WorldWideScience

Sample records for two-photon phosphorescence lifetime

  1. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  2. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    Science.gov (United States)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  3. Gated Detection Measurements of Phosphorescence Lifetimes

    Directory of Open Access Journals (Sweden)

    Yordan Kostov

    2004-10-01

    Full Text Available A low-cost, gated system for measurements of phosphorescence lifetimes is presented. An extensive description of the system operating principles and metrological characteristics is given. Remarkably, the system operates without optical filtering of the LED excitation source. A description of a practical system is also given and its performance is discussed. Because the device effectively suppresses high-level background fluorescence and scattered light, it is expected to find wide-spread application in bioprocess, environmental and biomedical fields.

  4. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  5. Monitoring photosensitizer uptake using two photon fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Yeh, Shu-Chi Allison; Diamond, Kevin R; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Fang, Qiyin

    2012-01-01

    Photodynamic Therapy (PDT) provides an opportunity for treatment of various invasive tumors by the use of a cancer targeting photosensitizing agent and light of specific wavelengths. However, real-time monitoring of drug localization is desirable because the induction of the phototoxic effect relies on interplay between the dosage of localized drug and light. Fluorescence emission in PDT may be used to monitor the uptake process but fluorescence intensity is subject to variability due to scattering and absorption; the addition of fluorescence lifetime may be beneficial to probe site-specific drug-molecular interactions and cell damage. We investigated the fluorescence lifetime changes of Photofrin(®) at various intracellular components in the Mat-LyLu (MLL) cell line. The fluorescence decays were analyzed using a bi-exponential model, followed by segmentation analysis of lifetime parameters. When Photofrin(®) was localized at the cell membrane, the slow lifetime component was found to be significantly shorter (4.3 ± 0.5 ns) compared to those at other locations (cytoplasm: 7.3 ± 0.3 ns; mitochondria: 7.0 ± 0.2 ns, p < 0.05).

  6. Monitoring Photosensitizer Uptake Using Two Photon Fluorescence Lifetime Imaging Microscopy

    Directory of Open Access Journals (Sweden)

    Shu-Chi Allison Yeh, Kevin R. Diamond, Michael S. Patterson, Zhaojun Nie, Joseph E. Hayward, Qiyin Fang

    2012-01-01

    Full Text Available Photodynamic Therapy (PDT provides an opportunity for treatment of various invasive tumors by the use of a cancer targeting photosensitizing agent and light of specific wavelengths. However, real-time monitoring of drug localization is desirable because the induction of the phototoxic effect relies on interplay between the dosage of localized drug and light. Fluorescence emission in PDT may be used to monitor the uptake process but fluorescence intensity is subject to variability due to scattering and absorption; the addition of fluorescence lifetime may be beneficial to probe site-specific drug-molecular interactions and cell damage. We investigated the fluorescence lifetime changes of Photofrin® at various intracellular components in the Mat-LyLu (MLL cell line. The fluorescence decays were analyzed using a bi-exponential model, followed by segmentation analysis of lifetime parameters. When Photofrin® was localized at the cell membrane, the slow lifetime component was found to be significantly shorter (4.3 ± 0.5 ns compared to those at other locations (cytoplasm: 7.3 ± 0.3 ns; mitochondria: 7.0 ± 0.2 ns, p < 0.05.

  7. Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves

    NARCIS (Netherlands)

    Broess, K.; Borst, J.W.; Amerongen, van H.

    2009-01-01

    This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of

  8. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells.

    Science.gov (United States)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-22

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  9. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N.; Wientjes, Emilie; Amerongen, van Herbert

    2016-01-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was ac

  10. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Breunig, Hans Georg; König, Karsten; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Christopher

    2011-07-01

    Multispectral fluorescence lifetime imaging (FLIM) using two photon microscopy as a non-invasive technique for the diagnosis of skin lesions is described. Skin contains fluorophores including elastin, keratin, collagen, FAD and NADH. This endogenous contrast allows tissue to be imaged without the addition of exogenous agents and allows the in vivo state of cells and tissues to be studied. A modified DermaInspect® multiphoton tomography system was used to excite autofluorescence at 760 nm in vivo and on freshly excised ex vivo tissue. This instrument simultaneously acquires fluorescence lifetime images in four spectral channels between 360-655 nm using time-correlated single photon counting and can also provide hyperspectral images. The multispectral fluorescence lifetime images were spatially segmented and binned to determine lifetimes for each cell by fitting to a double exponential lifetime model. A comparative analysis between the cellular lifetimes from different diagnoses demonstrates significant diagnostic potential.

  11. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  12. Photon counting phosphorescence lifetime imaging with TimepixCam

    Science.gov (United States)

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei

    2017-01-01

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.

  13. Two-photon autofluorescence lifetime and SHG imaging of healthy and diseased human corneas

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Seitz, Berthold; Morgado, António Miguel; König, Karsten

    2015-03-01

    Corneal function can be drastically affected by several degenerations and dystrophies, leading to blindness. Early diagnosis of corneal disease is of major importance and it may be accomplished by monitoring changes of the metabolic state and structural organization, the first detectable pathological signs, by two-photon excitation autofluorescence lifetime and second-harmonic generation imaging. In this study, we propose to use these imaging techniques to differentiate between healthy and pathological corneas. Images were acquired using a laser-scanning microscope with a broadband sub-15 femtosecond near-infrared pulsed laser and a 16-channel photomultiplier tube detector for signal collection. This setup allows the simultaneous excitation of metabolic co-factors and to identify them based on their fluorescence spectra. We were able to discriminate between healthy and pathological corneas using two-photon excitation autofluorescence lifetime and second-harmonic generation imaging from corneal epithelium and stroma. Furthermore, differences between different pathologies were observed. Alterations in the metabolic state of corneal epithelial cells were observed using the autofluorescence lifetime of the metabolic co-factors. In the corneal stroma, we observed not only alterations in the collagen fibril structural organization but also alterations in the autofluorescence lifetime. Further tests are required as the number of pathological samples must be increased. In the future, we intend to establish a correlation between the metabolic and structural changes and the disease stage. This can be a step forward in achieving early diagnosis.

  14. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.

    OpenAIRE

    2000-01-01

    We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotr...

  15. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

    Science.gov (United States)

    Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.

    2013-03-01

    Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.

  16. Spectral and lifetime endomicroscopic measurements using one and two-photon excitation

    Science.gov (United States)

    Ibrahim, A.; Poulon, F.; Zanello, M.; Habert, R.; Varlet, P.; Devaux, B.; Kudlinski, A.; Abi Haidar, D.

    2017-02-01

    Current surgical biopsy needs several days for the analysis process to be finished. Anatomopathologists provide analysis reports to the surgeon a few days after the surgical intervention, which makes it a lengthy decision making practice. In addition, the lack of precise guidance often leads to inaccuracies in the selection of tissue regions for biopsy and so necessitates repeating the operation sometimes. Our project aims at reducing this time as well as patient discomfort. In this context, we propose to develop a multimodal nonlinear endomicroscope providing several means of contrast. Among these contrast that are useful in the detection of tumor regions, we note imaging by linear and non-linear fluorescence, by second and third harmonic generation and by reflectance. In addition, this technique allows fluorescence lifetime and spectral measurements. Our endomicroscopic system is based on a new homemade customized double-clad photonic crystal fiber (DC-PCF). Finally, this double-clad micro structured optical fiber insures visible and near infrared excitation. This system was tested by measuring fluorescence lifetime and the spectral shape of a fixed tumoral brain sample in one and two photon excitations.

  17. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert

    2016-09-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes.

  18. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  19. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols.

    Science.gov (United States)

    Mueller-Harvey, Irene; Feucht, Walter; Polster, Juergen; Trnková, Lucie; Burgos, Pierre; Parker, Anthony W; Botchway, Stanley W

    2012-03-16

    Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ~1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ(2)=1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea.

  20. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Harvey, Irene, E-mail: i.mueller-harvey@reading.ac.uk [Chemistry and Biochemistry Laboratory, Food Production and Quality Research Division, School of Agriculture, Policy and Development, University of Reading, P O Box 236, Reading RG6 6AT (United Kingdom); Feucht, Walter, E-mail: walter.feucht@gmail.com [Department of Plant Sciences, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Polster, Juergen, E-mail: j.polster@wzw.tum.de [Department of Physical Biochemistry, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Trnkova, Lucie, E-mail: lucie.trnkova@uhk.cz [University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove (Czech Republic); Burgos, Pierre, E-mail: pierre.burgos@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Parker, Anthony W., E-mail: tony.parker@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Botchway, Stanley W., E-mail: stan.botchway@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer This fluorescence lifetime imaging microscopy (FLIM) technique for flavanols overcomes autofluorescence interference in cells. Black-Right-Pointing-Pointer Plant flavanols differed in their lifetimes. Black-Right-Pointing-Pointer Dissolved and bound flavanols revealed contrasting lifetime changes. Black-Right-Pointing-Pointer This technique will allow studying of flavanol trafficking in live cells. - Abstract: Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were {approx}1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime ({tau}{sub 2} = 1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there

  1. Frequency domain phosphorescence lifetime Imaging measurements and applications by ISS FastFLIM and multi pulse excitation

    Science.gov (United States)

    Coskun, Ulas C.; Lam, Sandra; Sun, Yuansheng; Liao, Shih-Chu Jeff; George, Steven C.; Barbieri, Beniamino

    2017-02-01

    Phosphorescence probes can have significantly long lifetimes, on the order of micro- to milli-seconds or longer. In addition, environmental changes can affect the lifetimes of these phosphorescence probes. Thus, Phosphorescence Lifetime Imaging Microscopy (PLIM) is a very useful tool to localize the phosphorescence probes based on their lifetimes to study the variance in the lifetimes due to the micro environmental changes. Since the probes respond to the biologically relevant parameters like oxygen concentration, they can be used to study various biologically relevant processes like cellular metabolism, protein interaction etc. In this case, we study the effects of oxygen on Oxyphor G4 with PLIM. Since The Oxyphor G4 can be quenched by O2, it is a good example of such a probe and has a lifetime around 250us. Here we present the digital frequency domain PLIM technique and study the lifetime of the Oxyphor G4 as a function of the O2 concentration. The lifetime data are successfully presented in a phasor plot for various O2 concentrations and are consistent with the time domain data. Overall, we can analyze the oxygen consumption of varying cells using this technique.

  2. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    Science.gov (United States)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  3. Cytosolic NADH-NAD+ Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging

    Science.gov (United States)

    Mongeon, Rebecca; Venkatachalam, Veena

    2016-01-01

    Abstract Aim: Cytosolic NADH-NAD+ redox state is central to cellular metabolism and a valuable indicator of glucose and lactate metabolism in living cells. Here we sought to quantitatively determine NADH-NAD+ redox in live cells and brain tissue using a fluorescence lifetime imaging of the genetically-encoded single-fluorophore biosensor Peredox. Results: We show that Peredox exhibits a substantial change in its fluorescence lifetime over its sensing range of NADH-NAD+ ratio. This allows changes in cytosolic NADH redox to be visualized in living cells using a two-photon scanning microscope with fluorescence lifetime imaging capabilities (2p-FLIM), using time-correlated single photon counting. Innovation: Because the lifetime readout is absolutely calibrated (in nanoseconds) and is independent of sensor concentration, we demonstrate that quantitative assessment of NADH redox is possible using a single fluorophore biosensor. Conclusion: Imaging of the sensor in mouse hippocampal brain slices reveals that astrocytes are typically much more reduced (with higher NADH:NAD+ ratio) than neurons under basal conditions, consistent with the hypothesis that astrocytes are more glycolytic than neurons. Antioxid. Redox Signal. 25, 553–563. PMID:26857245

  4. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Pliss, Artem; Peng, Xiao; Liu, Lixin; Kuzmin, Andrey; Wang, Yan; Qu, Junle; Li, Yuee; Prasad, Paras N

    2015-01-01

    Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine.

  5. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  6. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  7. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    Science.gov (United States)

    Jahn, Karolina; Hille, Carsten

    2014-01-01

    For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR) and Asante Calcium Green (ACG) for two-photon (2P)-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+)-free and Ca(2+)-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+)-dependent way, unraveling in vitro dissociation constants K(D) of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM) in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns) and long (2.44 ns) decay time components attributable to the Ca(2+)-free and Ca(2+)-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D) of 180 nM was determined. Thus, quantitative [Ca(2+)]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+)]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+) indicator dye for 2P-FLIM recordings applicable in diverse biological systems.

  8. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    Directory of Open Access Journals (Sweden)

    Karolina Jahn

    Full Text Available For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR and Asante Calcium Green (ACG for two-photon (2P-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+-free and Ca(2+-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+-dependent way, unraveling in vitro dissociation constants K(D of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns and long (2.44 ns decay time components attributable to the Ca(2+-free and Ca(2+-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D of 180 nM was determined. Thus, quantitative [Ca(2+]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+ indicator dye for 2P-FLIM recordings applicable in diverse biological systems.

  9. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  10. Evaluation of the oxidative stress of psoriatic fibroblasts based on spectral two-photon fluorescence lifetime imaging

    Science.gov (United States)

    Kapsokalyvas, Dimitrios; Barygina, Victoria; Cicchi, Riccardo; Fiorillo, Claudia; Pavone, Francesco S.

    2013-02-01

    Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Metabolic activity is increased in the epidermis and the dermis. Oxidative stress is high mainly due to reactive oxygen species (ROS) originating from the skin environment and cellular metabolism. We employed a custom multiphoton microscope coupled with a FLIM setup to image primary culture fibroblast cells from perilesional and lesional psoriatic skin in-vitro. Twophoton excited fluorescence images revealed the morphological differences between healthy and psoriatic fibroblasts. Based on the spectral analysis of the NADH and FAD components the oxidative stress was assessed and found to be higher in psoriatic cells. Furthermore the fluorescence lifetime properties were investigated with a TCSPC FLIM module. Mean fluorescence lifetime was found to be longer in psoriatic lesional cells. Analysis of the fast (τ1) and slow (τ2) decay lifetimes revealed a decrease of the ratio of the contribution of the fast (α1) parameter to the contribution of the slow (α2) parameter. The fluorescence in the examined part of the spectrum is attributed mainly to NADH. The decrease of the ratio (α1)/ (α2) is believed to correlate strongly with the anti-oxidant properties of NADH which can lead to the variation of its population in high ROS environment. This methodology could serve as an index of the oxidative status in cells and furthermore could be used to probe the oxidative stress of tissues in-vivo.

  11. Center for Fluorescence Spectroscopy: advanced studies of fluorescence dynamics, lifetime imaging, clinical sensing, two-photon excitation, and light quenching

    Science.gov (United States)

    Lakowicz, Joseph R.; Malak, Henryk M.; Gryczynski, Ignacy; Szmacinski, Henryk; Kusba, Jozef; Akkaya, Engin; Terpetschnig, Ewald A.; Johnson, Michael L.

    1994-08-01

    The Center for Fluorescence Spectroscopy (CFS) is a multi-user facility providing state of the art time-resolved fluorescence instrumentation and software for scientists, whose research can be enhanced by such experimental data. The CFS is a national center, supported by the National Center for Research Resources Division of the National Institutes of Health, and in part by the National Science Foundation. Both time-domain (TD) and frequency- domain (FD) measurements (10 MHz to 10 Ghz) are available, with a wide range of excitation and emission wavelengths (UV to NIR). The data can be used to recover distances and site-to-site diffusion in protein, interactions between macromolecules, accessibility of fluorophores to quenchers, and the dynamic properties of proteins, membranes and nucleic acids. Current software provides for analysis of multi-exponential intensity and anisotropy decays, lifetime distribution, distance distributions for independent observation of fluorescence donors and acceptors, transient effects in collisional quenching, phase-modulation spectra and time-resolved emission spectra. Most programs provide for global analysis of multiple data sets obtained under similar experimental conditions. Data can be analyzed on-site by connection with the CFS computers through the internet. During six years of operation we have established scientific collaborations with over 30 academic and industrial groups in the United States. These collaborations have resulted in 63 scientific papers.

  12. Two-photon-excited fluorescence (TPEF) and fluorescence lifetime imaging (FLIM) with sub-nanosecond pulses and a high analog bandwidth signal detection

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Huber, Robert

    2017-02-01

    Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime imaging (FLIM) are powerful imaging techniques in bio-molecular science. The need for elaborate light sources for TPEF and speed limitations for FLIM, however, hinder an even wider application. We present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is synchronized to a high analog bandwidth signal detection for single shot TPEF- and single shot FLIM imaging. The actively modulated pulses at 1064nm from the fiber laser are adjustable from 50ps to 5ns with kW of peak power. At a typically applied pulse lengths and repetition rates, the duty cycle is comparable to typically used femtosecond pulses and thus the peak power is also comparable at same cw-power. Hence, both types of excitation should yield the same number of fluorescence photons per time on average when used for TPEF imaging. However, in the 100ps configuration, a thousand times more fluorescence photons are generated per pulse. In this paper, we now show that the higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate the performance of our system, we acquired FLIM images of a Convallaria sample with pixel rates of 1 MHz where the lifetime information is directly measured with a fast real time digitizer. With the presented results, we show that longer pulses in the many-10ps to nanosecond regime can be readily applied for TPEF imaging and enable new imaging modalities like single pulse FLIM.

  13. Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors

    Science.gov (United States)

    Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

  14. Different emissive states in the bulk and at the surface of methylammonium lead bromide perovskite revealed by two-photon micro-spectroscopy and lifetime measurements

    Directory of Open Access Journals (Sweden)

    Khadga Jung Karki

    2016-07-01

    Full Text Available Two photon photoluminescence (2PPL from single crystals of methyl ammonium lead bromide (CH3NH3PbBr3, MAPbBr3 is studied. We observe two components in the 2PPL spectra, which we assign to the photoluminescence (PL from the carrier recombination at the band edge and the recombination due to self-trapping of excitons. The PL Stokes shift of self-trapped excitons is about 100 meV from the band-gap energy. Our measurements show that about 15% of the total PL from regions about 40 μm deep inside the crystal is due to the emission from self-trapped exciton. This contribution increases to about 20% in the PL from the regions close to the surface. Time resolved measurements of 2PPL show that the PL due to band-edge recombination has a life time of about 8 ns while the PL lifetime of self-trapped excitons is in the order of 100 ns. Quantification of self-trapped excitons in the materials used in photovoltaics is important as such excitons hinder charge separation. As our results also show that an appreciable fraction of photo-generated carriers get trapped, the results are important in rational design of photovoltaics. On the other hand, our results also show that the self-trapped excitons broaden the emission spectrum, which may be useful in designing broadband light emitting devices.

  15. Two-photon physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  16. Light-Addressable Measurement of in Vivo Tissue Oxygenation in an Unanesthetized Zebrafish Embryo via Phase-Based Phosphorescence Lifetime Detection

    Directory of Open Access Journals (Sweden)

    Shih-Hao Huang

    2015-04-01

    Full Text Available We have developed a digital light modulation system that utilizes a modified commercial projector equipped with a laser diode as a light source for quantitative measurements of in vivo tissue oxygenation in an unanesthetized zebrafish embryo via phase-based phosphorescence lifetime detection. The oxygen-sensitive phosphorescent probe (Oxyphor G4 was first inoculated into the bloodstream of 48 h post-fertilization (48 hpf zebrafish embryos via the circulation valley to rapidly disperse probes throughout the embryo. The unanesthetized zebrafish embryo was introduced into the microfluidic device and immobilized on its lateral side by using a pneumatically actuated membrane. By controlling the illumination pattern on the digital micromirror device in the projector, the modulated excitation light can be spatially projected to illuminate arbitrarily-shaped regions of tissue of interest for in vivo oxygen measurements. We have successfully measured in vivo oxygen changes in the cardiac region and cardinal vein of a 48 hpf zebrafish embryo that experience hypoxia and subsequent normoxic conditions. Our proposed platform provides the potential for the real-time investigation of oxygen distribution in tissue microvasculature that relates to physiological stimulation and diseases in a developing organism.

  17. Origin of Dual-Peak Phosphorescence and Ultralong Lifetime of 4,6-Diethoxy-2-carbazolyl-1,3,5-triazine.

    Science.gov (United States)

    Paul, Lopa; Chakrabarti, Swapan; Ruud, Kenneth

    2017-03-03

    Recently, ultralong phosphorescence lifetime has been observed in 4,6-diethoxy-2-carbazolyl-1,3,5-triazine, and H-aggregation induced stabilization of the T1 state was suggested as its source. The response theory calculations demonstrate that the Davydov stabilization of the T1 state of the dimer is marginal with respect to the monomer and the corresponding transition moments are virtually the same. Moreover, the calculated radiative rate constant is far from the experimental value, indicating that the ultralong lifetime is not likely to be of electronic origin only. Our calculations reveal that the dual-peak emission from the T1 state is due to strong vibronic coupling between the T1 and S0 states along selected normal modes. Interestingly, the calculated vibronic radiative rate constant of the dimer (2.33 × 10(-3) s(-1)) is comparable to the experimental value (4.7 × 10(-3) s(-1)), supporting the notion that vibronic contributions to the transition moment are responsible for the ultralong lifetime observed in the bulk system.

  18. Two-photon cryomicroscope

    Science.gov (United States)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  19. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Jeshtadi, Ananya; Burgos, Pierre; Stubbs, Christopher D; Parker, Anthony W; King, Linda A; Skinner, Michael A; Botchway, Stanley W

    2010-12-01

    Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.

  20. Two-photon absorption in arsenic sulfide glasses

    Science.gov (United States)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  1. Two photon physics. Personal recollection

    CERN Document Server

    Ginzburg, Ilya F

    2015-01-01

    The term two--photon processes is used for the reactions in which some system of particles is produced in collision of two photons, either real or virtual. In the study of these processes our main goal was to suggest approach, allowing to extract from the data information on proper two--photon process separating it from mechanism which responsible for the production of photons. Here I present my view for history of two--photon physics. I don't try to give complete review, concentrating mainly on works of our team (which cover essential part of the topic) and some colleagues. My citation is strongly incomplete. I cite here only papers which were essential in our understanding of the problems. The choice of presented details is the result of my discussions with Gleb Kotkin and Valery Serbo. 1. Prehistory. 2. Two photon processes at e^+e^- colliders. 3. Photon colliders. 4. Notes on physical program.

  2. Two-photon microscopy measurement of CMRO2 using periarteriolar PO2 gradients(Conference Presentation)

    Science.gov (United States)

    Sakadžić, Sava; Yaseen, Mohammad A.; Jaswal, Rajeshwer S.; Roussakis, Emmanuel; Dale, Anders M.; Buxton, Richard B.; Vinogradov, Sergei A.; Boas, David A.; Devor, Anna

    2017-02-01

    The cerebral metabolic rate of oxygen (CMRO2) is an essential parameter for evaluating brain function and pathophysiology. Measurements of CMRO2 with high spatio-temporal resolution are critically important for understanding how the brain copes with metabolic and blood perfusion changes associated with various clinical conditions, such as stroke, periinfarct depolarizations, and various microvasculopathies (e.g., Alzheimer's disease, chronic hypertension). CMRO2 measurements are also important for understanding the physiological underpinnings of functional Magnetic Resonance Imaging signals. However, the currently available approaches for quantifying CMRO2 rely on complex multimodal imaging and mathematical modeling. Here, we introduce a novel method that allows estimation of CMRO2 based on a single measurement modality - two-photon phosphorescence lifetime microscopy (2PLM) imaging of the partial pressure of oxygen (PO2) in cortical tissue. CMRO2 is estimated by fitting the changes of tissue PO2 around cortical penetrating arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline CMRO2 in anesthetized rats, and modulated tissue PO2 levels by manipulating the depth of anesthesia. This method has a spatial resolution of approximately 200 μm and it may provide CMRO2 measurements in individual cortical layers or within confined cortical regions such as in ischemic penumbra and the foci of functional activation.

  3. Higgs Decay to Two Photons

    OpenAIRE

    Marciano, William J.; Zhang, Cen; Willenbrock, Scott

    2011-01-01

    The amplitude for Higgs decay to two photons is calculated in renormalizable and unitary gauges using dimensional regularization at intermediate steps. The result is finite, gauge independent, and in agreement with previously published results. The large Higgs mass limit is examined using the Goldstone-boson equivalence theorem as a check on the use of dimensional regularization and to explain the absence of decoupling.

  4. Lifetime

    Institute of Scientific and Technical Information of China (English)

    姚祎

    2004-01-01

    @@ 继ESPN刊出同名杂志之后,2003年赫斯特公司(Hearst Corp.)和迪斯尼(Walt Disney Co.)的合作促成了一本新杂志的诞生:(Lifetime),其目标读者是成百万收看同名有线电视网节目的妇女们.

  5. Two-photon imaging of stem cells

    Science.gov (United States)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  6. Biological oxygen sensing via two-photon absorption by an Ir(III) complex using a femtosecond fiber laser

    Science.gov (United States)

    Moritomo, Hiroki; Fujii, Akinari; Suzuki, Yasutaka; Yoshihara, Toshitada; Tobita, Seiji; Kawamata, Jun

    2016-09-01

    Near-infrared two-photon absorption of the phosphorescent Ir(III) complex (2,4-pentanedionato-κO 2,κO 4)bis[2-(6-phenanthridinyl-κN)benzo[b]thien-3-yl-κC]iridium (BTPHSA) was characterized. It exhibited a 800-1200 nm two-photon absorption band, and thus could be electronically excited by 1030-nm femtosecond Ti:sapphire and Yb-doped fiber lasers. By using BTPHSA, oxygen concentrations in human embryonic kidney 293 (HEK293) cells were imaged. These results demonstrate two-photon oxygen sensing of live tissues via easily operable excitation sources.

  7. Two-Photon Flow Cytometry

    Science.gov (United States)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  8. Boron Polylactide Nanoparticles Exhibiting Fluorescence and Phosphorescence in Aqueous Medium

    Science.gov (United States)

    Pfister, Anne; Zhang, Guoqing; Zareno, Jessica; Horwitz, Alan F.; Fraser, Cassandra L.

    2008-01-01

    Difluoroboron dibenzoylmethane-polylactide, BF2dbmPLA, a biocompatible polymerluminophore conjugate was fabricated as nanoparticles. Spherical particles <100 nm in size were generated via nanoprecipitation. Intense blue fluorescence, two-photon absorption, and long-lived room temperature phosphorescence (RTP) are retained in aqueous suspension. The nanoparticles were internalized by cells and visualized by fluorescence microscopy. Luminescent boron biomaterials show potential for imaging and sensing. PMID:19081748

  9. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  10. Two-photon STED spectral determination for a new V-shaped organic fluorescent probe with efficient two-photon absorption.

    Science.gov (United States)

    Belfield, Kevin D; Bondar, Mykhailo V; Morales, Alma R; Padilha, Lazaro A; Przhonska, Olga V; Wang, Xuhua

    2011-10-24

    Two-photon stimulated emission depletion (STED) cross sections were determined over a broad spectral range for a novel two-photon absorbing organic molecule, representing the first such report. The synthesis, comprehensive linear photophysical, two-photon absorption (2PA), and stimulated emission properties of a new fluorene-based compound, (E)-2-{3-[2-(7-(diphenylamino)-9,9-diethyl-9H-fluoren-2-yl)vinyl]-5-methyl-4-oxocyclohexa-2,5-dienylidene} malononitrile (1), are presented. Linear spectral parameters, including excitation anisotropy and fluorescence lifetimes, were obtained over a broad range of organic solvents at room temperature. The degenerate two-photon absorption (2PA) spectrum of 1 was determined with a combination of the direct open-aperture Z-scan and relative two-photon-induced fluorescence methods using 1 kHz femtosecond excitation. The maximum value of the 2PA cross section ~1700 GM was observed in the main, long wavelength, one-photon absorption band. One- and two-photon stimulated emission spectra of 1 were obtained over a broad spectral range using a femtosecond pump-probe technique, resulting in relatively high two-photon stimulated emission depletion cross sections (~1200 GM). A potential application of 1 in bioimaging was demonstrated through one- and two-photon fluorescence microscopy images of HCT 116 cells incubated with micelle-encapsulated dye.

  11. Phosphorescent organic light emitting diodes with high efficiency and brightness

    Science.gov (United States)

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  12. Two-photon microscopy using fiber-based nanosecond excitation.

    Science.gov (United States)

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  13. Direct phosphorescent detection of primary event of photodynamic action

    Science.gov (United States)

    Losev, Anatoly P.; Knukshto, Valentin N.; Zhuravkin, Ivan N.

    1994-07-01

    Highly phosphorescent photosensitizer Pd-tetra (o-methoxy-p-sulfo) phenyl porphyrin (Pd-MSPP) was used to follow the primary events of photodynamic action - quenching of triplet states by free oxygen in different systems: water solutions of proteins, cells and tissues in vivo and in vitro. The photosensitizer forms complexes with proteins in solutions and biosystems showing remarkable hypsochromic shifts of band and an increase of the quantum yield and lifetime of phosphorescence at the binding to proteins. In absence of oxygen the lifetime of phosphorescence is almost single exponential, and depends on the energy of lowest triplet state of the sensitizer. The photochemical quenching of the triplets by cell components is negligible. In presence of free oxygen the quenching of the sensitizer triplets takes place. The emission spectrum of singlet oxygen with maximum 1271 nm was recorded in water protein solutions and quantum yield of sensitized luminescence was measured. In the systems studied, oxygen consumption was detected and oxygen concentration was estimated in the course of photodynamics by an increase in photosensitizer phosphorescence lifetime, using laser flash photolysis technique. At least two exponential kinetics of the phosphorescence decay shows that the distribution of the free oxygen is not uniform in tissues.

  14. Fano interference in two-photon transport

    Science.gov (United States)

    Xu, Shanshan; Fan, Shanhui

    2016-10-01

    We present a general input-output formalism for the few-photon transport in multiple waveguide channels coupled to a local cavity. Using this formalism, we study the effect of Fano interference in two-photon quantum transport. We show that the physics of Fano interference can manifest as an asymmetric spectral line shape in the frequency dependence of the two-photon correlation function. The two-photon fluorescence spectrum, on the other hand, does not exhibit the physics of Fano interference.

  15. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-01-01

    There has been much interest recently in coherent multiphoton transitions in many-level systems. The present work considers the effect of relaxation in the response of a three-level system to a smoothly varying, near-resonant, two-photon field. The relaxation-dependent contributions to the nonlinear refractive index are calculated. It is shown that the coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. 1 figure. (RWR)

  16. Two-Photon Physics in Hadronic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Carl Carlson; Marc Vanderhaeghen

    2007-11-01

    Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.

  17. Sideband-Induced Two-Photon Transparency

    Institute of Scientific and Technical Information of China (English)

    CHENG Guang-Ling; HU Xiang-Ming

    2006-01-01

    @@ We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far off one-photon resonance. A resonant sideband coupling on the upper transition and the two-photon one-step process drive the medium into a trapped state, and the dominant component is the ground state. Thus almost all population is trapped in the ground state and the two-photon absorption is dramatically suppressed. We present a numerical calculation for arbitrary values of the atomic and field parameters and also provide an analytic description for the required conditions.

  18. Correlations of two photons at hadron colliders

    OpenAIRE

    Kozlov, G. A.

    2011-01-01

    We study the Bose-Einstein correlations of two photons and their coherent properties that can provide the information about the space-time structure of the emitting source through the Higgs-boson decays into two photons. We argue that such an investigation could probe the Higgs-boson mass. The model is rather sensitive to the temperature of the environment and to the external distortion effect in medium.

  19. Platinum Acetylide Two-Photon Chromophores (Preprint)

    Science.gov (United States)

    2007-04-01

    the higher energy range that lead to its photodegradation . Secondly, because there is a quadratic dependence of two-photon absorption (2PA) on the...to either an electron donating amino- fluorenyl or electron withdrawing benzothiazolyl-fluorene that are themselves known as two-photon absorbing dyes ...groups in place of phenyl groups have shown a doubling of the intrinsic cr2value at 740 nm.40,41In this paper we describe novel platinum dyes that

  20. Fs-transient absorption and fluorescence upconversion after two- photon excitation of carotenoids in solution and in LHC II

    CERN Document Server

    Wall, P J; Fleming, G R

    2000-01-01

    With time resolved two-photon techniques we determined the lifetime and two-photon spectrum of the forbidden S/sub 1/ state of beta - carotene (9+or-0.2 ps), lutein (15+or-0.5 ps) and the energy transferring carotenoids in LHC II (250+or-50 fs). (7 refs).

  1. Medical prototyping using two photon polymerization

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-12-01

    Full Text Available Two photon polymerization involves nearly simultaneous absorption of ultrashort laser pulses for selective curing of photosensitive material. This process has recently been used to create small-scale medical devices out of several classes of photosensitive materials, such as acrylate-based polymers, organically-modified ceramic materials, zirconium sol-gels, and titanium-containing hybrid materials. In this review, the use of two photon polymerization for fabrication of several types of small-scale medical devices, including microneedles, artificial tissues, microfluidic devices, pumps, sensors, and valves, from computer models is described. Necessary steps in the development of two photon polymerization as a commercially viable medical device manufacturing method are also considered.

  2. Two Photon Couplings of Hybrid Mesons

    CERN Document Server

    Page, P R

    1996-01-01

    A new formalism is developed for the two photon production of hybrid mesons via intermediate hadronic decays. In an adiabatic and non--relativistic context with spin 1 pair creation we obtain the first absolute estimates of unmixed hybrid production strengths to be small (0.03 - 3 eV) in relation to experimental meson widths (0.1 - 5 keV). Within this context, two photon collisions therefore strongly discriminate between hybrid and conventional meson wave function components at BaBar, Cleo II, LEP2 and LHC, filtering out non--gluonic components. Decay widths of unmixed hybrids are tiny. The formalism also induces conventional meson two photon widths roughly in agreement with experiment.

  3. Two-photon physics at LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan; Lehto, Mark [University of Sheffield Department of Physics, Sheffield S3 7RH (United Kingdom); Seymour, Michael H.; Close, Frank; Wright, Alison [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Affholderbach, Klaus; Cowan, Glen [Universitaet Siegen, Fachbereich Physik, D-57068 Siegen (Germany); Finch, Alex [University of Lancaster, Lancaster LA1 4YB (United Kingdom); Lauber, Jan [University College London, Gower Street, London WC1E 6BT (United Kingdom)

    1998-02-01

    The working group on two-photon physics concentrated on three main subtopics: modelling the hadronic final state of deep inelastic scattering on a photon; unfolding the deep inelastic scattering data to obtain the photon structure function; and resonant production of exclusive final states, particularly of glueball candidates. In all three areas, new results were presented. (author)

  4. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  5. Transparency induced by two photon interference in a beam splitter

    Institute of Scientific and Technical Information of China (English)

    Wang Kai-Ge; Yang Guo-Jian

    2004-01-01

    We propose a special two-photon state which is completely transparent in a 50/50 beam splitter. This effect is caused by the destructive two-photon interference and shows the signature of photon entanglement. We find that the symmetry of the two-photon spectrum plays the key role for the properties of two-photon interference.

  6. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...... with the basic two-level Doppler cooling process this allows for reduction of the atomic sample temperature by more than a factor of 10 over a broad frequency range. First experimental evidence for the two-photon cooling process is presented and compared to model calculations. Agreement between theory...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  7. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    Science.gov (United States)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  8. Two-photon ionization of colliding atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1977-09-01

    Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization yield on the details of the interaction potential of the system is derived. This process promises an extremely sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence becomes very weak.

  9. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.;

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...

  10. Two-Photon Collective Atomic Recoil Lasing

    Directory of Open Access Journals (Sweden)

    James A. McKelvie

    2015-11-01

    Full Text Available We present a theoretical study of the interaction between light and a cold gasof three-level, ladder configuration atoms close to two-photon resonance. In particular, weinvestigate the existence of collective atomic recoil lasing (CARL instabilities in differentregimes of internal atomic excitation and compare to previous studies of the CARL instabilityinvolving two-level atoms. In the case of two-level atoms, the CARL instability is quenchedat high pump rates with significant atomic excitation by saturation of the (one-photoncoherence, which produces the optical forces responsible for the instability and rapid heatingdue to high spontaneous emission rates. We show that in the two-photon CARL schemestudied here involving three-level atoms, CARL instabilities can survive at high pump rateswhen the atoms have significant excitation, due to the contributions to the optical forces frommultiple coherences and the reduction of spontaneous emission due to transitions betweenthe populated states being dipole forbidden. This two-photon CARL scheme may form thebasis of methods to increase the effective nonlinear optical response of cold atomic gases.

  11. Sensitized phosphorescence studies of p-xylene+biacetyl system, an optical antenna.

    Science.gov (United States)

    Bayrakçeken, Fuat

    2007-04-01

    p-Xylene sensitized biacetyl fluorescence and phosphorescence has been investigated and photosensitized phosphorescence lifetimes of biacetyl in the vapor phase has been determined. Attempts to detect the triplet of biacetyl by its absorption spectrum were unsuccessful, due to primarily, it is believed, to the low extinction coefficients of the triplet, and the low triplet concentrations produced by the optical pumping device at room temperature.

