Quantum Two Player Game in Thermal Environment.
Directory of Open Access Journals (Sweden)
Jerzy Dajka
Full Text Available A two-player quantum game is considered in the presence of thermal decoherence. It is shown how the thermal environment modeled in terms of rigorous Davies approach affects payoffs of the players. The conditions for either beneficial or pernicious effect of decoherence are identified. The general considerations are exemplified by the quantum version of Prisoner Dilemma.
Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.
Chappell, James M; Iqbal, Azhar; Abbott, Derek
2012-01-01
The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.
Analysis of two-player quantum games in an EPR setting using Clifford's geometric algebra.
Directory of Open Access Journals (Sweden)
James M Chappell
Full Text Available The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR type setting is investigated using the mathematical formalism of geometric algebra (GA. The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.
A Quantum-Like View to a Generalized Two Players Game
Bagarello, F.
2015-10-01
This paper consider the possibility of using some quantum tools in decision making strategies. In particular, we consider here a dynamical open quantum system helping two players, and , to take their decisions in a specific context. We see that, within our approach, the final choices of the players do not depend in general on their initial mental states, but they are driven essentially by the environment which interacts with them. The model proposed here also considers interactions of different nature between the two players, and it is simple enough to allow for an analytical solution of the equations of motion.
Quantum-Like Model for Decision Making Process in Two Players Game. A Non-Kolmogorovian Model
Asano, Masanari; Ohya, Masanori; Khrennikov, Andrei
2011-03-01
In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4-17, 2005; Biosystems 84:225-241, 2006; Found. Phys. 35(10):1655-1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105-117, 2009), it was pointed out that statistics collected in such the experiments have "quantum-like" properties, which can not be explained in classical probability theory. In this paper, we design a simple quantum-like model describing a decision-making process in a two-players game and try to explain a mechanism of the irrational behavior of players. Finally we discuss a mathematical frame of non-Kolmogorovian system in terms of liftings (Accardi and Ohya, in Appl. Math. Optim. 39:33-59, 1999).
The expected-outcome model of two-player games
Abramson, Bruce
1990-01-01
The Expected-Outcome Model of Two-Player Games deals with the expected-outcome model of two-player games, in which the relative merit of game-tree nodes, rather than board positions, is considered. The ambiguity of static evaluation and the problems it generates in the search system are examined and the development of a domain-independent static evaluator is described. Comprised of eight chapters, this book begins with an overview of the rationale for the mathematical study of games, followed by a discussion on some previous artificial intelligence (AI) research efforts on game-trees. The nex
Computing Equilibria of Two Player Games
DEFF Research Database (Denmark)
Sørensen, Troels Bjerre
Predicting the future is a useful skill to have. It may not be impressive to predict that a stone will fall if we drop it, or that a tree will tumble if we chop it, as these systems follow predetermined behavior. It becomes harder to predict when free will enters the picture. If a single rational...... individual goals. Actions of one agent influences the situations and outcomes of other agents. The situation is not any easier if we are one of the agents in the system, trying to choose what action to take. We still want to predict what the others might do, so we can plan our best response with respect...... to the prediction. Predicting behavior of rational agents has many application areas. The phrasing of the last paragraph was vague for sole purpose of not implying any restriction on what agents are and in what context they act. The whole area of reasoning about rational interaction of agents is known as Game...
Strategy complexity of two-player, zero-sum games
DEFF Research Database (Denmark)
Ibsen-Jensen, Rasmus
on the algorithms. I consider a wide assortment of different two-player, zero-sum game classes, e.g. matrix games, uni-chain concurrent mean-payoff games, concurrent mean-payoff games, concurrent reachability games and one-clock priced timed games. In all game classes considered, except for one-clock priced timed...... non-zero probability used in one of the probability distributions. In each case I provide relatively tight bounds on the patience of the “good” strategy that requires the least patience in the worst game of the game class. I will give an improved bound on the patience of concurrent reachability games......This dissertation considers two-player, zero-sum games with a focus on how complicated they are to play; a notion I will call strategy complexity. Often, knowing good bounds on the strategy complexity indicates bounds on the run time of various algorithms. In such cases I will also derive bounds...
Computing Sequential Equilibria for Two-Player Games
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2006-01-01
Koller, Megiddo and von Stengel showed how to efficiently compute minimax strategies for two-player extensive-form zero-sum games with imperfect information but perfect recall using linear programming and avoiding conversion to normal form. Koller and Pfeffer pointed out that the strategies...... obtained by the algorithm are not necessarily sequentially rational and that this deficiency is often problematic for the practical applications. We show how to remove this deficiency by modifying the linear programs constructed by Koller, Megiddo and von Stengel so that pairs of strategies forming...... a sequential equilibrium are computed. In particular, we show that a sequential equilibrium for a two-player zero-sum game with imperfect information but perfect recall can be found in polynomial time. In addition, the equilibrium we find is normal-form perfect. Our technique generalizes to general-sum games...
Computing sequential equilibria for two-player games
DEFF Research Database (Denmark)
Miltersen, Peter Bro
2006-01-01
Koller, Megiddo and von Stengel showed how to efficiently compute minimax strategies for two-player extensive-form zero-sum games with imperfect information but perfect recall using linear programming and avoiding conversion to normal form. Their algorithm has been used by AI researchers...... for constructing prescriptive strategies for concrete, often fairly large games. Koller and Pfeffer pointed out that the strategies obtained by the algorithm are not necessarily sequentially rational and that this deficiency is often problematic for the practical applications. We show how to remove this deficiency...... by modifying the linear programs constructed by Koller, Megiddo and von Stengel so that pairs of strategies forming a sequential equilibrium are computed. In particular, we show that a sequential equilibrium for a two-player zero-sum game with imperfect information but perfect recall can be found in polynomial...
Two-player quantum pseudotelepathy based on recent all-versus-nothing violations of local realism
International Nuclear Information System (INIS)
Cabello, Adan
2006-01-01
We introduce two two-player quantum pseudotelepathy games based on two recently proposed all-versus-nothing (AVN) proofs of Bell's theorem [A. Cabello, Phys. Rev. Lett. 95, 210401 (2005); Phys. Rev. A 72, 050101(R) (2005)]. These games prove that Broadbent and Methot's claim that these AVN proofs do not rule out local-hidden-variable theories in which it is possible to exchange unlimited information inside the same light cone (quant-ph/0511047) is incorrect
How Two Players Negotiate Rhythm in a Shared Rhythm Game
DEFF Research Database (Denmark)
Hansen, Anne-Marie; Andersen, Hans Jørgen; Raudaskoski, Pirkko Liisa
2012-01-01
from each other. Video analysis of user interaction shines light upon how users engaged in a rhythmical relationship, and interviews give information about the user experience in terms of the game play and user collaboration. Based on the findings in this paper we propose design guidelines......In a design and working prototype of a shared music interface eleven teams of two people were to collaborate about filling in holes with tones and beats in an evolving ground rhythm. The hypothesis was that users would tune into each other and have sections of characteristic rhythmical...... relationships that related to the ground rhythm. Results from interaction data show that teams did find a mutual rhythm, and that they were able to keep this rhythm for a while and/or over several small periods. Results also showed that two players engaged in very specific rhythmical relationships that differed...
Quantum games with decoherence
International Nuclear Information System (INIS)
Flitney, A P; Abbott, D
2005-01-01
A protocol for considering decoherence in quantum games is presented. Results for two-player, two-strategy quantum games subject to decoherence are derived and some specific examples are given. Decoherence in other types of quantum games is also considered. As expected, the advantage that a quantum player achieves over a player restricted to classical strategies is diminished for increasing decoherence but only vanishes in the limit of maximum decoherence
Interaction times change evolutionary outcomes: Two-player matrix games
Czech Academy of Sciences Publication Activity Database
Křivan, Vlastimil; Cressman, R.
2017-01-01
Roč. 416, MAR 07 (2017), s. 199-207 ISSN 0022-5193 EU Projects: European Commission(XE) 690817 - FourCmodelling Institutional support: RVO:60077344 Keywords : evolutionary game theory * Hawk-Dove game * pair formation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.113, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022519317300103
International Nuclear Information System (INIS)
Iqbal, Azhar; Weigert, Stefan
2004-01-01
A new approach to play games quantum mechanically is proposed. We consider two players who perform measurements in an EPR-type setting. The payoff relations are defined as functions of correlations, i.e. without reference to classical or quantum mechanics. Classical bi-matrix games are reproduced if the input states are classical and perfectly anti-correlated, that is, for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. For example, the Prisoners' Dilemma acquires a Nash equilibrium if both players apply a mixed strategy. It appears to be conceptually impossible to reproduce the properties of quantum correlation games within the framework of classical games
Computing a quasi-perfect equilibrium of a two-player game
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2010-01-01
Refining an algorithm due to Koller, Megiddo and von Stengel, we show how to apply Lemke's algorithm for solving linear complementarity programs to compute a quasi-perfect equilibrium in behavior strategies of a given two-player extensive-form game of perfect recall. A quasi-perfect equilibrium...... of a zero-sum game, we devise variants of the algorithm that rely on linear programming rather than linear complementarity programming and use the simplex algorithm or other algorithms for linear programming rather than Lemke's algorithm. We argue that these latter algorithms are relevant for recent...
Continuous-variable quantum games
International Nuclear Information System (INIS)
Li Hui; Du Jiangfeng; Massar, Serge
2002-01-01
We investigate the quantization of games in which the players can access to a continuous set of classical strategies, making use of continuous-variable quantum systems. For the particular case of the Cournot's duopoly, we find that, even though the two players both act as 'selfishly' in the quantum game as they do in the classical game, they are found to virtually cooperate due to the quantum entanglement between them. We also find that the original Einstein-Podolksy-Rosen state contributes to the best profits that the two firms could ever attain. Moreover, we propose a practical experimental setup for the implementation of such quantum games
Spike-based decision learning of Nash equilibria in two-player games.
Directory of Open Access Journals (Sweden)
Johannes Friedrich
Full Text Available Humans and animals face decision tasks in an uncertain multi-agent environment where an agent's strategy may change in time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and the inspector game. It performs optimally according to a pure (deterministic and mixed (stochastic Nash equilibrium, respectively. In contrast, temporal-difference(TD-learning, covariance-learning, and basic reinforcement learning fail to perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in two-player games.
Quantum games on evolving random networks
Pawela, Łukasz
2015-01-01
We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.
Quantitative Pedagogy: A Digital Two Player Game to Examine Communicative Competence.
Lopez-Rosenfeld, Matías; Carrillo, Facundo; Garbulsky, Gerry; Fernandez Slezak, Diego; Sigman, Mariano
2015-01-01
Inner concepts are much richer than the words that describe them. Our general objective is to inquire what are the best procedures to communicate conceptual knowledge. We construct a simplified and controlled setup emulating important variables of pedagogy amenable to quantitative analysis. To this aim, we designed a game inspired in Chinese Whispers, to investigate which attributes of a description affect its capacity to faithfully convey an image. This is a two player game: an emitter and a receiver. The emitter was shown a simple geometric figure and was asked to describe it in words. He was informed that this description would be passed to the receiver who had to replicate the drawing from this description. We capitalized on vast data obtained from an android app to quantify the effect of different aspects of a description on communication precision. We show that descriptions more effectively communicate an image when they are coherent and when they are procedural. Instead, the creativity, the use of metaphors and the use of mathematical concepts do not affect its fidelity.
Proposal of Realization Restricted Quantum Game with Linear Optic Method
International Nuclear Information System (INIS)
Zhao Haijun; Fang Ximing
2006-01-01
We present a quantum game with the restricted strategic space and its realization with linear optical system, which can be played by two players who are separated remotely. This game can also be realized on any other quantum computers. We find that the constraint brings some interesting properties that are useful for making game models.
Robust Adaptive Dynamic Programming of Two-Player Zero-Sum Games for Continuous-Time Linear Systems.
Fu, Yue; Fu, Jun; Chai, Tianyou
2015-12-01
In this brief, an online robust adaptive dynamic programming algorithm is proposed for two-player zero-sum games of continuous-time unknown linear systems with matched uncertainties, which are functions of system outputs and states of a completely unknown exosystem. The online algorithm is developed using the policy iteration (PI) scheme with only one iteration loop. A new analytical method is proposed for convergence proof of the PI scheme. The sufficient conditions are given to guarantee globally asymptotic stability and suboptimal property of the closed-loop system. Simulation studies are conducted to illustrate the effectiveness of the proposed method.
Balancing Two-Player Stochastic Games with Soft Q-Learning
Grau-Moya, Jordi; Leibfried, Felix; Bou-Ammar, Haitham
2018-01-01
Within the context of video games the notion of perfectly rational agents can be undesirable as it leads to uninteresting situations, where humans face tough adversarial decision makers. Current frameworks for stochastic games and reinforcement learning prohibit tuneable strategies as they seek optimal performance. In this paper, we enable such tuneable behaviour by generalising soft Q-learning to stochastic games, where more than one agent interact strategically. We contribute both theoretic...
Quantum Chinos game: winning strategies through quantum fluctuations
International Nuclear Information System (INIS)
Guinea, F; Martin-Delgado, M A
2003-01-01
We apply several quantization schemes to simple versions of the Chinos game. Classically, for two players with one coin each, there is a symmetric stable strategy that allows each player to win half of the times on average. A partial quantization of the game (semiclassical) allows us to find a winning strategy for the second player, but it is unstable w.r.t. the classical strategy. However, in a fully quantum version of the game we find a winning strategy for the first player that is optimal: the symmetric classical situation is broken at the quantum level. (letter to the editor)
The role of autoshaping in cooperative two-player games between starlings.
Reboreda, J C; Kacelnik, A
1993-07-01
We report a study of the behavior of starlings in laboratory situations inspired by the "prisoner's dilemma." Our purpose is to investigate some possible mechanisms for the maintenance of cooperation by reciprocity and to investigate the process of autoshaping at a trial-by-trial level. In Experiment 1, pairs of starlings housed in adjacent cages played a discrete-trial "game" in which food could be obtained only by "cooperation." In this game, pecking at a response key eliminated the opportunity to obtain food but produced food for the partner. If neither bird pecked, neither had the opportunity to obtain food in that trial. Some level of cooperation persisted for several sessions whether the birds had been pretrained for a high or low probability of pecking at the key. The probability of a cooperative response was higher after trials in which the partner responded (and a reward was obtained) than after trials in which neither bird responded (and no reward was obtained), but the probability of a response was even higher after trials in which the same bird had responded, even though no reward was obtained by the actor in these trials. This behavior did not require visual presence of another player, because similar results were obtained in Experiment 2 (a replicate of Experiment 1 in which the members of the pair could not see each other) and in Experiment 3, a game in which each starling played with a computer responding with "tit for tat." Using an omission schedule, in which food was given in all trials in which the bird did not peck, Experiment 4 showed that pecking could be maintained by autoshaping. In this experiment, overall probability of pecking decreased with experience, due to a drop in the tendency to peck in consecutive trials. The probability of pecking in trials following a reinforced trial did not decrease with experience. An implementation of the Rescorla-Wagner model for this situation was capable of reproducing molar, but not molecular, aspects
Equivalence between quantum simultaneous games and quantum sequential games
Kobayashi, Naoki
2007-01-01
A framework for discussing relationships between different types of games is proposed. Within the framework, quantum simultaneous games, finite quantum simultaneous games, quantum sequential games, and finite quantum sequential games are defined. In addition, a notion of equivalence between two games is defined. Finally, the following three theorems are shown: (1) For any quantum simultaneous game G, there exists a quantum sequential game equivalent to G. (2) For any finite quantum simultaneo...
Quantum Stackelberg Duopoly Game in Depolarizing Channel
International Nuclear Information System (INIS)
Zhu Xia; Kuang Leman
2008-01-01
In this paper, we investigate the quantum Stackelberg duopoly (QSD) game in the noise environment with the depolarizing channel expressed by the Kraus-operator representation. It is found that the presence of the damping in the depolarizing channel always leads to the decrease of the quantities of the moves and payoffs of the two players in the QSD game. It is indicated that under certain conditions the first-mover advantage in the QSD game can be weakened due to the presence of the damping in the depolarizing channel.
Noisy non-transitive quantum games
International Nuclear Information System (INIS)
Ramzan, M; Khan, Salman; Khan, M Khalid
2010-01-01
We study the effect of quantum noise in 3 x 3 entangled quantum games. By taking into account different noisy quantum channels, we analyze how a two-player, three-strategy Rock-Scissor-Paper game is influenced by the quantum noise. We consider the winning non-transitive strategies R, S and P such that R beats S, S beats P and P beats R. The game behaves as a noiseless game for the maximum value of the quantum noise. It is seen that Alice's payoff is heavily influenced by the depolarizing noise as compared to the amplitude damping noise. A depolarizing channel causes a monotonic decrease in players' payoffs as we increase the amount of quantum noise. In the case of the amplitude damping channel, Alice's payoff function reaches its minimum for α = 0.5 and is symmetrical. This means that larger values of quantum noise influence the game weakly. On the other hand, the phase damping channel does not influence the game. Furthermore, the Nash equilibrium and non-transitive character of the game are not affected under the influence of quantum noise.
Noisy non-transitive quantum games
Energy Technology Data Exchange (ETDEWEB)
Ramzan, M; Khan, Salman; Khan, M Khalid, E-mail: mramzan@phys.qau.edu.p [Department of Physics Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2010-07-02
We study the effect of quantum noise in 3 x 3 entangled quantum games. By taking into account different noisy quantum channels, we analyze how a two-player, three-strategy Rock-Scissor-Paper game is influenced by the quantum noise. We consider the winning non-transitive strategies R, S and P such that R beats S, S beats P and P beats R. The game behaves as a noiseless game for the maximum value of the quantum noise. It is seen that Alice's payoff is heavily influenced by the depolarizing noise as compared to the amplitude damping noise. A depolarizing channel causes a monotonic decrease in players' payoffs as we increase the amount of quantum noise. In the case of the amplitude damping channel, Alice's payoff function reaches its minimum for {alpha} = 0.5 and is symmetrical. This means that larger values of quantum noise influence the game weakly. On the other hand, the phase damping channel does not influence the game. Furthermore, the Nash equilibrium and non-transitive character of the game are not affected under the influence of quantum noise.
Fu, Yue; Chai, Tianyou
2016-12-01
Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.
Quantum repeated games revisited
International Nuclear Information System (INIS)
Frąckiewicz, Piotr
2012-01-01
We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable. (paper)
Stohler, Michael Lehman
2002-01-01
Non-cooperative quantum games have received much attention recently. This thesis defines and divides current works into two major categories of gaming techniques with close attention paid to Nash equilibria, form and possibilities for the payoff functions, and the benefits of using a quantum strategy. In addition to comparing and contrasting these techniques, new applications and calculations are discussed. Finally, the techniques are expanded into 3 x 3 games which allows the study of non-transitive strategies in quantum games.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
International Nuclear Information System (INIS)
Frackiewicz, Piotr
2014-01-01
We present a quantum approach to a signaling game; a special kind of extensive game of incomplete information. Our model is based on quantum schemes for games in strategic form where players perform unitary operators on their own qubits of some fixed initial state and the payoff function is given by a measurement on the resulting final state. We show that the quantum game induced by our scheme coincides with a signaling game as a special case and outputs nonclassical results in general. As an example, we consider a quantum extension of the signaling game in which the chance move is a three-parameter unitary operator whereas the players' actions are equivalent to classical ones. In this case, we study the game in terms of Nash equilibria and refine the pure Nash equilibria adapting to the quantum game the notion of a weak perfect Bayesian equilibrium. (paper)
Sharif, Puya; Heydari, Hoshang
We give a self contained introduction to a few quantum game protocols, starting with the quantum version of the two-player two-choice game of Prisoners dilemma, followed by an n-player generalization trough the quantum minority games, and finishing with a contribution towards an n-player m-choice generalization with a quantum version of a three-player Kolkata restaurant problem. We have omitted some technical details accompanying these protocols, and instead laid the focus on presenting some general aspects of the field as a whole. This review contains an introduction to the formalism of quantum information theory, as well as to important game theoretical concepts, and is aimed to work as a review suiting economists and game theorists with limited knowledge of quantum physics as well as to physicists with limited knowledge of game theory.
DEFF Research Database (Denmark)
Fetene, Gebeyehu Manie; Kaplan, Sigal; Sebald, Alexander Christopher
2015-01-01
at the neglected psychological dynamics of EV-owners facing charging decisions and interacting with the supplier. This study represents these dynamics by proposing a behavioral framework of utility maximization under myopic loss aversion within an ultimatum two-player game framework. The EV......, but are affected by myopic loss aversion resulting from monetary considerations as well as the ultimatum game with the supplier; (ii) EV-owners are open towards centralized smart-grid strategies optimizing the load on the grid from a system optimum perspective; (iii) the frequency of charging decisions (daily...
International Nuclear Information System (INIS)
Chen Jingling; Kwek, L.C.; Oh, C.H.
2002-01-01
In a recent paper [D. A. Meyer, Phys. Rev. Lett. 82, 1052 (1999)], it has been shown that a classical zero-sum strategic game can become a winning quantum game for the player with a quantum device. Nevertheless, it is well known that quantum systems easily decohere in noisy environments. In this paper, we show that if the handicapped player with classical means can delay his action for a sufficiently long time, the quantum version reverts to the classical zero-sum game under decoherence
Strong quantum solutions in conflicting-interest Bayesian games
Rai, Ashutosh; Paul, Goutam
2017-10-01
Quantum entanglement has been recently demonstrated as a useful resource in conflicting-interest games of incomplete information between two players, Alice and Bob [Pappa et al., Phys. Rev. Lett. 114, 020401 (2015), 10.1103/PhysRevLett.114.020401]. The general setting for such games is that of correlated strategies where the correlation between competing players is established through a trusted common adviser; however, players need not reveal their input to the adviser. So far, the quantum advantage in such games has been revealed in a restricted sense. Given a quantum correlated equilibrium strategy, one of the players can still receive a higher than quantum average payoff with some classically correlated equilibrium strategy. In this work, by considering a class of asymmetric Bayesian games, we show the existence of games with quantum correlated equilibrium where the average payoff of both the players exceeds the respective individual maximum for each player over all classically correlated equilibriums.
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Parrondo's game using a discrete-time quantum walk
International Nuclear Information System (INIS)
Chandrashekar, C.M.; Banerjee, Subhashish
2011-01-01
We present a new form of a Parrondo game using discrete-time quantum walk on a line. The two players A and B with different quantum coins operators, individually losing the game can develop a strategy to emerge as joint winners by using their coins alternatively, or in combination for each step of the quantum walk evolution. We also present a strategy for a player A (B) to have a winning probability more than player B (A). Significance of the game strategy in information theory and physical applications are also discussed. - Highlights: → Novel form of Parrondo's game on a single particle discrete-time quantum walk. → Strategies for players to emerge as individual winners or as joint winners. → General framework for controlling and using quantum walk with multiple coins. → Strategies can be used in algorithms and situations involving directed motion.
Quantum games as quantum types
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Experimental realization of the quantum duel game using linear optical circuits
International Nuclear Information System (INIS)
Balthazar, W F; Passos, M H M; Schmidt, A G M; Huguenin, J A O; Caetano, D P
2015-01-01
We report on the experimental realization of the quantum duel game for two players, Alice and Bob. Using an all optical approach, we have encoded Alice and Bob states in transverse modes and polarization degrees of freedom of a laser beam, respectively. By setting Alice and Bob input states and considering the possibility of Alice performing two shots, we demonstrated the quantum features of the game as well as we recovered the classical version of the game. (paper)
Effect of uniform acceleration on multiplayer quantum game
International Nuclear Information System (INIS)
Goudarzi, H; Beyrami, S
2012-01-01
We investigate the influence of the Unruh effect on three-qubit quantum games. In particular, we interpret the quantum Prisoners’ Dilemma, which is a famous, non-zero sum game both for entangled and unentangled initial states and show that the acceleration of non-inertial frames disturbs the symmetry of the game. Using the various strategies, the novel Nash equilibrium is obtained at infinite acceleration (r = π/4). As a remarkable point, it is shown that in our three-player system, in contrast to the two-player quantum game in non-inertial frames (see Khan et al 2011 J. Phys. A: Math. Theor. 44 355302), there is not a dominant strategy (even classical strategy) in the game and choosing the quantum strategy by each player can be the dominant strategy depending on the kind of strategy chosen by others. Since the entangled states of particles play an important role in the quantum game, finally we argue that the results of the players depend on the degree of entanglement in the initial state of the game. (paper)
Arfi, Badredine
2007-02-01
Most game-theoretic studies of strategic interaction assume independent individual strategies as the basic unit of analysis. This paper explores the effects of non-independence on strategic interaction. Two types of non-independence effects are considered. First, the paper considers subjective non-independence at the level of the individual actor by looking at how choice ambivalence shapes the decision-making process. Specifically, how do alternative individual choices superpose with one another to “constructively/destructively” shape each other's role within an actor's decision-making process? This process is termed as quantum superposition of alternative choices. Second, the paper considers how inter-subjective non-independence across actors engenders collective strategies among two or more interacting actors. This is termed as quantum entanglement of strategies. Taking into account both types of non-independence effect makes possible the emergence of a new collective equilibrium, without assuming signaling, prior “contract” agreement or third-party moderation, or even “cheap talk”. I apply these ideas to analyze the equilibrium possibilities of a situation wherein N actors play a quantum social game of cooperation. I consider different configurations of large- N quantum entanglement using the approach of density operator. I specifically consider the following configurations: star-shaped, nearest-neighbors, and full entanglement.
Quantum games with correlated noise
International Nuclear Information System (INIS)
Nawaz, Ahmad; Toor, A H
2006-01-01
We analyse quantum games with correlated noise through a generalized quantization scheme. Four different combinations on the basis of entanglement of initial quantum state and the measurement basis are analysed. It is shown that the quantum player only enjoys an advantage over the classical player when both the initial quantum state and the measurement basis are in entangled form. Furthermore, it is shown that for maximum correlation the effects of decoherence diminish and it behaves as a noiseless game
Quantum Locality in Game Strategy.
Melo-Luna, Carlos A; Susa, Cristian E; Ducuara, Andrés F; Barreiro, Astrid; Reina, John H
2017-03-22
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players' input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
Quantum Locality in Game Strategy
Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.
2017-03-01
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
Investigations in quantum games using EPR-type set-ups
Iqbal, Azhar
2006-04-01
Research in quantum games has flourished during recent years. However, it seems that opinion remains divided about their true quantum character and content. For example, one argument says that quantum games are nothing but 'disguised' classical games and that to quantize a game is equivalent to replacing the original game by a different classical game. The present thesis contributes towards the ongoing debate about quantum nature of quantum games by developing two approaches addressing the related issues. Both approaches take Einstein-Podolsky-Rosen (EPR)-type experiments as the underlying physical set-ups to play two-player quantum games. In the first approach, the players' strategies are unit vectors in their respective planes, with the knowledge of coordinate axes being shared between them. Players perform measurements in an EPR-type setting and their payoffs are defined as functions of the correlations, i.e. without reference to classical or quantum mechanics. Classical bimatrix games are reproduced if the input states are classical and perfectly anti-correlated, as for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. The second approach uses the result that when the predictions of a Local Hidden Variable (LHV) model are made to violate the Bell inequalities the result is that some probability measures assume negative values. With the requirement that classical games result when the predictions of a LHV model do not violate the Bell inequalities, our analysis looks at the impact which the emergence of negative probabilities has on the solutions of two-player games which are physically implemented using the EPR-type experiments.
N-player quantum games in an EPR setting.
Directory of Open Access Journals (Sweden)
James M Chappell
Full Text Available The N-player quantum games are analyzed that use an Einstein-Podolsky-Rosen (EPR experiment, as the underlying physical setup. In this setup, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for N-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the players' payoffs and mixed Nash equilibrium are determined. Players' N x N payoff matrices are then defined using linear functions so that common two-player games can be easily extended to the N-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N ≥ 2. We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs. By dispensing with the standard unitary transformations on state vectors in Hilbert space and using instead rotors and multivectors, based on Clifford's geometric algebra (GA, it is shown how the N-player case becomes tractable. The new mathematical approach presented here has wide implications in the areas of quantum information and quantum complexity, as it opens up a powerful way to tractably analyze N-partite qubit interactions.
Quantum correlations and Nash equilibria of a bi-matrix game
International Nuclear Information System (INIS)
Iqbal, Azhar
2004-01-01
Playing a symmetric bi-matrix game is usually physical implemented by sharing pairs of 'objects' between two players. A new setting is proposed that explicitly shows effects of quantum correlations between the pairs on the structure of payoff relations and the 'solutions' of the game. The setting allows a re-expression of the game such that the players play the classical game when their moves are performed on pairs of objects having correlations that satisfy Bell's inequalities. If players receive pairs having quantum correlations the resulting game cannot be considered another classical symmetric bi-matrix game. Also the Nash equilibria of the game are found to be decided by the nature of the correlations. (letter to the editor)
Disjoint states and quantum games
International Nuclear Information System (INIS)
Kowalski, A M; Plastino, A
2013-01-01
We cast in game theory terms the physics associated with the interaction between (i) matter and (ii) a single mode of an electromagnetic field within a cavity. Thereby, we introduce a game admitting both classical and quantal players. Strategies are determined by the initial conditions of the associated dynamical system, whose time evolution is characterized by the existence of attractors that represent possible results of the game. Two types of quantum states are considered: perfectly distinguishable or partially overlapping ones. (paper)
The influence of entanglement and decoherence on the quantum Stackelberg duopoly game
International Nuclear Information System (INIS)
Zhu Xia; Kuang, L-M
2007-01-01
In this paper, we investigate the influence of entanglement and decoherence on the quantum Stackelberg duopoly (QSD) game. It is shown that the first-mover advantage can be weakened or enhanced due to the existence of entanglement for the QSD game without decoherence. The influence of decoherence induced by the amplitude damping and the phase damping are explicitly studied in the formalism of Kraus operator representations. We show that the amplitude damping drastically changes the Nash equilibrium of the QSD game and the profits of the two players while the phase damping does not affect the Nash equilibrium and the profits of the two players. It is found that under certain conditions there exists a 'critical point' of the damping parameter for the amplitude damping environment. At the 'critical point' the two players have the same moves and payoffs. The QSD game can change from the first-mover advantage game into the follower-mover advantage game when the damping parameter varies from the left-hand-side regime of the 'critical point' to the right-hand-side regime
Non-Abelian strategies in quantum penny flip game
Mishima, Hiroaki
2018-01-01
In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.
