WorldWideScience

Sample records for two-photon excitation cross-section

  1. Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section

    Science.gov (United States)

    Tsai, Tsung-Han; Lin, Cheng-Yung; Tsai, Huai-Jen; Chen, Szu-Yu; Tai, Shih-Peng; Lin, Kung-Hsuan; Sun, Chi-Kuang

    2006-04-01

    The two-photon excitation action cross section of Hc-Red fluorescent proteins (Hc-RFPs) is measured and found to be of the same order as that of enhanced green fluorescent proteins. With a 618 nm emission wavelength in the far-red region and with an excitation wavelength around 1200 nm, Hc-RPF-based two-photon fluorescence microscopy (2PFM) can offer deep penetration capability inside live samples and is ideal for in vivo gene expression study and biomolecular imaging in live objects. In vivo 2PFM of the developing heart deep inside a transgenic zebrafish embryo tagged by Hc-RFP is also successfully demonstrated.

  2. Determination of the 1s-2s two-photon excitation cross-section in atomic hydrogen

    International Nuclear Information System (INIS)

    Bickel, G.A.; McRae, G.A.

    2000-01-01

    Hydrogen atoms are ablated from zirconium alloys into the gas phase by a pulsed Nd:YAG laser and photo-ionized with three photons at 243 nm via the two-photon 1s 2 S 1/2 -2s 2 S 1/2 resonant transition. A determination of the effective 1s-2s two-photon excitation cross-section is necessary to quantify the hydrogen atom density in the ablation plume. A measurement of the ion signal vs photo-ionization beam energy is fitted to an expression derived from the rate equations. The temporal and spatial properties of the photo-ionization laser beam, transit of the H atoms through the beam, and detector geometry are taken into account. The effective two-photon cross-section for this experimental configuration, derived with the rate equation formalism, is 3.3 ± 0.8 X 10 -28 cm 4 W -1 . This compares well with the ab initio prediction of 5 ± 1 X 10 -28 cm 4 W -1 under these experimental conditions. (author)

  3. Two Photon Absorption Cross-Section Of New Fluophore Compounds

    Science.gov (United States)

    El-Nadi, Lotfia; Farag, Ahmad M.; El-Sherbiny, Ashraf; Gamal, Yosr E.

    2005-03-01

    This study is a continuation of previous work carried by our group to synthesize and develop new fluophore compounds that could be used in fluorescence light microscopy for imaging biological molecules. Marking biological cells by such fluophores allow real time observation of single molecules. We synthesized and determined the absorption and emission spectra of the following new fluophores: ( L1 ) 4-Amino-2-oxo-2H-pyrido[1,2-a]pyrimidine-3-carbothioic phenyl-amide. ( L9 ) 3-(2-benzenesulfonyl-3-dimethylamino acryloyl) coumarine. ( L11 ) 1-(4-bromophenyle)-4-(coumarin-3-carbonyl)-1H-pyrazole- 3 - carboxylic acid ethyl ester. The absorption spectra are found to peak at wavelengths 285, 358 and 370 nm. [for (L1)], 285, 320 and 360 nm. [for (L9)] and 285 and 360 nm. [for (L11)] Emission lines are observed at 486 nm., 430 nm. and 470 nm for ( L1 ), (L9) and (L11), respectively. These emission lines peaked when (L1), (L9) and (L11) were excited by 370,366 and 360 nm, respectively. This means that all three fluophores could be excited by two photon absorption (TPA) from IR laser of wavelength 730+- 10 nm. or three photon absorption (THPA) of IR laser at 1064+-20 nm. nearly without tuning. Multiphoton excitation of fluophors marking biological samples is advantageous over single photon excitation. The (TPA) and (THPA) fluorescent intensities have been measured for the three fluophors in DMF solution at different concentrations using both 90 femtosecond Ti-sapphire laser at powers up to 250 MW and 7 nanosecond Nd:YAG laser up to 10 MW. The estimated (TPA) cross-sections are of the order of 10-39 cm2 / photon and the (THPA) cross-sections are less by a factor more than 10 times that of (TPA).

  4. Highly sensitive measurement in two-photon absorption cross section and investigation of the mechanism of two-photon-induced polymerization

    International Nuclear Information System (INIS)

    Lu Youmei; Hasegawa, Fuyuki; Goto, Takamichi; Ohkuma, Satoshi; Fukuhara, Setsuko; Kawazu, Yukie; Totani, Kenro; Yamashita, Takashi; Watanabe, Toshiyuki

    2004-01-01

    A novel two-photon initiator, 4,4'-bis[4-(di-n-butylamino)styryl]-benzene with the side-group methyl (Me) (abbreviated as Chromophore 1), was synthesized in comparison with the chromophore with the side group methoxy (MeO) (abbreviated as Chromophore 2). Femtosecond laser-induced fluorescence intensity was used to evaluate two-photon absorption (TPA) cross section, δ, by means of a charge-coupled device, USB-2000 (abbreviated as CCD). Results showed that changing the side group from Me to MeO led to a significant red-shift of the two-photon absorption ( 2 λ max ). However, the microstructures obtained by two-photon-induced polymerization (TPIP) demonstrated that the sensitivities of Chromophore 1 increased despite a two-fold decrease in the two-photon cross section δ max, relative to Chromophore 2. Correlated with the appearance that the long-lived charge transfer emission of the chromophore in the monomer bulk, we suggest that the intramolecular charge transfer (intra-CT) takes place within the excited dye. Then intermolecular charge transfer was successive as a result of the formation of an exciplex between the dye and the monomer. The Me group was favorable for the intra-CT, relative to MeO, which contributed to the enhancement of the sensitivity of TPIP

  5. Two-photon excitation of argon

    International Nuclear Information System (INIS)

    Pindzola, P.S.; Payne, M.C.

    1982-01-01

    The authors calculate two photon excitation parameters for various excited states of argon assuming the absorption of near resonance broad-bandwidth laser radiation. Results are given for the case of two photons absorbed for the same laser beam as well as the case of absorbing photons of different frequency from each of two laser beams. The authors use multiconfiguration Hartree-Fock wave functions to evaluate the second-order sums over matrix elements. Various experimental laser schemes are suggested for the efficient excitation and subsequent ionization of argon

  6. Two-photon excitation STED microscopy.

    Science.gov (United States)

    Moneron, Gael; Hell, Stefan W

    2009-08-17

    We report sub-diffraction resolution in two-photon excitation (TPE) fluorescence microscopy achieved by merging this technique with stimulated-emission depletion (STED). We demonstrate an easy-to-implement and promising laser combination based on a short-pulse laser source for two-photon excitation and a continuous-wave (CW) laser source for resolution enhancement. Images of fluorescent nanoparticles and the immunostained transcription regulator NF kappaB in mammalian cell nuclei exhibit resolutions of barrier. (c) 2009 Optical Society of America

  7. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  8. Hadronic cross-sections in two photon processes at a future linear collider

    International Nuclear Information System (INIS)

    Godbole, Rohini M.; Roeck, Albert de; Grau, Agnes; Pancheri, Giulia

    2003-01-01

    In this note we address the issue of measurability of the hadronic cross-sections at a future photon collider as well as for the two-photon processes at a future high energy linear e + e - collider. We extend, to higher energy, our previous estimates of the accuracy with which the γ γ cross-section needs to be measured, in order to distinguish between different theoretical models of energy dependence of the total cross-sections. We show that the necessary precision to discriminate among these models is indeed possible at future linear colliders in the Photon Collider option. Further we note that even in the e + e - option a measurement of the hadron production cross-section via γ γ processes, with an accuracy necessary to allow discrimination between different theoretical models, should be possible. We also comment briefly on the implications of these predictions for hadronic backgrounds at the future TeV energy e + e - collider CLIC. (author)

  9. Measurement of the D*+/- cross section in two-photon processes

    Science.gov (United States)

    Enomoto, R.; Iwasaki, M.; Muramatsu, K.; Hayashii, H.; Miyamoto, A.; Itoh, R.; Abe, K.; Abe, T.; Adachi, I.; Aoki, M.; Awa, S.; Belusevic, R.; Emi, K.; Fujii, H.; Fujii, K.; Fujii, T.; Fujimoto, J.; Fujita, K.; Fujiwara, N.; Howell, B.; Iida, N.; Ikeda, H.; Iwasaki, H.; Kajikawa, R.; Kato, S.; Kawabata, S.; Kichimi, H.; Kobayashi, M.; Koltick, D.; Levine, I.; Miyabayashi, K.; Nagai, K.; Nagira, T.; Nakano, E.; Nakabayashi, K.; Nitoh, O.; Noguchi, S.; Ochiai, F.; Ohnishi, Y.; Okuno, H.; Okusawa, T.; Shimozawa, K.; Shinohara, T.; Sugiyama, A.; Sugiyama, N.; Suzuki, S.; Takahashi, K.; Takahashi, T.; Takemoto, M.; Tanimori, T.; Tauchi, T.; Teramae, F.; Teramoto, Y.; Toomi, N.; Toyama, T.; Tsukamoto, T.; Uno, S.; Watanabe, Y.; Yamaguchi, A.; Yamamoto, A.; Yamauchi, M.

    1994-08-01

    We have measured the inclusive D*+/- production cross secton in a two-photon collision at the KEK e+e- collider TRISTAN. The mean √s of the collider was 57.16 GeV and the integrated luminosity was 150 pb-1. The differential cross section [dσ(D*+/-)/dPT] was obtained in the PT range between 1.6 and 6.6 GeV and compared with theoretical predictions, such as those involving direct and resolved photon processes.

  10. Two-photon absorption cross section of magnetite nanoparticles in magnetic colloids and thin films

    Science.gov (United States)

    Espinosa, D.; Gonçalves, E. S.; Figueiredo Neto, A. M.

    2017-01-01

    We present z-scan measurements of magnetic nanoparticles made from magnetite in both thin film form and colloidal solutions. In order to avoid heating and, thus, spurious effects that could lead to misinterpretation of the z-scan results, an electro-mechanical shutter was added along the beam path in order to guarantee samples thermal relaxation. Two photon absorption coefficient β and nonlinear refractive index n2 were measured as a function of concentration N of absorbing units (Fe3O4). Our magnetite samples presented n 2 ≈ - 1.5 × 10 - 14 cm 2 / W , similar to that of the liquid carrier, for concentrations below 2 × 10 20 cm - 3 . n2 increases, in absolute value, to about - 10 × 10 - 14 cm 2 / W for a sample three times more concentrated and then decreases with N until about - 7 × 10 - 14 cm 2 / W for the most concentrated sample. β presented a linear dependence with N and the two-photon absorption cross section σ 2 PA was calculated, resulting in σ 2 PA = 50 ( 2 ) GM for magnetite nanoparticles.

  11. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  12. Enhanced Size Selection in Two-Photon Excitation for CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Junsheng; Chábera, Pavel; Pascher, Torbjörn; Messing, Maria E; Schaller, Richard; Canton, Sophie; Zheng, Kaibo; Pullerits, Tõnu

    2017-10-19

    Cesium lead bromide (CsPbBr 3 ) perovskite nanocrystals (NCs), with large two-photon absorption (TPA) cross-section and bright photoluminescence (PL), have been demonstrated as stable two-photon-pumped lasing medium. With two-photon excitation, red-shifted PL spectrum and increased PL lifetime is observed compared with one-photon excitation. We have investigated the origin of such difference using time-resolved laser spectroscopies. We ascribe the difference to the enhanced size selection of NCs by two-photon excitation. Because of inherent nonlinearity, the size dependence of absorption cross-section under TPA is stronger. Consequently, larger size NCs are preferably excited, leading to longer excited-state lifetime and red-shifted PL emission. In a broad view, the enhanced size selection in two-photon excitation of CsPbBr 3 NCs is likely a general feature of the perovskite NCs and can be tuned via NC size distribution to influence their performance within NC-based nonlinear optical materials and devices.

  13. Photodamage of mesotetraphenylporphyrin under one- and two-photon excitation

    International Nuclear Information System (INIS)

    Wen Yanan; Liu Yuqiang; Yang Zhenling; Yang Yanqiang; Guo Ximing

    2010-01-01

    Photoinduced damage behavior of mesotetraphenylporphyrin (TPP) under one- and two-photon excitation with femtosecond laser pulses is investigated in the present work. Quenching in the luminescent intensity is observed. Results suggest that laser irradiation on TPP mainly causes two simultaneously occurring photoprocesses: photodamage and formation of a porphine-type photoproduct. The damage rate exhibits a linear dependence on the incident light power in one-photon excitation, whereas in two-photon excitation, the power dependence of the damage rate turns out to be exponential. The photoproduct formed in one- and two-photon excitation is identical. This product, which is observed to possess superior photostability and two-photon absorbing ability compared with the original TPP sensitizer, is likely to be treated as a secondary photosensitizer in the activation process of photodynamic therapy (PDT). This work might be helpful for the drug evaluation in the practical application of PDT.

  14. Simultaneous two-photon excitation of photodynamic therapy agents

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, E.A.; Fisher, W.G. [Oak Ridge National Lab., TN (United States)]|[Photogen, Inc., Knoxville, TN (United States); Partridge, W.P. [Oak Ridge National Lab., TN (United States); Dees, H.C. [Photogen, Inc., Knoxville, TN (United States); Petersen, M.G. [Univ. of Tennessee, Knoxville, TN (United States). College of Veterinary Medicine

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  15. Cell assay using a two-photon-excited europium chelate.

    Science.gov (United States)

    Xiao, Xudong; Haushalter, Jeanne P; Kotz, Kenneth T; Faris, Gregory W

    2011-08-01

    We report application of two-photon excitation of europium chelates to immunolabeling of epidermal growth factor receptor (EGFR) cell surface proteins on A431 cancer cells. The europium chelates are excited with two photons of infrared light and emit in the visible. Europium chelates are conjugated to antibodies for EGFR. A431 (human epidermoid carcinoma) cells are labeled with this conjugate and imaged using a multiphoton microscope. To minimize signal loss due to the relatively long-lived Eu(3+) emission, the multiphoton microscope is used with scanning laser two-photon excitation and non-scanning detection with a CCD. The chelate labels show very little photobleaching (less than 1% during continuous illumination in the microscope for 20 minutes) and low levels of autofluorescence (less than 1% of the signal from labeled cells). The detection limit of the europium label in the cell assay is better than 100 zeptomoles.

  16. Measurement of the Cross Section for open b-Quark Production in Two-Photon Interactions at LEP

    CERN Document Server

    Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; alez; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2007-01-01

    Inclusive \\beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of $698\\mathrm{pb}^{-1}\\,$ collected by the ALEPH detector with $\\sqrt{s}$ between 130 and 209 \\GeV . The b quarks were identified using lifetime information. The cross section is found to be \\[ \\mathrm{ \\sigma(e^+ e^- \\rightarrow e^+ e^- b \\bar{b}\\, X) = (5.4\\pm 0.8\\,_{stat} \\pm 0.8\\,_{syst}} )\\,\\mathrm{pb},\\] which is consistent with Next-to-Leading Order QCD.

  17. Prediction of e± elastic scattering cross-section ratio based on phenomenological two-photon exchange corrections

    Science.gov (United States)

    Qattan, I. A.

    2017-06-01

    I present a prediction of the e± elastic scattering cross-section ratio, Re+e-, as determined using a new parametrization of the two-photon exchange (TPE) corrections to electron-proton elastic scattering cross section σR. The extracted ratio is compared to several previous phenomenological extractions, TPE hadronic calculations, and direct measurements from the comparison of electron and positron scattering. The TPE corrections and the ratio Re+e- show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factors discrepancy while being consistent with the known Q2→0 limit. While my predictions are in generally good agreement with previous extractions, TPE hadronic calculations, and existing world data including the recent two measurements from the CLAS and VEPP-3 Novosibirsk experiments, they are larger than the new OLYMPUS measurements at larger Q2 values.

  18. Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr3 Perovskite Quantum Dots

    NARCIS (Netherlands)

    Chen, Junsheng; Zidek, Karel; Chabera, Pavel; Liu, Dongzhou; Cheng, Pengfei; Nuuttila, Lauri; Al-Marri, Mohammed J.; Lehtivuori, Heli; Messing, Maria E.; Han, Keli; Zheng, Kaibo; Pullerits, Tonu

    2017-01-01

    All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have recently emerged as promising light emitting materials. CsPbBr3 QDs have also been demonstrated as stable two-photon-pumped lasing medium. However, the reported two photon absorption (TPA) cross sections for

  19. Review of electron impact excitation cross sections for copper atom

    Energy Technology Data Exchange (ETDEWEB)

    Winter, N.W.; Hazi, A.U.

    1982-02-01

    Excitation of atomic copper by electron impact plays an important role in the copper vapor laser and accurate cross sections are needed for understanding and modeling laser performance. During the past seven years, there have been several attempts to normalize the relative elastic and inelastic cross sections measured by Trajmar and coworkers. However, each of these efforts have yielded different cross sections, and the uncertainty in the correct normalization of the data has been a source of confusion and concern for the kinetic modeling efforts. This difficulty has motivated us to review previous work on the electron impact excitation of copper atom and to perform new calculations of the inelastic cross sections using the impact parameter method. In this memorandum we review the previous attempts to normalize the experimental data and provide a critical assessment of the accuracy of the resulting cross sections. We also present new theoretical cross sections for the electron impact excitation of the /sup 2/S ..-->.. /sup 2/P/sup 0/ and /sup 2/S ..-->.. /sup 2/D transitions in copper. When the experimental cross sections are renormalized to the results of the impact parameter calculations, they are a factor of three smaller than those published in the latest paper of Trajmar et. al. At impact energies above 60 eV the excitation cross sections obtained with the impact parameter method agree well with the results of the very recent, unpublished, close-coupling calculations of Henry. This agreement suggests that the present normalization of the experimental cross sections is probably the most reliable one obtained to date.

  20. Penning ionization cross sections of excited rare gas atoms

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Hatano, Yoshihiko.

    1988-01-01

    Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(2 3 S) and radiative He(2 1 P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(2 3 S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(2 3 S) per collision increases with the excess electronic energy of He(2 3 S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(2 1 P), suggests that the deexcitation cross section for He(2 1 P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(2 1 P) by the target molecules examined. (N.K.)

  1. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    WINTEC

    grid Hamiltonian (FGH) approach29,30 to ECO(R). In. Figure 2. Calculated cross correlation functions 〈φn|ψ0(t)〉. [(a)–(e)] and corresponding vibrational excitation cross sections σn←0(E) [(f)–(j)] for e-CO scattering. time evolution of the ground vibrational state φ0(R) of the CO target under the influence of CO–Hamiltonian.

  2. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    Blanco Ramos, F.

    1993-01-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  3. Compilation of electron collision excitation cross sections for neutral argon

    International Nuclear Information System (INIS)

    Blanco, F.

    1993-01-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p5 ns (n=4to 12), np(n=4to8) and nd(n=3to8)of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p5 ns (n=4 to 7), np (n=4 to 7) and nd (n=3 to 8). 3.- comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author) 35 refs

  4. Phenomenological extraction of two-photon exchange amplitudes from elastic electron-proton scattering cross section data

    Science.gov (United States)

    Qattan, I. A.

    2017-05-01

    Background: The inconsistency in the results obtained from the Rosenbluth separation method and the high-Q2 recoil polarization results on the ratio μpGEp/GMp implies a systematic difference between the two techniques. Several studies suggest that missing higher-order radiative corrections to elastic electron-proton scattering cross section σR(ɛ ,Q2) and in particular hard two-photon-exchange (TPE) contributions could account for the discrepancy. Purpose: In this work, I improve on and extend to low and high Q2 values the extractions of the ɛ dependence of the real parts of the TPE amplitudes relative to the magnetic form factor, as well as the ratio Pl/PlBorn(ɛ ,Q2) by using world data on σR(ɛ ,Q2) with an emphasis on precise new data covering the low-momentum region which is sensitive to the large-scale structure of the nucleon. Method: I combine cross section and polarization measurements of elastic electron-proton scattering to extract the TPE amplitudes. Because the recoil polarization data were confirmed "experimentally" to be essentially independent of ɛ , I constrain the ratio Pt/Pl(ɛ ,Q2) to its ɛ -independent term (Born value) by setting the TPE contributions to zero. This allows for the amplitude YM(ɛ ,Q2) and σR(ɛ ,Q2) to be expressed in terms of the remaining two amplitudes YE(ɛ ,Q2) and Y3(ɛ ,Q2) which in turn are parametrized as second-order polynomials in ɛ and Q2 to reserve as possible the linearity of σR(ɛ ,Q2) as well as to account for possible nonlinearities in the TPE amplitudes. Furthermore, I impose the Regge limit which ensures the vanishing of the TPE contributions to σR(ɛ ,Q2) and the TPE amplitudes in the limit ɛ →1 . Results: I provide simple parametrizations of the TPE amplitudes, along with an estimate of the fit uncertainties. The extracted TPE amplitudes are compared with previous phenomenological extractions and TPE calculations. The Pl/PlBorn ratio is extracted by using the new parametrizations of the TPE

  5. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide

    Science.gov (United States)

    Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra

    2014-08-01

    Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.

  6. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  7. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation

    NARCIS (Netherlands)

    Sytsma, J.; Vroom, J.M.; de Grauw, C.J.; Gerritsen, H.C.

    A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes.

  8. Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr3 Perovskite Quantum Dots.

    Science.gov (United States)

    Chen, Junsheng; Žídek, Karel; Chábera, Pavel; Liu, Dongzhou; Cheng, Pengfei; Nuuttila, Lauri; Al-Marri, Mohammed J; Lehtivuori, Heli; Messing, Maria E; Han, Keli; Zheng, Kaibo; Pullerits, Tõnu

    2017-05-18

    All-inorganic colloidal perovskite quantum dots (QDs) based on cesium, lead, and halide have recently emerged as promising light emitting materials. CsPbBr 3 QDs have also been demonstrated as stable two-photon-pumped lasing medium. However, the reported two photon absorption (TPA) cross sections for these QDs differ by an order of magnitude. Here we present an in-depth study of the TPA properties of CsPbBr 3 QDs with mean size ranging from 4.6 to 11.4 nm. By using femtosecond transient absorption (TA) spectroscopy we found that TPA cross section is proportional to the linear one photon absorption. The TPA cross section follows a power law dependence on QDs size with exponent 3.3 ± 0.2. The empirically obtained power-law dependence suggests that the TPA process through a virtual state populates exciton band states. The revealed power-law dependence and the understanding of TPA process are important for developing high performance nonlinear optical devices based on CsPbBr 3 nanocrystals.

  9. Measurement of the D ∗± cross section using a soft-pion analysis in two-photon processes

    Science.gov (United States)

    Enomoto, R.; Abe, K.; Abe, T.; Adachi, I.; Aoki, M.; Aoki, M.; Awa, S.; Belusevic, R.; Emi, K.; Fujii, H.; Fujii, K.; Fujii, T.; Fujimoto, J.; Fujita, K.; Fujiwara, N.; Hayashii, H.; Howell, B.; Iida, N.; Ikeda, H.; Itoh, R.; Iwasaki, H.; Iwasaki, M.; Kajikawa, R.; Kaneyuki, K.; Kato, S.; Kawabata, S.; Kichimi, H.; Kobayashi, M.; Koltick, D.; Levine, I.; Minami, S.; Miyabayashi, K.; Miyamoto, A.; Muramatsu, K.; Nagai, K.; Nagira, T.; Nakano, E.; Nakabayashi, K.; Nitoh, O.; Noguchi, S.; Ochiai, F.; Ohnishi, Y.; Okuno, H.; Okusawa, T.; Shimozawa, K.; Shinohara, T.; Sugiyama, A.; Sugiyama, N.; Suzuki, S.; Takahashi, K.; Takahashi, T.; Takemoto, M.; Tanimori, T.; Tauchi, T.; Teramae, F.; Teramoto, Y.; Toomi, N.; Toyama, T.; Tsukamoto, T.; Uno, S.; Watanabe, T.; Watanabe, Y.; Yamaguchi, A.; Yamamoto, A.; Yamauchi, M.; Topaz Collaboration

    1994-06-01

    The differential cross section of {dσ(e +e - → e +e - D ∗± X) }/{dP T} was measured using a soft-pion analysis D ∗± → π s± D 0overline(D 0) at TRISTAN. The average s was 58.7 GeV and the integrated luminosity used in this analysis was 198 pb -, respectively.

  10. A series of terpyridine containing flexible amino diethylacetate derivatives with large two-photon action cross-sections for effective mitochondrial imaging in living liver cancerous cells

    Science.gov (United States)

    Jia, Ran; Zhu, Yingying; Hu, Lei; Xiong, Qiru; Zhao, Meng; Zhang, Mingzhu; Tian, Xiaohe

    2018-01-01

    Small molecules possess large two-photon action cross sections (Φσ) are highly demanded for biological purpose. Herein, three novel terpyridine containing flexible amino diethylacetate organic small molecules (A1, A2 and A3) were rationally designed and their photophysical properties were investigated both experimentally and theoretically. The results revealed that the three chromophores possess large Φσ and remarkable Stokes' shift in high polar solvents, which are particularly benefit for further biological imaging application. One chromophore (A1) displayed an effective intracellular uptake against lung cancerous living cells A549. Colocalization studies suggested the internalized subcellular compartment was mitochondria. Consequently, chromophore A1 provides a promising platform to directly monitor mitochondria in living cells under two-photon confocal laser scanning microscopy.

  11. Reactive quenching of two-photon excited xenon atoms by Cl2

    International Nuclear Information System (INIS)

    Bruce, M.R.; Layne, W.B.; Meyer, E.; Keto, J.W.

    1987-01-01

    Total binary and tertiary quench rates have been measured for the reaction Xe (5p 5 6p) + Cl 2 at thermal temperatures. Xenon atoms are excited by state-selective, two-photon absorption with a uv laser. The time dependent fluorescence from the excited atom in the IR and from XeCl* (B) product near 308 nm have been measured with subnanosecond time resolution. The decay rates are measured as a function of Cl 2 pressure to 20 Torr and Xe pressure to 400 Torr. The measured reaction rates (k 2 ∼ 10 -9 cm 3 sec -1 ) are consistent with a harpoon model described in a separate paper. We also measure large termolecular reaction rates for collisions with xenon atoms (k 3 ∼ 10 -28 cm 6 sec -1 ). Total product fluorescence has been examined using a gated optical multichannel analyzer. We measure unit branching fractions for high vibrational levels of XeCl* (B) with very little C state fluorescence observed. The measured termolecular rates suggest similar processes will dominate at the high buffer-gas pressures used in XeCl lasers. The effect of these large reactive cross sections for neutral xenon atoms on models of the XeCl laser will be discussed

  12. Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle

    Science.gov (United States)

    Zhu, G. P.; Xu, C. X.; Zhu, J.; Lv, C. G.; Cui, Y. P.

    2009-02-01

    Wurtzite structural ZnO microneedles with hexagonal cross section were fabricated by vapor-phase transport method and an individual microneedle was employed as a lasing microcavity. Under excitation of a femtosecond pulse laser with 800 nm wavelength, the ultraviolet (UV) laser emission was obtained, which presented narrow linewidth and high Q value. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail. The results demonstrated that the UV laser originated from the whispering-gallery mode induced by two-photon absorption assisted by Rabi oscillation.

  13. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.

    Science.gov (United States)

    Molina, Rosana S; Tran, Tam M; Campbell, Robert E; Lambert, Gerard G; Salih, Anya; Shaner, Nathan C; Hughes, Thomas E; Drobizhev, Mikhail

    2017-06-15

    Fluorescent proteins (FPs) are indispensable markers for two-photon imaging of live tissue, especially in the brains of small model organisms. The quantity of physiologically relevant data collected, however, is limited by heat-induced damage of the tissue due to the high intensities of the excitation laser. We seek to minimize this damage by developing FPs with improved brightness. Among FPs with the same chromophore structure, the spectral properties can vary widely due to differences in the local protein environment. Using a physical model that describes the spectra of FPs containing the anionic green FP (GFP) chromophore, we predict that those that are blue-shifted in one-photon absorption will have stronger peak two-photon absorption cross sections. Following this prediction, we present 12 blue-shifted GFP homologues and demonstrate that they are up to 2.5 times brighter than the commonly used enhanced GFP (EGFP).

  14. Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering

    Science.gov (United States)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.

  15. Simple fibre based dispersion management for two-photon excited fluorescence imaging through an endoscope

    DEFF Research Database (Denmark)

    Dimopoulos, Konstantinos; Marti, Dominik; Andersen, Peter E.

    2018-01-01

    We want to implement two-photon excitation fluorescence microscopy (TPEFM) into endoscopes, since TPEFM can provide relevant biomarkers for cancer staging and grading in hollow organs, endoscopically accessible through natural orifices. However, many obstacles must be overcome, among others...

  16. Simultaneous and consecutive two-photon excited fluorescence detection in conventional-size liquid chromatography.

    NARCIS (Netherlands)

    Gooijer, C.; Brinkman, U.A.T.; Velthorst, N.H.; van de Nesse, R.J.; van der Wegen, R.J.

    1995-01-01

    The applicability of two-photon excitation (TPE) for fluorescence detection in flow dynamic systems was explored. Emphasis was on conventional-size liquid chromatography (LC) and a direct comparison was made with one-photon excitation (OPE) by the use of standard laser- and lamp excitation.

  17. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  18. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    WINTEC

    tron is re-emitted after the anion has completed at least one vibration, the nuclear wave function for A– exhibits a reflection from the right turning point, and there is vibrational structure in the resonant scattering cross-sections even for the lowest vibrational excita- tion of the target.1–5 The pronounced vibrational struc-.

  19. Dissociative Excitation of Acetylene Induced by Electron Impact: Excitation-emission Cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Országh, Juraj; Danko, Marián; Čechvala, Peter; Matejčík, Štefan, E-mail: matejcik@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F-2, 842 48 Bratislava (Slovakia)

    2017-05-20

    The optical emission spectrum of acetylene excited by monoenergetic electrons was studied in the range of 190–660 nm. The dissociative excitation and dissociative ionization associated with excitation of the ions initiated by electron impact were dominant processes contributing to the spectrum. The spectrum was dominated by the atomic lines (hydrogen Balmer series, carbon) and molecular bands (CH(A–X), CH(B–X), CH{sup +}(B–A), and C{sub 2}). Besides the discrete transitions, we have detected the continuum emission radiation of ethynyl radical C{sub 2}H(A–X). For most important lines and bands of the spectrum we have measured absolute excitation-emission cross sections and determined the energy thresholds of the particular dissociative channels.

  20. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  1. GPC light shaper for speckle-free one- and two-photon contiguous pattern excitation

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    2014-01-01

    Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and recently, for excitation in two-photon optogenetics. To fully utilize typical Gaussian lasers...

  2. Di-photon cross section measurement and Higgs sensitivity study in the two-photon final state with the ATLAS detector

    CERN Document Server

    Yuan, Li

    2011-01-01

    This work is done with the ATLAS collaboration. Three independent methods are proposed to measure the photon trigger efficiency. They are first evaluated using Monte Carlo simulation and then applied on 2010 data. The two photon-based methods show consistent results, with efficiency discrepancy at a few % level. For the method based on electron sample, the statistics is too low to draw conclusion. A detailed QCD di-photon cross-section measurement is performed on a data sample corresponding to a luminosity of 37.2 ±1.2 pb−1, in which a 2D fit method is introduced to extract the signal yields. The differential distributions of the observables Mγγ , pT γγ and Δϕγγ are derived and compared with the predictions from the DIPHOX and RESBOS generators. A good agreement is found for the Mγγ distribution, whereas discrepancies are observed in the pT γγ and Δϕγγ distributions. In the study of the H → γγ channel based on a simulated sample, a deterioration of 4% in the exclusion limit is observed ...

  3. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Harvey, Irene, E-mail: i.mueller-harvey@reading.ac.uk [Chemistry and Biochemistry Laboratory, Food Production and Quality Research Division, School of Agriculture, Policy and Development, University of Reading, P O Box 236, Reading RG6 6AT (United Kingdom); Feucht, Walter, E-mail: walter.feucht@gmail.com [Department of Plant Sciences, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Polster, Juergen, E-mail: j.polster@wzw.tum.de [Department of Physical Biochemistry, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Trnkova, Lucie, E-mail: lucie.trnkova@uhk.cz [University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove (Czech Republic); Burgos, Pierre, E-mail: pierre.burgos@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Parker, Anthony W., E-mail: tony.parker@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Botchway, Stanley W., E-mail: stan.botchway@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer This fluorescence lifetime imaging microscopy (FLIM) technique for flavanols overcomes autofluorescence interference in cells. Black-Right-Pointing-Pointer Plant flavanols differed in their lifetimes. Black-Right-Pointing-Pointer Dissolved and bound flavanols revealed contrasting lifetime changes. Black-Right-Pointing-Pointer This technique will allow studying of flavanol trafficking in live cells. - Abstract: Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were {approx}1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime ({tau}{sub 2} = 1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there

  4. Diagnostics of MCF plasmas using Lyman-α fluorescence excited by one or two photons

    International Nuclear Information System (INIS)

    Voslamber, D.

    1998-11-01

    Laser-induced Lyman-α fluorescence of the hydrogen isotopes is investigated with regard to diagnostic applications in magnetically confined fusion plasmas. A formal analysis is presented for two excitation schemes: one-photon and Doppler-free two-photon excitation. The analysis includes estimates of the expected experimental errors arising from the photon noise and from the sensitivity of the observed fluorescence signals to variations of the plasma and laser parameters. Both excitation schemes are suitable primarily for application in the plasma edge, but even in the plasma bulk of large machines they can still be applied in combination with a diagnostic neutral beam. The two-photon excitation scheme is particularly attractive because it involves absorption spectra that are resolved within the Doppler width. This implies a large diagnostic potential and in particular offers a way to measure the deuterium-tritium fuel mix in fusion reactors. (author)

  5. Electron excitation cross sections for some Ar I 5d (J = 2) levels

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Campos, J.

    1992-01-01

    Absolute excitation cross sections by electron impact for some 5d levels with J = 2 of Ar I have been measured by the optical method. Excitation functions for electron energies in the range from the excitation threshold to 1000 eV are also reported. A delayed coincidence analysis of the de-excitation at 100 eV electron energy allowed for the subtraction of radiative cascades. The resulting excitation cross sections are between 7.3 and 12x10 -20 cm 2 . (author)

  6. Electron Impact Excitation Cross Sections of Xenon for Optical Plasma Diagnostic

    National Research Council Canada - National Science Library

    Srivastava, Rajesh

    2007-01-01

    In this project the researcher had taken up the calculation of xenon apparent emission-excitation cross sections for emission lines that have diagnostic value in the analysis of Xe-propelled electric thruster plasmas...

  7. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  8. Starburst triarylamine donor-acceptor-donor quadrupolar derivatives based on cyano-substituted diphenylaminestyrylbenzene: tunable aggregation-induced emission colors and large two-photon absorption cross sections.

    Science.gov (United States)

    Wang, Bing; Wang, Yaochuan; Hua, Jianli; Jiang, Yihua; Huang, Jinhai; Qian, Shixiong; Tian, He

    2011-02-25

    In this work, we have developed a new class of aggregation-induced emission (AIE) active compounds, in which three electron-donating diphenylamine, phenothiazine, or carbazole groups are connected to the 1, 4-positions of the benzene through bis(α-cyano-4-diphenylaminostyryl) conjugation bridges to form three triarylamine quadrupolar derivatives (3 a-c). Their one- and two-photon absorption properties have been investigated. The two-photon absorption (2PA) cross sections measured by the open-aperture Z-scan technique were determined to be 1016, 1484, and 814 GM for 3 a-c, respectively. From this result, the high 2PA properties of these molecules are attributed to the extended π system and enhanced intramolecular charge transfer from the starburst triarylamine to the cyano group. Moreover, cyano-substituted diphenylamine styrylbenzene (CNDPASB)-based compounds are very weakly fluorescent in THF, but their intensities increase by almost 230, 70, and 5 times, respectively, in water/THF (v/v 90 %) mixtures, in which they exhibit strongly enhanced red, orange, and deep yellow fluorescence emissions, respectively. This result indicates that the intramolecular vibration and rotation of these dyes is considerably restricted in nano-aggregates formed in water, leading to significant increases in fluorescence. It was found that the color tuning of the CNDPASB-based compounds could be conveniently accomplished by changing the starburst triarylamine donor moiety. Multilayer electroluminescence devices with TPBI (2,2',2''-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole)) electron-transporting layers have been made, with 3 a and 3 c as a non-doping red-yellow emitter. The preliminary results for these multilayer devices show a maximum efficiency of 0.25 %, and electroluminescence (EL) wavelengths around 568 nm. The excellent 2PA and AIE properties of these compounds make them potential materials for biophotonic applications. Copyright © 2011 WILEY

  9. Parabolic versus spherical partial cross sections for photoionization excitation of He near threshold

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-01-01

    Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l dom for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T) n A . The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists

  10. Optical Biomedical Diagnostics: Sensors with Optical Response Based on Two-Photon Excited Luminescent Dyes for Biomolecules Detection

    Directory of Open Access Journals (Sweden)

    V. M. Yashchuk

    2008-01-01

    Full Text Available The spectral properties of novel styryl dyes developed for the biomacromolecules (such as DNA detection and imaging were investigated. The energy structures of dye molecules were examined. The spectral data prove that dyes aggregate and interact with DNA. The essential increase of the fluorescence intensity of dyes in the presence of DNA was observed. The photostability and phototoxic influence on the DNA of several styryl dyes were studied by analyzing absorption, fluorescence, and phosphorescence spectra of these dyes and dye-DNA systems. Changes of the optical density value of dye-DNA solutions caused by the irradiation were fixed in the DNA and dye absorption wavelength regions. Fluorescence emission of dye-DNA complexes upon two-photon excitation at wavelength 1064 nm with the 20-nanosecond pulsed YAG:Nd3+ laser and at 840 nm with the 90 famtosecond pulsed Ti:sapphire laser was registered. The values of two-photon absorption cross-sections of dye-DNA complexes were evaluated.

  11. Rotational temperature measurement of NO gas using two-photon excitation spectrum

    Science.gov (United States)

    Ozaki, Tadao; Matsui, Yoshihiko; Ohsawa, Toshihiko

    1981-04-01

    The rotational temperature of nitric oxide gas has been measured by means of a single-beam two-photon excitation spectrum method using a pulsed continuously tunable dye laser. The nitric oxide gas was enclosed at about 40 Torr in a quartz cell which was put in an electric oven. The NO γ (0-0) band and R11+Q21 branches were used to obtain the two-photon excitation spectrum. The rotational temperatures were determined using the fact that molecules are distributed in the rotational levels according to the Boltzmann law. The temperature range was from room temperature to about 470 K. Observed temperatures were in good agreement with cell temperatures which were obtained by using a thermocouple.

  12. Theoretical research of electron-ion direct impact excitation cross sections for hot dense plasma

    International Nuclear Information System (INIS)

    Tian Mingfeng

    2003-01-01

    An average-atom (AA) model, Younger formula and partial wave method are employed to study the electron- ion direct impact excitation cross sections for hot dense plasma. The phenomenon of electron resonance near the excitation threshold and its mechanism are discussed. (author)

  13. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  14. Two-photon fabrication of hydrogel microstructures for excitation and immobilization of cells.

    Science.gov (United States)

    Hasselmann, Nils Frederik; Hackmann, Michael Jona; Horn, Wolfgang

    2017-12-29

    We investigate in vitro fabrication of hydrogel microstructures by two photon laser lithography for single cell immobilization and excitation. Fluorescent yeast cells are embedded in water containing the hydrogel precursor mixtures and cross-linking is used to selectively immobilize a particular cell. Cell viability within the hydrogel precursor is estimated using a life/dead assay and elastic and stiff hydrogel structures are fabricated, immobilizing cells in a microfluidic environment. Additionally, we demonstrate the illumination of cells by on-the-fly fabricated hydrogel waveguide networks connected to an external light source, thereby exciting a fluorescence signal in a single immobilized cell.

  15. Synthesis, one- and two-photon photophysical and excited-state properties, and sensing application of a new phosphorescent dinuclear cationic iridium(III) complex.

    Science.gov (United States)

    Xu, Wen-Juan; Liu, Shu-Juan; Zhao, Xin; Zhao, Ning; Liu, Zhi-Qiang; Xu, Hang; Liang, Hua; Zhao, Qiang; Yu, Xiao-Qiang; Huang, Wei

    2013-01-07

    A new phosphorescent dinuclear cationic iridium(III) complex (Ir1) with a donor-acceptor-π-bridge-acceptor-donor (D-A-π-A-D)-conjugated oligomer (L1) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited-state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular-orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)(2)(bpy)](+)PF(6)(-) (Ir0). Compared with Ir0, complex Ir1 shows a more-intense optical-absorption capability, especially in the visible-light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 10(4) , which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange-red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two-photon-absorption properties of complexes Ir0, Ir1, and L1. The free ligand (L1) has a relatively small two-photon absorption cross-section (δ(max) =195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1, it exhibits a higher two-photon-absorption cross-section than ligand L1 in the near-infrared region and an intense two-photon-excited phosphorescent emission. The maximum two-photon-absorption cross-section of Ir1 is 481 GM, which is also significantly larger than that of Ir0. In addition, because the strong B-F interaction between the dimesitylboryl groups and F(-) ions interrupts the extended π-conjugation, complex Ir1 can be used as an excellent one- and two-photon-excited "ON-OFF" phosphorescent probe for F(-) ions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  17. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment.

    Science.gov (United States)

    Croissant, Jonas G; Zink, Jeffrey I; Raehm, Laurence; Durand, Jean-Olivier

    2018-01-18

    Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm 3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative study of two-photon fluorescent bio-markers at nanosecond and femtosecond pulsed excitation

    Science.gov (United States)

    Peterson, Burl H.; Sarkisov, Sergey S.; Nesterov, V. N.; Curley, Michael J.; Urbas, Augustine; Patel, Darayas N.; Wang, J.-C.

    2007-02-01

    In this study we investigate visible fluorescence of cytotoxic bio-markers (molecular probes) based on the derivatives of piperidone at femtosecond infrared pulsed laser excitation. The subject of this investigation is the origin of the fluorescence. Does it originate from the excited state absorption, which occurs only at slow, nanosecond excitation, or is it due to intrinsic multi-photon absorption? In the past, it has been shown indirectly, through the laser photolysis study, that the contribution of the excited state absorption is minimal for several compounds of such type. The results of direct experiments with an infrared femtosecond fiber laser as an excitation source described here support this hypothesis. The observed dependence of the fluorescence on the pump power indicated the contribution of not only two-photon, but multi-photon routes of excitation. Additionally, it was shown that the spectral features of the fluorescence correlate with the presence of glycine, an amino acid that is one of the building blocks of proteins in a cell. The implication of this result is, in addition to their anticancer action, the compounds can possibly be used for fluorescent diagnostics of cancer and multi-photon fluorescent microscopy of malignant cell cultures using portable infrared fiber lasers as excitation sources.

  19. First Double Excitation Cross Sections of Helium Measured for 100-keV Proton Impact

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS and Universite Paul Sabatier, 31062 Toulouse Cedex (France); Godunov, A.L.; Schipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow region, 142092 (Russia)

    1997-12-01

    Excitation cross sections of the (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D , and (2s2p){sup 1}P autoionizing states of helium, produced in collisions with 100-keV protons, have been measured for the first time. Using a high resolution electron spectroscopy together with a recently proposed parametrization of autoionizing resonances distorted by Coulomb interaction in the final state makes it possible to extract from electron spectra {ital total cross sections} as well as {ital magnetic sublevel populations.} These new experimental data are briefly compared with out theoretical calculations. {copyright} {ital 1997} {ital The American Physical Society}

  20. Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators

    International Nuclear Information System (INIS)

    Pastells, Carme; Marco, M.-Pilar; Merino, David; Loza-Alvarez, Pablo; Pasquardini, Laura; Lunelli, Lorenzo; Pederzolli, Cecilia; Daldosso, Nicola; Farnesi, Daniele; Berneschi, Simone; Righini, Giancarlo C.; Quercioli, Franco; Nunzi Conti, Gualtiero; Soria, Silvia

    2016-01-01

    We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.

  1. Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Pastells, Carme; Marco, M.-Pilar [Nanobiotechnology for Diagnostics Group (Nb4Dg), IQAC-CSIC, 08034 Barcelona (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, 08034 Barcelona (Spain); Merino, David; Loza-Alvarez, Pablo [ICFO-Institut de Ciències Fotòniques, Castelldefels, 08860 Barcelona (Spain); Pasquardini, Laura [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Lunelli, Lorenzo [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); IBF-CNR, 38123 Povo, TN (Italy); Pederzolli, Cecilia [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Daldosso, Nicola [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy); Farnesi, Daniele [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Berneschi, Simone [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Righini, Giancarlo C. [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Quercioli, Franco [CNR-INO National Institute of Optics, Sesto Fiorentino, FI (Italy); Nunzi Conti, Gualtiero [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Soria, Silvia, E-mail: s.soria@ifac.cnr.it [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy)

    2016-02-15

    We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.

  2. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.

    1995-01-01

    A description of light heavy-ion fusion, taking into account both entrance-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C + 12 C, 12 C + 14 N, 10 B + 16 O and 16 O + 16 O fusion cross sections are calculated for E cm ≤ 120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C + 12 C and 16 O + 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C + 14 N and 10 B + 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  3. Partial cross sections for excitation of He(31D) states by electron impact

    International Nuclear Information System (INIS)

    Mikosza, A.G.; Hippler, R.; Wang, J.B.; Williams, J.F.

    1996-01-01

    We report absolute measurements of a rank four state multipole for He(3 1 D) excitation by electron impact with a polarized first-photon endash second-photon coincidence technique. The presented technique permits the extraction of total (scattering angle integrated) partial cross sections σ m for the excitation of He(3 1 D m ) magnetic substates (m=0,±1,±2). The present results stringently test existing theories and, for example, indicate that most theoretical calculations underestimate the partial cross sections σ 0 and σ 1 and overestimate the σ 2 . The recent convergent close-coupling calculations of Fursa and Bray [Phys. Rev. A 52, 1279 (1995)] are in excellent agreement with all our measured data. copyright 1996 The American Physical Society

  4. On the unexpected oscillation of the total cross section for excitation in He2+ + H collisions

    International Nuclear Information System (INIS)

    Schultz, D.R.; Reinhold, C.O.; Krstic, P.S.

    1996-01-01

    Recent calculations and measurements have revealed unexpected oscillations of the total cross section for excitation in low- to intermediate-energy He 2+ + H collisions. A physical explanation of this behavior is given here stemming from analysis of classical trajectory Monte Carlo simulations, molecular orbital close coupling calculations, and solution of the time-dependent Schroedinger equation on a numerical lattice. These results indicate that the observed behavior should be characteristic of a wide range of reactions in ion-atom collisions

  5. Critically assessed electron-impact excitation cross sections for He(11S)

    International Nuclear Information System (INIS)

    Heer, F.J. de

    1998-11-01

    In this paper we reconsider the previous assessment of collision strengths, now mostly presented as cross sections, for excitation of He(1 1 S) to He(n 1,3 L) states (n=2-4, L=0-3). Due to the appearance of additional theoretical results the assessment can now be often given within smaller error limits than before for the singlet levels, as well as for the lower triplet levels (n=2). For the higher excited triplet states more studies are desirable to reduce the possible errors. (author)

  6. Scaled-Absorption and Recurrence Spectra of Argon in an Electric Field Using Two Photon Excitation

    Science.gov (United States)

    Wright, J. D.; Huang, W.; Flores-Rueda, H.; Morgan, T. J.

    2001-05-01

    For multi-electron atoms in an electric field, low angular momentum Rydberg electrons strongly interact with the atomic core causing scattering which can be associated with the presence of chaos. The photoabsorption spectra exhibits extraordinary complex structure but is still in principle interpretable semiclassically using closed orbit theory and semiclassical S-matrix theory [1]. Previously we measured the scaled-photoabsorption and recurrence spectra of argon in an electric field, using single uv-photon excitation from a metastable state [2]. We have extended these measurements to two photon excitation from the same initial state, which allows access to different angular momentum states. The effect of multi-photon excitation on the structure of the recurrence spectrum and its subsequent semiclassical interpretation will be presented. Work supported by the National Science Foundation. [1] B. E. Granger and C. H. Greene, Phys.Rev.A 62, 12511 (2000) [2] H. Flores-Rueda, J. D. Wright, W. Huang, T. J. Morgan, Bull. Am. Phys. Soc. 45, 94 (2000)

  7. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  8. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  9. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  10. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    Science.gov (United States)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  11. Measurement and calculation of excitation cross sections and level ionization by electron impact

    International Nuclear Information System (INIS)

    Blanco Rames, F.

    1990-01-01

    The experimental and theoretical study of the atomic structure in neutral noble gases is studied in this work. It mainly deals with the determination of total cross sections by electron impact and transition probabilities, including: Chapter 1: Theoretical introduction and the intermediate coupling description obtained for 420 levels of s, p and d configurations in neutral noble gases. Chapter 2: Experimental and theoretical values for electron collision cross sections are obtained for several levels of He, Ne, Ar and Kr. Our results as well as those available from existing bibliography are sumarized and compared. By means of an intermediate coupling treatment a number of regularities is found that provides us with some useful approximate semi empirical expressions. Chapter 3: Determination of lifetime and transition probabilities. Lifetime measurements are carried out by means of laser excitation and multichannel delayed coincidences technique. The experimental setup and electronics are also described. Chapter 4: Details the experimental setup developed for electron cross sections measurement by the optical method. The difficulties of this method and their treatment are also shown. (Author)

  12. Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence

    Science.gov (United States)

    Zeng, Yan; Yan, Bo; Sun, Qiqi; Teh, Seng Khoon; Zhang, Wei; Wen, Zilong; Qu, Jianan Y.

    2013-04-01

    We demonstrate that two-photon excited endogenous fluorescence enables label-free morphological and functional imaging of various human blood cells. Specifically, we achieved distinctive morphological contrast to visualize morphology of important leukocytes, such as polymorphonuclear structure of granulocyte and mononuclear feature of agranulocyte, through the employment of the reduced nicotinamide adenine dinucleotide (NADH) fluorescence signals. In addition, NADH fluorescence images clearly reveal the morphological transformation process of neutrophils during disease-causing bacterial infection. Our findings also show that time-resolved NADH fluorescence can be potentially used for functional imaging of the phagocytosis of pathogens by leukocytes (neutrophils) in vivo. In particular, we found that free-to-bound NADH ratios measured in infected neutrophils increased significantly, which is consistent with a previous study that the energy consumed in the phagocytosis of neutrophils is mainly generated through the glycolysis pathway that leads to the accumulation of free NADH. Future work will focus on further developing and applying label-free imaging technology to investigate leukocyte-related diseases and disorders.

  13. Cross-sections for dissociative excitation of lead atom in collisions of slow electrons with PbI2 molecules

    International Nuclear Information System (INIS)

    Smirnov, Yu.M.

    2006-01-01

    The dissociative excitation of the lead atom in e-PbI 2 collisions has been studied experimentally. 27 excitation cross-sections are measured at an exciting-electron energy of 100 eV. Nine optical excitation functions are recorded at the electron energy varying in the 0-100 eV range. The most possible reaction channels at low electron energies along with the relation of the dissociative-excitation cross-sections of the lead atom both in e-PbI 2 and e-PbCl 2 collisions are discussed. (authors)

  14. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Ratnavelu, K. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  15. Electron impact excitation cross sections and rates from the ground state of atomic calcium

    CERN Document Server

    Samson, A M

    2001-01-01

    New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg

  16. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  17. Charge changing and excitation cross sections for 1-25 KeV hydrogen ions and atoms incident on sodium

    International Nuclear Information System (INIS)

    Howald, A.M.

    1983-01-01

    Measurements of charge changing and excitation cross sections for 1-25 keV beams of hydrogen atoms and ions incident on a sodium vapor target are reported. The charge changing cross sections are for reactions in which the incident H ion or atom gains or loses an electron during a collision with a Na atoms to form a hydrogen ion or atom in a different charge state. The six cross sections measured are sigma/sub +0/ and sigma/sub +-/ for incident protons, sigma/sub -0/ and sigma/sub -+/ for incident H - ions, and sigma/sub g-/ and sigma/sub g+/ for incident H(1s) atoms. Measurements are also reported for the negative, neutral, and positve equilibrium fractions for H beams in thick Na targets. The excitation cross sections are for reactions in which the Na target atom is excited to the 3p level by a collision with a H atom or ion. The five cross sections measured are for incident H + , H 2 + , H 3 + , and H - ions, and for H(1s) atoms. These cross sections are measured using a new technique that compares them directly to the known cross section for excitation by electron impact

  18. Two-photon excited fluorescence spectroscopy and imaging of melanin in vitro and in vivo

    Science.gov (United States)

    Krasieva, Tatiana B.; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Tromberg, Bruce J.

    2012-03-01

    The ability to detect early melanoma non-invasively would improve clinical outcome and reduce mortality. Recent advances in two-photon excited fluorescence (TPEF) in vivo microscopy offer a powerful tool in early malignant melanoma diagnostics. The goal of this work was to develop a TPEF optical index for measuring relative concentrations of eumelanin and pheomelanin since ex vivo studies show that changes in this ratio have been associated with malignant transformation. We acquired TPEF emission spectra (λex=1000 nm) of melanin from several specimens, including human hair, malignant melanoma cell lines, and normal melanocytes and keratinocytes in different skin layers (epidermis, papillary dermis) in five healthy volunteers in vivo. We found that the pheomelanin emission peaks at around 620 nm and is blue-shifted from the eumelanin with broad maximum at 640-680nm. We defined "optical melanin index" (OMI) as a ratio of fluorescence signal intensities measured at 645 nm and 615nm. The measured OMI for a melanoma cell line MNT-1 was 1.6+/-0.2. The MNT-46 and MNT-62 lines (Mc1R gene knockdown) showed an anticipated change in melanins production ratio and had OMI of 0.55+/-0.05 and 0.17+/-0.02, respectively, which strongly correlated with HPLC data obtained for these lines. Average OMI measured for basal cells layers (melanocytes and keratinocytes) in normal human skin type I, II-III (not tanned and tanned) in vivo was 0.5, 1.05 and 1.16 respectively. We could not dependably detect the presence of pheomelanin in highly pigmented skin type V-VI. These data suggest that a non-invasive TPEF index could potentially be used for rapid melanin ratio characterization both in vitro and in vivo, including pigmented lesions.

  19. Cross section data for electron-impact inelastic processes of vibrationally excited molecules of hydrogen and its isotopes

    CERN Document Server

    Celiberto, R; Laricchiuta, A; Capitelli, M; Wadehra, J M; Atems, D E

    2001-01-01

    An extensive cross section database for the electron-impact inelastic processes of vibrationally excited molecules of hydrogen and its isotopes is presented. The following inelastic processes are covered: electronic excitation (dissociative and nondissociative), direct ionization (dissociative and nondissociative), excitation-radiative decay vibrational excitation and dissociation, and dissociative electron attachment. The data have been compiled partly from the literature and partly generated theoretically for the present report. The data are presented in graphical form. The data are also presented by sufficiently accurate analytic fit functions. Mass-scaling relations are provided for cross section evaluation of those isotope molecules for which calculated data are not available.

  20. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR.

    Science.gov (United States)

    Guardado-Alvarez, Tania M; Devi, Lekshmi Sudha; Vabre, Jean-Marie; Pecorelli, Travis A; Schwartz, Benjamin J; Durand, Jean-Olivier; Mongin, Olivier; Blanchard-Desce, Mireille; Zink, Jeffrey I

    2014-05-07

    We report the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes inter-molecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. We describe the operation of the "snap-top" release mechanism by both one- and two-photon activation. This system presents a proof of concept of a near-IR photoredox-induced nanoparticle delivery system that may lead to a new type of photodynamic drug release therapy.

  1. Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy

    Science.gov (United States)

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Ma, Zhen; Ye, Tong; Borg, Tom; Gao, Bruce Z.

    2011-12-01

    We developed a hybrid two-photon excitation fluorescence-second harmonic generation (TPEF-SHG) imaging system with an on-stage incubator for long-term live-cell imaging. Using the imaging system, we observed the addition of new sarcomeres during myofibrillogenesis while a cardiomyocyte was spreading on the substrate. The results suggest that the TPEF-SHG imaging system with an on-stage incubator is an effective tool for investigation of dynamic myofibrillogenesis.

  2. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Neves, R. F. C. [Instituto Federal do Sul de Minas Gerais, Câmpus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900 (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900 (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580 (Brazil); Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, São Paulo 13083-859 (Brazil); Varella, M. T. do N [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, Curitiba, Paraná 81531-990 (Brazil); Lima, M. A. P., E-mail: maplima@ifi.unicamp.br [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, São Paulo 13083-859 (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2016-03-28

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C{sub 5}H{sub 4}O{sub 2}). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 5}H{sub 4}O{sub 2}. The measurements were carried out at energies in the range 20–40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6–50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  3. Differential cross sections for electron impact excitation of the electronic bands of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2015-03-14

    We report results from a joint theoretical and experimental investigation into electron scattering from the important organic species phenol (C{sub 6}H{sub 5}OH). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 6}H{sub 5}OH. The measurements were carried out at energies in the range 15–40 eV, and for scattered-electron angles between 10{sup ∘} and 90{sup ∘}. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potentials calculations, with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were conducted at the static exchange plus polarisation (SEP)-level using a minimum orbital basis for single configuration interaction (MOBSCI) approach. Agreement between the measured and calculated DCSs was typically fair, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOBSCI.

  4. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N; Bettega, M. H. F.; Lima, M. A. P.; García, G.

    2016-01-01

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C 5 H 4 O 2 ). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C 5 H 4 O 2 . The measurements were carried out at energies in the range 20–40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6–50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

  5. Search for the two-photon decay of the 2+ first excited states in 18O and 28Si

    International Nuclear Information System (INIS)

    Music, M.

    1986-01-01

    The present work describes an attempt to measure the probability for the two-photon transition between two adjacent nuclear states in the presence of an allowed, strongly predominant one-photon decay, using the Heidelberg-Darmstadt Crystal Ball Spectrometer. The branching ratios of the two-photon decay of the first excited, 2 + levels of 18 O and 28 Si relative to the one-photon, E2 transitions to the 0 + ground states were determined to be: Wγγ/Wγ = (0.7±2.4) x 10 -6 for the 2 + >0 + transition in 18 O and Wγγ/Wγ = (1.6±1.8) x 10 -6 for the 2 + >0 + transition in 28 Si. Since both results are consistent with zero, it is possible to express them as the upper limits for the two-photon decay (3 δ) of 7.9 x 10 -6 of 18 O and 6.9 x 10 -6 of 28 Si 2 + levels. These values are by far the smallest ones reported to be observed in a two-photon decay of a nuclear state. For 18 O, the result disproves theoretical estimates of the corresponding two-photon E1F1 matrix element was well as experimental values deduced from multiple-Coulomb-excitation measurements. The main experimental difficulties were caused by the gamma rays from one-photon transitions and were found to be connected with cross-talk events due to Bremsstrahlung of Compton electrons and not - as generally believed - positron annihilation in flight. (orig.)

  6. Excitation of autoionizing states of helium by 100 keV proton impact: II. Excitation cross sections and mechanisms of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L. [Department of Physics, Tulane University, New Orleans, LA 70118-5698 (United States); Ivanov, P.B.; Schipakov, V.A. [Troitsk Institute of Innovation and Fusion Research Troitsk, Moscow region, 142092 (Russian Federation); Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS-Universite Paul Sabatier, 31062 Toulouse Cedex (France)

    2000-03-14

    Mechanisms of two-electron excitation of the (2s{sup 2}){sup 1} S, (2p{sup 2} ){sup 1} D and (2s2p){sup 1} P autoionizing states of helium are studied both experimentally and theoretically. It is shown that an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive parametrization of experimental cross sections of ionization, allowing one to extract cross sections of excitation of autoionizing states. Using a new fitting procedure together with the proposed parametrization made it possible to obtain the excitation cross sections and magnetic sublevel population from electron spectra as well as, for the first time, to resolve the contribution of resonance and interference components to resonance profiles. Interference with direct ionization is shown to contribute significantly into resonance formation even for backward ejection angles. We demonstrate theoretically that the excitation cross sections thus extracted from experimental electron spectra hold information about the interaction of autoionizing states with an adjacent continuum. (author)

  7. Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching.

    Science.gov (United States)

    Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J; McConnell, Gail

    2016-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca(2+) events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca(2+) indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required.

  8. [Frontiers in Live Bone Imaging Researches. Two-Photon Excitation Microscopy, principles and technologies].

    Science.gov (United States)

    Oikawa, Yoshiro

    2015-06-01

    The "two photon absorption" phenomenon had been predicted by the American Physicist, Maria Ghöppert-Mayer in 1931. Denk and Webb group had proved it in 1990 and the first product had been launched in the market in 1996. But ever since the product became available, the number of users are not increased. Moreover, the system had been too difficult to use and the system sometimes stay not working in labs. But recently, the new easier-to-use products are released and the ultra short pulse IR laser became stable. And its applications are extending from neuro-science to oncology or immunology fields. Due to these reasons, the shipment of multi-photon microscope in Japan in 2013 is approximately 40 units which is 3 times bigger than in 2010. In this paper, I would like to discuss the principles of two-photon microscopy and some of the new technologies for the higher signal capture efficiency.

  9. Excitation and ionization contributions to sum-rule Born cross sections for collisions of one-electron ions with atoms

    International Nuclear Information System (INIS)

    Gillespie, G.H.

    1978-01-01

    The contributions of bound-state excitations and continuum ionizations to the total inelastic (sum-rule) cross section are examined in Born approximation. The results of an investigation of this problem for the case of one-electron ions colliding with neutral atoms are presented. Emphasis in this work is placed on the general features of these types of cross sections and on the relative contributions of excitation and ionization to the total Born cross section. In addition, extensive numerical results for the parameters which determine the cross sections for electron loss, and for excitation to bound states, are given for one-electron ions having atomic numbers up to 30 colliding with He, N, and Ar target atoms. It is shown that for the asymptotic (high-velocity) Born cross sections, excitation never contributes more than a certain fraction of the total sum-rule inelastic cross section, and this fraction has a bound which is determined by the dipole limit of the transition amplitudes for the incident ion. This bound is given by M/sub ex/ 2 /M/sub tot/ 2 , where M/sub tot/ 2 is the -1 energy moment of the dipole-oscillator-strength distribution and M/sub ex/ 2 is the contribution to this moment from transitions to bound excited states. This result is independent of the target atom involved in the collision. Since M/sub ex/ 2 /M/sub tot/ 2 does not depend on the atomic number for one-electron ions, this bound is also independent of the incident-ion atomic number in this case. As a consequence, ionization never contributes less to the sum-rule cross sections than the fraction (1-M/sub ex/ 2 /M/sub tot/ 2 ) = M/sub ion/ 2 /M/sub tot/ 2 . The more general problem, which involves multielectron ions (or atoms) colliding with atoms, is discussed from several viewpoints, and similar results are suggested for that case. In particular, separate upper bounds on the Born-excitation cross section, and lower bounds on the Born electron-loss cross section, are proposed

  10. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  11. Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model

    Energy Technology Data Exchange (ETDEWEB)

    T. Barnes; E.S. Swanson; C.-Y. Wong; X.-M. Xu

    2003-07-29

    We present numerical results for the dissociation cross sections of ground-state, orbitally- and radially-excited charmonia in collisions with light mesons. Our results are derived using the nonrelativistic quark model, so all parameters are determined by fits to the experimental meson spectrum. Examples of dissociation into both exclusive and inclusive final states are considered. The dissociation cross sections of several C=(+) charmonia may be of considerable importance for the study of heavy ion collisions, since these states are expected to be produced more copiously than the J/{psi}. The relative importance of the productions of ground-state and orbitally-excited charmed mesons in a pion-charmonium collision is demonstrated through the {radical}s-dependent charmonium dissociation cross sections.

  12. Confocal Laser Scanning Microscopy and Two Photon Excitation Microscopy as Tools to Study Testate Amoebae

    Czech Academy of Sciences Publication Activity Database

    Burdíková, Zuzana; Čapek, Martin; Ostašov, Pavel; Mitchell, E.A.D.; Machač, Jiří; Kubínová, Lucie

    2010-01-01

    Roč. 16, Suppl.2 (2010), s. 1142-1143 ISSN 1431-9276. [Microscopy and Microanalysis 2010. Portland, 01.08.2010-05.08.2010] R&D Projects: GA MŠk(CZ) LC06063; GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z60050516 Keywords : testate amoeba e * confocal microscopy * two-photon microscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.179, year: 2010

  13. Studying the excitation function of the full cross section of a reaction using a modified transmission technique: Initial results

    Czech Academy of Sciences Publication Activity Database

    Sobolev, Yuri, G.; Penionyhkevich, Y. E.; Borcha, K.; Ivanov, M. P.; Kugler, Andrej; Kulko, A. A.; Kroha, Václav; Maslov, V. A.; Mrázek, Jaromír; Negret, A.; Rvenko, R. V.; Savrov, Ya. Yu.; Skobelev, N. K.; Trzaska, V. G.

    2012-01-01

    Roč. 76, č. 8 (2012), s. 952-957 ISSN 1062-8738 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : cross sections * excitation functions * radioactive beams Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  14. Two-photon directed evolution of green fluorescent proteins.

    Science.gov (United States)

    Stoltzfus, Caleb R; Barnett, Lauren M; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E; Rebane, Aleksander

    2015-07-06

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.

  15. Highly efficient and two-photon excited stimulated Rayleigh-Bragg scattering in organic solutions

    Energy Technology Data Exchange (ETDEWEB)

    He, Guang S., E-mail: gshe@buffalo.edu; Prasad, Paras N. [The Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo, Buffalo, New York 14260-3000 (United States); Kannan, Ramamurthi; Tan, Loon-Seng [Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RX, Wright-Patterson AFB, Ohio 45433-7750 (United States)

    2015-07-21

    The properties of backward stimulated Rayleigh-Bragg scattering (SRBS) in three highly two-photon active AF-chromophores solutions in tetrahydrofuran (THF) have been investigated using 816-nm and 8-ns pump laser beam. The nonlinear reflectivity R, spectral structure, temporal behavior, and phase-conjugation capability of the backward SRBS output have been measured, respectively. Under the same experimental condition, the pump threshold for SRBS in three solution samples can be significantly (∼one order of magnitude) lower than that for stimulated Brillouin scattering (SBS) in the pure solvent (THF). With the optimized concentration value and at a moderate pump energy (∼1.5 mJ) level, the measured nonlinear reflectivity was R ≥ 35% for the 2 cm-long solution sample, while for the SBS from a pure solvent sample of the same length was R ≈ 4.7%. The peculiar features of very low pump threshold, no spectral shift, tolerant pump spectral linewidth requirement (≤1 cm{sup −1}), and phase-conjugation capability are favorable for those nonlinear photonics applications, such as highly efficiency phase-conjugation reflectors for high-brightness laser oscillator/amplifier systems, special imaging through turbid medium, self-adaptive remote optical sensing, as well as for optical rangefinder and lidar systems.

  16. MULTIPHOTON MICROSCOPIC IMAGING OF MOUSE INTESTINAL MUCOSA BASED ON TWO-PHOTON EXCITED FLUORESCENCE AND SECOND HARMONIC GENERATION

    Directory of Open Access Journals (Sweden)

    REN'AN XU

    2013-01-01

    Full Text Available Multiphoton microscopy (MPM, based on two-photon excited fluorescence and second harmonic generation, enables direct noninvasive visualization of tissue architecture and cell morphology in live tissues without the administration of exogenous contrast agents. In this paper, we used MPM to image the microstructures of the mucosa in fresh, unfixed, and unstained intestinal tissue of mouse. The morphology and distribution of the main components in mucosa layer such as columnar cells, goblet cells, intestinal glands, and a little collagen fibers were clearly observed in MPM images, and then compared with standard H&E images from paired specimens. Our results indicate that MPM combined with endoscopy and miniaturization probes has the potential application in the clinical diagnosis and in vivo monitoring of early intestinal cancer.

  17. MRT letter: Two-photon excitation-based 2pi light-sheet system for nano-lithography.

    Science.gov (United States)

    Mohan, Kavya; Mondal, Partha Pratim

    2015-01-01

    We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2π-configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. © 2014 Wiley Periodicals, Inc.

  18. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  19. Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH+ ion

    International Nuclear Information System (INIS)

    Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.

    2017-01-01

    A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH + , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of 2 σ + , 2 σ and 2 δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.

  20. Cross sections of electron excitation out of metastable helium levels with a fast metastable target product produced via charge exchange

    International Nuclear Information System (INIS)

    Lagus, M.E.; Boffard, J.B.; Anderson, L.W.; Lin, C.C.

    1996-01-01

    Absolute direct cross sections for electron excitation out of the 2 3 S level and into the 3 3 D, 4 3 D, and 3 3 S levels of the helium atom from threshold to 500 eV and into the 3 3 P level over a more limited energy range have been measured using a fast metastable atomic beam target. We produce the metastable atoms via near-resonant charge exchange between a 1.6-keV He + ion beam and Cs vapor. Because this reaction is highly nonresonant with the ground state of helium, the charge-transfer process yields a primarily metastable beam. We use a thermal detector which we calibrate with ions to measure absolutely the neutral beam flux. The atomic beam is crossed by an electron beam, and we collect the resulting fluorescence at right angles to both the electron and atomic beams. We obtain the cross sections for excitation out of the 2 3 S level into the various excited levels by monitoring the emission out of the excited level of interest. copyright 1996 The American Physical Society

  1. Cross-section and rate coefficient calculation for electron impact excitation, ionisation and dissociation of H2 and OH molecules

    International Nuclear Information System (INIS)

    Riahi, R.; Ben Lakhdar, Z.; Teulet, Ph.; Gleizes, A.

    2006-01-01

    The weighted total cross-sections (WTCS) theory is used to calculate electron impact excitation, ionization and dissociation cross-sections and rate coefficients of OH, H 2 , OH + , H 2 + , OH - and H 2 - diatomic molecules in the temperature range 1500-15000 K. Calculations are performed for H 2 (X, B, C), OH(X, A, B), H 2 + (X), OH + (X, a, A, b, c), H 2 - (X) and OH - (X) electronic states for which Dunham coefficients are available. Rate coefficients are calculated from WTCS assuming Maxwellian energy distribution functions for electrons and heavy particles. One and 2 temperatures (θ e and θ g respectively for electron and heavy particles kinetic temperatures) results are presented and fitting parameters (a, b and c) are given for each reaction rate coefficient: k(θ) a(θ b )exp(-c/θ). (authors)

  2. Partial radiative-recombination cross sections for excited states of hydrogen

    International Nuclear Information System (INIS)

    Fazio, P.M.; Copeland, G.E.

    1985-01-01

    The squares of the dipole and quadrupole matrix elements for the free-to-bound transitions of hydrogen up to bound states Vertical Barn = 20,l = 19> are derived in closed analytic form as a function of the kinetic energy of the free electron. Coulomb wave functions are used for the free as well as the bound states and, thus, the results are good for any electron energy. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate-angular-momentum states at low energies (w<1 eV) and where the free-state angular momentum is greater than that of the bound state. Further, that specific intermediate-angular-momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the ''normal'' behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. These ''zeros'' produce minima in the corresponding quadrupole cross sections. Finally, the calculated partial cross sections for recombination into high-angular-momentum states are greater when quadrupole transitions are included

  3. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    Science.gov (United States)

    Zhang, Xianzeng; Geng, Yang; Ye, Qing; Zhan, Zhenlin; Xie, Shusen

    2013-11-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy.

  4. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    International Nuclear Information System (INIS)

    Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen; Geng, Yang; Ye, Qing

    2013-01-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy. (paper)

  5. State resolved rotational excitation cross-sections and rates in H2 + H2 collisions

    International Nuclear Information System (INIS)

    Sultanov, Renat A.; Guster, Dennis

    2006-01-01

    Rotational transitions in molecular hydrogen collisions are computed. The two most recently developed potential energy surfaces for the H 2 -H 2 system are used from the following works: [A.I. Boothroyd, P.G. Martin, W.J. Keogh, M.J. Peterson, J. Chem. Phys., 116 (2002) 666; P. Diep, J.K. Johnson, J. Chem. Phys., 113 (2000) 3480; P. Diep, J.K. Johnson, J. Chem. Phys., 112 (2000) 4465]. Cross-sections for rotational transitions 00 → 20, 22, 40, 42, 44 and corresponding rate coefficients are calculated using a quantum-mechanical approach. Results are compared for a wide range of kinetic temperatures 300 K ≤ T≤ 3000 K

  6. Oscillator strengths and integral cross sections for the valence-shell excitations of nitric oxide studied by fast electron impact

    Science.gov (United States)

    Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-01-01

    The generalized oscillator strengths for the valence-shell excitations of A2Σ+, C2Π, and D2Σ+ electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.

  7. Effects of Solvation on One- and Two-Photon Spectra of Coumarin Derivatives: A Time-Dependent Density Functional Theory Study (Postprint)

    National Research Council Canada - National Science Library

    Pachter, Ruth; Nguyen, Kiet A; Day, Paul N

    2007-01-01

    We report one- and two-photon absorption excitation energies and cross sections for a series of 7-aminocoumarins using time-dependent density functional theory with various basis sets and functionals...

  8. The use of radiation trapping in the measurement of the electron excitation cross section for the production of the 1s4 (3P1) level of Ne

    International Nuclear Information System (INIS)

    Miers, R.E.; Gastineau, J.E.; Phillps, M.H.; Anderson, L.W.; Lin, C.C.

    1981-01-01

    The authors report the use of laser induced fluorescence for the first measurement of the electron excitation cross section for the production of the 1s 4 ( 3 P 1 ) level of Ne. Radiation trapping is used to lengthen the effective lifetime of the 1s 4 level allowing for the electron excitation cross section of the 1s 4 level to be measured in a manner similar to the measurement of electron excitation cross sections of the metastable 1s 3 and 1s 5 levels. (Auth.)

  9. Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry

    OpenAIRE

    Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2013-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing $D_{6h}$ point group symmetry versus ovalene with $D_{2h}$ symmetry, within the Pariser-Parr-Pople model of interacting $\\pi$-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitat...

  10. Empirical regularities in the excitation cross-section behavior of the lead atom (transitions from energy levels of 6pnd configurations)

    Science.gov (United States)

    Smirnov, Yu M.

    2018-03-01

    Electron-impact excitation of lead atom levels belonging to 6pnd configurations has been studied in experiment. One hundred two excitation cross-sections have been measured at an incident electron energy of 50 eV. Eleven optical excitation functions (OEFs) have been recorded in the exciting electron energy range of E = 0-200 eV. The resulting findings were used to study the excitation cross-sections dependence on the principal quantum number of upper levels for thirteen PbI spectral series.

  11. Fs-transient absorption and fluorescence upconversion after two- photon excitation of carotenoids in solution and in LHC II

    CERN Document Server

    Wall, P J; Fleming, G R

    2000-01-01

    With time resolved two-photon techniques we determined the lifetime and two-photon spectrum of the forbidden S/sub 1/ state of beta - carotene (9+or-0.2 ps), lutein (15+or-0.5 ps) and the energy transferring carotenoids in LHC II (250+or-50 fs). (7 refs).

  12. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  13. Theoretical investigation of the hyper-Raman scattering in hexagonal semiconductors under two-photon excitation near resonance with the An=2 exciton level

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The hyper-Raman scattering of light by LO-phonons under two-photon excitation near resonance with the An=2 exciton level in the wurtzite semiconductors A2B6 was theoretically investigated, taking into account the influence of the complex structure of the top valence band.

  14. Cross-sections for Balmer-alpha excitation in heavy-particle collisions

    International Nuclear Information System (INIS)

    Bae, Y.K.

    1982-08-01

    Doppler shifted and unshifted Balmer-alpha radiation has been observed in the absolute sense for energetic H + , H 2 + and H 3 + ions incident on molecular hydrogen by the method of decay inside the target within the energy range of 20 keV to 150 keV. Most of the measurements were based on single-collision conditions, but a simple thick-target experiment has been tried for the case of dissociative excitation of the target molecules by H atoms

  15. Photophysical processes in electronic states of zinc tetraphenyl porphyrin accessed on one- and two-photon excitation in the soret region

    International Nuclear Information System (INIS)

    Lukaszewicz, Adam; Karolczak, Jerzy; Kowalska, Dorota; Maciejewski, Andrzej; Ziolek, Marcin; Steer, Ronald P.

    2007-01-01

    Photophysical processes in the model metalloporphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP), have been investigated by means of conventional electronic spectroscopy, and by picosecond transient emission and femtosecond transient absorption methods. The radiative and radiationless decay parameters of ZnTPP have been determined under conditions of low solute concentration where dimer formation is unimportant, and the effects of dimer formation at higher concentrations have been assessed. Careful measurements of the relative S 1 -S 0 fluorescence quantum yields produced on excitation to higher states compared with direct excitation to S 1 itself reveal that a second radiationless decay process that bypasses S 1 operates when ZnTPP is excited in the Soret region. A dark state, assigned most probably to a triplet (T n , n > 2) or an upper singlet of gerade parity, is involved. The relative importance of this second process is a function of the nature of the solvent, the excitation wavelength (vibrational energy content of the excited state) and the parity of higher electronic states accessed when two-photon excitation is employed. Sequential two-photon excitation occurs when exciting with fs pulses in the Soret region and becomes significant at even modest excitation pulse energies with increasing sample absorbance. The implications of these measurements in reinterpreting the dynamics of electronically excited ZnTPP are discussed

  16. Investigations of fluctuation phenomena in the excitation functions of the cross-section by means of polarized particles

    International Nuclear Information System (INIS)

    Henneck, R.

    1976-01-01

    The present work concerns theoretical and experimental investigations of fluctuation phenomena, which appear in the excitation functions of the diff. cross-section and of the analyzing power, when bombarding nuclei with polarized particles in the energy range of strongly overlapping levels. We could show theoretically that model-dependent calculations (or assumptions), necessary for the determination of the relative amount of direct interaction contribution within the statistical model of Ericson, are not necessary for the elastic scattering of polarized spin-1/2- particles from spin-zero-target nuclei, if the additional observable analyzing power is included in the analysis. The proposed, new method hence presents an independent test for the consistency of the Hauser-Feshbach theory and its validity in the domain of strongly overlapping levels. (orig./WL) [de

  17. Two-photon free-free transitions in laser-assisted electron-hydrogen scattering

    International Nuclear Information System (INIS)

    Kracke, G.; Briggs, J.S.; Dubois, A.; Maquet, A.; Veniard, V.

    1994-01-01

    We present a perturbative calculation of the cross section for two-photon free-free transitions in laser assisted electron-hydrogen scattering within the first Born approximation. The virtual one- and two-photon excitations of the hydrogen atom during the scattering event are taken into account explicitly and their importance is demonstrated for the special case of the hydrogen atom remaining in its ground state after the collision. (Author)

  18. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    Science.gov (United States)

    Wada, Asma

    As a reflection of my career to be an effective college physics teacher, my thesis is in two parts. The first is in education research, the focus of this part is to have a tool to evaluate pedagogies I have learned at the school and plan to apply in my classrooms back home. Consequently, this resulted in the development of the translated conceptual survey of physics ( TCSP). (TCSP) was designed by combining some questions from the Force Conceptual Inventory (FCI), and the Conceptual Survey of Electricity and Magnetism (CSEM) to assess student's understanding of basic concepts of Newtonian mechanics and electricity and magnetism in introductory physics. The idea of developing this questionnaire is to use it in classrooms back home as a part of a long term objective to implement what has been realized in the area of education research to improve the quality of teaching physics there. The survey was initially written in English, validated with interviews with native English speakers, translated into Arabic, and then validated via an interview with a native Arabic speaker. We then administered the survey to two different English-speaking intro physics courses and analyzed the results for consistency. The objective of the second part in my thesis is to expand my knowledge in an area of physics that I have interest in, and getting involved in a scientific research to develop skills I need as a teacher. My research is in optical physics, in particular, I am working on one of the challenges in implementing two photon excitation luorescence (TPEF) microscopy in imaging living systems. (TPEF) microscopy has been shown to be an invaluable tool for investigating biological structure and function in living organisms. The utility of (TPEF) imaging for this application arises from several important factors including it's ability to image deep within tissue, and to do so without harming the organism. Both of these advantages arise from the fact that (TPEF) imaging is done with

  19. Angular differential cross sections for the excitation of 11S helium to the 21S and 21P states by 25- to 100-keV proton impact

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1984-01-01

    Angular differential cross sections for the proton-impact excitation of ground-state helium (1 1 S) to the 2 1 S and 2 1 P states were measured for the first time in the energy range 25- to 100-keV using the energy-loss technique. The data were numerically summed over the 2 1 S and 2 1 P states to produce differential cross sections for excitation to the composite n = 2 state and are in excellent agreement with previous experimental measurements of that process. Total cross sections were obtained by numerically integrating the present data over scattering angle, and these results also compare favorably with previous absolute experimental measurements. The theoretical predictions for the 2 1 S differential cross sections are in general disagreement with the experimentally determined cross sections. The agreement of the theories with the data is generally satisfactory for the 2 1 P cross sections, however there is still disagreement at 25 keV for this process as well. The agreement of theory with experiment generally improves with increasing impact energy. It appears that the distortion coupling of the states during the collision is an important process for excitation in this system

  20. Two-photon excited endogenous fluorescence for label-free in vivo imaging ingestion of disease-causing bacteria by human leukocytes

    Science.gov (United States)

    Zeng, Yan; Yan, Bo; Sun, Qiqi; Teh, Seng Khoon; Zhang, Wei; Wen, Zilong; Qu, Jianan Y.

    2013-02-01

    Real time and in vivo monitoring leukocyte behavior provides unique information to understand the physiological and pathological process of infection. In this study, we demonstrate that two-photon excited reduced nicotinamide adenine dinucleotide (NADH) fluorescence provides imaging contrast to distinguish granulocyte and agranulocyte. By using spectral and time-resolved NADH fluorescence, we study the immune response of human neutrophils against bacterial infection (Escherichia coli). The two-photon excited NADH fluorescence images clearly review the morphological changes from resting neutrophils (round shape) to activated neutrophils (ruffle shape) during phagocytosis. The free-tobound NADH ratio of neutrophils decreases after ingesting disease-causing pathogen: Escherichia coli. This finding may provide a new optical tool to investigate inflammatory processes by using NADH fluorescence in vivo.

  1. Measurement of the resonant polaron effect in the Reststrahlen band of GaAs:Si using far-infrared two-photon excitation

    International Nuclear Information System (INIS)

    Wenckebach, W.Th.; Planken, P.C.M.; Son, P.C. van

    1995-01-01

    We present the results of photoconductivity measurements of the resonant electron-phonon interaction in the middle of the Reststrahlen band using two-photon excitation with intense picosecond pulses with frequency around 143 cm -1 (70 μm). We use two photons rather than a single photon for the excitation of the resonant-polaron to avoid the problems of strong reflection and dielectric artifacts encountered in direct single-photon excitation in the Reststrahlen band. The sample is a 10 μm thick Si-doped GaAs epitaxial layer on a 400 μm semi-insulating GaAs substrate. The electronic levels of the Si shallow donor can be tuned by the application of a magnetic field. Intense tunable picosecond pulses with a frequency of around 143 cm -1 from the Dutch free-electron laser FELIX are weakly focussed onto the sample, which is kept at 8 K. Electrons excited to the 3d +2 state via the electric-dipole allowed two-photon transition out of the 1s 0- ground state, decay to the conduction band and give rise to an increase in the photoconductivity. The figure shows the energy-peak position of the 3d +2 transition thus obtained as a function of the magnetic-field strength. The figure clearly shows the avoided crossing around the LO-phonon energy where the coupling shows the avoided crossing around the LO-phonon energy where the coupling between the 3d +2 state and the LO phonon is strongest. Note that the data between 267 cm -1 and 296 cm -1 are extremely difficult to obtain with single-photon excitation because of their position in the middle of the Reststrahlen band

  2. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    Science.gov (United States)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  3. Emmision cross section of OI (135.6nm) at 100 eV resulting from electron-inpact dissociative excitation of O-2

    Science.gov (United States)

    Noren, C.; Kanik, I.; Ajello, J.; McCartney, P.; Makarov, O.; McClintock, W.; Drake, V.

    2001-01-01

    In this Letter, we report for the first time, the ratio of the O I (135.6 nm)/O I (130.4 nm) absolute emission cross sections from electron-impact dissociative excitation of O-2 at 100 eV using facilities located at the University of Colorado, Laboratory for Atmospheric and Space Physics (LASP).

  4. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    Science.gov (United States)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  5. Merged-beams energy-loss technique for electron-ion excitation: Absolute total cross sections for O5+(2s→2p)

    International Nuclear Information System (INIS)

    Bell, E.W.; Guo, X.Q.; Forand, J.L.; Rinn, K.; Swenson, D.R.; Thompson, J.S.; Dunn, G.H.; Bannister, M.E.; Gregory, D.C.; Phaneuf, R.A.; Smith, A.C.H.; Mueller, A.; Timmer, C.A.; Wahlin, E.K.; DePaola, B.D.; Belic, D.S.

    1994-01-01

    A merged-beams electron-energy-loss technique is described, by which absolute cross sections can be measured for near-threshold electron-impact excitation of multipy charged ions. Results are reported here for absolute total electron-impact excitation cross sections for the O 5+ (2s→2p) transition from below threshold to 1.6 eV above threshold. The experimental data are in good agremeent with a seven-state close-coupling calculation throughout the energy range of the experiment. Results agree with calculations showing that more than 90% of the electrons causing excitation are ejected in the backward direction in the center-of-mass frame. This backscattering is shown in both quantum-mechanical and semiclassical calculations. Evidence is observed for high-lying metastable autoionizing states with a lifetime of approximately 0.9 μs which are made to ionize by electron impact

  6. Angle-resolving time-of-flight electron spectrometer for near-threshold precision measurements of differential cross sections of electron-impact excitation of atoms and molecules

    International Nuclear Information System (INIS)

    Lange, M.; Matsumoto, J.; Setiawan, A.; Panajotovic, R.; Harrison, J.; Lower, J. C. A.; Newman, D. S.; Mondal, S.; Buckman, S. J.

    2008-01-01

    This article presents a new type of low-energy crossed-beam electron spectrometer for measuring angular differential cross sections of electron-impact excitation of atomic and molecular targets. Designed for investigations at energies close to excitation thresholds, the spectrometer combines a pulsed electron beam with the time-of-flight technique to distinguish between scattering channels. A large-area, position-sensitive detector is used to offset the low average scattering rate resulting from the pulsing duty cycle, without sacrificing angular resolution. A total energy resolution better than 150 meV (full width at half maximum) at scattered energies of 0.5-3 eV is achieved by monochromating the electron beam prior to pulsing it. The results of a precision measurement of the differential cross section for electron-impact excitation of helium, at an energy of 22 eV, are used to assess the sensitivity and resolution of the spectrometer

  7. Observation of two-photon photoemission from cesium telluride photocathodes excited by a near-infrared laser

    Science.gov (United States)

    Panuganti, H.; Piot, P.

    2017-02-01

    We explore the nonlinear photoemission in cesium telluride (Cs2Te) photocathodes where an ultrashort (˜100 fs full width at half max) 800-nm infrared laser is used as the drive-laser in lieu of the typical ˜266-nm ultraviolet laser. An important figure of merit for photocathodes, the quantum efficiency, we define here for nonlinear photoemission processes in order to compare with linear photoemission. The charge against drive-laser (infrared) energy is studied for different laser energy and intensity values and cross-compared with previously performed similar studies on copper [P. Musumeci et al., Phys. Rev. Lett. 104, 084801 (2010)], a metallic photocathode. We particularly observe two-photon photoemission in Cs2Te using the infrared laser in contrast to the anticipated three-photon process as observed for metallic photocathodes.

  8. Two-Photon Photosensitizer-Polymer Conjugates for Combined Cancer Cell Death Induction and Two-Photon Fluorescence Imaging: Structure/Photodynamic Therapy Efficiency Relationship.

    Science.gov (United States)

    Cepraga, Cristina; Marotte, Sophie; Ben Daoud, Edna; Favier, Arnaud; Lanoë, Pierre-Henri; Monnereau, Cyrille; Baldeck, Patrice; Andraud, Chantal; Marvel, Jacqueline; Charreyre, Marie-Thérèse; Leverrier, Yann

    2017-12-11

    One of the challenges of photodynamic therapy is to increase the penetration depth of light irradiation in the tumor tissues. Although two-photon excitation strategies have been developed, the two-photon absorption cross sections of clinically used photosensitizers are generally low (below 300 GM). Besides, photosensitizers with high cross section values are often non-water-soluble. In this research work, a whole family of photosensitizer-polymer conjugates was synthesized via the covalent binding of a photosensitizer with a relatively high cross section along a biocompatible copolymer chain. The resulting photosensitizer-polymer conjugates were water-soluble and could be imaged in cellulo by two-photon microscopy thanks to their high two-photon absorption cross sections (up to 2600 GM in water, in the NIR range). In order to explore the structure/photodynamic activity relationship of such macromolecular photosensitizers, the influence of the polymer size, photosensitizer density, and presence of charges along the polymer backbone was investigated (neutral, anionic, cationic, and zwitterionic conjugates were compared). The macromolecular photosensitizers were not cytotoxic in the absence of light irradiation. Their kinetics of cellular uptake in the B16-F10 melanoma cell line were followed by flow cytometry over 24 h. The efficiency of cell death upon photoactivation was found to be highly correlated to the cellular uptake in turn correlated to the global charge of the macromolecular photosensitizer which appeared as the determining structural parameter.

  9. Cross sections for electron-impact excitation of krypton from the levels of 4p6, 4p55s, and 4p55p configurations

    International Nuclear Information System (INIS)

    Zeng Jiaolong; Yuan Jianmin; Wu Jianhua; Jin Fengtao; Zhao Gang

    2005-01-01

    The electron-impact excitation cross sections at low electron energies have been calculated using a fully relativistic R-matrix method for transitions between levels of 4p 6 , 4p 5 5s, and 4p 5 5p configurations. To ensure the convergence of results, we have paid special attention to the factors that may affect the convergence of cross sections. For examples, we have included extensive configuration interactions in the wave-function expansion of the target states. A large enough R-matrix boundary has been taken to ensure the convergence of atomic wave functions. Contributions to cross sections from a large number of partial waves (up to J=39.5) have been explicitly calculated. The final results are in good agreement with recent experimental data by Jung et al. [Phys. Rev. Lett. 94, 163202 (2005)] after shifting the position of electron energy. The relative difference is about 10% for four transitions out of the metastable levels. The results eliminated the significant discrepancies between theory and experimental work on excitation cross sections out of the metastable levels reported in the literature

  10. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  11. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  12. Neutron scattering cross sections for 204,206Pb and neutron and proton amplitudes of E2 and E3 excitations

    International Nuclear Information System (INIS)

    Hicks, S.F.; Hanly, J.M.; Hicks, S.E.; Shen, G.R.; McEllistrem, M.T.

    1994-01-01

    Differential elastic and inelastic scattering cross sections have been measured for neutrons incident on 204 Pb and 206 Pb at energies of 2.5, 4.6, and 8.0 MeV and total cross sections in 100-keV steps from 250 keV to 4.0 MeV. Both spherical and coupled-channels analyses have been used to interpret this large set of data, together with other cross sections extending to 8 MeV. Several purposes motivate this work. The first is to establish the dispersion-corrected mean field appropriate for these nuclei. A consistent description of the energy dependent neutron scattering potential includes a dispersion relation connecting the real and imaginary parts of the potential; the resultant potential relates the energy dependent scattering field to one representing bound single particle levels. Dispersion relations using both the single channel and coupled-channels models have been examined; both give very similar results. The second motivation is to deduce neutron and proton excitation strengths of the lowest-energy quadrupole and octupole excitations seen via neutron scattering, and to compare those strengths with similar values derived from electromagnetic exciton, heavy-ion and pion scattering. The role of target neutrons in both collective excitations was found to be enhanced compared to the proton role

  13. Absolute emission cross sections for electron-impact excitation of Zn+(4p 2P) and (5s 2S) terms

    International Nuclear Information System (INIS)

    Rogers, W.T.; Dunn, G.H.; Olsen, J.O.; Reading, M.; Stefani, G.

    1982-01-01

    Absolute emission cross sections for electron-impact excitation of the 3d 10 4p 2 P and 3d 10 5s 2 S terms of Zn + have been measured from below threshold to about 790 eV 2 P and 390 eV 2 S using the crossed-charged-beams technique. Both transitions have the abrupt onset at threshold characteristic of positive-ion excitation. The 2 P cross section shows considerable structure in the interval from threshold to near 20 eV, above which it falls off smoothly. Agreement with five-state close-coupling theory is excellent below 100 eV when cascading is included in the theory. Above 100 eV, the data lie above the theory. The peak value of the 2 P cross section is 9.4 x 10 -16 cm 2 essentially at threshold, while the peak value of the 2 S cross section is about 0.47 x 10 -16 cm 2 . The net linear polarization of the 3d 10 4p 2 P emission was measured (unresolved from the 3d 10 4d 2 D→3d 10 4p 2 P cascading transition), and these data were used to correct the cross-section data for anisotropy of the emitted light. The effective lifetime of the 3d 9 4s 2 2 D/sub 3/2/ level was measured by observing exponential decay of the 589.6-nm photons resulting from its decay

  14. Comparing temporally-focused GPC and CGH for two-photon excitation and optogenetics in turbid media

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2013-01-01

    Inherent inhomogeneity in turbid media not only hinders imaging but also projection of arbitrary light patterns for excitation or optical manipulation. In this work we compare two of the most popular phase modulation-based techniques in beam shaping. The Generalized Phase Contrast (GPC) method uses...... and fabrication because of its high diffraction efficiency and axial confinement. We model the effect of the turbid media as a phase randomization process. We compare the quality and asses the degradation of the projected light pattern for both techniques as it propagates in the turbid media....

  15. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation

    Science.gov (United States)

    Xiong, S. Y.; Yang, J. G.; Zhuang, J.

    2011-10-01

    In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

  16. Effect of detergents on the physico-chemical properties of skin stratum corneum: A two-photon excitation fluorescence microscopy study

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Pashkovski, Eugene

    2014-01-01

    to conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). METHOD: Experiments were...... performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in presence and absence of SCM and SDS detergents. RESULTS: Hydration of the intercellular lipid matrix...... to a depth of 10μm into the SC was increased upon treatment with SCM, whereas SDS shows this effect only at the very surface of SC. The proton activity of SC remained unaffected by treatment with either detergent. CONCLUSION: While our study indicates that the SC is very resistant to external stimuli...

  17. Compilation of electron collision excitation cross sections for neutral argon; Compilacion de resultados de secciones eficaces de excitacion para niveles del Argon neutro

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, F.

    1993-07-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p5 ns (n=4to 12), np(n=4to8) and nd(n=3to8)of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p5 ns (n=4 to 7), np (n=4 to 7) and nd (n=3 to 8). 3.- comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author) 35 refs.

  18. In vivo subcellular imaging of tumors in mouse models using a fluorophore-conjugated anti-carcinoembryonic antigen antibody in two-photon excitation microscopy.

    Science.gov (United States)

    Koga, Shigehiro; Oshima, Yusuke; Honkura, Naoki; Iimura, Tadahiro; Kameda, Kenji; Sato, Koichi; Yoshida, Motohira; Yamamoto, Yuji; Watanabe, Yuji; Hikita, Atsuhiko; Imamura, Takeshi

    2014-10-01

    Recently, there has been growing interest in applying fluorescence imaging techniques to the study of various disease processes and complex biological phenomena in vivo. To apply these methods to clinical settings, several groups have developed protocols for fluorescence imaging using antibodies against tumor markers conjugated to fluorescent substances. Although these probes have been useful in macroscopic imaging, the specificity and sensitivity of these methods must be improved to enable them to detect micro-lesions in the early phases of cancer, resulting in better treatment outcomes. To establish a sensitive and highly specific imaging method, we used a fluorophore-conjugated anti-carcinoembryonic antigen (CEA) antibody to perform macroscopic and microscopic in vivo imaging of inoculated cancer cells expressing GFP with or without CEA. Macroscopic imaging by fluorescence zoom microscopy revealed that bio-conjugation of Alexa Fluor 594 to the anti-CEA antibody allowed visualization of tumor mass consisting of CEA-expressing human cancer cells, but the background levels were unacceptably high. In contrast, microscopic imaging using a two-photon excitation microscope and the same fluorescent antibody resulted in subcellular-resolution imaging that was more specific and sensitive than conventional imaging using a fluorescence zoom microscope. These results suggest that two-photon excitation microscopy in conjunction with fluorophore-conjugated antibodies could be widely adapted to detection of cancer-specific cell-surface molecules, both in cancer research and in clinical applications. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. Excitation and charge transfer in He/sup +/+H collisions. A study of the origin dependence of calculated cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Macias, A.; Riera, A.; Yanez, M.

    1983-01-01

    A treatment of the He/sup +/-H collision is presented in an impact-parameter formalism for collision energies 0.5--30 keV. The origin dependence of the calculated total cross sections is studied in detail. It is shown that the branching ratio between reactions He/sup +/(1s)+H(1s)..-->..He/sup +/(1s)+H(2n) and He/sup +/(1s)+H(1s)..-->..He(1s2p)+H/sup +/ oscillates as a function of the origin of electronic coordinates chosen in the calculation. This oscillation is strong enough so that at nuclear velocity 0.5 a.u., either both reactions are competitive or one of them can have a cross section for the reaction He(1s/sup 2/)+H/sup +/..-->..He/sup +/(1s)+H(1s) can either be negligble or comparable to those of the other reactions. We study the oscillatory behavior of the charge-exchange-transition probability as a function of 1/v. We show the similarity, for high velocity, between nonresonant and resonant change-exhange processes, the origin of the damping factor, and the influence of the rotatioal coupling on the transition probabilities as functions of 1/v. A connection between Lichten's and Denkov's models is established.

  20. Calculation of total cross sections and effective emission coefficients for B5+ collisions with ground-state and excited hydrogen

    International Nuclear Information System (INIS)

    Guzman, F; Errea, L F; Illescas, Clara; Mendez, L; Pons, B

    2010-01-01

    Classical and semiclassical calculations of nl-resolved charge exchange cross sections in B 5 + collisions with H(n i ) are performed to compute effective emission coefficients for the n = 7 → n = 6 transition in B 4 + for plasma conditions typical of the ASDEX-U tokamak. For n i = 1, the value of the emission coefficient is larger than that obtained from ADAS database by a factor of 2 at energies of 10 keV amu -1 , but no differences are found at energies above 50 keV amu -1 . For n i = 2, our calculation yields emission coefficients close to those derived from ADAS data from low to high impact energies. The emission coefficients corresponding to B 5 + + H(n i = 3) collisions are of the same order of magnitude as those for n i = 2.

  1. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  2. Ratiometric two-photon excited photoluminescence of quantum dots triggered by near-infrared-light for real-time detection of nitric oxide release in situ

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui [Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071 (China); Gui, Rijun, E-mail: guirijun@qdu.edu.cn [Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong 266071 (China); Sun, Jie; Wang, Yanfeng [Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062 (China)

    2016-05-30

    Probe-donor integrated nanocomposites were developed from conjugating silica-coated Mn{sup 2+}:ZnS quantum dots (QDs) with MoS{sub 2} QDs and photosensitive nitric oxide (NO) donors (Fe{sub 4}S{sub 3}(NO){sub 7}{sup −}, RBS). Under excitation with near-infrared (NIR) light at 808 nm, the Mn{sup 2+}:ZnS@SiO{sub 2}/MoS{sub 2}-RBS nanocomposites showed the dual-emissive two-photon excited photoluminescence (TPEPL) that induced RBS photolysis to release NO in situ. NO caused TPEPL quenching of Mn{sup 2+}:ZnS QDs, but it produced almost no impact on the TPEPL of MoS{sub 2} QDs. Hence, the nanocomposites were developed as a novel QDs-based ratiometric TPEPL probe for real-time detection of NO release in situ. The ratiometric TPEPL intensity is nearly linear (R{sup 2} = 0.9901) with NO concentration in the range of 0.01∼0.8 μM, which corresponds to the range of NO release time (0∼15 min). The detection limit was calculated to be approximately 4 nM of NO. Experimental results confirmed that this novel ratiometric TPEPL probe possessed high selectivity and sensitivity for the detection of NO against potential competitors, and especially showed high detection performance for NIR-light triggered NO release in tumor intracellular microenvironments. These results would promote the development of versatile probe-donor integrated systems, also providing a facile and efficient strategy to real-time detect the highly controllable drug release in situ, especially in physiological microenvironments. - Highlights: • Mn{sup 2+}:ZnS@SiO{sub 2}/MoS{sub 2}-RBS nanocomposites were developed as a novel ratiometric two-photon excited fluorescence probe. • This probe could conduct real-time detection of nitric oxide release in situ. • High feasibility of this probe was confirmed in tumor intracellular microenvironments.

  3. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...... amount of charge-transfer is beneficial for high two-photon absorption cross sections but iscounter-productive for singlet oxygen generation. The design principles obtained from the studies in lipophilic solvents were applied to synthesize water-soluble twophoton singlet oxygen sensitizers......The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...

  4. Extracting the cross section angular distributions for 15C high-energy resonance excited via the (18O,16O two-neutron transfer reaction

    Directory of Open Access Journals (Sweden)

    Carbone D.

    2016-01-01

    Full Text Available The 13C(18O,16O15C reaction has been studied at 84 MeV incident energy. The ejectiles have been momentum analized by the MAGNEX spectrometer and 15C excitation energy spectra have been obtained up to about 20 MeV. In the region above the two-neutron separation energy, a bump has been observed at 13.7 MeV. The extracted cross section angular distribution for this structure, obtained by using different models for background, displays a clear oscillating pattern, typical of resonant state of the residual nucleus.

  5. One-step separation-free detection of carcinoembryonic antigen in whole serum: Combination of two-photon excitation fluorescence and optical trapping.

    Science.gov (United States)

    Li, Cheng-Yu; Cao, Di; Qi, Chu-Bo; Chen, Hong-Lei; Wan, Ya-Tao; Lin, Yi; Zhang, Zhi-Ling; Pang, Dai-Wen; Tang, Hong-Wu

    2017-04-15

    Direct analysis of biomolecules in complex biological samples remains a major challenge for fluorescence-based approaches due to the interference of background signals. Herein, we report an analytical methodology by exploiting a single low-cost near-infrared sub-nanosecond pulse laser to synchronously actualize optical trapping and two-photon excitation fluorescence for senstive detection of carcinoembryonic antigen (CEA) in buffer solution and human whole serum with no separation steps. The assay is performed by simultaneously trapping and exciting the same immune-conjugated microsphere fabricated with a sandwich immunization strategy. Since the signal is strictly limited in the region of a three-dimensional focal volume where the microsphere is trapped, no obvious background signal is found to contribute the detected signals and thus high signal-to-background data are obtained. As a proof-of-concept study, the constructed platform exhibits good specificity for CEA and the detection limit reaches as low as 8pg/mL (45 fM) with a wide linear range from 0.01 to 60ng/mL in the both cases. To investigate the potential application of this platform in clinical diagnosis, 15 cases of serum samples were analyzed with satisfactory results, which further confirm the applicability of this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE.

    Science.gov (United States)

    Krasieva, Tatiana B; Giedzinski, Erich; Tran, Katherine; Lan, Mary; Limoli, Charles L; Tromberg, Bruce J

    2011-07-01

    Two-photon excited fluorescence (TPEF) spectroscopy and imaging were used to investigate the effects of gamma-irradiation on neural stem and precursor cells (NSPCs). While the observed signal from reduced nicotinamide adenine dinucleotide (NADH) was localized to the mitochondria, the signal typically associated with oxidized flavoproteins (Fp) was distributed diffusely throughout the cell. The measured TPEF emission and excitation spectra were similar to the established spectra of NAD(P)H and Fp. Fp fluorescence intensity was markedly increased by addition of the electron transport chain (ETC) modulator menadione to the medium, along with a concomitant decrease in the NAD(P)H signal. Three-dimensional (3D) neurospheres were imaged to obtain the cellular metabolic index (CMI), calculated as the ratio of Fp to NAD(P)H fluorescence intensity. Radiation effects were found to differ between low-dose (≤ 50 cGy) and high-dose (≥ 50 cGy) exposures. Low-dose irradiation caused a marked drop in CMI values accompanied by increased cellular proliferation. At higher doses, both NAD(P)H and Fp signals increased, leading to an overall elevation in CMI values. These findings underscore the complex relationship between radiation dose, metabolic state, and proliferation status in NSPCs and highlight the ability of TPEF spectroscopy and imaging to characterize metabolism in 3D spheroids.

  7. Measurement and analysis of the excitation function and isomeric cross section ratios for α-induced reaction on Ir, Au, Re and Ta nuclei

    International Nuclear Information System (INIS)

    Ismail, M.

    1998-01-01

    Excitation functions and a few isomeric cross section ratios for production of (1) 192 Au, 193 Au, 194 Au, 195 Au and 192 Ir nuclides in α-induced reactions on 191,193 Ir, (2) 197 Tl, 197m Hg, 198m.g Tl, 199 Tl and 200 Tl nuclides in α-induced reaction in 197 Au and (3) 183 Re and 184m.g Re nuclides in α-induced reaction in 181 Ta and 185 Re are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross section ratios for nuclear reaction 181 Ta (α,n) 184m.g Re are compared with the theoretical calculation using the code Stapre which is based on exciton model for pre-equilibrium phase and Hauser-Feshbach formalism taking angular momentum and parity into account for the equilibrium phase of the nuclear reaction. All other experimental excitation functions are compared with the calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the geometry dependent hybrid (GDH) model and hybrid model of Blann using the code Alice/91. The high energy part of the excitation functions are dominated by pre-equilibrium reaction mechanism whereas the low energy parts are dominated by equilibrium evaporation with its characteristic peak. The GDH model provides a potentially better description of the physical process (i.e. a higher probability for peripheral collisions to undergo precompound decay than for central collisions) compared to hybrid model. However in the energy range of present measurement most of the excitation functions are fitted reasonably well by both GDH model and hybrid model with initial exciton number N 0 =4 (N n =2, N p =2, N h =0). Barring a few reactions we have found the overall agreement between theory and experiment is reasonably good taking the limitations of the theory into account. (author)

  8. Differential cross sections for rovibrational (v'=0→1,2,3,4) excitation of the electronic ground state of O2 by electron impact

    International Nuclear Information System (INIS)

    Brunger, M.J.; Middleton, A.G.; Teubner, P.J.

    1998-01-01

    We have measured absolute differential cross sections (DCSs) for rovibrational excitation (0→1,2,3,4) of the χ 3 Σ g - electronic ground state of O 2 . The scattered electron angular range was 10 degree endash 90 degree, while the cross sections were measured at ten specific energies in the 5 endash 20 eV incident beam energy range. This energy regime encompasses the region where the 4 Σ u - and 2 Σ u - resonances of O 2 - are known to significantly enhance the vibrational excitation process. The present data are found to be in generally good agreement with the more limited recent measurements of Allan [J. Phys. B 28, 5163 (1995)] and the earlier results of Wong et al. [Phys. Rev. Lett. 31, 969 (1973)]. Agreement with the data of Shyn and Sweeney [Phys. Rev. A 48, 1214 (1993)], however, was found to be only fair. Comparison of the present DCS with an available Born-closure Schwinger variational method calculation result is also made. copyright 1998 The American Physical Society

  9. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  10. Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors

    Science.gov (United States)

    Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

  11. Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films

    International Nuclear Information System (INIS)

    Lukomska, Joanna; Gryczynski, Ignacy; Malicka, Joanna; Makowiec, Slawomir; Lakowicz, Joseph R.; Gryczynski, Zygmunt

    2005-01-01

    We report the observation of a strong two-photon induced fluorescence emission of Cy5-DNA within the tunable range of a Ti:Sapphire laser. The estimated two-photon cross-section for Cy5-DNA of 400 GM is about 3.5-fold higher than it was reported for rhodamine B. The fundamental anisotropies of Cy5-DNA are close to the theoretical limits of 2/5 and 4/7 for one- and two-photon excitation, respectively. We also observed an enhanced two-photon induced fluorescence (TPIF) of Cy5-DNA deposited on silver island films (SIFs). In the presence of SIFs, the TPIF is about 100-fold brighter. The brightness increase of Cy5-DNA TPIF near SIFs is mostly due to enhanced local field

  12. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  13. Accurate evaluation of pressure effects on the electronic stopping cross section and mean excitation energy of atomic hydrogen beyond the Bethe approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Trujillo, R., E-mail: trujillo@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ap. Postal 48-3, Cuernavaca, Morelos 62251 (Mexico); Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ap. Postal 55-534, 09340 México, D.F. (Mexico); Cruz, S.A., E-mail: cruz@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ap. Postal 55-534, 09340 México, D.F. (Mexico)

    2014-02-01

    Atomic hydrogen is used as a fundamental reference target system to explore pressure effects on the electronic stopping cross section, S{sub e}, of swift bare ions such as protons and α-particles. This is achieved by considering the hydrogen atom under pressure as a padded spherically-confined quantum system. Within this scheme, S{sub e} is calculated rigorously in the first Born approximation taking into account the full target excitation spectrum and momentum transfer distribution for different confinement conditions (pressures) and fixed projectile charge states. Pressure effects on the target mean excitation energy, I, are also formally calculated and compared with corresponding accurate calculations based on the Local Plasma Approximation (LPA). Even though atomic hydrogen is the simplest target system, its accurate treatment to account for the role of pressure in the stopping dynamics is found to provide useful means to understand the behavior of more complex systems under similar conditions. It is found that: (i) the region of projectile velocities for which the Bethe approximation remains valid is shifted towards higher values as pressure increases; (ii) shell corrections are enhanced relative to the free-atom case as pressure increases, and (iii) the LPA seems to underestimate I as pressure is increased. The results of this work for atomic hydrogen may serve as accurate benchmark reference values for studies of pressure effects on S{sub e} and I using different methodologies.

  14. Differential and total excitation cross sections in the collision of protons with He atoms at intermediate and high energies under a three body formalism

    Directory of Open Access Journals (Sweden)

    R Fathi

    2011-09-01

    Full Text Available  A three-body model is devised to study differential and total cross sections for the excitation of helium atom under impact of energetic protons. The actual process is a four body one but in the present model the process is simplified into a three-body one. In this model, an electron of helium atom is assumed to be inactive and only one electron of the atom is active. Therefore, the active electron is assumed to be in an atomic state with a potential of the nucleus, T, being screened by the inactive electron, e, and, thus, an effective charge of Ze. As a result, the ground state, 11S, or the excited states, 21S and 21P, wave function of the active electron is deduced from similar hydrogenic wave functions assuming effective charge, Ze for the combined nucleus (T+e. In this three-body model, the Faddeev-Watson-Lovelace formalism for excitation channel is used to calculate the transition amplitude. In the first order approximation, electronic and nuclear interaction is assumed in the collision to be A(1e= and A(1n=, respectively. Here, A(1, Txy, |i> and |f> are the first order transition amplitude, the transition matrix for the interaction between particles x and y, the initial state and the final state, respectively. The transition matrix for the first order electronic interaction implemented into A(1e is approximated as the corresponding two-body interaction, Vxy. In order to calculate first order nuclear amplitude A(1n, the near-the-shell form of transition matrix TPT is used. Calculations are performed in the energy range of 50 keV up to 1MeV. The results are then compared with those of theoretical and experimental works in the literature.

  15. Probing two-photon exchange with OLYMPUS

    International Nuclear Information System (INIS)

    Kohl, M.

    2014-01-01

    Two-photon exchange is believed to be responsible for the discrepancies in the proton electric to magnetic form factor ratio found with the Rosenbluth and polarization transfer methods. If this explanation is correct, one expects significant differences in the lepton-proton cross sections between positrons and electrons. The OLYMPUS experiment at DESY in Hamburg, Germany was designed to measure the ratio of unpolarized positron-proton and electron-proton elastic scattering cross sections over a wide kinematic range with high precision, in order to quantify the effect of two-photon exchange. The experiment used intense beams of electrons and positrons stored in the DORIS ring at 2.0 GeV interacting with an internal windowless hydrogen gas target. The current status of OLYMPUS will be discussed. (authors)

  16. Combined two-photon excitation and d → f energy-transfer in Ir/lanthanide dyads with time-gated selection from a two-component emission spectrum.

    Science.gov (United States)

    Edkins, Robert M; Sykes, Daniel; Beeby, Andrew; Ward, Michael D

    2012-10-14

    In a pair of Ir/Eu and Ir/Tb dyads, two-photon excitation of the Ir-phenylpyridine chromophore at 780 nm is followed by partial d → f energy-transfer to give a combination of short-lived Ir-based (blue) and long-lived lanthanide-based (red or green) emission; these components can be selected separately by time-gated detection.

  17. Differential cross sections for elastic and inelastic n=2 excitation of ground-state helium at 29.6 and 40.1 eV

    International Nuclear Information System (INIS)

    Brunger, M.J.

    1989-11-01

    Differential cross sections have been measured for elastic and inelastic scattering of electrons by ground-state helium at 29.6 and 40.1eV. The normalisation of the cross sections is discussed. Theoretical cross sections have been obtained using a 10-state coupled-channels-optical calculation. In general, there is good agreement between theory and experiment for singlet states but not for triplet. 20 refs., 5 tabs., 6 figs

  18. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  19. Differential cross section of He

    Indian Academy of Sciences (India)

    Angular distribution; differential cross section; electronic excitation; ionization of molecules. PACS Nos 34.50.Fa; 34.80.Dp. 1. Introduction. It is well known that ... proper accounting of electron–electron correlation in the final state, there are complica- tions due to the multi-electron structure of the target and the residual ion.

  20. Cross sections and rate coefficients for excitation of {Delta}n=1 transitions in li-like ions with 6

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, U.I. [AN SSSR, Troitsk (Russian Federation). Inst. Spektroskopii; Safronova, M.S.; Kato, T.

    1995-09-01

    Excitation cross sections and rate coefficients by electron impact were calculated for the 1s{sup 2}2s - 1s2s2p, 1s{sup 2}2s - 1s2s{sup 2} and 1s{sup 2}2s - 1s2p{sup 2} transitions of the Li-like ions (CIV, NV, OVI, NeVIII, MgX, AlXI, SiXII, SXIV, ArXVI, CaXVIII, TiXX, FeXXIV, NiXXVI, ZnXXVIII, GeXXX, SeXXXII, KrXXXIIV and MoXXXX) in the Coulomb-Born approximation with exchange including relativistic effects and configuration interaction. Level energies, mixing coefficients and transition wavelengths and probabilities were also computed. Calculations performed by the 1/Z perturbation theory and Coulomb-Born approximation are compared with the R- matrix method and the distorted-wave approximation were Z is the nuclear charge. Formulae obtained for the angular factors of n-electron atomic system allow one to generalize this method to an arbitrary system of highly charged ions. (author).

  1. Tale of two photons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A very profitable spinoff from electron- positron collisions is two-photon physics. Rather than the electron and positron interacting directly via an exchanged photon, two virtual (transient) photons, one from each particle, get tangled up. With new electron-positron colliders appearing on the scene, a topical meeting on two-photon physics - 'From DAPHNE to LEP 200 and beyond' - held from 2-4 February in Paris, in the premises of the Ministry of Higher Education and Research, was particularly timely. Some 60 physicists, both experimentalists and theorists, participated, with some thirty speakers

  2. Measurement of L-XRF cross-sections and Coster–Kronig enhancement factors for {sup 62}Sm at excitation energies 6.8, 7.4 and 8 KeV

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R., E-mail: rajiv_005@rediffmail.com [Department of Physics, HCTM Technical Campus, Kaithal, Haryana 136027 (India); Rani, A., E-mail: anita_teotia@rediffmail.com [Department of Physics, University P.G. College Kurukshetra, Kurukshetra University, Kurukshetra, Haryana 136119 (India); Singh, R.M. [Department of Physics, Ch. Devi Lal University, Sirsa, Haryana 125055 (India); Tiwari, M.K.; Singh, A.K. [X-ray Optics Section, Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-05-15

    Highlights: • L XRF production cross-sections for {sup 62}Sm at excitation energies 6.8, 7.4 and 8 KeV were measured. • Synchrotron radiations with Peltier cooled Si(Li) detector was employed. • Experimental L XRF cross sections are in good agreement with the theoretical estimations of Puri’s data. • The present study was also carried out to examine the effect of Coster - Kronig transitions on L XRF cross section. • The measured enhancement factors are found to be smaller than the theoretical estimations. - Abstract: L{sub ℓ}, L{sub α} and L{sub β} XRF production cross-sections were measured for {sup 62}Sm at excitation energies i.e. 6.8 KeV, 7.4 KeV and 8 KeV using synchrotron radiations. Experimental measurements were also carried out to examine the effect of Coster–Kronig transitions (non-radiative transitions) on fluorescence cross section for the L{sub i} (i = 1, 2, 3) X-ray lines. The experimental cross-sections with greater accuracy and better signal to noise ratio can be measured using a polarized monoenergetic excitation beam and a high resolution detector system. A Peltier cooled vortex solid state detector with energy resolution of 138 eV at 5.959 keV X-ray was employed. Experimentally measured cross-sections have been compared with the theoretical predictions with the data of M.O. Krause [J. Phys. Chem. Ref. Data 8 (1979) 307], J.L. Campbell [At. Data Nucl. Data Tables 85 (2003) 291] and S. Puri et al. [X-Ray Spectrom. 22 (1993) 358]. The measured enhancement factors were found to be smaller than the theoretically calculated values.

  3. Impact of electronic coupling, symmetry, and planarization on one- and two-photon properties of triarylamines with one, two, or three diarylboryl acceptors.

    Science.gov (United States)

    Makarov, Nikolay S; Mukhopadhyay, Sukrit; Yesudas, Kada; Brédas, Jean-Luc; Perry, Joseph W; Pron, Agnieszka; Kivala, Milan; Müllen, Klaus

    2012-04-19

    We have performed a study of the one- and two-photon absorption properties of a systematically varied series of triarylamino-compounds with one, two, or three attached diarylborane arms arranged in linear dipolar, bent dipolar, and octupolar geometries. Two-photon fluorescence excitation spectra were measured over a wide spectral range with femtosecond laser pulses. We found that on going from the single-arm to the two- and three-arm systems, the peak in two-photon absorption (2PA) cross-section is suppressed by factors of 3-11 for the lowest excitonic level associated with the electronic coupling of the arms, whereas it is enhanced by factors of 4-8 for the higher excitonic level. These results show that the coupling of arms redistributes the 2PA cross-section between the excitonic levels in a manner that strongly favors the higher-energy excitonic level. The experimental data on one- and two-photon cross-sections, ground- and excited-state transition dipole moments, and permanent dipole moment differences between the ground and the lowest excited states were compared to the results obtained from a simple Frenkel exciton model and from highly correlated quantum-chemical calculations. It has been found that planarization of the structure around the triarylamine moiety leads to a sizable increase in peak 2PA cross-section for the lowest excitonic level of the two-arm system, whereas for the three-arm system, the corresponding peak was weakened and shifted to lower energy. Our studies show the importance of the interarm coupling, number of arms, and structural planarity on both the enhancement and the suppression of two-photon cross-sections in multiarm molecules. © 2012 American Chemical Society

  4. Neutron cross sections

    CERN Document Server

    Hughes, Donald J; Dunworth, J V

    1957-01-01

    Neutron Cross Sections presents the principles of cross-section measurement and use, as well as sufficient theory so that the general behavior of cross sections is made understandable. This compilation is a direct result of experiences connected with the collection and evaluation of cross-section data during the past eight years at """"Sigma Centre"""", Brookhaven National Laboratory. Here, experimental results received from laboratories throughout the world are carefully evaluated and compiled in the curves and tables of the large volume Neutron Cross Sections, The most recent version of the

  5. Ion and electron spectroscopy of strontium in the vicinity of the two-photon-excited 5p2 1S0 state

    Science.gov (United States)

    Dimitriou, A.; Cohen, S.

    2014-07-01

    Two-photon ionization of ground-state strontium is investigated experimentally in the 360-370-nm spectral range with dye laser pulses of long (˜ns) duration and low (˜1010W cm-2) intensity. The Sr+ spectra recorded with linear laser polarization are dominated by the presence of the highly correlated 5p21S0 state and by the even parity [4d6d

  6. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  7. Cross Sections for Electron Collisions with Methane

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  8. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  9. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes

    Science.gov (United States)

    Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher

    2013-01-01

    Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100  μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500  μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231

  10. Photoionization of the Be-like O{sup 4} {sup +} ion: total and partial cross sections for the ground 2s{sup 2} {sup 1}S and excited 2s2p {sup 1,} {sup 3}P states

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Soung [e-Business Department. Kyonggi Institute of Technology, Siheung, Jungwang-Dong 2121-3, Kyonggi-Do 429-792 (Korea, Republic of); Manson, Steven T, E-mail: dskim@kinst.ac.k [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2010-08-14

    Photoionization cross sections of the Be-like O{sup 4} {sup +} ion in the photon energy region from the first threshold up to the O{sup 5} {sup +} 3d threshold have been calculated using a non-iterative variational R-matrix method combined with multichannel quantum-defect theory for the ground 2s{sup 2} {sup 1}S and excited 2s2p {sup 1,} {sup 3}P states. The partial cross sections are presented and the autoionizing resonance structures arising from the ground and excited states are identified and characterized. Our calculational results, which show excellent agreement between length and velocity gauges, are compared with the available experiment and previous calculations, and good agreement is found.

  11. Two-photon physics at LEP

    International Nuclear Information System (INIS)

    Ginzburg, I.F.

    1988-01-01

    The two-photon production of hadrons in e + e - collisions e + e - →e + e - h from which the γγ→h cross sections are extracted is discussed. The common features of these processes are: hadrons move, as a rule, along e + e - beam axis, their total transverse momentum K perpendicular or perpendicular to is small; the total hadron energy is usually less than √S/2. Physical problems of soft processes, exotics, hard processes, semihard processes are considered. New possibilities of LEP, the most interesting and real are presented

  12. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  13. Cross sections for production of the 15.10 MeV and other astrophysically significant gamma-ray lines through excitation and spallation of sup 12 C and sup 16 O with protons

    Science.gov (United States)

    Lang, F. L.; Werntz, C. W.; Crannell, C. J.; Trombka, J. I.; Chang, C. C.

    1986-01-01

    The ratio of the flux of 15.10-MeV gamma rays to the flux of 4.438-MeV gamma rays resulting from excitation of the corresponding states in C-12 as a sensitive measure of the spectrum of the exciting particles produced in solar flares and other cosmic sources. These gamma rays are produced predominantly by interactions with C-12 and O-16, both of which are relatively abundant in the solar photosphere. Gamma ray production cross sections for proton interactions have been reported previously for all important channels except for the production of 15.10-MeV gamma rays from O-16. The first reported measurement of the 15.10-MeV gamma ray production cross section from p + O-16 is presented here. The University of Maryland cyclotron was employed to produce 40-, 65-, and 86-MeV protons which interacted with CH2 and BeO targets. The resultant gamma ray spectra were measured with a high-purity germanium semiconductor detector at 70, 90, 110, 125, and 140 degrees relative to the direction of the incident beam for each proton energy. Other gamma ray lines resulting from direct excitation and spallation reactions with C-12 and 0-16 were observed as well, and their gamma ray production cross sections described.

  14. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  15. SUSY Production cross sections.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E. L.; Harris, B.; Klasen, M.; Tait, T.

    1999-03-19

    We summarize the status of next-to-leading order perturbative quantum chromodynamics (pQCD) calculations of the cross sections for the production of squarks, gluinos, neutralinos, charginos, and sleptons as a function of the produced particle masses in proton-antiproton collisions at the hadronic center-of-mass energy 2 TeV.

  16. Polarization effects in the ionization cross section of Ar, Kr, and Xe by laser-excited Ne sup ** ((2 p ) sup 5 (3 p ); J =3, M ) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, J.P.J.; van de Weijer, F.J.M.; Zonneveld, M.J.; Somers, L.M.T.; Janssens, M.F.M.; Beijerinck, H.C.W.; Verhaar, B.J. (Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands))

    1990-10-01

    In a crossed-beam experiment the total ionization cross section for the title systems has been investigated in the range 0.1{le}{ital E} (eV) {lt}=4 of collision energies. The population of the short-lived Ne{sup **}((3{ital p});{ital J}=3) state is produced by saturated optical pumping of the Ne{sup *}((3{ital s});{ital J}=2){leftrightarrow}Ne{sup **}((3{ital p});{ital J}=3) two-level system with a polarized laser beam, resulting in a well-determined distribution of the magnetic substates {vert bar}{ital J},{ital M}{r angle} with respect to the relative velocity {bold g}. By measuring the ion yield in the scattering center at five different orientations of the laser polarization (linear and circular) with respect to {bold g}, the data can be analyzed in terms of pure-state total ionization cross sections {sup 3}{ital Q{vert bar}{ital M}{vert bar}} corresponding to a single asymptotic state {vert bar}{ital J},{ital M}{r angle}.

  17. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    International Nuclear Information System (INIS)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D 6h point group symmetry versus ovalene with D 2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D 6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D 2h ovalene but not in those with D 6h symmetry

  18. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  19. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: a peculiar role of geometry.

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D(6h) point group symmetry versus ovalene with D(2h) symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D(6h) group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D(2h) ovalene but not in those with D(6h) symmetry.

  20. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  1. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  2. Cross-sections and rate coefficients calculations for rotational excitation of cyanoethynylide ions ({{\\rm{C}}}_{3}{{\\rm{N}}}^{-}) induced by collision with He atoms at low temperature

    Science.gov (United States)

    Tchakoua, T.; Motapon, O.; Nsangou, M.

    2018-02-01

    The focal points of the present paper are the calculations of cross-sections and rate coefficients for rotational (de-)excitation of C3N‑ induced by collision with He and H2 atoms for energies of up to 2000 cm‑1 and temperatures ranging from 1 K to 300 K. For this study, the new two-dimensional potential energy surface (PES) of the C3N‑‑He complex has been calculated at the ab initio restricted coupled cluster level of theory, including single, double and perturbative triple excitation [RCCSD(T)-F12a] with the cc-pVTZ-F12 basis set augmented by mid-bond functions. Basis set superposition errors were taken into account. To allow for the dynamical calculations, the PES was then fitted to a global analytical form, the main features of which are discussed. Collisional cross-sections among the first 17 rotational levels were calculated and employed to compute downward and upward rate coefficients. A propensity towards | {{Δ }}j| =2 was observed.

  3. Developing cross section sets for fluorocarbon etchants

    International Nuclear Information System (INIS)

    Winstead, Carl; McKoy, Vincent

    2002-01-01

    Successful modeling of plasmas used in materials processing depends on knowledge of a variety of collision cross sections and reaction rates, both within the plasma and at the surface. Electron-molecule collision cross sections are especially important, affecting both electron transport and the generation of reactive fragments by dissociation and ionization. Because the supply of cross section data is small and measurements are difficult, computational approaches may make a valuable contribution, provided they can cope with the significant challenges posed. In particular, a computational method must deal with the full complexity of low-energy electron-molecule interactions, must treat polyatomic molecules, and must be capable of computing cross sections for electronic excitation. These requirements imply that the method will be numerically intensive and thus must exploit high-performance computers to be practical. We have developed an ab initio computational method, the Schwinger multichannel (SMC) method, that possesses the characteristics just described, and we have applied it to compute cross sections for a variety of molecules, with particular emphasis on fluorocarbon and hydrofluorocarbon etchants used in the semiconductor industry. A key aspect of this work has been an awareness that cross section sets, validated when possible against swarm data, are more useful than individual cross sections. To develop such sets, cross section calculations must be integrated within a focused collaborative effort. Here we describe electron cross section calculations carried out within the context of such a focused effort, with emphasis on fluorinated hydrocarbons including CHF3 (trifluoromethane), c-C4F8 (octafluorocyclobutane), and C2F4 (tetrafluoroethene)

  4. Search for a Higgs boson decaying into two photons in the CMS ...

    Indian Academy of Sciences (India)

    2012-11-15

    Nov 15, 2012 ... Limits are set on the cross-section of a Standard Model Higgs boson decaying into two photons, and on the cross-section ... of these two methods, the probability to find Higgs boson vertices within 10 mm of their ... so-called R9 variable, that describes the compactness of the energy deposition in the. ECAL ...

  5. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence.

    Science.gov (United States)

    Ingaramo, Maria; York, Andrew G; Andrade, Eric J; Rainey, Kristin; Patterson, George H

    2015-09-03

    We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications.

  6. Inclusive $D*^{+-}$ Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV e^+e^-D^{*+-}X)$ in this kinematical region is measured and the sigma(e^+e^- ---> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

  7. Cross sections for multistep direct reactions

    International Nuclear Information System (INIS)

    Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan

    2002-01-01

    Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)

  8. Clinical two-photon microendoscopy.

    Science.gov (United States)

    König, K; Ehlers, A; Riemann, I; Schenkl, S; Bückle, R; Kaatz, M

    2007-05-01

    Two-photon medical imaging has found its way into dermatology as an excellent method for noninvasive skin cancer detection without need of contrast agents as well as for in situ drug screening of topically-applied cosmetical and pharmaceutical components. There is an increasing demand to apply the multiphoton technology also for deep-tissue skin imaging as well as for intracorporal imaging. We report on the first clinical use of multiphoton endoscopes, in particular of a miniaturized rigid two-photon GRIN lens endoscope. The microendoscope was attached to the multiphoton tomograph DermaInspect and employed to detect the extracellular matrix proteins collagen and elastin in the human dermis of volunteers and patients with ulcera by in vivo second harmonic generation and in vivo two-photon autofluorescence. Copyright 2007 Wiley-Liss, Inc.

  9. Two-photon exchange in pp(-) → l+ l- X

    International Nuclear Information System (INIS)

    Schrempp, B.; Schrempp, F.

    1981-01-01

    A thorough study of lepton-pair production from two-photon annihilation in pp (panti p) collisions is presented. The differential cross section is calculated over a large range of energies (27 + e - X cross section already at ISR energies, whereas at ISABELLE energies it dramatically dominates in the interval 0 + e - X data. For the ISABELLE energy range the expected O (αsub(s)) QCD contribution to pp → lambda + lambda - X, corrected for soft gluon radiation to all orders (in leading bilogarithmic approximation), was taken as a reference. At larger Qsub(T) and ISR energies the γγ contribution is negligible, whereas at √s = 800 GeV γγ/QCD approx. equal to 10-20% almost everywhere. Furthermore, two-photon candidate events from the ISR are shown to be in reasonable agreement with theory. A decomposition of the γγ cross section into contribution from both proton vertices being elastic, inelastic and of mixed configuration is given. The results provide important clues for a future isolation of the two-photon mechanism. (orig.)

  10. Two-photon spin generation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-02-21

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  11. Two-photon spin generation and detection

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2009-01-01

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  12. Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots

    Science.gov (United States)

    Han, Qiuju; Wu, Wenzhi; Liu, Weilong; Yang, Qingxin; Yang, Yanqiang

    2018-01-01

    The nonlinear optical and the upconversion luminescence (UCL) properties of CsPbX3 (X = Br or its binary mixtures with Cl, I) quantum dots (QDs) are investigated by femtosecond open-aperture (OA) Z-scan and time-resolved luminescence techniques in nonresonant spectral region. The OA Z-scan results show that CsPbX3 QDs have strong reverse saturable absorption (RSA), which is ascribed to two-photon absorption. Partially changing halide composition from Cl to Br, to I, two-photon absorption cross sections become larger at the same laser excitation intensity. The composition-tunable nonlinear absorption should be attributed to the gradual decrease of the lowest direct band gaps with the halide substitute. Moreover, the strong UCL can be observed under near infrared femtosecond laser excitation. Halide composition-tunable UCL dynamics of CsPbX3 QDs is analyzed by use of two-exponential fitting with deconvolution. When CsPbX3 QDs have similar sizes (10-13 nm), with partially changing halide composition from Cl to Br, to I, the average UCL lifetime becomes longer due to the variation of Kane energy. Our findings suggest all-inorganic perovskite QDs can be used as excellent gain medium for high-performance frequency-upconversion lasers and provide reference to engineer such QDs toward practical optoelectronic applications.

  13. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  14. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  15. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  16. State selective extreme ultraviolet (EUV) photoemission cross sections for excitation and ionization-excitation of helium in fast electron and positive ion collisions: Helg-bullet (1snp) 1Plg-bullet (n=2 to 10) and He+ (np) (n=2 to 10) Rydberg states

    International Nuclear Information System (INIS)

    Rodrigue, M.; Colegrove, T.; Bailey, M.

    1993-01-01

    We have analyzed high resolution (EUV) spectra of HeI and HeII originating from e - , H + , H 2 + and H 3 + bombardment of He gas. From these data excitation and ionization-excitation cross sections have been obtained by the HeI (1snp) 1 P o → (1s2) 1 S + hν and HeII (np) 2 P o -(1s) 2 S + hν Rydberg series with main quantum numbers from n=2 to 10, respectively. The determination of the individual line intensities has been accomplished using the IRAF one dimensional spectroscopy package installed on the Physics Department's HP9000 system. The cross sections for n≥4 presented here are reported for the first time. The up manifolds have been studied as a function of the projectile charge and velocity and number of scattering centers. Theoretically we have parametrized the cross sections in terms of first order, second order and interference contributions. We have also tested sum rules, by integrating over all np states. The dynamical Stark mixing among HeII ns and np states has also been investigated. A detailed discussion of the intensity distribution at high np states is presented for different means of excitation

  17. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  18. Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging.

    Science.gov (United States)

    Mauriello-Jimenez, Chiara; Henry, Maxime; Aggad, Dina; Raehm, Laurence; Cattoën, Xavier; Wong Chi Man, Michel; Charnay, Clarence; Alpugan, Serkan; Ahsen, Vefa; Tarakci, Deniz Kutlu; Maillard, Philippe; Maynadier, Marie; Garcia, Marcel; Dumoulin, Fabienne; Gary-Bobo, Magali; Coll, Jean-Luc; Josserand, Véronique; Durand, Jean-Olivier

    2017-11-09

    Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles (BSPOR and BSPHT) were prepared. Their endocytosis in MCF-7 cancer cells was shown with two-photon excited fluorescence (TPEF) imaging. With two-photon excited photodynamic therapy (TPE-PDT), BSPOR was more phototoxic than BSPHT, which in contrast displayed a very high signal for photoacoustic imaging in mice.

  19. Two-photon-induced cycloreversion reaction of chalcone photodimers

    Science.gov (United States)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  20. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  1. Facile synthesis of two-photon absorbing polymers through radical copolymerization

    Directory of Open Access Journals (Sweden)

    2007-08-01

    Full Text Available A two-photon absorbing polymer has been prepared through radical copolymerization of methyl acrylate and a synthesized monomer containing a two-photon absorbing chromophore (E,E,E-1,3,5-tristyrylbenzene (1, under conventional radical polymerization conditions. The synthesized polymer was characterized by nuclear magnetic resonance (NMR, infra-red spectroscopy (IR and gel permeation chromatography (GPC. The linear and nonlinear optical properties were studied by measurement of UV-Vis absorption, fluorescent emission and two-photon cross-section. This synthetic strategy provided a facile approach for synthesis of photonic materials with adjustable chromophore concentration and high molecular weights.

  2. Elastic and inelastic neutron cross-sections

    International Nuclear Information System (INIS)

    Wilmore, D.

    1967-01-01

    Computer programmes have been developed for the calculation of elastic and inelastic scattering of particles from nuclei. These programmes are written in the S2 dialect of FORTRAN, and run on an IBM-7030 computer. One programme calculates the shape elastic cross-section, the total cross-section and the absorption cross-section according to the optical model. The time taken in performing an optical calculation depends mainly upon the efficiency of the method used to perform the integration of the radial Schroedinger equation. A method is used which takes advantage of the absence of the first derivative term, and this gives a great improvement over more general methods. A least-squares fitting procedure is used which enables any number of parameters to be varied. The number of optical model calculations which are needed for a least-squares fit is less than with usual methods. Another programme will calculate compound nucleus reactions according to the Hauser-Feshbach theory, with or without the fluctuation correction. This programme will accept target and projectiles of any spin and parity, so that deuteron and alpha channels, as well as nucleon channels, may be taken into account. A third programme enables least-squares fits of elastic scattering to be done by taking into account the compound elastic contribution as calculated by the Hauser-Feshbach theory. The use of these programmes is illustrated by the analysis of the inelastic scattering of neutrons from 238 U. The elastic scattering cross-sections were used to obtain optical potentials by a least-squares fitting method. These potentials were subsequently used to predict the inelastic cross-sections to a large number of excited states. The results using the fluctuation correction are in good agreement with experiment. A further example of their use is shown in the analysis of neutron and proton scattering from light nuclei. Proton cross-sections were analysed to obtain potentials which were then used to

  3. A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo.

    Science.gov (United States)

    Li, Guanying; Lin, Qian; Sun, Lingli; Feng, Changsheng; Zhang, Pingyu; Yu, Bole; Chen, Yu; Wen, Ya; Wang, Hui; Ji, Liangnian; Chao, Hui

    2015-01-01

    Endogenous hypochlorite ion (ClO(-)) is a highly reactive oxygen species (ROS) that is produced from hydrogen peroxide and chloride ions catalyzed by myeloperoxidase (MPO). And mitochondrion is one of the major sources of ROS including ClO(-). In the present work, a two-photon phosphorescent probe for ClO(-) in mitochondria was developed. An iridium(III) complex bearing a diaminomaleonitrile group as ClO(-) reactive moiety specifically responded to ClO(-) over other ions and ROSs. When the probe was reacted with ClO(-) to form an oxidized carboxylate product, a significant enhancement in phosphorescence intensity was observed under one-photon (402 nm) and two-photon (750 nm) excitation, with a two-photon absorption cross-section of 78.1 GM at 750 nm. More importantly, ICP-MS results and cellular images co-stained with Mito-tracker Green demonstrated that this probe possessed high specificity for mitochondria. This probe was applied in the one- and two-photon imaging of ClO(-) in vitro and in vivo. The results suggested endotoxin lipopolysaccharide (LPS) induced ClO(-) mostly generated in the liver of zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Rational design of phosphorescent chemodosimeter for reaction-based one- and two-photon and time-resolved luminescent imaging of biothiols in living cells.

    Science.gov (United States)

    Xu, Wenjuan; Zhao, Xin; Lv, Wen; Yang, Huiran; Liu, Shujuan; Liang, Hua; Tu, Zhenzhen; Xu, Hang; Qiao, Weili; Zhao, Qiang; Huang, Wei

    2014-05-01

    A selective phosphorescent biothiols probe is synthesized based on Ir(III) complex 1, which has 2,2'-biquinoline as the N^N ligand for realizing the satisfied two-photon absorption cross-section and two-functionalized 2-phenylpyridine ligands with an α,β-unsaturated ketone moiety as the thiol reaction site. The one- and two-photon optical properties of 1 are investigated through UV-vis absorption spectrum and photoluminescence spectrum. This Ir(III) complex can act as an excellent one- and two-photon excited "OFF-ON" phosphorescent probe for biothiols based on the 1,4-addition of biothiol to α,β-unsaturated ketones. Moreover, one- and two-photon-induced luminescent imagings of biothiols in living cells are also realized. Furthermore, the experiments of time-resolved photoluminescence technique and fluorescence lifetime imaging microscopy demonstrate that 1 is able to detect biothiols in the presence of strong background fluorescence. In addition, probe 1 is adsorbed into the shell of mesoporous silica nanoparticles with core-shell structure to form a nanoprobe, which can realize the ratiometric detection of biothiols in absolute water solution and living cells based on two phosphorescent signals. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Two-photon couplings of quarkonia with arbitrary JPC

    International Nuclear Information System (INIS)

    Barnes, T.; Tennessee Univ., Knoxville, TN

    1992-01-01

    We present theoretical results for the two-photon widths of relativistic quarkonium states with arbitrary angular momenta. These relativistic formulas are required to obtain reasonable agreement with the absolute scale of quarkonium decay rates to two photons, and have previously only been derived for spin-singlet q bar q states. We also evaluate these formulas numerically for ell ≤3 q = u, d states in a Coulomb-plus-linear q bar q potential model. Light-quark higher-ell and radially-excited q bar q states should be observable experimentally, as their two-photon widths are typically found to be ∼1 KeV. The radially-excited 1 S 0 higher-mass quarkonium states such as c bar c and b bar b should also be observable in γγ, but orbitally-excited c bar c states with ell>1 and b bar b states with ell>0 are expected to have very small two-photon widths. The helicity structure of the higher-ell q bar q couplings is predicted to be nontrivial, with both λ=0 and λ=2γγ final states contributing significantly; these results may be useful as signatures for q bar q states

  6. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    Science.gov (United States)

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  7. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  8. Dipole model for double meson production in two-photon interactions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Caixa Postal 354, Pelotas, RS (Brazil); Machado, M.V.T. [Universidade Federal do Pampa, Centro de Ciencias Exatas e Tecnologicas, Campus de Bage, Bage, RS (Brazil)

    2007-02-15

    In this work double vector meson production in two-photon interactions at high energies is investigated considering saturation physics. We extend the color dipole picture for this process and study the energy and virtuality dependence of the forward differential cross section. A comparison with previous results is presented, and the contribution of the different photon polarizations is estimated. (orig.)

  9. Inclusive D*(+/-) production in two photon collisions at LEP

    CERN Document Server

    Prokofiev, Denis Olegovich

    2001-01-01

    In this thesis I present my results on the measurement of the open charm production in two-photon collision events done with the L3 detector at Large Electron Positron machine (LEP). The data sample was collected from 1997 through 2000 at center-of-mass energies ranging from 183 GeV to 209 GeV, corresponding to a total integrated luminosity of 683.4pb −1. The open charm production in two-photon collision events extrapolated to the full phase space is estimated to be: s&parl0;e+e-&rarrr;e +e-cc&d1;X&parr0;=9 23±69±109±222pb. The differential cross sections d s /dpT(D*±) and d s /d:η(D*±): are also measured as functions of transverse momentum pT(D*±) and the absolute value of pseudorapidity :η(D*±):, respectively. A fit to the data estimating the relative contributions of Direct and Resolved open charm production mechanisms is performed, giving (28.7 ± 5.6)% and (71.3 ± 8.8)%, respectively. Using those relative fractions, the Direct and Resolved process cross sections yield: s&p...

  10. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  11. Negative ion detachment cross sections

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1992-10-01

    The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below

  12. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional rad...... information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm....

  13. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  14. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  15. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    Science.gov (United States)

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham; Guthrey, Harvey; Fetzer, C. M.; King, Richard

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  17. Resonance production in two-photon interactions

    International Nuclear Information System (INIS)

    Roe, N.A.

    1989-02-01

    Resonance production in two-photon interactions is studied using data collected with the ASP detector at the PEP e + e/sup /minus// storage ring located at the Stanford Linear Accelerator Center. The ASP detector is a non-magnetic lead-glass calorimeter constructed from 632 lead-glass bars. It covers 94% of 4π in solid angle, extending to within 20/degree/ of the beamline. Lead-scintillator calorimeters extend the coverage to within 21 mr of the beamline on both sides. Energy resolution of √E/10%, where E is the energy is GeV, is achieved for electrons and photons in the lead-glass calorimeter, and particle trajectories are reconstructed with high efficiency. A total luminosity of 108 pb/sup /minus/1/ was collected with the ASP detector at a center-of-mass energy of 29 GeV. The observed process is e + e/sup /minus// → e + e/sup /minus//γ*γ* → e + e/sup /minus//X, is a pseudoscalar resonance (J/sup PC/ = 0/sup /minus/+/) and γ* is a virtual (mass /ne/ 0) photon. The outgoing electrons scatter down the beampipe and are not detected. The observed resonances are the /eta/ and /eta/' mesons, with masses of 549 and 958 MeV, respectively. They are detected in the γγ decay mode; a total of 2380 +- 49 /eta/ → γγ and 568 +- 26 /eta/' → γγ events are observed. From the number of events, the detection efficiency, and the calculated production cross sections the radiative widths, Γ/sub γγ/, of the /eta/ and /eta/' were measured and found to be: Γ/sub γγ/(/eta/) = .481 +- .010 +- .047keV and Γ/sub γγ/(/eta/') = 4.71 +- .22 +- .70keV. These results are in good agreement with the world average values. 67 refs., 42 figs., 20 tabs

  18. Resonance production in two-photon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Roe, N.A.

    1989-02-01

    Resonance production in two-photon interactions is studied using data collected with the ASP detector at the PEP e/sup +/e/sup /minus// storage ring located at the Stanford Linear Accelerator Center. The ASP detector is a non-magnetic lead-glass calorimeter constructed from 632 lead-glass bars. It covers 94% of 4..pi.. in solid angle, extending to within 20/degree/ of the beamline. Lead-scintillator calorimeters extend the coverage to within 21 mr of the beamline on both sides. Energy resolution of ..sqrt..E/10%, where E is the energy is GeV, is achieved for electrons and photons in the lead-glass calorimeter, and particle trajectories are reconstructed with high efficiency. A total luminosity of 108 pb/sup /minus/1/ was collected with the ASP detector at a center-of-mass energy of 29 GeV. The observed process is e/sup +/e/sup /minus// ..-->.. e/sup +/e/sup /minus//..gamma..*..gamma..* ..-->.. e/sup +/e/sup /minus//X, is a pseudoscalar resonance (J/sup PC/ = 0/sup /minus/+/) and ..gamma..* is a virtual (mass /ne/ 0) photon. The outgoing electrons scatter down the beampipe and are not detected. The observed resonances are the /eta/ and /eta/' mesons, with masses of 549 and 958 MeV, respectively. They are detected in the ..gamma gamma.. decay mode; a total of 2380 +- 49 /eta/ ..-->.. ..gamma gamma.. and 568 +- 26 /eta/' ..-->.. ..gamma gamma.. events are observed. From the number of events, the detection efficiency, and the calculated production cross sections the radiative widths, GAMMA/sub ..gamma gamma../, of the /eta/ and /eta/' were measured and found to be: GAMMA/sub ..gamma gamma../(/eta/) = .481 +- .010 +- .047keV and GAMMA/sub ..gamma gamma../(/eta/') = 4.71 +- .22 +- .70keV. These results are in good agreement with the world average values. 67 refs., 42 figs., 20 tabs.

  19. Image-based adaptive optics for two-photon microscopy

    OpenAIRE

    Débarre, Delphine; Botcherby, Edward J.; Watanabe, Tomoko; Srinivas, Shankar; Booth, Martin J.; Wilson, Tony

    2009-01-01

    We demonstrate wavefront sensorless aberration correction in a two-photon excited fluorescence microscope. Using analysis of the image-formation process, we have developed an optimized correction scheme permitting image-quality improvement with minimal additional exposure of the sample. We show that, as a result, our correction process induces little photobleaching and significantly improves the quality of images of biological samples. In particular, increased visibility of small structures i...

  20. Inelastic cross sections from gamma-ray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  1. Continuum effects in electron-helium total cross sections

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Weigold, A.M.

    1988-06-01

    It is shown that total cross sections for the excitation of target states with large spectroscopic factors may be calculated accurately by representing the states by their leading independent-particle configurations. With this approximation coupled channels calculations agree only qualitatively with experimental total cross sections for the first five states of helium. R-matrix calculations using configuration interaction show better qualitative agreement. The complex polarisation potential for continuum excitations is described for two-electron atoms. When this is included in a coupled-channels optical calculation quantitative agreement with experiment is obtained for most states at 30, 50 and 100eV

  2. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  3. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  4. Generalized reorientation cross section for cylindrically symmetric velocity distributions

    International Nuclear Information System (INIS)

    Generalized reorientation cross sections are derived for the case of atom--molecule collisions where the molecules initially have a velocity distribution cylindrically symmetric about an axis in the laboratory reference frame. This spatial ordering of the velocity can come about, for instance, by exciting molecular electronic states with a light source whose linewidth is much narrower than the Doppler-broadened absorption line. A simple kinetic theory can be set up in terms of state multipoles that are not completely irreducible; the resulting reorientation cross sections are only slightly more complex than the cross sections occurring in a spherically symmetric velocity field. Two approximations are investigated: a McGuire--Kouri m/sub j/-conserving model and a semiclassical model where the orientation of the rotation plane is conserved. The import of the generalized cross sections for several types of experiment and the applicability of the approximate models are discussed

  5. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    International Nuclear Information System (INIS)

    Ke, Hanzhong; Ma, Wanpeng; Wang, Hongda; Cheng, Guoe; Yuan, Han; Wong, Wai-Kwok; Kwong, Daniel W.J.; Tam, Hoi-Lam; Cheah, Kok-Wai; Chan, Chi-Fai; Wong, Ka-Leung

    2014-01-01

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by 1 H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ 2 =391 GM). • The TTP–Ru exhibits a substantial 1 O 2 quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent

  6. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  7. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  8. Fluorescent Pluronic nanodots for in vivo two-photon imaging

    International Nuclear Information System (INIS)

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Stephan, Olivier; Marder, Seth R; Sanden, Boudewijn Van der

    2009-01-01

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 μm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  9. Charm production in two-photon collisions

    International Nuclear Information System (INIS)

    Linde, F.L.

    1988-01-01

    The analysis focuses on the production of charmonium resonances η c , χ 0 and χ 2 in two-photon interactions. The measurement of the inclusive production of charged D* mesons is described. 97 refs.; 54 figs.; 15 tabs

  10. Two-Photon Physics in Hadronic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Carl Carlson; Marc Vanderhaeghen

    2007-11-01

    Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.

  11. Electron Swarm Parameters and Electron Collision Cross Sections

    International Nuclear Information System (INIS)

    Nakamura, Yoshiharu

    2012-01-01

    Electron collision cross section data for atoms and molecules and electron swarm data in respective gases are important for quantitative modeling of related plasmas. This fact and wide application of plasmas in various fields boos data collection and evaluation activities worldwide. We have been measuring electron swarm parameters (drift velocity, longitudinal diffusion coefficient, ionization/attachment coefficients, and so on) over a wide E/N range (where E is the electric field and N the gas number density) in a number of gases. We also derived a set of electron collision cross sections for each gas so that the set was consistent with our experimental swarm data. Our speciality in studying molecular target is to measure swarm parameters not only in the pure molecular gas but also in dilute molecular gas-argon gas mixtures, the mix rations of the molecule are 0.5-5.0%. The swarm parameters in pure molecular gas depend primarily on the elastic momentum transfer cross section of the molecule and its vibrational excitation cross sections. Those in the mixtures, on the other hand, depend mainly on the elastic momentum transfer cross section of major argon atom and the vibrational cross sections of minor admixed molecule. Alternative use of swarm parameters in pure molecular gas and those in the mixtures enable us to derive the momentum transfer cross section and vibrational cross sections for the molecule separately. Combination of the Ramsauer-Townsend minimum of argon atom and sharp structures in vibrational cross sections of the molecule frequently gives rise prominent E/N dependences in swarm parameters, which can be used to determine the position and magnitude of resonances in the vibrational excitation cross sections. Detailed accounts of the procedure, including estimated uncertainty in our electron swarm data and also in the resultant set of electron collision cross sections, will be given in the presentation by referring to our recent results. Stress will be

  12. Exclusive hadron production in two photon reactions

    International Nuclear Information System (INIS)

    Poppe, M.

    1986-02-01

    This paper summarises experimental results on exclusive hadron production in two photon collisions at electron positron storage rings and attempts some interpretation. Experimental know how is described and new suggestions are made for future analyses. New model calculations on resonance form factors and pair production amplitudes are presented. The two photon vertex is decomposed such that experiments can be parameterised with the minimal number of free parameters. Selection rules for off shell photon collisions are given in addition to Yang's theorems. (orig.)

  13. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  14. Two-photon coherent spectroscopy of ultracold Li atoms

    Science.gov (United States)

    Bobrov, A. A.; Vilshanskaya, E. V.; Zelener, B. B.; Saakyan, S. A.; Sautenkov, V. A.

    2018-01-01

    Our work is devoted to theoretical study of the two-photon coherent spectroscopy of 7Li atoms continuously cooled in a magneto-optical trap (MOT) on the 2S–2P transition. The ultracold atoms are transferred to highly excited Rydberg states in a two-step coherent excitation process by red and UV lasers. The red laser is detuned by -600 MHz from 2S–2P transition frequency and UV laser frequency detuning is scanned in the vicinity of +600 MHz from 2P-nS(D) transition where n∼40-100 is principal quantum number. The fluorescence signal on the 2P–2S cooling transition makes it possible to obtain a two-photon absorption spectrum. Atom-field interaction is considered in the simple three-level approximation involving a density matrix formalism. It is shown that the effect of the MOT beams on the shape of the two-photon absorption line can be taken into account by an appropriate change in the 2S–nS(D) coherence decay rate.

  15. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  16. Study of π0 pair production in single-tag two-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, M.; Uehara, S.; Watanabe, Y.; Nakazawa, H.; Abdesselam, A.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Behera, P.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, S. -K.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Dingfelder, J.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Giordano, F.; Glattauer, R.; Goh, Y. M.; Goldenzweig, P.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Hou, W. -S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Joffe, D.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kim, D. Y.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Ko, B. R.; Korpar, S.; Križan, P.; Krokovny, P.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, D. H.; Lee, I. S.; Li, C.; Li, L.; Li, Y.; Libby, J.; Liventsev, D.; Lukin, P.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moll, A.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Rauch, J.; Ribežl, E.; Ritter, M.; Rostomyan, A.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Simon, F.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Teramoto, Y.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Williams, K. M.; Won, E.; Yamaoka, J.; Yamashita, Y.; Yashchenko, S.; Ye, H.; Yusa, Y.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2016-02-01

    We report a measurement of the differential cross section of π^0 pair production in single-tag two-photon collisions, y*y->π^0π^0, in e+e- scattering. The cross section is measured for Q^2up to 30 GeV^2 is the negative of the invariant mass squared of the tagged photon

  17. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Jiang, C. L.; Lai, J.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Giardina, G.; Eidelman, S.; Venanzoni, G.; Battaglieri, M.; Mandaglio, G.

    2015-01-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work

  18. Experimental determination of vibrational cross sections for diatomic molecules

    International Nuclear Information System (INIS)

    Noqueira, J.C.; Iga, I.; Lee Mu Tao; Lopes, M.C.A.; Almeida, D.P. de

    1988-01-01

    To obtain inelastic differential cross sections from electronic and vibrational molecular excitations by electron impact, it was constructed a new spectrometer to operate in the energy range from 100 to 500 eV. The deceleration lenses as well as the analyser were tested for nitrogen molecule and 350 eV electrons. (A.C.A.S.) [pt

  19. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  20. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    International Nuclear Information System (INIS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-01-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  1. Search for Standard Model Higgs boson in the two-photon final state in ATLAS

    Directory of Open Access Journals (Sweden)

    Davignon Olivier

    2012-06-01

    Full Text Available We report on the search for the Standard Model Higgs boson decaying into two photons based on proton-proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The dataset has an integrated luminosity of about 1:08 fb−1. The expected cross section exclusion at 95% confidence level varies between 2:0 and 5:8 times the Standard Model cross section over the diphoton mass range 110 – 150 GeV. The maximum deviations from the background-only expectation are consistent with statistical fluctuations.

  2. ASCAP. Resonance Region Cross Section Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Young, R.C. [EG and G Idaho Inc., Idaho Falls, ID (United States)

    1972-09-01

    ACSAP may be used to compute neutron cross section data from neutron resonance input. Total, fission, capture, or scattering cross section data may be computed. Experimental data may be compared by means of a wide selection of representations. ACSAP can also determine cross section resonance parameters from input experimental data.

  3. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  4. Photoionization cross section of the 4p55d[7/2] J=4 state and radiative lifetimes of three states of Kr I

    International Nuclear Information System (INIS)

    Cannon, B.D.; Glab, W.L.; Ogorzalek-Loo, R.

    1993-01-01

    Three states in Kr I were studied in a pure Kr discharge at pressures ≤15 mTorr. Two-photon excitation from the metastable 4p 5 5s[3/2] J=2 state produced the 4p 5 5d[7/2] J=4 state whose photoionization cross section and lifetime were measured. The photoionization cross section at λ=1064 nm is 32±5 Mb, and the radiative lifetime is 142±12 ns. One-photon excitation produced the 4p 5 5p[5/2] J=2 and J=3 states of Kr I, whose radiative lifetimes were measured. In contrast to previous lifetime measurements of these two 5p states, this work used both state-specific excitation and low pressures. The pressures were low enough that collisional transfer between these two states was negligible. In a very clean 8-mm-diam cell, the 5p[5/2] J=3 lifetime increased with Kr pressure. This increase is attributed to radiation trapping on the 5s[3/2] J=2 to 5p[5/2] J=3 transition. This radiation trapping by the metastable first excited state of Kr I was observed in a pure Kr discharge at pressures below 4 mTorr

  5. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1992-01-01

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase

  6. SNL RML recommended dosimetry cross section compendium

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  7. Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond

    Science.gov (United States)

    Higbie, J. M.; Perreault, J. D.; Acosta, V. M.; Belthangady, C.; Lebel, P.; Kim, M. H.; Nguyen, K.; Demas, V.; Bajaj, V.; Santori, C.

    2017-05-01

    Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We measure the two-photon fluorescence cross section of a negatively charged silicon vacancy (Si -V- ) in ion-implanted bulk diamond to be 0.74 (19 )×10-50 cm4 s /photon at an excitation wavelength of 1040 nm. Compared to the diamond nitrogen-vacancy center, the expected detection threshold of a two-photon excited Si -V center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and we discuss the physical interpretation of the spectra in the context of existing models of the Si -V energy-level structure.

  8. Measurement of the radiative width of the A2(1320) in two-photon interactions

    International Nuclear Information System (INIS)

    Althoff, M.; Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Rosskamp, P.; Wallraff, W.; Hilger, E.; Kracht, T.; Krasemann, H.L.; Krueger, J.; Lohrmann, E.; Poelz, G.; Poesnecker, K.U.; Bowler, M.G.; Bull, P.; Cashmore, R.J.; Dauncey, P.; Devenish, R.; Heath, G.; Mellor, D.; Ratoff, P.; Baranko, G.; Caldwell, A.; Cherney, M.; Izen, J.M.; Ritz, S.; Strom, D.; Takashima, M.; Wicklund, E.; Wu Saulan; Zonering, G.

    1986-01-01

    The reaction e + e - ->e + e - A 2 (1320) has been observed by detecting the decay A 2 ->π + π - π 0 . The two-photon width of the A 2 has been measured to be GAMMA(A 2 ->γγ)=(0.90+-0.27(stat)+-0.16(syst)) keV. The cross section sigma(γγ->π + π - π 0 ) has been determined outside the A 2 resonance region. (orig.)

  9. Probing QCD dynamics in two-photon interactions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V P [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Machado, M V T [Centro de Ciencias Exatas e Tecnologicas, Universidade Federal do Pampa, Campus de Bage, Rua Carlos Barbosa. CEP 96400-970. Bage, RS (Brazil); Sauter, W K [High Energy Physics Phenomenology Group, GFPAE IF-UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS (Brazil)

    2007-07-15

    In this paper, the two-photon interactions at high energies are investigated considering different approaches for the QCD dynamics. In particular, we calculate the {gamma}*{gamma}* total cross section in different theoretical approaches and present a comparison among the predictions of the BFKL dynamics at leading and next-to-leading order with those from saturation physics. We analyse the possibility that the future linear colliders could discriminate between these different approaches.

  10. Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared

    CERN Document Server

    Rakov, N; Da Rocha, G B; Simas, A M; Athayde-Filho, P A F; Miller, J

    2000-01-01

    Intensity dependent transmission and laser-induced fluorescence were observed in liquid solutions of mesoionic compounds (MIC) pumped with nanosecond lasers operating at 1064, 604, and 570 nm. The results indicate that two-photon absorption (TPA) is the dominant mechanism which causes the observed behavior. The TPA cross-sections measured have values from 0.33*10/sup -20/ cm/sup 4//GW to 0.43*10/sup -18/ cm /sup 4//GW. (20 refs).

  11. Fast-neutron scattering cross sections of elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-12-01

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V

  12. Transition dynamics in two-photon ionisation

    Science.gov (United States)

    Vacher, Morgane; Gaillac, Romain; Maquet, Alfred; Taïeb, Richard; Caillat, Jérémie

    2017-11-01

    We review various aspects of photoemission dynamics in the case of two-photon ionisation. We first recall the definition of a transition phase specific to two-photon transitions. Numerical experiments on model atoms are used to show how the group delay associated with the transition phase is actually representative of the early dynamics of the detected photoelectron wave packets. Then we address the question of measuring these transition delays using a standard interferometric technique of experimental attosecond physics, so-called rabbit. Finally, we outline different reinterpretations of rabbit giving access to the more fundamental scattering dynamics affecting any photoemission processes.

  13. Fast-neutron total and scattering cross sections of niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V

  14. Fast-neutron total and scattering cross sections of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.

  15. Total fusion cross section for the 160+160 system

    International Nuclear Information System (INIS)

    Tserruya, I.; Eisen, Y.; Pelte, D.; Gavron, A.; Oeschler, H.; Berndt, D.; Harney, H.L.

    1978-01-01

    Total fusion cross sections Σsub(F) have been measured for 16 0+ 16 0 at bombarding energies 27-66 MeV using the E-Δ or the time-of-flight techniques. The fusion excitation function shows oscillations in agreement with the resonances produced in the total reaction cross section by a surface-transparent potential. The results are compared to those obtained via the γ-ray technique and th importance of direct decay to ground states is discussed. Mass and total angular distributions are well reproduced by statistical model calculations which take angular momentum into account explicitly. Barrier and critical parameters are extracted from the average energy behavior of Σ sub(F). No evidence for shell effects as predicted by Glas and Mosel is found on the measured fusion cross sections. (author)

  16. Image-based adaptive optics for two-photon microscopy.

    Science.gov (United States)

    Débarre, Delphine; Botcherby, Edward J; Watanabe, Tomoko; Srinivas, Shankar; Booth, Martin J; Wilson, Tony

    2009-08-15

    We demonstrate wavefront sensorless aberration correction in a two-photon excited fluorescence microscope. Using analysis of the image-formation process, we have developed an optimized correction scheme permitting image-quality improvement with minimal additional exposure of the sample. We show that, as a result, our correction process induces little photobleaching and significantly improves the quality of images of biological samples. In particular, increased visibility of small structures is demonstrated. Finally, we illustrate the use of this technique on various fresh and fixed biological tissues.

  17. Suppression of two-photon resonantly enhanced nonlinear processes in extended media

    International Nuclear Information System (INIS)

    Garrett, W.R.; Moore, M.A.; Payne, M.G.; Wunderlich, R.K.

    1988-11-01

    On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs

  18. Saturated two-photon absorption by atoms in a perturber gas

    International Nuclear Information System (INIS)

    Nienhuis, G.

    1980-01-01

    We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)

  19. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  20. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  1. Photoelectric cross sections around the K edge

    International Nuclear Information System (INIS)

    Lingam, S.C.; Babu, K.S.; Reddy, D.V.K.

    1983-01-01

    Total attenuation cross sections for four elements, Ta, W, Au and Pb, were measured at the photon energies 32.1, 52, 72.1, 84.3, 145.4 and 279.2 keV. A good narrow beam geometry with two NaI (Tl) scintillation counters in conjunction with a single-channel analyser was used for the detection of low and medium energy photons. The measured total attenuation cross sections are compared with the theoretical compilations of Storm and Israel and the available earlier investigations. The scattering cross sections obtained by interpolation using the atomic data tables of Storm and Israel were subtracted from the measured total cross sections to obtain the photoelectric cross sections. The photoelectric cross sections thus derived are compared with the latest theoretical values of Scofield. (orig.)

  2. Background-cross-section-dependent subgroup parameters

    CERN Document Server

    Yamamoto, T

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  3. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  4. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  5. Inclusive $D^{*\\pm}$ production in two-photon collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Carr-Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, L; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdari, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, A; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang Zhao Min; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    Inclusive D*/sup +or-/ production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb/sup -1/ of data collected at centre-of-mass energies from 183 to 209 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D*/sup +or-/ mesons in the kinematic region 1 GeV

    cross sections sigma (e/sup +/e/sup -/ to e/sup +/e/sup -/D*/sup +or-/X) in this kinematical region is measured and the sigma (e/sup +/e/sup -/ to e/sup +/e/sup - /ccX) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations. (19 refs).

  6. pp Partial cross sections at low energy

    International Nuclear Information System (INIS)

    Benedettini, A.; Bertin, A.; Bruschi, M.; Capponi, M.; Collamati, A.; D'Antone, I.; De Castro, S.; Dona, R.; Ferretti, A.; Galli, D.; Giacobbe, B.; Marconi, U.; Massa, I.; Piccinini, M.

    1997-01-01

    New measurements of the pp total annihilation cross-section at very low momenta (around 50 MeV/c) confirm the previous results obtained by the OBELIX collaboration. The measured values are in general agreement with the scattering length approximation of the annihilation cross-section, where the pp scattering lengths are obtained from measurement of the protonium shifts and widths and which accounts for the Coulomb interaction. Partial annihilation cross-sections and annihilation frequencies for some channels have been measured too. The values of the total and partial cross sections at the lowest p momentum show an unexpected behaviour. (orig.)

  7. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  8. Damage cross-section library DAMSIG81

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.; Rieffe, H.Ch.

    1981-11-01

    The damage cross-section library DAMSIG81 is an updated and extended version of the damage cross-section library (DAMSIG77). The library contains energy dependent group cross section data for a number of materials to facilitate the calculations of damage production (based on displacements of atoms), the calculation of probable zones and the calculation of gas production due to (n,α) and (n,p) reactions. The group cross-section data are given for a fine group structure of the SAND-II type with 640 groups. This library contains for some materials more than one cross-section set originating from different evaluations. Cross section data sets for the activation reactions 54 Fe(n,p), 58 Ni(n,p), and 63 Cu(n,α), which reactions are commonly used to determine thermal and fast neutron fluences, have been included also. Moreover also some artificial cross-sections are incorporated in this library which can be used to calculate values for some physical quantities characterizing neutron spectra, such as mean lethargy , mean energy . Also cross-sections for B, Al, and Cd are included; these are required to reach compatibility with other libraries in the SAND-II format

  9. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  10. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  11. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  12. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...... with the basic two-level Doppler cooling process this allows for reduction of the atomic sample temperature by more than a factor of 10 over a broad frequency range. First experimental evidence for the two-photon cooling process is presented and compared to model calculations. Agreement between theory...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  13. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  14. Synthesis, nonlinear optical properties and the possible mechanism of photopolymerization of two new two-photon absorption chromophores

    International Nuclear Information System (INIS)

    Yan Yunxing; Tao Xutang; Sun Yuanhong; Xu Guibao; Wang Chuankui; Yang Jiaxiang; Zhao Xian; Jiang Minhua

    2004-01-01

    Efficient Witting and Pd-catalyzed Heck coupling methodologies are employed to synthesize two new two-photon free-radical photopolymerization initiators 9-ethyl-3-{2-[4-(2-pyridin-4-yl-vinyl)-phenyl]-vinyl}-9H-carbazole (abbreviated to EPVPC) and 9-octadecyl-3-{2-[4-(2-pyridin-4-yl-vinyl)-phenyl]-vinyl}-9H-carbazole (abbreviated to OPVPC). The experimental results confirm that the two compounds are good two-photon absorbing chromophores and operative two-photon photopolymerization initiators. The calculated two-photon absorption cross-sections of EPVPC and OPVPC are 56.6 and 62.0x10 -50 cm 4 s photon -1 , respectively. A microstructure by using EPVPC as initiator has been fabricated under irradiation of 200 fs, 76 MHz Ti:sapphire femtosecond laser at 780 nm. The possible mechanism of photopolymerization is discussed

  15. Two-Photon Excited Fluorescence from Biological Aerosol Particles

    Science.gov (United States)

    2010-09-29

    induced fluorescence (LIF) to provide an initial rapid indication of the presence of biological aerosol particles. Examples of recent ultraviolet (UV...pp.4960-4965, 2007. 10. J. W. Lou, M. Currie, V. Sivaprakasam, and J. D. Eversole, “Green and Ultraviolet Pulse Generation with a Compact, Fiber...solutions,” Journal of photochemistry and photobiology 65, 6, 931-936 (1997). 18. S. Dad, R.H. Bisby, I.P. Clark and A.W. Parker, “Identification

  16. Numerical calculation of the cross section by the solution of the wave equation

    International Nuclear Information System (INIS)

    Drewko, J.

    1982-01-01

    A numerical method of solving of the wave equation is described for chosen vibrational eigenfunctions. A prepared program calculates the total cross sections for the resonant vibrational excitation for diatomic molecules on the basis of introduced molecular data. (author)

  17. Extracting integrated and differential cross sections in low energy heavy-ion reactions from backscattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, V. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Yerevan State University, 0025 Yerevan (Armenia); Adamian, G. G., E-mail: adamian@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Antonenko, N. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Mathematical Physics Department, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Diaz-Torres, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas, I-38123 Villazzano, Trento (Italy); Gomes, P. R. S. [de Fisica, Universidade Federal Fluminense, Av. Litorânea, s/n, Niterói, R.J. 24210-340 (Brazil); Lenske, H. [Institut für Theoretische Physik der Justus–Liebig–Universität, D–35392 Giessen (Germany)

    2016-07-07

    We suggest new methods to extract elastic (quasi-elastic) scattering angular distribution and reaction (capture) cross sections from the experimental elastic (quasi-elastic) backscattering excitation function taken at a single angle.

  18. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  19. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  20. Compilation of cross-sections. Pt. 3

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1984-01-01

    A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data, particularly those from the CERN Collider, have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. This volume III contains cross-sections for p and anti p induced reactions. (orig.)

  1. Measured and evaluated fast neutron cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.

    1975-07-01

    Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)

  2. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  3. High-frequency two-electron photoionization cross section of triplet states

    International Nuclear Information System (INIS)

    Krivec, R.; Amusia, M.Ya.; Mandelzweig, V.B.

    2003-01-01

    Using high precision wave functions describing the triplet ground and excited 3 S states of the He atom and heliumlike ions, the cross sections of single- and double-electron photoionization are calculated. The dependence of the ratio R of the double and single ionization cross sections on the nuclear charge Z and the principal quantum number of excitation n is studied. The results obtained are compared to those for previously studied singlet states

  4. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  5. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  6. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  7. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  8. Elastic and inelastic vibrational cross sections for positron scattering by carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Tenfen, W. [Departamento de Física, Universidade Federal da Fronteira Sul, 85770-000, Realeza, Paraná (Brazil); Arretche, F., E-mail: fartch@gmail.com [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil); Michelin, S.E.; Mazon, K.T. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil)

    2015-11-01

    The vibrational cross sections of the CO molecule induced by positron impact is the focus of this work. The positron–molecule interaction is represented by the static potential plus a model potential designed to take into account the positron–target correlations. To calculate the vibrational cross sections, we applied the multichannel version of the continued fractions method in the close-coupling scheme. We present vibrational excitation cross sections and elastic ones, for the ground and excited vibrational states. The results are interpreted in terms of the vibrational coupling-scheme used in the scattering model.

  9. Electron Excitation Cross Sections for the 2s(sup 2)2p(sup 3) (sup 4)S -> 2s(sup 2)2p(sup 3) (sup 2d) ->2s2p(sup 4) (sup 4p) (Resonance) Transitions in Oil

    Science.gov (United States)

    Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.

    1994-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.

  10. The hadronic cross section measurement at KLOE

    International Nuclear Information System (INIS)

    Aloisio, A.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Barva, M.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Caloi, R.; Campana, P.; Capon, G.; Capussela, T.; Carboni, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Di Micco, B.; Doria, A.; Dreucci, M.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Graziani, E.; Incagli, M.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D.; Lu, F.; Martemianov, M.; Martini, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Perfetto, F.; Petrolo, E.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Sibidanov, A.; Spadaro, T.; Spiriti, E.; Tabidze, M.; Testa, M.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Ventura, A.; Versaci, R.; Villella, I.; Xu, G.

    2005-01-01

    KLOE uses the radiative return to measure cross section σ(e + e - ->π + π - γ) at the electron-positron collider DAΦNE. Divinding by a theoretical radiator function, we obtain the cross section σ(e + e - ->π + π - γ) for the mass range 0.35 π 2 . We calculate the hadronic contribution to the muon anomaly for the given mass range: a μ =388.7+/-0.8 stat +/-3.5syst+/-3.5 th

  11. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    Science.gov (United States)

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Science.gov (United States)

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  13. Polarization properties of optical phase conjugation by two-photon resonant degenerate four-wave mixing

    Science.gov (United States)

    Kauranen, Martti; Gauthier, Daniel J.; Malcuit, Michelle S.; Boyd, Robert W.

    1989-08-01

    We develop a semiclassical theory of the polarization properties of phase conjugation by two-photon resonant degenerate four-wave mixing. The theory includes the effects of saturation by the pump waves. We solve the density-matrix equations of motion in steady state for a nonlinear medium consisting of stationary atoms with a ground and excited state connected by two-photon transitions. As an illustration of the general results, we consider an S0-->S0 two-photon transition, which is known to lead to perfect polarization conjugation in the limit of third-order theory. We show that the fidelity of the polarization-conjugation process is degraded for excessively large pump intensities. The degradation can occur both due to transfer of population to the excited state and due to nonresonant Stark shifts. Theoretical results are compared to those of a recent experiment [Malcuit, Gauthier, and Boyd, Opt. Lett. 13, 663 (1988)].

  14. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  15. Study of inclusive strange-baryon production and search for pentaquarks in two-photon collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; PirouLe, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2007-01-01

    Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons in two-photon collisions with the L3 detector at LEP are presented. The inclusive differential cross sections for Lambda and Xi- are measured as a function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event is determined in the kinematic range 0.4 GeV proton K0s is also presented. No evidence for production of this state is found.

  16. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    Energy Technology Data Exchange (ETDEWEB)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ≤SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (≤SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  17. Resonant production in two photon collisions

    International Nuclear Information System (INIS)

    Butler, F.

    1988-12-01

    Using 220 picobarn/sup /minus/1/ of data collected by the Mark II detector at PEP, we have measured the width of the /eta/' for quasi real photons. The width is separately measured in the three reactions e + e/sup /minus// → e + e/sup /minus///eta/ 0 π + π/sup /minus//; /eta/ 0 → γγ, e + e/sup /minus// → e + e/sup /minus///eta/ 0 π + π/sup /minus//; /eta/ 0 → π + π/sup /minus//(π 0 ,γ) and e + e/sup /minus// → e + e/sup /minus///rho/ 0 γ, giving a statistically weighted average two-photon width of Γ/sub /eta/'→γγ/ = 5. 21+-0.28 keV. As a by-product of the measurement of Γ/sub /eta/'→γγ/ using the decay mode /eta/' → /rho/γ, we also measured a two-photon decay width for the a 2 (1320) of Γ/sub a 2(1320)→γγ/ = 1.17+-0. 15+-0.25 keV. 47 refs., 50 figs., 8 tabs

  18. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  19. Fast-neutron scattering cross sections of elemental silver

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-05-01

    Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160 0 . Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V

  20. Two-photon photodissociation dynamics of state-selected NO2

    Science.gov (United States)

    Bigio, Laurence; Grant, Edward R.

    1987-07-01

    Quantum states of NO2 are selected and then photodissociated by resonant two-photon photoexcitation. The details of the photolysis and the optical-UV double-resonance (OUDR) spectroscopy are discussed, and results are presented for: (1) observations of the product state selected two-photon photodissociation cross section of NO2 near the O(1D) threshold, (2) the dynamics of NO production as a function of features selected in the photodissociation spectrum, (3) N labeling of relevant features by OUDR spectroscopy, and (4) estimation of the O(1D)/O(3P) branching ratio. A qualitative connection is established between the present observations and a new theoretical approach developed by Balint-Kurti et al. (1985) to account specifically for electronic degrees of freedom in state-to-state photodissociation.

  1. Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering

    Science.gov (United States)

    Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.

    2018-02-01

    In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.

  2. Actinide cross section program at ORELA

    International Nuclear Information System (INIS)

    Dabbs, J.W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively α-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture γ rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables

  3. Cross sections of deuteron induced nuclear reactions on metal targets

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ditroi, F.; Takacs, S.

    2005-01-01

    Integral excitation functions for the production of residual nuclides with light charged particles are basic data for different applications. The proton induced nuclear reactions are the most widely used and their cross section data are extensively studied. For practical applications these reactions are followed in importance by deuteron induced reactions. Due to the stripping process the production yield of the deuteron induced reactions is significant. High intensity deuteron beams can be produced relatively simply by accelerators. Deuteron induced reactions play an important role in secondary fast neutron sources, in thin layer activation technology, etc. The search of the literature shows that the cross section database for deuteron induced reactions is very poor (very few data above 15-20 MeV). No systematical study has been performed earlier. In addition the published data (except for a few well measured monitor and medically important reactions) show large discrepancies. To meet the requirements of these applications we performed a systematical experimental study of deuteron induced activation cross sections for different targets up to 50 MeV deuteron energy during the last years. Here we summarize the results for the most widely used technological materials: i.e. for metals. The targets were irradiated with external beams of the cyclotrons of Debrecen, Brussels and Sendai, Residual nuclei were measured by X- and gamma-spectrometry without chemical separation. The investigation includes a few hundred reactions induced on the following 20 target elements: Al, Ti, Fe, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Te, W, Ir, Pt, Pb. A significant part of the measured data is new. The measured excitation functions were compared with the theory by using the ALICE-IPPE and TALYS codes. For a few elements, isotopic cross sections were measured on highly enriched targets ( 100 Mo, 122,123 Te, 114 Cd) for medical radioisotope production Applications in the field of

  4. On the kinematics of the two-photon Cherenkov effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2003-01-01

    We study the kinematics of the two-photon Cherenkov effect. In the general case, the emission angles of two photons satisfy certain inequalities and the corresponding radiation intensities are rather diffused. In special cases, when the above inequalities reduce to equalities, the emission angles of two photons are fixed and the corresponding radiation intensities should have sharp maxima at these angles. This makes easier the experimental study of the two-photon Cherenkov effect

  5. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  6. Saturated two-photon absorption by atoms in a perturber gas

    NARCIS (Netherlands)

    Nienhuis, G.

    We derive a general expression for the two-photon absorption spectrum of a state-atom excited by two monochromatic radiation fields. Collisional line-brodening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are

  7. Measurement of K/sup +/ K/sup -/ production in two-photon collisions at Belle

    CERN Document Server

    Uehara, S

    2001-01-01

    K/sup +/K/sup -/ production in two-photon collisions has been studied with the Belle detector at KEKB. We have obtained the first high statistics data sample in the invariant mass range above 16 GeV. We report preliminary results of the cross section for gamma gamma to K /sup +/K/sup -/ in the c.m energy range between 136 and 230 GeV. In addition, we also present preliminary results for the gamma gamma to K /sub S//sup 0/K/sub S//sup 0/ process.

  8. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  9. $\\Lambda$ and $\\Sigma^{0}$ Pair Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model.

  10. Proton-Antiproton Pair Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    The reaction e+e- -> e+e- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.

  11. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  12. Investigating fusion dynamics at high angular momentum via fission cross sections

    Science.gov (United States)

    Palshetkar, C. S.; Hinde, D. J.; Williams, E.; Ramachandran, K.; Dasgupta, M.; Cook, K. J.; Wakhle, A.; Jeung, D. Y.; Rafferty, D. C.; McNeil, S. D.; Carter, I. P.; Luong, D. H.

    2017-11-01

    A quantitative understanding of fusion dynamics at high angular momentum is attempted employing experimental fission cross sections as a probe and carrying out a simultaneous description of the fusion and fission cross sections at above barrier energies. For this, experimental fission fragment angular distributions for three systems: 16O+148Sm, 28Si+136Ba and 40Ca+124Sn, all forming the same compound nucleus 164Yb at similar excitation energies, have been measured at four beam energies above their respective capture barriers. A simultaneous description of the angle integrated fission cross sections and evaporation residue/fusion cross sections available in literature for the systems is carried out using coupled-channels and statistical model calculations. Fission cross sections, which are most sensitive to the changes in angular momentum, provide very stringent constraints for model calculations thus indicating the need of precision evaporation residue as well as fission cross sections in such studies. A large diffuseness (ao>0.65 fm) of the nuclear potential gives the best reproduction of the experimental data. In addition, different coupling schemes give very different angular momentum distributions, which, in turn, give very different fission cross section predictions. Both these observations hint at the explanation that depending on energy dissipation of the interacting nuclei occurring inside or outside the fusion pocket, very different fission cross sections can result due to heavily altered angular momentum and thus justifies the sensitivity of fission cross sections used as probes in the present work.

  13. Two photon annihilation operators and squeezed vacuum

    Science.gov (United States)

    Roy, Anil K.; Mehta, C. L.; Saxena, G. M.

    1993-01-01

    Inverses of the harmonic oscillator creation and annihilation operators by their actions on the number states are introduced. Three of the two photon annihilation operators, viz., a(sup +/-1)a, aa(sup +/-1), and a(sup 2), have normalizable right eigenstates with nonvanishing eigenvalues. The eigenvalue equation of these operators are discussed and their normalized eigenstates are obtained. The Fock state representation in each case separates into two sets of states, one involving only the even number states while the other involving only the odd number states. It is shown that the even set of eigenstates of the operator a(sup +/-1)a is the customary squeezed vacuum S(sigma) O greater than.

  14. Study of KS0 pair production in single-tag two-photon collisions

    Science.gov (United States)

    Masuda, M.; Uehara, S.; Watanabe, Y.; Adachi, I.; Ahn, J. K.; Aihara, H.; Al Said, S.; Asner, D. M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bansal, V.; Behera, P.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Červenkov, D.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Choudhury, S.; Cinabro, D.; Czank, T.; Dash, N.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Garg, R.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gelb, M.; Giri, A.; Goldenzweig, P.; Guido, E.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jin, Y.; Joo, K. K.; Julius, T.; Kang, K. H.; Karyan, G.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, S. H.; Kodyš, P.; Kotchetkov, D.; Križan, P.; Kroeger, R.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lee, I. S.; Lee, S. C.; Li, L. K.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Matsuda, T.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moon, H. K.; Mori, T.; Mussa, R.; Nakao, M.; Nakazawa, H.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Onuki, Y.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, H.; Paul, S.; Pedlar, T. K.; Pestotnik, R.; Piilonen, L. E.; Ritter, M.; Rostomyan, A.; Russo, G.; Sakai, Y.; Salehi, M.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seidl, R.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shimizu, N.; Shiu, J.-G.; Shwartz, B.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Teramoto, Y.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Van Hulse, C.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wang, B.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, M.; Widmann, E.; Won, E.; Ye, H.; Yuan, C. Z.; Yusa, Y.; Zakharov, S.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2018-03-01

    We report a measurement of the cross section for KS0 pair production in single-tag two-photon collisions, γ*γ →KS0KS0, for Q2 up to 30 GeV2 , where Q2 is the negative of the invariant mass squared of the tagged photon. The measurement covers the kinematic range 1.0 GeV total energy and kaon scattering angle, respectively, in the γ*γ center-of-mass system. These results are based on a data sample of 759 fb-1 collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. For the first time, the transition form factor of the f2'(1525 ) meson is measured separately for the helicity-0, -1, and -2 components and also compared with theoretical calculations. We have derived the cross section for the process for W total.

  15. Improving activation cross section data with TALYS

    Science.gov (United States)

    Dzysiuk, Nataliia; Koning, Arjan

    2017-09-01

    Needs for accurate (n,x) activation cross sections for fusion technology have been considered with reference to the current status of the TENDL library. The current work is focused on improving activation cross section data for nuclear reactions relevant mainly for fusion and astrophysical needs. The fits have been performed with the TALYS-1.8 code by means of nuclear model parameter variation, mostly for the optical model and level densities, followed by comparison to recent experimental data taken from EXFOR and other evaluated nuclear databases. The updated cross section data are going to be adopted into the new version of TENDL. The improvements have been performed both for differential as well as integral data sets.

  16. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  17. Density and field effect on electron-ion collision cross-sections in hot dense plasma; Etude de l'influence de l'environnement plasma sur les sections efficaces d'excitation collisionnelle electron-ion dans un plasma chaud et dense

    Energy Technology Data Exchange (ETDEWEB)

    Gaufridy de Dortan, F. de

    2003-03-15

    Collisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbed potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric micro-field of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submitted to a realistic micro-field. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening.

  18. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  19. The hadronic cross section measurement at KLOE

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, A.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Barva, M.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Caloi, R.; Campana, P.; Capon, G.; Capussela, T.; Carboni, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Di Micco, B.; Doria, A.; Dreucci, M.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Graziani, E.; Incagli, M.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe Postfach 3640, D-76021 Karlsruhe (Germany); Lu, F.; Martemianov, M.; Martini, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Perfetto, F.; Petrolo, E.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Sibidanov, A.; Spadaro, T.; Spiriti, E.; Tabidze, M.; Testa, M.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Ventura, A.; Versaci, R.; Villella, I.; Xu, G

    2005-07-15

    KLOE uses the radiative return to measure cross section {sigma}(e{sup +}e{sup -}->{pi}{sup +}{pi}{sup -}{gamma}) at the electron-positron collider DA{phi}NE. Divinding by a theoretical radiator function, we obtain the cross section {sigma}(e{sup +}e{sup -}->{pi}{sup +}{pi}{sup -}{gamma}) for the mass range 0.35

  20. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  1. Neutron Capture Cross Section of 239Pu

    Science.gov (United States)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  2. Insights into esophagus tissue architecture using two-photon confocal microscopy

    Science.gov (United States)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  3. Inclusive single-particle production in two-photon collisions at LEP II with the DELPHI detector

    CERN Document Server

    Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.

    2009-01-01

    A study of the inclusive charged hadron production in two-photon collisions is described. The data were collected with the DELPHI detector at LEP II. Results on the inclusive single-particle p_T distribution and the differential charged hadrons dsigma/dp_T cross-section are presented and compared to the predictions of perturbative NLO QCD calculations and to published results.

  4. Two-electron photoionization cross sections at high energies

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Krivec, R.; Mandelzweig, V.B.

    2003-01-01

    Double and single electron photoionization cross sections and their ratios at high and ultra-relativistic energies are calculated for H - , He and helium-like ions in ground and excited states including triplet states. The ratios contain shake-off and quasi-free terms. A high precision non-variational wave function is used. The quasi-free mechanism increases the ratios impressively: for He we get 0.0762 instead of 0.0164 in the non-relativistic case. Ratios are inversely proportional to Z 2 , with a factor increasing from 0.094 in the nonrelativistic to 0.595 in the ultra-relativistic limit. (author)

  5. Microscopic description of production cross sections including deexcitation effects

    Science.gov (United States)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing

  6. Cross Sections From Scalar Field Theory

    Science.gov (United States)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  7. Single top quark cross sections at ATLAS

    CERN Document Server

    Finelli, Kevin Daniel; The ATLAS collaboration

    2018-01-01

    This presentation covers single top production in the t-channel, s-channel, tW, and tZq production modes. Differential cross-sections for t-channel and tW are covered, as well as the latest inclusive measurements in s-channel and tZq.

  8. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  9. Top Quark Production Cross Section Measurements

    CERN Document Server

    Massa, Lorenzo; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sectionsinproton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at centre of mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross section of a single top quark in association witha W boson, the second largest single-top production mode, is also presented. Finally, measurements of t...

  10. Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses

    KAUST Repository

    Moretti, Claudio

    2016-09-12

    Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

  11. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S [Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy); Coppa, A; Foglietti, V [Istituto di Fotonica e Nanotecnologie del CNR, sezione di Roma, Via Cineto Romano 42, 00156 Roma (Italy)], E-mail: longhi@fisi.polimi.it

    2008-04-28

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide.

  12. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    International Nuclear Information System (INIS)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S; Coppa, A; Foglietti, V

    2008-01-01

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide

  13. Total dissociation cross section of CF4 and other fluoroalkanes for electron impact

    International Nuclear Information System (INIS)

    Winters, H.F.; Inokuti, M.

    1982-01-01

    Various techniques from the field of surface science have allowed the development of a method for measuring the total absolute cross section for electron-impact-induced dissociation of a number of molecules. The technique is particularly reliable for the fluoroalkanes such as CF 4 , CF 3 H, C 2 F 6 , and C 3 F 8 . The total dissociation cross section for CF 4 has been measured for energies between threshold (approx.12.5 eV) and 600 eV. The magnitude of the cross section at its maximum is 5.5 x 10 -16 cm 2 . Less extensive data are presented for CF 3 H, C 2 F 6 , and C 3 F 8 . Their cross sections at the maxima are 5.8 x 10 -16 cm 2 , 8.6 x 10 -16 cm 2 , and 1.18 x 10 -15 cm 2 , respectively. Arguments are presented which suggest that the total dissociation cross section for each of these gases is equal to the sum of the cross sections for excitation to all electronic and ionic states, i.e., the total cross section for electronic excitation. The results are discussed from the point of view of the Bethe theory. It is concluded that the Bethe asymptotic behavior is not yet attained in the energy range of these measurements

  14. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells. PMID:26864567

  15. Upper limit on the cross section for nuclear charge pickup by relativistic uranium ions

    International Nuclear Information System (INIS)

    Westphal, A.J.; Price, P.B.; Snowden-Ifft, D.P.

    1992-01-01

    We have searched for examples of nuclear charge pickup by relativistic uranium ions in targets of both uranium and phosphate glass. We find none, which allows us to set an upper limit of 7.7 mb per target atom at the 90% confidence level on the cross section for this process. An extrapolation of the approximately quadratic dependence on projectile charge of the cross section for charge pickup predicts a cross section which would be ∼10 times larger. This breakdown in the scaling can be understood by the propensity of the actinides to fission upon the deposition of sufficient excitation energy

  16. Low energy transport coefficients and cross sections for electrons in deuterium

    International Nuclear Information System (INIS)

    Petrovic, Z.L.; Crompton, R.W.

    1985-01-01

    For the design of negative ion sources the reliable cross section data of electron swarms in deuterium are necessary. Earlier theoretical calucations could not reproduce the experimental data. This paper presents new experimental data for drift velocities and mobility in the energy range above the treshold of 2.5 eV where vibrational excitation is the dominant inelastic process. The low energy cross sections are derived from the transport data and are compared with results of other experiments. (D.Gy.)

  17. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  18. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    International Nuclear Information System (INIS)

    Henderson, B.S.; Ice, L.D.; Khaneft, D.

    2016-12-01

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R 2γ , a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb -1 was collected. In the extraction of R 2γ , radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R 2γ , presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  19. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.S. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ice, L.D. [Arizona State Univ., Tempe, AZ (United States); Khaneft, D. [Mainz Univ. (Germany); Collaboration: OLYMPUS Collaboration; and others

    2016-12-15

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R{sub 2γ}, a direct measure of the contribution of hard two- photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ∼20 to 80 . The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12 , as well as symmetric Moeller/Bhabha calorimeters at 1.29 . A total integrated luminosity of 4.5 fb{sup -1} was collected. In the extraction of R{sub 2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R{sub 2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  20. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    Science.gov (United States)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  1. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Haight, Robert C.; Tovesson, Fredrik; Arndt, Richard A.; Briscoe, William J.; Paris, Mark W.; Strakovsky, Igor I.; Workman, Ron L.

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  2. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for

  3. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  4. Cross sections required for FMIT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  5. Test of RIPL-2 cross section calculations

    International Nuclear Information System (INIS)

    Herman, M.

    2002-01-01

    The new levels and optical segments and microscopic HF-BCS level densities (part of the density segment) were tested in practical calculations of cross sections for neutron induced reactions on 22 targets (40-Ca, 47-Ti, 52-Cr, 55-Mn, 58-Ni, 63-Cu, 71-Ga, 80-Se, 92-Mo, 93-Nb, 100-Mo, 109-Ag, 114-Cd, 124-Sn, 127-I, 133-Cs, 140-Ce, 153-Eu, 169-Tm, 186-W, 197-Au, 208-Pb). For each target all reactions involving up to 3 neutron, 1 proton and 1 α-particle emissions (subject to actual reaction thresholds) were considered in the incident energy range from 1 keV up to 20 MeV (in some cases up to 27 MeV). In addition, total, elastic, and neutron capture cross sections were calculated

  6. Neutron cross section measurements at WNR

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Archampaugh, G.F.; Moore, M.S.; Morgan, G.L.; Shamu, R.E.

    1980-01-01

    The Weapons Neutron Research Facility has been used to obtain moderate-resolution total neutron cross section data for H, C, 208 Pb, 232 Th, 238 U, and 242 Pu over the energy range 5 to 200 MeV. Neutrons were produced by bombarding a 2.5-cm diam by 15-cm long Ta target with an 800 MeV pulsed proton beam from LAMPF. A 10.2-cm diam by 15.2-cm thick NE110 proton recoil detector was used at a flight path of 32 meters, giving a time-of-flight resolution of 60 ps/m. The total cross section results are compared to ENDF/BV evaluations and to previous data where possible

  7. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    Taboada, H.; Marajofsky, A.

    1996-01-01

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  8. 3D-localized, high-resolution, non-perturbing, vectorizable magnetic field diagnostic using two-photon Doppler-free laser-induced fluorescence

    Science.gov (United States)

    Yoon, Young Dae; Bellan, Paul M.

    2017-10-01

    A detailed description of a new plasma magnetic field diagnostic using Doppler-free two-photon laser-induced fluorescence is presented. The diagnostic is based on a method previously developed in the context of rubidium vapor experiments. Two counter-propagating diode laser beams at 394nm are directed into an argon plasma to excite Ar-II ions from the metastable level 3s2 3p4 4 p4D7 / 2 ⟶ 3s2 3p4 4 p4D5/ 2 o ⟶ 3s2 3p4 5 s2P3 / 2 . The levels involve two similar (394.43nm and 393.31nm) transition wavelengths, so the two counter-propagating beams effectively cancel out the Doppler effect. The excited ions then decay to the 3s2 3p4 4 p2D5/ 2 o level, emitting a 410.38nm line which is to be detected by a photomultiplier tube. The Zeeman splitting - normally unobservable because of the large Doppler broadening - of the resultant fluorescence is then to be analyzed, yielding the magnetic field of the particular location. This method is expected to provide 3D localized, non-perturbing vector measurements of the magnetic field. The resolution of the diagnostic is only limited by the cross-section of the laser beam, which can easily be as small as hundreds of microns wide. An experimental implementation is currently in progress.

  9. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  10. Fully double-logarithm-resummed cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-04-15

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in electron-positron annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-next-to-leading order. (orig.)

  11. Fully double-logarithm-resummed cross sections

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.; Joint Inst. of Nuclear Research, Moscow

    2011-04-01

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in electron-positron annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-next-to-leading order. (orig.)

  12. Inclusive jet cross section at D0

    International Nuclear Information System (INIS)

    Bhattacharjee, M.

    1996-09-01

    Preliminary measurement of the central (|η| ≤ 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D null based on the 1992-1993 (13.7 pb -1 ) and 1994-1995 (90 pb -1 ) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made

  13. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  14. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    Science.gov (United States)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  15. Electron Excitation Cross Sections for the S II Transitions: 3s(exp 2)3p(exp 3) 4S(exp o) approaches 3s(exp 2)3p(exp 3) 2D(exp o), 2P(exp o), and 3s3p(exp 4) 4P

    Science.gov (United States)

    Liao, C.; Chutjian, A.; Hitz, D.; Tayal, S. S.

    1997-01-01

    Experimental and theoretical collisional excitation cross sections are reported for the transitions 3s(exp 2)3p(exp 3)4S(exp o) approaches 3s(exp 2)3p(exp 3) 2D(exp o), 2P(exp o), and 3s3P(exp 4) 4P in S II. The transition wavelengths (energies) are 6716 A (1.85 eV), 4069 A (3.05 eV), and 1256 A (9.87 eV), respectively. In the experiments, use is made of the energy-loss merged-beams method. The metastable fraction of the S II beam was assessed and minimized. The contribution of elastically scattered electrons was reduced by the use of a lowered solenoidal magnetic field and a modulated radio-frequency voltage on the analyzing plates and by retarding grids to reject the elastically scattered electrons with larger Larmor radii. For each transition, comparisons are made among experiments, the new 19 state R-matrix calculation, and three other close-coupling calculations.

  16. MXS cross-section preprocessor user's manual

    International Nuclear Information System (INIS)

    Parker, F.; Ishikawa, M.; Luck, L.

    1987-03-01

    The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature

  17. Neutron capture cross sections of Kr

    Science.gov (United States)

    Fiebiger, Stefan; Baramsai, Bayarbadrakh; Couture, Aaron; Krtička, Milan; Mosby, Shea; Reifarth, René; O'Donnell, John; Rusev, Gencho; Ullmann, John; Weigand, Mario; Wolf, Clemens

    2018-01-01

    Neutron capture and β- -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL) using the Detector for Advanced Neutron Capture Experiments (DANCE). 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  18. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  19. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification in a lith......Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....

  20. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  1. ENDF Cross Sections are not Uniquely Defined

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-06-11

    Most evaluated data that is coded into the ENDF format [1] does not uniquely define cross sections, because the evaluator defined total is not equal to the sum of evaluator defined partial cross sections, i.e., the total is not equal to elastic plus capture, etc. So we have always had the question: What is the correct total cross section? This is not a new problem; it has existed since the very beginning of ENDF over forty years ago. It is a problem that is periodically discussed and apparently handled, only to have it pop up again every ten years or so, as we have the next generation of ENDF format users who are not aware of the problem. See the Appendices for a summary of the differences that exist today for the ENDF/B-VII.0 (Appendix C), JEFF- 3.1(Appendix D), JENDL-3.3 (Appendix E), and CENDL-3.1 (Appendix F) data libraries. For use in our application we need consistent, unique data. To accomplish this for decades we [2, 3] have been ignoring the evaluator defined total, and re-defining it as equal to the sum of its evaluator defined parts. This has never been completely satisfactory to us, because we have been doing this without consulting evaluators, or obtaining their approval, so that the data we actually use in our applications may or may not be what the evaluators intended.

  2. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  3. Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes.

    Science.gov (United States)

    Huang, Huaiyi; Yang, Liang; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Diao, JiaJie; Liu, Jiankang; Ji, Liangnian; Long, Jiangang; Chao, Hui

    2016-03-01

    Mitochondrial fission and fusion control the shape, size, number, and function of mitochondria in the cells of organisms from yeast to mammals. The disruption of mitochondrial fission and fusion is involved in severe human diseases such as Parkinson's disease, Alzheimer's disease, metabolic diseases, and cancers. Agents that can real-time track the mitochondrial dynamics are of great importance. However, the short excitation wavelengths and rapidly photo-bleaching properties of commercial mitochondrial dyes render them unsuitable for tracking mitochondrial dynamics. Thus, mitochondrial targeting agents that exhibit superior photo-stability under continual light irradiation, deep tissue penetration and at intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds employ low-energy near-infrared light and have emerged as a non-invasive tool for real-time cell imaging. Here, cyclometalated Ir(III) complexes (Ir1-Ir5) are demonstrated as one- and two-photon phosphorescent probes for the real-time imaging and tracking of mitochondrial fission and fusion. The results indicate that Ir2 is well suited for two-photon phosphorescent tracking of mitochondrial fission and fusion in living cells and in Caenorhabditis elegans (C. elegans). This study provides a practical use for mitochondrial targeting two-photon phosphorescent Ir(III) complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Measurement of the cross-section for the process $\\gamma^* \\gamma^* \\to$ hadrons at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Gong, Z F; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kapustinsky, J S; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G; Zöller, M

    1999-01-01

    Measurements of the two-photon interaction e+e- --> e+e- hadrons at sqrt(s) = 91 GeV and sqrt(s) = 183 GeV are presented. The double-tag events, collected with the L3 detector, correspond to integrated luminosities of 140 pb-1 at 91 GeV and 52 pb-1 at 183 GeV. The cross-section of gamma*gamma* collisions has been measured at = 3.5 GeV^2 and = 14 GeV^2. The data agree well with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data.

  5. Antineutrino-nucleon total cross section and ratio of antineutrino cross section on neutrons and protons

    CERN Document Server

    Erriquez, O; