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1978-11-01

    The testability of a digital circuit is directy related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  6. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1979-01-01

    The testability of a digital circuit is directly related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  7. Controllability/observability analysis of digital circuits

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.H.

    1979-09-01

    The testability of a digital circuit is directly related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. A method for analyzing digital circuits in terms of six functions which characterize combinational and sequential controllability and observability is presented.

  8. An Equivalent Circuit for Landau Damping

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....

  9. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  10. 30 CFR 57.6403 - Branch circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403... Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each branch shall be equipped with a safety switch or equivalent method to isolate...

  11. 49 CFR 234.203 - Control circuits.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that...

  12. Nanoelectronic circuit design and test

    Science.gov (United States)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  13. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection....

  14. Dispatching function calls across accelerator devices

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Arpith C.; Sallenave, Olivier H.

    2017-01-17

    In one embodiment, a computer-implemented method for dispatching a function call includes receiving, at a supervisor processing element (PE) and from an origin PE, an identifier of a target device, a stack frame of the origin PE, and an address of a function called from the origin PE. The supervisor PE allocates a target PE of the target device. The supervisor PE copies the stack frame of the origin PE to a new stack frame on a call stack of the target PE. The supervisor PE instructs the target PE to execute the function. The supervisor PE receives a notification that execution of the function is complete. The supervisor PE copies the stack frame of the target PE to the stack frame of the origin PE. The supervisor PE releases the target PE of the target device. The supervisor PE instructs the origin PE to resume execution of the program.

  15. Malware Classification based on Call Graph Clustering

    CERN Document Server

    Kinable, Joris

    2010-01-01

    Each day, anti-virus companies receive tens of thousands samples of potentially harmful executables. Many of the malicious samples are variations of previously encountered malware, created by their authors to evade pattern-based detection. Dealing with these large amounts of data requires robust, automatic detection approaches. This paper studies malware classification based on call graph clustering. By representing malware samples as call graphs, it is possible to abstract certain variations away, and enable the detection of structural similarities between samples. The ability to cluster similar samples together will make more generic detection techniques possible, thereby targeting the commonalities of the samples within a cluster. To compare call graphs mutually, we compute pairwise graph similarity scores via graph matchings which approximately minimize the graph edit distance. Next, to facilitate the discovery of similar malware samples, we employ several clustering algorithms, including k-medoids and DB...

  16. Dispatching function calls across accelerator devices

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Arpith C.; Sallenave, Olivier H.

    2017-01-10

    In one embodiment, a computer-implemented method for dispatching a function call includes receiving, at a supervisor processing element (PE) and from an origin PE, an identifier of a target device, a stack frame of the origin PE, and an address of a function called from the origin PE. The supervisor PE allocates a target PE of the target device. The supervisor PE copies the stack frame of the origin PE to a new stack frame on a call stack of the target PE. The supervisor PE instructs the target PE to execute the function. The supervisor PE receives a notification that execution of the function is complete. The supervisor PE copies the stack frame of the target PE to the stack frame of the origin PE. The supervisor PE releases the target PE of the target device. The supervisor PE instructs the origin PE to resume execution of the program.

  17. Hourly associations between heat and ambulance calls.

    Science.gov (United States)

    Guo, Yuming

    2017-01-01

    The response speed of ambulance calls is very crucial to rescue patients suffering immediately life threatening conditions. The serious health outcomes might be caused by exposing to extreme heat only several hours before. However, limited evidence is available on this topic. This study aims to examine the hourly association between heat and ambulance calls, to improve the ambulance services and to better protect health. Hourly data on ambulance calls for non-accidental causes, temperature and air pollutants (PM10, NO2, and O3) were collected from Brisbane, Australia, during 2001 and 2007. A time-stratified case-crossover design was used to examine the associations between hourly ambulance calls and temperature during warm season (Nov, Dec, Jan, Feb, and Mar), while adjusting for potential confounders. Stratified analyses were performed for sex and age groups. Ambulance calls peaked at 10am for all groups, except those aged heat-ambulance calls relationships were non-linear for all groups, with thresholds between 27 °C and 31 °C. The associations appeared immediately, and lasted for about 24 h. There were no significant modification effect by sex and age. The findings suggest that hot hourly temperatures (>27 °C) increase the demands of ambulance. This information is helpful to increase the efficiency of ambulance service then save lives, for example, preparing more ambulance before appearance of extremely hot temperature in combination with weather forecast. Also, people should better arrange their time for outdoor activities to avoid exposing to extreme hot temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Delay locked loop integrated circuit.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  19. Optogenetic Investigation of Arousal Circuits.

    Science.gov (United States)

    Tyree, Susan M; de Lecea, Luis

    2017-08-15

    Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.

  20. Phonon waveguides for electromechanical circuits

    Science.gov (United States)

    Hatanaka, D.; Mahboob, I.; Onomitsu, K.; Yamaguchi, H.

    2014-07-01

    Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.