Noise effects in a three-player prisoner's dilemma quantum game
International Nuclear Information System (INIS)
Ramzan, M; Khan, M K
2008-01-01
We study the three-player prisoner's dilemma game under the effect of decoherence and correlated noise. It is seen that the quantum player is always better off than the classical players. It is also seen that the game's Nash equilibrium does not change in the presence of correlated noise in contradiction to the effect of decoherence in the multiplayer case. Furthermore, it is shown that for maximum correlation the game does not behave as a noiseless game and the quantum player is still better off for all values of the decoherence parameter p which is not possible in the two-player case. In addition, the payoffs reduction due to decoherence is controlled by the correlated noise throughout the course of the game
Quantum market games: implementing tactics via measurements
International Nuclear Information System (INIS)
Pakula, I; Piotrowski, E W; Sladkowski, J
2006-01-01
A major development in applying quantum mechanical formalism to various fields has been made during the last few years. Quantum counterparts of Game Theory, Economy, as well as diverse approaches to Quantum Information Theory have been found and currently are being explored. Using connections between Quantum Game Theory and Quantum Computations, an application of the universality of a measurement based computation in Quantum Market Theory is presented
The role of measurement in quantum games
International Nuclear Information System (INIS)
Nawaz, Ahmad; Toor, A H
2006-01-01
The game of prisoner dilemma is analysed to study the role of measurement basis in quantum games. Four different types of payoffs for quantum games are identified on the basis of different combinations of initial state and measurement basis. A relation among these different payoffs is established
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
The effect of quantum memory on quantum games
International Nuclear Information System (INIS)
Ramzan, M; Nawaz, Ahmad; Toor, A H; Khan, M K
2008-01-01
We study quantum games with correlated noise through a generalized quantization scheme. We investigate the effects of memory on quantum games, such as Prisoner's Dilemma, Battle of the Sexes and Chicken, through three prototype quantum-correlated channels. It is shown that the quantum player enjoys an advantage over the classical player for all nine cases considered in this paper for the maximally entangled case. However, the quantum player can also outperform the classical player for subsequent cases that can be noted in the case of the Battle of the Sexes game. It can be seen that the Nash equilibria do not change for all the three games under the effect of memory
Studies in the Theory of Quantum Games
Iqbal, Azhar
2005-03-01
Theory of quantum games is a new area of investigation that has gone through rapid development during the last few years. Initial motivation for playing games, in the quantum world, comes from the possibility of re-formulating quantum communication protocols, and algorithms, in terms of games between quantum and classical players. The possibility led to the view that quantum games have a potential to provide helpful insight into working of quantum algorithms, and even in finding new ones. This thesis analyzes and compares some interesting games when played classically and quantum mechanically. A large part of the thesis concerns investigations into a refinement notion of the Nash equilibrium concept. The refinement, called an evolutionarily stable strategy (ESS), was originally introduced in 1970s by mathematical biologists to model an evolving population using techniques borrowed from game theory. Analysis is developed around a situation when quantization changes ESSs without affecting corresponding Nash equilibria. Effects of quantization on solution-concepts other than Nash equilibrium are presented and discussed. For this purpose the notions of value of coalition, backwards-induction outcome, and subgame-perfect outcome are selected. Repeated games are known to have different information structure than one-shot games. Investigation is presented into a possible way where quantization changes the outcome of a repeated game. Lastly, two new suggestions are put forward to play quantum versions of classical matrix games. The first one uses the association of De Broglie's waves, with travelling material objects, as a resource for playing a quantum game. The second suggestion concerns an EPR type setting exploiting directly the correlations in Bell's inequalities to play a bi-matrix game.
Macroscopic and non-linear quantum games
International Nuclear Information System (INIS)
Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.
2005-01-01
Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)
Playing a quantum game with a qutrit
International Nuclear Information System (INIS)
Sinha, Urbasi; Kolenderski, Piotr; Youning, Li; Zhao, Tong; Volpini, Matthew; Laflamme, Raymond; Jennewein, Thomas; Cabello, Adan
2014-01-01
The Aharon Vaidman (AV) quantum game [1] demonstrates the advantage of using simple quantum systems to outperform classical strategies. We present an experimental test of this quantum advantage by using a three-state quantum system (qutrit) encoded in a spatial mode of a single photon passing through a system of three slits [2,3]. We prepare its states by controlling the photon propagation and the number of open and closed slits. We perform POVM measurements by placing detectors in the positions corresponding to near and far field. These tools allow us to perform tomographic reconstructions of qutrit states and play the AV game with compelling evidence of the quantum advantage
On signaling games with quantum chance move
International Nuclear Information System (INIS)
Frackiewicz, Piotr
2015-01-01
We give formal conditions for a perfect Bayesian-type equilibrium in a quantum signaling game. We show that the conditions imply a classical perfect Bayesian equilibrium if the quantum game coincides with the classical one. Next, we extend the signaling game to include a quantum chance move. We prove that the classical relation between Nash equilibria and perfect Bayesian equilibria is preserved in that case—every perfect Bayesian-type equilibrium implies a Nash equilibrium, but the converse is not true. Lastly, we give a condition for equivalence between Nash equilibria and perfect Bayesian-type equilibria. (paper)
Physics: Quantum problems solved through games
Maniscalco, Sabrina
2016-04-01
Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210
Decoherence Effects on Multiplayer Cooperative Quantum Games
International Nuclear Information System (INIS)
Khan, Salman; Ramzan, M.; Khan, M. Khalid.
2011-01-01
We study the behavior of cooperative multiplayer quantum games [Q. Chen, Y. Wang, J.T. Liu, and K.L. Wang, Phys. Lett. A 327 (2004) 98; A.P. Flitney and L.C.L. Hollenberg, Quantum Inf. Comput. 7 (2007) 111] in the presence of decoherence using different quantum channels such as amplitude damping, depolarizing and phase damping. It is seen that the outcomes of the games for the two damping channels with maximum values of decoherence reduce to same value. However, in comparison to phase damping channel, the payoffs of cooperators are strongly damped under the influence amplitude damping channel for the lower values of decoherence parameter. In the case of depolarizing channel, the game is a no-payoff game irrespective of the degree of entanglement in the initial state for the larger values of decoherence parameter. The decoherence gets the cooperators worse off. (general)
Implementation of quantum game theory simulations using Python
Madrid S., A.
2013-05-01
This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.
Constructing quantum games from symmetric non-factorizable joint probabilities
Energy Technology Data Exchange (ETDEWEB)
Chappell, James M., E-mail: james.m.chappell@adelaide.edu.a [School of Chemistry and Physics, University of Adelaide, South Australia 5005 (Australia); School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005 (Australia); Iqbal, Azhar [School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005 (Australia); Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Peshawar Road, Rawalpindi (Pakistan); Abbott, Derek [School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005 (Australia)
2010-09-06
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.
Constructing quantum games from symmetric non-factorizable joint probabilities
International Nuclear Information System (INIS)
Chappell, James M.; Iqbal, Azhar; Abbott, Derek
2010-01-01
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.
The quantum computer game: citizen science
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Quantum game application to spectrum scarcity problems
Zabaleta, O. G.; Barrangú, J. P.; Arizmendi, C. M.
2017-01-01
Recent spectrum-sharing research has produced a strategy to address spectrum scarcity problems. This novel idea, named cognitive radio, considers that secondary users can opportunistically exploit spectrum holes left temporarily unused by primary users. This presents a competitive scenario among cognitive users, making it suitable for game theory treatment. In this work, we show that the spectrum-sharing benefits of cognitive radio can be increased by designing a medium access control based on quantum game theory. In this context, we propose a model to manage spectrum fairly and effectively, based on a multiple-users multiple-choice quantum minority game. By taking advantage of quantum entanglement and quantum interference, it is possible to reduce the probability of collision problems commonly associated with classic algorithms. Collision avoidance is an essential property for classic and quantum communications systems. In our model, two different scenarios are considered, to meet the requirements of different user strategies. The first considers sensor networks where the rational use of energy is a cornerstone; the second focuses on installations where the quality of service of the entire network is a priority.
Relativistic quantum games in noninertial frames
Energy Technology Data Exchange (ETDEWEB)
Khan, Salman; Khan, M Khalid, E-mail: sksafi@phys.qau.edu.pk [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2011-09-02
We study the influence of the Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners' Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for the maximally entangled initial state, the classical strategy C-hat (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett.83 3077) is no more a superior move. We show that the dilemma-like situation is resolved in favor of one player or the other. (paper)
Relativistic quantum games in noninertial frames
International Nuclear Information System (INIS)
Khan, Salman; Khan, M Khalid
2011-01-01
We study the influence of the Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners' Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for the maximally entangled initial state, the classical strategy C-hat (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett.83 3077) is no more a superior move. We show that the dilemma-like situation is resolved in favor of one player or the other. (paper)
Study of Nash equilibrium by increasing game parameters in 3-player quantum game
Directory of Open Access Journals (Sweden)
H Goudarzi
2013-03-01
Full Text Available Using the quantum game formalism in 3-player system, we calculate the Nash equilibrium in quantum Prisoners’ Dilemma by increasing parameters of unitary operator. Since, the entanglement plays an important role in quantum states of particles quantum game, actually its effect on the obtained results of Nash equilibrium is investigated. It is shown that increasing the parameters enhances the game payoff function.
Quantum Barro-Gordon game in monetary economics
Samadi, Ali Hussein; Montakhab, Afshin; Marzban, Hussein; Owjimehr, Sakine
2018-01-01
Classical game theory addresses decision problems in multi-agent environment where one rational agent's decision affects other agents' payoffs. Game theory has widespread application in economic, social and biological sciences. In recent years quantum versions of classical games have been proposed and studied. In this paper, we consider a quantum version of the classical Barro-Gordon game which captures the problem of time inconsistency in monetary economics. Such time inconsistency refers to the temptation of weak policy maker to implement high inflation when the public expects low inflation. The inconsistency arises when the public punishes the weak policy maker in the next cycle. We first present a quantum version of the Barro-Gordon game. Next, we show that in a particular case of the quantum game, time-consistent Nash equilibrium could be achieved when public expects low inflation, thus resolving the game.
Experimental implementation of a four-player quantum game
Energy Technology Data Exchange (ETDEWEB)
Schmid, C; Wieczorek, W; Kiesel, N; Weinfurter, H [Sektion Physik, Ludwig-Maximilians-Universitaet, D-80797 Muenchen (Germany); Flitney, A P; Hollenberg, L C L, E-mail: cschmid@eso.or [School of Physics, The University of Melbourne, Parkville, VIC 3010 (Australia)
2010-06-15
Game theory is central to the understanding of competitive interactions arising in many fields, from the social and physical sciences to economics. Recently, as the definition of information is generalized to include entangled quantum systems, quantum game theory has emerged as a framework for understanding the competitive flow of quantum information. Up till now, only two- and three-player quantum games have been demonstrated with restricted strategy sets. Here, we report the first experiment that implements a four-player quantum minority game over tunable four-partite entangled states encoded in the polarization of single photons. Experimental application of appropriate player strategies gives equilibrium payoff values well above those achievable in the classical game. These results are in excellent quantitative agreement with our theoretical analysis of the symmetric Pareto optimal strategies. Our results demonstrate for the first time how nontrivial equilibria can arise in a competitive situation involving quantum agents.
Quantum games in open systems using biophysical Hamiltonians
International Nuclear Information System (INIS)
Faber, Jean; Portugal, Renato; Rosa, Luiz Pinguelli
2006-01-01
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information
Quantum games in open systems using biophysical Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Faber, Jean [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: faber@lncc.br; Portugal, Renato [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: portugal@lncc.br; Rosa, Luiz Pinguelli [Federal University of Rio de Janeiro, COPPE-UFRJ, RJ (Brazil)]. E-mail: lpr@adc.coppe.ufrj.br
2006-09-25
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information.
Quantum solutions for Prisoner's Dilemma game with general parameters
International Nuclear Information System (INIS)
Sun, Z.W.; Jin, H.; Zhao, H.
2008-01-01
The quantum game of the Prisoner's Dilemma with general payoff matrix was studied in L. Marinatto and T. Weber's scheme presented in [Phys. Lett. A 272 (2000) 291, so that the results of two schemes of the quantum game can be compared. The Nash equilibria and the solutions of the game are obtained. They are related to initial state, matrix parameters and the intervals among the parameters. It can be concluded from the results that the quantum PD game in Marinatto and Weber's scheme matches the one in Eisert et al.'s scheme, one with general unitary operations.
Land bidding game with conflicting interest and its quantum solution
Situ, Haozhen; Alonso-Sanz, Ramón; Li, Lvzhou; Zhang, Cai
Recently, the first conflicting interest quantum game based on the nonlocality property of quantum mechanics has been introduced in A. Pappa, N. Kumar, T. Lawson, M. Santha, S. Y. Zhang, E. Diamanti and I. Kerenidis, Phys. Rev. Lett. 114 (2015) 020401. Several quantum games of the same genre have also been proposed subsequently. However, these games are constructed from some well-known Bell inequalities, thus are quite abstract and lack of realistic interpretations. In the present paper, we modify the common interest land bidding game introduced in N. Brunner and N. Linden, Nat. Commun. 4 (2013) 2057, which is also based on nonlocality and can be understood as two companies collaborating in developing a project. The modified game has conflicting interest and reflects the free rider problem in economics. Then we show that it has a fair quantum solution that leads to better outcome. Finally, we study how several types of paradigmatic noise affect the outcome of this game.
Constructing quantum games from a system of Bell's inequalities
International Nuclear Information System (INIS)
Iqbal, Azhar; Abbott, Derek
2010-01-01
We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.
A novel clustering algorithm based on quantum games
International Nuclear Information System (INIS)
Li Qiang; He Yan; Jiang Jingping
2009-01-01
Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Quantum game theory based on the Schmidt decomposition
International Nuclear Information System (INIS)
Ichikawa, Tsubasa; Tsutsui, Izumi; Cheon, Taksu
2008-01-01
We present a novel formulation of quantum game theory based on the Schmidt decomposition, which has the merit that the entanglement of quantum strategies is manifestly quantified. We apply this formulation to 2-player, 2-strategy symmetric games and obtain a complete set of quantum Nash equilibria. Apart from those available with the maximal entanglement, these quantum Nash equilibria are extensions of the Nash equilibria in classical game theory. The phase structure of the equilibria is determined for all values of entanglement, and thereby the possibility of resolving the dilemmas by entanglement in the game of Chicken, the Battle of the Sexes, the Prisoners' Dilemma, and the Stag Hunt, is examined. We find that entanglement transforms these dilemmas with each other but cannot resolve them, except in the Stag Hunt game where the dilemma can be alleviated to a certain degree
Quantum computer games: Schrödinger cat and hounds
Gordon, Michal; Gordon, Goren
2012-05-01
The quantum computer game 'Schrödinger cat and hounds' is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. 'Schrödinger cat and hounds' demonstrates the effects of superposition, destructive and constructive interference, measurements and entanglement. More advanced concepts, like particle-wave duality and decoherence, can also be taught using the game as a model. The game that has an optimal solution in the classical version, can have many different solutions and a new balance of powers in the quantum world. Game-aided lectures were given to high-school students which showed that it is a valid and entertaining teaching platform.
Payoff Shares in Two-Player Contests
Directory of Open Access Journals (Sweden)
Samuel Häfner
2016-09-01
Full Text Available In imperfectly discriminating contests with symmetric valuations, equilibrium payoffs are positive shares of the value of the prize. In contrast to a bargaining situation, players’ shares sum to less than one because a residual share of the value is lost due to rent dissipation. In this paper, we consider contests with two players and investigate the relationship between these equilibrium shares and the parameters of a class of asymmetric Tullock contest success functions. Our main finding is that any players’ shares that sum up to less than one can arise as the unique outcome of a pure-strategy Nash equilibrium for appropriate parameters.
Connes' embedding problem and winning strategies for quantum XOR games
Harris, Samuel J.
2017-12-01
We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.
Dynamics of a discoordination game with classical and quantum correlations
International Nuclear Information System (INIS)
Oezdemir, Sahin Kaya; Shimamura, Junichi; Morikoshi, Fumiaki; Imoto, Nobuyuki
2004-01-01
Effects of classical/quantum correlations and operations in simultaneous move games are analyzed using a discoordination game, known as Samaritan's dilemma, in which there is no Nash equilibrium (NE) when played with classical pure strategies. We show that although the dilemma can be resolved with quantum operations provided that there is a shared classically correlated state between the players, it is only in the presence of entanglement that the players can receive the highest possible payoff sums
Quantum Uncertainty and Decision-Making in Game Theory
Asano, M.; Ohya, M.; Tanaka, Y.; Khrennikov, A.; Basieva, I.
2011-01-01
Recently a few authors pointed to a possibility to apply the mathematical formalism of quantum mechanics to cognitive psychology, in particular, to games of the Prisoners Dilemma (PD) type.6_18 In this paper, we discuss the problem of rationality in game theory and point out that the quantum uncertainty is similar to the uncertainty of knowledge, which a player feels subjectively in his decision-making.
Uniqueness of Nash equilibria in a quantum Cournot duopoly game
International Nuclear Information System (INIS)
Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi
2010-01-01
A quantum Cournot game whose classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties: (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.
Existence of equilibria in quantum Bertrand-Edgeworth duopoly game
Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi
2012-12-01
Both classical and quantum version of two models of price competition in duopoly market, the one is realistic and the other is idealized, are investigated. The pure strategy Nash equilibria of the realistic model exists under stricter condition than that of the idealized one in the classical form game. This is the problem known as Edgeworth paradox in economics. In the quantum form game, however, the former converges to the latter as the measure of entanglement goes to infinity.
Phase-transition-like behaviour of quantum games
International Nuclear Information System (INIS)
Du Jiangfeng; Li Hui; Xu Xiaodong; Zhou Xianyi; Han Rongdian
2003-01-01
The discontinuous dependence of the properties of a quantum game on its entanglement has been shown to be very much like phase transitions viewed in the entanglement-payoff diagram (J Du et al 2002 Phys. Rev. Lett. 88 137902). In this paper we investigate such phase-transition-like behaviour of quantum games, by suggesting a method which would help to illuminate the origin of such a kind of behaviour. For the particular case of the generalized Prisoners' Dilemma, we find that, for different settings of the numerical values in the payoff table, even though the classical game behaves the same, the quantum game exhibits different and interesting phase-transition-like behaviour
Phase-transition-like behaviour of quantum games
Du Jiang Feng; Xu Xiao Dong; Zhou Xian Yi; Han Rong Dian
2003-01-01
The discontinuous dependence of the properties of a quantum game on its entanglement has been shown to be very much like phase transitions viewed in the entanglement-payoff diagram (J Du et al 2002 Phys. Rev. Lett. 88 137902). In this paper we investigate such phase-transition-like behaviour of quantum games, by suggesting a method which would help to illuminate the origin of such a kind of behaviour. For the particular case of the generalized Prisoners' Dilemma, we find that, for different settings of the numerical values in the payoff table, even though the classical game behaves the same, the quantum game exhibits different and interesting phase-transition-like behaviour.
Duality, phase structures, and dilemmas in symmetric quantum games
International Nuclear Information System (INIS)
Ichikawa, Tsubasa; Tsutsui, Izumi
2007-01-01
Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided
Hybrid cluster state proposal for a quantum game
International Nuclear Information System (INIS)
Paternostro, M; Tame, M S; Kim, M S
2005-01-01
We propose an experimental implementation of a quantum game algorithm in a hybrid scheme combining the quantum circuit approach and the cluster state model. An economical cluster configuration is suggested to embody a quantum version of the Prisoners' Dilemma. Our proposal is shown to be within the experimental state of the art and can be realized with existing technology.The effects of relevant experimental imperfections are also carefully examined
Exact Algorithms for Solving Stochastic Games
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels
2012-01-01
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....
Coalitions in the quantum Minority game: Classical cheats and quantum bullies
International Nuclear Information System (INIS)
Flitney, Adrian P.; Greentree, Andrew D.
2007-01-01
In a one-off Minority game, when a group of players agree to collaborate they gain an advantage over the remaining players. We consider the advantage obtained in a quantum Minority game by a coalition sharing an initially entangled state versus that obtained by a coalition that uses classical communication to arrive at an optimal group strategy. In a model of the quantum Minority game where the final measurement basis is randomized, quantum coalitions outperform classical ones when carried out by up to four players, but an unrestricted amount of classical communication is better for larger coalition sizes
Quantum Bayesian networks with application to games displaying Parrondo's paradox
Pejic, Michael
Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.
Stochastic gradient ascent outperforms gamers in the Quantum Moves game
Sels, Dries
2018-04-01
In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016), 10.1038/nature17620] explore the possibility of using video games to help design quantum control protocols. The authors present a game called "Quantum Moves" (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, "players succeed where purely numerical optimization fails." Moreover, by harnessing the player strategies, they can "outperform the most prominent established numerical methods." The aim of this Rapid Communication is to analyze the problem in detail and show that those claims are untenable. In fact, without any prior knowledge and starting from a random initial seed, a simple stochastic local optimization method finds near-optimal solutions which outperform all players. Counterdiabatic driving can even be used to generate protocols without resorting to numeric optimization. The analysis results in an accurate analytic estimate of the quantum speed limit which, apart from zero-point motion, is shown to be entirely classical in nature. The latter might explain why gamers are reasonably good at the game. A simple modification of the BringHomeWater challenge is proposed to test this hypothesis.
Static and evolutionary quantum public goods games
Energy Technology Data Exchange (ETDEWEB)
Liao Zeyang; Qin Gan; Hu Lingzhi; Li Songjian; Xu Nanyang [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Du Jiangfeng [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Fachbereich Physik, Universitaet Dortmund, 44221 Dortmund (Germany)], E-mail: djf@ustc.edu.cn
2008-05-12
We apply the continuous-variable quantization scheme to quantize public goods game and find that new pure strategy Nash equilibria emerge in the static case. Furthermore, in the evolutionary public goods game, entanglement can also contribute to the persistence of cooperation under various population structures without altruism, voluntary participation, and punishment.
Rigidity of the magic pentagram game
Kalev, Amir; Miller, Carl A.
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigidity of the magic pentagram game.
Kalev, Amir; Miller, Carl A
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Quantum evolutionary stable strategies of 2-player, 2-strategy symmetric games
International Nuclear Information System (INIS)
Sun, Z.W.
2009-01-01
Quantum evolutionary stable strategies (ESSs) of games are considered as stable solutions to population games on molecular level. The distributive diagram of 2-player, 2-strategy (2 x 2) symmetric games is brought out to get a convenient way of looking for their quantum ESSs. It is found that transpositions, related to the parameters in classical payoff and those of initial quantum states, may occur when games are quantized. Conditions for transpositions are given in two tables. One can easily find quantum ESSs of a 2 x 2 symmetric game according to its transposition. This paper also draws an overall outline of NEs and ESSs of this kind of game.
On fairness, full cooperation, and quantum game with incomplete information
Lei, Zhen-Zhou; Liu, Bo-Yang; Yi, Ying; Dai, Hong-Yi; Zhang, Ming
2018-03-01
Quantum entanglement has emerged as a new resource to enhance cooperation and remove dilemmas. This paper aims to explore conditions under which full cooperation is achievable even when the information of payoff is incomplete. Based on the quantum version of the extended classical cash in a hat game, we demonstrate that quantum entanglement may be used for achieving full cooperation or avoiding moral hazards with the reasonable profit distribution policies even when the profit is uncertain to a certain degree. This research further suggests that the fairness of profit distribution should play an important role in promoting full cooperation. It is hopeful that quantum entanglement and fairness will promote full cooperation among distant people from various interest groups when quantum networks and quantum entanglement are accessible to the public. Project supported by the National Natural Science Foundation of China (Grant Nos. 61673389, 61273202, and 61134008.
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
Cheon, Taksu; Tsutsui, Izumi
2006-01-01
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
Econophysics: from Game Theory and Information Theory to Quantum Mechanics
Jimenez, Edward; Moya, Douglas
2005-03-01
Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.
Experimental realization of a quantum game on a one-way quantum computer
International Nuclear Information System (INIS)
Prevedel, Robert; Stefanov, Andre; Walther, Philip; Zeilinger, Anton
2007-01-01
We report the first demonstration of a quantum game on an all-optical one-way quantum computer. Following a recent theoretical proposal we implement a quantum version of Prisoner's Dilemma, where the quantum circuit is realized by a four-qubit box-cluster configuration and the player's local strategies by measurements performed on the physical qubits of the cluster. This demonstration underlines the strength and versatility of the one-way model and we expect that this will trigger further interest in designing quantum protocols and algorithms to be tested in state-of-the-art cluster resources
Game Theoretic Interaction and Decision: A Quantum Analysis
Directory of Open Access Journals (Sweden)
Ulrich Faigle
2017-11-01
Full Text Available An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context.
Exploring the Quantum Speed Limit with Computer Games
DEFF Research Database (Denmark)
Sørensen, Jens Jakob Winther Hedemann; Pedersen, Mads Kock; Munch, Michael Kulmback
2016-01-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science exploits this intuition by presenting scientific research problems to non-experts. Gamification is an effective tool for attracting citizen...... scientists and allowing them to provide novel solutions to the research problems. Citizen science games have been used successfully in Foldit, EteRNA and EyeWire to study protein and RNA folding and neuron mapping. However, gamification has never been applied in quantum physics. Everyday experiences of non......-experts are based on classical physics and it is \\textit{a priori} not clear that they should have an intuition for quantum dynamics. Does this premise hinder the use of citizen scientists in the realm of quantum mechanics? Here we report on Quantum Moves, an online platform gamifying optimization problems...
Exploring the quantum speed limit with computer games
Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.
2016-04-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Simulation of continuous variable quantum games without entanglement
Li, Shang-Bin
2011-07-01
A simulation scheme of quantum version of Cournot's duopoly is proposed, in which there is a new Nash equilibrium that may also be Pareto optimal without any entanglement involved. The unique property of this simulation scheme is decoherence-free against the symmetric photon loss. Furthermore, we analyze the effects of the asymmetric information on this simulation scheme and investigate the case of asymmetric game caused by asymmetric photon loss. A second-order phase transition-like behavior of the average profits of firms 1 and 2 in a Nash equilibrium can be observed with the change of the degree of asymmetry of the information or the degree of 'virtual cooperation'. It is also found that asymmetric photon loss in this simulation scheme plays a similar role as that with the asymmetric entangled states in the quantum game.
Simulation of continuous variable quantum games without entanglement
International Nuclear Information System (INIS)
Li Shangbin
2011-01-01
A simulation scheme of quantum version of Cournot's duopoly is proposed, in which there is a new Nash equilibrium that may also be Pareto optimal without any entanglement involved. The unique property of this simulation scheme is decoherence-free against the symmetric photon loss. Furthermore, we analyze the effects of the asymmetric information on this simulation scheme and investigate the case of asymmetric game caused by asymmetric photon loss. A second-order phase transition-like behavior of the average profits of firms 1 and 2 in a Nash equilibrium can be observed with the change of the degree of asymmetry of the information or the degree of 'virtual cooperation'. It is also found that asymmetric photon loss in this simulation scheme plays a similar role as that with the asymmetric entangled states in the quantum game.
Simulation of continuous variable quantum games without entanglement
Energy Technology Data Exchange (ETDEWEB)
Li Shangbin, E-mail: stephenli74@yahoo.com.cn [Research and Development Department of Amertron Optoelectronic (Kunshan) Ltd, Jingde Road 28, Kunshan, Suzhou (China)
2011-07-22
A simulation scheme of quantum version of Cournot's duopoly is proposed, in which there is a new Nash equilibrium that may also be Pareto optimal without any entanglement involved. The unique property of this simulation scheme is decoherence-free against the symmetric photon loss. Furthermore, we analyze the effects of the asymmetric information on this simulation scheme and investigate the case of asymmetric game caused by asymmetric photon loss. A second-order phase transition-like behavior of the average profits of firms 1 and 2 in a Nash equilibrium can be observed with the change of the degree of asymmetry of the information or the degree of 'virtual cooperation'. It is also found that asymmetric photon loss in this simulation scheme plays a similar role as that with the asymmetric entangled states in the quantum game.
Decodoku: Quantum error rorrection as a simple puzzle game
Wootton, James
To build quantum computers, we need to detect and manage any noise that occurs. This will be done using quantum error correction. At the hardware level, QEC is a multipartite system that stores information non-locally. Certain measurements are made which do not disturb the stored information, but which do allow signatures of errors to be detected. Then there is a software problem. How to take these measurement outcomes and determine: a) The errors that caused them, and (b) how to remove their effects. For qubit error correction, the algorithms required to do this are well known. For qudits, however, current methods are far from optimal. We consider the error correction problem of qubit surface codes. At the most basic level, this is a problem that can be expressed in terms of a grid of numbers. Using this fact, we take the inherent problem at the heart of quantum error correction, remove it from its quantum context, and presented in terms of simple grid based puzzle games. We have developed three versions of these puzzle games, focussing on different aspects of the required algorithms. These have been presented and iOS and Android apps, allowing the public to try their hand at developing good algorithms to solve the puzzles. For more information, see www.decodoku.com. Funding from the NCCR QSIT.
A game with geometry and quantum mechanics
International Nuclear Information System (INIS)
Caianiello, E.R.
1981-01-01
An attempt is made to geometrize quantum mechanics. A hermitian metric has been taken as a dogma. The Heisenberg commutation relations in cartesian coordinates were taken for the single particle. Position and momentum operators become covariant derivatives, whose commutator is the curvature tensor. The Bohz-Sommerfeld rules are derived both for rotation and vibration degrees of freedom. The Klein-Gordon equation is determined by the first Beltrami parameters. The Dirac equation splits into two sets coupling 8-component semispinors of first and second kind. The only invariance allowed is found to be CPT. A study of the solutions of the Klein-Gordon equation shows that the free particle described by this formalism has inner degrees of freedom [ru
Loss of information in quantum guessing game
Plesch, Martin; Pivoluska, Matej
2018-02-01
Incompatibility of certain measurements—impossibility of obtaining deterministic outcomes simultaneously—is a well known property of quantum mechanics. This feature can be utilized in many contexts, ranging from Bell inequalities to device dependent QKD protocols. Typically, in these applications the measurements are chosen from a predetermined set based on a classical random variable. One can naturally ask, whether the non-determinism of the outcomes is due to intrinsic hiding property of quantum mechanics, or rather by the fact that classical, incoherent information entered the system via the choice of the measurement. Authors Rozpedek et al (2017 New J. Phys. 19 023038) examined this question for a specific case of two mutually unbiased measurements on systems of different dimensions. They have somewhat surprisingly shown that in case of qubits, if the measurements are chosen coherently with the use of a controlled unitary, outcomes of both measurements can be guessed deterministically. Here we extend their analysis and show that specifically for qubits, measurement result for any set of measurements with any a priori probability distribution can be faithfully guessed by a suitable state preparation and measurement. We also show that up to a small set of specific cases, this is not possible for higher dimensions. This result manifests a deep difference in properties of qubits and higher dimensional systems and suggests that these systems might offer higher security in specific cryptographic protocols. More fundamentally, the results show that the impossibility of predicting a result of a measurement is not caused solely by a loss of coherence between the choice of the measurement and the guessing procedure.
Evolutionary quantum game theory in the context of socio-economic systems
International Nuclear Information System (INIS)
Hanauske, Matthias
2011-01-01
The evolution of socio-economic systems depend on the interdependent decision processes of its underlying system components. The mathematical model to describe the strategic decision of players within a socio-economic game is ''game theory''. ''Quantum game theory'' is a mathematical and conceptual amplification of classical game theory. The space of all conceivable decision paths is extended from the purely rational, measurable space in the Hilbert-space of complex numbers - which is the mathematical space where quantum theory is formulated. By the concept of a potential entanglement of the imaginary quantum strategy parts, it is possible to include cooperate decision path, caused by cultural or moral standards. If this strategy entanglement is large enough, then additional Nash equilibria can occur, previously present dominant strategies could become nonexistent and new evolutionary stable strategies do appear for some game classes. Within this PhD thesis the main results of classical and quantum games are summarized and all of the possible game classes of evolutionary (2 player)-(2 strategy) games are extended to quantum games. It is shown that the quantum extension of classical games with an underlying dilemma-like structure give different results, if the strength of strategic entanglement is above a certain barrier. After the German summary and the introduction paper, five different applications of the theory are discussed within the thesis. (orig.)
Analyzing three-player quantum games in an EPR type setup.
Directory of Open Access Journals (Sweden)
James M Chappell
Full Text Available We use the formalism of Clifford Geometric Algebra (GA to develop an analysis of quantum versions of three-player non-cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR type setting. In this setting, the players' strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the game of three-player Prisoners' Dilemma.
A new geometrical approach to Nash equilibria organization in Eisert's quantum games
International Nuclear Information System (INIS)
Schneider, David
2012-01-01
We extend the periodic point-based method for Eisert's quantum games (Schneider 2011 J. Phys. A: Math. Theor. 44 095301) to games not previously analyzed. From the comparison of different cases, we observe that games sharing the same classical features (as for instance the symmetrized Battle of the Sexes and the Chicken game) can have different characteristics after the quantization, and conversely, games with different classical behaviors (the Chicken game and the Prisoner's dilemma), are completely equivalent within Eisert's protocol. This fact is reflected in the structure of the map that the periodic point-procedure associates to the quantum game (from which the Nash equilibria are deduced). In order to understand how these unexpected outcomes are generated, we give a geometrical description of our observations in terms of bifurcation theory for maps. (paper)
Communication aspects of a three-player Prisoner's Dilemma quantum game
International Nuclear Information System (INIS)
Ramzan, M; Khan, M K
2009-01-01
We present a quantization scheme for a three-player Prisoner's Dilemma game. It is shown that entanglement plays a dominant role in the three-player quantum game. Four different types of payoffs are identified on the basis of different combinations of initial state and measurement basis entanglement parameters. A relation among these different payoffs is also established. We also study the communication aspects of the three-player game. By exploiting different combinations of initial state and measurement basis entanglement parameters, we establish a relationship for the information shared among the parties. It is seen that the strategies of the players act as carriers of information in quantum games
Emergence of super cooperation of prisoner's dilemma games on scale-free networks.
Directory of Open Access Journals (Sweden)
Angsheng Li
Full Text Available Recently, the authors proposed a quantum prisoner's dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner's dilemma (GPD, for short games based on the weak Prisoner's dilemma game, the full prisoner's dilemma game and the normalized Prisoner's dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C, defector (D and super cooperator (denoted by Q, and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner's dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence of super cooperation in evolutions of our generalised prisoner's dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner's dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner's dilemma games.
Transitivity vs. intransitivity in decision making process - an example in quantum game theory
Energy Technology Data Exchange (ETDEWEB)
Makowski, Marcin [Institute of Mathematics, University of Bialystok, Akademicka 2, PL-15424, Bialystok (Poland)], E-mail: makowski.m@gmail.com
2009-06-01
We compare two different ways of quantum modification in a simple sequential game called Cat's Dilemma in the context of the debate on intransitive and transitive preferences. This kind of analysis can have essential meaning for research on artificial intelligence (some possibilities are discussed). Nature has both transitive and intransitive properties and perhaps quantum models will be more able to capture this dualism than the classical models. We also present an electoral interpretation of the game.
Transitivity vs. intransitivity in decision making process - an example in quantum game theory
International Nuclear Information System (INIS)
Makowski, Marcin
2009-01-01
We compare two different ways of quantum modification in a simple sequential game called Cat's Dilemma in the context of the debate on intransitive and transitive preferences. This kind of analysis can have essential meaning for research on artificial intelligence (some possibilities are discussed). Nature has both transitive and intransitive properties and perhaps quantum models will be more able to capture this dualism than the classical models. We also present an electoral interpretation of the game.
Quantum-like dynamics of decision-making in prisoner's dilemma game
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu
2012-03-01
In cognitive psychology, some experiments of games were reported [1, 2, 3, 4], and these demonstrated that real players did not use the "rational strategy" provided by classical game theory. To discuss probabilities of such "irrational choice", recently, we proposed a decision-making model which is based on the formalism of quantum mechanics [5, 6, 7, 8]. In this paper, we briefly explain the above model and calculate the probability of irrational choice in several prisoner's dilemma (PD) games.
The ultimate solution to the quantum Battle of the Sexes game
International Nuclear Information System (INIS)
Frackiewicz, Piotr
2009-01-01
We present the unique solution to the quantum Battle of the Sexes game. We show the best result to be achieved when the game is played according to Marinatto and Weber's scheme. The result which we put forward does not surrender the criticism of previous works on the same topic.
Teaching Quantum Mechanics with qCraft: Outreach and Video Games
Kubica, Aleksander; Chatwin-Davies, Aidan; Michalakis, Spyridon
Why is quantum mechanics considered a hard and inaccessible subject? Part of the difficulty is due to the nature of the subject itself. However, no small part of the difficulty is its pedagogy, which often relies on out-of-date historical motivation and experimental evidence that is disconnected from day-to-day experiences. In this first talk, we explore ways in which video games are well-suited to teaching quantum mechanics, in particular with regards to building intuition, as well as some of their limitations. We then illustrate these considerations through qCraft, an extension for Minecraft that incorporates aspects of quantum mechanics into the game.
Quantum-mechanical machinery for rational decision-making in classical guessing game.
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S; Lee, Jinhyoung
2016-02-15
In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.
Quantum-mechanical machinery for rational decision-making in classical guessing game
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung
2016-02-01
In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.
A new model for quantum games based on the Marinatto–Weber approach
International Nuclear Information System (INIS)
Frąckiewicz, Piotr
2013-01-01
The Marinatto–Weber approach to quantum games is a straightforward way to apply the power of quantum mechanics to classical game theory. In the simplest case, the quantum scheme is that players manipulate their own qubits of a two-qubit state either with the identity 1 or the Pauli operator σ x . However, such a simplification of the scheme raises doubt as to whether it could really reflect a quantum game. In this paper we put forward examples which may constitute arguments against the present form of the Marinatto–Weber scheme. Next, we modify the scheme to eliminate the undesirable properties of the protocol by extending the players’ strategy sets. (paper)
Constructing quantum games from a system of Bell's inequalities
Energy Technology Data Exchange (ETDEWEB)
Iqbal, Azhar, E-mail: iqbal@eleceng.adelaide.edu.a [School of Electrical and Electronic Engineering, University of Adelaide, SA 5005 (Australia); Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Peshawar Road, Rawalpindi (Pakistan); Abbott, Derek [School of Electrical and Electronic Engineering, University of Adelaide, SA 5005 (Australia)
2010-07-12
We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.
Gaming with augmented reality interface and quantum dot technology
SAYANTAN GUPTA
2017-01-01
In Augmented Reality (AR), interfaces consist of a blend of both real and virtual content. In this paper we examine existing gaming styles played in the real world or on computers. We discuss the strengths and weaknesses of these mediums within an informal model of gaming experience split into four aspects; physical, mental, social and emotional. We find that their strengths are mostly complementary, and argue that games built in AR can blend them to enhance existing game styles a...
Entangled states that cannot reproduce original classical games in their quantum version
International Nuclear Information System (INIS)
Shimamura, Junichi; Oezdemir, S.K.; Morikoshi, Fumiaki; Imoto, Nobuyuki
2004-01-01
A model of a quantum version of classical games should reproduce the original classical games in order to be able to make a comparative analysis of quantum and classical effects. We analyze a class of symmetric multipartite entangled states and their effect on the reproducibility of the classical games. We present the necessary and sufficient condition for the reproducibility of the original classical games. Satisfying this condition means that complete orthogonal bases can be constructed from a given multipartite entangled state provided that each party is restricted to two local unitary operators. We prove that most of the states belonging to the class of symmetric states with respect to permutations, including the N-qubit W state, do not satisfy this condition
International Nuclear Information System (INIS)
Frackiewicz, Piotr
2011-01-01
We investigate implementations of the Eisert-Wilkens-Lewenstein (EWL) scheme of playing quantum games beyond strategic games. The scope of our research is decision problems, i.e. one-player extensive games. The research is based on the examination of their features when the decision problems are carried out via the EWL protocol. We prove that unitary operators can be adapted to play the role of strategies in decision problems with imperfect recall. Furthermore, we prove that unitary operators provide the decision maker with possibilities that are inaccessible for classical strategies.
Energy Technology Data Exchange (ETDEWEB)
Frackiewicz, Piotr, E-mail: P.Frackiewicz@impan.gov.pl [Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warsaw (Poland)
2011-08-12
We investigate implementations of the Eisert-Wilkens-Lewenstein (EWL) scheme of playing quantum games beyond strategic games. The scope of our research is decision problems, i.e. one-player extensive games. The research is based on the examination of their features when the decision problems are carried out via the EWL protocol. We prove that unitary operators can be adapted to play the role of strategies in decision problems with imperfect recall. Furthermore, we prove that unitary operators provide the decision maker with possibilities that are inaccessible for classical strategies.
Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks
Yong, Xi
2016-01-01
The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882
A monogamy-of-entanglement game with applications to device-independent quantum cryptography
M. Tomamichel; S. Fehr (Serge); J. Kaniewski; S.D.C. Wehner (Stephanie); T. Johansson; P.Q. Nguyen
2013-01-01
htmlabstractWe consider a game in which two separate laboratories collaborate to prepare a quantum system and are then asked to guess the outcome of a measurement performed by a third party in a random basis on that system. Intuitively, by the uncertainty principle and the monogamy of entanglement,
Nash equilibria in quantum games with generalized two-parameter strategies
International Nuclear Information System (INIS)
Flitney, Adrian P.; Hollenberg, Lloyd C.L.
2007-01-01
In the Eisert protocol for 2x2 quantum games [J. Eisert, et al., Phys. Rev. Lett. 83 (1999) 3077], a number of authors have investigated the features arising from making the strategic space a two-parameter subset of single qubit unitary operators. We argue that the new Nash equilibria and the classical-quantum transitions that occur are simply an artifact of the particular strategy space chosen. By choosing a different, but equally plausible, two-parameter strategic space we show that different Nash equilibria with different classical-quantum transitions can arise. We generalize the two-parameter strategies and also consider these strategies in a multiplayer setting
A monogamy-of-entanglement game with applications to device-independent quantum cryptography
International Nuclear Information System (INIS)
Tomamichel, Marco; Kaniewski, Jędrzej; Wehner, Stephanie; Fehr, Serge
2013-01-01
We consider a game in which two separate laboratories collaborate to prepare a quantum system and are then asked to guess the outcome of a measurement performed by a third party in a random basis on that system. Intuitively, by the uncertainty principle and the monogamy of entanglement, the probability that both players simultaneously succeed in guessing the outcome correctly is bounded. We are interested in the question of how the success probability scales when many such games are performed in parallel. We show that any strategy that maximizes the probability to win every game individually is also optimal for the parallel repetition of the game. Our result implies that the optimal guessing probability can be achieved without the use of entanglement. We explore several applications of this result. Firstly, we show that it implies security for standard BB84 quantum key distribution when the receiving party uses fully untrusted measurement devices, i.e. we show that BB84 is one-sided device independent. Secondly, we show how our result can be used to prove security of a one-round position-verification scheme. Finally, we generalize a well-known uncertainty relation for the guessing probability to quantum side information. (paper)
Backwards-induction outcome in a quantum game
International Nuclear Information System (INIS)
Iqbal, A.; Toor, A.H.
2002-01-01
In economics, duopoly is a market dominated by two firms large enough to influence the market price. Stackelberg presented a dynamic form of duopoly that is also called the 'leader-follower' model. We give a quantum perspective on the Stackelberg duopoly that gives a backwards-induction outcome same as the Nash equilibrium in the static form of duopoly also known as the Cournot's duopoly. We find the two-qubit quantum pure states required for this purpose
Non-cooperative Monomino Games
Timmer, Judith; Aarts, Henricus F.M.; van Dorenvanck, Peter; Klomp, Jasper; Li, Deng-Feng; Yang, Xiao-Guang; Uetz, Marc; Xu, Gen-Jiu
2017-01-01
In this paper we study monomino games. These are two player games played on a rectangular board with R rows and C columns. The game pieces are monominoes, which cover exactly one cell of the board. One by one each player selects a column of the board, and places a monomino in the lowest uncovered
Non-cooperative monomino games
Timmer, Judith B.; Aarts, Henricus F.M.; van Dorenvanck, Peter; Klomp, Jasper
In this paper we study monomino games. These are two player games played on a rectangular board with R rows and C columns. The game pieces are monominoes, which cover exactly one cell of the board. One by one each player selects a column of the board, and places a monomino in the lowest uncovered
Zhang, Cuihua; Xing, Peng
2015-08-01
In recent years, Chinese service industry is developing rapidly. Compared with developed countries, service quality should be the bottleneck for Chinese service industry. On the background of three major telecommunications service providers in China, the functions of customer perceived utilities are established. With the goal of consumer's perceived utility maximization, the classic Nash equilibrium solution and quantum equilibrium solution are obtained. Then a numerical example is studied and the changing trend of service quality and customer perceived utility is further analyzed by the influence of the entanglement operator. Finally, it is proved that quantum game solution is better than Nash equilibrium solution.
Adiabatic quantum games and phase-transition-like behavior between optimal strategies
de Ponte, M. A.; Santos, Alan C.
2018-06-01
In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.
Hefetz, Dan; Stojaković, Miloš; Szabó, Tibor
2014-01-01
This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the reader to better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.
Strategic insights from playing quantum tic-tac-toe
International Nuclear Information System (INIS)
Leaw, J N; Cheong, S A
2010-01-01
In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sum of occupations along any of the eight straight lines we can draw in the 3 x 3 grid is greater than or equal to 3. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for player 2 to win. More interestingly, we find that player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.
Strategic insights from playing quantum tic-tac-toe
Energy Technology Data Exchange (ETDEWEB)
Leaw, J N; Cheong, S A, E-mail: cheongsa@ntu.edu.s [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)
2010-11-12
In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sum of occupations along any of the eight straight lines we can draw in the 3 x 3 grid is greater than or equal to 3. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for player 2 to win. More interestingly, we find that player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.
A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games
International Nuclear Information System (INIS)
Schneider, David
2011-01-01
We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.
A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games
Energy Technology Data Exchange (ETDEWEB)
Schneider, David, E-mail: schneide@tandar.cnea.gov.ar [Departamento de Fisica, Comision Nacional de EnergIa Atomica. Av. del Libertador 8250, 1429 Buenos Aires (Argentina)
2011-03-04
We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.
Generation of Strategies for Environmental Deception in Two-Player Normal-Form Games
2015-06-18
found in the literature is pre- sented by Kohlberg and Mertens [23]. A stable equilibrium by their definition is an equi- librium in an extensive-form...the equilibrium in this state provides them with an increased payoff. While interesting, Kohlberg and Mertens’ defi- 13 nition of equilibrium...stability used by Kohlberg and Mertens. Arsham’s work focuses on determining the amount by which a mixed-strategy Nash equilibrium’s payoff values can
Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces
Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele
2017-12-01
Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.
Energy Technology Data Exchange (ETDEWEB)
Hanauske, Matthias
2011-02-14
The evolution of socio-economic systems depend on the interdependent decision processes of its underlying system components. The mathematical model to describe the strategic decision of players within a socio-economic game is ''game theory''. ''Quantum game theory'' is a mathematical and conceptual amplification of classical game theory. The space of all conceivable decision paths is extended from the purely rational, measurable space in the Hilbert-space of complex numbers - which is the mathematical space where quantum theory is formulated. By the concept of a potential entanglement of the imaginary quantum strategy parts, it is possible to include cooperate decision path, caused by cultural or moral standards. If this strategy entanglement is large enough, then additional Nash equilibria can occur, previously present dominant strategies could become nonexistent and new evolutionary stable strategies do appear for some game classes. Within this PhD thesis the main results of classical and quantum games are summarized and all of the possible game classes of evolutionary (2 player)-(2 strategy) games are extended to quantum games. It is shown that the quantum extension of classical games with an underlying dilemma-like structure give different results, if the strength of strategic entanglement is above a certain barrier. After the German summary and the introduction paper, five different applications of the theory are discussed within the thesis. (orig.)
Structure coefficients and strategy selection in multiplayer games.
McAvoy, Alex; Hauert, Christoph
2016-01-01
Evolutionary processes based on two-player games such as the Prisoner's Dilemma or Snowdrift Game are abundant in evolutionary game theory. These processes, including those based on games with more than two strategies, have been studied extensively under the assumption that selection is weak. However, games involving more than two players have not received the same level of attention. To address this issue, and to relate two-player games to multiplayer games, we introduce a notion of reducibility for multiplayer games that captures what it means to break down a multiplayer game into a sequence of interactions with fewer players. We discuss the role of reducibility in structured populations, and we give examples of games that are irreducible in any population structure. Since the known conditions for strategy selection, otherwise known as [Formula: see text]-rules, have been established only for two-player games with multiple strategies and for multiplayer games with two strategies, we extend these rules to multiplayer games with many strategies to account for irreducible games that cannot be reduced to those simpler types of games. In particular, we show that the number of structure coefficients required for a symmetric game with [Formula: see text]-player interactions and [Formula: see text] strategies grows in [Formula: see text] like [Formula: see text]. Our results also cover a type of ecologically asymmetric game based on payoff values that are derived not only from the strategies of the players, but also from their spatial positions within the population.
Directory of Open Access Journals (Sweden)
Andrew Reinhard
2015-01-01
Full Text Available Review of Never Alone (Kisima Ingitchuna, an atmospheric platformer and puzzle game (built on the Unity engine released in late 2014 by Upper One Games and education company E-Line Media. It invites one or two players to explore a central story from the Iñupiat, Native Alaskans, with the rewards of additional storytelling by elders and community members.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The basic ideas of game theory were originated from the problems of maximum and minimum given by J.Yon Neumann in 1928. Later, wars accelerated the study of game theory, there are many developments that contributed to the advancement of game theory, many problems of optimum appeared in economic development process. Scientists applied mathematic methods to studying game theory to make the theory more profound and perfect. The axiomatic structure of game theory was nearly complete in 1944. The path of the development of game theory started from finite to infinite, from two players to many players, from expressing gains with quantity to showing the ending of game theory with abstract result, and from certainty problems to random problems. Thus development of game theory is closely related to the economic development. In recent years, the research on the non-differentiability of Shapley value posed by Belgian Mertens is one of the advanced studies in game theory.
Quantum machine learning with glow for episodic tasks and decision games
Clausen, Jens; Briegel, Hans J.
2018-02-01
We consider a general class of models, where a reinforcement learning (RL) agent learns from cyclic interactions with an external environment via classical signals. Perceptual inputs are encoded as quantum states, which are subsequently transformed by a quantum channel representing the agent's memory, while the outcomes of measurements performed at the channel's output determine the agent's actions. The learning takes place via stepwise modifications of the channel properties. They are described by an update rule that is inspired by the projective simulation (PS) model and equipped with a glow mechanism that allows for a backpropagation of policy changes, analogous to the eligibility traces in RL and edge glow in PS. In this way, the model combines features of PS with the ability for generalization, offered by its physical embodiment as a quantum system. We apply the agent to various setups of an invasion game and a grid world, which serve as elementary model tasks allowing a direct comparison with a basic classical PS agent.
Evolutionary games in the multiverse.
Gokhale, Chaitanya S; Traulsen, Arne
2010-03-23
Evolutionary game dynamics of two players with two strategies has been studied in great detail. These games have been used to model many biologically relevant scenarios, ranging from social dilemmas in mammals to microbial diversity. Some of these games may, in fact, take place between a number of individuals and not just between two. Here we address one-shot games with multiple players. As long as we have only two strategies, many results from two-player games can be generalized to multiple players. For games with multiple players and more than two strategies, we show that statements derived for pairwise interactions no longer hold. For two-player games with any number of strategies there can be at most one isolated internal equilibrium. For any number of players with any number of strategies , there can be at most isolated internal equilibria. Multiplayer games show a great dynamical complexity that cannot be captured based on pairwise interactions. Our results hold for any game and can easily be applied to specific cases, such as public goods games or multiplayer stag hunts.
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Klas Olof Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2012-01-01
Starting from Zermelo’s classical formal treatment of chess, we trace through history the analysis of two-player win/lose/draw games with perfect information and potentially infinite play. Such chess-like games have appeared in many different research communities, and methods for solving them......, such as retrograde analysis, have been rediscovered independently. We then revisit Washburn’s deterministic graphical games (DGGs), a natural generalization of chess-like games to arbitrary zero-sum payoffs. We study the complexity of solving DGGs and obtain an almost-linear time comparison-based algorithm...
An iOS implementation of the Shannon switching game
Macík, Miroslav
2013-01-01
Shannon switching game is a logical graph game for two players. The game was created by American mathematician Claude Shannon. iOS is an operating system designed for iPhone cellular phone, iPod music player and iPad tablet. The thesis describes existing implementations of the game and also specific implementation for iOS operating system created as a part of this work. This implementation allows you to play against virtual opponent and also supports multiplayer game consisting of two players...
On Nash Equilibria in Stochastic Games
2003-10-01
Traditionally automata theory and veri cation has considered zero sum or strictly competitive versions of stochastic games . In these games there are two players...zero- sum discrete-time stochastic dynamic games . SIAM J. Control and Optimization, 19(5):617{634, 1981. 18. R.J. Lipton, E . Markakis, and A. Mehta...Playing large games using simple strate- gies. In EC 03: Electronic Commerce, pages 36{41. ACM Press, 2003. 19. A. Maitra and W. Sudderth. Finitely
A Nash-game approach to joint image restoration and segmentation
Kallel , Moez; Aboulaich , Rajae; Habbal , Abderrahmane; Moakher , Maher
2014-01-01
International audience; We propose a game theory approach to simultaneously restore and segment noisy images. We define two players: one is restoration, with the image intensity as strategy, and the other is segmentation with contours as strategy. Cost functions are the classical relevant ones for restoration and segmentation, respectively. The two players play a static game with complete information, and we consider as solution to the game the so-called Nash Equilibrium. For the computation ...
Return of the icecream men. A discrete hotelling game
Abudaldah, Nabi; Heijman, W.J.M.; Heringa, Pieter; Mouche, van P.H.M.
2015-01-01
We consider a finite symmetric game in strategic form between two players which can be interpreted as a discrete variant of the Hotelling game in a one or two-dimensional space. As the analytical investigation of this game is tedious, we simulte with Maple and formulate some conjectures. In addition
Duke, Richard D
2014-01-01
Als Richard Duke sein Buch ""Gaming: The Future's Language"" 1974 veröffentlichte, war er ein Pionier für die Entwicklung und Anwendung von Planspielen in Politik, Strategieentwicklung und Management. Das Buch wurde zu einem viel zitierten Standardwerk. 2014 feiert die von Richard D. Duke gegründete International Simulation and Gaming Association (ISAGA) ihr 45-jähriges Bestehen. Gleichzeitig legt Richard D. Duke eine überarbeitete Auflage seines Klassikers vor. Inhaltsverzeichnis TABLE OF CONTENTSAcknowledgments Preface SECTION I1. The ProblemSECTION II2. Modes of Human Communication3. Mode
Reciprocal Trust Mediates Deep Transfer of Learning between Games of Strategic Interaction
Juvina, Ion; Saleem, Muniba; Martin, Jolie M.; Gonzalez, Cleotilde; Lebiere, Christian
2013-01-01
We studied transfer of learning across two games of strategic interaction. We found that the interpersonal relation between two players during and across two games influence development of reciprocal trust and transfer of learning from one game to another. We show that two types of similarities between the games affect transfer: (1) deep…
Game Refinement Relations and Metrics
de Alfaro, Luca; Scott, D.S.; Pierce, B.J.; Majumdar, Rupak; Plotkin, G.J.; Raman, Viswanath; Vardi, M.Y.; Stoelinga, Mariëlle Ida Antoinette; Adámek, J.
We consider two-player games played over finite state spaces for an infinite number of rounds. At each state, the players simultaneously choose moves; the moves determine a successor state. It is often advantageous for players to choose probability distributions over moves, rather than single moves.
Coordination in continuously repeated games
Weeren, A.J.T.M.; Schumacher, J.M.; Engwerda, J.C.
1995-01-01
In this paper we propose a model to describe the effectiveness of coordination in a continuously repeated two-player game. We study how the choice of a decision rule by a coordinator affects the strategic behavior of the players, resulting in more or less cooperation. Our model requires the analysis
Directory of Open Access Journals (Sweden)
Patricia Bouyer
2015-09-01
Full Text Available Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.
Non-cooperative monomino games
Timmer, Judith B.; Aarts, Henricus F.M.; van Dorenvanck, Peter; Klomp, Jasper
2011-01-01
In this paper we study monomino games. These are two player games played on a rectangular board with R rows and C columns. The game pieces are monominoes, which cover exactly one cell of the board. One by one each player selects a column of the board, and places a monomino in the lowest uncovered cell. This generates a payoff for the player. The game ends if all cells are covered by monominoes. The goal of each player is to place his monominoes in such a way that his total payoff is maximized...
The conjugated-strategy game (optimum compatible evolution of coupled systems)
International Nuclear Information System (INIS)
Bonnemay, A.
1967-01-01
In this report, the two-player game is studied, without certain assumptions usually made: a - the game is not assumed to be a matrix game b - no assumption is made on the cost functions (in particular it is not assumed that they are additive) Results are obtained which are applied to differential games, and lead to an optimal game theorem. These results are then extended to a game with a finite number of players. (author) [fr
Latency reduction in online multiplayer games using detour routing
Ly, Cong
2010-01-01
Long network latency negatively impacts the performance of online multiplayer games. In this thesis, we propose a novel approach to reduce the network latency in online gaming. Our approach employs application level detour routing in which game-state update messages between two players can be forwarded through other intermediate relay nodes in order to reduce network latency. We present results from an extensive measurement study to show the potential benefits of detour routing in online game...
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
Quantum Strategies: Proposal to Experimentally Test a Quantum Economics Protocol
2009-04-09
protocols can add security to competitive situations; and analyzing the feasibility of running multi-party quantum games over metro-distance optical... games of complete informa- tion. Physics Letters A, 272:291-303, August 2000. [21] D. A. Meyer. Quantum Communication in Games . In S. M. Barnett, E ...feasibility of quantum games , we proposed to implement a proof-of-principle quantum public goods game , and to experimentally demonstrate that the quantum
Computing Proper Equilibria of Zero-Sum Games
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2007-01-01
We show that a proper equilibrium of a matrix game can be found in polynomial time by solving a linear (in the number of pure strategies of the two players) number of linear programs of roughly the same dimensions as the standard linear programs describing the Nash equilibria of the game....
Quantum entanglement in non-local games, graph parameters and zero-error information theory
Scarpa, G.
2013-01-01
We study quantum entanglement and some of its applications in graph theory and zero-error information theory. In Chapter 1 we introduce entanglement and other fundamental concepts of quantum theory. In Chapter 2 we address the question of how much quantum correlations generated by entanglement can
A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory
International Nuclear Information System (INIS)
Grün, Christine
2012-01-01
We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.
A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory
Energy Technology Data Exchange (ETDEWEB)
Gruen, Christine, E-mail: christine.gruen@univ-brest.fr [Laboratoire de Mathematiques de Brest UMR 6205 (France)
2012-12-15
We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.
The behavioral impact of emotions in a power to take game: An experimental study
Bosman, R.A.J.; van Winden, F.A.A.M.
1999-01-01
The power to take game is a simple two player game where players arerandomly divided into pairs consisting of a take authority and responder.Both players in each pair have earned an own income in an individual realeffort decision-making experiment preceding the take game. The gameconsists of two
The Photon Shell Game and the Quantum von Neumann Architecture with Superconducting Circuits
Mariantoni, Matteo
2012-02-01
Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon | 1 > can be prepared in one resonator and coherently transferred between the three resonators. I will also show how more exotic states such as double photon states | 2 > and superposition states | 0 >+ | 1 > can be shuffled among the resonators as well [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer. I will also present a proof-of-concept demonstration of a code that involves all seven quantum elements: (1), Preparing an entangled state in the quCPU, (2), writing it to the quRAM, (3), preparing a second state in the quCPU, (4), zeroing it, and, (5), reading out the first state stored in the quRAM [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date. [4pt] [1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011.)[0pt] [2] M. Mariantoni et al., Science 334, 61-65 (2011).
Infinite games with uncertain moves
Directory of Open Access Journals (Sweden)
Nicholas Asher
2013-03-01
Full Text Available We study infinite two-player games where one of the players is unsure about the set of moves available to the other player. In particular, the set of moves of the other player is a strict superset of what she assumes it to be. We explore what happens to sets in various levels of the Borel hierarchy under such a situation. We show that the sets at every alternate level of the hierarchy jump to the next higher level.
Experimental demonstration of conflicting interest nonlocal games using superconducting qubits
Situ, Haozhen; Li, Lvzhou; Huang, Zhiming; He, Zhimin; Zhang, Cai
2018-06-01
Conflicting interest nonlocal games are special Bayesian games played by noncooperative players without communication. In recent years, some conflicting interest nonlocal games have been proposed where quantum advice can help players to obtain higher payoffs. In this work we perform an experiment of six conflicting interest nonlocal games using the IBM quantum computer made up of five superconducting qubits. The experimental results demonstrate quantum advantage in four of these games, whereas the other two games fail to showcase quantum advantage in the experiment.
Energy Games in Multiweighted Automata
DEFF Research Database (Denmark)
Fahrenberg, U.; Juhl, L.; Larsen, Kim Guldstrand
2011-01-01
Energy games have recently attracted a lot of attention. These are games played on finite weighted automata and concern the existence of infinite runs subject to boundary constraints on the accumulated weight, allowing e.g only for behaviours where a resource is always available (nonnegative...... accumulated weight), yet does not exceed a given maximum capacity. We extend energy games to a multiweighted and parameterized setting, allowing us to model systems with multiple quantitative aspects. We present reductions between Petri nets and multiweighted automata and among different types...... of multiweighted automata and identify new complexity and (un)decidability results for both one- and two-player games. We also investigate the tractability of an extension of multiweighted energy games in the setting of timed automata....
Playing games with scenario- and resource-aware SDF graphs through policy iteration
Yang, Yang; Geilen, M.C.W.; Basten, T.; Stuijk, S.; Corporaal, H.
2012-01-01
The two-player mean-payoff game is a well-known game theoretic model that is widely used, for instance in economics and control theory. For controller synthesis, a controller is modeled as a player while the environment, or plant, is modeled as the opponent player (adversary). Synthesizing an
Zaibidi, Nerda Zura; Ibrahim, Adyda; Abidin, Norhaslinda Zainal
2014-12-01
A considerable number of studies have been conducted to study fairness issues using two-player game. Dictator Game is one of the two-player games that receive much attention. In this paper, we develop an evolutionary approach to the Dictator Game by using Goal programming to build a model of human decision-making for cooperation. The model is formulated based on the theories of cognitive neuroscience that is capable in capturing a more realistic fairness concerns between players in the games. We show that fairness will evolve by taking into account players' aspirations and preferences explicitly in terms of profit and fairness concerns. The model is then simulated to investigate any possible effective strategy for people in economics to deal with fairness coalition. Parallels are drawn between the approach and concepts of human decision making from the field of cognitive neuroscience and psychology. The proposed model is also able to help decision makers to plan or enhance the effective strategies for business purposes.
Directory of Open Access Journals (Sweden)
Anat Lerner
2014-04-01
Full Text Available We characterize the efficiency space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto-optimal combinatorial auctions in a model with two players and k nonidentical items. We examine a model with multidimensional types, private values and quasilinear preferences for the players with one relaxation: one of the players is subject to a publicly known budget constraint. We show that if it is publicly known that the valuation for the largest bundle is less than the budget for at least one of the players, then Vickrey-Clarke-Groves (VCG uniquely fulfills the basic properties of being deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal. Our characterization of the efficient space for deterministic budget constrained combinatorial auctions is similar in spirit to that of Maskin 2000 for Bayesian single-item constrained efficiency auctions and comparable with Ausubel and Milgrom 2002 for non-constrained combinatorial auctions.
Monomial strategies for concurrent reachability games and other stochastic games
DEFF Research Database (Denmark)
Frederiksen, Søren Kristoffer Stiil; Miltersen, Peter Bro
2013-01-01
We consider two-player zero-sum finite (but infinite-horizon) stochastic games with limiting average payoffs. We define a family of stationary strategies for Player I parameterized by ε > 0 to be monomial, if for each state k and each action j of Player I in state k except possibly one action, we...... have that the probability of playing j in k is given by an expression of the form c ε d for some non-negative real number c and some non-negative integer d. We show that for all games, there is a monomial family of stationary strategies that are ε-optimal among stationary strategies. A corollary...... is that all concurrent reachability games have a monomial family of ε-optimal strategies. This generalizes a classical result of de Alfaro, Henzinger and Kupferman who showed that this is the case for concurrent reachability games where all states have value 0 or 1....
The Complexity of Quantitative Concurrent Parity Games
2004-11-01
for each player. In this paper we study only zero-sum games [20, 11], where the objectives of the two players are strictly competitive . In other words...Aided Verification, volume 1102 of LNCS, pages 75–86. Springer, 1996. [14] R.J. Lipton, E . Markakis, and A. Mehta. Playing large games using simple...strategies. In EC 03: Electronic Commerce, pages 36–41. ACM Press, 2003. 28 [15] D.A. Martin. The determinacy of Blackwell games . The Journal of Symbolic
Fast algorithms for finding proper strategies in game trees
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2008-01-01
We show how to find a normal form proper equilibrium in behavior strategies of a given two-player zero-sum extensive form game with imperfect information but perfect recall. Our algorithm solves a finite sequence of linear programs and runs in polynomial time. For the case of a perfect informatio...
Cooperation in Experimental Games of Strategic Complements and Substitutes
Potters, J.J.M.; Suetens, S.
2006-01-01
Results are reported of a laboratory experiment aimed at examining whether strategic substitutability and strategic complementarity have an impact on the tendency to cooperate in two-player dominancesolvable games with a Pareto-inefficient Nash equilibrium.We find that there is significantly more
Beneficial long communication in the multiplayer electronic mail game
De Jaegher, K.J.M.
2015-01-01
In the two-player electronic mail game (EMG), as is well-known, the probability of collective action is lower the more confirmations and reconfirmations are made available to players. In the multiplayer EMG, however, we show players may coordinate on equilibria where they require only few of the
Directory of Open Access Journals (Sweden)
Nicolas Houy
2016-12-01
Full Text Available This article deals with the mining incentives in the Bitcoin protocol. The mining process is used to confirm and secure transactions. This process is organized as a speed game between individuals or firms – the miners – with different computational powers to solve a mathematical problem, bring a proof of work, spread their solution and reach consensus among the Bitcoin network nodes with it. First, we define and specify this game. Second, we analytically find its Nash equilibria in the two-player case. We analyze the parameters for which the miners would face the proper incentives to fulfill their function of transaction processors in the current situation. Finally, we study the block space market offer.
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Computation of Stackelberg Equilibria of Finite Sequential Games
DEFF Research Database (Denmark)
Bosanski, Branislav; Branzei, Simina; Hansen, Kristoffer Arnsfelt
2015-01-01
The Stackelberg equilibrium is a solution concept that describes optimal strategies to commit to: Player~1 (the leader) first commits to a strategy that is publicly announced, then Player~2 (the follower) plays a best response to the leader's choice. We study Stackelberg equilibria in finite...... sequential (i.e., extensive-form) games and provide new exact algorithms, approximate algorithms, and hardness results for finding equilibria for several classes of such two-player games....
Fast algorithms for finding proper strategies in game trees
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2008-01-01
We show how to find a normal form proper equilibrium in behavior strategies of a given two-player zero-sum extensive form game with imperfect information but perfect recall. Our algorithm solves a finite sequence of linear programs and runs in polynomial time. For the case of a perfect information...... game, we show how to find a normal form proper equilibrium in linear time by a simple backwards induction procedure....
On a Game of Large-Scale Projects Competition
Nikonov, Oleg I.; Medvedeva, Marina A.
2009-09-01
The paper is devoted to game-theoretical control problems motivated by economic decision making situations arising in realization of large-scale projects, such as designing and putting into operations the new gas or oil pipelines. A non-cooperative two player game is considered with payoff functions of special type for which standard existence theorems and algorithms for searching Nash equilibrium solutions are not applicable. The paper is based on and develops the results obtained in [1]-[5].
Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence.
Majumdar, Sarangam; Pal, Sukla
2017-09-01
Bacteria are far more intelligent than we can think of. They adopt different survival strategies to make their life comfortable. Researches on bacterial communication to date suggest that bacteria can communicate with each other using chemical signaling molecules as well as using ion channel mediated electrical signaling. Though in past few decades the scopes of chemical signaling have been investigated extensively, those of electrical signaling have received less attention. In this article, we present a novel perspective on time-sharing behavior, which maintains the biofilm growth under reduced nutrient supply between two distant biofilms through electrical signaling based on the experimental evidence reported by Liu et al., in 2017. In addition, following the recent work by Humphries et al. Cell 168(1):200-209, in 2017, we highlight the consequences of long range electrical signaling within biofilm communities through spatially propagating waves of potassium. Furthermore, we address the possibility of two-way cellular communication between artificial and natural cells through chemical signaling being inspired by recent experimental observation (Lentini et al. 2017) where the efficiency of artificial cells in imitating the natural cells is estimated through cellular Turing test. These three spectacular observations lead us to envisage and devise new classical and quantum views of these complex biochemical networks that have never been realized previously.
Mathematical games, abstract games
Neto, Joao Pedro
2013-01-01
User-friendly, visually appealing collection offers both new and classic strategic board games. Includes abstract games for two and three players and mathematical games such as Nim and games on graphs.
Merging the virtual and the real: A collaborative cross-reality game
Bergs, Jessica; Livingstone, Daniel; Loranger, Brian
2016-01-01
In this paper, we present a collaborative cross-reality game for two players, Lab2, which blends tangible board game and immersive virtual reality playing spaces in a gameplay that aims to promote and train collaborative behaviour. As collaborative learning has been stressed as an effective teaching method for many years, Lab2 could assist learners in exploring and further developing their collaborative skills in a playful manner. One player controls a physical game board showing a moveable m...
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Dynamic probability of reinforcement for cooperation: Random game termination in the centipede game.
Krockow, Eva M; Colman, Andrew M; Pulford, Briony D
2018-03-01
Experimental games have previously been used to study principles of human interaction. Many such games are characterized by iterated or repeated designs that model dynamic relationships, including reciprocal cooperation. To enable the study of infinite game repetitions and to avoid endgame effects of lower cooperation toward the final game round, investigators have introduced random termination rules. This study extends previous research that has focused narrowly on repeated Prisoner's Dilemma games by conducting a controlled experiment of two-player, random termination Centipede games involving probabilistic reinforcement and characterized by the longest decision sequences reported in the empirical literature to date (24 decision nodes). Specifically, we assessed mean exit points and cooperation rates, and compared the effects of four different termination rules: no random game termination, random game termination with constant termination probability, random game termination with increasing termination probability, and random game termination with decreasing termination probability. We found that although mean exit points were lower for games with shorter expected game lengths, the subjects' cooperativeness was significantly reduced only in the most extreme condition with decreasing computer termination probability and an expected game length of two decision nodes. © 2018 Society for the Experimental Analysis of Behavior.
Controlling chaotic transients: Yorke's game of survival
DEFF Research Database (Denmark)
Aguirre, Jacobo; D'ovidio, Francesco; Sanjuán, Miguel A. F.
2004-01-01
. This problem is focused as a two-person, mathematical game between two players called "the protagonist" and "the adversary." The protagonist's goal is to survive. He can lose but cannot win; the best he can do is survive to play another round, struggling ad infinitum. In the absence of actions by either player...... knows the action of the adversary in choosing his response and is permitted to choose the initial point x(0) of the game. We use the "slope 3" tent map in an example of this problem. We show that it is possible for the protagonist to survive....
Bosman, Ronald; Hennig-Schmidt, Heike; Van Winden, Frans
2017-01-01
This paper experimentally investigates how monetary incentives and emotions influence behavior in a two-player power-to-take game (PTTG). In this game, one player can claim any part of the other's endowment (take rate), and the second player can respond by destroying any part of his or her own
Müller, W.; Tan, F.
2013-01-01
Previous experimental results on one-shot sequential two-player games show that group decisions are closer to the subgame-perfect Nash equilibrium than individual decisions. We extend the analysis of intergroup versus interindividual decision-making by running both one-shot and repeated sessions of
Topology control with IPD network creation games
International Nuclear Information System (INIS)
Scholz, Jan C; Greiner, Martin O W
2007-01-01
Network creation games couple a two-players game with the evolution of network structure. A vertex player may increase its own payoff with a change of strategy or with a modification of its edge-defined neighbourhood. By referring to the iterated prisoners dilemma (IPD) game we show that this evolutionary dynamics converges to network-Nash equilibria, where no vertex is able to improve its payoff. The resulting network structure exhibits a strong dependence on the parameter of the payoff matrix. Degree distributions and cluster coefficients are also strongly affected by the specific interactions chosen for the neighbourhood exploration. This allows network creation games to be seen as a promising artificial-social-systems approach for a distributive topology control of complex networked systems
Feltz, Deborah L.; Irwin, Brandon; Kerr, Norbert
2012-01-01
Background Physical inactivity is associated with obesity and type 2 diabetes. A key obstacle to physical activity is lack of motivation. Although some interactive exercise games (i.e., exergames—video games that require physical exertion in order to play) motivate players to exercise more, few games take advantage of group dynamics to motivate players’ duration of exercise. In a test of the Köhler motivation gain effect, this study varied the ability level of a virtually presented partner in an interactive exergame that focused on abdominal strength to identify effects on a subject’s (S’) persistence with the task. Method Male (n = 63) and female (n = 72) undergraduate students were randomly assigned to one of four conditions (individual control or low-, moderate-, or high- partner discrepancy) in a conditions × gender factorial design and tested on a series of isometric abdominal exercises using PlayStation 2 EyeToy: Kinetic software. They performed the first series of five exercises alone (trial block 1), and after a rest period, those in the partner conditions performed remaining trials (trial block 2) with a same-sex virtually presented partner whom they could observe during their performance, while those in the individual control condition performed the remaining trials alone. In the partner conditions, the partner’s performance was manipulated to be always better than the S’s, the exact difference depending on the discrepancy condition. The partnered tasks were conjunctive; that is, success in the game depended on the performance of the weaker team member. Persistence, the outcome measure for this study, consisted of the total number of seconds the S held the exercise position. Results Using planned orthogonal contrasts on difference scores between blocks 1 and 2, results showed that persistence was significantly (p < .001) greater in all experimental conditions with a virtually presented partner (M = 33.59 s) than in the individual control
Feltz, Deborah L; Irwin, Brandon; Kerr, Norbert
2012-07-01
Physical inactivity is associated with obesity and type 2 diabetes. A key obstacle to physical activity is lack of motivation. Although some interactive exercise games (i.e., exergames--video games that require physical exertion in order to play) motivate players to exercise more, few games take advantage of group dynamics to motivate players' duration of exercise. In a test of the Köhler motivation gain effect, this study varied the ability level of a virtually presented partner in an interactive exergame that focused on abdominal strength to identify effects on a subject's (S') persistence with the task. Male (n = 63) and female (n = 72) undergraduate students were randomly assigned to one of four conditions (individual control or low-, moderate-, or high- partner discrepancy) in a conditions × gender factorial design and tested on a series of isometric abdominal exercises using PlayStation 2 EyeToy: Kinetic software. They performed the first series of five exercises alone (trial block 1), and after a rest period, those in the partner conditions performed remaining trials (trial block 2) with a same-sex virtually presented partner whom they could observe during their performance, while those in the individual control condition performed the remaining trials alone. In the partner conditions, the partner's performance was manipulated to be always better than the S's, the exact difference depending on the discrepancy condition. The partnered tasks were conjunctive; that is, success in the game depended on the performance of the weaker team member. Persistence, the outcome measure for this study, consisted of the total number of seconds the S held the exercise position. Using planned orthogonal contrasts on difference scores between blocks 1 and 2, results showed that persistence was significantly (p < .001) greater in all experimental conditions with a virtually presented partner (M = 33.59 s) than in the individual control condition (M = -49.04 s). Subjects
By-product mutualism and the ambiguous effects of harsher environments - A game-theoretic model
De Jaegher, Kris; Hoyer, Britta
2016-01-01
We construct two-player two-strategy game-theoretic models of by-product mutualism, where our focus lies on the way in which the probability of cooperation among players is affected by the degree of adversity facing the players. In our first model, cooperation consists of the production of a public
What Eye Movements Can Tell about Theory of Mind in a Strategic Game
Meijering, Ben; van Rijn, Hedderik; Taatgen, Niels A.; Verbrugge, Rineke
2012-01-01
This study investigates strategies in reasoning about mental states of others, a process that requires theory of mind. It is a first step in studying the cognitive basis of such reasoning, as strategies affect tradeoffs between cognitive resources. Participants were presented with a two-player game
Three is a crowd – inefficient communication in the multi-player electronic mail game
de Jaegher, K.; Rosenkranz, S.
In a two-player stag hunt with asymmetric information, players may lock each other into requiring a large number of confirmations and confirmations of confirmations from one another before eventually acting. This intuition has been formalized in the electronic mail game (EMG). The literature
Beneficial Long Communication in the Multi-Player Electronic Mail Game
De Jaegher, K.J.M.
2015-01-01
In the two-player electronic mail game (EMG), as is well-known, the probability of collective action is lower the more confirmations and re-confirmations are made available to players. In the multi-player EMG, however, as we show players may coordinate on equilibria where they require only few of
Data completion problems solved as Nash games
International Nuclear Information System (INIS)
Habbal, A; Kallel, M
2012-01-01
The Cauchy problem for an elliptic operator is formulated as a two-player Nash game. Player (1) is given the known Dirichlet data, and uses as strategy variable the Neumann condition prescribed over the inaccessible part of the boundary. Player (2) is given the known Neumann data, and plays with the Dirichlet condition prescribed over the inaccessible boundary. The two players solve in parallel the associated Boundary Value Problems. Their respective objectives involve the gap between the non used Neumann/Dirichlet known data and the traces of the BVP's solutions over the accessible boundary, and are coupled through a difference term. We prove the existence of a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion algorithm is stable with respect to noise, and present two 3D experiments which illustrate the efficiency and stability of our algorithm.
Learning the Rules of the Game
Smith, Donald A.
2018-03-01
Games have often been used in the classroom to teach physics ideas and concepts, but there has been less published on games that can be used to teach scientific thinking. D. Maloney and M. Masters describe an activity in which students attempt to infer rules to a game from a history of moves, but the students don't actually play the game. Giving the list of moves allows the instructor to emphasize the important fact that nature usually gives us incomplete data sets, but it does make the activity less immersive. E. Kimmel suggested letting students attempt to figure out the rules to Reversi by playing it, but this game only has two players, which makes it difficult to apply in a classroom setting. Kimmel himself admits the choice of Reversi is somewhat arbitrary. There are games, however, that are designed to make the process of figuring out the rules an integral aspect of play. These games involve more people and require only a deck or two of cards. I present here an activity constructed around the card game Mao, which can be used to help students recognize aspects of scientific thinking. The game is particularly good at illustrating the importance of falsification tests (questions designed to elicit a negative answer) over verification tests (examples that confirm what is already suspected) for illuminating the underlying rules.
Quantum Chess: Making Quantum Phenomena Accessible
Cantwell, Christopher
Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?
Quantum equilibria for macroscopic systems
International Nuclear Information System (INIS)
Grib, A; Khrennikov, A; Parfionov, G; Starkov, K
2006-01-01
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Kerr, Aphra; Ivory, James D.
2015-01-01
When we agreed to edit the theme on online games for this Encyclopedia our first question was, “What is meant by online games?” Scholars of games distinguish between nondigital games (such as board games) and digital games, rather than between online and offline games. With networked consoles and smartphones it is becoming harder and harder to find players in the wealthy industrialized countries who play “offline” digital games. Most games developers now include ...
Can math beat gamers in Quantum Moves?
Sels, Dries
2017-01-01
Abstract: In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016)] explore the possibility of using video games to help design quantum control protocols. The authors present a game called Quantum Moves (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, players succeed where purely numerical optimization fails. Moreover, by harnessing the player str...
"Need to Know" Versus "Spread the Word": Collective Action in the Multi-Player Electronic Mail Game
de Jaegher, K.
2008-01-01
As shown by Rubinstein (1989, AER), in the two-player electronic mail game, players are better off if the extent to which they can check each other’s information, check each other’s information about each other’s information, etc., is limited. This paper investigates to what extent this result
Brandstätter , Ulrich; Sommerer , Christa
2016-01-01
Part 4: Short Papers; International audience; Video games can be appropriated for productive purposes. Commercial games and game engines are often used for video productions, and game development companies provide development kits and modding environments to gaming communities and independent developers. With gamification, game principles are deployed in non-game contexts for benefits beyond pure entertainment. Most approaches are more focused on using games and their design elements rather t...
A Game Theory Approach for Product Specialization in International Trade
Directory of Open Access Journals (Sweden)
Ioana-Veronica ALEXA
2011-11-01
Full Text Available Game theory, in its most basic form, considers two players and analyses the different strategies that they can use and the effect that these strategies will have on each player. International trade allows countries to use better their resources (labor, technology or capital. Since countries have different capital or natural resources, some of them will produce a good more efficiently than others and therefore could sell it cheaper than other countries. By using game theory in international trade we could determine if the H-O-S model is correct and what would be the best specialization for each country.
N-person game theory concepts and applications
Rapoport, Anatol
2013-01-01
N-person game theory provides a logical framework for analyzing contests in which there are more than two players or sets of conflicting interests-anything from a hand of poker to the tangled web of international relations. In this sequel to his Two-Person Game Theory, Dr. Rapoport provides a fascinating and lucid introduction to the theory, geared towards readers with little mathematical background but with an appetite for rigorous analysis.Following an introduction to the necessary mathematical notation (mainly set theory), in Part I the author presents basic concepts and models, including
Fabac, Robert; Radošević, Danijel; Magdalenić, Ivan
2014-01-01
When considering strategic games from the conceptual perspective that focuses on the questions of participants' decision-making rationality, the very issues of modelling and simulation are rarely discussed. The well-known Rational Pigs matrix game has been relatively intensively analyzed in terms of reassessment of the logic of two players involved in asymmetric situations as gluttons that differ significantly by their attributes. This paper presents a successful attempt of using autogenerator for creating the framework of the game, including the predefined scenarios and corresponding payoffs. Autogenerator offers flexibility concerning the specification of game parameters, which consist of variations in the number of simultaneous players and their features and game objects and their attributes as well as some general game characteristics. In the proposed approach the model of autogenerator was upgraded so as to enable program specification updates. For the purpose of treatment of more complex strategic scenarios, we created the Rational Pigs Game Extended (RPGE), in which the introduction of a third glutton entails significant structural changes. In addition, due to the existence of particular attributes of the new player, "the tramp," one equilibrium point from the original game is destabilized which has an influence on the decision-making of rational players.
Supermodular Games and Potential Games
Brânzei, R.; Mallozzi, L.; Tijs, S.H.
2001-01-01
Potential games and supermodular games are attractive games, especially because under certain conditions they possess pure Nash equilibria. Subclasses of games with a potential are considered which are also strategically equivalent to supermodular games. The focus is on two-person zero-sum games and
Dilemma and quantum battle of sexes
International Nuclear Information System (INIS)
Nawaz, Ahmad; Toor, A H
2004-01-01
We analysed quantum version of the game battle of sexes using a general initial quantum state. For a particular choice of initial entangled quantum state it is shown that the classical dilemma of the battle of sexes can be resolved and a unique solution of the game can be obtained
Trading by Quantum Rules - Quantum Anthropic Principle
Piotrowski, E. W.; Sladkowski, J.
2002-01-01
This is a short review of the background and recent development in quantum game theory and its possible application in economics and finance. The intersection of science and society is discussed and Quantum Anthropic Principle is put forward. The review is addressed to non-specialists.
A synchronous game for binary constraint systems
Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher
2018-03-01
Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.
Game theory to characterize solutions of a discrete-time Hamilton-Jacobi equation
International Nuclear Information System (INIS)
Toledo, Porfirio
2013-01-01
We study the behavior of solutions of a discrete-time Hamilton-Jacobi equation in a minimax framework of game theory. The solutions of this problem represent the optimal payoff of a zero-sum game of two players, where the number of moves between the players converges to infinity. A real number, called the critical value, plays a central role in this work; this number is the asymptotic average action of optimal trajectories. The aim of this paper is to show the existence and characterization of solutions of a Hamilton-Jacobi equation for this kind of games
Competition to commit crime: An economic experiment on illegal logging using behavioral game theory
Tananya Songchoo; Komsan Suriya
2012-01-01
This study constructs an economic experiment using behavioral game theory to figure out policies that discourage illegal logging in Thailand. A player is assigned to be either a police or an outlaw in the game. The game randomly matches two players in different roles. The lawbreaker can offer a bribe to police under uncertainties whether the police may refuse it or reject the offer because of too small amount of the bribe. Even when bribery is accepted, it is still uncertain for an lawbreaker...
Communication Games Reveal Preparation Contextuality
Hameedi, Alley; Tavakoli, Armin; Marques, Breno; Bourennane, Mohamed
2017-12-01
A communication game consists of distributed parties attempting to jointly complete a task with restricted communication. Such games are useful tools for studying limitations of physical theories. A theory exhibits preparation contextuality whenever its predictions cannot be explained by a preparation noncontextual model. Here, we show that communication games performed in operational theories reveal the preparation contextuality of that theory. For statistics obtained in a particular family of communication games, we show a direct correspondence with correlations in spacelike separated events obeying the no-signaling principle. Using this, we prove that all mixed quantum states of any finite dimension are preparation contextual. We report on an experimental realization of a communication game involving three-level quantum systems from which we observe a strong violation of the constraints of preparation noncontextuality.
Game theory : Noncooperative games
van Damme, E.E.C.; Wright, J.
2015-01-01
We describe noncooperative game models and discuss game theoretic solution concepts. Some applications are also noted. Conventional theory focuses on the question ‘how will rational players play?’, and has the Nash equilibrium at its core. We discuss this concept and its interpretations, as well as
Friedman, Avner
2006-01-01
This volume lays the mathematical foundations for the theory of differential games, developing a rigorous mathematical framework with existence theorems. It begins with a precise definition of a differential game and advances to considerations of games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, and games with restricted phase coordinates. Final chapters cover selected topics (including capturability and games with delayed information) and N-person games.Geared toward graduate students, Differential Games will be of particular interest
Fixation and escape times in stochastic game learning
International Nuclear Information System (INIS)
Realpe-Gomez, John; Szczesny, Bartosz; Galla, Tobias; Dall’Asta, Luca
2012-01-01
Evolutionary dynamics in finite populations is known to fixate eventually in the absence of mutation. We here show that a similar phenomenon can be found in stochastic game dynamical batch learning, and investigate fixation in learning processes in a simple 2×2 game, for two-player games with cyclic interaction, and in the context of the best-shot network game. The analogues of finite populations in evolution are here finite batches of observations between strategy updates. We study when and how such fixation can occur, and present results on the average time-to-fixation from numerical simulations. Simple cases are also amenable to analytical approaches and we provide estimates of the behaviour of so-called escape times as a function of the batch size. The differences and similarities with escape and fixation in evolutionary dynamics are discussed. (paper)
Evolution of Cooperation in Evolutionary Games for Heterogeneous Interactions
International Nuclear Information System (INIS)
Qian Xiaolan; Yang Junzhong
2012-01-01
When a population structure is modelled as a square lattice, the cooperation may be improved for an evolutionary prisoner dilemma game or be inhibited for an evolutionary snowdrift game. In this work, we investigate cooperation in a population on a square lattice where the interaction among players contains both prisoner dilemma game and snowdrift game. The heterogeneity in interaction is introduced to the population in two different ways: the heterogenous character of interaction assigned to every player (HCP) or the heterogenous character of interaction assigned to every link between any two players (HCL). The resonant enhancement of cooperation in the case of HCP is observed while the resonant inhibition of cooperation in the case of HCL is prominent. The explanations on the enhancement or inhibition of cooperation are presented for these two cases. (general)
Certifying the absence of quantum nonlocality
Miller, Carl A.; Shi, Yaoyun
2016-01-01
Quantum nonlocality is an inherently non-classical feature of quantum mechanics and manifests itself through violation of Bell inequalities for nonlocal games. We show that in a fairly general setting, a simple extension of a nonlocal game can certify instead the absence of quantum nonlocality. Through contraposition, our result implies that a super-classical performance for such a game ensures that a player's output is unpredictable to the other player. Previously such output unpredictabilit...
Convex games versus clan games
Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.
2008-01-01
In this paper we provide characterizations of convex games and total clan games by using properties of their corresponding marginal games. We show that a "dualize and restrict" procedure transforms total clan games with zero worth for the clan into monotonic convex games. Furthermore, each monotonic
Convex Games versus Clan Games
Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.
2006-01-01
In this paper we provide characterizations of convex games and total clan games by using properties of their corresponding marginal games.We show that a "dualize and restrict" procedure transforms total clan games with zero worth for the clan into monotonic convex games.Furthermore, each monotonic
Game on! : Evaluation malaria games
Rob Willems
2014-01-01
The goal of GameOn! is to develop a serious video game. The object: to develop a serious game that aims to change behavior through awareness. The setup A multidisciplinary group which unites expertise from didactic and game production backgrounds produces an educational game for an international
Game mechanics : advanced game design
Adams, Ernest; Dormans, Joris
2012-01-01
Game Mechanics is aimed at game design students and industry professionals who want to improve their understanding of how to design, build, and test the mechanics of a game. Game Mechanics will show you how to design, test, and tune the core mechanics of a game—any game, from a huge role-playing
Quantum prisoner dilemma under decoherence
International Nuclear Information System (INIS)
Chen, L.K.; Ang, Huiling; Kiang, D.; Kwek, L.C.; Lo, C.F.
2003-01-01
It has recently been established that quantum strategies are superior to classical ones for games such as the prisoner's dilemma. However, quantum states are subject to decoherence. In this Letter, we investigate the effects of decoherence on a quantum game, namely the prisoner dilemma, through three prototype decoherence channels. We show that in the case of prisoner dilemma, the Nash equilibria are not changed by the effects of decoherence for maximally entangled states
Adaptation and complexity in repeated games
DEFF Research Database (Denmark)
Maenner, Eliot Alexander
2008-01-01
The paper presents a learning model for two-player infinitely repeated games. In an inference step players construct minimally complex inferences of strategies based on observed play, and in an adaptation step players choose minimally complex best responses to an inference. When players randomly...... select an inference from a probability distribution with full support the set of steady states is a subset of the set of Nash equilibria in which only stage game Nash equilibria are played. When players make ‘cautious' inferences the set of steady states is the subset of self-confirming equilibria...... with Nash outcome paths. When players use different inference rules, the set of steady states can lie between the previous two cases...
Geometric covers, graph orientations, counter games
DEFF Research Database (Denmark)
Berglin, Edvin
-directed graph is dynamic (can be altered by some outside actor), some orientations may need to be reversed in order to maintain the low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or outperforms the efficiency of these results with very few exceptions. Counter games...... example is Line Cover, also known as Point-Line Cover, where a set of points in a geometric space are to be covered by placing a restricted number of lines. We present new FPT algorithms for the sub-family Curve Cover (which includes Line Cover), as well as for Hyperplane Cover restricted to R 3 (i...... are a type of abstract game played over a set of counters holding values, and these values may be moved between counters according to some set of rules. Typically they are played between two players: the adversary who tries to concentrate the greatest value possible in a single counter, and the benevolent...
Culture-dependent strategies in coordination games.
Jackson, Matthew O; Xing, Yiqing
2014-07-22
We examine different populations' play in coordination games in online experiments with over 1,000 study participants. Study participants played a two-player coordination game that had multiple equilibria: two equilibria with highly asymmetric payoffs and another equilibrium with symmetric payoffs but a slightly lower total payoff. Study participants were predominantly from India and the United States. Study participants residing in India played the strategies leading to asymmetric payoffs significantly more frequently than study participants residing in the United States who showed a greater play of the strategy leading to the symmetric payoffs. In addition, when prompted to play asymmetrically, the population from India responded even more significantly than those from the United States. Overall, study participants' predictions of how others would play were more accurate when the other player was from their own populations, and they coordinated significantly more frequently and earned significantly higher payoffs when matched with other study participants from their own population than when matched across populations.
Clemens, Joshua William
Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.
Energy Technology Data Exchange (ETDEWEB)
Reinhard, Friedemann [Universitaet Stuttgart (Germany). 3. Physikalisches Institut
2010-07-01
Quantum minigolf is a virtual-reality computer game visualizing quantum mechanics. The rules are the same as for the classical game minigolf, the goal being to kick a ball such that it crosses an obstacle course and runs into a hole. The ball, however, follows the laws of quantum mechanics: It can be at several places at once or tunnel through obstacles. To know whether the ball has reached the goal, the player has to perform a position measurement, which converts the ball into a classical object and fixes its position. But quantum mechanics is indeterministic: There is always a chance to lose, even for Tiger Woods. Technically, the obstacle course and the ball are projected onto the floor by a video projector. The position of the club is tracked by an infrared marker, similar as in Nintendo's Wii console. The whole setup is portable and the software has been published under the GPL license on www.quantum-minigolf.org.
Optimal Extraction and Taxation of Strategic Natural Resources: A Differential Game Approach
Pemy, Moustapha
2016-01-01
This paper studies the optimal extraction and taxation of nonrenewable natural resources. It is well known the market values of the main strategic resources such as oil, natural gas, uranium, copper,...,etc, fluctuate randomly following global and seasonal macro-economic parameters, these values are modeled using Markov switching L\\'evy processes. We formulate this problem as a differential game where the two players are the mining company whose aim is to maximize the revenues generated from ...
Bakkes, S.; Tan, C.T.; Pisan, Y.
2012-01-01
This article focuses on personalised games, which we define as games that utilise player models for the purpose of tailoring the game experience to the individual player. The main contribution of the article is a motivation for personalised gaming, supported by an extensive overview of scientific
Raessens, J.F.F.
2016-01-01
This entry describes game studies as a dynamic interdisciplinary field of academic study and research that focuses on digital games and play in a wide variety of social and cultural contexts. It examines the history of game studies from its prehistory, when games were looked at as part of other
DEFF Research Database (Denmark)
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
A quantum Samaritan’s dilemma cellular automaton
Situ, Haozhen
2017-01-01
The dynamics of a spatial quantum formulation of the iterated Samaritan’s dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e. with local and synchronous interaction. The game is assessed in fair and unfair contests, in noiseless scenarios and with disrupting quantum noise. PMID:28680654
Extended non-local games and monogamy-of-entanglement games.
Johnston, Nathaniel; Mittal, Rajat; Russo, Vincent; Watrous, John
2016-05-01
We study a generalization of non-local games-which we call extended non-local games -in which the players, Alice and Bob, initially share a tripartite quantum state with the referee. In such games, the winning conditions for Alice and Bob may depend on the outcomes of measurements made by the referee, on its part of the shared quantum state, in addition to Alice and Bob's answers to randomly selected questions. Our study of this class of games was inspired by the monogamy-of-entanglement games introduced by Tomamichel, Fehr, Kaniewski and Wehner, which they also generalize. We prove that a natural extension of the Navascués-Pironio-Acín hierarchy of semidefinite programmes converges to the optimal commuting measurement value of extended non-local games, and we prove two extensions of results of Tomamichel et al. concerning monogamy-of-entanglement games.
Quantum voting and violation of Arrow's impossibility theorem
Bao, Ning; Yunger Halpern, Nicole
2017-06-01
We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.
LP formulation of asymmetric zero-sum stochastic games
Li, Lichun
2014-12-15
This paper provides an efficient linear programming (LP) formulation of asymmetric two player zero-sum stochastic games with finite horizon. In these stochastic games, only one player is informed of the state at each stage, and the transition law is only controlled by the informed player. Compared with the LP formulation of extensive stochastic games whose size grows polynomially with respect to the size of the state and the size of the uninformed player\\'s actions, our proposed LP formulation has its size to be linear with respect to the size of the state and the size of the uninformed player, and hence greatly reduces the computational complexity. A travelling inspector problem is used to demonstrate the efficiency of the proposed LP formulation.
A game theoretic investigation of deception in network security
Energy Technology Data Exchange (ETDEWEB)
Carroll, Thomas E.; Grosu, Daniel
2010-12-03
We perform a game theoretic investigation of the effects of deception on the interactions between an attacker and a defender of a computer network. The defender can employ camouflage by either disguising a normal system as a honeypot or by disguising a honeypot as a normal system. We model the interactions between defender and attacker using a signaling game, a non-cooperative two player dynamic game of incomplete information. For this model, we determine which strategies admit perfect Bayesian equilibria. These equilibria are refined Nash equilibria in which neither the defender nor the attacker will unilaterally choose to deviate from their strategies. Finally, we discuss the benefits of employing deceptive equilibrium strategies in the defense of a computer network.
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
LP formulation of asymmetric zero-sum stochastic games
Li, Lichun; Shamma, Jeff S.
2014-01-01
This paper provides an efficient linear programming (LP) formulation of asymmetric two player zero-sum stochastic games with finite horizon. In these stochastic games, only one player is informed of the state at each stage, and the transition law is only controlled by the informed player. Compared with the LP formulation of extensive stochastic games whose size grows polynomially with respect to the size of the state and the size of the uninformed player's actions, our proposed LP formulation has its size to be linear with respect to the size of the state and the size of the uninformed player, and hence greatly reduces the computational complexity. A travelling inspector problem is used to demonstrate the efficiency of the proposed LP formulation.
A Faster Algorithm for Solving One-Clock Priced Timed Games
DEFF Research Database (Denmark)
Hansen, Thomas Dueholm; Ibsen-Jensen, Rasmus; Miltersen, Peter Bro
2013-01-01
previously known time bound for solving one-clock priced timed games was 2O(n2+m) , due to Rutkowski. For our improvement, we introduce and study a new algorithm for solving one-clock priced timed games, based on the sweep-line technique from computational geometry and the strategy iteration paradigm from......One-clock priced timed games is a class of two-player, zero-sum, continuous-time games that was defined and thoroughly studied in previous works. We show that one-clock priced timed games can be solved in time m 12 n n O(1), where n is the number of states and m is the number of actions. The best...
A Faster Algorithm for Solving One-Clock Priced Timed Games
DEFF Research Database (Denmark)
Hansen, Thomas Dueholm; Ibsen-Jensen, Rasmus; Miltersen, Peter Bro
2012-01-01
previously known time bound for solving one-clock priced timed games was 2^(O(n^2+m)), due to Rutkowski. For our improvement, we introduce and study a new algorithm for solving one-clock priced timed games, based on the sweep-line technique from computational geometry and the strategy iteration paradigm from......One-clock priced timed games is a class of two-player, zero-sum, continuous-time games that was defined and thoroughly studied in previous works. We show that one-clock priced timed games can be solved in time m 12^n n^(O(1)), where n is the number of states and m is the number of actions. The best...
Mixed-strategy Nash equilibrium for a discontinuous symmetric N-player game
Hilhorst, H. J.; Appert-Rolland, C.
2018-03-01
We consider a game in which each player must find a compromise between more daring strategies that carry a high risk for him to be eliminated, and more cautious ones that, however, reduce his final score. For two symmetric players this game was originally formulated in 1961 by Dresher, who modeled a duel between two opponents. The game has also been of interest in the description of athletic competitions. We extend here the two-player game to an arbitrary number N of symmetric players. We show that there is a mixed-strategy Nash equilibrium and find its exact analytic expression, which we analyze in particular in the limit of large N, where mean-field behavior occurs. The original game with N = 2 arises as a singular limit of the general case.
Writerly Gaming: Political Gaming
DEFF Research Database (Denmark)
Andersen, Christian Ulrik
2007-01-01
software for private entertainment (looking/feeling real) or they can be pragmatic software used for training of professionals (affecting soldiers’, pilots’, etc. perception of the real). A third, and less debated game-reality relationship, based on public awareness and typically a socio-political agenda...
Quantum gambling using mesoscopic ring qubits
International Nuclear Information System (INIS)
Pakula, Ireneusz
2007-01-01
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum gambling using mesoscopic ring qubits
Energy Technology Data Exchange (ETDEWEB)
Pakula, Ireneusz [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland)
2007-07-15
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Extrapolating Weak Selection in Evolutionary Games
Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne
2013-01-01
In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769
Near-Nash equilibrium strategies for LQ differential games with inaccurate state information
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available ε -Nash equilibrium or “near equilibrium” for a linear quadratic cost game is considered. Due to inaccurate state information, the standard solution for feedback Nash equilibrium cannot be applied. Instead, an estimation of the players' states is substituted into the optimal control strategies equation obtained for perfect state information. The magnitude of the ε in the ε -Nash equilibrium will depend on the quality of the estimation process. To illustrate this approach, a Luenberger-type observer is used in the numerical example to generate the players' state estimates in a two-player non-zero-sum LQ differential game.
Stochastic Perron's method and elementary strategies for zero-sum differential games
Sîrbu, Mihai
2013-01-01
We develop here the Stochastic Perron Method in the framework of two-player zero-sum differential games. We consider the formulation of the game where both players play, symmetrically, feed-back strategies (as in [CR09] or [PZ12]) as opposed to the Elliott-Kalton formulation prevalent in the literature. The class of feed-back strategies we use is carefully chosen so that the state equation admits strong solutions and the technicalities involved in the Stochastic Perron Method carry through in...
Learning with touchscreen devices: game strategies to improve geometric thinking
Soldano, Carlotta; Arzarello, Ferdinando
2016-03-01
The aim of this paper is to reflect on the importance of the students' game-strategic thinking during the development of mathematical activities. In particular, we hypothesise that this type of thinking helps students in the construction of logical links between concepts during the "argumentation phase" of the proving process. The theoretical background of our study lies in the works of J. Hintikka, a Finnish logician, who developed a new type of logic, based on game theory, called the logic of inquiry. In order to experiment with this new approach to the teaching and learning of mathematics, we have prepared five game-activities based on geometric theorems in which two players play against each other in a multi-touch dynamic geometric environment (DGE). In this paper, we present the design of the first game-activity and the relationship between it and the logic of inquiry. Then, adopting the theoretical framework of the instrumental genesis by Vérillon and Rabardel (EJPE 10: 77-101, 1995), we will present and analyse significant actions and dialogues developed by students while they are solving the game. We focus on the presence of a particular way of playing the game introduced by the students, the "reflected game", and highlight its functions for the development of the task.
African Journals Online (AJOL)
Dr Obe
participants make decisions with or without the intervention of ... formulation of game theory started in 1944 with the publication of the book ... Nearly all games require seeing patterns, making plans, searching ..... utility/ outcome. •. Players will ...
Mori, Akio; Iwadate, Masako; Minakawa, Nahoko T; Kawashima, Satoshi
2015-09-01
The purpose of this article is to analyze the South Korea and China of computer game research, and the current state of research in Japan. Excessive game actions were analyzed by PET-MRI, MRI, fMRI, NIRS, EEG. These results showed that the prefrontal cortical activity decreased during game play. Also, game addiction causes damage to the prefrontal cortex. The NIRS-EEG and simultaneous recording, during game play correspond well with the decrease of β band and oxygen-hemoglobin. The α band did not change with game play. However, oxygen-hemoglobin decreased during game play. South Korea, game addiction measures have been analyzed since 2002, but in Japan the research is recent.
DEFF Research Database (Denmark)
Hansen, Ole Ertløv
2015-01-01
Casual games have become a widespread activity that fills our leisure time. This article introduces to the phenomenon casual games – their definition and the history. Furthermore the article presents and discusses the experience of and engagement or immersion in playing these games as it is put...... forward by recent research. The theoretical approach is based on media psychology, phenomenology and reversal theory. Finally it is argued that playing casual games is fundamental pleasurable to both paratelic as well as telic metamotivational states....
DEFF Research Database (Denmark)
Kristiansen, Erik
2015-01-01
, called “pervasive games.” These are games that are based on computer technology, but use a physical space as the game space as opposed to video games. Coupling spatial configuration with performance theory of rituals as liminal phenomena, I put forward a model and a new understanding of the magic circle......When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... hide-and-seek, but even these games are still spatially configured. The border (visible or not) both seem to separate and uphold the game that it is meant for. This chapter sets out to analyse the possible border that separates a game from the surrounding world. Johan Huizinga noted this “separateness...
Dufwenberg, Martin
2011-03-01
Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Funk, Jeanne B
2005-06-01
The video game industry insists that it is doing everything possible to provide information about the content of games so that parents can make informed choices; however, surveys indicate that ratings may not reflect consumer views of the nature of the content. This article describes some of the currently popular video games, as well as developments that are on the horizon, and discusses the status of research on the positive and negative impacts of playing video games. Recommendations are made to help parents ensure that children play games that are consistent with their values.
Threshold Games and Cooperation on Multiplayer Graphs.
Directory of Open Access Journals (Sweden)
Kaare B Mikkelsen
Full Text Available The study investigates the effect on cooperation in multiplayer games, when the population from which all individuals are drawn is structured-i.e. when a given individual is only competing with a small subset of the entire population.To optimize the focus on multiplayer effects, a class of games were chosen for which the payoff depends nonlinearly on the number of cooperators-this ensures that the game cannot be represented as a sum of pair-wise interactions, and increases the likelihood of observing behaviour different from that seen in two-player games. The chosen class of games are named "threshold games", and are defined by a threshold, M > 0, which describes the minimal number of cooperators in a given match required for all the participants to receive a benefit. The model was studied primarily through numerical simulations of large populations of individuals, each with interaction neighbourhoods described by various classes of networks.When comparing the level of cooperation in a structured population to the mean-field model, we find that most types of structure lead to a decrease in cooperation. This is both interesting and novel, simply due to the generality and breadth of relevance of the model-it is likely that any model with similar payoff structure exhibits related behaviour. More importantly, we find that the details of the behaviour depends to a large extent on the size of the immediate neighbourhoods of the individuals, as dictated by the network structure. In effect, the players behave as if they are part of a much smaller, fully mixed, population, which we suggest an expression for.
Cognitive Hierarchy Theory and Two-Person Games
Directory of Open Access Journals (Sweden)
Carlos Gracia-Lázaro
2017-01-01
Full Text Available The outcome of many social and economic interactions, such as stock-market transactions, is strongly determined by the predictions that agents make about the behavior of other individuals. Cognitive hierarchy theory provides a framework to model the consequences of forecasting accuracy that has proven to fit data from certain types of game theory experiments, such as Keynesian beauty contests and entry games. Here, we focus on symmetric two-player-two-action games and establish an algorithm to find the players’ strategies according to the cognitive hierarchy approach. We show that the snowdrift game exhibits a pattern of behavior whose complexity grows as the cognitive levels of players increases. In addition to finding the solutions up to the third cognitive level, we demonstrate, in this theoretical frame, two new properties of snowdrift games: (i any snowdrift game can be characterized by only a parameter, its class; (ii they are anti-symmetric with respect to the diagonal of the pay-off’s space. Finally, we propose a model based on an evolutionary dynamics that captures the main features of the cognitive hierarchy theory.
Three-player conflicting interest games and nonlocality
Bolonek-Lasoń, Katarzyna
2017-08-01
We outline the general construction of three-player games with incomplete information which fulfil the following conditions: (i) symmetry with respect to the permutations of players; (ii) the existence of an upper bound for total payoff resulting from Bell inequalities; (iii) the existence of both fair and unfair Nash equilibria saturating this bound. Conditions (i)-(iii) imply that we are dealing with conflicting interest games. An explicit example of such a game is given. A quantum counterpart of this game is considered. It is obtained by keeping the same utilities but replacing classical advisor by a quantum one. It is shown that the quantum game possesses only fair equilibria with strictly higher payoffs than in the classical case. This implies that quantum nonlocality can be used to resolve the conflict between the players.
Madeira, Filipa; Arriaga, Patrícia; Adrião, Joana; Lopes, Ricardo; Esteves, Francisco
2013-01-01
In recent years, research on the psychology of gaming has examined the negative and positive outcomes of playing video games. Thus far, a variety of affective phenomena have been investigated. In this chapter we will continue this exploration by examining the emotions elicited by the act of playing video games. Because the study of emotions must rely on different type of methods, including subjective self-reports (e.g., description of feelings), neuropsychophysiological measurements ...
Giddings, S.
2013-01-01
This chapter outlines the conventions and pleasures of simulation games as a category, and explores the complicated and contested term simulation. This concept goes to the heart of what computer games and video games are, and the ways in which they articulate ideas, processes, and phenomena between their virtual worlds and the actual world. It has been argued that simulations generate and communicate knowledge and events quite differently from the long-dominant cultural mode of narrative. Th...
Energy Technology Data Exchange (ETDEWEB)
Bonnemay, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
In this report, the two-player game is studied, without certain assumptions usually made: a - the game is not assumed to be a matrix game b - no assumption is made on the cost functions (in particular it is not assumed that they are additive) Results are obtained which are applied to differential games, and lead to an optimal game theorem. These results are then extended to a game with a finite number of players. (author) [French] Ce rapport etudie le jeu a deux joueurs, en levant certaines hypotheses usuellement faites: a - le jeu n'est pas suppose rectangulaire b - aucune hypothese n'est faite sur les fonctions de cout (on ne suppose notamment pas que l'on peut les ajouter). Les resultats obtenus sont appliques au jeu differentiel et conduisent a un theoreme de jeu optimal. Ces resultats sont alors etendus au jeu a un nombre fini quelconque de joueurs. (auteur)
Quantum entanglement helps in improving economic efficiency
International Nuclear Information System (INIS)
Du Jiangfeng; Ju Chenyong; Li Hui
2005-01-01
We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character
Quantum entanglement helps in improving economic efficiency
Du, Jiangfeng; Ju, Chenyong; Li, Hui
2005-02-01
We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.
Eberly, David H
2010-01-01
""Game Physics, 2nd Edition"" provides clear descriptions of the mathematics and algorithms needed to create a powerful physics engine - while providing a solid reference for all of the math you will encounter anywhere in game development: quaternions, linear algebra, and calculus. Implementing physical simulations for real-time games is a complex task that requires a solid understanding of a wide range of concepts from the fields of mathematics and physics. Previously, the relevant information could only be gleaned through obscure research papers. Thanks to ""Game Physics"", all this informa
DEFF Research Database (Denmark)
Andersen, Christian Ulrik
2006-01-01
T hese days one of the buzzwords in computer game industry and research is ‘Serious Games’ – games where the actions of the player are not limited to the virtual world but are somehow related to the real world. Computer games can be strong environments for learning and training skills in the real...... world. Computer games can also be persuasive – they can be used for advertising (‘adver-gaming’) and induce the players to buy a particular product in the real world or they can propagate a particular political viewpoint or a critique of the real world. The area of ‘serious gaming’ is vast and varied....
DEFF Research Database (Denmark)
Johansson, Martin Wetterstrand
2007-01-01
In this paper design games are discussed as an approach to managing design sessions. The focus is on the collaborative design session and more particular on how to set up the collaboration and reinsure progress. Design games have the advantage of framing the collaborative assignment at hand....... Experiments can be set up to explore possible futures and design games has the qualities of elegantly focus the work at the same time as it lessens the burden for the process facilitator. The present paper goes into detail about how design games can be set up to facilitate collaboration and how the design...
Kolář, Vojtěch
2012-01-01
This thesis is based on a detailed analysis of various topics related to the question of whether video games can be art. In the first place it analyzes the current academic discussion on this subject and confronts different opinions of both supporters and objectors of the idea, that video games can be a full-fledged art form. The second point of this paper is to analyze the properties, that are inherent to video games, in order to find the reason, why cultural elite considers video games as i...
Wilde, Mark M
2017-01-01
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...
Quantum gambling based on Nash-equilibrium
Zhang, Pei; Zhou, Xiao-Qi; Wang, Yun-Long; Liu, Bi-Heng; Shadbolt, Pete; Zhang, Yong-Sheng; Gao, Hong; Li, Fu-Li; O'Brien, Jeremy L.
2017-06-01
The problem of establishing a fair bet between spatially separated gambler and casino can only be solved in the classical regime by relying on a trusted third party. By combining Nash-equilibrium theory with quantum game theory, we show that a secure, remote, two-party game can be played using a quantum gambling machine which has no classical counterpart. Specifically, by modifying the Nash-equilibrium point we can construct games with arbitrary amount of bias, including a game that is demonstrably fair to both parties. We also report a proof-of-principle experimental demonstration using linear optics.
Quantum two- and three-person duels
International Nuclear Information System (INIS)
Flitney, Adrian P; Abbott, Derek
2004-01-01
In game theory, a popular model of a struggle for survival among three competing agents is a truel, or three-person generalization of a duel. Adopting the ideas recently developed in quantum game theory, we present a quantum scheme for the problems of duels and truels. In the classical case, the outcome is sensitive to the precise rules under which the truel is performed and can be counterintuitive. These aspects carry over into our quantum scheme, but interference amongst the players' strategies can arise, leading to game equilibria different from the classical case
Universality of measurements on quantum markets
Pakuła, Ireneusz; Piotrowski, Edward W.; Sładkowski, Jan
2007-11-01
Two of the authors have recently discussed financial markets operated by quantum computers-quantum market games. These “new markets” cannot by themselves create opportunity of making extraordinary profits or multiplying goods, but they may cause the dynamism of transaction which would result in more effective markets and capital flow into hands of the most efficient traders. Here we focus upon the problem of universality of measurement in quantum market games offering a possible method of implementation if the necessary technologies would be available. It can be also used to analyse material commitments that elude description in orthodox game-theoretic terms.
Shaffer, David Williamson
2005-01-01
In an article in this issue of "Innovate", Jim Gee asks the question "What would a state of the art instructional video game look like?" Based on the game "Full Spectrum Warrior", he concludes that one model is "to pick [a] domain of authentic professionalism well, intelligently select the skills and knowledge to…
Computing security strategies in finite horizon repeated Bayesian games
Lichun Li
2017-07-10
This paper studies security strategies in two-player zero-sum repeated Bayesian games with finite horizon. In such games, each player has a private type which is independently chosen according to a publicly known a priori probability. Players\\' types are fixed all through the game. The game is played for finite stages. At every stage, players simultaneously choose their actions which are observed by the public. The one-stage payoff of player 1 (or penalty to player 2) depends on both players types and actions, and is not directly observed by any player. While player 1 aims to maximize the total payoff over the game, player 2 wants to minimize it. This paper provides each player two ways to compute the security strategy, i.e. the optimal strategy in the worst case. First, a security strategy that directly depends on both players\\' history actions is derived by refining the sequence form. Noticing that history action space grows exponentially with respect to the time horizon, this paper further presents a security strategy that depends on player\\'s fixed sized sufficient statistics. The sufficient statistics is shown to consist of the belief on one\\'s own type, the regret on the other player\\'s type, and the stage, and is independent of the other player\\'s strategy.
Attacker-defender game from a network science perspective
Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun
2018-05-01
Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.
Adaptive Topographies and Equilibrium Selection in an Evolutionary Game
Osinga, Hinke M.; Marshall, James A. R.
2015-01-01
It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762
Game-based Research Collaboration adapted to Science Education
DEFF Research Database (Denmark)
Magnussen, Rikke; Damgaard Hansen, Sidse; Grønbæk, Kaj
2012-01-01
This paper presents prospects for adapting scientific discovery games to science education. In the paper a prototype of The Quantum Computing Game is presented as a working example of adapting game-based research collaboration to physics education. The game concept is the initial result of a three......-year, inter-disciplinary project “Pilot Center for Community-driven Research” at Aarhus and Aalborg University in Denmark. The paper discusses how scientific discovery games can contribute to educating students in how to work with unsolved scientific problems and creation of new scientific knowledge. Based...
Quantum entanglement: Insights via graph parameters and conic optimization
Piovesan, T.
2016-01-01
In this PhD thesis we study the effects of quantum entanglement, one of quantum mechanics most peculiar features, in nonlocal games and communication problems in zero-error information theory. A nonlocal game is a thought experiment in which two cooperating players, who are forbidden to communicate,
Survey on nonlocal games and operator space theory
International Nuclear Information System (INIS)
Palazuelos, Carlos; Vidick, Thomas
2016-01-01
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states
Survey on nonlocal games and operator space theory
Energy Technology Data Exchange (ETDEWEB)
Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)
2016-01-15
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.
Game Theory in water resources management
Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George
2015-04-01
Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will
Systematizing game learning analytics for serious games
Alonso-Fernandez, Cristina; Calvo Morata, Antonio; Freire, Manuel; Martinez-Ortiz, Ivan; Fernandez-Manjon, Baltasar
2017-01-01
Applying games in education provides multiple benefits clearly visible in entertainment games: their engaging, goal-oriented nature encourages students to improve while they play. Educational games, also known as Serious Games (SGs) are video games designed with a main purpose other than
The effect of power asymmetries on cooperation and punishment in a prisoner's dilemma game.
Directory of Open Access Journals (Sweden)
Jonathan E Bone
Full Text Available Recent work has suggested that punishment is detrimental because punishment provokes retaliation, not cooperation, resulting in lower overall payoffs. These findings may stem from the unrealistic assumption that all players are equal: in reality individuals are expected to vary in the power with which they can punish defectors. Here, we allowed strong players to interact with weak players in an iterated prisoner's dilemma game with punishment. Defecting players were most likely to switch to cooperation if the partner cooperated: adding punishment yielded no additional benefit and, under some circumstances, increased the chance that the partner would both defect and retaliate against the punisher. Our findings show that, in a two-player game, cooperation begets cooperation and that punishment does not seem to yield any additional benefits. Further work should explore whether strong punishers might prevail in multi-player games.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Anttila, Jani; Annila, Arto
2011-10-01
A course of a game is formulated as a physical process that will consume free energy in the least time. Accordingly, the rate of entropy increase is the payoff function that will subsume all forms of free energy that motivate diverse decisions. Also other concepts of game theory are related to their profound physical counterparts. When the physical portrayal of behavior is mathematically analyzed, the course of a game is found to be inherently unpredictable because each move affects motives in the future. Despite the non-holonomic character of the natural process, the objective of consuming free energy in the least time will direct an extensive-form game toward a Lyapunov-stable point that satisfies the minimax theorem.
Institute of Scientific and Technical Information of China (English)
LI XIAO
2010-01-01
@@ China is not expected to sweep the Vancouver 2010 Olympic Winter Games the way it dominated the 2008 Beijing Summer Olympics.However,it has made Chinese Olympic history after winning three gold medals when the Games passed the halfway point of scheduled competition on February 20.On that day,18-year-old Zhou Yang overcame three South Korean rivals to win the women's short-track speed skating 1,500-meter final.
Playing Games with Timed Games
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Chatain, Thomas
2009-01-01
In this paper we focus on property-preserving preorders between timed game automata and their application to control of partially observable systems. Following the example of timed simulation between timed automata, we define timed alternating simulation as a preorder between timed game automata......, which preserves controllability. We define a method to reduce the timed alternating simulation problem to a safety game. We show how timed alternating simulation can be used to control efficiently a partially observable system. This method is illustrated by a generic case study....
International Nuclear Information System (INIS)
Anttila, Jani; Annila, Arto
2011-01-01
A course of a game is formulated as a physical process that will consume free energy in the least time. Accordingly, the rate of entropy increase is the payoff function that will subsume all forms of free energy that motivate diverse decisions. Also other concepts of game theory are related to their profound physical counterparts. When the physical portrayal of behavior is mathematically analyzed, the course of a game is found to be inherently unpredictable because each move affects motives in the future. Despite the non-holonomic character of the natural process, the objective of consuming free energy in the least time will direct an extensive-form game toward a Lyapunov-stable point that satisfies the minimax theorem. -- Highlights: → Behavior in the context of game theory is described as a natural process. → The rate of entropy increase, derived from statistical physics of open systems, is identified as the payoff function. → Entropy as the payoff function also clarifies motives of collaboration and subjective nature of decision making. → Evolutionary equation of motion that accounts for the course of a game is inherently unpredictable.
Game development tool essentials
Berinstein, Paula; Ardolino, Alessandro; Franco, Simon; Herubel, Adrien; McCutchan, John; Nedelcu, Nicusor; Nitschke, Benjamin; Olmstead, Don; Robinet, Fabrice; Ronchi, Christian; Turkowski, Rita; Walter, Robert; Samour, Gustavo
2014-01-01
Offers game developers new techniques for streamlining the critical game tools pipeline. Inspires game developers to share their secrets and improve the productivity of the entire industry. Helps game industry practitioners compete in a hyper-competitive environment.
A New Solution Concept for the Ultimatum Game leading to the Golden Ratio.
Schuster, Stefan
2017-07-17
The Ultimatum Game is a paradigmatic two-player game. A proposer can offer a certain fraction of some valuable good. A responder can accept the offer or reject it, implying that the two players receive nothing. The only subgame-perfect Nash equilibrium is to only offer an infinitesimal amount and to accept this. However, this equilibrium is not in agreement with experimental observations, which show varying accepted offers around 40%. While some authors suggest that the fairest split of 50% vs. 50% would be explainable on theoretical grounds or by computer simulation, a few authors (including myself) have recently suggested that the Golden Ratio, about 0.618 vs. about 0.382, would be the solution, in striking agreement with observations. Here we propose a solution concept, based on an optimality approach and epistemic arguments, leading to that suggested solution. The optimality principle is explained both in an axiomatic way and by bargaining arguments, and the relation to Fibonacci numbers is outlined. Our presentation complements the Economic Harmony theory proposed by R. Suleiman and is based on infinite continued fractions. The results are likely to be important for the theory of fair salaries, justice theory and the predictive value of game theory.
Orbital Battleship: A Guessing Game to Reinforce Atomic Structure
Kurushkin, Mikhail; Mikhaylenko, Maria
2016-01-01
A competitive educational guessing game "Orbital Battleship" which reinforces Madelung's and Hund's rules, values of quantum numbers, and understanding of periodicity was designed. The game develops strategic thinking, is not time-consuming, requires minimal preparation and supervision, and is an efficient and fun alternative to more…
Social learning in the ultimatum game.
Zhang, Boyu
2013-01-01
In the ultimatum game, two players divide a sum of money. The proposer suggests how to split and the responder can accept or reject. If the suggestion is rejected, both players get nothing. The rational solution is that the responder accepts even the smallest offer but humans prefer fair share. In this paper, we study the ultimatum game by a learning-mutation process based on quantal response equilibrium, where players are assumed boundedly rational and make mistakes when estimating the payoffs of strategies. Social learning is never stabilized at the fair outcome or the rational outcome, but leads to oscillations from offering 40 percent to 50 percent. To be precise, there is a clear tendency to increase the mean offer if it is lower than 40 percent, but will decrease when it reaches the fair offer. If mutations occur rarely, fair behavior is favored in the limit of local mutation. If mutation rate is sufficiently high, fairness can evolve for both local mutation and global mutation.
Magnusson, Lars V
2011-01-01
Game logic and game rules exists in all computer games, but they are created di erently for all game engines. This game engine dependency exists because of how the internal object model is implemented in the engine, as a place where game logic data is intermingled with the data needed by the low- level subsystems. This thesis propose a game object model design, based on existing theory, that removes this dependency and establish a general game logic framework. The thesis the...
DEFF Research Database (Denmark)
Debus, Michael S.
2016-01-01
The paper examines research on drinking game participation from a game studies ontological perspective, covering definition, classification and problems with the, in the studies implied, underlying ontology of drinking games.......The paper examines research on drinking game participation from a game studies ontological perspective, covering definition, classification and problems with the, in the studies implied, underlying ontology of drinking games....
Zero-determinant strategy: An underway revolution in game theory
International Nuclear Information System (INIS)
Hao Dong; Rong Zhi-Hai; Zhou Tao
2014-01-01
Repeated games describe situations where players interact with each other in a dynamic pattern and make decisions according to outcomes of previous stage games. Very recently, Press and Dyson have revealed a new class of zero-determinant (ZD) strategies for the repeated games, which can enforce a fixed linear relationship between expected payoffs of two players, indicating that a smart player can control her unwitting co-player's payoff in a unilateral way [Proc. Acad. Natl. Sci. USA 109, 10409 (2012)]. The theory of ZD strategies provides a novel viewpoint to depict interactions among players, and fundamentally changes the research paradigm of game theory. In this brief survey, we first introduce the mathematical framework of ZD strategies, and review the properties and constrains of two specifications of ZD strategies, called pinning strategies and extortion strategies. Then we review some representative research progresses, including robustness analysis, cooperative ZD strategy analysis, and evolutionary stability analysis. Finally, we discuss some significant extensions to ZD strategies, including the multi-player ZD strategies, and ZD strategies under noise. Challenges in related research fields are also listed. (topical review - statistical physics and complex systems)
Evolution of Fairness in the Not Quite Ultimatum Game
Ichinose, Genki; Sayama, Hiroki
2014-05-01
The Ultimatum Game (UG) is an economic game where two players (proposer and responder) decide how to split a certain amount of money. While traditional economic theories based on rational decision making predict that the proposer should make a minimal offer and the responder should accept it, human subjects tend to behave more fairly in UG. Previous studies suggested that extra information such as reputation, empathy, or spatial structure is needed for fairness to evolve in UG. Here we show that fairness can evolve without additional information if players make decisions probabilistically and may continue interactions when the offer is rejected, which we call the Not Quite Ultimatum Game (NQUG). Evolutionary simulations of NQUG showed that the probabilistic decision making contributes to the increase of proposers' offer amounts to avoid rejection, while the repetition of the game works to responders' advantage because they can wait until a good offer comes. These simple extensions greatly promote evolution of fairness in both proposers' offers and responders' acceptance thresholds.
Gamers on Games and Gaming : Implications for Educational Game Design
Van Staalduinen, J.P.
2012-01-01
In the past two decades, there has been a steadily increasing interest in the use of games for educational purposes. This has led to an increased design, use and study of educational games; games where the players learn through playing. However, experiments with the educational use of games have not
Muhammad, Sadiq; Tavakoli, Armin; Kurant, Maciej; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed
2014-04-01
Quantum methods allow us to reduce communication complexity of some computational tasks, with several separated partners, beyond classical constraints. Nevertheless, experimental demonstrations of this have thus far been limited to some abstract problems, far away from real-life tasks. We show here, and demonstrate experimentally, that the power of reduction of communication complexity can be harnessed to gain an advantage in a famous, immensely popular, card game—bridge. The essence of a winning strategy in bridge is efficient communication between the partners. The rules of the game allow only a specific form of communication, of very low complexity (effectively, one has strong limitations on the number of exchanged bits). Surprisingly, our quantum technique does not violate the existing rules of the game (as there is no increase in information flow). We show that our quantum bridge auction corresponds to a biased nonlocal Clauser-Horne-Shimony-Holt game, which is equivalent to a 2→1 quantum random access code. Thus, our experiment is also a realization of such protocols. However, this correspondence is not complete, which enables the bridge players to have efficient strategies regardless of the quality of their detectors.
Properly quantized history-dependent Parrondo games, Markov processes, and multiplexing circuits
Energy Technology Data Exchange (ETDEWEB)
Bleiler, Steven A. [Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, PO Box 751, Portland, OR 97207 (United States); Khan, Faisal Shah, E-mail: faisal.khan@kustar.ac.a [Khalifa University of Science, Technology and Research, PO Box 127788, Abu Dhabi (United Arab Emirates)
2011-05-09
Highlights: History-dependent Parrondo games are viewed as Markov processes. Quantum mechanical analogues of these Markov processes are constructed. These quantum analogues restrict to the original process on measurement. Relationship between these analogues and a quantum circuits is exhibited. - Abstract: In the context of quantum information theory, 'quantization' of various mathematical and computational constructions is said to occur upon the replacement, at various points in the construction, of the classical randomization notion of probability distribution with higher order randomization notions from quantum mechanics such as quantum superposition with measurement. For this to be done 'properly', a faithful copy of the original construction is required to exist within the new quantum one, just as is required when a function is extended to a larger domain. Here procedures for extending history-dependent Parrondo games, Markov processes and multiplexing circuits to their quantum versions are analyzed from a game theoretic viewpoint, and from this viewpoint, proper quantizations developed.
A Pumping Algorithm for Ergodic Stochastic Mean Payoff Games with Perfect Information
Boros, Endre; Elbassioni, Khaled; Gurvich, Vladimir; Makino, Kazuhisa
In this paper, we consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph G = (V = V B ∪ V W ∪ V R , E), with local rewards r: E to { R}, and three types of vertices: black V B , white V W , and random V R . The game is played by two players, White and Black: When the play is at a white (black) vertex v, White (Black) selects an outgoing arc (v,u). When the play is at a random vertex v, a vertex u is picked with the given probability p(v,u). In all cases, Black pays White the value r(v,u). The play continues forever, and White aims to maximize (Black aims to minimize) the limiting mean (that is, average) payoff. It was recently shown in [7] that BWR-games are polynomially equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic games, simple stochastic games (SSG's), stochastic parity games, and Markov decision processes. In this paper, we give a new algorithm for solving BWR-games in the ergodic case, that is when the optimal values do not depend on the initial position. Our algorithm solves a BWR-game by reducing it, using a potential transformation, to a canonical form in which the optimal strategies of both players and the value for every initial position are obvious, since a locally optimal move in it is optimal in the whole game. We show that this algorithm is pseudo-polynomial when the number of random nodes is constant. We also provide an almost matching lower bound on its running time, and show that this bound holds for a wider class of algorithms. Let us add that the general (non-ergodic) case is at least as hard as SSG's, for which no pseudo-polynomial algorithm is known.
Genesereth, Michael
2014-01-01
General game players are computer systems able to play strategy games based solely on formal game descriptions supplied at ""runtime"" (n other words, they don't know the rules until the game starts). Unlike specialized game players, such as Deep Blue, general game players cannot rely on algorithms designed in advance for specific games; they must discover such algorithms themselves. General game playing expertise depends on intelligence on the part of the game player and not just intelligence of the programmer of the game player.GGP is an interesting application in its own right. It is intell
DEFF Research Database (Denmark)
Christensen, Jens
Serious Games er et nyt it-forretningsområde, der siden årtusindskiftet er vokset frem, først i USA og dernæst i Vesteuropa og and i-lande. Til forskel fra computerspil er serious games ikke underholdning, men tænkt som et værktøj til støtte for statens og erhvervslivets forskellige funktioner. Det...... amerikanske militær har været fødselshjælper for den nye teknologi. Herfra har serious games bredt sig til andre sektorer og og i-lande, inkl. Danmark. Bogen skildrer, hvordan det nye forretningsområde er i færd med at blive udkrystalliseret af en række beslægtede industrigrene, og hvordan udviklingen er...
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
There has recently been considerable attention paid to the gamification of digital journalism. Where the current technological and social affordances of web 2.0 storytelling have proved less attractive to younger users, the persuasive features of game logics have added new dimensions to interactive......, participatory journalism. This notion refers to realitybased news games that can act both as an independent medium for news content and as a supplement to traditional forms of coverage. Simultaneously, persuasive logics of gamification offer new ways to engage actuality through media space’s augmented reality....... This paper1 explores the new spatio-epistemological realities of two journalistic games, asking how the spatial, operational, and procedural realities of storytelling change through ‘gamification’. It reflects on the spatial dimension of digital journalism in order to challenge the traditional, generic...
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Serious Games: Video Games for Good?
Sanford, Kathy; Starr, Lisa J.; Merkel, Liz; Bonsor Kurki, Sarah
2015-01-01
As video games become a ubiquitous part of today's culture internationally, as educators and parents we need to turn our attention to how video games are being understood and used in informal and formal settings. Serious games have developed as a genre of video games marketed for educating youth about a range of world issues. At face value this…
International Nuclear Information System (INIS)
Stachow, E.W.
1980-01-01
The author discusses the connection between dialogical logic and the empirical conditions of quantum mechanics. It is shown how this dialogue game leads to a nonclassical logical calculus, called the effective quantum logic. (HSI)
van Bottenburg, Maarten
2001-01-01
Why is soccer the sport of choice in South America, while baseball has soared to popularity in the Carribean? How did cricket become India's national sport, while China is a stronghold of table tennis? In Global Games, Maarten van Bottenburg asserts that it is the 'hidden competition' of social and
DEFF Research Database (Denmark)
Nielsen, Rune; Løssing, Tobias
2004-01-01
Games, er ikke produktudvikling i traditionel forstand, men derimod en reflekteret designproces, der forsøger at optage spilteoretiske og HCI-relaterede problemstillinger. I denne artikel vil vi koncentrere os om udvalgte principielle overvejelser i udviklingen af især forhandlings- og debatspil, som...
Fletcher, Robert
2017-01-01
This article explores the role of digital (video and computer) games in the rise of what Büscher (2014) calls "nature 2.0": new web-related media that allow users to move beyond passive voyeurism to actively "co-create" or "prosume" the images and processes promoted by organizations committed to
[Lecture Games] Python programming game
Johnsen, Andreas Lyngstad; Ushakov, Georgy
2011-01-01
Pythia is a programming game that allows the player to change pieces of theirenvironment through use of the programming language Python. The idea is that thegame could be used as a part of teaching simple programming to ﬁrst year universitystudents. The game should be fun enough for the students to keep playing, teachenough for it to earn a place as a teaching tool, and it should be usable by allstudents. It should also be possible for a teacher to create their own content for theg...
Dynamic Stackelberg game model for water rationalization in drought emergency
Kicsiny, R.; Piscopo, V.; Scarelli, A.; Varga, Z.
2014-09-01
In water resource management, in case of a limited resource, there is a conflict situation between different consumers. In this paper, a dynamic game-theoretical model is suggested for the solution of such conflict. Let us suppose that in a region, water supply is based on a given aquifer, from which a quantity of effective reserve can be used without damaging the aquifer, and a long drought is foreseen. The use of water is divided between the social sector represented by the local authority, and the production sector, in our case, simplified to a single agricultural producer using water for irrigation; they are the players in the game. For a fixed time period, every day, a given amount is available, from which first the authority, then the producer takes a proportion, which corresponds to the strategy choices of the players. A price function is given, which depends on the total available reserve, the payoffs of both players are quantified as their net incomes for the whole period: for the producer: profit from selling the product minus price of water and tax paid, for the authority: tax received plus the gain for the authority from selling the water bought to the social sector minus price of water purchased. A solution (equilibrium) of the game consists of such strategy choices of both players, with which each player maximizes her/his total payoff (over the whole time horizon of the game) provided that the other player also maximizes her/his own payoff. In the paper, in a mathematical model for the above conflict situation, a deterministic continuum-strategy two-player discrete-time dynamic Stackelberg game with fixed finite time duration and closed-loop information structure is proposed, where the authority is “leader” and the producer is “follower”. The algorithms for the solution of the game are based on recent theoretical results of the authors. Illustrative numerical examples are also given.
Ubiquitous Quantum Structure From Psychology to Finance
Khrennikov, Andrei Y
2010-01-01
Quantum-like structure is present practically everywhere. Quantum-like (QL) models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory. This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of natural, biological, psychological, social, economical or financial phenomena. A general contextual probabilistic model (Växjö model) is presented. It can be used for describing probabilities in both quantum and classical (statistical) mechanics as well as in the above mentioned phenomena. This model can be represented in a quantum-like way, namely, in complex and more general Hilbert spaces. In this way quantum prob...
DEFF Research Database (Denmark)
Jørgensen, Ida Kathrine Hammeleff
2017-01-01
Recently self-referentiality have occurred as a trend among game designers and have also enjoyed sporadic attention in academia. However, in academia, discussions of self-referential games often rest on proceduralist arguments and a too exclusive focus on the game object. This paper draws...... on the typology of meta-pictures developed by art historian J.W.T. Mitchell. Based on this typology, this paper discusses the notion of meta-games and suggest a broad conception of such games that includes not only the game object, but also the player and the discourse in which it is interpreted....
DEFF Research Database (Denmark)
Sicart (Vila), Miguel Angel
2008-01-01
This article defins game mechanics in relation to rules and challenges. Game mechanics are methods invoked by agents for interacting with the game world. I apply this definition to a comparative analysis of the games Rez, Every Extend Extra and Shadow of the Colossus that will show the relevance...... of a formal definition of game mechanics. Udgivelsesdato: Dec 2008...
Väänänen, J.
2011-01-01
This gentle introduction to logic and model theory is based on a systematic use of three important games in logic: the semantic game; the Ehrenfeucht–Fraïssé game; and the model existence game. The third game has not been isolated in the literature before but it underlies the concepts of Beth
Miller, Lee Dee; Shell, Duane; Khandaker, Nobel; Soh, Leen-Kiat
2011-01-01
Computer games have long been used for teaching. Current reviews lack categorization and analysis using learning models which would help instructors assess the usefulness of computer games. We divide the use of games into two classes: game playing and game development. We discuss the Input-Process-Outcome (IPO) model for the learning process when…
Dovurkaev, Karu; Churyumov, Anton
2015-01-01
Alena talks about traditional games, including khorma khotn, tsagan monda, mongn bus, nyarn shinj, and games played with ankle bones. Tsagan monda was a game played at night by several people. The rule is simple: A ball made of white cow skin is pushed into a hole. Games with ankle bones were reserved only for boys. Girls did not play such games. Arcadia
From genes to games: cooperation and cyclic dominance in meiotic drive.
Traulsen, Arne; Reed, Floyd A
2012-04-21
Evolutionary change can be described on a genotypic level or a phenotypic level. Evolutionary game theory is typically thought of as a phenotypic approach, although it is frequently argued that it can also be used to describe population genetic evolution. Interpreting the interaction between alleles in a diploid genome as a two player game leads to interesting alternative perspectives on genetic evolution. Here we focus on the case of meiotic drive and illustrate how meiotic drive can be directly and precisely interpreted as a social dilemma, such as the prisoners dilemma or the snowdrift game, in which the drive allele takes more than its fair share. Resistance to meiotic drive can lead to the well understood cyclic dominance found in the rock-paper-scissors game. This perspective is well established for the replicator dynamics, but there is still considerable ground for mutual inspiration between the two fields. For example, evolutionary game theorists can benefit from considering the stochastic evolutionary dynamics arising from finite population size. Population geneticists can benefit from game theoretic tools and perspectives on genetic evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.
What eye movements can tell about theory of mind in a strategic game.
Meijering, Ben; van Rijn, Hedderik; Taatgen, Niels A; Verbrugge, Rineke
2012-01-01
This study investigates strategies in reasoning about mental states of others, a process that requires theory of mind. It is a first step in studying the cognitive basis of such reasoning, as strategies affect tradeoffs between cognitive resources. Participants were presented with a two-player game that required reasoning about the mental states of the opponent. Game theory literature discerns two candidate strategies that participants could use in this game: either forward reasoning or backward reasoning. Forward reasoning proceeds from the first decision point to the last, whereas backward reasoning proceeds in the opposite direction. Backward reasoning is the only optimal strategy, because the optimal outcome is known at each decision point. Nevertheless, we argue that participants prefer forward reasoning because it is similar to causal reasoning. Causal reasoning, in turn, is prevalent in human reasoning. Eye movements were measured to discern between forward and backward progressions of fixations. The observed fixation sequences corresponded best with forward reasoning. Early in games, the probability of observing a forward progression of fixations is higher than the probability of observing a backward progression. Later in games, the probabilities of forward and backward progressions are similar, which seems to imply that participants were either applying backward reasoning or jumping back to previous decision points while applying forward reasoning. Thus, the game-theoretical favorite strategy, backward reasoning, does seem to exist in human reasoning. However, participants preferred the more familiar, practiced, and prevalent strategy: forward reasoning.
Competitive Centipede Games: Zero-End Payoffs and Payoff Inequality Deter Reciprocal Cooperation
Directory of Open Access Journals (Sweden)
Eva M. Krockow
2015-08-01
Full Text Available Reciprocal cooperation can be studied in the Centipede game, in which two players alternate in choosing between a cooperative GO move and a non-cooperative STOP move. GO sustains the interaction and increases the player pair’s total payoff while incurring a small personal cost; STOP terminates the interaction with a favorable payoff to the defector. We investigated cooperation in four Centipede games differing in their payoffs at the game’s end (positive versus zero and payoff difference between players (moderate versus high difference. The games shared the same game-theoretic solution, therefore they should have elicited identical decision patterns, according to orthodox game theory. Nevertheless, both zero-end payoffs and high payoff inequality were found to reduce cooperation significantly. Contrary to previous predictions, combining these two factors in one game resulted in a slight weakening of their independent deterrent effects. These findings show that small changes in the payoff function have large and significant effects on cooperation, and that the effects do not combine synergistically.
Quantum Bertrand duopoly with differentiated products
International Nuclear Information System (INIS)
Lo, C.F.; Kiang, D.
2004-01-01
We apply Li et al.'s 'minimal' quantization rules [Phys. Lett. A 306 (2002) 73] to investigate the quantum version of the Bertrand duopoly with differentiated products. In particular, we have examined how the quantum entanglement affects the outcome of the classical game. It is found that while negative entanglement diminishes the profit of each firm below the classical limit, positive entanglement enhances the profit monotonically, reaching a maximum in the limit of maximal entanglement. As a consequence, the frustrating dilemma-like situation is completely resolved in the quantum version of the game
Video Encryption and Decryption on Quantum Computers
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Quantum Prisoners' Dilemma in Fluctuating Massless Scalar Field
Huang, Zhiming
2017-12-01
Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners' Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game's properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.
Authoring of digital games via card games
DEFF Research Database (Denmark)
Valente, Andrea; Marchetti, Emanuela
2014-01-01
Literature and previous studies show that creative play is easy to emerge when children interact with tangible, low-tech toys and games than with digital games. This paradoxical situation is linked to the long-standing problem of end-users (or players) authoring of digital contents and systems. We...... are to show how card games can represent digital games, how playful play can emerge in card games and digital games, and to begin defining a new way to express game behavior without the use of universal programming languages....... propose a new scenario in which trading card games help making sense and re-design computer games, to support players express themselves aesthetically and in a highly creative way. Our aim is to look for a middle ground between players becoming programmers and simply editing levels. The main contributions...
DEFF Research Database (Denmark)
Olsen, Jesper Lind
2003-01-01
Flow Game er et dialogspil, der kan bruges som ledelsesværktøj, ledertræning, samtaletræning, coachingtræning og ideudvikling m.m. Gennem dilemmakort provokeres en dialog og teori-U inspireret afklaring- og udviklingsproces, hvor der enten arbejdes på en gruppes eller et individs vision/innovatio......Flow Game er et dialogspil, der kan bruges som ledelsesværktøj, ledertræning, samtaletræning, coachingtræning og ideudvikling m.m. Gennem dilemmakort provokeres en dialog og teori-U inspireret afklaring- og udviklingsproces, hvor der enten arbejdes på en gruppes eller et individs vision...
Haggard, Gary; Schonberger, Ann Koch
1977-01-01
The paper-and-pencil game "Tri" is described. The authors argue that students gain logical skills by playing the game, and that the game lends itself to the introduction of diverse mathematical ideas. (SD)
... Teachers' Questionnaire MRI Play MRI the Magnetic Miracle Game About the game In the MRI imaging technique, strong magnets and ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Play the Electrocardiogram Game
... and Work Teachers' Questionnaire Electrocardiogram Play the ECG Game About the game ECG is used for diagnosing heart conditions by ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Buffered Simulation Games for Büchi Automata
Directory of Open Access Journals (Sweden)
Milka Hutagalung
2014-05-01
Full Text Available Simulation relations are an important tool in automata theory because they provide efficiently computable approximations to language inclusion. In recent years, extensions of ordinary simulations have been studied, for instance multi-pebble and multi-letter simulations which yield better approximations and are still polynomial-time computable. In this paper we study the limitations of approximating language inclusion in this way: we introduce a natural extension of multi-letter simulations called buffered simulations. They are based on a simulation game in which the two players share a FIFO buffer of unbounded size. We consider two variants of these buffered games called continuous and look-ahead simulation which differ in how elements can be removed from the FIFO buffer. We show that look-ahead simulation, the simpler one, is already PSPACE-hard, i.e. computationally as hard as language inclusion itself. Continuous simulation is even EXPTIME-hard. We also provide matching upper bounds for solving these games with infinite state spaces.
Philipp Hoffmann
2015-01-01
Negotiations, a model of concurrency with multi party negotiation as primitive, have been recently introduced by J. Desel and J. Esparza. We initiate the study of games for this model. We study coalition problems: can a given coalition of agents force that a negotiation terminates (resp. block the negotiation so that it goes on forever)?; can the coalition force a given outcome of the negotiation? We show that for arbitrary negotiations the problems are EXPTIME-complete. Then we show that for...
DEFF Research Database (Denmark)
Gammeltoft-Hansen, Thomas
This book offers an in-depth examination of the strategic use of State sovereignty in contemporary European and international affairs and the consequences of this for authority relations in Europe and beyond. It suggests a new approach to the study of State sovereignty, proposing to understand th...... the use of sovereignty as games where States are becoming more instrumental in their claims to sovereignty and skilled in adapting it to the challenges that they face....
International Nuclear Information System (INIS)
Brennan, N.S.
1982-01-01
A board game comprises a board, a number of counters and two dice. The board is marked to provide a central area, representing the nucleus of an atom, and six or more annular rings extending concentrically around the central area, the rings being divided into 2,8,18,32,48 and 72 squares. Each ring represents an electron shell, and some of the squares are numbered, the number representing the atomic number of different elements. (author)
DEFF Research Database (Denmark)
Ejsing-Duun, Stine
2011-01-01
This chapter analyses the relationship between players, the game world, and the ordinary world in alternative reality games (ARGs) and location-based games (LBGs). These games use technology to create a game world in the everyday scene. The topic of this chapter is the concept of the 'magic circle......', which defines the relationship between play and the ordinary world, and how this concept relates to a new kind of game....
Computer Games and Instruction
Tobias, Sigmund, Ed.; Fletcher, J. D., Ed.
2011-01-01
There is intense interest in computer games. A total of 65 percent of all American households play computer games, and sales of such games increased 22.9 percent last year. The average amount of game playing time was found to be 13.2 hours per week. The popularity and market success of games is evident from both the increased earnings from games,…
2016-03-01
Robot, in order to explore automated strategies ). The Game Client receives level data from the Game Server and implements the game as the player sees...formal verification domain. If formal verification problems could be turned into entertaining video games , those games could be crowd- sourced to a large...style gates that would destroy the Circuitbots. As the game evolved we found no good strategies for constraint ordering that worked significantly
Mechanizing Exploratory Game Design
Smith, Adam Marshall
2012-01-01
Game design is an art form that deals with inherently interactive artifacts. Game designers craft games (assembled from rule systems and content), but they really seek to manipulate play: the interaction between games and players. When developing new games that are similar to past games, a designer may rely on previous experience with related designs and relatively easy access to players familiar with conventional design choices. When exploratorily venturing into uncharted territory, uncoveri...
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
The Neural Basis of Economic Decision-Making in the Ultimatum Game
Sanfey, Alan G.; Rilling, James K.; Aronson, Jessica A.; Nystrom, Leigh E.; Cohen, Jonathan D.
2003-06-01
The nascent field of neuroeconomics seeks to ground economic decision- making in the biological substrate of the brain. We used functional magnetic resonance imaging of Ultimatum Game players to investigate neural substrates of cognitive and emotional processes involved in economic decision-making. In this game, two players split a sum of money; one player proposes a division and the other can accept or reject this. We scanned players as they responded to fair and unfair proposals. Unfair offers elicited activity in brain areas related to both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex). Further, significantly heightened activity in anterior insula for rejected unfair offers suggests an important role for emotions in decision-making.
Directory of Open Access Journals (Sweden)
A. Andrade
2015-11-01
Full Text Available Due to hardware limitations at the origin of the video game industry, each new game was generally coded from the ground up. Years later, from the evolution of hardware and the need for quick game development cycles, spawned the concept of game engine. A game engine is a reusable software layer allowing the separation of common game concepts from the game assets (levels, graphics, etc.. This paper surveys fourteen different game engines relevant today, ranging from the industry-level to the newcomer-friendlier ones.
Games, theory and applications
Thomas, L C
2011-01-01
Anyone with a knowledge of basic mathematics will find this an accessible and informative introduction to game theory. It opens with the theory of two-person zero-sum games, two-person non-zero sum games, and n-person games, at a level between nonmathematical introductory books and technical mathematical game theory books. Succeeding sections focus on a variety of applications - including introductory explanations of gaming and meta games - that offer nonspecialists information about new areas of game theory at a comprehensible level. Numerous exercises appear with full solutions, in addition
Beasley, John D
2006-01-01
""Mind-exercising and thought-provoking.""-New ScientistIf playing games is natural for humans, analyzing games is equally natural for mathematicians. Even the simplest of games involves the fundamentals of mathematics, such as figuring out the best move or the odds of a certain chance event. This entertaining and wide-ranging guide demonstrates how simple mathematical analysis can throw unexpected light on games of every type-games of chance, games of skill, games of chance and skill, and automatic games.Just how random is a card shuffle or a throw of the dice? Is bluffing a valid poker strat
Linear game non-contextuality and Bell inequalities—a graph-theoretic approach
International Nuclear Information System (INIS)
Rosicka, M; Ramanathan, R; Gnaciński, P; Horodecki, M; Horodecki, K; Horodecki, P; Severini, S
2016-01-01
We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions. (paper)
Linear game non-contextuality and Bell inequalities—a graph-theoretic approach
Rosicka, M.; Ramanathan, R.; Gnaciński, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Severini, S.
2016-04-01
We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions.
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Quantum Strategies and Local Operations
Gutoski, Gus
2010-02-01
This thesis is divided into two parts. In Part I we introduce a new formalism for quantum strategies, which specify the actions of one party in any multi-party interaction involving the exchange of multiple quantum messages among the parties. This formalism associates with each strategy a single positive semidefinite operator acting only upon the tensor product of the input and output message spaces for the strategy. We establish three fundamental properties of this new representation for quantum strategies and we list several applications, including a quantum version of von Neumann's celebrated 1928 Min-Max Theorem for zero-sum games and an efficient algorithm for computing the value of such a game. In Part II we establish several properties of a class of quantum operations that can be implemented locally with shared quantum entanglement or classical randomness. In particular, we establish the existence of a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. The existence of this ball is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. We also provide characterizations of local operations in terms of linear functionals that are positive and "completely" positive on a certain cone of Hermitian operators, under a natural notion of complete positivity appropriate to that cone. We end the thesis with a discussion of the properties of no-signaling quantum operations.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
DEFF Research Database (Denmark)
Kristiansen, Erik
2011-01-01
Playing games of any kind, from tennis to board games, it is easy to notice that games are configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a visual border in a game like hide....... This makes sense, but also demands that play and non-play can be easily separated. I will examine how games make use of space, and show that the magic circle not only is a viable, though criticized, concept but should be understood as a spatial concept. In order to do this several games are examined, leading...... to introduce a spatial model of the game performance comprising a primary and secondary game space. I will show how new game genres can profit from using this model when designing new games....
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
On the effect of memory in a quantum prisoner's dilemma cellular automaton
Alonso-Sanz, Ramón; Revuelta, Fabio
2018-03-01
The disrupting effect of quantum memory on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game with variable entangling is studied. The game is played within a cellular automata framework, i.e., with local and synchronous interactions. The main findings of this work refer to the shrinking effect of memory on the disruption induced by noise.
The standard set game of a cooperative game
Bumb, A.F.; Hoede, C.
2003-01-01
We show that for every cooperative game a corresponding set game can be defined, called the standard set game. Values for set games can be applied to this standard game and determine allocations for the cooperative game. On the other hand, notions for cooperative games, like the Shapley value, the
The Prisoner's Dilemma: Introducing Game Theory
Shaw, Doug J.; Miller, Catherine M.
2015-01-01
Since 1950, the Prisoner's Dilemma has intrigued economists and amused fans of mathematics. It presents a situation in which two players acting to their own advantage do not do as well together as two players whose actions oppose their individual interests--hence, the dilemma. Variations of the Prisoner's Dilemma have appeared in diverse…
DEFF Research Database (Denmark)
Kiniry, Joseph Roland; Zimmerman, Daniel
2011-01-01
---falls every year and any mention of mathematics in the classroom seems to frighten students away. So the question is: How do we attract new students in computing to the area of dependable software systems? Over the past several years at three universities we have experimented with the use of computer games......In recent years, several Grand Challenges (GCs) of computing have been identified and expounded upon by various professional organizations in the U.S. and England. These GCs are typically very difficult problems that will take many hundreds, or perhaps thousands, of man-years to solve. Researchers...
Cooperative Behavior in the Ultimatum Game and Prisoner’s Dilemma Depends on Players’ Contributions
Directory of Open Access Journals (Sweden)
Amy R. Bland
2017-06-01
Full Text Available Economic games such as the Ultimatum Game (UG and Prisoner’s Dilemma (PD are widely used paradigms for studying fairness and cooperation. Monetary versions of these games involve two players splitting an arbitrary sum of money. In real life, however, people’s propensity to engage in cooperative behavior depends on their effort and contribution; factors that are well known to affect perceptions of fairness. We therefore sought to explore the impact of relative monetary contributions by players in the UG and PD. Adapted computerized UG and PD games, in which relative contributions from each player were manipulated, were administered to 200 participants aged 18–50 years old (50% female. We found that players’ contribution had large effects on cooperative behavior. Specifically, cooperation was greater amongst participants when their opponent had contributed more to joint earnings. This was manifested as higher acceptance rates and higher offers in the UG; and fewer defects in the PD compared to when the participant contributed more. Interestingly, equal contributions elicited the greatest sensitivity to fairness in the UG, and least frequent defection in the PD. Acceptance rates correlated positively with anxiety and sex differences were found in defection behavior. This study highlights the feasibility of computerized games to assess cooperative behavior and the importance of considering cooperation within the context of effortful contribution.
Mobile Game for Learning Bacteriology
Sugimura, Ryo; Kawazu, Sotaro; Tamari, Hiroki; Watanabe, Kodai; Nishimura, Yohei; Oguma, Toshiki; Watanabe, Katsushiro; Kaneko, Kosuke; Okada, Yoshihiro; Yoshida, Motofumi; Takano, Shigeru; Inoue, Hitoshi
2014-01-01
This paper treats serious games. Recently, one of the game genres called serious game has become popular, which has other purposes besides enjoyments like education, training and so on. Especially, learning games of the serious games seem very attractive for the age of video games so that the authors developed a mobile game for learning…
DEFF Research Database (Denmark)
Hanghøj, Thorkild
2013-01-01
This chapter outlines theoretical and empirical perspectives on how Game-Based Teaching can be integrated within the context of formal schooling. Initially, this is done by describing game scenarios as models for possible actions that need to be translated into curricular knowledge practices...... approaches to game-based teaching, which may or may not correspond with the pedagogical models of particular games....
Gee, James Paul
2013-01-01
Today there is a great deal of interest in and a lot of hype about using video games in schools. Video games are a new silver bullet. Games can create good learning because they teach in powerful ways. The theory behind game-based learning is not really new, but a traditional and well-tested approach to deep and effective learning, often…
Hiroshi Uno
2007-01-01
This paper proposes a new class of potential games, the nested potential games, which generalize the potential games defined in Monderer and Shapley (1996), as well as the pseudo-potential games defined in Dubey et al. (2006). We show that each maximizer of a nested potential is a Nash equilibrium.
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.
2013-01-01
For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...
Learning with Calculator Games
Frahm, Bruce
2013-01-01
Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…
... and Work Teachers' Questionnaire Malaria Play the Mosquito Game Play the Parasite Game About the games Malaria is one of the world's most common ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Nurminen, Emilia
2013-01-01
In my thesis, Marketing in Game Design, I wanted to inspect how developing a game from a purely commercial perspective affects on the game design. The purpose of this thesis is to define the valid aspects of product marketing for games, how they are perceived in game industry and how those aspects affect to the game design. The question I am asking is how to make marketing a fluent part of indie game development process. Through my thesis project, Puzzleplatform, I study how the marketing asp...
Directory of Open Access Journals (Sweden)
Anton Sukhov
2015-10-01
Full Text Available This article devoted to the search of relevant sources (primary and secondary and characteristics of computer games that allow to include them in the field of art (such as the creation of artistic games, computer graphics, active interaction with other forms of art, signs of spiritual aesthetic act, own temporality of computer games, “aesthetic illusion”, interactivity. In general, modern computer games can be attributed to commercial art and popular culture (blockbuster games and to elite forms of contemporary media art (author’s games, visionary games.
The Uses of Teaching Games in Game Theory Classes and Some Experimental Games.
Shubik, Martin
2002-01-01
Discusses the use of lightly controlled games, primarily in classes in game theory. Considers the value of such games from the viewpoint of both teaching and experimentation and discusses context; control; pros and cons of games in teaching; experimental games; and games in class, including cooperative game theory. (Author/LRW)
Deterministic Graphical Games Revisited
DEFF Research Database (Denmark)
Andersson, Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2008-01-01
We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...... games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem....
Games on Games. Game Design as Critical Reflexive Practice
Giovanni Caruso; Riccardo Fassone; Gabriele Ferri; Stefano Gualeni; Mauro Salvador
2016-01-01
Can video game design be compared to more formalized practices of scientific research or speculation within game studies? And, by virtue of an intellectual leap that in itself calls for discussion, can video games be considered as an efficient vehicle for the presentation of certain kinds of knowledge, in the same way in which papers, conference presentations, and books are? What Ratto defines as critical making (2011), the practice of producing artifacts of different sorts in order to supple...
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Directory of Open Access Journals (Sweden)
Philipp Hoffmann
2015-09-01
Full Text Available Negotiations, a model of concurrency with multi party negotiation as primitive, have been recently introduced by J. Desel and J. Esparza. We initiate the study of games for this model. We study coalition problems: can a given coalition of agents force that a negotiation terminates (resp. block the negotiation so that it goes on forever?; can the coalition force a given outcome of the negotiation? We show that for arbitrary negotiations the problems are EXPTIME-complete. Then we show that for sound and deterministic or even weakly deterministic negotiations the problems can be solved in PTIME. Notice that the input of the problems is a negotiation, which can be exponentially more compact than its state space.
DEFF Research Database (Denmark)
Helms, Niels Henrik
2012-01-01
at forsøge at beskrive nogle af de mekanismer, som gør, at nogle af disse kreative industrier bliver netop kreative og innovative, at de ikke alene kan klare sig, men også ændre og udvikle både indhold, form og organisering – at de bliver det der på managementsprog hedder game changers.......Den kreative industri er en statistisk kategori, der omfatter virksomheder, der beskæftiger sig med produktion af krea- tive produkter. Det kan være film, computerspil, grafisk de- sign etc. Men det er ikke nødvendigvis virksomheder, som er særligt kreative. Det, der er anliggendet her, er...
Vitting Andersen, J.; Sornette, D.
2003-01-01
We propose a payoff function extending Minority Games (MG) that captures the competition between agents to make money. In contrast with previous MG, the best strategies are not always targeting the minority but are shifting opportunistically between the minority and the majority. The emergent properties of the price dynamics and of the wealth of agents are strikingly different from those found in MG. As the memory of agents is increased, we find a phase transition between a self-sustained speculative phase in which a ``stubborn majority'' of agents effectively collaborate to arbitrage a market-maker for their mutual benefit and a phase where the market-maker always arbitrages the agents. A subset of agents exhibit a sustained non-equilibrium risk-return profile.
Extortion under uncertainty: Zero-determinant strategies in noisy games
Hao, Dong; Rong, Zhihai; Zhou, Tao
2015-05-01
Repeated game theory has been one of the most prevailing tools for understanding long-running relationships, which are the foundation in building human society. Recent works have revealed a new set of "zero-determinant" (ZD) strategies, which is an important advance in repeated games. A ZD strategy player can exert unilateral control on two players' payoffs. In particular, he can deterministically set the opponent's payoff or enforce an unfair linear relationship between the players' payoffs, thereby always seizing an advantageous share of payoffs. One of the limitations of the original ZD strategy, however, is that it does not capture the notion of robustness when the game is subjected to stochastic errors. In this paper, we propose a general model of ZD strategies for noisy repeated games and find that ZD strategies have high robustness against errors. We further derive the pinning strategy under noise, by which the ZD strategy player coercively sets the opponent's expected payoff to his desired level, although his payoff control ability declines with the increase of noise strength. Due to the uncertainty caused by noise, the ZD strategy player cannot ensure his payoff to be permanently higher than the opponent's, which implies dominant extortions do not exist even under low noise. While we show that the ZD strategy player can still establish a novel kind of extortions, named contingent extortions, where any increase of his own payoff always exceeds that of the opponent's by a fixed percentage, and the conditions under which the contingent extortions can be realized are more stringent as the noise becomes stronger.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Gamifying quantum research: harnessing human intuition
Sherson, Jacob
In the emerging field of citizen science ordinary citizens have already contributed to research in as diverse fields as astronomy, protein and RNA folding, and neuron mapping by playing online games. In the www.scienceathome.org project, we have extended this democratized research to the realm of quantum physics by gamifying a class of challenges related to optimization of gate operations in a quantum computer. The games have been played by more than 150,000 players and perhaps surprisingly we observe that a large fraction of the players outperform state-of-the-art optimization algorithms. With a palette of additional games within cognitive science, behavioral economics, and corporate innovation we investigate the general features of individual and collaborative problem solving to shed additional light on the process of human intuition and innovation and potentially develop novel models of artificial intelligence. We have also developed and tested in classrooms educational games within classical and quantum physics and mathematics at high-school and university level. The games provide individualized learning and enhance motivation for the core curriculum by actively creating links to modern research challenges, see eg. Finally, we have recently launched our new democratic lab: an easily accessible remote interface for our ultra-cold atoms experiment allowing amateur scientists, students, and research institutions world-wide to perform state-of-the-art quantum experimentation. In first tests, nearly a thousand players helped optimize the production of our BEC and discovered novel efficient strategies.
Game theory approach in decisional process of energy management for industrial sector
International Nuclear Information System (INIS)
Aplak, H. Soner; Sogut, M. Ziya
2013-01-01
Highlights: • Decision-making process of the industry and the environment are evaluated in a game theoretic approach. • Industry and environment are considered as two players to find optimal strategies in governing energy policy. • Industry plays its renewable energy usage strategy. • Environment prefers to execute its protection reflex strategy for survivability and sustainability. • The industry’s insistence on the use of fossil fuels will forward strategy for the environment of uncertainty. - Abstract: Intensive energy consuming industrial sectors are the most important actors on global climate change which natural habitat and the environment faced. In this study, by the scope of energy management, decision-making process of the industry and the environment are evaluated in a game theoretic approach. Industry and environment are considered as two players which have conflicting objectives and try to find optimal strategies in governing energy policy. According to concept of study, while industry tries to maintain the sustainability of production with the strategies of fossil fuel, renewable energies, energy recovery and nuclear energy usage, environment exhibits reactive approach to ensure its sustainability. In the flow of study, players’ strategies are analyzed by using Multi-Criteria Decision Making (MCDM) methods and by calculating performance efficiency values of strategies, game payoff matrix is obtained. Finally, optimal strategies are found for both industry and environment in orienting their energy policy and results are evaluated. According to results of the payoff matrix, the equilibrium point is the cell (2, 1) with the values of 0.5324 and 0.5619. This implies that the environment develops protective reflexes for sustainable nature in case of using renewable energy in industry
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
A Game-Theoretic Model of Marketing Skin Whiteners.
Mendoza, Roger Lee
2015-01-01
Empirical studies consistently find that people in less developed countries tend to regard light or "white" skin, particularly among women, as more desirable or superior. This is a study about the marketing of skin whiteners in these countries, where over 80 percent of users are typically women. It proceeds from the following premises: a) Purely market or policy-oriented approaches toward the risks and harms of skin whitening are cost-inefficient; b) Psychosocial and informational factors breed uninformed and risky consumer choices that favor toxic skin whiteners; and c) Proliferation of toxic whiteners in a competitive buyer's market raises critical supplier accountability issues. Is intentional tort a rational outcome of uncooperative game equilibria? Can voluntary cooperation nonetheless evolve between buyers and sellers of skin whiteners? These twin questions are key to addressing the central paradox in this study: A robust and expanding buyer's market, where cheap whitening products abound at a high risk to personal and societal health and safety. Game-theoretic modeling of two-player and n-player strategic interactions is proposed in this study for both its explanatory and predictive value. Therein also lie its practical contributions to the economic literature on skin whitening.
Games on Games. Game Design as Critical Reflexive Practice
Directory of Open Access Journals (Sweden)
Giovanni Caruso
2016-11-01
Full Text Available Can video game design be compared to more formalized practices of scientific research or speculation within game studies? And, by virtue of an intellectual leap that in itself calls for discussion, can video games be considered as an efficient vehicle for the presentation of certain kinds of knowledge, in the same way in which papers, conference presentations, and books are? What Ratto defines as critical making (2011, the practice of producing artifacts of different sorts in order to supplement and extend critical reflection, may apply to video games as well. Forms of research through design (Zimmerman, Forlizzi and Evenson, 2007, of carpentry (Bogost, 2012, and speculative design (Dunne and Raby, 2013 have been analyzed, discussed, and maybe most importantly, put into practice in different fields of cultural and scientific production. To address this gap and to map the current (and future state of self-reflexive games, we asked both researchers and designers to imagine an application of these concepts to video games. Paraphrasing Zimmerman, Forlizzi and Evenson, what does research through game design might mean? What epistemological insights can we derive from the act of designing, making and playing video games?
Silva, Vladimir
2010-01-01
Do you remember landmark games like Wolfenstein 3D, Doom, and Asteroids? Well, here's an exciting opportunity to build and/or port these games to one of the hottest mobile and netbooks platforms today: Google's Android. Pro Android Games teaches you how to build cool games like Space Blaster and the classic Asteroids from scratch on the latest Android platform. This book also shows you how to port other classic freeware/shareware games like Doom and Wolfenstein 3D from C using the Java Native Interface (JNI) for Android. This book is all about a unique perspective in Android game development:
DEFF Research Database (Denmark)
Jessen, Jari Due; Jessen, Carsten
2014-01-01
When interacting with computer games, users are forced to follow the rules of the game in return of the excitement, joy, fun, or other pursued experiences. In this paper, we investigate how games achieve these experiences in the perspective of Actor Network Theory (ANT). Based on a qualitative...... study we conclude that both board games and computer games are actors that produce experiences by exercising power over the user’s abilities, for example their cognitive functions. Games are designed to take advantage of the characteristics of the human players....
Introduction: Changing the Game
DEFF Research Database (Denmark)
Drachen, Anders; Seif El-Nasr, M.; Canossa, Alessandro
2013-01-01
measures in user-oriented game research, has caused a paradigm shift. Historically, game development has not been data-driven, but this is changing as the benefits of adopting and adapting analytics to inform decision making across all levels of the industry are becoming generally known and accepted.......Game Analytics has gained a tremendous amount of attention in game development and game research in recent years. The widespread adoption of data-driven business intelligence practices at operational, tactical and strategic levels in the game industry, combined with the integration of quantitative...
Directory of Open Access Journals (Sweden)
Michael Gathwright
2010-01-01
Full Text Available The purpose of this project was to determine how long the social network game Scratch-Offs, created by game development company Spice Rack Media, will remain financially viable. The game Scratch-Offs is a freeware game (users pay nothing for the actual software and is funded through micro transactions (users must pay small amounts of money to play actual games. This implies a relationship between total games played and revenue earned. Using data provided by Spice Rack, we were able to develop an exponential equation that accurately depicts usage trends over time. This equation was used to determine the date Scratch-Offs will no longer be profitable.
DEFF Research Database (Denmark)
Iversen, Sara Mosberg
Digital games are still to a great degree considered a medium mainly for young boys. However, available statistics on Western media use show that this is far from the case. Increasingly, people of all ages and genders play digital games, also older adults in their early 60s and beyond. The aim...... of the book is to examine, analyse and discuss: 1) What older adults do with digital games and what meanings the use of digital games take on in the everyday life of older adults; 2) How older adults are perceived by society in relation to digital games; 3) How play and games can be used both...
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Soo-Hyun Paik; Hyun Cho; Ji-Won Chun; Jo-Eun Jeong; Dai-Jin Kim
2017-01-01
Gaming behaviors have been significantly influenced by smartphones. This study was designed to explore gaming behaviors and clinical characteristics across different gaming device usage patterns and the role of the patterns on Internet gaming disorder (IGD). Responders of an online survey regarding smartphone and online game usage were classified by different gaming device usage patterns: (1) individuals who played only computer games; (2) individuals who played computer games more than smart...
A Novel Multiperson Game Approach for Linguistic Multicriteria Decision Making Problems
Directory of Open Access Journals (Sweden)
Ching-San Lin
2014-01-01
Full Text Available Game theory is considered as an efficient framework in dealing with decision making problems for two players in the competitive environment. In general, the evaluation values of payoffs matrix are expressed by crisp values in a game model. However, many uncertainties and vagueness should be considered due to the qualitative criteria and the subjective judgment of decision makers in the decision making process. The aim of this study is to develop an effective methodology for solving the payoffs matrix with linguistic variables by multiple decision makers in a game model. Based on the linguistic variables, the decision makers can easily express their opinions with respect to criteria for each alternative. By using the linear programming method, we can find the optimal solution of a game matrix in accordance with the combination of strategies of each player effectively. In addition, the expected performance value (EPV index is defined in this paper to compare the competition ability of each player based on the optimal probability of each strategy combination. And then, numerical example will be implemented to illustrate the computation process of the proposed model. The conclusion and future research are discussed at the end of this paper.
Promotion of cooperation induced by discriminators in the spatial multi-player donor-recipient game
Cui, Guang-Hai; Wang, Zhen; Ren, Jian-Kang; Lu, Kun; Li, Ming-Chu
2016-11-01
Although the two-player donor-recipient game has been used extensively in studying cooperation in social dilemmas, the scenario in which a donor can simultaneously donate resources to multiple recipients is also common in human societies, economic systems, and social networks. This paper formulates a model of the multi-player donor-recipient game considering a multi-recipient scenario. The promotion of cooperation is also studied by introducing a discriminative cooperation strategy into the game, which donates resources to recipients in proportion to their previous donations with a cost for the collection of information. The evolutionary dynamics of individual strategies are explored in homogeneous and heterogeneous scenarios by leveraging spatial evolutionary game theory. The results show that in a homogeneous scenario, defectors can dominate the network at the equilibrium state only when the cost-to-benefit ratio (R) of donated resources is large. In a heterogeneous scenario, three strategies can coexist all the time within the range of R that was studied, and the promotion of cooperation is more effective when the values of R are smaller. Results from a single node evolution and the formation of local patterns of interaction are provided, and it is analytically shown that discriminators can maintain fairness in resource donation and guarantee long-term cooperation when R is not too large.
The effect of $1, $5 and $10 stakes in an online dictator game.
Raihani, Nichola J; Mace, Ruth; Lamba, Shakti
2013-01-01
The decision rules underpinning human cooperative behaviour are often investigated under laboratory conditions using monetary incentives. A major concern with this approach is that stake size may bias subjects' decisions. This concern is particularly acute in online studies, where stakes are often far lower than those used in laboratory or field settings. We address this concern by conducting a Dictator Game using Amazon Mechanical Turk. In this two-player game, one player (the dictator) determines the division of an endowment between himself and the other player. We recruited subjects from India and the USA to play an online Dictator Game. Dictators received endowments of $1, $5 or $10. We collected two batches of data over two consecutive years. We found that players from India were less generous when playing with a $10 stake. By contrast, the effect of stake size among players from the USA was very small. This study indicates that the effects of stake size on decision making in economic games may vary across populations.
The effect of $1, $5 and $10 stakes in an online dictator game.
Directory of Open Access Journals (Sweden)
Nichola J Raihani
Full Text Available The decision rules underpinning human cooperative behaviour are often investigated under laboratory conditions using monetary incentives. A major concern with this approach is that stake size may bias subjects' decisions. This concern is particularly acute in online studies, where stakes are often far lower than those used in laboratory or field settings. We address this concern by conducting a Dictator Game using Amazon Mechanical Turk. In this two-player game, one player (the dictator determines the division of an endowment between himself and the other player. We recruited subjects from India and the USA to play an online Dictator Game. Dictators received endowments of $1, $5 or $10. We collected two batches of data over two consecutive years. We found that players from India were less generous when playing with a $10 stake. By contrast, the effect of stake size among players from the USA was very small. This study indicates that the effects of stake size on decision making in economic games may vary across populations.
MODELLING THE INTERACTION IN GAME SPORTS - RELATIVE PHASE AND MOVING CORRELATIONS
Directory of Open Access Journals (Sweden)
Martin Lames
2006-12-01
Full Text Available Model building in game sports should maintain the constitutive feature of this group of sports, the dynamic interaction process between the two parties. For single net/wall games relative phase is suggested to describe the positional interaction between the two players. 30 baseline rallies in tennis were examined and relative phase was calculated by Hilbert transform from the two time-series of lateral displacement and trajectory in the court respectively. Results showed that relative phase indicates some aspects of the tactical interaction in tennis. At a more abstract level the interaction between two teams in handball was studied by examining the relationship of the two scoring processes. Each process can be conceived as a random walk. Moving averages of the scoring probabilities indicate something like a momentary strength. A moving correlation (length = 20 ball possessions describes the momentary relationship between the teams' strength. Evidence was found that this correlation is heavily time-dependent, in almost every single game among the 40 examined ones we found phases with a significant positive as well as significant negative relationship. This underlines the importance of a dynamic view on the interaction in these games.
Directory of Open Access Journals (Sweden)
Niklas Schrape
2014-09-01
Full Text Available James Lovelock’s vision of Earth as a living cybernetic system is popular again. The surprising new preacher of Gaia is Bruno Latour. He uses the concept to refer to a holistic understanding of Earth, in which mankind is situated as integral part. Gaia becomes the catalyst and fundament for his philosophical attempt to design a new believe-system in the time of ecological crisis. But the concept of Gaia is characterised by a tension between the idea of a powerful but indifferent nature and a grandiose vision of total control over it. This tension reveals itself to be deeply rooted in cybernetic thought. It is not only apparent in Lovelock’s own writing, but also in simulation programs based on the Gaia hypothesis such as the Daisyworld model and the computer game “SimEarth: The Living Planet” (1991. The article will distinguish Lovelock’s from Latour’s concept of Gaia and relate them to first- and second order cybernetics as well as to two different approaches to computer simulation: system dynamics and cellular automata.
... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...
Polymorphic Evolutionary Games.
Fishman, Michael A
2016-06-07
In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haney, Stephen
2015-01-01
If you wish to create and publish fun iOS games using Swift, then this book is for you. You should be familiar with basic programming concepts. However, no prior game development or Apple ecosystem experience is required.
Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...
DEFF Research Database (Denmark)
Bjørner, Thomas; Hansen, Charina Benedikte Søgaard
2010-01-01
When designing games with learning purposes used in a classroom, there often occur problems about the lack of learning content or the lack of game contents. Other disadvantages of existing educational games are the difficulty to provide a continual balance between the challenge and the pupils......’ skill to control and solve the given task. In this paper we suggest three different perspectives that need to be communicated across in order to design a useful educational game: teachers, pupils and game designers. It is our intention with this paper to suggest some design principles for educational...... games, and to integrate teachers, pupils and game designers needs and requirements. To set up these design principles for educational games we have used a holistic perspective. This means that the design principles must be seen in coherence within the social and physical environment. The design...
DEFF Research Database (Denmark)
Magnussen, Rikke
2014-01-01
, 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...
DEFF Research Database (Denmark)
Marchetti, Emanuela; Valente, Andrea
2014-01-01
In this paper we argue that there is a need for digital games that could be easy to alter by young learners. Unfortunately it was found that digital games do not enable children to express their creativity at full, in contrast with low-fidelity prototypes and non-digital toys (such as card or table...... top games). Therefore, we propose here a middle ground between digital and traditional table top games, so to grant children more freedom to express themselves, articulate their understanding and difficulties individually or socially; this approach is an alternative to the current trend of associating...... programming with digital creativity. In our preliminary study we transposed a digital game into a card game and observed students while shifting between playing and design thinking. Results from this study suggest that the notion of altering a digital game through a card-based transposition of the same game...
Directory of Open Access Journals (Sweden)
Carlos Vaz de Carvalho
2013-11-01
Full Text Available “Serious games” can be defined as (digital games used for purposes other than mere entertainment. Serious Games can be applied to a broad spectrum of areas, e.g. educational, healthcare, training in hazardous environments or situations. Game-based Learning, one aspect of Serious Games, are also more and more explored for all levels of education in different subjects, such as Ancient History. The SEGAN (SErious GAmes Network will create a Community of Practice on the Serious Games subject. The main objective is to create a stable (but expanding consortium to exchange ideas and experiences related to Serious Games. The SEGAN Network invites the people of the community of Archaeology, Cultural Heritage and Ancient History interested in Serious Games to join the net and to participate in their activities.
DEFF Research Database (Denmark)
Hansen, Søren Tranberg
2011-01-01
improve a person’s overall health, and this thesis investigates how games based on an autonomous, mobile robot platform, can be used to motivate elderly to move physically while playing. The focus of the investigation is on the development of games for an autonomous, mobile robot based on algorithms using...... spatio-temporal information about player behaviour - more specifically, I investigate three types of games each using a different control strategy. The first game is based on basic robot control which allows the robot to detect and follow a person. A field study in a rehabilitation centre and a nursing....... The robot facilitates interaction, and the study suggests that robot based games potentially can be used for training balance and orientation. The second game consists in an adaptive game algorithm which gradually adjusts the game challenge to the mobility skills of the player based on spatio...
... Questionnaire Tuberculosis Play Tuberculosis Experiments & Discoveries About the game Discover and experience some of the classic methods ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Effects of Dimers on Cooperation in the Spatial Prisoner's Dilemma Game
International Nuclear Information System (INIS)
Li Haihong; Cheng Hongyan; Dai Qionglin; Ju Ping; Yang Junzhong; Zhang Mei
2011-01-01
We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which information between communities is communicated by the requirement that two players in a dimer hold a same strategy. (general)
Quantum Bertrand duopoly of incomplete information
International Nuclear Information System (INIS)
Qin Gan; Chen Xi; Sun Min; Du Jiangfeng
2005-01-01
We study Bertrand's duopoly of incomplete information. It is found that the effect of quantum entanglement on the outcome of the game is dramatically changed by the uncertainty of information. In contrast with the case of complete information where the outcome increases with entanglement, when information is incomplete the outcome is maximized at some finite entanglement. As a consequence, information and entanglement are both crucial factors that determine the properties of a quantum oligopoly
Parallel Device-Independent Quantum Key Distribution
Jain, Rahul; Miller, Carl A.; Shi, Yaoyun
2017-01-01
A prominent application of quantum cryptography is the distribution of cryptographic keys with unconditional security. Recently, such security was extended by Vazirani and Vidick (Physical Review Letters, 113, 140501, 2014) to the device-independent (DI) scenario, where the users do not need to trust the integrity of the underlying quantum devices. The protocols analyzed by them and by subsequent authors all require a sequential execution of N multiplayer games, where N is the security parame...
DEFF Research Database (Denmark)
Kampa, Antonia; Haake, Susanne; Burelli, Paolo
2015-01-01
This chapter about storytelling and interactivity in storytelling first explains on various serious games examples foundations of storytelling. Then storytelling in Interactive Media with regard to serious games is described. Further the current state of the art on Interactive Digital Storytelling...... is presented including example experiences, authoring tools and challenges in the field combined with examples of serious games. This chapter closes concluding with open storytelling challenges and opportunities in serious games development and recommending further literature on the subject....
2013-01-01
the more widely recognized competitive (non-cooperative) game theory. Cooperative game theory focuses on what groups of self-interested agents can...provides immediate justification for using non-cooperative game theory as the basis for modeling the purely competitive agents. 2.4. Superadditive...the competitive and altruistic contributions of the subset team. Definition: Given a payoff function ( ) in a subset team game , the total marginal
Sukhov, Anton
2018-01-01
This paper devoted to the research of educational resources and possibilities of modern computer games. The “internal” educational aspects of computer games include educational mechanism (a separate or integrated “tutorial”) and representation of a real or even fantastic educational process within virtual worlds. The “external” dimension represents educational opportunities of computer games for personal and professional development in different genres of computer games (various transport, so...
Neuheisl, Lukáš
2017-01-01
The bachelor's thesis is dedicated to the in-game marketing: marketing in digital games. Apart from usual mechanics, such as microtransactions, monthly membership payments, paid downloadable content or in-game advertising this thesis describes the game as a marketing tool and problems related to cybersecurity and persuasive microtransactions. The theoretical part contains recent and distinctive examples of described mechanics. The thesis also contains the evaluation of the questionnaire resea...
Nejepínský, Adam
2010-01-01
This bachelor thesis deals with the problem of computer games addiction. The attention is paid mainly to on-line games for more players. The purpose of this thesis was to describe this problem and to check - through questionnaire investigation - if the addiction to computer games and the impacts connected with the games really deserve excessive experts and laics attention. The thesis has two parts -- theoretical and practical ones. The theoretical part describes the possibilities of diagnosin...
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
Alparslan-Gok, S.Z.; Brânzei, R.; Tijs, S.H.
2008-01-01
In this paper, convex interval games are introduced and some characterizations are given. Some economic situations leading to convex interval games are discussed. The Weber set and the Shapley value are defined for a suitable class of interval games and their relations with the interval core for
2012-07-01
This game became known as ajedrez in Spanish, xadres in Portuguese, and zatrikion in Greek. The game was introduced to Western Europe generally by...six companies, one or two cavalry squadrons, and a quarter or a half of a battery.59 A large game en - compassed the tactical exercise of forces up
Fiestras-Janeiro, G.; Borm, P.E.M.; van Megen, F.J.C.
1996-01-01
This paper introduces the notion of protective equilibrium in the context of fin ite games in strategic form.It shows that for matrix games the set of protective equilibria equals the set of proper equilibria.Moreover, in the context of bima trix games, the notion of protective behaviour is used as a refinement tool.
Madrazo, Gerry M., Jr.; Wood, Carol A.
1980-01-01
Discusses the use of games to facilitate learning scientific concepts and principles. Describes the Cell Game, which simulates plant and animal cells; the Energy Quest, which requires players to buy property that generates largest amounts of electricity; the Blood Flow Game, which illustrates circulation of blood through the human body. (CS)
Herrig, Brian; Taranto, Greg
2012-01-01
One of the key features that draws many people to play video games is the fact that they are interactive. Video games allow the user to be actively engaged and in control of the action (Prensky, 2006). Seventh grade students at Canonsburg Middle School are actively engaging in the creation of video games. The students are engaged at a much deeper…
Eckalbar, John C.
2002-01-01
Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…
Fiestras-Janeiro, G.; Borm, P.E.M.; van Megen, F.J.C.
1996-01-01
This paper introduces the notion of protective equilibrium in the context of fin ite games in strategic form.It shows that for matrix games the set of protective equilibria equals the set of proper equilibria.Moreover, in the context of bima trix games, the notion of protective behaviour is used as
DEFF Research Database (Denmark)
Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan
2007-01-01
is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...
Dye, Bryan
2002-01-01
A strategy game is an online interactive game that requires thinking in order to be played at its best and whose winning strategy is not obvious. Provides information on strategy games that are written in Java or JavaScript and freely available on the web. (KHR)
2009-04-01
GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence
Implementing Game Cinematography
DEFF Research Database (Denmark)
Burelli, Paolo
2015-01-01
Cinematographic games are a rising genre in the computer games industry and an increasing number of titles published include some aspects of cinematography in the gameplay or the storytelling. At present state, camera handling in computer games is managed primarily through custom scripts and anim...
Tutenel, T.
2012-01-01
The visual quality of game worlds increased massively in the last three decades. However, the closer game worlds depict reality, the more noticeable it is for gamers when objects do not behave accordingly. An important problem is that the data of a game world is often scattered across different
DeQuadros, Miguel
2015-01-01
If you want to create your own game, but don't know where to start, this is the book for you. Whether you've used GameSalad before, or have prior game development experience or not you are sure to learn! Imaging software experience, such as Photoshop, is good to have, but art and assets are provided in the book's resources.
Learning Mathematics through Games
Gough, John
2015-01-01
When considering the use of games for teaching mathematics, educators should distinguish between an "activity" and a "game". Gough (1999) states that "A 'game' needs to have two or more players, who take turns, each competing to achieve a 'winning' situation of some kind, each able to exercise some choice about how to move…
DEFF Research Database (Denmark)
Heide Smith, Jonas; Tosca, Susana Pajares; Egenfeldt-Nielsen, Simon
the economics of the game industry, examines the aesthetics of game design, surveys the broad range of game genres, explores player culture, and addresses the major debates surrounding the medium, from educational benefits to the effects of violence. Throughout the book, the authors ask readers to consider...
de Bruin, B.P.
2005-01-01
Game theory is the mathematical study of strategy and conflict. It has wide applications in economics, political science, sociology, and, to some extent, in philosophy. Where rational choice theory or decision theory is concerned with individual agents facing games against nature, game theory deals
Silberg, Jackie
2001-01-01
Presents games for caregivers to use with infants to enhance brain development. Includes games that develop trust and security, language skills, and fine motor skills, as well as games that are fun or stimulate vision. Includes videotape references for parents and caregivers. (KB)
Educational Games for Learning
Noemí, Peña-Miguel; Máximo, Sedano Hoyuelos
2014-01-01
The introduction of new technologies in society has created a need for interactive contents that can make the most of the potential that technological advances offer. Serious games as educational games are such content: they can be defined as video games or interactive applications whose main purpose is to provide not only entertainment but also…
The Game Experience Questionnaire
IJsselsteijn, W.A.; de Kort, Y.A.W.; Poels, K.
2013-01-01
This document contains the English version of the Game Experience Questionnaire. The development and testing of the Game Experience Questionnaire is described in project Deliverable 3.3. The Game Experience Questionnaire has a modular structure and consists of : 1. The core questionnaire 2. The
Game Literacy, Gaming Cultures and Media Education
Partington, Anthony
2010-01-01
This article presents an overview of how the popular "3-Cs" model (creative, critical and cultural) for literacy and media literacy can be applied to the study of computer games in the English and Media classroom. Focusing on the development of an existing computer games course that encompasses many opportunities for critical activity…
Designing Game Analytics For A City-Builder Game
Korppoo, Karoliina
2015-01-01
The video game industry continues to grow. Competition is tough as games become more and more popular and easier for the users to get, thanks to digital distribution and social media platforms that support games. Thanks to the readily available internet connections and games using them, data of player behaviour can be acquired. This is where game analytics come in. What sort of player actions provide meaningful information that can be used to iterate the game? Typically game analytics is appl...
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Population Games, Stable Games, and Passivity
Directory of Open Access Journals (Sweden)
Michael J. Fox
2013-10-01
Full Text Available The class of “stable games”, introduced by Hofbauer and Sandholm in 2009, has the attractive property of admitting global convergence to equilibria under many evolutionary dynamics. We show that stable games can be identified as a special case of the feedback-system-theoretic notion of a “passive” dynamical system. Motivated by this observation, we develop a notion of passivity for evolutionary dynamics that complements the definition of the class of stable games. Since interconnections of passive dynamical systems exhibit stable behavior, we can make conclusions about passive evolutionary dynamics coupled with stable games. We show how established evolutionary dynamics qualify as passive dynamical systems. Moreover, we exploit the flexibility of the definition of passive dynamical systems to analyze generalizations of stable games and evolutionary dynamics that include forecasting heuristics as well as certain games with memory.
Near-Optimal and Explicit Bell Inequality Violations
Buhrman, H.; Regev, O.; Scarpa, G.; de Wolf, R.
2011-01-01
Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden
Institute of Scientific and Technical Information of China (English)
孟静
2007-01-01
Grammar learning has often been regarded as a structure based activity .Grammar games which are worth paying attention to and implementing in the classroom can help learner to learn and recall a grammar material in a pleasant, entertaining way and motivate learners,promote the communicative competence and generate the fluency. In this essay, the author compares the use of games in learning grammar with some traditional techniques for grammar presentation and revision, in order to find the advantages of using games. Also the author discusses how to choose appropriate games and when to use games.
Burgun, Keith
2015-01-01
Only by finding and focusing on a core mechanism can you further your pursuit of elegance in strategy game design.Clockwork Game Design is the most functional and directly applicable theory for game design. It details the clockwork game design pattern, which focuses on building around fundamental functionality. You can then use this understanding to prescribe a system for building and refining your rulesets. A game can achieve clarity of purpose by starting with a strong core, then removing elements that conflict with that core while adding elements that support it.Filled with examples and exe
Serious games: design and development
Barbosa, André Filipe Santos
2011-01-01
With the growth of the video game industry, interest in video game research has increased, leading to the study of Serious Games. Serious Games are generally perceived as games that use the video games’ capabilities to emerge players, for other purposes besides entertainment. These purposes include education and training, among others. By using Serious Games for education, teachers could capture the students’ attention in the same way that video games often do, thus the learning proc...
Shapley's value for fuzzy games
Directory of Open Access Journals (Sweden)
Raúl Alvarado Sibaja
2009-02-01
Full Text Available This is the continuation of a previous article titled "Fuzzy Games", where I defined a new type of games based on the Multilinear extensions f, of characteristic functions and most of standard theorems for cooperative games also hold for this new type of games: The fuzzy games. Now we give some other properties and the extension of the definition of Shapley¨s Value for Fuzzy Games Keywords: game theory, fuzzy sets, multiattribute decisions.
Appropriate quantization of asymmetric games with continuous strategies
International Nuclear Information System (INIS)
Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng
2005-01-01
We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs
Simulation gaming in nursing education.
Ulione, M S
1983-10-01
Simulation games can be used in nursing education to promote problem solving or to impart information. Most games focus upon one of the two areas: cognitive knowledge or affective knowledge. We call these types of games content games and process games, respectively. Simulation games of both types are used in nursing education. Since simulation gaming in nursing education is a relatively new teaching strategy much of its use has been haphazard. In order for a simulation game to be an effective teaching strategy; there must be a "fit" between the game and the instructional objectives. The game operator should analyze the components of each game used prior to playing the game, so he will be able to use the game appropriately. One disadvantage of gaming is that there is a risk of experiencing untoward reactions in the gaming experience. For this reason, the operator should support all the participants throughout the game. Finally, the game operator should assess the effectiveness of the gaming process through the debriefing session and through research. To extend our knowledge of the effects of simulation games, game operators can research the effect of simulation gaming on student motivation, cognitive learning, and affective learning.
Another frame, another game? : Explaining framing effects in economic games
Gerlach, Philipp; Jaeger, B.; Hopfensitz, A.; Lori, E.
2016-01-01
Small changes in the framing of games (i.e., the way in which the game situation is described to participants) can have large effects on players' choices. For example, referring to a prisoner's dilemma game as the "Community Game" as opposed to the "Wall Street Game" can double the cooperation rate
GAME FPS DENGAN MENGGUNAKAN MULTIPLAYER GAME
Directory of Open Access Journals (Sweden)
Ida Bagus Made Oka Widharma
2016-08-01
Full Text Available Perkembangan game saat ini sangat pesat sehingga banyak orang yang tertarik untuk memainkannya bahkan sampai lupa waktu,suatu game akan membuat orang tertarik dan penasaran karena didalam nya terdapat AI (artificial intelegent. Tujuan pengembangan kecerdasan buatan adalah untuk membuat aksi dan reaksi otonom agen atau NPC (Non-Player Character dari game. Dua NPC bisa saling membantu dalam menjalankan strategi menyerang terhadap musuh. penelitian ini menjelaskan tentang bagaimana orang dapat bermain game secara bersama-sama dengan menggunakan jaringan computer atau jaringan internet . Dua NPC yang dimaksud adalahNPC Scout yang bertugas memancing serangan musuh, dan NPC Sniper yang bertugas memberikan back up serangan dari jarak jauh.. Perilaku yangdimaksud adalah menyerang brutal, menyerang, bertahan dan melarikan diri. Masing-masing perilaku diujicobakan dalam game First Person Shooter menggunakan unity engine. Dalam simulasi game terjadi respon perubahan perilaku masing-masing NPC terhadap kondisi yang dihadapi dengan mengetahui respon dari NPC maka akan dapat menentukan strategi dalam game tersebut.
Enhancing Pseudo-Telepathy in the Magic Square Game
Pawela, Łukasz; Gawron, Piotr; Puchała, Zbigniew; Sładkowski, Jan
2013-01-01
We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise. Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action of a noise channel using semidefinite programming. PMID:23762246
Stackelberg Interdependent Security Game in Distributed and Hierarchical Cyber-Physical Systems
Directory of Open Access Journals (Sweden)
Jiajun Shen
2017-01-01
Full Text Available With the integration of physical plant and network, cyber-physical systems (CPSs are increasingly vulnerable due to their distributed and hierarchical framework. Stackelberg interdependent security game (SISG is proposed for characterizing the interdependent security in CPSs, that is, the interactions between individual CPSs, which are selfish but nonmalicious with the payoff function being formulated from a cross-layer perspective. The pure-strategy equilibria for two-player symmetric SISG are firstly analyzed with the strategy gap between individual and social optimum being characterized, which is known as negative externalities. Then, the results are further extended to the asymmetric and m-player SISG. At last, a numerical case of practical experiment platform is analyzed for determining the comprehensively optimal security configuration for administrator.
Energy Technology Data Exchange (ETDEWEB)
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.
Quantum Approach to Cournot-type Competition
Frąckiewicz, Piotr
2018-02-01
The aim of this paper is to investigate Cournot-type competition in the quantum domain with the use of the Li-Du-Massar scheme for continuous-variable quantum games. We derive a formula which, in a simple way, determines a unique Nash equilibrium. The result concerns a large class of Cournot duopoly problems including the competition, where the demand and cost functions are not necessary linear. Further, we show that the Nash equilibrium converges to a Pareto-optimal strategy profile as the quantum correlation increases. In addition to illustrating how the formula works, we provide the readers with two examples.
International Nuclear Information System (INIS)
Metzler, R
2005-01-01
New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the behaviour of the MG when
Kearney, Paul; Pivec, Maja
2007-01-01
Sex and violence in video games is a social issue that confronts us all, especially as many commercial games are now being introduced for game-based learning in schools, and as such this paper polls teenage players about the rules their parents and teachers may or may not have, and surveys the gaming community, ie, game developers to parents, to…
2012-02-03
... up to 900 gaming devices, any banking or percentage card games, and any devices or games authorized... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Tribal--State Class III Gaming Compact Taking Effect. SUMMARY: This publishes...
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
Back translation reliability of TEOSQ in team game, individual game ...
African Journals Online (AJOL)
Back translation reliability of TEOSQ in team game, individual game and gender category. ... team and individual game with a specific focus to the dispositional approach on the athlete's performance in task and ... AJOL African Journals Online.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum computers and quantum computations
International Nuclear Information System (INIS)
Valiev, Kamil' A
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Ubiquitous quantum structure. From psychology to finance
International Nuclear Information System (INIS)
Khrennikov, Andrei
2010-01-01
Quantum-like structure is present practically everywhere. Quantum-like (QL) models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory. This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of natural, biological, psychological, social, economical or financial phenomena. A general contextual probabilistic model (Vaexjoemodel) is presented. It can be used for describing probabilities in both quantum and classical (statistical) mechanics as well as in the above mentioned phenomena. This model can be represented in a quantum-like way, namely, in complex and more general Hilbert spaces. In this way quantum probability is totally demystified: Born's representation of quantum probabilities by complex probability amplitudes, wave functions, is simply a special representation of this type. (orig.)
Ubiquitous quantum structure. From psychology to finance
Energy Technology Data Exchange (ETDEWEB)
Khrennikov, Andrei [University of Vaexjoe (Sweden). International Center for Mathematical Modeling in Physics and Cognitive Science
2010-07-01
Quantum-like structure is present practically everywhere. Quantum-like (QL) models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory. This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of natural, biological, psychological, social, economical or financial phenomena. A general contextual probabilistic model (Vaexjoemodel) is presented. It can be used for describing probabilities in both quantum and classical (statistical) mechanics as well as in the above mentioned phenomena. This model can be represented in a quantum-like way, namely, in complex and more general Hilbert spaces. In this way quantum probability is totally demystified: Born's representation of quantum probabilities by complex probability amplitudes, wave functions, is simply a special representation of this type. (orig.)
Chanda, Rajat
1997-01-01
The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.
Game Analytics for Game User Research, Part 1
DEFF Research Database (Denmark)
Seif El-Nasr, Magy; Desurvire, Heather; Aghabeigi, Bardia
2013-01-01
The emerging field of game user research (GUR) investigates interaction between players and games and the surrounding context of play. Game user researchers have explored methods from, for example, human-computer interaction, psychology, interaction design......The emerging field of game user research (GUR) investigates interaction between players and games and the surrounding context of play. Game user researchers have explored methods from, for example, human-computer interaction, psychology, interaction design...
Gender and computer games / video games : girls’ perspective orientation
Yan, Jingjing
2010-01-01
The topic of this thesis is “Gender Differences in Computer games/ Video games Industry”. Due to rapid development in technology and popularization of computers all around the world, computer games have already become a kind of common entertainment. Because computer games were designed especially for boys at the very beginning, there are still some remaining barriers when training female game designers and expanding game markets among female players.This thesis is mainly based on two studies ...
Getting humans to do quantum optimization
DEFF Research Database (Denmark)
Lieberoth, Andreas; Pedersen, Mads Kock; Marin, Andreea Catalina
2014-01-01
from our first year suggest that people recruited based on real-world physics interest and via real-world events, but only with an intermediate science education, are more likely to become engaged and skilled contributors. We discuss this relationship between in-world and in-game factors on intrinsic...... and intrinsic motivation, and its implications for using real live humans to do hybrid optimization via initially simple, but very cognitively complex games....... approach starting with designing a core gameplay around quantum simulations, to putting extra game elements in place to frame, structure and motivate players’ difficult path from internet flâneur to competent science contributors. Among statistical predictors for retention and in-game high scores, the data...
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Indian Academy of Sciences (India)
In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.
Energy Technology Data Exchange (ETDEWEB)
Metzler, R [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)
2005-02-25
New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Combinatorial optimization games
Energy Technology Data Exchange (ETDEWEB)
Deng, X. [York Univ., North York, Ontario (Canada); Ibaraki, Toshihide; Nagamochi, Hiroshi [Kyoto Univ. (Japan)
1997-06-01
We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic and complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.
DEFF Research Database (Denmark)
Marchetti, Emanuela; Valente, Andrea
2015-01-01
In this paper we consider the problem of making design of digital games accessible to primary school children and their teachers, and we argue for the need of digital games that are easy to alter by young learners. We know from previous research projects that digital games do not enable children...... to express their creativity at full, in contrast with low-fidelity prototypes and non-digital toys (such as card or table top games). Therefore, we propose here a novel approach that serves as a middle ground between digital and traditional table top games, and grants children more freedom to express...... themselves, articulate their understanding and difficulties both individually and socially. This approach, called card-based model for digital game design, is an alternative to the current trend of associating programming with digital creativity. A preliminary study was conducted by transposing a digital...
Archetypal Game Recommender Systems
DEFF Research Database (Denmark)
Sifa, Rafet; Bauckhage, C.; Drachen, Anders
2014-01-01
Contemporary users (players, consumers) of digital games have thousands of products to choose from, which makes nding games that t their interests challenging. Towards addressing this challenge, in this paper two dierent formulations of Archetypal Analysis for Top-L recommender tasks using implicit...... feedback are presented: factor- and neighborhood-oriented models. These form the rst application of rec- ommender systems to digital games. Both models are tested on a dataset of 500,000 users of the game distribution platform Steam, covering game ownership and playtime data across more than 3000 games....... Compared to four other recommender models (nearest neighbor, two popularity mod- els, random baseline), the archetype based models provide the highest recall rates showing that Archetypal Analysis can be successfully applied for Top-L recommendation purposes...
Karlin, Anna R
2016-01-01
This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields, such as computer science, economics, social choice, biology, and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, or statistics. Game theory's influence is felt in a wide range of disciplines, and the authors deliver masterfully on the challenge of presenting both the breadth and coherence of its underlying ...
DEFF Research Database (Denmark)
Hansen, Søren Tranberg; Svenstrup, Mikael; Dalgaard, Lars
2010-01-01
The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal is to im......The goal of this paper is to describe an adaptive robot game, which motivates elderly people to do a regular amount of physical exercise while playing. One of the advantages of robot based games is that the initiative to play can be taken autonomously by the robot. In this case, the goal...... is to improve the mental and physical state of the user by playing a physical game with the robot. Ideally, a robot game should be simple to learn but difficult to master, providing an appropriate degree of challenge for players with different skills. In order to achieve that, the robot should be able to adapt...
Directory of Open Access Journals (Sweden)
Ivo Vlaev
2007-12-01
Full Text Available We report an experiment exploring sequential context effects on strategy choices in one-shot Prisoner's Dilemma (PD game. Rapoport and Chammah (1965 have shown that some PDs are cooperative and lead to high cooperation rate, whereas others are uncooperative. Participants played very cooperative and very uncooperative games, against anonymous partners. The order in which these games were played affected their cooperation rate by producing perceptual contrast, which appeared only between the trials, but not between two separate sequences of games. These findings suggest that people may not have stable perceptions of absolute cooperativeness. Instead, they judge the cooperativeness of each fresh game only in relation to the previous game. The observed effects suggest that the principles underlying judgments about highly abstract magnitudes such as cooperativeness may be similar to principles governing the perception of sensory magnitudes.
DEFF Research Database (Denmark)
Chimiri, Niklas Alexander; Andersen, Mads Lund; Jensen, Tine
2018-01-01
In this chapter, we focus on a particular matter of concern within computer gaming practices: the concern of being or not being a gamer. This matter of concern emerged from within our collective investigations of gaming practices across various age groups. The empirical material under scrutiny...... was generated across a multiplicity of research projects, predominantly conducted in Denmark. The question of being versus not being a gamer, we argue, exemplifies interesting enactments of how computer game players become both concerned with and concerned about their gaming practices. As a collective...... of researchers writing from the field of psychology and inspired by neo-materialist theories, we are particularly concerned with (human) subjectivity and processes of social and subjective becoming. Our empirical examples show that conerns/worries about computer games and being engaged with computer game...
... Nobel's Life and Work Teachers' Questionnaire The Blood Typing Game What happens if you get a blood ... learn about human blood types! Play the Blood Typing Game 28 September 2017 The mission based game ...
Behavior learning in differential games and reorientation maneuvers
Satak, Neha
method is the Direct Approximation of Value Function (DAVF) method. In this method, unlike the CSR method, the player formulates an objective function for the opponent but does not formulates a strategy directly; rather, indirectly the player assumes that the opponent is playing optimally. Thus, a value function satisfying the HJB equation corresponding to the opponent's cost function exists. The DAVF method finds an approximate solution for the value function based on previous observations of the opponent's control. The approximate solution to the value function is then used to predict the opponent's future behavior. Game examples in which only a single player is learning its opponent's behavior are simulated. Subsequently, examples in which both players in a two-player game are learning each other's behavior are simulated. In the second part of this research, a reorientation control maneuver for a spinning spacecraft will be developed. This will aid the application of behavior learning and differential games concepts to the specific scenario involving multiple spinning spacecraft. An impulsive reorientation maneuver with coasting will be analytically designed to reorient the spin axis of the spacecraft using a single body fixed thruster. Cooperative maneuvers of multiple spacecraft optimizing fuel and relative orientation will be designed. Pareto optimality concepts will be used to arrive at mutually agreeable reorientation maneuvers for the cooperating spinning spacecraft.
Directory of Open Access Journals (Sweden)
Christos-Spyridon Karavas
2017-11-01
Full Text Available Energy management systems are essential and indispensable for the secure and optimal operation of autonomous polygeneration microgrids which include distributed energy technologies and multiple electrical loads. In this paper, a multi-agent decentralized energy management system was designed. In particular, the devices of the microgrid under study were controlled as interactive agents. The energy management problem was formulated here through the application of game theory, in order to model the set of strategies between two players/agents, as a non-cooperative power control game or a cooperative one, according to the level of the energy produced by the renewable energy sources and the energy stored in the battery bank, for the purpose of accomplishing optimal energy management and control of the microgrid operation. The Nash equilibrium was used to compromise the possible diverging goals of the agents by maximizing their preferences. The proposed energy management system was then compared with a multi-agent decentralized energy management system where all the agents were assumed to be cooperative and employed agent coordination through Fuzzy Cognitive Maps. The results obtained from this comparison, demonstrate that the application of game theory based control, in autonomous polygeneration microgrids, can ensure operational and financial benefits over known energy management approaches incorporating distributed intelligence.
DEFF Research Database (Denmark)
Smith, Rachel Charlotte; Christensen, Kasper Skov; Iversen, Ole Sejer
We introduce Video Design Games to train educators in teaching design. The Video Design Game is a workshop format consisting of three rounds in which participants observe, reflect and generalize based on video snippets from their own practice. The paper reports on a Video Design Game workshop...... in which 25 educators as part of a digital fabrication and design program were able to critically reflect on their teaching practice....
DEFF Research Database (Denmark)
Henriksen, Thomas Duus
2006-01-01
Learning games are facing a new challenge if it is to meet the educational demand for creativity training. In the article, it is argued that reflection is the key to teach creativity, and that we have to reconsider our current approach to creating educational role-playing games in order to meet...... this demand. The article presents a number of challenges to accomplishing this, as well as a number of tools for designing and using creativity facilitating games....
Wolpert, David H.
2005-01-01
Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.
Game-based telerehabilitation.
Lange, B; Flynn, Sheryl M; Rizzo, A A
2009-03-01
This article summarizes the recent accomplishments and current challenges facing game-based virtual reality (VR) telerehabilitation. Specifically this article addresses accomplishments relative to realistic practice scenarios, part to whole practice, objective measurement of performance and progress, motivation, low cost, interaction devices and game design. Furthermore, a description of the current challenges facing game based telerehabilitation including the packaging, internet capabilities and access, data management, technical support, privacy protection, seizures, distance trials, scientific scrutiny and support from insurance companies.
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Healthy Gaming - Video Game Design to promote Health.
Brox, E; Fernandez-Luque, L; Tøllefsen, T
2011-01-01
There is an increasing interest in health games including simulation tools, games for specific conditions, persuasive games to promote a healthy life style or exergames where physical exercise is used to control the game. The objective of the article is to review current literature about available health games and the impact related to game design principles as well as some educational theory aspects. Literature from the big databases and known sites with games for health has been searched to find articles about games for health purposes. The focus has been on educational games, persuasive games and exergames as well as articles describing game design principles. The medical objectives can either be a part of the game theme (intrinsic) or be totally dispatched (extrinsic), and particularly persuasive games seem to use extrinsic game design. Peer support is important, but there is only limited research on multiplayer health games. Evaluation of health games can be both medical and technical, and the focus will depend on the game purpose. There is still not enough evidence to conclude which design principles work for what purposes since most of the literature in health serious games does not specify design methodologies, but it seems that extrinsic methods work in persuasion. However, when designing health care games it is important to define both the target group and main objective, and then design a game accordingly using sound game design principles, but also utilizing design elements to enhance learning and persuasion. A collaboration with health professionals from an early design stage is necessary both to ensure that the content is valid and to have the game validated from a clinical viewpoint. Patients need to be involved, especially to improve usability. More research should be done on social aspects in health games, both related to learning and persuasion.
Healthy Gaming – Video Game Design to promote Health
Brox, E.; Fernandez-Luque, L.; Tøllefsen, T.
2011-01-01
Background There is an increasing interest in health games including simulation tools, games for specific conditions, persuasive games to promote a healthy life style or exergames where physical exercise is used to control the game. Objective The objective of the article is to review current literature about available health games and the impact related to game design principles as well as some educational theory aspects. Methods Literature from the big databases and known sites with games for health has been searched to find articles about games for health purposes. The focus has been on educational games, persuasive games and exergames as well as articles describing game design principles. Results The medical objectives can either be a part of the game theme (intrinsic) or be totally dispatched (extrinsic), and particularly persuasive games seem to use extrinsic game design. Peer support is important, but there is only limited research on multiplayer health games. Evaluation of health games can be both medical and technical, and the focus will depend on the game purpose. Conclusion There is still not enough evidence to conclude which design principles work for what purposes since most of the literature in health serious games does not specify design methodologies, but it seems that extrinsic methods work in persuasion. However, when designing health care games it is important to define both the target group and main objective, and then design a game accordingly using sound game design principles, but also utilizing design elements to enhance learning and persuasion. A collaboration with health professionals from an early design stage is necessary both to ensure that the content is valid and to have the game validated from a clinical viewpoint. Patients need to be involved, especially to improve usability. More research should be done on social aspects in health games, both related to learning and persuasion. PMID:23616865
DEFF Research Database (Denmark)
Aarseth, Espen
2012-01-01
In this article I present a narrative theory of games, building on standard narra-tology, as a solution to the conundrum that has haunted computer game studies from the start: How to approach software that combines games and stories?......In this article I present a narrative theory of games, building on standard narra-tology, as a solution to the conundrum that has haunted computer game studies from the start: How to approach software that combines games and stories?...
DEFF Research Database (Denmark)
Borup Lynggaard, Aviaja
2006-01-01
This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....
Directory of Open Access Journals (Sweden)
Katinka van der Kooij
2015-09-01
Full Text Available The application of games for behavioral change has seen a surge in popularity but evidence on the efficacy of these games is contradictory. Anecdotal findings seem to confirm their motivational value whereas most quantitative findings from randomized controlled trials (RCT are negative or difficult to interpret. One cause for the contradictory evidence could be that the standard RCT validation methods are not sensitive to serious games’ effects. To be able to adapt validation methods to the properties of serious games we need a framework that can connect properties of serious game design to the factors that influence the quality of quantitative research outcomes. The Persuasive Game Design model [1] is particularly suitable for this aim as it encompasses the full circle from game design to behavioral change effects on the user. We therefore use this model to connect game design features, such as the gamification method and the intended transfer effect, to factors that determine the conclusion validity of an RCT. In this paper we will apply this model to develop guidelines for setting up validation methods for serious games. This way, we offer game designers and researchers handles on how to develop tailor-made validation methods.