  12. Two-photon super bunching of thermal light via multiple two-photon-path interference

    CERN Document Server

    Hong, Peilong; Zhang, Guoquan

    2012-01-01

    We propose a novel scheme to achieve two-photon super bunching of thermal light through multiple two-photon-path interference, in which two mutually first-order incoherent optical channels are introduced by inserting a modified Michelson interferometer into a traditional two-photon HBT interferometer, and the bunching peak-to-background ratio can reach 3 theoretically. Experimentally, the super bunching peak-to-background ratio was measured to be 2.4, much larger than the ratio 1.7 measured with the same thermal source in a traditional HBT interferometer. The peak-to-background ratio of two-photon super bunching of thermal light can be increased up to $2\\times1.5^n$ by inserting cascadingly $n$ pairs of mutually first-order incoherent optical channels into the traditional two-photon HBT interferometer. The two-photon super bunching of thermal light should be of great significance in improving the visibility of classical ghost imaging.

  13. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-03-01

    The coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. These equations are solved for the cases ..gamma../sub 1/, ..gamma../sub 2/ very-much-less-than ..cap omega.., ..gamma../sub 1/ = ..gamma../sub 2/, and ..gamma../sub 2/k/sup 2/epsilon/sup 4//..cap omega../sup 2/, ..gamma../sub 1/ very-much-less-than ..cap omega.., where ..gamma../sub 1/ and ..gamma../sub 2/ are the atomic energy and phase relaxation widths, respectively, and ..cap omega.. is the Rabi frequency. The leading contribution to the refractive index is intensity dependent, caused by the level shifts inherent in multiphoton processes; it includes a relaxation dependent part which is important at times shorter than ..gamma../sup -1//sub 1/. The second-order contributions depend on the square of the intensity and the time-integrated square of the intensity. The latter contribution, which is relaxation dependent, causes line asymmetry at the long-wavelength wing; it consists of a term proportional to ..gamma../sub 2/-..gamma../sub 1/ and only important at early times and a term proportional to 2..gamma../sub 2/-..gamma../sub 1/.

  14. Denoising two-photon calcium imaging data.

    Science.gov (United States)

    Malik, Wasim Q; Schummers, James; Sur, Mriganka; Brown, Emery N

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.

  15. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  16. Two-Photon Absorption-Induced Emission Properties of Dye HMASPS Doped Polymer

    Institute of Scientific and Technical Information of China (English)

    王东; 周广勇; 任燕; 杨胜军; 许心光; 邵宗书; 蒋民华

    2002-01-01

    The 0.01M two-photon absorption dye trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl-pyridinium p-toluene sulfonate (HMASPS) doped polymer has been prepared. When pumped by the picosecond pulse from the pulsed mode-locked Nd: YAG laser, the polymer emits more intense upconverted fluorescence and superradiance compared to the solution sample of the dye. The two-photon pumped lasing with oscillating pulses has also been obtained. Compared to the dye in its solution state, the emission spectra of the polymer are all blueshifted.The polymer has a long upconverted fluorescent lifetime of about 4.041 ± 0.04 ns.

  17. Two-photon conductivity in semiconductors: a new tool for the study of the quantum properties of light

    Science.gov (United States)

    Rosencher, E.; Boitier, F.; Godard, A.; Fabre, C.

    2012-01-01

    Two-photon absorption in GaAs occurs once two photon impinge on the semiconductor surface within the virtual state lifetime, i.e. few fs. Two photon conductivity (TPC) in GaAs is thus particulary well fitted to measure photon coincidence rates in the femtosecond range. Using this new TPC technique we have evidenced various original quantum properties of light, such as photon bunching in thermal light and extrabunching of twin beams. This technique opens new avenues in quantum optics, for quantum cryptography, ghost imaging or non linear optics.

  18. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Jensen, Hans Jørgen Aagaard

    2012-01-01

    A theoretical characterization of the phosphorescence decay traces of a prototypical platinum (II) organic chromophore has been conducted. The phosphorescence wavelength and radiative lifetime are predicted to equal 544 nm and 160 μs, respectively. The third triplet state is assigned as participa...

  19. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical proc

  20. Two-photon Interference with Non-identical Photons

    CERN Document Server

    Liu, Jianbin; Zheng, Huaibin; Chen, Hui; Li, Fu-Li; Xu, Zhuo

    2014-01-01

    The indistinguishability of non-identical photons is dependent on detection system in quantum physics. If two photons with different wavelengths are indistinguishable for a detection system, there can be two-photon interference when these two photons are incident to two input ports of a Hong-Ou-Mandel interferometer, respectively. The reason why two-photon interference phenomena are different for classical and nonclassical light is not due to interference, but due to the properties of light and detection system. These conclusions are helpful to understand the physics and applications of two-photon interference.

  1. Wide-field two-photon microscopy: features and advantages for biomedical applications

    Science.gov (United States)

    Wachsmann-Hogiu, S.; Hwang, J. Y.; Lindsley, E.; Farkas, D. L.

    2007-02-01

    We describe a simple fluorescence microscope based on wide-field two-photon excitation. While still taking advantage of some inherent properties of non-linear (two-photon) microscopy, such as increased penetration depth through tissue and reduced phototoxicity, this approach provides video frame rate imaging, can be easily coupled to fluorescence spectral and lifetime detection modules, and makes efficient use of the high average power currently available from ultrashort pulsed lasers. For a standard histopathology specimen, we were able to identify different structures based on spectral and fluorescence lifetime detection and analysis. We examined the use of 200fs and 2ps pulses from Spectra Physics MaiTai and Tsunami lasers, respectively, with average power ranging from 50mW to 500mW.

  2. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  3. Study on the Interaction of Mitomycin C with ct-DNA by Pd-Porphin Room Temperature Phosphorescence Probe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anticancer drug Mitomycin C (MMC) quenches remarkably phosphorescence and reduces lifetime of phosphorescence probe, Pd-meso-tetrakis-(4-trimethylaminophenyl)porphin (Pd-TAPP), in the presence of calf thymus DNA. These results may be attributed to the site competition of MMC with the probe and electron transfer between MMC and probe. MMC also increases polarization degree of the probe by covalent drug-DNA or DNA-drug-DNA crosslinking.

  4. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  5. Two-photon imaging and spectroscopy of fresh human colon biopsies

    Science.gov (United States)

    Cicchi, R.; Sturiale, A.; Nesi, G.; Tonelli, F.; Pavone, F. S.

    2012-03-01

    Two-photon fluorescence (TPEF) microscopy is a powerful tool to image human tissues up to 200 microns depth without any exogenously added probe. TPEF can take advantage of the autofluorescence of molecules intrinsically contained in a biological tissue, as such NADH, elastin, collagen, and flavins. Two-photon microscopy has been already successfully used to image several types of tissues, including skin, muscles, tendons, bladder. Nevertheless, its usefulness in imaging colon tissue has not been deeply investigated yet. In this work we have used combined two-photon excited fluorescence (TPEF), second harmonic generation microscopy (SHG), fluorescence lifetime imaging microscopy (FLIM), and multispectral two-photon emission detection (MTPE) to investigate different kinds of human ex-vivo fresh biopsies of colon. Morphological and spectroscopic analyses allowed to characterize both healthy mucosa, polyp, and colon samples in a good agreement with common routine histology. Even if further analysis, as well as a more significant statistics on a large number of samples would be helpful to discriminate between low, mild, and high grade cancer, our method is a promising tool to be used as diagnostic confirmation of histological results, as well as a diagnostic tool in a multiphoton endoscope or colonoscope to be used in in-vivo imaging applications.

  6. Several Organic Salts with High Two-Photon Active

    Institute of Scientific and Technical Information of China (English)

    TIAN, Yu-Peng; JIANG, Min-Hua; WANG, He-Zhou; FANG, Qi

    2001-01-01

    Several organic salts with D-A molecular structure and different counterion have been prepared and experimentally investigated. The two-photon induced frequency-upconverted spectra and two-photon pumped lasing are measured for the organic salt solutions in various solvents. The results indicate that counterions have influence on their stability and lasing property.

  7. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  8. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    Science.gov (United States)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  9. Slow reflection and two-photon generation of microcavity exciton-polaritons

    CERN Document Server

    Steger, Mark; Snoke, David W; Pfeiffer, Loren; West, Ken

    2014-01-01

    We resonantly inject polaritons into a microcavity and track them in time and space as they feel a force due to the cavity gradient. This is an example of "slow reflection," as the polaritons, which can be viewed as renormalized photons, slow down to zero velocity and then move back in the opposite direction. These measurements accurately measure the lifetime of the polaritons in our samples, which is 180 $\\pm$ 10 ps, corresponding to a cavity leakage time of 135 ps and a cavity $Q$ of 320,000. Such long-lived polaritons propagate millimeters in these wedge-shaped microcavities. Additionally, we generate polaritons by two-photon excitation directly into the polariton states, allowing the possibility of modulation of the two-photon absorption by a polariton condensate.

  10. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    Science.gov (United States)

    Biagioni, P.; Celebrano, M.; Savoini, M.; Grancini, G.; Brida, D.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Duò, L.; Hecht, B.; Cerullo, G.; Finazzi, M.

    2009-07-01

    Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width δ of the excitation laser pulses for a fixed average power. In the δ>1ps regime, the TPPL yield decreases as δ is increased, while for shorter pulse widths it becomes independent of δ and, consequently, of the laser-pulse peak power. This peculiar dynamics is understood and modeled by considering that two-photon absorption in Au is a two-step process governed by the lifetime of the metastable state populated by the first photon absorption.

  11. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  12. Two-photon interference of temporally separated photons

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  13. Electric field allowed molecular transitions for one and two photon excitation microscopy.

    Science.gov (United States)

    Mondal, Partha Pratim; Diaspro, Alberto

    2008-07-01

    We propose an excitation technique for observing single and two photon excitation in those molecules for which such transitions are forbidden by the selection rules. This is possible by the application of an external electric field that perturbs the molecular orbitals, thereby resulting in a significant shift of energy levels. Such a shift of energy levels may bring those levels in resonance with the radiation field which is normally forbidden by selection rules. Further, parity of the these states may significantly improve the emission process. The external electric field results in the mixing of excited (short lifetime) and metastable states (long lifetime), thus reducing the lifetime of metastable (or near metastable) states. This may provide an effective channel for allowing transition from the metastable states. An application of electric field may result in the excitation of poorly excitable biomolecules. This excitation technique may find applications in single- and multi-photon fluorescence microscopy, bioimaging and optical devices.

  14. Quantum homodyne tomography of a two-photon Fock state

    CERN Document Server

    Ourjoumtsev, A; Grangier, P; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-01-01

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  15. Quantum homodyne tomography of a two-photon Fock state.

    Science.gov (United States)

    Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-06-02

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed nondegenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  16. Scattering of two photons from two distant qubits: exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Matti; Pletyukhov, Mikhail [Institute for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen (Germany)

    2015-07-01

    We consider the inelastic scattering of two photons from two qubits separated by an arbitrary distance and coupled to a one-dimensional transmission line. We present an exact, analytical solution to the problem, and use it to explore a particular configuration of qubits which is transparent to single-photon scattering, thus highlighting non-Markovian effects of inelastic two-photon scattering: Strong two-photon interference and momentum dependent photon (anti)bunching. This latter effect can be seen as an inelastic generalization of the Hong-Ou-Mandel effect.

  17. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe

    Science.gov (United States)

    Beth, Albert H.; Cobb, Charles E.; Beechem, Joseph M.

    1992-04-01

    A spin-labeled derivative of eosin was chemically synthesized from 5-aminoeosin and the nitroxide spin label 2,2,5,5-tetramethylpyrrolin-1-oxyl-3-carboxylic acid. Following determination of the chemical identity of the spin-labeled eosin (5-SLE) by FAB mass spectroscopy, its optical and magnetic resonance spectroscopic properties were characterized in aqueous solution and compared to a diamagnetic eosin derivative, 5-acetamido eosin (5- AcE). The visible light absorption maximum of 5-SLE was 518 nm, the same as for 5-AcE. The fluorescence quantum yield of 5-SLE was only reduced by approximately 10% relative to 5-AcE, and the fluorescence lifetime was marginally reduced relative to 5-AcE. The phosphorescence lifetime and yield for 5-SLE were very similar to those for 5-AcE. The phosphorescence yield of 5-SLE bound noncovalently to BSA was reduced by approximately 60% relative to 5-AcE, and the phosphorescence lifetime reduced from approximately 2.4 msec (5-AcE) to 1.6 msec (5-SLE). Reduction of the nitroxide moiety of the 5-SLE with sodium ascorbate resulted in minimal changes in the fluorescence and phosphorescence quantum yields and lifetimes. This indicated that the unpaired electron of the nitroxide spin label did not seriously affect the optical spectroscopic characteristics of the spin-labeled eosin molecule. The quantum yields and lifetimes of 5-SLE were still quite acceptable for time- resolved fluorescence and phosphorescence studies. The electron paramagnetic resonance (EPR) spectrum of 5-SLE in aqueous solution has a lineshape consistent with a molecule the size of 5-SLE undergoing rapid rotational reorientation. When bound to BSA, the EPR spectrum of 5-SLE was broadened to a near slow motion limit for EPR, as expected for the relatively slowly rotating protein-5-SLE complex. Time-resolved phosphorescence anisotropy and saturation transfer EPR (ST-EPR) experiments with samples of 5-SLE bound to BSA in solutions of varying glycerol concentrations at 2

  18. NLO Electroweak Corrections to Higgs Decay to Two Photons

    OpenAIRE

    Actis, Stefano

    2009-01-01

    The recent calculation of the next-to-leading order electroweak corrections to the decay of the Standard Model Higgs boson to two photons in the framework of the complex-mass scheme is briefly summarized.

  19. Standard Model Higgs decay for two Photons in CMS

    CERN Multimedia

    Daniel Denegri

    2000-01-01

    Simulated two-photon mass distribution for SM Higgs and expected background in the CMS PbW04 crystal calorimeter for an integrated luminosity of 10 . 5 pb-1, with detailed simulation of calorimeter response.

  20. Two-photon pumped lead halide perovskite nanowire lasers

    CERN Document Server

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  1. Pulse-shaping based two-photon FRET stoichiometry.

    Science.gov (United States)

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  2. Synthesis of a Series of Novel Organic Compounds with Two-photon Absorption and Two-photon pumped Lasing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of novel organic compounds named as CSPI, DPASPI, PSPI DEASPI and HEASPI respectively, with large two-photon absorption has been synthesized and their structures have been determined by 1HNMR and elemental analysis. The highest two-photon pumped (TPP) output /input efficiency is as high as 13.4% for PSPI in DMF with d0 = 0.03 mol/L and the effective two-photon absorption cross section is 8.8′10-48 cm4×s/photon for DPASPI in DMF with d0= 0.05mol/L.

  3. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  4. Phosphorescent Nanocluster Light-Emitting Diodes.

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion.

  5. Two-photon Photo-emission of Ultrathin Film PTCDA Morphologies on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aram; Yang, Aram; Shipman, Steven T.; Garrett-Roe, Sean; Johns, James; Strader, Matt; Szymanski, Paul; Muller, Eric; Harris, Charles B.

    2007-11-29

    Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n=1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements.

  6. New developments in two-photon analysis of human skin in vivo

    Science.gov (United States)

    Riemann, I.; Schwarz, M.; Stracke, F.; Ehlers, A.; Dimitrow, E.; Kaatz, M.; König, K.; Le Harzic, R.

    2009-02-01

    Two-photon imaging of human skin using ultra short laser pulses can be used to obtain information about the state of cells and tissues by means of their natural autofluorescence. Using this method, it is possible to determine whether the normal cell pattern is disturbed or the autofluorescence is influenced by internal or external stimuli. Two-photon fluorescence lifetime imaging (FLIM) can further enhance this providing information about physiological processes, fluorophores (like NAD(P)H, collagen, keratin, elastin, flavins, melanin,...) and external applied probes inside cells and tissue parts. For example the part of the cells metabolism and energy level can be determined by analyzing the NADH regarding its free / bound state and its oxidized / reduced state. The combination of two-photon imaging with FLIM may lead to a better understanding and diagnosis of skin reactions and disorders. We also present some results of in vivo simultaneous collagen and elastin measurements in skin dermis. Changes of dermal collagen and elastin content are characteristic for skin aging as well as for pathological skin conditions.

  7. Two-photon spectroscopic behaviors and photodynamic effect on the BEL-7402 cancer cells of the new chlorophyll photosensitizer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The spectroscopic properties of a new chlorophyll derivate photosensitizer(CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti:sapphire laser.The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm.The normalized fluorescence spectra of CDP in tetrahydrofuran(THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands(675 nm).The life-times of two-and one-photon induced fluorescence of this molecule are of the order of 5.0 ns.By comparing the data it is shown that there is some difference between the two lifetimes,but the differ-ence is less than one nanosecond.The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ′2 ≈ 31.5×10-50 cm4·s·photon-1.The results of two-photon photodynamic therapy(TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment.Our results indicate that the two-photon-induced photophysical,photo-chemical and photosensitizing processes of CDP may be basically similar to those of one-photon ex-citation.These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers’ effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.

  8. Two-photon spectroscopic behaviors and photodynamic effect on the BEL-7402 cancer cells of the new chlorophyll photosensitizer

    Institute of Scientific and Technical Information of China (English)

    ZHAO PeiDe; ZHANG GuiLan; CHEN WenJu; CHEN Ping; TANG GuoQing; LIU JinWei; LIN Lie; GUO Peng; YU Qing; YAO JianZhong; MA DongMing

    2008-01-01

    The spectroscopic properties of a new chlorophyll derivate photosensitizer (CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti: sapphire laser. The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm. The normalized fluorescence spectra of CDP in tetrahydrofuran (THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands (675 nm). The life-times of two- and one-photon induced fluorescence of this molecule are of the order of 5.0 ns. By comparing the data it is shown that there is some difference between the two lifetimes, but the differ-ence is less than one nanosecond. The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ'2≈31.5×10-50 cm4·s·photon-1. The results of two-photon photodynamic therapy (TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment. Our results indicate that the two-photon-induced photophysical, photochemical and photosensitizing processes of CDP may be basically similar to those of one-photon excitation. These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers' effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.

  9. Two-Photon Absorption of Metal-Assisted Chromophores.

    Science.gov (United States)

    Li, Xin; Rinkevicius, Zilvinas; Ågren, Hans

    2014-12-09

    Aiming to understand the effect of a metal surface on nonlinear optical properties and the combined effects of surface and solvent environments on such properties, we present a multiscale response theory study, integrated with dynamics of the two-photon absorption of 4-nitro-4'-amino-trans-stilbene physisorbed on noble metal surfaces, considering two such surfaces, Ag(111) and Au(111), and two solvents, cyclohexane and water, as cases for demonstration. A few conclusions of general character could be drawn: While the geometrical change of the chromophore induced by the environment was found to notably alter (diminish) the two-photon absorption cross section in the polar medium, the effects of the metal surface and solvent on the electronic structure of the chromophore surpasses the geometrical effects and leads to a considerably enhanced two-photon absorption cross section in the polar solvent. This enhancement of two-photon absorption arises essentially from the metal charge image induced enlargement of the difference between the dipole moment of the excited state and the ground state. The orientation-dependence of the two-photon absorption is found to connect with the lateral rotation of the chromophore, where the two-photon absorption reaches its maximum when the polarization of the incident light coincides with the long-axis of the chromophore. Our results demonstrate a distinct enhancement of the two-photon absorption by a metal surface and a polar medium and envisage the employment of metal-chromophore composite materials for future development of nonlinear optical materials with desirable properties.

  10. Three-dimensional microfabrication using two-photon polymerization

    Science.gov (United States)

    Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina

    1998-09-01

    Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two-photon

  11. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  12. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    Science.gov (United States)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  13. Multidimensional two-photon imaging and spectroscopy of fresh human bladder biopsies

    Science.gov (United States)

    Cicchi, Riccardo; Crisci, Alfonso; Cosci, Alessandro; Nesi, Gabriella; Giancane, Saverio; Carini, Marco; Pavone, Francesco S.

    2010-02-01

    Two-photon microscopy has been successfully used to image several types of tissues, including skin, muscles, tendons. Nevertheless, its usefulness in imaging bladder tissue has not been investigated yet. In this work we used combined twophoton excited fluorescence, second-harmonic generation microscopy, fluorescence lifetime imaging microscopy, and multispectral two-photon emission detection to investigate different kinds of human ex-vivo fresh biopsies of bladder. Morphological and spectroscopic analyses allowed to characterize both healthy mucosa and carcinoma in-situ samples in a good agreement with common routine histology. Cancer cells showed different morphology with respect to the corresponding healthy cells: they appeared more elongated and with a larger nucleus to cytoplasm ratio. From the spectroscopic point of view, differences between the two tissue types in both spectral emission and fluorescence lifetime distribution were found. Even if further analysis, as well as a more significant statistics on a larger number of samples would be helpful to discriminate between low, mild, and high grade cancer, our method is a promising tool to be used as diagnostic confirmation of histological results, as well to be implemented in a multi-photon endoscope or in a spectroscopic for in in-vivo imaging applications.

  14. Nonlinear quantitative photoacoustic tomography with two-photon absorption

    CERN Document Server

    Ren, Kui

    2016-01-01

    Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molecular imaging modality that aims at inferring two-photon absorption property of heterogeneous media from photoacoustic measurements. In this work, we analyze an inverse problem in quantitative TP-PAT where we intend to reconstruct optical coefficients in a semilinear elliptic PDE, the mathematical model for the propagation of near infra-red photons in tissue-like optical media with two-photon absorption, from the internal absorbed energy data. We derive uniqueness and stability results on the reconstructions of single and multiple optical coefficients, and present some numerical reconstruction results based on synthetic data to complement the theoretical analysis.

  15. Two-photon interference between disparate sources for quantum networking

    Science.gov (United States)

    McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.

    2013-06-01

    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 +/- 4%, which paves the way to hybrid universal quantum networks.

  16. Enhanced two-photon absorption using true thermal light

    CERN Document Server

    Jechow, Andreas; Kurzke, Henning; Heuer, Axel; Menzel, Ralf

    2013-01-01

    Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.

  17. Two-photon interference with non-identical photons

    Science.gov (United States)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  18. Two-Photon Total Annihilation of Molecular Positronium

    CERN Document Server

    Pérez-Ríos, Jesús; Greene, Chris H

    2014-01-01

    The rate for complete two-photon annihilation of molecular positronium Ps$_{2}$ is reported. This decay channel involves a four-body collision among the fermions forming Ps$_{2}$, and two photons of 1.022 MeV, each, as the final state. The quantum electrodynamics result for the rate of this process is found to be $\\Gamma_{Ps_{2} \\rightarrow \\gamma\\gamma}$ = 9.0 $\\times 10^{-12}$ s$^{-1}$. This decay channel completes the most comprehensive decay chart for Ps$_{2}$ up to date.

  19. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  20. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    P V Kiran Kumar; M V Suryanarayana

    2014-08-01

    In this paper, we have briefly reviewed the work on two-photon spectroscopy of alkali elements and its applications. The technique of Doppler-free two-photon spectroscopy is briefly summarized. A review of various techniques adopted for measuring absolute frequencies of the atomic transitions and precision measurements of isotope shifts and hyperfine structures (HFS) is presented. Some of the recent works on precision measurements of HFS constants of 6 ${}^2S_{1/2}$ level of ${}^{39}$K and ${}^{41}$K, 9 ${}^2S_{1/2}$ level and 7 ${}^2D_{3/2}$ level of 133Cs are also discussed.

  1. A fluorescent benzothiazole probe with efficient two-photon absorption

    Science.gov (United States)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  2. Modulation of attosecond beating by resonant two-photon transition

    CERN Document Server

    Galán, Álvaro Jiménez; Martín, Fernando

    2015-01-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the $\\pi$ jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  3. Spectral- and time-resolved phosphorescence of photosensitizers and singlet oxygen: From in vitro towards in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vyklický, Vojtěch [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Dědic, Roman, E-mail: Roman.Dedic@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Curkaniuk, Natalija [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Vilnius University, Faculty of Physics, Universiteto st. 3, LT-01513 Vilnius (Lithuania); Hála, Jan [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic)

    2013-11-15

    Spectral- and time-resolved infrared phosphorescence set-up was adapted for detection from surfaces of solid samples by utilizing fiber optics. Its abilities are demonstrated on the detection of singlet oxygen photosensitization by intrinsic (protoporphyrin IX synthesized from ALA) and extrinsic (TPPS{sub 4} and TMPyP) photosensitizers in in vitro layers of cultured 3T3 murine fibroblasts and HeLa cells mimicking in vivo tissues. Complex decays of phosphorescence of the photosensitizers were detected. The data were approximated by multi-exponential decays, however, no straightforward explanation of the individual components was found. Singlet oxygen phosphorescence kinetics were obtained with rise-times corresponding to singlet oxygen lifetimes ranging from 0.7μs to 1.0μs and single-exponential decay times between 5.3μs and 6.5μs for different photosensitizers and cell lines. -- Highlights: ► Spectral- and time-resolved IR phosphorescence excited and collected by lightguides. ► Detection of singlet oxygen photosensitization in in vitro layers of cultured cells. ► Complex decays of PS phosphorescence approximated by multi-exponential decays. ► Singlet oxygen life-times ranging from 0.7μs to 1.0μs. ► Singlet oxygen exponential decay times 5.3–6.5μs for different PS and cell lines.

  4. Internal conversions in Higgs decays to two photons

    OpenAIRE

    Firan, Ana; Stroynowski, Ryszard

    2007-01-01

    We evaluate the partial widths for internal conversions in the Higgs decays to two photons. For the Higgs masses of interest at LHC in the range of 100-150 GeV, the conversions to pairs of fermions represent significant fraction of Higgs decays.

  5. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    Science.gov (United States)

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications.

  6. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  7. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    Energy Technology Data Exchange (ETDEWEB)

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz, E-mail: k.Gericke@tu-bs.de [Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig (Germany); Shternin, Peter S., E-mail: pshternin@gmail.com; Vasyutinskii, Oleg S., E-mail: osv@pms.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251 (Russian Federation); Smolin, Andrey G. [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.

  8. Phosphorescence of vitreous 2-bromobenzophenone

    Science.gov (United States)

    Buravtseva, L. M.; Pyshkin, O. S.; Strzhemechny, M. A.; Avdeenko, A. A.

    2008-06-01

    Spectroscopic studies of vitreous 2-bromobenzophenone have been carried out over the respective domain of its stability. Glassy 2-bromobenzophenone samples were obtained by abrupt cooling of the melt by cold helium vapor. Quantum yield measurements allowed us to establish that the upper boundary of stable glass is slightly above 100K, while at about 220K the glass melts. Phosphorescence measurements at 4.2K showed that even at this low temperature the emission contains a strong excimer component. The energy position and shape (two bands) of the excimer emission are close to those observed in the crystal of 2-bromobenzophenone at higher temperatures. Contrary to findings in the crystal, the monomeric emission of the glass contains only one C =O stretch series, every band of which is substantially broader than in the crystal. As the temperature is raised, the monomeric emission intensity falls, disappearing completely above 70K.

  9. Induced phosphorescence of some aza- and thio-stilbenes embedded in thallium-exchanged zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Ciorba, S. [Department of Chemistry, University of Perugia, 06123 Perugia (Italy); Clennan, Edward L. [Department of Chemistry, University of Wyoming, Laramie, WY 82071 (United States); Mazzucato, U. [Department of Chemistry, University of Perugia, 06123 Perugia (Italy); Spalletti, A., E-mail: faby@unipg.i [Department of Chemistry, University of Perugia, 06123 Perugia (Italy)

    2011-06-15

    The emission properties of some aza-stilbenes (2-, 3- and 4-styrylpyridine) and thio-stilbenes [2- and 3-styrylthiophene and 1,2-di-(3-thienyl)ethene]have been investigated after inclusion in commercial (NaY) and cation-exchanged (TlY) faujasite zeolites to get information on the triplet properties through population of the T{sub 1} state induced by the heavy atom effect. The fluorescence properties in NaY and TlY were compared with those reported in solution. The phosphorescence spectra, observed in TlY at liquid nitrogen temperature, allowed the energy levels of the T{sub 1} states to be obtained. Phosphorescence lifetimes were also measured. Their comparison with the lifetime known for stilbene showed that the radiative decay is little affected by the heteroatoms. - Research highlights: {yields} The exchange of Na{sup +} with heavy Tl{sup +} cations in faujasite zeolites allowed the triplet properties of some hetero-stilbenes to be obtained. {yields} The absorption and fluorescence spectra in NaY and TlY were measured and compared with those in fluid solutions. {yields} The triplet energy levels and lifetimes of three aza-stilbenes and three thio-stilbenes in TlY were determined by measuring their phosphorescence emission at liquid nitrogen temperature.

  10. Highly efficient and stable phosphorescent organic light-emitting diodes employing TADF materials as host (Conference Presentation)

    Science.gov (United States)

    Fukagawa, Hirohiko; Iwasaki, Yukiko; Shimizu, Takahisa

    2016-09-01

    The OLED is one of the key devices for realizing next-generation displays and lighting. The efficiency of OLEDs has been improved markedly by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime of green/blue devices and the relatively high cost owing to the use of a costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent (TADF) materials as the host materials for phosphorescent emitters. Operationally stable green PHOLEDs are demonstrated by employing a TADF material as the host since the triplet excitons of the host, which are key elements in operational degradation, are transferred rapidly to the emitter following the Förster process via reverse intersystem crossing from the triplet to singlet states. In this case, the concentration of the emitter can be reduced to 1-3 wt%, similar to that in fluorescent OLEDs. Although an external quantum efficiency (EQE) of about 20% is obtained in many PHOLEDs regardless of the TADF host, the operational lifetime strongly depends on the host. Our optimized green PHOLED employing only 1 wt% phosphorescent emitter exhibits an EQE of over 20%, a small efficiency roll-off, and a long operational lifetime on the order of 10,000 h with an initial luminance of 1,000 cd/m2.

  11. Two-photon absorption of Zn(II) octupolar molecules.

    Science.gov (United States)

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  12. Synthesizing arbitrary two-photon polarization mixed states

    CERN Document Server

    Wei, T C; Branning, D; Goldbart, P M; James, D F V; Jeffrey, E; Kwiat, P G; Mukhopadhyay, S; Peters, N A; Wei, Tzu-Chieh; Altepeter, Joseph B.; Branning, David; Goldbart, Paul M.; Jeffrey, Evan; Kwiat, Paul G.; Mukhopadhyay, Swagatam; Peters, Nicholas A.

    2005-01-01

    Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: Scheme I requires several sets of crystals, while Scheme II requires only a single set, but relies on decohering the pump beam. Additionally, we describe two further schemes which are much easier to implement. Although the total capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maximally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.

  13. Direct frequency comb two-photon laser cooling and trapping

    Science.gov (United States)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  14. Modulation of attosecond beating in resonant two-photon ionization

    CERN Document Server

    Galán, Álvaro J; Martín, Fernando

    2014-01-01

    We present a theoretical study of the photoelectron attosecond beating at the basis of RABBIT (Reconstruction of Attosecond Beating By Interference of Two-photon transitions) in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, its sidebands exhibit a peaked phase shift as well as a modulation of the beating frequency itself. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a sensitive non-holographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena quantitatively with a general finite-pulse analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes, at a negligible computational cost. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  15. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.

    Science.gov (United States)

    Zhu, Guangping; Xu, Chunxiang; Zhu, Jing; Lu, Changgui; Cui, Yiping; Sun, Xiaowei

    2008-11-01

    High density zinc oxide nanorods with uniform size were synthesized on (100) silicon substrate by vapor-phase transport method. The scanning electron microscopy images reveal that the nanorods have an average diameter of about 400 nm. The X-ray diffraction pattern demonstrates the wurtzite crystalline structure of the ZnO nanorods growing along [0001] direction. The single-photon excited photoluminescence presents a strong ultraviolet emission band at 394 nm and a weak visible emission band at 600 nm. When the ZnO nanorods were respectively pumped by various wavelength lasers from 520 nm to 700 nm, two-photon excited ultraviolet photoluminescence was observed. The dependence of the two-photon excited photoluminescence intensity on the excitation wavelength and power was investigated in detail.

  16. High-order dispersion effects in two-photon interference

    CERN Document Server

    Mazzotta, Z; Cipriani, D; Olivares, S; Paris, M G A

    2016-01-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performances. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects.

  17. Two-photon interference from two blinking quantum emitters

    Science.gov (United States)

    Jöns, Klaus D.; Stensson, Katarina; Reindl, Marcus; Swillo, Marcin; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo; Björk, Gunnar

    2017-08-01

    We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the Hong-Ou-Mandel second-order intensity correlation function g(2 )(τ ) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2 )(0 ) =0.5 value when distinguishable photons from two emitters impinge on a beam splitter. Our findings explain the significant differences between linear losses and blinking for correlation measurements between independent sources and are experimentally verified using a parametric down-conversion photon-pair source. We show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishability of photons emitted by independent quantum emitters.

  18. Two-photon interaction between trapped ions and cavity fields

    CERN Document Server

    Semião, F L

    2006-01-01

    In this paper, we generalize the ordinary two-photon Jaynes-Cummings model (TPJCM) by considering the atom (or ion) to be trapped in a simple harmonic well. A typical setup would be an optical cavity containing a single ion in a Paul trap. Due to the inclusion of atomic vibrational motion, the atom-field coupling becomes highly nonlinear what brings out quite different behaviors for the system dynamics when compared to the ordinary TPJCM. In particular, we derive an effective two-photon Hamiltonian with dependence on the number operator of the ion's center-of-mass motion. This dependence occurs both in the cavity induced Stark-shifs and in the ion-field coupling, and its role in the dynamics is illustrated by showing the time evolution of the probability of occupation of the electronic levels for simple initial preparations of the state of the system.

  19. Two-photon-induced cycloreversion reaction of chalcone photodimers

    Science.gov (United States)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  20. Four-dimensional multi-site two-photon excitation

    CERN Document Server

    Daria, Vincent Ricardo; Bowman, Richard; Redman, Stephen; Bachor, Hans-A

    2009-01-01

    We report the first demonstration of dynamic and arbitrary multi-site two-photon excitation in three-dimensional (3D) space using the holographic projection method. Rapid temporal response (fourth dimension) is achieved through high-speed non-iterative and non-optimized calculation of the hologram using a video graphics accelerator board. We verify that the projected asymmetric spot configurations have sufficient spatiotemporal photon density for localized two-photon excitation. This system is a significant advance and ready for applications such as time-resolved 3D photolysis of complex biological cell and neuronal networks, 3D microscopy, non-linear micro-fabrication and volume holographic optical storage.

  1. Simultaneous two-photon excitation of photodynamic therapy agents

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, E.A.; Fisher, W.G. [Oak Ridge National Lab., TN (United States)]|[Photogen, Inc., Knoxville, TN (United States); Partridge, W.P. [Oak Ridge National Lab., TN (United States); Dees, H.C. [Photogen, Inc., Knoxville, TN (United States); Petersen, M.G. [Univ. of Tennessee, Knoxville, TN (United States). College of Veterinary Medicine

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  2. Two-photon imaging through a multimode fiber

    CERN Document Server

    Morales-Delgado, Edgar E; Moser, Christophe

    2015-01-01

    In this work we demonstrate 3D imaging using two-photon excitation through a 20 cm long multimode optical fiber (MMF) of 350 micrometers diameter. The imaging principle is similar to single photon fluorescence through a MMF, except that a focused femtosecond pulse is delivered and scanned over the sample. In our approach, focusing and scanning through the fiber is accomplished by digital phase conjugation using mode selection by time gating with an ultra-fast reference pulse. The excited two-photon emission is collected through the same fiber. We demonstrate depth sectioning by scanning the focused pulse in a 3D volume over a sample consisting of fluorescent beads suspended in a polymer. The achieved resolution is 1 micrometer laterally and 15 micrometers axially. Scanning is performed over an 80x80 micrometers field of view. To our knowledge, this is the first demonstration of high-resolution three-dimensional imaging using two-photon fluorescence through a multimode fiber.

  3. Two-photon production of charged pion and kaon pairs

    CERN Document Server

    Dominick, J; Sanghera, S; Shelkov, V; Skwarnicki, T; Stroynowski, R; Volobuev, I P; Wei, G; Zadorozhny, P; Artuso, M; Goldberg, M; He, D; Horwitz, N; Kennett, R; Mountain, R; Moneti, G C; Muheim, F; Mukhin, Y; Playfer, S; Rozen, Y; Stone, S; Thulasidas, M; Vasseur, G; Zhu, G; Bartelt, J; Csorna, S E; Egyed, Z; Jain, V; Kinoshita, K; Edwards, K W; Ogg, M; Britton, D I; Hyatt, E R F; MacFarlane, D B; Patel, P M; Akerib, D S; Barish, B C; Chadha, M; Chan, S; Cowen, D F; Eigen, G; Miller, J S; O'Grady, C; Urheim, J; Weinstein, A J; Acosta, D; Athanas, M; Masek, G E; Paar, H P; Sivertz, M; Gronberg, J B; Kutschke, R; Menary, S R; Morrison, R J; Nakanishi, S; Nelson, H N; Nelson, T K; Qiao, C; Richman, J D; Ryd, A; Tajima, H; Sperka, D; Witherell, M S; Procario, M; Balest, R; Cho, K; Daoudi, M; Ford, W T; Johnson, D R; Lingel, K; Lohner, M; Rankin, P; Smith, J G; Alexander, J P; Bebek, C; Berkelman, K; Bloom, K; Browder, T E; Cassel, David G; Cho, H A; Coffman, D M; Drell, P S; Ehrlich, R; Gaidarev, P B; Galik, R S; García-Sciveres, M; Geiser, B; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Jones, C D; Jones, S L; Kandaswamy, J; Katayama, N; Kim, P C; Kreinick, D L; Ludwig, G S; Masui, J; Mevissen, J; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Salman, S; Sapper, M; Würthwein, F; Avery, P; Freyberger, A P; Rodríguez, J; Stephens, R; Yang, S; Yelton, J; Cinabro, D; Henderson, S; Liu, T; Saulnier, M; Wilson, R; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Gollin, G; Ong, B; Palmer, M; Selen, M; Thaler, J J; Sadoff, A J; Ammar, R; Ball, S; Baringer, P; Bean, A; Besson, D; Coppage, D; Copty, N K; Davis, R; Hancock, N; Kelly, M; Kwak, N; Lam, H; Kubota, Y; Lattery, M; Nelson, J K; Patton, S; Perticone, D; Poling, R A; Savinov, V; Schrenk, S; Wang, R; Alam, M S; Kim, I J; Nemati, B; O'Neill, J J; Severini, H; Sun, C R; Zoeller, M M; Crawford, G; Daubenmier, C M; Fulton, R; Fujino, D; Gan, K K; Honscheid, K; Kagan, H; Kass, R; Lee, J; Malchow, R L; Skovpen, Y; Sung, M; White, C; Butler, F; Fu, X; Kalbfleisch, G R; Ross, W R; Skubic, P L; Snow, J; Wang, P L; Wood, M; Brown, D N; Fast, J; McIlwain, R L; Miao, T; Miller, D H; Modesitt, M; Payne, D; Shibata, E I; Shipsey, I P J; Wang Pei Ning; Battle, M; Ernst, J; Kwon, Y; Roberts, S; Thorndike, E H; Wang, C H

    1994-01-01

    A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~\\rm fb^{-1} of data collected by the CLEO II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0~GeV/c^2, and at scattering angles more than 53^\\circ away from the \\gamma\\gamma collision axis in the \\gamma\\gamma center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5~GeV/c^2. hardcopies with figures can be obtained by writing to to: Pam Morehouse ...

  4. Two photon exchange in elastic electron-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Peter Blunden; Wolodymyr Melnitchouk; John Tjon

    2005-06-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.

  5. Recent two-photon physics results from ARGUS

    Science.gov (United States)

    Živko Representing Argus Collaboration, Tomi

    1995-07-01

    Two photon production of π+π+π0π-π-, K+K-π+π-, K+K-π+π0π-, π+π0π-, and π+π- has been studied using the ARGUS detector at the e+e- storage ring DORIS II at DESY. A partial wave analysis was performed on the five-pion and three-pion final states. In the reaction γγ→ωρ0 is showed that the partial-wave with spin and parity (JP,Jz)=(2+,±2) dominates. The cross section and angular distributions of the reaction γγ→φρ0→K+K-π+π- were measured for the first time. The production of the vector-meson pair φω is observed in the two-photon reaction γγ→K+K-π+π0π-. The two-photon width of the tensor meson a2(1320) was measured in the decay channel π+π0π-. An upper limit, significantly lower than indicated by previous experiments was set on the radiative width of the π2(1670) meson. An upper limit was set on the radiative width of the f0(975)in the decay channel π+π-.

  6. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  7. Exploring control parameters of two photon processes in solutions

    Indian Academy of Sciences (India)

    Debabrata Goswami; Amit Nag

    2012-01-01

    Two-photon microscopy depends extensively on the two-photon absorption cross-sections of biologically relevant chromophores. High repetition rate (HRR) lasers are essential in multiphoton microscopy for generating satisfactory signal to noise at low average powers. However, HRR lasers generate thermal distortions in samples even with the slightest single photon absorption. We use an optical chopper with HRR lasers to intermittently `blank’ irradiation and effectively minimize thermal effects to result in a femtosecond z-scan setup that precisely measures the two-photon absorption (TPA) cross-sections of chromophores. Though several experimental factors impact such TPA measurements, a systematic effort to modulate and influence TPA characteristics is yet to evolve. Here, we present the effect of several control parameters on the TPA process that are independent of chromophore characteristics for femtosecond laser pulse based measurements; and demonstrate how the femtosecond laser pulse repetition rate, chromophore environment and incident laser polarization can become effective control parameters for such nonlinear optical properties.

  8. Two-Photon Absorption in Organometallic Bromide Perovskites.

    Science.gov (United States)

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  9. Two-photon pumped cavity lasing in novel dye doped bulk matrix rods

    Science.gov (United States)

    He, Guang S.; Zhao, Chan F.; Bhawalkar, Jayant D.; Prasad, Paras N.

    1995-12-01

    Trans-4-[p-(N-ethyl-N-hydroxyethylamino)styryl]-N-methylpyridi that possesses a much greater two-photon absorption cross section and much stronger upconversion fluorescence emission than common organic dyes (such as rhodamine), when excited with near infrared laser radiation. Utilizing ASPT doped bulk polymer rods, two-photon pumped frequency upconverted cavity lasing has been accomplished using a Q-switched Nd:YAG laser as the pump source. The wavelength and pulse duration were ˜600 nm and 3-6 ns, respectively, for the cavity lasing; whereas the corresponding values for pump pulses were 1.06 μm and ˜10 ns, respectively. For a 7 mm long sample rod with a dopant concentration d0=8×10-3 M/L, the conversion efficiency from the absorbed pump energy to the cavity lasing output was ˜3.5% at a pump energy level of 1.3 mJ. The lasing lifetime, in terms of pulse numbers, was more than 4×104 pulses at 2 Hz repetition rate and room temperature.

  10. Properties of two-photon pumped cavity lasing in novel dye doped solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    He, G.S.; Bhawalkar, J.D.; Zhao, C.; Prasad, P.N. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemistry

    1996-05-01

    Two-photon pumped frequency upconversion cavity lasing at {approximately}600 nm is accomplished in three types of dye-doped solid rods pumped with {approximately}10 ns and 1.06-{micro}m IR laser pulses. The dopant is a new dye, trans-4-[p-(N-ethyl-N-(hydroxyethyl)amino)styryl]-N-methylpyridinium tetraphenylborate, abbreviated as ASPT, which possesses a greater two-photon absorption cross section and stronger upconversion fluorescence emission than common commercial dyes (such as rhodamine). Three different materials were chosen as solid matrices: poly(2-hydroxyethyl methacrylate), VYCOR porous glass, and sol-gel glass. Using a Q-switched Nd:YAG pulse laser as the pump source, strong cavity lasing could be achieved in these three ASPT doped solid rods as well as in ASPT solution in a liquid cell. The spectral, temporal, and spatial characteristics of the cavity lasing output have been systematically investigated. The measured output-input characteristics, lasing lifetime, and damage threshold for the three different rods are presented.

  11. Two photon fluorescence imaging of lipid membrane domains and potentials using advanced fluorescent probes

    Science.gov (United States)

    Kilin, Vasyl; Darwich, Zeinab; Richert, Ludovic; Didier, Pascal; Klymchenko, Andrey; Mély, Yves

    2013-02-01

    Biomembranes are ordered and dynamic nanoscale structures critical for cell functions. The biological functions of the membranes strongly depend on their physicochemical properties, such as electrostatics, phase state, viscosity, polarity and hydration. These properties are essential for the membrane structure and the proper folding and function of membrane proteins. To monitor these properties, fluorescence techniques and notably, two-photon microscopy appear highly suited due to their exquisite sensitivity and their capability to operate in complex biological systems, such as living cells and tissues. In this context, we have developed multiparametric environment-sensitive fluorescent probes tailored for precise location in the membrane bilayer. We notably developed probes of the 3-hydroxychromone family, characterized by an excited state intramolecular proton transfer reaction, which generates two tautomeric emissive species with well-separated emission bands. As a consequence, the response of these probes to changes in their environment could be monitored through changes in the ratios of the two bands, as well as through changes in the fluorescence lifetimes. Using two-photon ratiometric imaging and FLIM, these probes were used to monitor the surface membrane potential, and were applied to detect apoptotic cells and image membrane domains.

  12. Nature of phosphorescence kinetics of xanthene dyes in biological media

    Science.gov (United States)

    Maryakhina, V. S.

    2016-10-01

    In the paper the experimental results on the nature of the phosphorescence of xanthene dyes in biological media are discussed. Phosphorescence is a monomolecular process and should have exponential type. However, the kinetics of the phosphorescence of xanthene dyes has two-exponential type in biological media. Analysis of data by experimental and theoretical methods showed that the second exponent connects on the phosphorescence of dye dimers. It can be used in biomedical investigation for dose selection of preparation delivery.

  13. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; García Lastra, Juan Maria; De La Torre, Gema

    2015-01-01

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range...... of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels...... and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices...

  14. Two-Photon-Absorption Induced Superradiance of a New Organic Dye PSPS

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 王筱梅; 杨胜军; 许心光; 赵显; 邵宗书; 蒋民华

    2002-01-01

    The linear and nonlinear optical properties of a new two-photon absorption (TPA) dye, trans-4-(4'-pyrrolidinyl styryl)-N-methyl pyridinium methyl sulfate (abbreviated as PSPS) is reported. Intense red superradiance with a peak located at 625nm can be observed from PSPS solution in benzyl alcohol when pumped by a focused picosecond laser beam operated at 1064nm. The lifetimes of one-photon absorption (OPA) and TPA fluorescence were measured to be 370 and 384ps, respectively. The pulse widths of OPA and TPA superradiance were 60 and 58 ps, respectively. The highest net upconversion efficiency from the absorbed pump laser to the upconverted superradiance is 8.3% at the pump energy of 0.6 mJ.

  15. (Un)determined finite regularization dependent quantum corrections: the Higgs decay into two photons and the two photon scattering examples

    CERN Document Server

    Cherchiglia, A L; Nemes, M C; Sampaio, Marcos

    2012-01-01

    We investigate the appearance of arbitrary, regularization dependent parameters introduced by divergent integrals in two a priori finite but superficially divergent amplitudes: the Higgs decay into two photons and the two photon scattering. We use a general parametrization of ultraviolet divergences which explicitates such ambiguities. Thus we separate in a consistent way using Implicit Regularization the divergent, finite and regularization dependent parts of the amplitudes which in turn are written as surface terms. We find that, although finite, these amplitudes are ambiguous before the imposition of physical conditions namely momentum routing invariance in the loops of Feynman diagrams. In the examples we study momentum routing invariance turns out to be equivalent to gauge invariance. We also discuss the results obtained by different regularizations and show how they can be reproduced within our framework allowing for a clear view on the origin of regularization ambiguities.

  16. Detection of free oxygen in tissues and testing of primary step of photodynamics action by time-resolved phosphorescence of photosensitizer

    Science.gov (United States)

    Losev, Anatoly P.; Knukshto, Valentin N.; Zhuravkin, Ivan N.

    1995-01-01

    Highly phosphorescent photosensitizer Pd-tetra (o-methoxy-p-sulfo) phenyl porphyrin (Pd- MSPP) was used to follow the primary events of photodynamic action -- quenching of triplet states by free oxygen in different systems: water solutions of proteins, cells and tissues in vivo and in vitro. The photosensitizer forms complexes with proteins in solutions and biosystems showing remarkable hypsochromic shifts of band and an increase of the quantum yield and lifetime of phosphorescence at the binding to proteins. In absence of oxygen the lifetime of phosphorescence is almost single exponential, depends on the energy of the lowest triplet state of the sensitizer. The photochemical quenching of the triplets by cell components is negligible. In the presence of free oxygen the quenching of the sensitizer triplets takes place. The emission spectrum of singlet oxygen with maximum 1271 nm was recorded in water protein solutions and quantum yield of sensitized luminescence was measured. In the systems studied oxygen consumption was detected and oxygen concentration was estimated in the course of photodynamics by an increase in photosensitizer phosphorescence lifetime, using laser flash photolysis technique. At least two exponential kinetic of the phosphorescence decay shows that the distribution of the free oxygen is not uniform in tissues. The unexpected effect of photoinduced hyperoxia was observed just after the several minutes of tumor exposition with following slow development of a hyposia in a course of continual light exposition.

  17. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  18. Two-photon imaging and analysis of neural network dynamics

    Science.gov (United States)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  19. Two-photon imaging and analysis of neural network dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luetcke, Henry; Helmchen, Fritjof [Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2011-08-15

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  20. Two-photon excited surface plasmon enhanced energy transfer between DAPI and gold nanoparticles: Opportunities in intra-cellular imaging and sensing

    Science.gov (United States)

    Zhang, Yinan; Birch, David J. S.; Chen, Yu

    2011-09-01

    We have demonstrated energy transfer between 4'-6-Diamidino-2-phenylindole (DAPI), a commonly used DNA label, and gold nanoparticles under two-photon excitation in solution using fluorescence lifetime imaging microscopy (FLIM). With comparable size and concentration, gold nanorods (GNRs) are shown to provide more efficient energy transfer than gold nanospheres (GNSs). We attribute this transfer enhancement effect to the longitudinal surface plasmon mode of GNRs overlapping with the excitation wavelength. Energy transfer under two-photon excitation between GNRs and DAPI has also been observed in cell culture and found to be in accord with the solution phase results.

  1. Two-photon quantum interference in plasmonics: theory and applications.

    Science.gov (United States)

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  2. Chromophore design for large two-photon absorption

    Science.gov (United States)

    Dudley, Christopher

    2014-11-01

    Conjugated oligothiophene chromophores are compared and studied for designing large linear and nonlinear absorption cross-sections. Optical properties of chromophores synthesized by the Naval Research Laboratory are modeled to construct a design factor of merit to predict and understand two-photon absorption (TPA) designs. Computer modeling to optimize parameters to produce photo active chromophores is conducted. Geometry, π-center (electron relay) and the electron donor or acceptor groups attached to the π-centers are considered for importance in TPA. This work could serve equally well as guide for quick back of the envelop research or industrial design verifications as well as an outline for introducing computation methods to students.

  3. New two-photon based nanoscopic modalities and optogenetics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    -matter interaction on these scales involves the combination of optimal light-sculpting [4] with the use of optimized shapes in micro-robotics structures [5]. Microfabrication processes such as two-photon photo-polymerization offer three-dimensional resolutions for creating custom-designed monolithic microstructures...... that can be equipped with optical trapping handles for convenient mechanical control using only optical forces [6]. These microstructures illustrated above can be effectively handled with simultaneous top- and side-view on our BioPhotonics Workstation to undertake six-degree-of-freedom optical actuation...

  4. Two-photon polymerization of immune cell scaffolds

    DEFF Research Database (Denmark)

    Olsen, Mark Holm

    and easy to use chip integrated migration platform. Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection molded commercially available polymer chip for analysis of directed cell migration. Acrylate...... also present a poly (ethylene glycol) diacrylate (PEGDA) based strategy to fabricate soft 3D hydrogel scaffolds. Our experiments with the hydrogel confirm we can control the mechanical properties and introduce biochemical cues on the surface that are recognized by fibroblast cells. Finally we present...

  5. The Nelson Model with Less Than Two Photons

    CERN Document Server

    Galtbayar, A; Yajima, K

    2002-01-01

    We study the spectral and scattering theory of the Nelson model for an atom interacting with a photon field in the subspace with less than two photons. For the free electron-photon system, the spectral property of the reduced Hamiltonian in the center of mass coordinates and the large time dynamics are determined. If the electron is under the influence of the nucleus via spatially decaying potentials, we locate the essential spectrum, prove the absence of singular continuous spectrum and the existence of the ground state, and construct wave operators giving the asymptotic dynamics.

  6. Two-photon tomography using on-chip quantum walks

    CERN Document Server

    Titchener, James; Sukhorukov, Andrey

    2016-01-01

    We present a conceptual approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits, and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum-walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so is well suited for integration with on-chip superconducting photon detectors.

  7. Two Photon Decays of Charmonia from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards

    2006-07-12

    We make the first calculation in lattice QCD of two-photon decays of mesons. Working in the charmonium sector, using the LSZ reduction to relate a photon to a sum of hadronic vector eigenstates, we compute form-factors in both the space-like and time-like domains for the transitions {eta}{sub c} {yields} {gamma}*{gamma}* and {chi}{sub c0} {yields} {gamma}*{gamma}*. At the on-shell point we find approximate agreement with experimental world-average values.

  8. Quantum teleportation of one- and two-photon superposition states

    Institute of Scientific and Technical Information of China (English)

    李英; 张天才; 张俊香; 谢常德

    2003-01-01

    Quantum teleportation of one- and two-photon superposition states based on EPR entanglement of continuouswave two-mode squeezed state is discussed. The fidelities of teleportation are deduced for two different input quantum states. The dependence of the fidelity on the parameters of EPR entanglement and the gain of the classical channels are shown numerically. Comparing with the teleportation of Fock state and coherent state, it is pointed out that for given EPR entanglement and classical gain, the higher the nonclassicality of the input state, the lower the accessible fidelity of teleportation.

  9. Spectral Features of FM Spectroscopy of Two-Photon Interactions

    Institute of Scientific and Technical Information of China (English)

    夏慧荣; JohnL.Hall

    1994-01-01

    The spectral features of FM two-photon resonant interaction processes have been calculated for five different frequency modulation versions of counter-propagating incident fields. It is found that the proposed new modulation version (case b in the text) provides novel spectral features for a completely canceled absorption and a sharp dispersion shape at the fundamental beat note. Moreover, its absorption feature appears at the second harmonic of the RF modulation frequency generated by the joint modes via six interaction pathways without mutual phase shift. Such features persist even when the effects of the second-order sidebands of the incident fields are taken into account. Application potentials are emphasized.

  10. Inclusive $D*^{+-}$ Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV e^+e^-D^{*+-}X)$ in this kinematical region is measured and the sigma(e^+e^- ---> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

  11. Two-photon photoassociative spectroscopy of ultracold 88-Sr

    CERN Document Server

    de Escobar, Y N Martinez; Pellegrini, P; Nagel, S B; Traverso, A; Yan, M; Côté, R; Killian, T C

    2008-01-01

    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X$^1\\Sigma_g^+$ state of the $^{88}$Sr$_2$ dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, $a_{88}=-1.4(6) a_0$. For the intermediate state, we use a bound level on the metastable $^1S_0$-$^3P_1$ potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.

  12. Two-photon photoassociative spectroscopy of ultracold Sr88

    Science.gov (United States)

    Martinez de Escobar, Y. N.; Mickelson, P. G.; Pellegrini, P.; Nagel, S. B.; Traverso, A.; Yan, M.; Côté, R.; Killian, T. C.

    2008-12-01

    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the XΣg+1 state of the Sr288 dimer. Measurement of the binding energy allows us to determine the s -wave scattering length a88=-1.4(6)a0 . For the intermediate state, we use a bound level on the metastable S01-P13 potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.

  13. Measuring Luminescence Lifetime With Help of a DSP

    Science.gov (United States)

    Danielson, J. D. S.

    2009-01-01

    An instrument for measuring the lifetime of luminescence (fluorescence or phosphorescence) includes a digital signal processor (DSP) as the primary means of control, generation of excitation signals, and analysis of response signals. The DSP hardware in the present instrument makes it possible to switch among a variety of operating modes by making changes in software only.

  14. Two-Photon Holographic Stimulation of ReaChR

    Science.gov (United States)

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  15. Inclusive D*(+/-) production in two photon collisions at LEP

    CERN Document Server

    Prokofiev, Denis Olegovich

    2001-01-01

    In this thesis I present my results on the measurement of the open charm production in two-photon collision events done with the L3 detector at Large Electron Positron machine (LEP). The data sample was collected from 1997 through 2000 at center-of-mass energies ranging from 183 GeV to 209 GeV, corresponding to a total integrated luminosity of 683.4pb −1. The open charm production in two-photon collision events extrapolated to the full phase space is estimated to be: s&parl0;e+e-&rarrr;e +e-cc&d1;X&parr0;=9 23±69±109±222pb. The differential cross sections d s /dpT(D*±) and d s /d:η(D*±): are also measured as functions of transverse momentum pT(D*±) and the absolute value of pseudorapidity :η(D*±):, respectively. A fit to the data estimating the relative contributions of Direct and Resolved open charm production mechanisms is performed, giving (28.7 ± 5.6)% and (71.3 ± 8.8)%, respectively. Using those relative fractions, the Direct and Resolved process cross sections yield: s&p...

  16. High-order dispersion effects in two-photon interference

    Science.gov (United States)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  17. Theory of Two-Photon Absorptions in Graphene Fragments

    Science.gov (United States)

    Aryanpour, K.; Shukla, A.; Mazumdar, S.; Sandhu, A.; Roberts, A.

    2012-02-01

    Electron-electron correlations in graphene is currently an active field of research [1-3]. The carbon atoms in graphene have the same sp^2 hybridization as in strongly correlated π-conjugated polymer systems. The low energy behavior in graphene however appears to be reasonably described within the one-electron Dirac massless fermions model. Historically, the occurrence of the lowest two-photon state below the optical one-photon state provided the strongest proof for strong electron correlations in linear polyenes [4]. We systematically study the Coulomb interaction effects on the ground state and nonlinear absorptions in graphene fragments as a function of system size, beginning from the smallest stable fragment coronene. We report high order calculations of one- vs two-photon spin singlet and triplet states, in coronene, hexabenzocoronene and other molecular fragments that clearly indicate the strong role of electron-electron interactions. We will discuss the implications of our work on molecular systems for the thermodynamic limit of graphene. [4pt] [1] Siegel David A.; et al., PNAS, v108, 28, 11365-11369 (2011)[0pt] [2] Gr"onqvist J. H.; et al., arXiv: 1107.5653v1[0pt] [3] Uchoa B.; et al., arXiv: 1109.1577v1[0pt] [4] Ramasesha S.; et al., J. Chem. Phys. 80, 3278 (1984)

  18. Nonresonant two-photon transitions in length and velocity gauges

    Science.gov (United States)

    Jentschura, U. D.

    2016-08-01

    We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi frequencies under the "gauge" transformation from the length to the velocity gauge. It is shown that gauge invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color absorption. The arguments leading to this conclusion are supported by analytic calculations which express the matrix elements in terms of hypergeometric functions, and ramified by a "master identity" which is fulfilled by off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the length gauge. The study of the gauge dependence of atomic processes highlights subtle connections between the concept of asymptotic states, the gauge transformation of the wave function, and infinitesimal damping parameters for perturbations and interaction Hamiltonians that switch off the terms in the infinite past and future [of the form exp(-ɛ |t |)] . We include a pertinent discussion.

  19. Simultaneous two-photon excitation of photodynamic therapy agents

    Science.gov (United States)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  20. A [111]-Cut Si Hemisphere Two-Photon Response Photodetector

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-Huan; CHEN Zhan-Guo; JIA Gang; WANG Hai-Yan; GAO Yan-Jun; LI Yi1

    2011-01-01

    Properties of two-photon response in a [lll]-cut nearly-intrinsic Si hemisphere photodetector are studied. The measured photocurrent of the photodetector responding to the 1.32μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voitage. Also, the photocurrent is independent of polarization. Such properties are in good agreement with the theory of two-photon absorption. The isotropic photocurrent generated from the [lll]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of Xxxxx /Xxxyy for silicon performing at 1.32μm is calculated to be 2.4 via the fitted function of the anisotropic photocurrent from the [110]-cut sample.%Properties of two-photon response in a [111]-cut nearly-intrinsic Si hemisphere photodetector are studied.The measured photocurrent of the photodetector responding to the 1.32 μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voltage.Also,the photocurrent is independent of polarization.Such properties are in good agreement with the theory of two-photon absorption.The isotropic photocurrent generated from the [111]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of Xxxxx /Xxxyy for silicon performing at 1.32μm is calculated to be 2.4via the fitted function of the anisotropic photocurrent from the [110]-cut sample.Silicon materials have a variety of applications in microelectronics and silicon optoelectronics and are still attractive to relevant researchers.Commercial Si photodetectors are largely designed based on singlephoton absorption (SPA).However,nonlinear characteristics have been exhibited in silicon devices.Specifically,two-photon absorption (TPA) has attracted much attention in such devices of Si p-n and p-i-n photodiodes,Si waveguides and Si avalanche diodes,etc.for the autocorrelation measurements of

  1. Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference

    Institute of Scientific and Technical Information of China (English)

    LV Fan; SUN Fang-Wen; ZOU Chang-Ling; HAN Zheng-Fu; GUO Guang-Can

    2011-01-01

    We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons. Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.%@@ We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons.Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.

  2. Measurement of the Cross Section for open b-Quark Production in Two-Photon Interactions at LEP

    CERN Document Server

    Schael, S; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, L; Schlatter, D; Teubert, F; Valassi, A; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, E; Vayaki, A; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, R; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu, S L; Wu, X; Zobernig, G; Dissertori, G

    2007-01-01

    Inclusive \\beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of $698\\mathrm{pb}^{-1}\\,$ collected by the ALEPH detector with $\\sqrt{s}$ between 130 and 209 \\GeV . The b quarks were identified using lifetime information. The cross section is found to be \\[ \\mathrm{ \\sigma(e^+ e^- \\rightarrow e^+ e^- b \\bar{b}\\, X) = (5.4\\pm 0.8\\,_{stat} \\pm 0.8\\,_{syst}} )\\,\\mathrm{pb},\\] which is consistent with Next-to-Leading Order QCD.

  3. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same

  4. Electromagnetically induced absorption and transparency in an optical-rf two-photon coupling configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fu Guangsheng [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Li Xiaoli [College of Physical Science and Technology, Hebei University, Baoding 071002 (China)], E-mail: xiaolixiaoli001@yahoo.com.cn; Zhuang Zhonghong; Zhang Lianshui; Yang Lijun; Li Xiaowei; Han Li [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Manson, Neil B.; Wei Changjiang [Laser Physics Center, Research School of Physical Sciences and Engineering, Australian Nation University, Canberra, ACT 0200 (Australia)

    2008-01-07

    We study electromagnetically induced absorption (EIA) and transparency (EIT) in an optical-rf two-photon coupling configuration. It is shown that the interference effect due to interacting dark resonances results in an EIA for a resonant two-photon coupling and this EIA is observed to evolve into an EIT when there is a detuning in the two-photon coupling.

  5. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  6. Two-Photon Micromaser with Initial Atomic Coherence

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Hui; DU Si-De; CHEN Xiao-Shuang

    2005-01-01

    @@ We investigate the quantum dynamics ora two-photon micromaser pumped by atoms injected in the superpositionstate of the upper and intermediate levels. We simulate a master equation governing the system by the MonteCarlo wavefunction approach and analyse the steady-state behaviour as a function of the atomic transit time.The atomic coherence can effectively enhance the intensity and sub-Poissonian of the cavity field as comparedwith the atomic mixture. It is also discovered that the phase of the cavity field can be shifted by adjusting thedetuning between the atom and field. This result shows that it is possible to manipulate the phase of the cavityfield by detuning, due to atomic coherence.

  7. Two-photon resonant, stimulated processes in krypton and xenon

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p..-->..s, d..-->..p, and f..-->..d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p..-->..s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs.

  8. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  9. Two-photon assisted clock comparison to picosecond precision

    CERN Document Server

    Zhang, Shi-Wei; Yao, Yin-Ping; Wan, Ren-Gang; Zhang, Tong-Yi

    2015-01-01

    We have experimentally demonstrated a clock comparison scheme utilizing time-correlated photon pairs generated from the spontaneous parametric down conversion process of a laser pumped beta-barium borate crystal. The coincidence of two-photon events are analyzed by the cross correlation of the two time stamp sequences. Combining the coarse and fine part of the time differences at different resolutions, a 64 ps precision for clock synchronization has been realized. We also investigate the effects of hardware devices used in the system on the precision of clock comparison. The results indicate that the detector's time jitter and the background noise will degrade the system performance. With this method, comparison and synchronization of two remote clocks could be implemented with a precision at the level of a few tens of picoseconds.

  10. Measurement of bottom quark production in two photon collisions

    CERN Document Server

    Saremi, Sepehr

    2001-01-01

    The cross section for bottom quark production in two-photon collisions, sigma( e+e- → e+e- bb¯X), is measured for the first time. The measurement is performed with the L3 detector at the Large Electron Positron (LEP) collider at the European Center for Nuclear and Particle Physics (CERN). The data corresponds to 410 pb-1 taken at center-of-mass energies from 189 GeV to 202 GeV. Hadrons containing a bottom quark are identified by detecting electrons or muons from their semi-leptonic decays. The measured cross section is in excess of the Next to Leading Order QCD prediction by a factor of three.

  11. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  12. Anomalous two-photon spectral features in warm rubidium vapor

    Science.gov (United States)

    Perrella, C.; Light, P. S.; Milburn, T. J.; Kielpinski, D.; Stace, T. M.; Luiten, A. N.

    2016-09-01

    We report observation of anomalous fluorescence spectral features in the environs of a two-photon transition in a rubidium vapor when excited with two different wavelength lasers that are both counterpropagating through the vapor. These features are characterized by an unusual trade-off between the detunings of the driving fields. Three different hypothetical processes are presented to explain the observed spectra: a simultaneous three-atom and four-photon collision, a four-photon excitation involving a light field produced via amplified spontaneous emission, and population pumping perturbing the expected steady-state spectra. Numerical modeling of each hypothetical process is presented, supporting the population pumping process as the most plausible mechanism.

  13. Two-photon transition form factor of c ¯ quarkonia

    Science.gov (United States)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  14. Nuclear two-photon decay in 0 +→0 + transitions

    Science.gov (United States)

    Kramp, J.; Habs, D.; Kroth, R.; Music, M.; Schirmer, J.; Schwalm, D.; Broude, C.

    1987-11-01

    The two-photon decay of the first excited 0 + state of 16O has been measured using the Heidelberg-Darmstadt crystal ball. A branching ratio of {Γ γγ}/{Γ tot} = (6.6±0.5) · 10 -4 was obtained. As in the cases of 40Ca and 90Zr previously reported by us, the 2γ decay of 16O proceeds via double E1 and M1 transitions of similar strength; the evidence is the observed interference term in the 2γ angular correlation. The ratio of the matrix elements {α E1 }/{χ} for 16O was restricted to the two inverse values (-6.2±1.5) or (-0.16±0.04). An interpretation of 2γ matrix elements observed for 16O, 40Ca and 90Zr in terms of the electric polarizabilities and magnetic susceptibility is given leading to a qualitative understanding of this decay mode.

  15. Theoretical analysis on two-photon absorption spectroscopy in a confined four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Jintao Bai; Li Li; Yanpeng Zhang; Xun Hou

    2009-01-01

    We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorption due to enhanced contribution of slow atoms. We also find that the suppression and the enhancement of two-photon absorption can be modified by changing the strength of the control field and the detuning of three laser fields. This control of two-photon absorption may have some applications in information processing and optical devices.

  16. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density.

    Science.gov (United States)

    Wang, Jing; Zhang, Zehui; Zha, Shuai; Zhu, Yinyan; Wu, Peiyi; Ehrenberg, Benjamin; Chen, Ji-Yao

    2014-11-01

    The 5,10,15,20-tetrakis(1-methyl 4-pyridinio) porphyrins (TMPyP), a photosensitizer used for photodynamic therapy of cancers (PDT), were linked to carbon dots (CDots) to form the conjugates of CDot-TMPyP by the electrostatic force. The 415 nm emission band of CDots was well overlapped with the absorption band of TMPyP, so that the Cdots in conjugates can work as donor to transfer the energy to TMPyP moiety by fluorescence resonance energy transfer (FRET) with an FRET efficiency of 45%, determined by the fluorescence lifetime change between the free CDots and conjugated CDots. The two-photon absorption cross section (TPACS) of TMPyP is as low as 110 GM and the TMPyP thus be not suitable for two-photon PDT. Whereas the CDots have high TPACS, and their TPACS are excitation wavelength dependent with the maximum value of 15000 GM at 700 nm. Therefore, the conjugates of CDot-TMPyP were explored for two-photon excitation (TPE) PDT. The two-photon image of CDot-TMPyP in Hela cells was clearly seen under the excitation of a 700 nm femto-second (fs) laser. The singlet oxygen production of CDot-TMPyP was also much higher than that of TMPyP alone under TPE of a 700 nm fs laser. The in vitro PDT killing was further achieved with CDot-TMPyP by TPE of the 700 nm fs laser. Particularly herein the low power density of fs laser from unfocused laser beam was successfully used to carry out the TPE PDT, because of the high TPACS of CDots. These results demonstrate that the CDot-TMPyP conjugates are promising for TPE PDT and needed to investigate further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation

    Science.gov (United States)

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-01-01

    GM and the hyperpolarizability is 106 × 10-30 esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties. Electronic supplementary information (ESI) available: CID spectrum of Ag29(DHLA)12, spectroscopic characterization of the synthesized Ag clusters, lifetime measurements of silver cluster, schematic diagram showing the excited state relaxation dynamics, HRS intensity versus wavelength for Ag29(DHLA)12, DFT optimized structures and TDDFT calculated one photon absorption spectra of Ag29(DHLA)12, Leading excitations for transition for prototype structures two-photon cross section for Ag29(DHLA)12 at different wavelengths and optimal setting for the ESI-MS. See DOI: 10.1039/c5nr08122j

  18. Time and spectral resolved phosphorescence of singlet oxygen and pigments in photosystem II particles

    Energy Technology Data Exchange (ETDEWEB)

    Dedic, R.; Svoboda, A.; Psencik, J.; Lupinkova, L.; Komenda, J.; Hala, J. E-mail: hala@karlov.mff.cuni.cz

    2003-05-01

    Singlet oxygen generated via chlorophyll triplets in photosynthetic systems can destroy basic components of photosynthetic apparatus. In order to study this process a sensitive spectroscopic experimental set-up was built to detect both weak infrared (IR) chlorophyll phosphorescence (between 900 and 1000 nm) and singlet oxygen phosphorescence (at 1270 nm). The spectral and time resolution of the used monochromator and photon counting multiscaler are sufficient to provide two-dimensional matrix of temporally and spectrally resolved IR luminescence data. We have studied IR emission of photosystem II particles in D{sub 2}O and H{sub 2}O buffer including the effect of the sodium dodecyl sulphate (SDS) detergent. Both sub-microsecond lifetime of chlorophyll triplet states and microsecond lifetime of singlet oxygen were determined. The singlet oxygen lifetime in D{sub 2}O (of 18 {mu}s) was approximately five times longer than that in H{sub 2}O. Quantum efficiency of singlet oxygen generation in photosystem II particles was significantly lower than that in chlorophyll a in acetone, however, it could be substantially increased by addition of SDS.

  19. Efficient charge balance in blue phosphorescent organic light emitting diodes by two types of mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyung Jin; Lee, Ho Won; Lee, Song Eun; Sun, Yong; Hwang, Kyo Min; Yoo, Han Kyu; Lee, Sung Kyu [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of)

    2015-07-31

    The authors have demonstrated a highly efficient and long-lifetime blue phosphorescent organic light emitting diode (PHOLED) that uses two types of mixed layers. The mixed layers play the role of carrier injection control and exciton generation zone extension. One of the layers is applied for mixing the hole transport layer (HTL) and host material at the HTL side for carrier injection control. The other works as a mixed electron transporting layer (ETL) and host material at the ETL side. The optimized blue PHOLED has been shown to achieve high performance owing to the mixed layer effects. It gave a maximum luminous efficiency of 25.55 cd/A, maximum external quantum efficiency of 13.05%, and lifetime of 7.24 h under 500 cd/m{sup 2}. These results indicate that applying mixed layers is a simple and efficient method that does not require significant structural change. - Highlights: • Highly efficient blue phosphorescent organic light-emitting diode (PHOLEDs) • Hole transporting layer consists with mixed layer for delayed hole injection • The blue PHOLEDs with long lifetime due to suppression of quenching process.

  20. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  1. Optically stimulated phosphorescence in orthoclase feldspar over the millisecond to second time scale

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Jain, Mayank

    2010-01-01

    In the past, time-resolved IR stimulated luminescence (TR-IRSL) curves from feldspar have mainly been measured over a few hundred μs with the purpose of estimating the lifetimes of the components. In this study, we present the decay form of time-resolved IRSL and IR stimulated phosphorescence (IRSP......) from orthoclase feldspar covering over 8 orders of magnitude (50 ns to 7 s). A detailed characterisation of the slowly decaying signals (ms to s time scales) from feldspar is undertaken to obtain further insight into the role of re-trapping in both the IR stimulated luminescence (IRSL...

  2. Two-photon polymerization for fabrication of biomedical devices

    Science.gov (United States)

    Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.

    2007-01-01

    Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.

  3. Review of two-photon exchange in electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  4. Higgs decay into two photons in a warped extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Juliane; Hoerner, Clara; Malm, Raoul; Novotny, Kristiane; Schmell, Christoph [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Neubert, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Cornell University, Department of Physics, LEPP, Ithaca, NY (United States)

    2014-05-15

    A detailed five-dimensional calculation of the Higgs-boson decay into two photons is performed in both the minimal and the custodially protected Randall-Sundrum (RS) model, where the Standard Model (SM) fields propagate in the bulk and the scalar sector lives on or near the IR brane. It is explicitly shown that the R{sub ξ} gauge invariance of the sum of diagrams involving bosonic fields in the SM also applies to the case of these RS scenarios. An exact expression for the h → γγ amplitude in terms of the five-dimensional (5D) gauge-boson and fermion propagators is presented, which includes the full dependence on the Higgs-boson mass. Closed expressions for the 5D W-boson propagators in theminimal and the custodial RS model are derived, which are valid to all orders in v{sup 2}/M{sup 2}{sub KK}. In contrast to the fermion case, the result for the bosonic contributions to the h → γγ amplitude is insensitive to the details of the localization of the Higgs profile on or near the IR brane. The various RS predictions for the rate of the pp → h → γγ process are compared with the latest LHC data, and exclusion regions for the RS model parameters are derived. (orig.)

  5. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  6. Two-photon excited photoconversion of cyanine-based dyes

    Science.gov (United States)

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  7. Two-Photon Absorption in Conjugated Energetic Molecules.

    Science.gov (United States)

    Bjorgaard, Josiah A; Sifain, Andrew E; Nelson, Tammie; Myers, Thomas W; Veauthier, Jacqueline M; Chavez, David E; Scharff, R Jason; Tretiak, Sergei

    2016-07-07

    Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation. We found calculated vertical excitation energies to be in good agreement with experiment for most molecules. Peak TPA intensities were found to be significant and on the order of 10(2) GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity were used to examine the character of relevant transitions. Modification of molecular substituents, such as additional oxygen or other functional groups, produces significant changes in electronic structure, OPA, and TPA and improves oxygen balance. The results show that certain molecules are apt to undergo nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  8. Two-Photon-Exchange Effects and $\\Delta(1232)$ Deformation

    CERN Document Server

    Zhou, Hai-Qing

    2016-01-01

    The two-photon-exchange (TPE) contribution in $ep\\rightarrow ep\\pi ^0$ with $W=M_{\\Delta}$ and small $Q^2$ is calculated and its corrections to the ratios of electromagnetic transition form factors $R_{EM} = E_{1+}^{(3/2)}/M_{1+}^{(3/2)} $ and $R_{SM} = S_{1+}^{(3/2)}/M_{1+}^{(3/2)}$, are analysed. A simple hadronic model is used to estimate the TPE amplitude. Two phenomenological models, MAID2007 and SAID, are used to approximate the full $ep\\rightarrow ep\\pi ^0$ cross sections which contain both the TPE and the one-photon-exchange (OPE) contributions. The genuine the OPE amplitude is then extracted from an integral equation by iteration. We find that the TPE contribution is not sensitive to whether MAID or SAID is used as input in the region with $Q^2<2$ GeV$^2$. It gives small correction to $R_{EM}$ while for $R_{SM}$, the correction is about -10\\% at small $\\epsilon$ and about $1\\%$ at large $\\epsilon$ for $Q^2\\approx2.5$ GeV$^2$. The large correction from TPE at small $\\epsilon$ must be included in th...

  9. Two-photon autofluorescence spectroscopy of oral mucosa tissue

    Science.gov (United States)

    Edward, Kert; Shilagard, Tuya; Qiu, Suimin; Vargas, Gracie

    2011-03-01

    The survival rate for individuals diagnosed with oral cancer is correlated with the stage of detection. Thus the development of novel techniques for the earliest possible detection of malignancies is of critical importance. Single photon (1P) autofluorescence spectroscopy has proven to be a powerful diagnostic tool in this regard, but 2P (two photon) spectroscopy remains essentially unexplored. In this investigation, a spectroscopic system was incorporated into a custom-built 2P laser scanning microscope. Oral cancer was induced in the buccal pouch of Syrian Golden hamsters by tri-weekly topical application of 9,10-dimethyl-1,2-benzanthracene (DMBA).Three separated sites where investigated in each hamster at four excitation wavelengths from 780 nm to 890 nm. A Total of 8 hamsters were investigated (4 normal and 4 DMBA treated). All investigated sites were imaged via 2p imaging, marked for biopsy, processed for histology and H&E staining, and graded by a pathologist. The in vivo emission spectrum for normal, mild/high grade dysplasia and squamous cell carcinoma is presented. It is shown that the hamsters with various stages of dysplasia are characterized by spectral differences as a function of depth and excitation wavelength, compared to normal hamsters.

  10. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  11. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    Science.gov (United States)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  12. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    Science.gov (United States)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  13. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ..omega../sub VUV/ = 2..omega../sub L1/ +- ..omega../sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs.

  14. Two-photon Photoemission of Organic Semiconductor Molecules on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aram [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes.In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a fewmonolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal.Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.

  15. Multicolor excitation two-photon microscopy: in vivo imaging of cells and tissues

    Science.gov (United States)

    Li, Dong; Zheng, Wei; Qu, Jianan Y.

    2010-02-01

    Two-photon microscopy based on endogenous fluorescence provides non-invasive imaging of living biological system. Reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), keratin, collagen and elastin are the endogenous fluorophores widely used as the contrast agents for imaging metabolism and morphology of living cells and tissue. The fluorescence of tryptophan, a kind of essential amino acid, conveys the information on cellular protein content, structure and microenvironment. However, it can't be effectively excited by the commonly used Ti:sapphire femtosecond laser. Because each endogenous fluorophore provides limited information, it is desirable to simultaneously excite fluorescence from as many fluorophores as possible to obtain accurate biochemical and morphological information on biomedical samples. In this study, we demonstrate that the supercontinuum generation from a photonic crystal fiber (PCF) excited by an ultrafast source can be used to excite multiple endogenous nonlinear optical signals simultaneously. By employing the spectral lifetime detection capability, this technology provides a unique approach to sense the fine structure, protein distribution and cellular metabolism of cells and tissues in vivo. In particular, with application of acetic acid, a safe contrast agent used for detection cervical cancer for many years, the tryptophan signals reveal cellular morphology and even cell-cell junctions clearly. Moreover, it was found that the pH value dependent lifetime of tryptophan fluorescence could provide the qualitative information on the gradient of pH value in epithelial tissue. Finally, we will demonstrate the potential of our multi-color TPEF microscopy to investigate the early development of cancer in epithelial tissue.

  16. Fluorescence enhancement of asCP595 is due to consecutive absorbance of two photons

    Science.gov (United States)

    Savitsky, Alexander P.; Agranat, Michail B.; Lukyanov, Konstantin A.; Schuttrigkeit, Tanja; von Feilitzsch, Till; Kompa, Christian; Michel-Beyerle, Maria-Elisabeth

    2004-06-01

    Colored proteins are widely used as gene markers in biotechnology. Chromophores result from autocatalytic posttranslational reactions involving several amino acids. The protein asCP595 was isolated for the first time from the coral as a weakly fluorescent chromoprotein with a fluorescence maximum at 595 nm. Strong illumination in the blue wing of the low energy absorption band results in a superlinear increase of the fluorescence yield and shifts its fluorescence spectrum by about 10 nm to the red. Time resolved fluorescence measurements using excitation pulses with 10 ps duration revealed a multiexponential decay pattern with time constants in the range from 20 ps to 2.1 ns. The ratio of amplitudes related to the different time constants depends on the intensity of illumination favoring the ns component at high intensities. Transient absorption measurements using ultrashort excitation pulses (150 fs, 1 kHz repetition rate) did not reveal excited states with nanosecond lifetimes as observed in fluorescence upon excitation using 10 ps pulses. This observation leads to the notion that within 10 ps a second photon is absorbed by a state not yet populated within 150 fs. As a consequence we propose two different excited singlet states operative in asCP595, one with low fluorescence quantum yield peaking at 595 nm and one with high fluorescence quantum yield peaking at 605 nm which is populated via the consecutive absorption of two photons at high excitation intensities.

  17. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    Science.gov (United States)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  18. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.

    Science.gov (United States)

    Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2017-07-01

    The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

  19. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues.

    Science.gov (United States)

    Durr, Nicholas J; Weisspfennig, Christian T; Holfeld, Benjamin A; Ben-Yakar, Adela

    2011-02-01

    Endogenous fluorescence provides morphological, spectral, and lifetime contrast that can indicate disease states in tissues. Previous studies have demonstrated that two-photon autofluorescence microscopy (2PAM) can be used for noninvasive, three-dimensional imaging of epithelial tissues down to approximately 150 μm beneath the skin surface. We report ex-vivo 2PAM images of epithelial tissue from a human tongue biopsy down to 370 μm below the surface. At greater than 320 μm deep, the fluorescence generated outside the focal volume degrades the image contrast to below one. We demonstrate that these imaging depths can be reached with 160 mW of laser power (2-nJ per pulse) from a conventional 80-MHz repetition rate ultrafast laser oscillator. To better understand the maximum imaging depths that we can achieve in epithelial tissues, we studied image contrast as a function of depth in tissue phantoms with a range of relevant optical properties. The phantom data agree well with the estimated contrast decays from time-resolved Monte Carlo simulations and show maximum imaging depths similar to that found in human biopsy results. This work demonstrates that the low staining inhomogeneity (∼ 20) and large scattering coefficient (∼ 10 mm(-1)) associated with conventional 2PAM limit the maximum imaging depth to 3 to 5 mean free scattering lengths deep in epithelial tissue.

  20. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  1. Dynamical modeling of pulsed two-photon interference

    Science.gov (United States)

    Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-11-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong-Ou-Mandel, and Mach-Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers.

  2. Voltage-sensitive rhodol with enhanced two-photon brightness.

    Science.gov (United States)

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  3. Determining the Quark Charges by One and Two Photon Processes.

    Science.gov (United States)

    Janah, Arjun

    1982-05-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known "color-suppression" effect. Single photon/weak-boson processes such as (nu)N (--->) (nu)X distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e('+)e('-) (--->) e('+)e('-) + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum -dependent) color suppression and (b) the added contribution from pair production of charged gluons. This is done, and it is observed that: (i) in icq, the ratio R('(gamma)(gamma)(2 jet)) is not simply a number given by the quark charges; it depends on the gluon mass, on kinematics and on the particular differential cross-section considered; (ii) the deviation of icq cross-sections from the fcq values depends crucially on whether one includes "untagged" events; if this is done, the deviation is large; the charged gluon contribution is mainly responsible for this deviation; the quark contribution is smaller than naively expected. Finally, comparison is made with experimental data on e('+)e('-) (--->) e('+)e('-) + 2 jets. Here, icq is found to be in better agreement than fcq, for a broad range of gluon masses. A suitably modified equivalent photon approximation is employed.

  4. Two-photon excitation photodynamic therapy with Photofrin

    Science.gov (United States)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  5. A Two- Photon Femtosecond Laser System for Three-Dimensional Microfabrication and Data Storage

    Institute of Scientific and Technical Information of China (English)

    蒋中伟; 周拥军; 袁大军; 黄文浩; 夏安东

    2003-01-01

    Utilizing the well-focused femtosecond laser with extreme high pulse intensity, we built a two-photon microfabrication and data storage system, which was introduced through several functional parts. Based on this homemade system, several three-dimensional microstructures were fabricated by two-photon polymerization, and three-dimensional data storage of six-layers was achieved by two-photon excitation with a photochromic material.

  6. Two-photon path-entangled states in multi-mode waveguides

    CERN Document Server

    Poem, Eilon; Silberberg, Yaron

    2012-01-01

    We experimentally show that two-photon path-entangled states can be coherently manipulated by multi-mode interference in multi-mode waveguides. By measuring the output two-photon spatial correlation function versus the phase of the input state, we show that multi-mode waveguides perform as nearly-ideal multi-port beam splitters at the quantum level, creating a large variety of entangled and separable multi-path two-photon states.

  7. Two-photon approximation in the theory of the electron recombination in hydrogen

    OpenAIRE

    Solovyev, D.; Labzowsky, L.

    2010-01-01

    A rigorous QED theory of the multiphoton decay of excited states in hydrogen atom is presented. The "two-photon" approximation is formulated which is limited by the one-photon and two-photon transitions including cascades transitions with two-photon links. This may be helpful for the strict description of the recombination process in hydrogen atom and, in principle, for the history of the hydrogen recombination in the early Universe.

  8. Description of the states of two-photon interference in an optical gating Michelson interferometer

    Science.gov (United States)

    Pongophas, Ekkarat; Sriklin, Watthana; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2016-01-01

    We investigate the interference of two photons in an optical gating Michelson interferometer. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two-photon state evolution. Both representations lead to identical results. The evolution analysis describes the result by the interference of four two-photon traveling states, whereas the space-time domain analysis reveals that the classical interference of the high-intensity light source is identical to two-photon interference in the quantum regime, except for a multiplicative factor of (n2), where n is the number of photons.

  9. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles.

    Science.gov (United States)

    Jiang, Cuifeng; Zhao, Tingting; Yuan, Peiyan; Gao, Nengyue; Pan, Yanlin; Guan, Zhenping; Zhou, Na; Xu, Qing-Hua

    2013-06-12

    Metal nanoparticles have potential applications as bioimaging and photosensitizing agents. Aggregation effects are generally believed to be adverse to their biomedical applications. Here we have studied the aggregation effects on two-photon induced photoluminescence and singlet oxygen generation of Au nanospheres and Au nanorods of two different aspect ratios. Aggregated Au nanospheres and short Au nanorods were found to display enhanced two-photon induced photoluminescence and singlet oxygen generation capabilities compared to the unaggregated ones. The two-photon photoluminescence of Au nanospheres and short Au nanorods were enhanced by up to 15.0- and 2.0-fold upon aggregation, and the corresponding two-photon induced singlet oxygen generation capabilities were enhanced by 8.3 and 1.8-fold, respectively. The two-photon induced photoluminescence and singlet oxygen generation of the aggregated long Au nanorods were found to be lower than the unaggregated ones. These results support that the change in their two-photon induced photoluminescence and singlet oxygen generation originate from aggregation modulated two-photon excitation efficiency. This finding is expected to foster more biomedical applications of metal nanoparticles as Au nanoparticles normally exist in an aggregated form in the biological environments. Considering their excellent biocompatibility, high inertness, ready conjugation, and easy preparation, Au nanoparticles are expected to find more applications in two-photon imaging and two-photon photodynamic therapy.

  10. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence(TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization(TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  11. Time-reversed two-photon interferometry for phase super-resolution

    CERN Document Server

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Nakanishi, Toshihiro; Kitano, Masao

    2013-01-01

    We observed two-photon phase super-resolution in an unbalanced Michelson interferometer with classical Gaussian laser pulses. Our work is a time-reversed version of a two-photon interference experiment using an unbalanced Michelson interferometer. A measured interferogram exhibits two-photon phase super-resolution with a high visibility of 97.9% \\pm 0.4%. Its coherence length is about 22 times longer than that of the input laser pulses. It is a classical analogue to the large difference between the one- and two-photon coherence lengths of entangled photon pairs.

  12. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    HU RenTao; LU LiangFei; RUAN BanFeng; WANG Peng; ZHANG MingLiang; ZHOU HongPing; LI ShengLi; WU JieYing; TIAN YuPeng

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence (TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization (TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  13. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    Science.gov (United States)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  14. Enhancement of Squeezing in Two-Photon Jaynes-Cummings Model with Atomic Measurement

    Institute of Scientific and Technical Information of China (English)

    YE Sai-Yun

    2006-01-01

    We investigate the squeezing properties of the cavity field in the degenerate two-photon Jaynes-Cummings model. Compared with the one-photon Jaynes-Cummings model, the squeezing is more pronounced in the case of two-photon Jaynes-Cummings model under certain conditions.

  15. Event-by-event simulation of nonclassical effects in two-photon interference experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Delina, M.; Raedt, H. De

    2012-01-01

    A corpuscular simulation model for second-order intensity interference phenomena is discussed. It is shown that both the visibility V = 1/2 predicted for two-photon interference experiments with two independent sources and the visibility V = 1 predicted for two-photon interference experiments with a

  16. Integrated single- and two-photon light sheet microscopy using accelerating beams

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2017-01-01

    We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode, a...

  17. Two-photon fluorescence probes for imaging of mitochondria and lysosomes.

    Science.gov (United States)

    Yang, Wanggui; Chan, Pui Shan; Chan, Miu Shan; Li, King Fai; Lo, Pik Kwan; Mak, Nai Ki; Cheah, Kok Wai; Wong, Man Shing

    2013-04-28

    Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.

  18. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  19. Production of e, $\\mu$ and $\\tau$ Pairs in Untagged Two-Photon Collisions at LEP

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    The two-photon collision reaction e+e- --> e+e-l+l- has been studied at root(s) ~ 91 GeV using the L3 detector at LEP for l = e, muon , tau. We have analysed untagged configurations where the two photons are quasi-real. Good agreement is found between our measurements and the order alpha**4 QED expectation.

  20. Temporal dynamics of two-photon-pumped amplified spontaneous emission in slab organic crystals

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Ding, Ran; Yang, Jie; Ma, Yu-Guang; Wang, Hai-Yu; Gao, Bing-Rong; Feng, Jing; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    We have studied the ultrafast dynamics of two-photon-pumped amplified spontaneous emission (ASE) from a single crystal by the time-resolved fluorescence upconversion technique. With the increase of two-photon pump intensities, the emission decay time is dramatically shortened by 30 times (from 3 ns

  1. Two-Photon Interference with the Type Ⅱ Spontaneous Parametric Down-Conversion

    Institute of Scientific and Technical Information of China (English)

    江云坤; 史保森; 李剑; 段开敏; 范晓锋; 郭光灿

    2001-01-01

    The two-photon polarized entangled state is generated from the type Ⅱ spontaneous parametric down-conversion pumped by a femtosecond pulse. The two-photon interference is observed in the Hong-Ou-Mandel interferometer. The high visibility of the interference is restored with narrow band interference filters placed in front of the detectors.

  2. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  3. Description of states of two-photon interference in optical gating Michelson interferometer

    Science.gov (United States)

    Pongophas, Ekkarat; Sinsarp, Asawin; Suwanna, Sujin; Chunwachirasiri, Withoon; Singhsomroje, Wisit

    2015-07-01

    The interference of two photons in the optical gating Michelson interferometer is investigated. The phenomenon is studied using two different representations of photons: the space-time domain and a step-by-step two photon state evolution. Both representations lead to an equivalent description of the two-photon states which is the interference of four cases of two-photon traveling states, as implied by the evolution analysis. Additionally, the space-time domain analysis reveals that the classical interference of high-intensity light source is identical to the two-photon interference in the quantum regime except for a multiplicative factor of (n 2), where n is the number of photons.

  4. Imaging theory and resolution improvement of two-photon confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    唐志列; 杨初平; 裴红津; 梁瑞生; 刘颂豪

    2002-01-01

    The nonlinear effect of two-photon excitation on the imaging property of two-photonconfocal microscopy has been analyzed by the two-photon fluorescence intensity transfer functionderived in this paper. The two-photon fluorescence intensity transfer function in a confocal micros-copy is given. Furthermore the three-dimensional point spread function (3D-PSF) and thethree-dimensional optical transfer function (3D-OTF) of two-photon confocal microscopy are de-rived based on the nonlinear effect of two-photon excitation. The imaging property of two-photonconfocal microscopy is discussed in detail based on 3D-OTF. Finally the spatial resolution limit oftwo-photon confocal microscopy is discussed according to the uncertainty principle.

  5. Phosphorescence and optically detected magnetic resonance of 4',6-diamidino-2-phenylindole (DAPI) and its complexes with [d(CGACGTCG)]2 and [d(GGCCAATTGG)]2.

    Science.gov (United States)

    Misra, Ajay; Ozarowski, Andrzej; Maki, August H

    2002-05-21

    Phosphorescence and optical detection of magnetic resonance (ODMR) is used to study the excited triplet state of 4',6-diamidino-2-phenyl indole (DAPI) and its complexes with the oligonucleotides [d(CGACGTCG)](2) and [d(GGCCAATTGG)](2), where binding occurs by intercalation between GC base pairs and by minor groove insertion, respectively. Weaker binding of DAPI to phosphate is also detected, and the triplet state of this complex is characterized. Intercalation with [d(CGACGTCG)](2) produces a phosphorescence redshift, while groove binding with [d(GGCCAATTGG)](2) leads to a blueshift. Both binding modes give rise to a small decrease in the zero-field splitting (zfs) of the DAPI triplet state. The largest redshift and zfs decrease are found for the phosphate complex. The phosphorescence lifetimes are shorter by an order of magnitude than that of indole or tryptophan as expected for the lower triplet state energy, E(00), of DAPI. The lifetimes agree well with a correlation with E(00) introduced by Siebrand [Siebrand, W. (1966) J. Chem. Phys. 44, 4055-4057] except for the [d(GGCCAATTGG)](2) minor groove complex with a lifetime that is about 20% too long. The longer lifetime is attributed to distortion of the amidino groups in this complex, resulting in less efficient intersystem crossing.

  6. Two-photon autofluorescence/FLIM/SHG endoscopy to study the oral cavity and wound healing in humans (Conference Presentation)

    Science.gov (United States)

    König, Karsten

    2016-03-01

    Monitoring the oral cavity noninvasively with superior 3D resolution is realized by clinical multiphoton tomography and high NA two-photon endoscopy without the need of additional contrast agents. The technology behind this investigation is based on nonlinear optical contrast of the multiphoton tomograph MPTflex®. Furthermore, the miniaturized GRIN endoscope was used to realize more accessibility for more demanding wound conditions in skin. The MPTflex® distinguishes autofluorescence (AF) signals from second harmonic generation (SHG) signals simultaneously. Fluorescence lifetime imaging (FLIM) based on time correlated single photon counting (TCSPC) technology offers additional information on the functional level of the intratissue fluorophores, their binding status, and the contribution of SHG signals in chronic wounds.

  7. Long-lived and highly efficient green and blue phosphorescent emitters and device architectures for OLED displays

    Science.gov (United States)

    Eickhoff, Christian; Murer, Peter; Geßner, Thomas; Birnstock, Jan; Kröger, Michael; Choi, Zungsun; Watanabe, Soichi; May, Falk; Lennartz, Christian; Stengel, Ilona; Münster, Ingo; Kahle, Klaus; Wagenblast, Gerhard; Mangold, Hannah

    2015-09-01

    In this paper, two OLED device concepts are introduced. First, classical phosphorescent green carbene emitters with unsurpassed lifetime, combined with low voltage and high efficiency are presented and the associated optimized OLED stacks are explained. Second, a path towards highly efficient, long-lived deep blue systems is shown. The high efficiencies can be reached by having the charge-recombination on the phosphorescent carbene emitter while at the same time short emissive lifetimes are realized by fast energy transfer to the fluorescent emitter, which eventually allows for higher OLED stability in the deep blue. Device architectures, materials and performance data are presented showing that carbene type emitters have the potential to outperform established phosphorescent green emitters both in terms of lifetime and efficiency. The specific class of green emitters under investigation shows distinctly larger electron affinities (2.1 to 2.5 eV) and ionization potentials (5.6 to 5.8 eV) as compared to the "standard" emitter Ir(ppy)3 (5.0/1.6 eV). This difference in energy levels requires an adopted OLED design, in particular with respect to emitter hosts and blocking layers. Consequently, in the diode setup presented here, the emitter species is electron transporting or electron trapping. For said green carbene emitters, the typical peak wavelength is 525 nm yielding CIE color coordinates of (x = 0.33, y = 0.62). Device data of green OLEDs are shown with EQEs of 26 %. Driving voltage at 1000 cd/m2 is below 3 V. In an optimized stack, a device lifetime of LT95 > 15,000 h (1000 cd/m2) has been reached, thus fulfilling AMOLED display requirements.

  8. Light-harvesting ytterbium(III)-porphyrinate-BODIPY conjugates: synthesis, excitation-energy transfer, and two-photon-induced near-infrared-emission studies.

    Science.gov (United States)

    Zhang, Tao; Zhu, Xunjin; Wong, Wai-Kwok; Tam, Hoi-Lam; Wong, Wai-Yeung

    2013-01-07

    Based on a donor-acceptor framework, several conjugates have been designed and prepared in which an electron-donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron-acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower-energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the Yb(III) emission in the near-infrared (NIR) region with a quantum efficiency of up to 0.73% and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two-photon-absorption cross-sections that ranged from 1048-2226 GM and strong two-photon-induced NIR emission.

  9. Two-photon absorption and two-photon circular dichroism of L-tryptophan in the near to far UV region

    Science.gov (United States)

    Vesga, Yuly; Hernandez, Florencio E.

    2017-09-01

    Herein we report on the first measurements of the two-photon absorption (TPA) spectrum of L-tryptophan in DMSO solution in the near to far UV region and the two-photon circular dichroism (TPCD) signal corresponding to a transition at 200 nm. We demonstrate the application of the Double L-scan technique in the near to far UV region to perform polarization dependent TPA measurements of chiral molecules. TPCD measurements below 400 nm reveal that chiral molecules in solution, such as tryptophan/DMSO, can undergo photochemical reactions in front of prolonged exposure to UV radiation.

  10. Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission.

    Science.gov (United States)

    Yang, Yongsheng; Wang, Ke-Zhi; Yan, Dongpeng

    2016-06-22

    Ultra-long-persistent room temperature phosphorescence (RTP) materials have attracted much attention and present various applications in illumination, displays, and the bioimaging field; however, the persistent RTP is generally from the inorganic phosphor materials to date. Herein, we show that the metal coordination polymers (CPs) could be new types of emerging long-lived RTP materials for potential sensor applications. First, two kinds of Cd-based CPs, Cd(m-BDC)(H2O) (1) and Cd(m-BDC)(BIM) (2) (m-BDC = 1,3-benzenedicarboxylic acid; BIM = benzimidazole), were obtained through a hydrothermal process, and the samples were found to exhibit two-dimensional layered structures, which are stabilized by interlayer C-H···π interaction and π···π interaction, respectively. The CPs show unexpected second-time-scale ultra-long-persistent RTP after the removal of UV excitation, and this persistent emission can be detected easily on a time scale of 0-10 s. The CPs also feature a tunable luminescence decay lifetime by adjusting their coordination situation and packing fashion of ligands. Theoretical calculation further indicates that the introduction of the second ligand could highly influence the electronic structure and intermolecular electron transfer toward tailoring the RTP of the CP materials. Moreover, CP 2 exhibits well-defined pH- and temperature-dependent phosphorescence responses. Therefore, this work provides a facile way to develop new type of CPs with steady-state and dynamic tuning of the RTP properties from both experimental and theoretical perspectives, which have potential applications in the areas of displays, pH/temperature sensors, and phosphorescence logic gates. On account of suitable incorporation of inorganic and organic building blocks, it can be expected that the ultra-long-persistent RTP CPs can be extended to other similar systems due to the highly tunable structures and facile synthesis routes.

  11. Dispersion spreading of biphotons in optical fibres and two-photon interference

    CERN Document Server

    Brida, G; Genovèse, M; Gramegna, M; Krivitsky, L A

    2006-01-01

    We present the first observation of two-photon polarization interference structure in the second-order Glauber's correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fibre and the coincidence distribution is analyzed by means of the START-STOP method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.

  12. Coalescence and Anti-Coalescence Interference of Two-Photon Wavepacket in a Beam Splitter

    Institute of Scientific and Technical Information of China (English)

    WANG Kai-Ge; YANG Guo-Jian

    2004-01-01

    @@ We study theoretically the interference of a two-photon wavepacket in a beam splitter. We find that the spectrum symmetry for the two-photon wavepacket dominates the perfect coalescence and anti-coalescence interference.The coalescence interference is unrelated to photon entanglement. Only the anti-coalescence interference has evidence of photon entanglement. We prove that the two-photon wavepacket with an anti-symmetric spectrum is transparent to pass the 50/50 beam splitter, showing perfect anti-coalescence interference.

  13. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  14. Dispersion spreading of biphotons in optical fibers and two-photon interference.

    Science.gov (United States)

    Brida, G; Chekhova, M V; Genovese, M; Gramegna, M; Krivitsky, L A

    2006-04-14

    We present the first observation of two-photon polarization interference structure in the second-order Glauber correlation function of two-photon light generated via type-II spontaneous parametric down-conversion. In order to obtain this result, two-photon light is transmitted through an optical fiber and the coincidence distribution is analyzed by means of the start-stop method. Beyond the experimental demonstration of an interesting effect in quantum optics, these results also have considerable relevance for quantum communications.

  15. Search for a Higgs boson decaying into two photons in the CMS detector

    Indian Academy of Sciences (India)

    Roberta Volpe; on behalf of the CMS Collaboration

    2012-11-01

    A search for a Higgs boson decaying into two photons in collisions at the LHC at a centre-of-mass energy of 7 TeV is presented. The analysis is performed on a dataset corresponding to 1.66 fb-1 of data recorded in 2011 by the CMS experiment. Limits are set on the cross-section of a Standard Model Higgs boson decaying into two photons, and on the cross-section of a fermiophobic Higgs boson decaying into two photons.

  16. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    Science.gov (United States)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  17. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    Science.gov (United States)

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  18. Four-State Model for Three-Branch Molecule's Two-Photon Absorption Properties

    Institute of Scientific and Technical Information of China (English)

    SU Yan; WANG Pei-Ji; ZHAO Peng; RONG Zhen-Yu

    2006-01-01

    @@ We present a four-state model for calculating the two-photon absorption of multi-branched molecules by using the time-depended function method. The numerical results indicate that the two-photon absorption cross section has a strong enhancement for three-branch molecules compared to two-branch structures. The maximal two-photon-absorption cross section is 2.358 × 10-47 cm 4 s/photon. At the same time, the charge-transfer process for the charge-transfer states is visualized in order to explain mechanism about the maximal TPA cross section.

  19. Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells

    CERN Document Server

    Dutier, G; Hamdi, I; Maurin, I; Saltiel, S; Bloch, D; Ducloy, M; Dutier, Gabriel; Todorov, Petko; Hamdi, Ismah\\`{e}ne; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel; Ducloy, Martial

    2005-01-01

    The principle of coherent Dicke narrowing in a thin vapour cell, in which sub-Doppler spectral lineshapes are observed under a normal irradiation for a l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler-broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300 nm-thick Cs cell. Extension to the Raman situation is finally considered.

  20. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    CERN Document Server

    Palastro, J P; Johnson, L A; Hafizi, B; Wahlstrand, J K; Milchberg, H M

    2016-01-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive, vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than, but quickly surpassing, the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of 3rd harmonic generation, providing an additional two-photon excitation channel, fundamental + 3rd harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive, vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in atmosphere.

  1. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell

    Science.gov (United States)

    Zhang, TianYue; Lu, GuoWei; Shen, HongMing; Perriat, P.; Martini, M.; Tillement, O.; Gong, QiHuang

    2014-06-01

    Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently. The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method. The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect. The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations. Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label. The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

  2. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    Science.gov (United States)

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles Principal Author:Robert C. Leif, Newport InstrumentsSecondary Authors:Margie C. Becker, Phoenix Flow Systems Al Bromm, Virginia Commonw...

  3. A compact two photon light sheet microscope for applications in neuroscience

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2016-01-01

    We present a compact setup for two photon light sheet microscopy. By using pulsed Airy beam illumination we demonstrate eight-fold increase of the FOV compared to Gaussian light sheet with the same axial resolution....

  4. Solving Two Kinds of JC Models Relating to Two-Photon Process by Supersymmetric Transformation

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; Wei-Jun

    2004-01-01

    We propose two kinds of new Jaynes Cummings models relating to two-photon process by using the supersymmetric unitary transformation. The corresponding energy eigenvalues and eigenvectors are obtained.

  5. Two-photon absorption properties of a new series of 2CTσ chromophores

    Science.gov (United States)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  6. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    Science.gov (United States)

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles Principal Author:Robert C. Leif, Newport InstrumentsSecondary Authors:Margie C. Becker, Phoenix Flow Systems Al Bromm, Virginia Commonw...

  7. Observation of Nondegenerate Two-Photon Gain in GaAs

    CERN Document Server

    Reichert, Matthew; Salamo, Greg; Hagan, David J; Van Stryland, Eric W

    2016-01-01

    Two-photon lasers require materials with large two-photon gain (2PG) coefficients and low linear and nonlinear losses. Our previous demonstration of large enhancement of two-photon absorption in semiconductors for very different photon energies translates directly into enhancement of 2PG. We experimentally demonstrate nondegenerate 2PG in optically excited bulk GaAs via femtosecond pump-probe measurements. 2PG is isolated from other pump induced effects through the difference between measurements performed with parallel and perpendicular polarizations of pump and probe. An enhancement in the 2PG coefficient of nearly two orders-of-magnitude is reported. The results point a possible way toward two-photon semiconductor lasers.

  8. Turning-On of Coumarin Phosphorescence in Acetylacetonato Platinum Complexes of Cyclometalated Pyridyl-Substituted Coumarins

    Directory of Open Access Journals (Sweden)

    Andrej Jackel

    2015-04-01

    Full Text Available Two pyridine-functionalized coumarins differing with respect to the site of pyridine attachment to the coumarin dye (3 in L1 or 7 in L2 and with respect to the presence (L1 or absence (L2 of a peripheral NMe2 donor were prepared and used as cyclometalating ligands towards the Pt(acac fragment. X-ray crystal structures of complexes 1 and 2 show strong intermolecular interactions by π-stacking and short Pt∙∙∙Pt or C-H∙∙∙O hydrogen bonding that result in the formation of sheetlike packing patterns. The NMe2 donor substituent has a profound influence on the absorption and emission properties of the free coumarin dyes; L1 emits strongly while L2 is only weakly emissive. On binding to Pt(acac the strong fluorescence of L1 is partially quenched while coumarin phosphorescence is observed from cyclometalated L1 and L2. The ligand-centered nature of the LUMO was confirmed by IR spectroelectrochemistry while the assignment of the phosphorescence emission as ligand-based rests on the vibrational structuring, the negligible solvatochromism, the small temperature-induced Stokes shifts on cooling to 77 K, the emission lifetimes, and strong oxygen quenching. (TD-DFT calculations confirm our experimental results and provide an assignment of the electronic transitions and the spin density distributions in the T1 state.

  9. Absolute Frequency Measurement of Rubidium 5S-7S Two-Photon Transitions

    CERN Document Server

    Morzynski, Piotr; Ablewski, Piotr; Gartman, Rafal; Gawlik, Wojciech; Maslowski, Piotr; Nagorny, Bartlomiej; Ozimek, Filip; Radzewicz, Czeslaw; Witkowski, Marcin; Ciurylo, Roman; Zawada, Michal

    2013-01-01

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm) insensitive to first order in a magnetic field, is a promising candidate for frequency reference. The performed tests yield the transition frequency with accuracy better than reported previously.

  10. Fast two-photon neuronal imaging and control using a spatial light modulator and ruthenium compounds

    Science.gov (United States)

    Peterka, Darcy S.; Nikolenko, Volodymyr; Fino, Elodie; Araya, Roberto; Etchenique, Roberto; Yuste, Rafael

    2010-02-01

    We have developed a spatial light modulator (SLM) based microscope that uses diffraction to shape the incoming two-photon laser source to any arbitrary light pattern. This allows the simultaneous imaging or photostimulation of different regions of a sample with three-dimensional precision at high frame rates. Additionally, we have combined this microscope with a new class of two photon active neuromodulators with Ruthenium BiPyridine (RuBi) based cages that offer great flexibility for neuronal control.

  11. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd;

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  12. Two-photon ionization of atomic hydrogen with elliptically polarized light

    Science.gov (United States)

    Kassaee, A.; Rustgi, M. L.; Long, S. A. T.

    1988-01-01

    The theory of two-photon ionization of a hydrogenic state in the nonrelativistic dipole approximation is generalized for elliptically polarized light. An application to the metastable 2S state of atomic hydrogen is made. Significant differences in the angular distribution of the outgoing electrons are found depending upon the polarization of the photons. It is claimed that two-photon ionization employing elliptically polarized photons from lasers may provide an additional test for the theories of multiphoton ionization.

  13. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches.

    Science.gov (United States)

    Izquierdo-Serra, Mercè; Gascón-Moya, Marta; Hirtz, Jan J; Pittolo, Silvia; Poskanzer, Kira E; Ferrer, Èric; Alibés, Ramon; Busqué, Félix; Yuste, Rafael; Hernando, Jordi; Gorostiza, Pau

    2014-06-18

    Synthetic photochromic compounds can be designed to control a variety of proteins and their biochemical functions in living cells, but the high spatiotemporal precision and tissue penetration of two-photon stimulation have never been investigated in these molecules. Here we demonstrate two-photon excitation of azobenzene-based protein switches and versatile strategies to enhance their photochemical responses. This enables new applications to control the activation of neurons and astrocytes with cellular and subcellular resolution.

  14. Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging.

    Science.gov (United States)

    Fichte, Manuela A H; Weyel, Xenia M M; Junek, Stephan; Schäfer, Florian; Herbivo, Cyril; Goeldner, Maurice; Specht, Alexandre; Wachtveitl, Josef; Heckel, Alexander

    2016-07-25

    We successfully introduced two-photon-sensitive photolabile groups ([7-(diethylamino)coumarin-4-yl]methyl and p-dialkylaminonitrobiphenyl) into DNA strands and demonstrated their suitability for three-dimensional photorelease. To visualize the uncaging, we used a fluorescence readout based on double-strand displacement in a hydrogel and in neurons. Orthogonal two-photon uncaging of the two cages is possible, thus enabling complex scenarios of three-dimensional control of hybridization with light.

  15. Two-photon cooperative emission in the presence of athermal electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Enaki, N.A.; Mihalache, D

    1997-05-15

    The possibility of cooperative spontaneous two-photon emission of an extended radiators system and the influence of the external thermal electromagnetic field on the spontaneous emission rate, in such a system, are investigated. It is concluded that, in an external electromagnetic field, the two-photon cooperative emission rate increases significantly. The importance of this effect on the emission of gamma rays from inverted long-lived isomers triggered by X-ray thermal fields, is emphasized.

  16. Engineering Two-Atom Thermal Entanglement via Two-Photon Process

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-Qing; ZHOU Ling; SONG He-Shan; YI Xue-Xi

    2004-01-01

    We study that two atoms simultaneously interact with a single mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can employ the different couplings to produce the two-atom thermal entanglement in two-photon process. The different atomic spontaneous emission rates are also utilizable in generating thermal entanglement. We also investigate the effect of the can obtain a strong and steady entanglement.

  17. Two-Photon Exchange Corrections to Single Spin Asymmetry of Neutron and 3He

    Institute of Scientific and Technical Information of China (English)

    CHEN Dian-Yong; DONG Yu-Bing

    2011-01-01

    In a simple hadronic model, the two-photon exchange contributions to the single spin asymmetries for the nucleon and the 3He are estimated. The results show that the elastic contributions of two-photon exchange to the single spin asymmetries for the nucleon are rather small while those for the 3He are relatively large. Besides the strong angular dependence, the twophoton contributions to the single spin asymmetry for the 3He are very sensitive to the momentum transfer.

  18. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    Science.gov (United States)

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini; Coburn, Caleb; Thompson, Mark E.; Forrest, Stephen R.

    2017-05-01

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (>6.0 eV) that lead to molecular dissociation. Here we introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334+/-5 h (time to 80% of the 1,000 cd m-2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6+/-0.1 times improvement in a lifetime compared to conventional, unmanaged devices. To our knowledge, this significant improvement results in the longest lifetime for such a blue PHOLED.

  19. Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research

    Science.gov (United States)

    PERRY, SETH W.; BURKE, RYAN M.; BROWN, EDWARD B.

    2012-01-01

    Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM—two-photon excitation fluorescence microscopy, and second harmonic generation microscopy—as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality. PMID:22258888

  20. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  1. Enhanced two-photon fluorescence imaging and therapy of cancer cells via Gold@bridged silsesquioxane nanoparticles.

    Science.gov (United States)

    Croissant, Jonas; Maynadier, Marie; Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Chaix, Arnaud; Cattoën, Xavier; Wong Chi Man, Michel; Gallud, Audrey; Gary-Bobo, Magali; Garcia, Marcel; Raehm, Laurence; Durand, Jean-Olivier

    2015-01-21

    A two-photon photosensitizer with four triethoxysilyl groups is synthesized through the click reaction. This photosensitizer allows the design of bridged silsesquioxane (BS) nanoparticles through a sol-gel process; moreover, gold core BS shells or BS nanoparticles decorated with gold nanospheres are synthesized. An enhancement of the two-photon properties is noted with gold and the nanoparticles are efficient for two-photon imaging and two-photon photodynamic therapy of cancer cells.

  2. Calcium rubies: a family of red-emitting functionalizable indicators suitable for two-photon Ca2+ imaging.

    Science.gov (United States)

    Collot, Mayeul; Loukou, Christina; Yakovlev, Aleksey V; Wilms, Christian D; Li, Dongdong; Evrard, Alexis; Zamaleeva, Alsu; Bourdieu, Laurent; Léger, Jean-François; Ropert, Nicole; Eilers, Jens; Oheim, Martin; Feltz, Anne; Mallet, Jean-Maurice

    2012-09-12

    We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 μM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.

  3. Watching Electrons Transfer from Metals to Insulators using Two Photon Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Johns, James E. [Univ. of California, Berkeley, CA (United States)

    2010-05-01

    Ultrafast angle-resolved two photon photoemission was used to study the dynamics and interfacial band structure of ultrathin films adsorbed onto Ag(111). Studies focused on the image potential state (IPS) in each system as a probe for measuring changes in electronic behavior in differing environments. The energetics and dynamics of the IPS at the toluene/Ag(111) interface are strongly dependent upon coverage. For a single monolayer, the first IPS is bound by 0.81 eV below the vacuum level and has a lifetime of 50 femtoseconds (fs). Further adsorption of toluene creates islands of toluene with an exposed wetting layer underneath. The IPS is then split into two peaks, one corresponding to the islands and one corresponding to the monolayer. The wetting layer IPS shows the same dynamics as the monolayer, while the lifetime of the islands increases exponentially with increasing thickness. Furthermore, the island IPS transitions from delocalized to localized within 500 fs, and electrons with larger parallel momenta decay much faster. Attempts were made using a stochastic model to extract the rates of localization and intraband cooling at differing momenta. In sexithiophene (6T) and dihexyl-sexithiophene (DH6T), the IPS was used as a probe to see if the nuclear motion of spectating side chains can interfere with molecular conduction. The energy and band mass of the IPS was measured for 6T and two geometries of DH6T on Ag(111). Electrons injected into the thicker coverages of DH6T grew exponentially heavier until they were completely localized by 230 fs, while those injected into 6T remained nearly free electron like. Based off of lifetime arguments and the density of defects, the most likely cause for the mass enhancement of the IPS in this system is small polaron formation caused by coupling of the electron to vibrations of the alkyl substituents. The energetic relaxation of the molecular adsorbate was also measured to be 20 meV/100 fs for the DH6T, and 0 meV/100 fs for

  4. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    Science.gov (United States)

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing

  5. QSO Lifetimes

    CERN Document Server

    Martini, P

    2003-01-01

    The QSO lifetime t_Q is one of the most fundamental quantities for understanding black hole and QSO evolution, yet it remains uncertain by several orders of magnitude. If t_Q is long, then only a small fraction of galaxies went through a luminous QSO phase. In contrast, a short lifetime would require most galaxies today to have undergone a QSO phase in their youth. The current best estimates or constraints on t_Q from black hole demographics and the radiative properties of QSOs vary from at least 10^6 to 10^8 years. This broad range still allows both possibilities: that QSOs were either a rare or a common stage of galaxy evolution. These constraints also do not rule out the possibility that QSO activity is episodic, with individual active periods much shorter than the total active lifetime. In the next few years a variety of additional observational constraints on the lifetimes of QSOs will become available, including clustering measurements and the proximity effect. These new constraints can potentially dete...

  6. Multiphoton fluorescence spectra and lifetimes of biliverdins and their protein-associated complex

    Science.gov (United States)

    Huang, Chin-Jie; Wu, Cheng-Ham; Liu, Tzu-Ming

    2012-03-01

    To investigate whether endogenous biliverdins can serve as a fluorescence metabolic marker in cancer diagnosis, we measured their multiphoton fluorescence spectra and lifetimes with femtosecond Cr:forsterite laser. Excited at 1230nm, the two-photon fluorescence of biliverdins peaks around 670nm. The corresponding lifetime (catabolism in human cells or tissues.

  7. Note: Derivation of two-photon circular dichroism - Addendum to "two-photon circular dichroism" [J. Chem. Phys. 62, 1006 (1975)

    OpenAIRE

    Friese, Daniel Henrik

    2015-01-01

    Published version, also available at http://dx.doi.org/10.1063/1.4930017 This addendum shows the detailed derivation of the fundamental equations for two-photon circular dichroism which are given in a very condensed form in the original publication [I. Tinoco, J. Chem. Phys. 62, 1006 (1975)]. In addition, some minor errors are corrected and some of the derivations in the original publication are commented.

  8. Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan

    Science.gov (United States)

    Ajami, Aliasghar; Husinsky, Wolfgang; Tromayer, Maximilian; Gruber, Peter; Liska, Robert; Ovsianikov, Aleksandr

    2017-08-01

    To achieve efficient micro- and nanostructuring based on two-photon polymerization (2PP), the development and evaluation of specialized two-photon initiators (2PIs) are essential. Hence, a reliable method to determine the two-photon absorption (2PA) spectra of the synthesized 2PIs used for 2PP structuring is crucial. A technique by which absolute visible-to-near-infrared 2PA spectra of degenerate nature can be determined via performing a single dispersive white-light continuum (WLC) Z-scan has been realized. Using a dispersed white light beam containing 8 fs pulses at wavelengths ranging from 650 nm to 950 nm, the nonlinear transmittance as a function of the sample position can be measured for all spectral components by performing a single scan along the laser beam propagation direction. In this work, the 2PA spectrum of three different 2PIs was determined using this technique. 2PP structuring was also accomplished using the developed 2PIs at different wavelengths. Tuning the wavelength of the laser to match the peak of the 2PA spectra of the developed 2PIs resulted in lower intensity thresholds and facilitated higher structuring speeds. As an example, using M2CMK 2PI for 2PP, the scanning speed can be increased up to 5 folds when the laser wavelength is tuned to 760 nm (i.e., 2PA maximum) instead of the conventionally used 800 nm.

  9. A highly selective phosphorescence probe for histidine in living bodies.

    Science.gov (United States)

    Gao, Quankun; Song, Bo; Ye, Zhiqiang; Yang, Liu; Liu, Ruoyang; Yuan, Jingli

    2015-11-14

    In this work, we designed and synthesized a heterobimetallic ruthenium(ii)-nickel(ii) complex, [Ru(bpy)2(phen-DPA)Ni](PF6)4 (Ru-Ni), as a highly selective phosphorescence probe for histidine. The probe exhibited weak emission at 603 nm because the phosphorescence of the Ru(ii) complex can be strongly quenched by the paramagnetic Ni(2+) ion. In the presence of histidine, reaction of Ru-Ni with histidine resulted in the release of nickel(ii) and an enhancement in the phosphorescence intensity at 603 nm. Ru-Ni showed high selectivity for histidine even in the presence of other amino acids and cellular abundant species. Cell imaging experimental results demonstrated that Ru-Ni is membrane permeable, and can be applied for visualizing histidine in live cells. More interestingly, Ru-Ni also can act as a novel reaction-based nuclear staining agent for visualizing exclusively the nuclei of living cells with a significant phosphorescence enhancement. In addition, the potential of the probe for biological applications was confirmed by employing it for phosphorescence imaging of histidine in larval zebrafish and Daphnia magna. These results demonstrated that Ru-Ni would be a useful tool for physiological and pathological studies involving histidine.

  10. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    Energy Technology Data Exchange (ETDEWEB)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  11. Near infrared two-photon excitation cross-sections of voltage-sensitive dyes.

    Science.gov (United States)

    Fisher, Jonathan A N; Salzberg, Brian M; Yodh, Arjun G

    2005-10-15

    Microscopy based on voltage-sensitive dyes has proven effective for revealing spatio-temporal patterns of neuronal activity in vivo and in vitro. Two-photon microscopy using voltage-sensitive dyes offers the possibility of wide-field visualization of membrane potential on sub-cellular length scales, hundreds of microns below the tissue surface. Very little information is available, however, about the utility of voltage-sensitive dyes for two-photon imaging purposes. Here we report on measurements of two-photon fluorescence excitation cross-sections for nine voltage-sensitive dyes in a solvent, octanol, intended to simulate the membrane environment. Ultrashort light pulses from a Ti:sapphire laser were used for excitation from 790 to 960 nm, and fluorescein dye was used as a calibration standard. Overall, dyes RH795, RH421, RH414, di-8-ANEPPS, and di-8-ANEPPDHQ had the largest two-photon excitation cross-sections ( approximately 15 x 10(-50)cm4 s photon(-1)) in this wavelength region and are therefore potentially useful for two-photon microscopy. Interestingly, di-8-ANEPPDHQ, a chimera constructed from the potentiometric dyes RH795 and di-8-ANEPPS, exhibited larger cross-sections than either of its constituents.

  12. Localized Polymerization Using Single Photon Photoinitiators in Two-photon process for Fabricating Subwavelength Structures

    CERN Document Server

    Ummethala, Govind; Chaudhary, Raghvendra P; Hawal, Suyog; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    Localized polymerization in subwavelength volumes using two photon dyes has now become a well-established method for fabrication of subwavelength structures. Unfortunately, the two photon absorption dyes used in such process are not only expensive but also proprietary. LTPO-L is an inexpensive, easily available single photon photoinitiator and has been used extensively for single photon absorption of UV light for polymerization. These polymerization volumes however are not localized and extend to micron size resolution having limited applications. We have exploited high quantum yield of radicals of LTPO-Lfor absorption of two photons to achieve localized polymerization in subwavelength volumes, much below the diffraction limit. Critical concentration (10wt%) of LTPO-Lin acrylate (Sartomer) was found optimal to achieve subwavelength localized polymerization and has been demonstrated by fabricating 2D/3D complex nanostructures and functional devices such as variable polymeric gratings with nanoscaled subwavelen...

  13. Coherent control of non-resonant two-photon transition in molecular system

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Wang Zu-Geng; Sun Zhen-Rong

    2010-01-01

    In this paper,we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and π phase step-function shape).The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth.Our results demonstrate that,the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field,and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth.

  14. In vivo two-photon calcium imaging in the visual system.

    Science.gov (United States)

    Ohki, Kenichi; Reid, R Clay

    2014-04-01

    Two-photon imaging of calcium-sensitive dyes in vivo has become a common tool used by neuroscientists, largely because of the development of bolus loading techniques, which can label every neuron in a local circuit with calcium-sensitive dye. Like multielectrode recordings, two-photon imaging paired with bolus loading provides a method for monitoring many neurons at once, but, in addition, it provides a means for determining the precise location of every neuron. Thus, it is an ideal method for studying the fine-scale functional architecture of the cortex and guiding the experimenter to individual neurons that can be targeted for further anatomical study. Two-photon calcium imaging enables study of the fine structure of functional maps in the visual cortex in cats and rodents. In mice, it can allow the characterization of specific cell types when paired with transgenic or retrograde labeling.

  15. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  16. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S [Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy); Coppa, A; Foglietti, V [Istituto di Fotonica e Nanotecnologie del CNR, sezione di Roma, Via Cineto Romano 42, 00156 Roma (Italy)], E-mail: longhi@fisi.polimi.it

    2008-04-28

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide.

  17. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  18. Observation of single- and two-photon beating between independent Raman scattering

    CERN Document Server

    Chen, Li-Qing; Zhang, Guo-Wan; Ou, Z Y; Zhang, Weiping

    2010-01-01

    By using spontaneous Raman processes in the high gain regime, we produce two independent Raman Stokes fields from an atomic ensemble. Temporal beating is observed between the two directly generated Stokes fields in a single realization. The beat frequency is found to be a result of an AC Stark frequency shift effect. However, due to the spontaneous nature of the process, the phases of the two Stokes fields change from one realization to another so that the beat signal disappears after average over many realizations. On the other hand, the beat signal is recovered in a two-photon correlation measurement, showing a two-photon interference effect. The two-photon beat signal enables us to obtain dephasing information in the Raman process. The dephasing effect is found to depend on the temperature of the atomic medium.

  19. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  20. Design, synthesis, and characterization of photoinitiators for two-photon polymerization

    Science.gov (United States)

    Whitby, Reece; MacMillan, Ryan; Janssens, Stefaan; Raymond, Sebastiampillai; Clarke, Dave; Kay, Andrew; Jin, Jianyong; Simpson, Cather M.

    2016-09-01

    A series of dipolar and quadrupolar two-photon absorption (2PA) photoinitiators (PIs) based around the well-known triphenylamine (TPA) core and tricyanofuran (TCF) acceptors have been prepared for use in two-photon polymerisation (TPP). The synthesised dipolar species are designated as 5 and 7, and the remaining quadrupolar species are 6, 8, 9 and 10. Large two-photon absorption cross-sections (δ2PA) ranging between 333 - 507 GM were measured at 780 nm using the z-scan technique. Fluorescence quantum yields (ΦF) were below 3% across the series when compared to Rhodamine 6G as a reference standard. Finally, TPP tests were conducted on PIs 7 and 8 to assess their ability to initiate the polymerisation of acrylate monomers using an 800 nm femtosecond Ti:Sapphire laser system.

  1. Two-photon calcium imaging in mice navigating a virtual reality environment.

    Science.gov (United States)

    Leinweber, Marcus; Zmarz, Pawel; Buchmann, Peter; Argast, Paul; Hübener, Mark; Bonhoeffer, Tobias; Keller, Georg B

    2014-02-20

    In recent years, two-photon imaging has become an invaluable tool in neuroscience, as it allows for chronic measurement of the activity of genetically identified cells during behavior(1-6). Here we describe methods to perform two-photon imaging in mouse cortex while the animal navigates a virtual reality environment. We focus on the aspects of the experimental procedures that are key to imaging in a behaving animal in a brightly lit virtual environment. The key problems that arise in this experimental setup that we here address are: minimizing brain motion related artifacts, minimizing light leak from the virtual reality projection system, and minimizing laser induced tissue damage. We also provide sample software to control the virtual reality environment and to do pupil tracking. With these procedures and resources it should be possible to convert a conventional two-photon microscope for use in behaving mice.

  2. Three-dimensional protein networks assembled by two-photon activation.

    Science.gov (United States)

    Gatterdam, Volker; Ramadass, Radhan; Stoess, Tatjana; Fichte, Manuela A H; Wachtveitl, Josef; Heckel, Alexander; Tampé, Robert

    2014-05-26

    Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two-photon-activatable glutathione (GSH) to trigger the interaction with glutathione S-transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well-confined photoconversion into the bioactive GSH, which is free to interact with GST-tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three-dimensional (3D) protein networks are simultaneously generated in situ through two-photon fs-pulsed laser-scanning excitation. The two-photon activation facilitates the three-dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.

  3. Polarization properties of optical phase conjugation by two-photon resonant degenerate four-wave mixing

    Science.gov (United States)

    Kauranen, Martti; Gauthier, Daniel J.; Malcuit, Michelle S.; Boyd, Robert W.

    1989-08-01

    We develop a semiclassical theory of the polarization properties of phase conjugation by two-photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medium consisting of stationary atoms with a ground and excited state connected by two-photon transitions. As an illustration of the general results, we consider an S0-->S0 two-photon transition, which is known to lead to perfect polarization conjugation in the limit of third-order theory. We show that the fidelity of the polarization-conjugation process is degraded for excessively large pump intensities. The degradation can occur both due to transfer of population to the excited state and due to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Malcuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

  4. Highly selective population of two excited states in nonresonant two-photon absorption

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse.In this paper,we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution.Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value.We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption,such as resonance-mediated(2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization.

  5. Two-Photon Absorption Properties of Mn-Doped ZnS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-Jin; ZHANG Gui-Lan; GUO Yang-Xue; WANG Xiao-Yan; CHEN Wen-Ju; ZHANG Xiao-Song; HUA Yu-Lin

    2006-01-01

    @@ We investigate the two-photon absorption and nonlinear refractive index properties of a quantum dot material based on ZnS nanocrystals doped with Mn isoelectronic impurities, using the Z-scan technique with 532nm picosecond laser pulses. The Mn-doped ZnS quantum dots have an average two-photon absorption cross section as high as 13600 Goeppert-Mayer units, which turn it into a very promising material for fluorescent label and imaging in biological samples. In addition, we also found that the two-photon absorption coeflicient initially increases and then decreases with increasing pulse irradiance, which demonstrates the presence of the higherorder nonlinearity under the strong excitation.

  6. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    KAUST Repository

    Moretti, Claudio

    2016-09-12

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

  7. Robust spatial-polarization hyperentanglement distribution of two-photon systems against collective noise

    Science.gov (United States)

    Gao, Cheng-Yan; Wang, Guan-Yu; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-03-01

    Hyperentanglement is a significant resource for high-capacity quantum communication. Here we present a robust spatial-polarization hyperentanglement distribution scheme for two-photon systems. The error on the polarization states of two-photon systems transmitted from two paths can be corrected resorting to the robust time-bin entanglement which suffers little from the channel noise. The spatial bit-flip error takes place with a very small probability and the spatial phase-flip error can be precluded by adjusting the path-length of spatial modes. Using this scheme, the two parties in quantum communication can share a maximally hyperentangled state of two-photon systems in a deterministic way, which will improve the efficiency of quantum communication largely.

  8. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning

    Science.gov (United States)

    Chandra, Sourov; Ghosh, Batu; Beaune, Grégory; Nagarajan, Usharani; Yasui, Takao; Nakamura, Jin; Tsuruoka, Tohru; Baba, Yoshinobu; Shirahata, Naoto; Winnik, Françoise M.

    2016-04-01

    Functional near-IR (NIR) emitting nanoparticles (NPs) adapted for two-photon excitation fluorescence cell imaging were obtained starting from octadecyl-terminated silicon nanocrystals (ncSi-OD) of narrow photoluminescence (PL) spectra having no long emission tails, continuously tunable over the 700-1000 nm window, PL quantum yields exceeding 30%, and PL lifetimes of 300 μs or longer. These NPs, consisting of a Pluronic F127 shell and a core made up of assembled ncSi-OD kept apart by an octadecyl (OD) layer, were readily internalized into the cytosol, but not the nucleus, of NIH3T3 cells and were non-toxic. Asymmetrical field-flow fractionation (AF4) analysis was carried out to determine the size of the NPs in water. HiLyte Fluor 750 amine was linked via an amide link to NPs prepared with Pluronic-F127-COOH, as a first demonstration of functional NIR-emitting water dispersible ncSi-based nanoparticles.Functional near-IR (NIR) emitting nanoparticles (NPs) adapted for two-photon excitation fluorescence cell imaging were obtained starting from octadecyl-terminated silicon nanocrystals (ncSi-OD) of narrow photoluminescence (PL) spectra having no long emission tails, continuously tunable over the 700-1000 nm window, PL quantum yields exceeding 30%, and PL lifetimes of 300 μs or longer. These NPs, consisting of a Pluronic F127 shell and a core made up of assembled ncSi-OD kept apart by an octadecyl (OD) layer, were readily internalized into the cytosol, but not the nucleus, of NIH3T3 cells and were non-toxic. Asymmetrical field-flow fractionation (AF4) analysis was carried out to determine the size of the NPs in water. HiLyte Fluor 750 amine was linked via an amide link to NPs prepared with Pluronic-F127-COOH, as a first demonstration of functional NIR-emitting water dispersible ncSi-based nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01437b

  9. One- and two-photon scattering from generalized V-type atoms

    OpenAIRE

    Sánchez-Burillo, Eduardo; Martín-Moreno, Luis; Zueco, David; García-Ripoll, Juan José

    2016-01-01

    The one- and two-photon scattering matrix S is obtained analytically for a one-dimensional waveguide and a point-like scatterer with N excited levels (generalized V -type atom). We argue that the two-photon scattering matrix contains sufficient information to distinguish between different level structures which are equivalent for single-photon scattering, such as a V -atom with N = 2 excited levels and two two-level systems. In particular, we show that the scattering with the V -type atom exh...

  10. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  11. Manipulation of multiple electromagnetically induced two-photon transparency in a six-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Jia Wen-Zhi; Wang Shun-Jin

    2009-01-01

    In the five-level K-type atomic system, by using another control field to couple the excited level of the coupling transition to the sixth higher excited level, a six-level atomic system is constructed. In this system, the multiple electromagnetically induced two-photon transparency has been investigated. What is more, if choosing the parameters of the control fields properly the triple transparency window will reduce to a double one which means that the multiple electromagnetically induced two-photon transparency can be manipulated in this system. The physical interpretation of these phenomena is given in terms of the dressed states and the dark states.

  12. Insights into esophagus tissue architecture using two-photon confocal microscopy

    Science.gov (United States)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  13. Axial range of conjugate adaptive optics in two-photon microscopy

    CERN Document Server

    Paudel, Hari P; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  14. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  15. Two-photon luminescence microscopy of field enhancement at gold nanoparticles

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.

    2005-01-01

    Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both polarizat......Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both...

  16. Two-photon laser fabrication of three-dimensional silver microstructures with submicron scale linewidth

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Naoto; Nagata, Kazuya; Sakai, Wataru [Kyoto Institute of Technology, Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto (Japan)

    2011-05-15

    We show three-dimensional silver microstructures with a submicron scale linewidth fabricated via two-photon photoreduction of silver ions in a poly(N-vinylpyrrolidone) (PVP) matrix. Femtosecond laser at 508 nm directly excites the carbonyl group of PVP via two-photon excitation to reduce silver ions. Lone pair electrons in PVP stabilized silver ions and lower molecular weight of PVP prevented silver clusters growing larger. The effect of molecular weight of PVP on linewidth of silver nanowire is investigated. (orig.)

  17. Threshold Property of Photoresist Film for Two-photon Optical Memory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiangying; MING Hai; LIANG Zhongcheng; WANG Pei; XIE Jianping; XIE Aifang; ZHANG Zebo

    2001-01-01

    Two-photon threshold property of photoresist films have been studied by changing exposure energy. When photoresist film is irradiated by Ti∶Sapphire laser with wavelength 770 nm, pulse width 130 fs, repetition rate 82 MHz, the damage and recording thresholds of the material are 9.15×105 J/cm2 and below 5.57×105 J/cm2, respectively. The principle experiments of two-photon optical memory are demonstrated in photoresist film. The patterns of optical bit data storage are realized at different input power density. The corresponding 3-D tomographies of these recorded spots are scanned under near-field optical microscope.

  18. Two-photon photoemission from metals induced by picosecond laser pulses

    Science.gov (United States)

    Bechtel, J. H.; Smith, W. L.; Bloembergen, N.

    1977-01-01

    We have measured the two-photon photoemission current density from tungsten, tantalum, and molybdenum when irradiated by 532-nm wavelength radiation. This wavelength was produced by the second-harmonic radiation of single picosecond laser pulses from a mode-locked neodymium-doped yttrium-aluminum-garnet laser. The results are interpreted in terms of both a simple temperature-independent two-photon photoemission effect and a generalization of the Fowler-DuBridge theory of photoemission. The laser polarization dependence of the emitted current is also reported.

  19. Two-photon quantum walks in an elliptical direct-write waveguide array

    CERN Document Server

    Owens, J O; Biggerstaff, D N; Goggin, M E; Fedrizzi, A; Linjordet, T; Ams, M; Marshall, G D; Twamley, J; Withford, M J; White, A G

    2011-01-01

    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.

  20. THE TWO-PHOTON DEGENERATE JAYNES-CUMMINGS MODEL WITH AND WITHOUT ROTATING-WAVE APPROXIMATION

    Institute of Scientific and Technical Information of China (English)

    ZHOU LING; SONG HE-SHAN; YAO LI

    2001-01-01

    We take into account the two-photon process and generalize the Jaynes-Cummings (JC) model to the case of atomic level degenerate in the projections of the angular momenta, and we establish two-photon degenerate JC models with and without the rotating-wave approximation (RWA) quantum theory. Comparing the atom population inversion of the generalized JC model with that of the original JC model, we found that the revival period of the degenerate JC model becomes longer and the maximum amplitude of atomic inversion decreases with RWA. Without RWA, the quantum chaos of the generalized JC model is much weaker than that of the original JC model

  1. Dynamics of Two-Photon Lasers with Λ Atomic Level Configuration

    Institute of Scientific and Technical Information of China (English)

    YANG Peng; QIAN Feng; HUANG Hong-Bin; XIE Xia; ZHANG Ya-Jun

    2006-01-01

    We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fields.Then we analyze the stability and the chaotic dynamics of the two-photon laser by calculating the bifurcation diagram and the maximum Lyapunov exponent (MLE). Our results show that the Lorenz strange attractors and one-focus strange attractors can exist in this system, and the chaos can be induced or inhibited by the injected classical fields via Hopfbifurcations or crises, while the atomic coherence induces chaos via crises, and inhibit chaos via Hopf bifurcation or crises.

  2. Two-photon exchange correction to $2S$-$2P$ splitting in muonic helium

    CERN Document Server

    Carlson, Carl E; Vanderhaeghen, Marc

    2016-01-01

    We calculate the two-photon exchange correction to the Lamb shift in muonic helium atoms within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron-$^3$He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2$S$ state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

  3. Nonsequential Two-Photon Double Ionization of Atoms: Identifying the Mechanism

    CERN Document Server

    F\\orre, Morten; Nepstad, Raymond

    2010-01-01

    We develop an approximate model for the process of direct (nonsequential) two-photon double ionization of atoms. Employing the model, we calculate (generalized) total cross sections as well as energy-resolved differential cross sections of helium for photon energies ranging from 39 to 54 eV. A comparison with results of \\textit{ab initio} calculations reveals that the agreement is at a quantitative level. We thus demonstrate that this complex ionization process is fully described by the simple model, providing insight into the underlying physical mechanism. Finally, we use the model to calculate generalized cross sections for the two-photon double ionization of neon in the nonsequential regime.

  4. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    Science.gov (United States)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  5. New insight in boron chemistry: Application in two-photon absorption

    Science.gov (United States)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  6. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  7. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization

    Science.gov (United States)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine

    2015-04-01

    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  8. Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Beijing free electron laser (BFEL) has been employed for the first time to study the nonlinear photoconductivity characteristics of the typical infrared photoelectronic material Hg1-xCdxTe. Taking advantage of the high photon flux density of BFEL, we have investigated the photoconductivity characteristics in Hg1-xCdxTe induced by two-photon absorption by means of the photoconductivity technique, observed the photoconductivity signals saturation, and studied the two-photon photoconductivity characteristics on different bias voltages across the sample.

  9. Simultaneous two-photon imaging and photo-stimulation with structured light illumination.

    Science.gov (United States)

    Dal Maschio, Marco; Difato, Francesco; Beltramo, Riccardo; Blau, Axel; Benfenati, Fabio; Fellin, Tommaso

    2010-08-30

    Holographic microscopy is increasingly recognized as a promising tool for the study of the central nervous system. Here we present a "holographic module", a simple optical path that can be combined with commercial scanheads for simultaneous imaging and uncaging with structured two-photon light. The present microscope is coupled to two independently tunable lasers and has two principal configurations: holographic imaging combined with galvo-steered uncaging and holographic uncaging combined with conventional scanning imaging. We applied this flexible system for simultaneous two-photon imaging and photostimulation of neuronal cells with complex light patterns, opening new perspectives for the study of brain function in situ and in vivo.

  10. Search for a Higgs Boson Decaying into Two Photons at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    A Higgs particle produced in association with a Z boson and decaying into two photons is searched for in the data collected by the L3 experiment at LEP. All possible decay modes of the Z boson are investigated. No signal is observed in 447.5 pb^-1 of data recorded at centre-of-mass energies up to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two photons as a function of the Higgs mass are derived. A lower limit on the mass of a fermiophobic Higgs boson is set at 105.4 GeV at 95% confidence level.

  11. Temporal behavior of low-amplitude two-photon screening-photovoltaic grey spatial solitons

    Institute of Scientific and Technical Information of China (English)

    JI Xuan-mang; JIANG Qi-chang; WANG Jin-lai; LIU Jin-song

    2011-01-01

    The time-dependent formation of one-dimensional two-photon screening-photovoltaic (PV) grey spatial solitons under low-amplitude conditions is presented theoretically. The time-dependent propagation equation of two-photon screening- photovoltaic solitons is obtained by the numerical method. The results indicate that as the time evolves, the intensity width of grey screening-photovoltaic spatial solitons decreases monotonously to a minimum value towards the steady state. The higher the ratio of soliton peak intensity to the dark irradiation intensity, the narrower the width of grey solitons within the propagation time.

  12. Novel red phosphorescent polymers bearing both ambipolar and functionalized Ir(III) phosphorescent moieties for highly efficient organic light-emitting diodes.

    Science.gov (United States)

    Zhao, Jiang; Lian, Meng; Yu, Yue; Yan, Xiaogang; Xu, Xianbin; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin

    2015-01-01

    A series of novel red phosphorescent polymers is successfully developed through Suzuki cross-coupling among ambipolar units, functionalized Ir(III) phosphorescent blocks, and fluorene-based silane moieties. The photophysical and electrochemical investigations indicate not only highly efficient energy-transfer from the organic segments to the phosphorescent units in the polymer backbone but also the ambipolar character of the copolymers. Benefiting from all these merits, the phosphorescent polymers can furnish organic light-emitting diodes (OLEDs) with exceptional high electroluminescent (EL) efficiencies with a current efficiency (η L ) of 8.31 cd A(-1) , external quantum efficiency (η ext ) of 16.07%, and power efficiency (η P ) of 2.95 lm W(-1) , representing the state-of-the-art electroluminescent performances ever achieved by red phosphorescent polymers. This work here might represent a new pathway to design and synthesize highly efficient phosphorescent polymers.

  13. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  14. Enhancement of two-photon photoluminescence and SERS for low-coverage gold films

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Frydendahl, Christian

    2016-01-01

    Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images...

  15. Imaging marine virus CroV and its host Cafeteria roenbergensis with two-photon microscopy

    Science.gov (United States)

    Cao, Bin; Chakraborty, Sayan; Sun, Wenqing; Aghvami, Seyedmohammadali; Fischer, Matthias G.; Qian, Wei; Xiao, Chuan; Li, Chunqiang

    2014-02-01

    We use two-photon microscopy to monitor the infection process of marine zooplankton, Cafeteria roenbergensis (C.roenbergensis), by Cafeteria roenbergensis virus (CroV), a giant DNA virus named after its host. Here, we image C.roenbergensis in culture by two-photon excited NADH autofluorescence at video-rate (30 frame/s), and the movement of C.roenbergensis is recorded in live videos. Moreover, CroV is stained with DNA dye SYBR gold and recorded simultaneously with this two-photon microscope. We observed the initial infection moment with this method. The result demonstrates the potential use of two-photon microscopy to investigate the fast dynamic interaction between C.roenbergensis with virus CroV. After catching this initial moment, we will freeze the sample in liquid nitrogen for cryo-electron microscopy (EM) study to resolve the virus-host interaction at molecular level. The long-term goal is to study similar fast moving pathogen-host interaction process which could lead to important medical applications.

  16. Gold Core Mesoporous Organosilica Shell Degradable Nanoparticles for Two-Photon Imaging and Gemcitabine Monophosphate Delivery

    KAUST Repository

    Rhamani, Saher

    2017-09-12

    The synthesis of gold core degradable mesoporous organosilica shell nanoparticles is described. The nanopaticles were very efficient for two-photon luminescence imaging of cancer cells and for in vitro gemcitabine monophosphate delivery, allowing promising theranostic applications in the nanomedicine field.

  17. Two-photon upconversion affected by intermolecule correlations near metallic nanostructures

    Science.gov (United States)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We investigate an efficient two-photon upconversion process in more than one molecule coupled to an optical antenna. In the previous paper [Y. Osaka et al., Phys. Rev. Lett. 112, 133601 (2014), 10.1103/PhysRevLett.112.133601], we considered the two-photon upconversion process in a single molecule within one-dimensional input-output theory and revealed that controlling the antenna-molecule coupling enables the efficient upconversion with radiative loss in the antenna suppressed. In this paper, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the upconversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the intermolecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon upconversion.

  18. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  19. Higgs decay into two photons from a 3HDM with flavor symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, Alfredo, E-mail: fefo@ucol.mx [Facultad de Ciencias, CUICBAS, Universidad de Colima, Colima (Mexico); Dual C-P Institute of High Energy Physics (Mexico); Bonilla, Cesar, E-mail: rasec.cmbd@gmail.com [Facultad de Ciencias Físico–Matemáticas, Benemérita Universidad Autónoma de Puebla (Mexico); Anda, Francisco de, E-mail: franciscojosedea@gmail.com [Departamento de Fisica, CUCEI, Universidad de Guadalajara (Mexico); Delgado, Antonio, E-mail: antonio.delgado@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hernández-Sánchez, Jaime, E-mail: jaimeh@ece.buap.mx [Dual C-P Institute of High Energy Physics (Mexico); Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, 72570 Puebla, Puebla (Mexico)

    2013-08-09

    In this short Letter we show that the excess of events in the decay of Higgs to two photons reported by ATLAS and CMS can be easily accommodated in a flavor renormalizable three Higgs doublet model (3HDM). The model is consistent with all fermion masses, mixing angles, and flavor changing neutral current constraints.

  20. One-bit photon polarization in two-photon experiments. An information mechanics perspective

    Science.gov (United States)

    Kantor, Frederick W.

    1991-03-01

    Two-photon experiments of Aspect, Grangier, and Roger, directed toward testing Einstein, Podolsky, and Rosen's thought experiment, are seen in the context of Kantor's information mechanics as illustrating some consequences of the fact that the amount of information represented by the photon's polarization is one bit.

  1. Higgs boson decay into two photons in an electromagnetic background field

    DEFF Research Database (Denmark)

    Nielsen, N. K.

    2014-01-01

    The amplitude for Higgs boson decay into two photons in a homogeneous and time-independent magnetic field is investigated by proper-time regularization in a gauge-invariant manner and is found to be singular at large field values. The singularity is caused by the component of the charged vector...

  2. Fabrication of 3D nano/microelectrodes via two-photon-polymerization

    DEFF Research Database (Denmark)

    Abaddi, Mohammed Al-; Sasso, Luigi; Dimaki, Maria

    2012-01-01

    The integration of two-photon polymerization technology with standard microfabrication techniques is imperative for the use of this tool in micro- and nanotechnology and especially for the future commercialization of the technology. In this work, we report a novel method for the fabrication of 3D...

  3. Solvent effects on optical properties of a newly synthesized two-photon polymerization initiator: BPYPA

    Institute of Scientific and Technical Information of China (English)

    Guo Ya-Hui; Sun Yuan-Hong; Tao Li-Min; Zhao Ke; Wang Chuan-Kui

    2005-01-01

    Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorption processes,of a newly synthesized asymmetrical charge-transfer organic molecule bis-(4-bromo-phenyl)-[4-(2-pyridin-4-yl-vinyl)phenyl]-amine (BPYPA). There exist two charge-transfer states for the compound in visible region. The two-photon absorption cross section calculated by a three-state model and solvatochromic shift of the charge-transfer states are found to be solvent-dependent, where a nonmonotonic behaviour with respect to the polarity of the solvents is observed. The numerical results show that the organic molecule exhibits a rather large two-photon absorption cross section as compared with the compound 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine (DBASVP) reported previously, and is predicted to be a good two-photon polymerization initiator. The hydrogen-bond effect is analysed. The computational results are in good agreement with the measurements.

  4. Decay and coherence of two-photon excited yellow orthoexcitons in Cu2O

    NARCIS (Netherlands)

    Karpinska, Katarzyna; Mostovoy, M; van der Vegte, MA; Revcolevschi, A; van Loosdrecht, PHM

    2005-01-01

    Photoluminescence excitation spectroscopy has revealed a highly efficient two-photon excitation method to produce a cold, uniformly distributed high density excitonic gas in bulk cuprous oxide. A study of the time evolution of the density, temperature, and chemical potential of the exciton gas shows

  5. Polarization-resolved two-photon luminescence microscopy of V-groove arrays

    DEFF Research Database (Denmark)

    Beermann, J.; Novikov, S. M.; Holmgaard, T.

    2012-01-01

    Using two-photon luminescence (TPL) microscopy and local reflection spectroscopy we investigate electromagnetic field enhancement effects from a mu m-sized composition of 450-nm-deep V-grooves milled by focused ion beam in a thick gold film and assembled to feature, within the same structure...

  6. Mitigating thermal mechanical damage potential during two-photon dermal imaging.

    Science.gov (United States)

    Masters, Barry R; So, Peter T C; Buehler, Christof; Barry, Nicholas; Sutin, Jason D; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Two-photon excitation fluorescence microscopy allows in vivo high-resolution imaging of human skin structure and biochemistry with a penetration depth over 100 microm. The major damage mechanism during two-photon skin imaging is associated with the formation of cavitation at the epidermal-dermal junction, which results in thermal mechanical damage of the tissue. In this report, we verify that this damage mechanism is of thermal origin and is associated with one-photon absorption of infrared excitation light by melanin granules present in the epidermal-dermal junction. The thermal mechanical damage threshold for selected Caucasian skin specimens from a skin bank as a function of laser pulse energy and repetition rate has been determined. The experimentally established thermal mechanical damage threshold is consistent with a simple heat diffusion model for skin under femtosecond pulse laser illumination. Minimizing thermal mechanical damage is vital for the potential use of two-photon imaging in noninvasive optical biopsy of human skin in vivo. We describe a technique to mitigate specimen thermal mechanical damage based on the use of a laser pulse picker that reduces the laser repetition rate by selecting a fraction of pulses from a laser pulse train. Since the laser pulse picker decreases laser average power while maintaining laser pulse peak power, thermal mechanical damage can be minimized while two-photon fluorescence excitation efficiency is maximized.

  7. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  8. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    Science.gov (United States)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  9. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    DEFF Research Database (Denmark)

    Biagioni, P.; Celebrano, M.; Savoini, M.

    2009-01-01

    Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width δ of ...

  10. Efficient two-photon sensitized luminescence of europium (Ⅲ) complex based on hypersensitive transitions

    Institute of Scientific and Technical Information of China (English)

    Meng Shi; Hua Li; Mei Pan; Fufang Su; Lili Ma; Peigao Han; Hezhou Wang

    2011-01-01

    Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses. The luminescence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm). Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the C3 symmetry of the coordination field.%@@ Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses.The luminescence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm).Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the Ca symmetry of the coordination field.

  11. Long vs. short distance dispersive two-photon $K_{L} \\to \\mu^{+} \\mu^{-}$ amplitude

    CERN Document Server

    Eeg, Jan O; Picek, I

    1999-01-01

    We report on the calculation of the two-loop electroweak, two-photon mediated short-distance dispersive K_L \\to \\mu^+\\mu^- decay amplitude. QCD corrections change the sign of this contribution and reduce it by an order of magnitude. The resulting amplitude enables us to provide a constraint on the otherwise uncertain long-distance dispersive amplitude.

  12. Observation of high-$p_{T}$ jets in two-photon interactions

    CERN Document Server

    Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nosaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C

    1981-01-01

    Events with a characteristic two-jet topology have been observed in two-photon interactions. The production cross section is found to be higher than the point-like gamma gamma -qq cross section, which is approached only at transverse momenta larger than 3 GeV/c. (11 refs).

  13. Measurement Induced Enhancement of Squeezing in Nondegenerate Two-Photon Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    YE Sai-Yun

    2006-01-01

    Squeezing properties in the nondegenerate two-photon Jaynes-Cummings model are investigated. The effects of direct selective atomic measurement and the application of the classical field followed by atomic measurement are analyzed. Different values of the parameters of the classical field are taken into account. It is found that the field squeezing can be enhanced by measurement.

  14. Two-photon excited highly polarized and directional upconversion emission from slab organic crystals

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Yang, Jie; Xia, Hong; Ma, Yu-Guang; Wang, Hai-Yu; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    Effective upconversion emission from an organic crystal of cyano-substituted oligo (p-phenylenevinylene) (CNDPASDB) based on two-photon absorption is presented. Frequency upconverted cavityless lasing, or amplified spontaneous emission, from the crystal pumped by a femtosecond laser of 800 nm was ob

  15. Carbon quantum dot-NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors.

    Science.gov (United States)

    Fowley, Colin; McHale, Anthony P; McCaughan, Bridgeen; Fraix, Aurore; Sortino, Salvatore; Callan, John F

    2015-01-04

    We report a conjugate between carbon quantum dots and a NO photoreleaser able to photogenerate the anticancer NO radical via an energy transfer mechanism. This nanohybrid proved toxic to cancer cells in vitro and significantly reduced tumor volume in mice bearing human xenograft BxPC-3 pancreatic tumors upon two-photon excitation with the highly biocompatible 800 nm light.

  16. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    DEFF Research Database (Denmark)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian

    2017-01-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected...

  17. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Jauffred, L.; Kyrsting, A.; Christensen, Eva Arnspang;

    2014-01-01

    Colloidal quantum dots are luminescent long-lived probes that can be two-photon excited and manipulated by a single laser beam. Therefore, quantum dots can be used for simultaneous single molecule visualization and force manipulation using an infra-red laser. Here, we show that even a single opti...

  18. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].

    Science.gov (United States)

    Zhao, Feng-Ying; Wu, Hong-Xin; Chen, Die-Yan; Ma, Wan-Yun

    2014-07-01

    As an optical microscope with high resolution, two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples. Compared with confocal laser scanning microscope, TPE fluorescence microscope provides a deeper detecting depth. In spite of that, the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed. Mouse oocytes with a large diameter, which play an important role in clinical and biological fields, have obvious absorption and scattering effects. In the present paper, we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes. Using volume as a parameter, the attenuation degree of these chromosomes was also studied. The result of our data suggested that there exists a severe axial intensity loss in two-photon microscopic images of mouse oocytes due to the absorption and scattering effects. It is necessary to make compensation for these images of mouse oocyte chromosomes obtained from two-photon microscopic system. It will be specially needed in studying the quantitative three-dimensional information of mouse oocytes.

  19. A two-photon activatable amino acid linker for the induction of fluorescence.

    Science.gov (United States)

    Friedrich, Felix; Klehs, Kathrin; Fichte, Manuela A H; Junek, Stephan; Heilemann, Mike; Heckel, Alexander

    2015-10-28

    A new one- and two-photon activatable fluorophore based on ATTO565 was developed using a photolabile linker that simultaneously acts as a quencher. It is especially interesting for protein and peptide applications because it can be incorporated by standard peptide chemistry. The application of the new fluorogenic construct in super-resolution microscopy of antibody conjugates is shown.

  20. Two-photon up-conversion affected by inter-molecule correlations near metallic nanostructure

    CERN Document Server

    Osaka, Yoshiki; Ishihara, Hajime

    2016-01-01

    We investigate an efficient two-photon up-conversion process in more than one molecule coupled to an optical antenna. In the previous work [Y. Osaka et al., PRL 112, 133601 (2014)], we considered the two-photon up-conversion process in a single molecule within one-dimensional input-output theory, and revealed that controlling the antenna-molecule coupling enables the efficient up-conversion with radiative loss in the antenna suppressed. In this work, aiming to propose a way to enhance the total probability of antenna-photon scattering, we extend the model to the case of multiple molecules. In general, the presence of more than one molecule decreases the up-conversion probability because they equally share the energy of the two photons. However, it is shown that we can overcome the difficulty by controlling the inter-molecule coupling. Our result implies that, without increasing the incident photon number (light power), we can enlarge the net probability of the two-photon up-conversion.

  1. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    Science.gov (United States)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  2. Engineering two-photon high-dimensional states through quantum interference

    CSIR Research Space (South Africa)

    Zhang, YI

    2016-02-01

    Full Text Available the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range...

  3. New cubic perovskites for one- and two-photon water splitting using the computational materials repository

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Landis, David; Thygesen, Kristian Sommer

    2012-01-01

    screening of around 19 000 oxides, oxynitrides, oxysulfides, oxyfluorides, and oxyfluoronitrides in the cubic perovskite structure with PEC applications in mind. We address three main applications: light absorbers for one- and two-photon water splitting and high-stability transparent shields to protect...

  4. Two-photon excitation spectra of Cr3 :K2NaScF6

    Science.gov (United States)

    Bartram, R. H.; Wein, G. R.; Hamilton, D. S.; Sliwczuk, U.; Rinzler, A. G.

    Two-photon excitation (TPE) spectra of Cr3+:K2NaScF6 exhibit unexpected features including a forbidden transition, extended progressions, a split zero-phonon line and anomalous polarization anisotropy. These features are explained by departures from standard approximations.

  5. A study of Two Photon Decays of Charmonium Resonances Formed in Proton Anti-Proton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Pedlar, Todd Kristofer [Northwestern Univ., Evanston, IL (United States)

    1999-06-01

    In this dissertation we describe the results of an investigation of the production of charmonium states (ηc, η'c, χ0 and χ2) in Fermilab experiment E835 via antiproton-proton annihilation and their detection via their decay into two photons.

  6. Background-Free Optical Sampling System Using Si Avalanche Photodiode as Two-Photon Absorber

    Institute of Scientific and Technical Information of China (English)

    Kenji; Taira; Ryo; Ohta; Yasuyuki; Ozeki; Yutaka; Fukuchi; Kazuhiro; Katoh; Kazuro; Kikuchi

    2003-01-01

    The introduction of a double-chopping scheme eliminates the background level in the optical sampling system, where a Si avalanche photodiode acts as a two-photon absorber. We successfully demonstrate background-free optical sampling of 40-GHz and 160-GHz pulse trains.

  7. Simultaneous two-photon activation of type-I photodynamic therapy agents.

    Science.gov (United States)

    Fisher, W G; Partridge, W P; Dees, C; Wachter, E A

    1997-08-01

    The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote nonresonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4'-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamaging near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage.

  8. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    Science.gov (United States)

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.

  9. Superradiant dye solution laser with two-photon picosecond optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.

    1981-01-01

    A superradiant (superfluorescent) dye solution laser with two-photon picosecond pumping was constructed for the first time. A preliminary study was made of the principal characteristics of the output radiation of this laser which performed up-conversion of the frequency of the pump radiation. The physical mechanisms governing the operation of lasers of this type were analyzed.

  10. Two-photon photoemission from a copper cathode in an X -band photoinjector

    Science.gov (United States)

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-02-01

    This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.

  11. A scheme to realize time-bin entanglement between two photons that never interacted

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We propose a scheme of entangling two photons from two separated sources.Our proposal which is inspired by the time-bin entanglement developed recently,provides a novel alternative for revealing contradiction between quantum nonlocality and local realism based on two independent single photon sources.

  12. Stepwise Two-Photon-Induced Fast Photoswitching via Electron Transfer in Higher Excited States of Photochromic Imidazole Dimer.

    Science.gov (United States)

    Kobayashi, Yoichi; Katayama, Tetsuro; Yamane, Takuya; Setoura, Kenji; Ito, Syoji; Miyasaka, Hiroshi; Abe, Jiro

    2016-05-11

    Stepwise two-photon excitations have been attracting much interest because of their much lower power thresholds compared with simultaneous two-photon processes and because some stepwise two-photon processes can be initiated by a weak incoherent excitation light source. Here we apply stepwise two-photon optical processes to the photochromic bridged imidazole dimer, whose solution instantly changes color upon UV irradiation and quickly reverts to the initial color thermally at room temperature. We synthesized a zinc tetraphenylporphyrin (ZnTPP)-substituted bridged imidazole dimer, and wide ranges of time-resolved spectroscopic studies revealed that a ZnTPP-linked bridged imidazole dimer shows efficient visible stepwise two-photon-induced photochromic reactions upon excitation at the porphyrin moiety. The fast photoswitching property combined with stepwise two-photon processes is important not only for the potential for novel photochromic materials that are sensitive to the incident light intensity but also for fundamental photochemistry using higher excited states.

  13. Direct observation of photocarrier electron dynamics in C60 films on graphite by time-resolved two-photon photoemission

    Science.gov (United States)

    Shibuta, Masahiro; Yamamoto, Kazuo; Ohta, Tsutomu; Nakaya, Masato; Eguchi, Toyoaki; Nakajima, Atsushi

    2016-10-01

    Time-resolved two-photon photoemission (TR-2PPE) spectroscopy is employed to probe the electronic states of a C60 fullerene film formed on highly oriented pyrolytic graphite (HOPG), acting as a model two-dimensional (2D) material for multi-layered graphene. Owing to the in-plane sp2-hybridized nature of the HOPG, the TR-2PPE spectra reveal the energetics and dynamics of photocarriers in the C60 film: after hot excitons are nascently formed in C60 via intramolecular excitation by a pump photon, they dissociate into photocarriers of free electrons and the corresponding holes, and the electrons are subsequently detected by a probe photon as photoelectrons. The decay rate of photocarriers from the C60 film into the HOPG is evaluated to be 1.31 × 1012 s‑1, suggesting a weak van der Waals interaction at the interface, where the photocarriers tentatively occupy the lowest unoccupied molecular orbital (LUMO) of C60. The photocarrier electron dynamics following the hot exciton dissociation in the organic thin films has not been realized for any metallic substrates exhibiting strong interactions with the overlayer. Furthermore, the thickness dependence of the electron lifetime in the LUMO reveals that the electron hopping rate in C60 layers is 3.3 ± 1.2 × 1013 s‑1.

  14. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xudong; Zhang, Xin; Wang, Shuangqing; Li, Shayu [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Rui, E-mail: hurui@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yi, E-mail: yili@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Guoqiang, E-mail: gqyang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    Highlights: • A novel “turn-on” two-photon fluorescent probe based on a π-conjugated triarylboron luminogen was designed and synthesized. • Fast, selective and sensitive detection of biothiols in 100% aqueous solution by simply loaded on a nanogel. • Single-photon and two-photon fluorescent bioimaging of biothiols in NIH/3T3 fibroblasts. - Abstract: A novel “turn-on” two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic{sup ®} F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min{sup −1}, and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.

  15. The Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupling to a Hybrid Atom-Optomechanical System

    Science.gov (United States)

    Liu, Jingyi; Zhang, Wenzhao; Li, Xun; Yan, Weibin; Zhou, Ling

    2016-10-01

    We investigate the two-photon transport properties inside one-dimensional waveguide side coupled to an atom-optomechanical system, aiming to control the two-photon transport by using the nonlinearity. By generalizing the scheme of Phys. Rev. A 90, 033832, we show that Kerr nonlinearity induced by the four-level atoms is remarkable and can make the photons antibunching, while the nonlinear interaction of optomechanical coupling participates in both the single photon and the two photon processes so that it can make the two photons exhibiting bunching and antibunching.

  16. Effects of torsional disorder and position isomerism on two-photon absorption properties of polar chromophore dimers

    Science.gov (United States)

    Jia, Hai-Hong; Zhao, Ke; Wu, Xiang-Lian

    2014-09-01

    Two-photon absorption properties of a push-pull molecule and its covalent dimers have been studied by density functional response theory in combination with polarizable continuum model. A set of constrained geometries with different torsional angles are optimized and used to calculate two-photon absorption spectra. It is found that the torsional disorder could possibly produce the experimental two-photon absorption additive behavior. We have also designed a series of covalent dimers and investigated the effects of position isomerism. Our results suggest that the cooperative two-photon absorption enhancement can be achieved when the subunits are substituted in closer proximity and have larger interchromophore angle.

  17. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  18. Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir(III) heteroleptic complexes

    Indian Academy of Sciences (India)

    FARMAN ALI; PABITRA K NAYAK; N PERIASAMY; NEERAJ AGARWAL

    2017-09-01

    Five heteroleptic, cyclometalated (C∧N) Iridium(III) complexes of acetylacetone (acac) and 1-phenyl-isoquinoline (piq) derivatives, Ir(acac)(piq) ₂, Ir(acac)(2,4-difluoro-piq) ₂, Ir(acac)(4-trifluoromethylpiq) ₂, Ir(acac)(4-N,N-dimethyl-piq) ₂, Ir(acac)(4-acetyl-piq) ₂, were synthesized and characterized. The ((C∧N) ₂ Ir(acac) complexes in toluene showed phosphorescence (λmax = 598 nm to 658 nm) with quantum yields (0.1 to 0.32) and microsecond lifetimes (0.43 to 1.9 μs). The complexes were non-luminescent in thin films due to self-quenching but luminescent when lightly doped (5%) in a host organic material, 4,4' -Bis(Ncarbazolyl)- 1,1' -biphenyl (CBP). The HOMO levels determined using cyclic voltammetric oxidation potentials were in the range−5.48 to−5.80 eV. Electroluminescence properties and performance of the Ir complexes dopedin CBP (active layer) were studied in a multilayer (ITO/F4TCNQ/TPD/doped CBP/BCP/LiF/Al) organic light emitting device (OLED). The electroluminescense (EL) spectra of the device matched with the phosphorescent spectra of the Ir complexes. The turn-on voltage at ∼4.5 V, maximum brightness of 7600 cd/m² and current efficiency of ∼7.0 cd/A at a brightness of ∼100 cd/m² indicate that these are promising OLED materials.

  19. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  20. $\\chi_{c2}$ formation in two-photon collisions at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Gong, Z F; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kapustinsky, J S; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E

    1999-01-01

    Two-photon formation of the charmonium resonance $\\chi_{{\\rm c}2}$ has been studied with the L3 detector at LEP. The $\\chi_{{\\rm c}2}$ is identified through its decay $\\chi_{{\\rm c}2} \\rightarrow \\gamma {\\rm J}$, with a subsequent decay ${\\rm J} \\rightarrow {\\mathrm{e^+ e^-}}$ or ${\\rm J} \\rightarrow {\\mathrm{\\mu^+ \\mu^-}}$. With an integrated luminosity of 140 pb$^{-1}$ at $\\sqrt{s} \\simeq$ 91~\\textrm{Ge\\kern -0.1em V} and 52 pb$^{-1}$ at $\\sqrt{s} \\simeq$ {Ge\\kern -0.1em V}, we measure the two-photon width of the $\\chi_{{\\rm c}2}$ to be \\begin{center} $\\Gamma_{\\gamma\\gamma}(\\chi_{{\\rm c}2})=1.02 \\pm 0.40 \\mbox{$\\;$(stat.)} \\pm 0.15 \\mbox{$\\;$(sys.)} \\pm 0.09(\\rm{BR.}) {\\mathrm{\\ ke\\kern -0.1em V}}$.

  1. Relativistic calculations of the non-resonant two-photon ionization of neutral atoms

    CERN Document Server

    Hofbrucker, Jiri; Fritzsche, Stephan

    2016-01-01

    The non-resonant two-photon one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section, for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold, for the case of Ne, for example, the cross section drops there by a factor of three.

  2. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  3. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    Science.gov (United States)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  4. Adaptive optics for in vivo two-photon calcium imaging of neuronal networks

    Science.gov (United States)

    Meimon, Serge; Conan, Jean-Marc; Mugnier, Laurent M.; Michau, Vincent; Cossart, Rosa; Malvache, Arnaud

    2014-03-01

    The landscape of biomedical research in neuroscience has changed dramatically in recent years as a result of spectacular progress in dynamic microscopy. However, the optical accessibility of deep brain structures or deeper regions of the surgically exposed hippocampus (a few 100 microns typically) remains limited, due to volumic aberrations created by the sample inhomogeneities. Adaptive optics can correct for these aberrations. Our goal is to realize a novel adaptive optics module dedicated to in vivo two-photon calcium imaging of the hippocampus. The key issue in adaptive optics is the ability to perform an accurate and reliable wavefront sensing. In two- photon microscopy indirect methods are required. Two families of approaches have been proposed so far, the modal sensorless technique and a method based on pupil segmentation. We present here a formal comparison of these approaches, in particular as a function of the amount of aberrations.

  5. Resonant two-photon annihilation of an electron-positron pair in a pulsed electromagnetic wave

    Science.gov (United States)

    Voroshilo, A. I.; Roshchupkin, S. P.; Nedoreshta, V. N.

    2016-09-01

    Two-photon annihilation of an electron-positron pair in the field of a plane low-intensity circularly polarized pulsed electromagnetic wave was studied. The conditions for resonance of the process which are related to an intermediate particle that falls within the mass shell are studied. In the resonant approximation the probability of the process was obtained. It is demonstrated that the resonant probability of two-photon annihilation of an electron-positron pair may be several orders of magnitude higher than the probability of this process in the absence of the external field. The obtained results may be experimentally verified by the laser facilities of the international megaprojects, for example, SLAC (National Accelerator Laboratory), FAIR (Facility for Antiproton and Ion Research), and XFEL (European X-Ray Free-Electron Laser).

  6. Coincidence in the two-photon spectra of Li and Li2 at 735 nm

    Science.gov (United States)

    DeGraffenreid, W.; Sansonetti, Craig J.

    2005-02-01

    A coincidence between the 22S1/2-32S1/2 two-photon transition in the atomic spectrum of 6Li and the X 1Σ+g→ E 1Σ+g two-photon ro-vibrational series of 7Li2 was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the 6Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  7. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    Science.gov (United States)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  8. Two-photon spectroscopy of trapped HD$^+$ ions in the Lamb-Dicke regime

    CERN Document Server

    Tran, Vu Quang; Douillet, Albane; Koelemeij, Jeroen C J; Hilico, Laurent

    2013-01-01

    We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi-coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the $10^{-14}$ accuracy level for improved tests of molecular QED, a new det...

  9. Two-photon excited fluorescence microendoscopic imaging using a GRIN lens

    Science.gov (United States)

    Yan, Wei; Peng, Xiao; Lin, Danying; Wang, Qi; Gao, Jian; Zhou, Jie; Ye, Tong; Qu, Junle; Niu, Hanben

    2015-03-01

    With the rapid development of life sciences, there is an increasing demand for intravital fluorescence imaging of small animals. However, large dimensions and limited working distances of objective lenses in traditional fluorescence microscopes have limited the imaging applications mostly to superficial tissues. To overcome this disadvantage, researchers have developed the graded-index (GRIN) probes with small diameters for imaging internal organs of small animals in a minimally invasive fashion. Here, we present the development of a fluorescence endoscopic imaging system based on a GRIN lens using two-photon excitation. Experimental results showed that this system could perform dynamic fluorescence microendoscopic imaging and monitor the blood flow in anesthetized living mice using two-photon excitation.

  10. Two-photon interference from independent cavity-coupled emitters on-a-chip

    CERN Document Server

    Kim, Je-Hyung; Leavitt, Richard P; Waks, Edo

    2016-01-01

    Interactions between solid-state quantum emitters and cavities are important for a broad range of applications in quantum communication, linear optical quantum computing, nonlinear photonics, and photonic quantum simulation. These applications often require combining many devices on a single chip with identical emission wavelengths in order to generate two-photon interference, the primary mechanism for achieving effective photon-photon interactions. Such integration remains extremely challenging due to inhomogeneous broadening and fabrication errors that randomize the resonant frequencies of both the emitters and cavities. In this letter we demonstrate two-photon interference from independent cavity-coupled emitters on the same chip, providing a potential solution to this long-standing problem. We overcome spectral mismatch between different cavities due to fabrication errors by depositing and locally evaporating a thin layer of condensed nitrogen. We integrate optical heaters to tune individual dots within e...

  11. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    CERN Document Server

    Lee, Seunghyun; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S; Geistlinger, Katharina; Kumar, Sunil S; Wester, Roland

    2016-01-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J=1<-0 and J =2<-1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598596.08(19) MHz for J=1<-0 and 1196791.57(27) MHz for J=2<-1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  12. Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy.

    Science.gov (United States)

    Tao, Wen; Soonpaa, Mark H; Field, Loren J; Chen, Peng-Sheng; Firulli, Anthony B; Shou, Weinian; Rubart, Michael

    2012-08-01

    Although the adult mammalian myocardium exhibits a limited ability to undergo regenerative growth, its intrinsic renewal rate is insufficient to compensate for myocyte loss during cardiac disease. Transplantation of donor cardiomyocytes or cardiomyogenic stem cells is considered a promising strategy for reconstitution of cardiac mass, provided the engrafted cells functionally integrate with host myocardium and actively contribute to its contractile force. The authors previously developed a two-photon fluorescence microscopy-based assay that allows in situ screening of donor cell function after intracardiac delivery of the cells. This report reviews the techniques of two-photon fluorescence microscopy and summarizes its application for quantifying the extent to which a variety of donor cell types stably and functionally couple with the recipient myocardium.

  13. Diagnostics of MCF plasmas using Lyman-{alpha} fluorescence excited by one or two photons

    Energy Technology Data Exchange (ETDEWEB)

    Voslamber, D

    1998-11-01

    Laser-induced Lyman-{alpha} fluorescence of the hydrogen isotopes is investigated with regard to diagnostic applications in magnetically confined fusion plasmas. A formal analysis is presented for two excitation schemes: one-photon and Doppler-free two-photon excitation. The analysis includes estimates of the expected experimental errors arising from the photon noise and from the sensitivity of the observed fluorescence signals to variations of the plasma and laser parameters. Both excitation schemes are suitable primarily for application in the plasma edge, but even in the plasma bulk of large machines they can still be applied in combination with a diagnostic neutral beam. The two-photon excitation scheme is particularly attractive because it involves absorption spectra that are resolved within the Doppler width. This implies a large diagnostic potential and in particular offers a way to measure the deuterium-tritium fuel mix in fusion reactors. (author) 37 refs.

  14. Two-Photon Photodynamic Therapy by Water-Soluble Self-Assembled Conjugated Porphyrins

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2013-01-01

    Full Text Available Studies on two-photon absorption (2PA photodynamic therapy (PDT by using three water-soluble porphyrin self-assemblies consisting of ethynylene-linked conjugated bis (imidazolylporphyrin are reviewed. 2PA cross-section values in water were obtained by an open aperture Z-scan measurement, and values were extremely large compared with those of monomeric porphyrins such as hematoporphyrin. These compounds were found to generate singlet oxygen efficiently upon one- as well as two-photon absorption as demonstrated by the time-resolved luminescence measurement at the characteristic band of singlet oxygen at 1270 nm and by using its scavenger. Photocytotoxicities for HeLa cancer cells were examined and found to be as high as those of hematoporphyrin, demonstrating that these compounds are potential candidates for 2PA-photodynamic therapy agents.

  15. Determination of Kerr and two-photon absorption coefficients of indandione derivatives

    Science.gov (United States)

    Bundulis, Arturs; Mihailovs, Igors; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2017-05-01

    We studied nonlinear optical properties of two different aminobenziliden-1,3-indandione derivatives - DDMABI and DMABI-OH by employing the Z-scan method. Through this we described how different donor and acceptor groups influence third-order nonlinear optical properties such as Kerr effect and two-photon absorption. During experimental measurements we used 1064 nm Nd:YAG laser with 30 ps pulse duration and 10 Hz repetition rate. From acquired values of Kerr and two-photon absorption coefficients we calculated values for real and imaginary parts of third-order susceptibility, as well as second-order hyperpolarizability. Quantum chemical calculations were carried out for secondorder hyperpolarizability to study how well calculations correlate with experimental values. Acquired data for DDMABI and DMABI-OH were compared with data for other ABI derivatives studied previously.

  16. In vitro imaging of thyroid tissues using two-photon excited fluorescence and second harmonic generation.

    Science.gov (United States)

    Huang, Zufang; Li, Zuanfang; Chen, Rong; Lin, Juqiang; Li, Yongzeng; Li, Chao

    2010-08-01

    To evaluate the feasibility of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to discriminate the normal, nodular goiter and papillary cancerous thyroid tissue. In total, 45 fresh thyroid specimens (normal, 15; nodular goiter, 12; and papillary cancerous, 18) from 31 subjects were directly imaged by the TPEF and SHG combination method. The microstructure of follicle and collagen structure in thyroid tissue were clearly identified, morphologic changes between normal, nodular goiter, and papillary cancerous thyroid tissue were well characterized by using two-photon excitation fluorescence. SHG imaging of the collagen matrix also revealed the differences between normal and abnormal. Our preliminary study suggests that the TPEF and SHG combination method might be a useful tool in revealing pathologic changes in thyroid tissue.

  17. Two-photon polymerization of an epoxy-acrylate resin material system

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, R.J., E-mail: richard.winfield@tyndall.ie [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); O' Brien, S. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2011-04-01

    Improved material systems are of great interest in the development of two-photon polymerization techniques for the fabrication of three dimensional micro- and nano-structures. The properties of the photosensitive resin are important in the realisation of structures with submicron dimensions. In this study investigation of a custom organic resin, cross-linked by a two-photon induced process, using a femtosecond Ti:sapphire laser, is described. A structural, optical and mechanical analysis of the optimised material is presented. The influence of both material system and laser processing parameters on achievable micro-structure and size is presented as are representative structures. Parameters include: laser power, photo-initiator concentration and material composition.

  18. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states

    Science.gov (United States)

    Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping

    2016-08-01

    We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.

  19. Generalized Kramers-Heisenberg expressions for stimulated Raman scattering and two-photon absorption

    Science.gov (United States)

    Roslyak, Oleksiy; Marx, Christoph A.; Mukamel, Shaul

    2010-01-01

    The frequency-domain pump-probe signal of a material system interacting with two quantum modes of the radiation field is recast in terms of products of scattering amplitudes (T matrix elements) rather than the third-order susceptibility Im χ(3). The resulting expression offers a more intuitive physical picture for the optical process compared with the semiclassical approach which treats the radiation field as classical. It can be derived and interpreted using closed-time-path-loop diagrams which represent the joint state of the matter and the field for each contribution to the signal. The signal has two components representing stimulated Raman scattering ω1 − ω2 and two-photon absorption ω1 + ω2 two-photon resonances. Both are expressed as nonequi-librium steady-state photon and matter fluxes, as is common in the description of dissipative processes in open quantum systems. PMID:20613889

  20. Self-Energy Correction to the Two-Photon Decay Width in Hydrogenlike Atoms

    CERN Document Server

    Jentschura, U D

    2004-01-01

    We investigate the gauge invariance of the leading logarithmic radiative correction to the two-photon decay width in hydrogenlike atoms. It is shown that an effective treatment of the correction using a Lamb-shift "potential" leads to equivalent results in both the length as well as the velocity gauges provided all relevant correction terms are taken into account. Specifically, the relevant radiative corrections are related to the energies that enter into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation condition that holds between the two photons; the form of all of these effects is different in the two gauges, but the final result is shown to be gauge invariant, as it should be. Although the actual calculation only involves integrations over nonrelativistic hydrogenic Green functions, the derivation of the leading logarithmic correction can be regarded as slightly more complex than that of other typical logarithmic terms. The dominant radiative correctio...

  1. Programmable two-photon quantum interference in $10^3$ channels in opaque scattering media

    CERN Document Server

    Wolterink, Tom A W; Ctistis, Georgios; Vos, Willem L; Boller, Klaus -J; Pinkse, Pepijn W H

    2015-01-01

    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports $10^6$ transmission channels. By adaptive spatial phase-modulation of the incident wavefronts, the photons are directed at targeted speckle spots or output channels. From $10^3$ experimentally available coupled channels, we select two channels and enhance their transmission, to realize the equivalent of a fully programmable $2\\times2$ beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programmed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be non-unitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and ph...

  2. Programmable two-photon quantum interference in 103 channels in opaque scattering media

    Science.gov (United States)

    Wolterink, Tom A. W.; Uppu, Ravitej; Ctistis, Georgios; Vos, Willem L.; Boller, Klaus-J.; Pinkse, Pepijn W. H.

    2016-05-01

    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports a large number of transmission channels. By adaptive spatial phase modulation of the incident wave fronts, the photons are directed at targeted speckle spots or output channels. From 103 experimentally available coupled channels, we select two channels and enhance their transmission to realize the equivalent of a fully programmable 2 ×2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be nonunitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication.

  3. Two-photon gateway in one-atom cavity quantum electrodynamics.

    Science.gov (United States)

    Kubanek, A; Ourjoumtsev, A; Schuster, I; Koch, M; Pinkse, P W H; Murr, K; Rempe, G

    2008-11-14

    Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.

  4. Enhanced two-photon excited fluorescence from imaging agents using true thermal light

    Science.gov (United States)

    Jechow, Andreas; Seefeldt, Michael; Kurzke, Henning; Heuer, Axel; Menzel, Ralf

    2013-12-01

    Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy, but is still affected by photodamage to the probe. It has been proposed that TPEF can be enhanced using entangled photons, but this has proven challenging. Recently, it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, subwavelength lithography and metrology. Here, we use true thermal light from a superluminescent diode to demonstrate TPEF that is enhanced compared to coherent light, using two common fluorophores and luminescent quantum dots, which suit applications in imaging and microscopy. We find that the TPEF rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching in thermal light can be exploited in two-photon microscopy, with the photon statistic providing a new degree of freedom.

  5. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    Science.gov (United States)

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  6. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jing; Roy, Indrajit; Hu Rui; Ding Hong; Zhao Lingling; He, Guang S; Prasad, Paras N [Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Yong, Ken-Tye [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Swihart, Mark T [Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Cui Yiping, E-mail: ktyong@ntu.edu.sg, E-mail: cyp@seu.edu.cn, E-mail: pnprasad@buffalo.edu [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China)

    2010-07-16

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  7. Conjugated polymers with pyrrole as the conjugated bridge: synthesis, characterization, and two-photon absorption properties.

    Science.gov (United States)

    Li, Qianqian; Zhong, Cheng; Huang, Jing; Huang, Zhenli; Pei, Zhiguo; Liu, Jun; Qin, Jingui; Li, Zhen

    2011-07-14

    The synthesis, one- and two-photon absorption (2PA) and emission properties of two novel pyrrole-based conjugated polymers (P1 and P2) are reported. They emitted strong yellow-green and orange fluorescence with fluorescent quantum yields (Φ) of 46 and 33%, respectively. Their maximal 2PA cross sections (δ) measured by the two-photon-induced fluorescence method using femtosecond laser pulses in THF were 2392 and 1938 GM per repeating unit, respectively, indicating that the 2PA chromophores consisting of the triphenylamine with nonplanar structure as the donor and electron-rich pyrrole as the conjugated bridge could be the effective repeating units to enhance the δ values.

  8. Enhancement of Two-photon Absorption by Ce3+ Sensitization in Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    LI Jian-fu; SUN Cheng-lin; ZHOU Hai-ling; XU Li-hua; YANG Qing-xin; JIANG Zhan-kui

    2007-01-01

    The two-photon absorption (TPA) and TPA-induced frequency upconversion emission properties of the dyes4-[P-(dicyanoethylamino) crystal]-N-methypyrdinium iodide and the complex of 4-[ P-(dicyanoethylamino) crystal]-N-methypyrdinium iodide and Ce( NO3 )3 were experimentally studied. It was found that the TPA cross section for the dye sensitized by Ce3+ is two factors larger than that of the dye without being sensitized. A three-level system model of the dye molecules was used to analyze the enhancement of TPA by the sensitizer Ce3+, which indicated that the sensitizer results in the increase of the transition dipole moment from the one-photon allowed excited state(1Bu)to the two-photon allowed excited state(2Ag).

  9. Two-Photon Exchange Corrections to Precise Measurements of Proton Electroweak Form Factors

    Science.gov (United States)

    Afanasev, Andrei

    2004-10-01

    Higher-order QED effects play an important role for extracting information on proton form factors from electron scattering data. For the electric form factor of the proton, a previously neglected two-photon-exchange correction reconciles an observed discrepancy between Rosenbluth and polarization techniques [1]. We use a similar approach based on General Parton Distributions to compute additional radiative corrections to parity-violating electron scattering. [1] Y.C. Chen, A. Afanasev, S.J. Brodsky, C.E. Carlson and M. Vanderhaeghen, ``Partonic calculation of the two-photon exchange contribution to elastic electron proton scattering at large momentum transfer,`` arXiv:hep-ph/0403058, to appear in Phys.Rev.Lett.

  10. Rational Design of Fluorescent Phthalazinone Derivatives for One- and Two-Photon Imaging.

    Science.gov (United States)

    Yang, Lingfei; Zhu, Yuanjun; Shui, Mengyang; Zhou, Tongliang; Cai, Yuanbo; Wang, Wei; Xu, Fengrong; Niu, Yan; Wang, Chao; Zhang, Jun-Long; Xu, Ping; Yuan, Lan; Liang, Lei

    2016-08-22

    Phthalazinone derivatives were designed as optical probes for one- and two-photon fluorescence microscopy imaging. The design strategy involves stepwise extension and modification of pyridazinone by 1) expansion of pyridazinone to phthalazinone, a larger conjugated system, as the electron acceptor, 2) coupling of electron-donating aromatic groups such as N,N-diethylaminophenyl, thienyl, naphthyl, and quinolyl to the phthalazinone, and 3) anchoring of an alkyl chain to the phthalazinone with various terminal substituents such as triphenylphosphonio, morpholino, triethylammonio, N-methylimidazolio, pyrrolidino, and piperidino. Theoretical calculations were utilized to verify the initial design. The desired fluorescent probes were synthesized by two different routes in considerable yields. Twenty-two phthalazinone derivatives were synthesized and their photophysical properties were measured. Selected compounds were applied in cell imaging, and valuable information was obtained. Furthermore, the designed compounds showed excellent performance in two-photon microscopic imaging of mouse brain slices.

  11. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells.

    Science.gov (United States)

    Zhu, Jing; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Ding, Hong; Zhao, Lingling; Swihart, Mark T; He, Guang S; Cui, Yiping; Prasad, Paras N

    2010-07-16

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  12. Time-dependent R-matrix theory applied to two-photon double ionization of He

    Science.gov (United States)

    van der Hart, H. W.

    2014-05-01

    We introduce a time-dependent R-matrix theory generalized to describe double-ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wave-function description in an extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wave-function densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double-ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.

  13. Time-dependent R-matrix theory applied to two-photon double ionization of He

    CERN Document Server

    van der Hart, H W

    2014-01-01

    We introduce a time-dependent R-matrix theory generalised to describe double ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wavefunction description in a extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wavefunction densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.

  14. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    Science.gov (United States)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  15. Direct two-photon excitation of isomeric transition in thorium-229 nucleus

    CERN Document Server

    Romanenko, V I; Yatsenko, L P; Romanenko, A V; Litvinov, A N; Kazakov, G A

    2012-01-01

    A possibility of the two-photon excitation of an isomeric state in a nucleus of thorium-229 has been discussed. The fluorescence intensity of the excitation is demonstrated to be identical for the irradiation of nuclei with either monochromatic light or polychromatic radiation consisting of a sequence of short light pulses of the same intensity. The two-photon excitation of Th^{3+} ion in an electromagnetic trap with a focused laser beam with a wavelength of about 320 nm and power of 100 mW can lead to the absorption saturation, at which the fluorescence emission with the frequency of the transition in a nucleus is maximal. In crystals doped with Th^{4+} to a concentration of about 10^{18} cm^{-3} and irradiated with a laser radiation 10 W in power, the emission of several photons per second with a wavelength of about 160 nm becomes possible.

  16. Evidence for the Direct Two-Photon Transition from $\\psi'$ to $J/\\psi$

    CERN Document Server

    Ablikim, M; Ambrose, D J; An, F F; An, Q; An, Z H; Bai, J Z; Ferroli, R B; Ban, Y; Becker, J; Berger, N; Bertani, M B; Bian, J M; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Bytev, V; Cai, X; Calcaterra, A C; Cao, G F; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, J C; Chen, M L; Chen, S J; Chen, Y; Chen, Y B; Cheng, H P; Chu, Y P; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; Ding, W M; Ding, Y; Dong, L Y; Dong, M Y; Du, S X; Fang, J; Fang, S S; Fava, L; Feldbauer, F; Feng, C Q; Fu, C D; Fu, J L; Gao, Y; Geng, C; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y P; Han, Y L; Hao, X Q; Harris, F A; He, K L; He, M; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, H M; Hu, J F; Hu, T; Huang, B; Huang, G M; Huang, J S; Huang, X T; Huang, Y P; Hussain, T; Ji, C S; Ji, Q; Ji, X B; Ji, X L; Jia, L K; Jiang, L L; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Jing, F F; Kalantar-Nayestanaki, N; Kavatsyuk, M; Kuehn, W; Lai, W; Lange, J S; Leung, J K C; Li, C H; Li, Cheng; Li, Cui; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, K; Li, Lei; Li, N B; Li, Q J; Li, S L; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, X R; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Liao, X T; Liu, B J; Liu, B J; Liu, C L; Liu, C X; Liu, C Y; Liu, F H; Liu, Fang; Liu, Feng; Liu, H; Liu, H B; Liu, H H; Liu, H M; Liu, H W; Liu, J P; Liu, Kun; Liu, Kai; Liu, K Y; Liu, P L; Liu, S B; Liu, X; Liu, X H; Liu, Y B; Liu, Y; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lu, G R; Lu, H J; Lu, J G; Lu, Q W; Lu, X R; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Ma, C L; Ma, F C; Ma, H L; Ma, Q M; Ma, S; Ma, T; Ma, X Y; Ma, Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, H; Mao, Y J; Mao, Z P; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Morales, C Morales; Motzko, C; Muchnoi, N Yu; Nefedov, Y; Nicholson, C; Nikolaev, I B; Ning, Z; Olsen, S L; Ouyang, Q; Pacetti, S P; Park, J W; Pelizaeus, M; Peters, K; Ping, J L; Ping, R G; Poling, R; Prencipe, E; Pun, C S J; Qi, M; Qian, S; Qiao, C F; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Rong, G; Ruan, X D; Sarantsev, A; Schulze, J; Shao, M; Shen, C P; Shen, X Y; Sheng, H Y; Shepherd, M R; Song, X Y; Spataro, S; Spruck, B; Sun, D H; Sun, G X; Sun, J F; Sun, S S; Sun, X D; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Thorndike, E H; Tian, H L; Toth, D; Ulrich, M U; Varner, G S; Wang, B; Wang, B Q; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q; Wang, Q J; Wang, S G; Wang, X F; Wang, X L; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z Y; Wei, D H; Weidenkaff, P; Wen, Q G; Wen, S P; Werner, M W; Wiedner, U; Wu, L H; Wu, N; Wu, S X; Wu, W; Wu, Z; Xia, L G; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, G M; Xu, H; Xu, Q J; Xu, X P; Xu, Y; Xu, Z R; Xue, F; Xue, Z; Yan, L; Yan, W B; Yan, Y H; Yang, H X; Yang, T; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yu, B X; Yu, C X; Yu, J S; Yu, S P; Yuan, C Z; Yuan, W L; Yuan, Y; Zafar, A A; Zallo, A Z; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J G; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, L; Zhang, S H; Zhang, T R; Zhang, X J; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y S; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, H S; Zhao, J W; Zhao, K X; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, S J; Zhao, T C; Zhao, X H; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, Y H; Zheng, Z P; Zhong, B; Zhong, J; Zhou, L; Zhou, X K; Zhou, X R; Zhu, C; Zhu, K; Zhu, K J; Zhu, S H; Zhu, X L; Zhu, X W; Zhu, Y M; Zhu, Y S; Zhu, Z A; Zhuang, J; Zou, B S; Zou, J H; Zuo, J X

    2012-01-01

    The two-photon transition $\\psi' \\to \\gamma\\gamma J/\\psi$ is studied in a sample of 106 million $\\psi'$ decays collected by the BESIII detector. The branching fraction is measured to be $(3.3\\pm0.6(\\unit{stat})^{+0.8}_{-1.1}(\\unit{syst})) \\times10^{-4}$ using $J/\\psi \\to e^+e^-$ and $J/\\psi \\to \\mu^+\\mu^-$decays. This work represents the first measurement of a two-photon transition among charmonium states. The orientation of the $\\psi'$ decay plane and the $J/\\psi$ polarization in this decay are also studied. In addition, the product branching fractions of sequential $E1$ transitions $\\psi'\\to\\gamma\\chi_{cJ}$, $\\chi_{cJ}\\to\\gamma J/\\psi (J=0,1,2)$ are reported.

  17. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus.

    Science.gov (United States)

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s(2)(1)S0↔ 6s7s (1)S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm(3) and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s(1)S0 state via the intercombination 6s6p(3)P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  18. Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section

    NARCIS (Netherlands)

    Xu, Bin; Zhang, Jibo; Fang, Honghua; Ma, Suqian; Chen, Qidai; Sun, Hongbo; Im, Chan; Tian, Wenjing

    2014-01-01

    Organic nonlinear optical materials combining high luminescence quantum yields and large two-photon absorption cross-sections are attractive for both fundamental research and practical applications, such as up-converted lasers and two-photon fluorescence microscopy. Herein, we reported a series of

  19. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yashunin, D. A., E-mail: yashuninda@yandex.ru; Korytin, A. I.; Stepanov, A. N. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  20. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    Science.gov (United States)

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  1. Measurement of ηc production in untagged two-photon collisions at LEP

    Science.gov (United States)

    Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Angelescu, T.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Atamanchuk, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bagnaia, P.; Bakken, J. A.; Ball, R. C.; Banerjee, S.; Bao, J.; Barillère, R.; Barone, L.; Baschirotto, A.; Battiston, R.; Bay, A.; Becattini, F.; Bechtluft, J.; Becker, R.; Becker, U.; Behner, F.; Behrens, J.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Bosetti, M.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brock, I. C.; Brooks, M.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Capell, M.; Caria, M.; Carlino, G.; Cartacci, A. M.; Castello, R.; Cerrada, M.; Cesaroni, F.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chen, W. Y.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Chung, S.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Contin, A.; Costantini, S.; Cotorobai, F.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; Dhina, M.; DiBitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Dittmar, M.; Djambazov, L.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Fan, S. J.; Fackler, O.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; Garcia-Abia, P.; Gele, D.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M.; Gu, C.; Guanziroli, M.; Guo, J. K.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hangarter, K.; Hartmann, B.; Hasan, A.; Hauschildt, D.; He, C. F.; He, J. T.; Hebbeker, T.; Hebert, M.; Hervé, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hu, G.; Hu, G. Q.; Ille, B.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jezequel, S.; Jin, B. N.; Jones, L. W.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirsch, S.; Kittel, W.; Klimentov, A.; Klöckner, R.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev, V. R.; Krenz, W.; Krivshich, A.; Kuijten, H.; Kumar, K. S.; Kunin, A.; Landi, G.; Lanske, D.; Lanzano, S.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, D. M.; Lee, J. S.; Lee, K. Y.; Leedom, I.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Li, C.; Li, H. T.; Li, P. J.; Liao, J. Y.; Lin, W. T.; Lin, Z. Y.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubbers, J. M.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, J. M.; Ma, W. G.; MacDermott, M.; Malik, R.; Malinin, A.; Maña, C.; Maolinbay, M.; Marchesini, P.; Marion, F.; Marin, A.; Martin, J. P.; Martinez-Laso, L.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McBride, P.; McMahon, T.; McNally, D.; Merk, M.; Merola, L.; Meschini, M.; Metzger, W. J.; Mi, Y.; Mihul, A.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nadtochy, A.; Nagy, E.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Neyer, C.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Perrier, J.; Pevsner, A.; Piccolo, D.; Pieri, M.; Piroué, P. A.; Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Qi, Z. D.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Ro, S.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Romero, L.; Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubbia, A.; Rubio, J. A.; Rykaczewski, H.; Sachwitz, M.; Salicio, J.; Salicio, J. M.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schopper, H.; Schotanus, D. J.; Shotkin, S.; Schreiber, H. J.; Shukla, J.; Schulte, R.; Schulte, S.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Scott, I.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.; Shen, D. Z.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutko, V.; Son, D.; Sopczak, A.; Soulimov, V.; Spartiotis, C.; Spickermann, T.; Spillantini, P.; Starosta, R.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Strauch, K.; Stringfellow, B. C.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Terzi, G.; Ting, Samuel C. C.; Ting, S. M.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, C.; Wang, C. R.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Warner, C.; Weber, A.; Weber, J.; Weill, R.; Wenaus, T. J.; Wenninger, J.; White, M.; Willmott, C.; Wittgenstein, F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Wysłouch, B.; Xie, Y. Y.; Xu, J. G.; Xu, Z. Z.; Xue, Z. L.; Yan, D. S.; Yang, B. Z.; Yang, C. G.; Yang, G.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; Yin, Z. W.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zaitsev, N.; Zemp, P.; Zeng, M.; Zeng, Y.; Zahang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration

    1993-12-01

    A study of twelve distinct decay channels of the ηc has been performed with the L3 detector at LEP, for an integrated luminosity of 30 pb -1. Summing all channels, 28 candidate events have been identified, with an estimated background of 11 events. The two-photon radiative width is evaluated to be Γγγ( ηc) = 8.0 ± 2.3 ± 2.4 keV.

  2. Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared

    CERN Document Server

    Rakov, N; Da Rocha, G B; Simas, A M; Athayde-Filho, P A F; Miller, J

    2000-01-01

    Intensity dependent transmission and laser-induced fluorescence were observed in liquid solutions of mesoionic compounds (MIC) pumped with nanosecond lasers operating at 1064, 604, and 570 nm. The results indicate that two-photon absorption (TPA) is the dominant mechanism which causes the observed behavior. The TPA cross-sections measured have values from 0.33*10/sup -20/ cm/sup 4//GW to 0.43*10/sup -18/ cm /sup 4//GW. (20 refs).

  3. Two-Photon-Exchange Correction to Elastic ep Scattering in the Forward Angle Limit

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hai-Qing

    2009-01-01

    The two-photon-exchange (TPE) correction to elastic ep ecattering in the forward angle region is discussed based on a simple hadronic model.It is found that the correction is exactly zero in the forward angle limit.This analytical result gives a good explanation of the previous numerical results and shows the clear power behavior of the TPE correction to elastic ep scattering in the forward angle region.

  4. Multiscale vision model for event detection and reconstruction in two-photon imaging data

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lind, Barbara;

    2014-01-01

    on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed...... of the multiscale vision model is similar in the denoising, but provides a better segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated thresholding and segmentation utilities....

  5. Development and design of advanced two-photon microscope used in neuroscience

    Science.gov (United States)

    Doronin, M. S.; Popov, A. V.

    2016-08-01

    This work represents the real steps to development and design advanced two-photon microscope by efforts of laboratory staff. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. We are presenting here module-based microscopy system which provides an opportunity to looking for new applications of this setup depending on laboratories needs using with galvo and resonant scanners.

  6. Resummation of target mass corrections in two-photon processes twist-two sector

    CERN Document Server

    Belitsky, A V

    2001-01-01

    We develop a formalism for the resummation of target mass corrections in off-forward two-photon amplitudes given by a chronological product of electromagnetic currents, arising in e.g. deeply virtual Compton scattering. The method is based on a relation of composite operators with a definite twist to harmonic tensors, which form an irreducible representation of the Lorentz group. We give an application of the framework for the matrix elements of twist-two operators.

  7. Morphology dependent two photon absorption in plasmonic structures and plasmonic-organic hybrids

    Science.gov (United States)

    Gambhir, Kaweri; Ray, Bhumika; Mehrotra, Ranjana; Sharma, Parag

    2017-05-01

    Two photon absorption coefficients of two distinct plasmonic structures, namely, gold nanoflowers (GNF) and gold nanopebbles (GNP) have been investigated and compared with conventional gold nanospheres (GNS). All three different nanoshapes were synthesized by changing the reaction solvent under the same experimental procedure. Further, hybrids of these plasmonic structures were prepared with an organic dye Eosin yellow (EY), to investigate the morphology effect of plasmonic structures on plasmonic-organic hybrids in terms of their linear extinction spectra and two photon absorption coefficients. The NLO investigations were conducted using 20 ps laser pulses of wavelength 532 nm as an excitation source in single beam Z-scan setup. UV/visible spectroscopy was employed for monitoring plasmon resonances and changes in linear extinction spectra. The experimental outcomes revealed two photon absorption coefficients of EY increased 120%, 32% and 39%, while 69%, 60% and 53% enhancement in the peaks of linear extinction maxima of EY has been observed, when hybridized with GNF, GNS and GNP, respectively. This boost in the optical coefficients may be attributed to dimerization of EY molecules on the surface of nanoparticles. Keeping the toxicity of EY in view, we propose that the two photon absorption coefficients of this dye and control thereof, by the addition of plasmonic structures would be helpful not only in understanding the interactions between plasmons and fluorophore, but also pave an efficient way, to reduce the operative concentration of this hazardous dye in a wide range of applications and thereby, mitigating the environmental degradation caused by its highly concentrated effluents.

  8. Acute two-photon imaging of the neurovascular unit in the cortex of active mice

    Science.gov (United States)

    Tran, Cam Ha T.; Gordon, Grant R.

    2015-01-01

    In vivo two-photon scanning fluorescence imaging is a powerful technique to observe physiological processes from the millimeter to the micron scale in the intact animal. In neuroscience research, a common approach is to install an acute cranial window and head bar to explore neocortical function under anesthesia before inflammation peaks from the surgery. However, there are few detailed acute protocols for head-restrained and fully awake animal imaging of the neurovascular unit during activity. This is because acutely performed awake experiments are typically untenable when the animal is naïve to the imaging apparatus. Here we detail a method that achieves acute, deep-tissue two-photon imaging of neocortical astrocytes and microvasculature in behaving mice. A week prior to experimentation, implantation of the head bar alone allows mice to train for head-immobilization on an easy-to-learn air-supported ball treadmill. Following just two brief familiarization sessions to the treadmill on separate days, an acute cranial window can subsequently be installed for immediate imaging. We demonstrate how running and whisking data can be captured simultaneously with two-photon fluorescence signals with acceptable movement artifacts during active motion. We also show possible applications of this technique by (1) monitoring dynamic changes to microvascular diameter and red blood cells in response to vibrissa sensory stimulation, (2) examining responses of the cerebral microcirculation to the systemic delivery of pharmacological agents using a tail artery cannula during awake imaging, and (3) measuring Ca2+ signals from synthetic and genetically encoded Ca2+ indicators in astrocytes. This method will facilitate acute two-photon fluorescence imaging in awake, active mice and help link cellular events within the neurovascular unit to behavior. PMID:25698926

  9. Acute two-photon imaging of the neurovascular unit in the cortex of active mice

    Directory of Open Access Journals (Sweden)

    Cam Ha Thai Tran

    2015-02-01

    Full Text Available In vivo two-photon scanning fluorescence imaging is a powerful technique to observe physiological processes from the millimeter to the micron scale in the intact animal. In neuroscience research, a common approach is to install an acute cranial window and head bar to explore neocortical function under anesthesia before inflammation peaks from the surgery. However, there are few detailed acute protocols for head-restrained and fully awake animal imaging of the neurovascular unit during activity. This is because acutely performed awake experiments are typically untenable when the animal is naïve to the imaging apparatus. Here we detail a protocol that achieves acute, deep-tissue two-photon imaging of neocortical astrocytes and microvasculature in behaving mice. A week prior to experimentation, implantation of the head bar alone allows mice to train for head-immobilization on an easy-to-learn air-supported ball treadmill. Following just two brief familiarization sessions to the treadmill on separate days, an acute cranial window can subsequently be installed for immediate imaging. We demonstrate how running and whisking data can be captured simultaneously with two-photon fluorescence signals with acceptable movement artifacts during active motion. We also show possible applications of this technique by 1 monitoring dynamic changes to microvascular diameter and red blood cells movements in response to vibrissa sensory stimulation, 2 examining responses of the cerebral microcirculation to the systemic delivery of pharmacological agents using a tail artery cannula during awake imaging, and 3 measuring Ca2+ signals from synthetic and genetically encoded Ca2+ indicators in astrocytes. This method will facilitate acute two-photon fluorescence imaging in awake, active mice and help link cellular events within the neurovascular unit to behaviour.

  10. Tailored probes for atomic force microscopy fabricated by two-photon polymerization

    Science.gov (United States)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias; Sharma, Swati; Korvink, Jan G.; Schimmel, Thomas; Koos, Christian; Hölscher, Hendrik

    2016-08-01

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  11. Intravital two-photon imaging: a versatile tool for dissecting the immune system.

    Science.gov (United States)

    Ishii, Taeko; Ishii, Masaru

    2011-03-01

    During the past decade, multi-photon or 'two-photon' excitation microscopy has launched a new era in the field of biological imaging. The near-infrared excitation laser for two-photon microscopy can penetrate thicker specimens, enabling the visualisation of living cell behaviour deep within tissues and organs without thin sectioning. The minimised photobleaching and toxicity enables the visualisation of live and intact specimens for extended periods. In this brief review, recent findings in intravital two-photon imaging for the physiology and pathology of the immune system are discussed. The immune system configures highly dynamic networks, where many cell types actively travel throughout the body and interact with each other in specific areas. Hence, real-time intravital imaging may be a powerful tool for dissecting the mechanisms of this dynamic system. The most unique characteristic of the immune system is its highly dynamic nature. A variety of cell types, such as lymphocytes, macrophages and dendritic cells (DCs), are continuously circulating throughout the body, migrating through the peripheral tissues and interacting with each other in their respective niches. Conventional methodologies in immunology, such as flow cytometry, cell or tissue culture, biochemistry and histology, have brought tremendous achievement within this field, although the dynamics of immune cells in an entire animal remain less clear. Technological progress of fluorescence microscopy has enabled us to visualise the intact biological phenomenon that has been uninvestigated. Among the advancements, the recent emergence and prevalence of two-photon, excitation-based, laser microscopy has revolutionised the research field, such that the dynamic behaviour of cells deep inside living organs can be visualised and analysed.

  12. Quantum Teleportation of One-Photon and Two-Photon Superposition States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ One-photon and two-photon superposition states are the fundamental quantum states, which have shown interesting features, such as squeezing and anti-bunching. In this paper we discuss the quantum teleportation of such quantum states with the continuous-wave EPR states. Fidelity as a function of EPR correlation is obtained. We also compared the results with Fock state and coherent state teleportation.

  13. Angular distributions in two-colour two-photon ionization of He

    CERN Document Server

    Rey, H F

    2014-01-01

    We present R-Matrix with time dependence (RMT) calculations for the photoionization of helium irradiated by an EUV laser pulse and an overlapping IR pulse with an emphasis on the anisotropy parameters of the sidebands generated by the dressing laser field. We investigate how these parameters depend on the amount of atomic structure included in the theoretical model for two-photon ionization. To verify the accuracy of the RMT approach, our theoretical results are compared with experiment.

  14. Angular distributions in two-colour two-photon ionization of He

    Science.gov (United States)

    Rey, H. F.; van der Hart, H. W.

    2014-11-01

    We present R-Matrix with time dependence (RMT) calculations for the photoionization of helium irradiated by an EUV laser pulse and an overlapping IR pulse with an emphasis on the anisotropy parameters of the sidebands generated by the dressing laser field. We investigate how these parameters depend on the amount of atomic structure included in the theoretical model for two-photon ionization. To verify the accuracy of the RMT approach, our theoretical results are compared with the experiment.

  15. Experimental Entanglement and Nonlocality of a Two-Photon Six-Qubit Cluster State

    CERN Document Server

    Ceccarelli, Raino; De Martini, Francesco; Mataloni, Paolo; Cabello, Adan

    2009-01-01

    We create a six-qubit linear cluster state by transforming a two-photon hyper-entangled state in which three qubits are encoded in each particle, one in the polarization and two in linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, robustness of entanglement against the loss of qubits, and higher violation of Bell inequalities than in previous experiments.

  16. Two-photon absorption coefficient dichroism in Ⅱ-Ⅵ semiconductor crystals

    Institute of Scientific and Technical Information of China (English)

    Ma Guo-Hong; Ma Hong-Liang; Tang Sing-Hai

    2007-01-01

    Considering two beams propagate in semiconductor crystal, this paper discusses the polarization dependence of pump beam-induced intensity attenuation of probe beam due to two-photon absorption (TPA). Numerical calculation and experimental measurement demonstrate that TPA coefficient is polarization dependent. For homogeneous materials,probe beam attenuation arises from the imaginary part of diagonal and off-diagonal components of third-order nonlinear susceptibilities.

  17. Functionalized 3D Architected Materials via Thiol-Michael Addition and Two-Photon Lithography.

    Science.gov (United States)

    Yee, Daryl W; Schulz, Michael D; Grubbs, Robert H; Greer, Julia R

    2017-04-01

    Fabrication of functionalized 3D architected materials is achieved by a facile method using functionalized acrylates synthesized via thiol-Michael addition, which are then polymerized using two-photon lithography. A wide variety of functional groups can be attached, from Boc-protected amines to fluoroalkanes. Modification of surface wetting properties and conjugation with fluorescent tags are demonstrated to highlight the potential applications of this technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polarization-resolved two-photon luminescence microscopy of V-groove arrays

    DEFF Research Database (Denmark)

    Beermann, J.; Novikov, S. M.; Holmgaard, T.;

    2012-01-01

    Using two-photon luminescence (TPL) microscopy and local reflection spectroscopy we investigate electromagnetic field enhancement effects from a mu m-sized composition of 450-nm-deep V-grooves milled by focused ion beam in a thick gold film and assembled to feature, within the same structure...... obtained to evaluation of local field enhancements using TPL microscopy, especially when investigating extended structures exhibiting different radiation channels, are discussed. (C)2011 Optical Society of America...

  19. Two-photon annihilation into octet meson pairs. Symmetry relations in the handbag approach

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, P. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2009-11-15

    We explore the implications of SU(3) flavor symmetry in the soft handbag mechanism for two-photon annihilation into pairs of pseudoscalar octet mesons. In this approach we obtain a good description of the experimental results for all measured channels at high energy, with two complex form factors adjusted to the data. We also predict the cross section for {gamma}{gamma}{yields}{eta}{eta}. (orig.)

  20. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination.

    Science.gov (United States)

    Chu, Kengyeh K; Lim, Daryl; Mertz, Jerome

    2007-10-01

    We describe a technique to enhance both the weak-signal relative sensitivity and the dynamic range of a laser scanning optical microscope. The technique is based on maintaining a fixed detection power by fast feedback control of the illumination power, thereby transferring high measurement resolution to weak signals while virtually eliminating the possibility of image saturation. We analyze and demonstrate the benefits of adaptive illumination in two-photon fluorescence microscopy.

  1. Adiabatic rapid passage two-photon excitation of a Rydberg atom

    CERN Document Server

    Kuznetsova, Elena; Malinovskaya, Svetlana A

    2015-01-01

    We considered the two-photon adiabatic rapid passage excitation of a single atom from the ground to a Rydberg state. Three schemes were analyzed: both pump and Stokes fields chirped and pulsed, only the pump field is chirped, and only the pump field is pulsed and chirped while the Stokes field is continuous wave (CW). In all three cases high transfer efficiencies $>99\\%$ were achieved for the experimentally realizable Rabi frequencies and the pulse durations of the fields.

  2. Dynamic Control of Light Emission Faster than the Lifetime Limit Using VO2 Phase-Change

    Science.gov (United States)

    2015-10-22

    phase- change Sébastien Cueff1,w, Dongfang Li1, You Zhou2, Franklin J. Wong2, Jonathan A. Kurvits1, Shriram Ramanathan2 & Rashid Zia1 Modulation is a...emission through modifications to the local density of optical states. Here, by leveraging the phase- change of a vanadium dioxide nanolayer, we...excited state lifetime. This proof-of-concept demonstration shows how integration with phase- change materials can transform wide- spread phosphorescent

  3. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential

    Science.gov (United States)

    Brinkley, M. K.; Abergel, D. S. L.; Clader, B. D.

    2016-09-01

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential—all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

  4. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    CERN Document Server

    Galán, Álvaro Jiménez; Argenti, Luca

    2015-01-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate \\emph{ab initio} calculations, or be extracted from few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N=2 threshold for the RABITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association to a weak IR probe, obtaining results in quantitative agreement with those from accurate \\emph{ab initio} simulations. In particular, we show that: i) Use of finite pulses results in a homogene...

  5. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis

    Science.gov (United States)

    Chen, Xuanze; Zong, Weijian; Li, Rongqin; Zeng, Zhiping; Zhao, Jia; Xi, Peng; Chen, Liangyi; Sun, Yujie

    2016-05-01

    Advances in light-sheet microscopy have enabled the fast three-dimensional (3D) imaging of live cells and bulk specimens with low photodamage and phototoxicity. Combining light-sheet illumination with super-resolution imaging is expected to resolve subcellular structures. Actually, such kind of super-resolution light-sheet microscopy was recently demonstrated using a single-molecule localization algorithm. However, the imaging depth and temporal resolution of this method are limited owing to the requirements of precise single molecule localization and reconstruction. In this work, we present two-photon super-resolution light-sheet imaging via stochastic optical fluctuation imaging (2PLS-SOFI), which acquires high spatiotemporal resolution and excellent optical sectioning ability. 2PLS-SOFI is based on non-linear excitation of fluctuation/blinking probes using our recently developed fast two-photon three-axis digital scanned light-sheet microscope (2P3A-DSLM), which enables both deep penetration and thin sheet of light. Overall, 2PLS-SOFI demonstrates up to 3-fold spatial resolution enhancement compared with conventional two-photon light-sheet (2PLS) microscopy and about 40-fold temporal resolution enhancement compared with individual molecule localization-selective plane illumination microscopy (IML-SPIM). Therefore, 2PLS-SOFI is promising for 3D long-term, deep-tissue imaging with high spatiotemporal resolution.

  6. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    Science.gov (United States)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  7. Cell flow analysis with a two-photon fluorescence fiber probe

    Science.gov (United States)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Baker, James R., Jr.; Norris, Theodore B.

    2010-11-01

    We report the use of a sensitive double-clad fiber (DCF) probe for in situ cell flow velocity measurements and cell analysis by means of two-photon excited fluorescence correlation spectroscopy (FCS). We have demonstrated the feasibility to use this fiber probe for in vivo two-photon flow cytometry previously. However, because of the viscosity of blood and the non-uniform flow nature in vivo, it is problematic to use the detected cell numbers to estimate the sampled blood volume. To precisely calibrate the sampled blood volume, it is necessary to conduct real time flow velocity measurement. We propose to use FCS technique to measure the flow velocity. The ability to measure the flow velocities of labeled cells in whole blood has been demonstrated. Our two-photon fluorescence fiber probe has the ability to monitor multiple fluorescent biomarkers simultaneously. We demonstrate that we can distinguish differently labeled cells by their distinct features on the correlation curves. The ability to conduct in situ cell flow analysis using the fiber probe may be useful in disease diagnosis or further comprehension of the circulation system.

  8. Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal

    Science.gov (United States)

    Lukanin, V. I.; Karasik, A. Ya

    2016-09-01

    A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.

  9. Hyperentanglement purification for two-photon six-qubit quantum systems

    Science.gov (United States)

    Wang, Guan-Yu; Liu, Qian; Deng, Fu-Guo

    2016-09-01

    Recently, two-photon six-qubit hyperentangled states were produced in experiment and they can improve the channel capacity of quantum communication largely. Here we present a scheme for the hyperentanglement purification of nonlocal two-photon systems in three degrees of freedom (DOFs), including the polarization, the first-longitudinal-momentum, and the second-longitudinal-momentum DOFs. Our hyperentanglement purification protocol (hyper-EPP) is constructed with two steps resorting to parity-check quantum nondemolition measurement on the three DOFs and swap gates, respectively. With these two steps, the bit-flip errors in the three DOFs can be corrected efficiently. Also, we show that using swap gates is a universal method for hyper-EPP in the polarization DOF and multiple-longitudinal-momentum DOFs. The implementation of our hyper-EPP is assisted by nitrogen-vacancy centers in optical microcavities, which could be achieved with current techniques. It is useful for long-distance high-capacity quantum communication with two-photon six-qubit hyperentanglement.

  10. Spectroscopic Study of ThCl+ by Two-Photon Ionization

    Science.gov (United States)

    Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael; Peterson, Kirk

    2016-06-01

    Despite the irreplaceable role experimental data plays for evaluating the performance of computational predictions, diatomic actinide species have not received much spectroscopic attention. As an early actinide element, thorium-containing species are ideal candidates for these types of studies. The electronic structure is expected to be relatively simple compared to later actinides, and therefore allows straightforward assessment of calculations. Here, we have studied ThCl+ for the first time via resonant two-photon ionization of jet-cooled ThCl produced by laser ablation of the metal reacted with dilute Cl2. Laser-induced Fluorescence (LIF) spectra have been recorded for the neutral molecule from 16000 - 23500 cm-1 in search of a suitable intermediate state for subsequent two-photon ionization experiments. Monochromator dispersion of the fluorescence has recovered the ground state vibration and anharmonic constants of ThCl. Resonant Two-Photon Ionization (R2PI) within a time-of-flight mass spectrometer was used to confirm ThCl production, and Pulsed Field Ionization Zero Kinetic Energy photoelectron spectroscopy (PFI-ZEKE) has been performed to identify the ionization energy as well as several of the low-lying states of the ThCl+ molecule. These constants have been predicted at the CASPT2 and CCSD(T) levels of theory, and a discussion of the calculations' performance will be presented alongside the recorded spectra.

  11. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    Science.gov (United States)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  12. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  13. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers.

    Science.gov (United States)

    Guan, Zhenping; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2010-12-01

    Interactions between noble metal (Ag and Au) nanoparticles and conjugated polymers as well as their one- and two-photon emission have been investigated. Ag and Au nanoparticles exhibited extraordinary quenching effects on the fluorescence of cationic poly(fluorinephenylene). The quenching efficiency by 37-nm Ag nanoparticles is ∼19 times more efficient than that by 13-nm Au nanoparticles, and 9-10 orders of magnitude more efficient than typical small molecule dye-quencher pairs. On the other hand, the cationic conjugated polymers induce the aggregate formation and plasmonic coupling of the metal nanoparticles, as evidenced by transmission electron microscopy images and appearance of a new longitudinal plasmon band in the near-infrared region. The two-photon emissions of Ag and Au nanoparticles were found to be significantly enhanced upon addition of conjugated polymers, by a factor of 51-times and 9-times compared to the isolated nanoparticles for Ag and Au, respectively. These studies could be further extended to the applications of two-photon imaging and sensing of the analytes that can induce formation of metal nanoparticle aggregates, which have many advantages over the conventional one-photon counterparts.

  14. A Study of Two-Prong Two-Photon Events at the Z0 Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, L.

    2004-08-09

    A study of electron-positron scattering leading to two electron-positron pairs via a two-photon interaction has been carried out at the Stanford Linear Accelerator Center (SLAC). The case where one pair is observed in the detector was investigated. These events were produced at the SLAC Linear Collider (SLC) operating in the center-of-mass energy range from 89.2 to 9.30 GeV. The data was collected using the Mark II detector. Two-photon interactions are described by the theory of quantum electrodynamics (QED). Such processes can be a significant background to new particle searches; consequently, and understanding of their production is imperative. A deviation from the event rate predicted by QED might indicate the existence of new particles. The event rate may also be useful as a luminosity monitor during data collection. The data sample from the Mark II is searched for events which have features indicative of two-photon events. For comparison with theory, the Berends, Daverveldt, and Keiss Monte Carlo event generator is used to simulate events according to QED theory. The data is compared to the theoretical predictions. Given the low event statistics from the SLC data run, the results are consistent with the QED theoretical prediction. However, due to the low statistics, this measurement cannot be used to indicate non-deviation from QED predictions.

  15. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.

    Science.gov (United States)

    Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo

    2017-07-12

    Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.

  16. [Two-photon excitation fluorescence of 5-ALA induced PpIX in DHL cells].

    Science.gov (United States)

    Huang, Zu-Fang; Chen, Rong; Li, Yong-Zeng; Chen, Guan-Nan; Chen, Xian-Ling; Feng, Shang-Yuan; Jia, Pei-Min

    2008-11-01

    Two-photon fluorescence microscopy is a novel imaging technique, which is primarily sensitive to a specimen's response coming from an in-focus plane, thus has low photo-bleaching and photo-damage to biological samples. 5-ALA induced production of PpIX in DHL cells was excited by 820 nm femtosecond laser; two-photon excitation fluorescence of single cell was obtained in Lambda mode of laser scanning confocal microscope. The specific fluorescence intensity of PpIX which accumulated in DHL cells was measured at 2, 4 and 10 mmol x L(-1) concentration of 5-ALA with different incubation time, which reflected the kinetics of 5-ALA accumulated in DHL cells. Accumulation of PpIX in DHL cells was a dynamic change process. Biphasic alterations of PpIX accumulation were noted: PpIX content enhanced with the increasing time and reached the maximal value around 3 h, however PpIX content decreased in the subsequent incubation time. Results indicate that two-photon fluorescence based on laser scanning microscope can be a useful technology for studying the kinetics of 5-ALA induced PpIX production in DHL cells and other leukemia cells.

  17. Search for New Physics with Two Photons in the Final State with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00441752

    This thesis reports on the search for new physics in the diphoton decay channel with the proton-proton collision data collected by ATLAS at a centre-of-mass energy of $\\sqrt{s}=8$~TeV in 2012 and $\\sqrt{s}=13$~TeV in 2015 and 2016. A feasibility study of the search for a pseudoscalar $A$ decaying to a $Z$ boson and a 125~GeV Higgs boson in the context of an extended Higgs sector, namedly the two-Higgs-doublet models, is presented. The search is performed with a final state of two jets and two photons using 20.3~${\\rm fb}^{-1}$ of data at $\\sqrt{s}=8$~TeV. The expected sensitivity is found to be competitive with the analysis with a final state of two electrons or muons and two $\\tau$ leptons, but less sensitive to the other searches with the Higgs decaying to a pair of $b$-quarks.%, due to the low branching ratios of the Higgs to two photons decay. Search for high mass resonances decaying to two photons at $\\sqrt{s}=13$~TeV is also presented. The analysed dataset corresponds to an integrated luminosity of $3.2...

  18. Two-photon microscopy for imaging germinal centers and T follicular helper cells.

    Science.gov (United States)

    Clatworthy, Menna R

    2015-01-01

    One of the principle features of immune cells is their dynamic nature. Lymphocytes circulate in the blood between secondary lymphoid organs and tissues in an effort to maximize the likelihood of a rapid and appropriate immune response to invading pathogens and tissue damage. Conventional experimental techniques such as histology and flow cytometry have greatly increased our understanding of immune cells, but in the last decade, two-photon microscopy has revolutionized our ability to interrogate the dynamic behavior of immune cells, a facet so critical to their function. Two-photon microscopy relies on the excitation of fluorophores by simultaneous application of two photons of longer wavelength light. This allows a greater depth of imaging with minimal photodamage. Thus, living tissues can be imaged, including immune cells in lymph nodes. This technique has been used to interrogate the events occurring in a germinal center response and the interactions between cells in the germinal center, including T follicular helper cells (Tfh), germinal center B cells, and follicular dendritic cells (FDC). Herein, a method is described by which the interactions between Tfh and B cells within a germinal center in a popliteal lymph node can be imaged in a live mouse.

  19. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    Science.gov (United States)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.

  20. Spectral distribution of the 2 → 1 two-photon transition in atoms and few-electron ions

    Indian Academy of Sciences (India)

    Ajay Kumar; S Trotsenko; A V Volotka; D Banaś; H F Beyer; H Bräuning; S Fritzsche; A Gumberidze; S Hagmann; S Hess; C Kozhuharov; R Reuschl; U Spillmann; M Trassinelli; G Weber; Th Stöhlker

    2011-02-01

    The two-photon decay of the 2 state to the ground state in dressed atoms and oneor two-electron ions has been studied for several decades. Relativistic calculations have shown an -dependence of the spectral shape of this two-photon transition in one- or two-electron ions. We have measured the spectral distribution of the 121 0 → 12 1 0 two-photon transition in He-like tin at the ESR storage ring using a new approach for such experiments. In this method, relativistic collisions of initially Li-like projectiles with a gaseous target were used to populate exclusively the first excited state, 12, of He-like tin, which provided a clean two-photon spectrum. The measured two-photon spectral distribution was compared with fully relativistic calculations. The obtained results show very good agreement with the calculations for He-like tin

  1. Second harmonic generation and two-photon luminescence upconversion in glasses doped with ZnSe nanocrystalline quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Thantu, Napoleon [Idaho National Engineering and Environmental Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States)]. E-mail: Napoleon.Thantu@ngc.com

    2005-01-01

    We report two-photon excited emission in borosilicate glasses doped with ZnSe nanocrystalline quantum dots. The emission, predominantly near the two-photon energy and detected in the direction of the excitation beam, is in the visible, and the fundamental excitation is the near-infrared output of a tunable femtosecond laser. Depending on the two-photon energy, time- and frequency-resolved measurements at room temperature reveal that the emission largely consists of second harmonic generation (SHG) and two-photon luminescence upconversion, and a much smaller luminescence from redshifted, low-lying trap states and other trap levels residing near the semiconductor band edge. We discuss the SHG origin in terms of bulk-like and surface contributions from the nanocrystals and the two-photon resonant enhancement near the excitonic absorption.

  2. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    Science.gov (United States)

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications.

  3. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    Science.gov (United States)

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.

  4. How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations.

    Science.gov (United States)

    Xie, Yujun; Ge, Yuwei; Peng, Qian; Li, Conggang; Li, Qianqian; Li, Zhen

    2017-02-21

    Long-lived phosphorescence at room temperature (RTP) from pure organic molecules is rare. Recent research reveals various crystalline organic molecules can realize RTP with lifetimes extending to the magnitude of second. There is little research on how molecular packing affecting RTP. Three compounds are designed with similar optical properties in solution, but tremendously different solid emission characteristics. By investigating the molecular packing arrangement in single crystals, it is found that the packing style of the compact face to face favors of long phosphorescence lifetime and high photoluminescence efficiency, with the lifetime up to 748 ms observed in the crystal of CPM ((9H-carbazol-9-yl)(phenyl)methanone). Theoretical calculation analysis also reveals this kind of packing style can remarkably reduce the singlet excited energy level and prompt electron communication between dimers. Surprisingly, CPM has two very similar single crystals, labeled as CPM and CPM-A, with almost identical crystal data, and the only difference is that molecules in CPM-A crystal take a little looser packing arrangement. X-ray diffraction and cross-polarization under magic spinning (13) C NMR spectra double confirm that they are different crystals. Interestingly, CPM-A crystal shows negligible RTP compared to the CPM crystal, once again proving that the packing style is critical to the RTP property.

  5. Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue

    Science.gov (United States)

    Rumsey, William L.; Vanderkooi, Jane M.; Wilson, David F.

    1988-09-01

    The imaging of phosphorescence provides a method for monitoring oxygen distribution within the vascular system of intact tissues. Isolated rat livers were perfused through the portal vein with media containing palladium coproporphyrin, which phosphoresced and was used to image the liver at various perfusion rates. Because oxygen is a powerful quenching agent for phosphors, the transition from well-perfused liver to anoxia (no flow of oxygen) resulted in large increases of phosphorescence. During stepwise restoration of oxygen flow, the phosphorescence images showed marked heterogeneous patterns of tissue reoxygenation, which indicated that there were regional inequalities in oxygen delivery.

  6. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs.

  7. Novel bipolar bathophenanthroline containing hosts for highly efficient phosphorescent OLEDs.

    Science.gov (United States)

    Ge, Ziyi; Hayakawa, Teruaki; Ando, Shinji; Ueda, Mitsuru; Akiike, Toshiyuki; Miyamoto, Hidetoshi; Kajita, Toru; Kakimoto, Masa-aki

    2008-02-07

    The electronic structures of eight bathophenanthroline derivatives were elucidated by DFT calculations, and four representatives of which CZBP, m-CZBP, m-TPAP, and BPABP were synthesized and employed as the hosts to afford highly efficient phosphorescent OLEDs. The calculated molecular orbital energies agree well with the experimental results, which further demonstrates that the localization of HOMO and LUMO at the respective hole- and electron-transporting moieties is desirable in bipolar molecular designs.

  8. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide

    Science.gov (United States)

    Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra

    2014-08-01

    Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.

  9. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator.

    Science.gov (United States)

    Gittard, Shaun D; Nguyen, Alexander; Obata, Kotaro; Koroleva, Anastasia; Narayan, Roger J; Chichkov, Boris N

    2011-11-01

    Two-photon polymerization is an appealing technique for producing microscale devices due to its flexibility in producing structures with a wide range of geometries as well as its compatibility with materials suitable for biomedical applications. The greatest limiting factor in widespread use of two-photon polymerization is the slow fabrication times associated with line-by-line, high-resolution structuring. In this study, a recently developed technology was used to produce microstructures by two-photon polymerization with multiple foci, which significantly reduces the production time. Computer generated hologram pattern technology was used to generate multiple laser beams in controlled positions from a single laser. These multiple beams were then used to simultaneously produce multiple microstructures by two-photon polymerization. Arrays of micro-Venus structures, tissue engineering scaffolds, and microneedle arrays were produced by multifocus two-photon polymerization. To our knowledge, this work is the first demonstration of multifocus two-photon polymerization technology for production of a functional medical device. Multibeam fabrication has the potential to greatly improve the efficiency of two-photon polymerization production of microscale devices such as tissue engineering scaffolds and microneedle arrays.

  10. Enhancement of a Two-Photon-Induced Reaction in Solution Using Light-Harvesting Gold Nanodimer Structures.

    Science.gov (United States)

    Wu, Botao; Ueno, Kosei; Yokota, Yukie; Sun, Kai; Zeng, Heping; Misawa, Hiroaki

    2012-06-07

    We performed a quantitative analysis of plasmon-assisted two-photon photochromic reactions on light-harvesting gold nanodimer structures. Our strategy for the quantitative analysis of two-photon-induced photochemical reactions on gold nanostructures is using not only a confined photochemical reaction chamber but also a solution system. The strong intensification of near-field light at the nanogap positions on gold nanodimer pairs promoted two-photon absorption by a closed-form diarylethene derivative, resulting in highly efficient photochromic conversion to the open-form structure.

  11. Two-Photon Widths of the chi_cJ States of Charmonium

    CERN Document Server

    Ecklund, K M; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G

    2008-01-01

    Using a data sample of 24.5 million psi(2S) the reactions psi(2S)->gamma chi_cJ, chi_cJ->gamma gamma have been studied for the first time to determine the two-photon widths of the chi_cJ states of charmonium in their decay into two photons. The measured quantities are B(psi(2S)->gamma chi_c0)xB(chi_c0->gamma gamma)=(2.22+-0.32+-0.10)x10^-5, and B(psi(2S)->gamma chi_c2)xB(chi_c2->gamma gamma)=(2.70+-0.28+-0.15)x10^-5. Using values for B(psi(2S)->gamma chi_c0,c2) and \\Gamma(chi_c0,c2) from the literature the two-photon widths are derived to be \\Gamma_{gamma gamma}(chi_c0)=(2.53+-0.37+-0.26) keV, \\Gamma_{gamma gamma}(chi_c2)=(0.60+-0.06+-0.06) keV, and R=\\Gamma_{gamma gamma}(chi_c2)/\\Gamma_{gamma gamma}(chi_c0)= 0.237+-0.043+-0.034. The importance of the measurement of R is emphasized. For the forbidden transition, chi_c1->gamma gamma, an upper limit of \\Gamma_{gamma gamma}(chi_c1)<0.03 keV is established.

  12. 540--900 nm photodissociation of 300 K NCNO: One- and two-photon processes

    Energy Technology Data Exchange (ETDEWEB)

    Nadler, I.; Pfab, J.; Reisler, H.; Wittig, C.

    1984-07-15

    The laser photodissociation of 300 K NCNO throughout the region 540--900 nm is reported, and both 1- and 2-photon processes are discussed. By monitoring CN fragments produced via the 1-photon process, we show that with photolysis wavelengths >592 nm, dissociation occurs predominantly by exciting NCNO ''hot bands.'' At shorter photolysis wavelengths, dissociation from the ground vibrational state of NCNO is observed as well, but the contributions from hot bands are still manifest in high CN rotational levels which are energetically inaccessible from the ground state (D/sub 0/ = 48.8 kcal mol/sup -1/). Energy distributions in the CN fragments were determined for excess energies up to 1800 cm/sup -1/, and are in agreement with phase space theory calculations and a vibrational predissociation mechanism. In addition, throughout the region 620--900 nm, stepwise two-photon photodissociation proceeds using the A /sup 1/A'' state as a gateway, and results in rotationally and vibrationally ''hot'' CN fragments. The hot CN fragment yield vs photolysis wavelength shows peaks which correspond exactly to peaks in the NCNO absorption spectrum, allowing us to obtain high resolution spectra of the A /sup 1/A''reverse arrow X /sup 1/A' absorption system. The one- and two-photon processes are in competition, and the latter disappears at wavelengths where one-photon photodissociation of NCNO via its ground vibrational level sets in. The nature of the electronic states involved in the one- and two-photon processes is also discussed.

  13. Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe

    Institute of Scientific and Technical Information of China (English)

    YUAN; Xianzhang

    2001-01-01

    [1]Nathan, V., Guenther, A. H., Mitra, S. S., Review of multiphoton absortion in crystalline solids, J. Opt. Soc. Am. B, 1985, 2: 294—316.[2]Gibson, A. F., Hatch, C. B., Maggs, P. N. D. et al., Two-photon absorption in indium antimonide and germanium, J. Phys., C, 1976, 9: 3259—3275.[3]Miller, A., Johnston, A., Dempsey, J. et al., Two-photon absorption in InSb and Hg1-xCdxTe, J. Phys. C, 1929, 12: 4839—4849.[4]Burghoorn, J., Anderegg, V. F., Klaassen, T. O. et al., Free electron laser induced two-photon absorption in Hg1-xCdxTe, Appl. Phys. Lett., 1992, 61(19): 2320—2322.[5]Hui, Z. X., Yang, Z. H., Free Electron Laser (in Chinese), Beijing: National Defense Industry Press, 1995, 7—8.[6]Matter, J. C., Smirt, A. L., Scully, M. O., Saturable transmission in mercury cadmium telluride, Appl. Phys. Lett., 1976, 28(9): 507—509.[7]Nurmikko, A. V., Nonlinear absorption at 10.6 μm in Hg1-xCdxTe, Optics Communications, 1976, 18(4): 522—524.[8]Catalano, I. M., Cingolani, A., Minafra, A., Multiphoton transitions in ionic crystals, Phys. Rev. B, 1972, 5(4): 1629—1632.[9]Blakemore, J. S., Semiconductor Statistics, Oxford: Pergamon, 1962, 221—222.[10]Shen, S. C., Optical Property of Semiconductor (in Chinese), Beijing: Science Press, 1992, 392—394.

  14. Theoretical analysis and system design of two-photon based optical frequency standards

    Science.gov (United States)

    Burger, J. P.; Jivan, P.; Matthee, C.; Kritzinger, R.; Hussein, H.; Terra, O.

    2014-06-01

    The National Metrology Institute of South Africa (NMISA) is developing a new optical frequency standard based on the Rubidium two-photon transition in collaboration with the National Institute of Standards (NIS, Egypt) that will use both bulk and fiber optics in the system. This is system is called A-POD; an acronym for a portable photonic oscillator device. Rubidium two-photon standards can yield relatively simple and precise standards that are compatible with standard Ti:Sapphire optical frequency combs, as well as the need for a precise frequency standard in the optical telecommunication domain and for measurement of length with a visible beam. The robustness and transportability of the standard are important considerations for the optical frequency standard. This projects implements a framework for better two-photon standards that can be highly accurate, and possibly compete with much more complex clocks in the metrology environment, and especially so in the smaller national metrology institutes found in the developing world. This paper discusses the design constraints and the development considerations towards the optical setup. The robustness and transportability was greatly improved via the usage of optical fiber in the light source of the system, or even in atom-light interaction region. Of particular importance are the beam parameters inside the atomic interaction area. The extent of Doppler broadening and the intensity dependent line shift have to be optimized within practical extents, where both these aspects are affected by the beam shape and optical geometry. A way to fully treat the optical beam effects together with atomic movement is proposed. Furthermore a method is proposed to do real time compensation of intensity dependent light shift, which could have major applicability to frequency standards in general - the complexity is shifted from physical setups to digital signal processing, which is easily adaptable and stable.

  15. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  16. Two-photon rotational action spectroscopy of cold OH- at 1 ppb accuracy.

    Science.gov (United States)

    Jusko, Pavol; Asvany, Oskar; Wallerstein, Ann-Christin; Brünken, Sandra; Schlemmer, Stephan

    2014-06-27

    The fundamental rotational transition J = 1←0 of the anion OH(-) has been measured by cooling mass-selected OH(-) ions to 10 K in a 22-pole ion trap and applying a novel rotational-rovibrational two-photon scheme. A transition frequency of (1  123 101.0410 ± 0.0014)  MHz was obtained with so far unprecedented accuracy. The general application of the presented action-spectroscopy scheme to other anions and cations is discussed.

  17. Exclusive production of pion and kaon meson pairs in two photon collisions at LEP

    Science.gov (United States)

    ALEPH Collaboration; Heister, A.; Schael, S.; Barate, R.; Brunelière, R.; de Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmüller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Sguazzoni, G.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J. M.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Kraan, A. C.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G. P.; Passalacqua, L.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Hill, R. D.; Marinelli, N.; Nowell, J.; Rutherford, S. A.; Sedgbeer, J. K.; Thompson, J. C.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hölldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Müller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Männer, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Awunor, O.; Blair, G. A.; Cowan, G.; Garcia-Bellido, A.; Green, M. G.; Jones, L. T.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Ward, J. J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A.; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, S. L.; Wu, X.; Zobernig, G.; Dissertori, G.

    2003-09-01

    Exclusive production of /π and K meson pairs in two photon collisions is measured with ALEPH data collected between 1992 and 2000. Cross-sections are presented as a function of cosθ* and invariant mass, for cosθ*<0.6 and invariant masses between 2.0 and 6.0 GeV/c2 (2.25 and 4.0 GeV/c2) for pions (kaons). The shape of the distributions are found to be well described by QCD predictions but the data have a significantly higher normalization.

  18. Exclusive production of pion and kaon meson pairs in two photon collisions at LEP

    CERN Document Server

    Heister, A; Antonelli, A; Antonelli, M; Armstrong, S R; Awunor, O; Azzurri, P; Badaud, F; Bagliesi, G; Barate, R; Barklow, Timothy L; Bencivenni, G; Berkelman, K; Beuselinck, R; Blair, G A; Bloch-Devaux, B; Blondel, A; Blumenschein, U; Boccali, T; Bonissent, A; Booth, C N; Borean, C; Bossi, F; Boucrot, J; Bouhova-Thacker, E; Boumediene, D E; Bowdery, C K; Brandt, S; Bravo, S; Brient, J C; Brunelière, R; Buchmüller, O L; Böhrer, A; Callot, O; Cameron, W; Capon, G; Cartwright, S; Casado, M P; Cattaneo, M; Cavanaugh, R J; Cerutti, F; Chiarella, V; Chmeissani, M; Ciulli, V; Clarke, D P; Clerbaux, B; Clifft, R W; Colaleo, A; Colas, P; Combley, F; Cowan, G; Coyle, P; Cranmer, K; Creanza, D; Crespo, J M; Curtil, C; David, A; Davier, M; Davies, G; De Bonis, I; De Filippis, N; De Palma, M; Delaere, C; Dessagne, S; Dhamotharan, S; Dietl, H; Dissertori, G; Dornan, P J; Drevermann, H; Duflot, L; Décamp, D; Ealet, A; Edgecock, T R; Ellis, G; Fabbro, B; Falvard, A; Fayolle, D; Ferguson, D P S; Fernández-Bosman, M; Fernández, E; Finch, A J; Focardi, E; Forty, R W; Foster, F; Fouchez, D; Foà, L; Frank, M; Ganis, G; Gao, Y; García-Bellido, A; Garrido, L; Gay, P; Geweniger, C; Ghete, V M; Giammanco, A; Giannini, G; Gianotti, F; Giassi, A; Girone, M; Girtler, P; González, S; Goy, C; Green, M G; Grivaz, J F; Grupen, C; Hanke, P; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Harvey, J; Hayes, O J; He, H; Hepp, V; Hess, J; Heusse, P; Hill, R D; Hodgson, P N; Hu, H; Huang, X; Hughes, G; Hutchcroft, D E; Hölldorfer, F; Hüttmann, K; Iaselli, G; Jacholkowska, A; Jakobs, K; Janot, P; Jin, S; Jones, L T; Jones, R W L; Jost, B; Jousset, J; Jézéquel, S; Kado, M; Kayser, F; Kennedy, J; Kile, J; Kleinknecht, K; Kluge, E E; Kneringer, E; Kraan, A C; Kuhn, D; Kyriakis, A; Lançon, E; Laurelli, P; Lees, J P; Lehto, M H; Leibenguth, G; Lemaire, M C; Lemaître, V; Ligabue, F; Lin, J; Litke, A M; Locci, E; Lynch, J G; Lütjens, G; Machefert, F P; Maggi, G; Maggi, M; Mannocchi, G; Marinelli, N; Markou, C; Martin, F; Martínez, M; Mato, P; McNamara, P A; Medcalf, T; Merle, E; Messineo, A; Michel, B; Minard, M N; Misiejuk, A; Monteil, S; Moser, H G; Moutoussi, A; Murtas, G P; Männer, W; Müller, A S; Negus, P; Ngac, A; Nielsen, J; Nilsson, B S; Norton, P R; Nowell, J; Nuzzo, S; O'Shea, V; Ouyang, Q; Pacheco, A; Palla, Fabrizio; Pallin, D; Pan, Y B; Parrini, G; Pascolo, J M; Passalacqua, L; Payre, P; Pearson, M R; Perret, P; Pietrzyk, B; Prange, G; Putzer, A; Pérez, P; Pütz, J; Ragusa, F; Rander, J; Ranieri, A; Ranjard, F; Raso, G; Renk, B; Robertson, N A; Rolandi, Luigi; Rothberg, J E; Rougé, A; Rudolph, G; Ruggieri, F; Ruiz, H; Rutherford, S A; Sander, H G; Sanguinetti, G; Schael, S; Schlatter, W D; Schmeling, S; Sciabà, A; Sedgbeer, J K; Selvaggi, G; Serin, L; Settles, Ronald; Sguazzoni, G; Silvestris, L; Simopoulou, Errietta; Smizanska, M; Spagnolo, R; Stenzel, H; Strong, J A; Taylor, G; Teixeira-Dias, P; Tempesta, P; Tenchini, A; Teubert, F; Thompson, A S; Thompson, J C; Thompson, L F; Tilquin, A; Tittel, K; Tomalin, I R; Tricomi, A; Trocmé, B; Tuchming, B; Valassi, Andrea; Vallage, B; Vayaki, Anna; Veillet, J J; Venturi, P; Verdini, P G; Videau, H L; Videau, I; Villegas, M; Von Wimmersperg-Töller, J H; Wachsmuth, H W; Wang, T; Ward, J J; Wasserbaech, S R; White, R; Wiedenmann, W; Wolf, G; Wu, J; Wu Sau Lan; Wu, X; Wunsch, M; Xie, Y; Xu, R; Xue, S; Zachariadou, K; Zeitnitz, C; Zhang, J; Zhang, L; Zhao, W; Ziegler, T; Zito, G; Zobernig, G; van der Aa, O

    2003-01-01

    Exclusive production of $\\pi$ and K meson pairs in two photon collisions is measured with ALEPH data collected between 1992 and 2000. Cross sections are presented as a function of \\cos\\theta^* and invariant mass, for |\\cos\\theta^* |< 0.6 and invariant masses between 2.0 and 6.0 \\mathrm{GeV}/c^2 (2.25 and 4.0 \\mathrm{GeV}/c^2) for pions (kaons). The shape of the distributions are found to be well described by QCD predictions but the data have a significantly higher normalisation.

  19. Search for Standard Model Higgs boson in the two-photon final state in ATLAS

    Directory of Open Access Journals (Sweden)

    Davignon Olivier

    2012-06-01

    Full Text Available We report on the search for the Standard Model Higgs boson decaying into two photons based on proton-proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The dataset has an integrated luminosity of about 1:08 fb−1. The expected cross section exclusion at 95% confidence level varies between 2:0 and 5:8 times the Standard Model cross section over the diphoton mass range 110 – 150 GeV. The maximum deviations from the background-only expectation are consistent with statistical fluctuations.

  20. Search for Anomalous Production of Events with Two Photons and Additional Energetic Objects at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /Padua U. /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U. /Kosice, IEF; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2009-10-01

    The authors present results of a search for anomalous production of two photons together with an electron, muon, {tau} lepton, missing transverse energy, or jets using p{bar p} collision data from 1.1-2.0 fb{sup -1} of integrated luminosity collected by the Collider Detector at Fermilab (CDF). The event yields and kinematic distributions are examined for signs for new physics without favoring a specific model of new physics. The results are consistent with the standard model expectations. The search employs several new analysis techniques that significantly reduce instrumental backgrounds in channels with an electron and missing transverse energy.

  1. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Science.gov (United States)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  2. Level crossing in a two-photon Jaynes-Cummings model

    Institute of Scientific and Technical Information of China (English)

    Ren Xue-Zao; Cong Hong-Lu; Liao Xu; Li Lei

    2012-01-01

    In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM)is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.

  3. Correlated two-photon interference in a dual-beam Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kwiat, P.G.; Vareka, W.A. (Department of Physics, University of California, Berkeley, California 94720 (USA)); Hong, C.K.; Nathel, H. (University of California, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (USA)); Chiao, R.Y. (Department of Physics, University of California, Berkeley, California 94720 (USA))

    1990-03-01

    We report on an interference effect arising from a two-photon entangled state produced in a potassium dihydrogen phosphate (KDP) crystal pumped by an ultraviolet argon-ion laser. Two conjugate beams of signal and idler photons were injected in a parallel configuration into a single Michelson interferometer, and detected separately by two photomultipliers, while the difference in its arm lengths was slowly scanned. The coincidence rate exhibited fringes with a visibility of nearly 50%, and a period given by half the ultraviolet (not the signal or idler) wavelength, while the singles rate exhibited no fringes.

  4. Atom-atom entanglement generated at early times by two-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Juan; Sabin, Carlos [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain)], E-mail: leon@imaff.cfmac.csic.es, E-mail: csl@imaff.cfmac.csic.es

    2009-07-15

    We analyze entanglement generation between a pair of neutral two-level atoms that are initially excited in a common electromagnetic vacuum. The nonlocal correlations that appear due to the interaction with the field can become entanglement when the field state is known. We distinguish two different situations: in the first, the field remains in the vacuum state and in the second, two photons are present in the final state. In both cases, we study the dependence of the entanglement on time and interatomic distance, at ranges related with locality issues.

  5. Control of two-photon quantum walk in a complex multimode system by wavefront shaping

    CERN Document Server

    Defienne, Hugo; Walmsley, Ian A; Smith, Brian J; Gigan, Sylvain

    2015-01-01

    Multi-photon interferences in complex multimode structures - quantum walks - are of both funda- mental and technological interest. They rely on the ability to design the complex network where the walk occurs. Here, we demonstrate the control of quantum walks of two indistinguishable photons in a complex linear system - a highly multimode fiber - by means of wavefront shaping techniques. Using the measured transmission matrix of the fiber, we demonstrate the ability to address arbitrary output modes of the two-photon speckle pattern, and simultaneous control of the quantum inter- ferences. This work provides a reconfigurable platform for multi-photon, multimode interference experiments and a route to high-dimensional quantum systems.

  6. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    Science.gov (United States)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  7. Observation of excess $\\lambda\\overline{\\lambda}$ production in two-photon processes at TRISTAN

    CERN Document Server

    Enomoto, R; Abe, T; Adachi, I; Adachi, K; Aoki, M; Awa, S; Emi, K; Fujii, H; Fujii, K; Fujii, T; Fujimoto, J; Fujita, K; Fujiwara, N; Hayashii, H; Howell, B; Iida, N; Itoh, R; Inoue, Y; Iwasaki, H; Iwasaki, M; Kaneyuki, K; Kajikawa, R; Kato, S; Kawabata, S; Kichimi, H; Kobayashi, M; Koltick, D S; Levine, I; Minami, S; Miyabayashi, K; Miyamoto, A; Muramatsu, K; Nagai, K; Nakabayashi, K; Nakano, E; Nitoh, O; Noguchi, S; Ochi, A; Ochiai, F; Ohishi, N; Ohnishi, Y; Ohshima, Y; Okuno, H; Okusawa, T; Shinohara, T; Sugiyama, A; Suzuki, S; Takahashi, K; Takahashi, T; Tanimori, T; Tauchi, T; Teramoto, Y; Toomi, N; Tsukamoto, T; Tsumura, O; Uno, S; Watanabe, T; Watanabe, Y; Yamaguchi, A; Yamamoto, A; Yamauchi, M; Enomoto, R

    1995-01-01

    We have carried out inclusive measurements of \\Lambda(\\overline{\\Lamb da}) production in two-photon processes at TRISTAN. The mean \\sqrt{s} was 58 GeV and the integrated luminosity was 265 pb^{-1}. Inclusive \\Lambda (\\overline{\\Lambda}) samples were obtained under such conditions as no-electron, anti-electron, and remnant-jet tags. The data were compared with theoretical calculations. The measured cross sections are two-times larger than the leading-order theoretical predictions, suggesting the necessity of next-to-leading-order Monte-Carlo generator.

  8. Charmonium production in ultra-peripheral heavy ion collisions with two-photon processes

    Science.gov (United States)

    Yu, Gong-Ming; Yu, Yue-Chao; Li, Yun-De; Wang, Jian-Song

    2017-04-01

    We calculate the production of large-pT charmonium and narrow resonance state (exotic charmonium) in proton-proton, proton-nucleus, and nucleus-nucleus collisions with the semi-coherent two-photon interactions at Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider (LHC), and Future Circular Collider (FCC) energies. Using the large quasi-real photon fluxes, we present the γγ → H differential cross section for charmonium and narrow resonance state production at large transverse momentum in ultra-peripheral heavy ion collisions. The numerical results demonstrate that the experimental study of ultra-peripheral collisions is feasible at RHIC, LHC, and FCC energies.

  9. Suitable photo-resists for two-photon polymerization using femtosecond fiber lasers

    KAUST Repository

    Rajamanickam, V.P.

    2014-06-01

    We present suitable materials with good optical and mechanical properties, simple processing, efficient and optimized for two-photon polymerization (TPP) with femtosecond fiber lasers. We selected readily available acrylic monomer Bisphenol A ethoxylate diacrylate (BPA-EDA) with three different photo-initiators (PIs), isopropyl thioxanthone (ITX), 7-diethylamino-3-thenoylcoumarin (DETC), and 4,4′ bis(diethylamino) benzophenone (BDEB), since their absorption spectra match well with the laser wavelength at 780 nm. These PIs grant efficient radical generation, reactivity and high solubility in acrylic monomers. Finally, good optical and mechanical properties are demonstrated by the fabrication of different micro-structures.

  10. Three-dimensional photonic crystals containing designed defects achieved with two-photon photopolymerization

    Institute of Scientific and Technical Information of China (English)

    Ming Zhou; Wei Zhang; Junjie Kong; Haifeng Yang; Lan Cai

    2009-01-01

    Two-photon photopolymerization (TPP) with femtosecond laser is a promising method to fabricate three-dimensional (3D) photonic crystals (PCs). Based on the TPP principle, the micro-fabrication system has been built. The 3D woodpile PCs with rod space of 2000 nm are fabricated easily and different defects are introduced in order to form the cross-waveguide and the micro-laser structure PCs. Simulation results of the optical field intensity distributions using finite-difference time domain (FDTD) method are given, which support the designs and implementation of the PC of two types in theory.

  11. General calculation of the cross section for dark matter annihilations into two photons

    CERN Document Server

    Garcia-Cely, Camilo

    2016-01-01

    Assuming that the underlying model satisfies some general requirements such as renormalizability and CP conservation, we calculate the non-relativistic one-loop cross section for any self-conjugate dark matter particle annihilating into two photons. We accomplish this by carefully classifying all possible one-loop diagrams and, from them, reading off the dark matter interactions with the particles running in the loop. Our approach is general and leads to the same results found in the literature for popular dark matter candidates such as the neutralinos of the MSSM, minimal dark matter, inert Higgs and Kaluza-Klein dark matter.

  12. A superradiant laser based on two-photon Raman transition of caesium atoms

    CERN Document Server

    Liu, Pengfei

    2013-01-01

    We propose a superradiant laser based on two-photon Raman transition of caesium-133 atoms which collectively emit photons on an ultra narrow transition into the mode of a low Q resonator known as optical bad-cavity regime. The spin-spin correlation which characterizes the collective effect is demonstrated. We theoretically predict that the optical radiation has an extremely narrow linewidth in the 98 (1) *10-2 mHz range, smaller than the transition itself due to collective effects, and a power level of 7 (1)*10-10 W is possible, which can provide a possible new way to realize an optical clock with a millihertz linewidth.

  13. Stability and bandgaps of layered perovskites for one- and two-photon water splitting

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Hüser, Falco

    2013-01-01

    Direct production of hydrogen from water and sunlight requires stable and abundantly available semiconductors with well positioned band edges relative to the water red-ox potentials. We have used density functional theory (DFT) calculations to investigate 300 oxides and oxynitrides...... in the Ruddlesden–Popper phase of the layered perovskite structure. Based on screening criteria for the stability, bandgaps and band edge positions, we suggest 20 new materials for the light harvesting photo-electrode of a one-photon water splitting device and 5 anode materials for a two-photon device with silicon...

  14. Imaging zebrafish embryos by two-photon excitation time-lapse microscopy.

    Science.gov (United States)

    Carvalho, Lara; Heisenberg, Carl-Philipp

    2009-01-01

    The zebrafish is a favorite model organism to study tissue morphogenesis during development at a subcellular level. This largely results from the fact that zebrafish embryos are transparent and thus accessible to various imaging techniques, such as confocal and two-photon excitation (2PE) microscopy. In particular, 2PE microscopy has been shown to be useful for imaging deep cell layers within the embryo and following tissue morphogenesis over long periods. This chapter describes how to use 2PE microscopy to study morphogenetic movements during early zebrafish embryonic development, providing a general blueprint for its use in zebrafish.

  15. Two-photon entanglement generation: different Bell states within the linewidth of phase-matching.

    Science.gov (United States)

    Brida, G; Chekhova, M V; Genovese, M; Krivitsky, L A

    2007-08-06

    It is shown that for a phase-matched nonlinear process producing entangled states, different Bell states are generated for different mismatch values. In particular, generation of the singlet Bell state is demonstrated within the natural linewidth of collinear frequency-degenerate type-II spontaneous parametric down-conversion (SPDC) without the o-e delay compensation. The singlet state can be filtered out by spectral selection or by the time selection of the two-photon amplitude at the output of a dispersive fibre. The effect is of considerable importance for fibre quantum communication.

  16. Two-photon luminescence microscopy of field enhancement at gold nanoparticles

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.

    2005-01-01

    Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both...... polarization and wavelength dependence. The gold bumps on gold film showed extremely high sensitivity to the incident field, with the strongest TPL response from the gold bumps being enhanced nearly 103 times compared to the TPL response from the smooth gold surface. For gold bumps directly on glass...

  17. Circular dichroism in the two-colour two-photon ionization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Cionga, Aurelia [Institute of Space Sciences, PO Box MG-23, R-76900 Bucharest-Magurele (Romania); Fifirig, Magda [Department of Chemistry, University of Bucharest, Bd Regina Elisabeta 4-12, R-70346 Bucharest (Romania); Ehlotzky, Fritz [Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2002-12-14

    We study dichroic effects in the two-photon ionization of hydrogen from its ground state due to the interaction with a bichromatic field of commensurate frequencies. The two field components have different polarization: one is linearly polarized and the other is circularly polarized (CP). Circular dichroism (CD) in the angular distribution of the photoelectrons appears if the helicity of the CP field is reversed. Numerical results reveal the influence of the photon frequencies chosen on the CD in the azimuthal angular distribution of the ejected photoelectrons.

  18. Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium.

    Science.gov (United States)

    Fendel, P; Bergeson, S D; Udem, Th; Hänsch, T W

    2007-03-15

    We report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb. The relative merits of picosecond-based frequency combs are discussed, and it is shown that the AC Stark shift of the transition is determined by the average rather than the much larger peak intensity.

  19. Hydrogen Two-Photon Continuum Emission from the Horseshoe Filament in NGC 1275

    CERN Document Server

    Johnstone, R M; Fabian, A C; Ferland, G J; Lykins, M; Porter, R L; van Hoof, P A M; Williams, R J R

    2012-01-01

    Far ultraviolet emission has been detected from a knot of Halpha emission in the Horseshoe filament, far out in the NGC 1275 nebula. The flux detected relative to the brightness of the Halpha line in the same spatial region is very close to that expected from Hydrogen two-photon continuum emission in the particle heating model of Ferland et al. (2009) if reddening internal to the filaments is taken into account. We find no need to invoke other sources of far ultraviolet emission such as hot stars or emission lines from CIV in intermediate temperature gas to explain these data.

  20. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization.

    Science.gov (United States)

    Masui, Kyoko; Shoji, Satoru; Asaba, Kenji; Rodgers, Thomas C; Jin, Feng; Duan, Xuan-Ming; Kawata, Satoshi

    2011-11-07

    We demonstrate fabrication of Au nanorod aggregates microstructures by means of a femtosecond near-infrared laser. The laser light was tightly focused into colloidal Au nanorods dispersed in photopolymerizable metyl-methacrylate (MMA) compound to induce two-photon polymerization (TPP). TPP of MMA glued the nanorods together to form solid microstrucures of aggregates. The laser light excited a local surface plasmon, resulting in confinement of TPP in the vicinity of nanorods. Concurrenly occurring optical accumulation of nanorods created a unique mechanism for the formation of nanorod aggregates into desired microstructures. This technique would be a clue for a novel micro/nanofabrication method for plasmonic materials and devices.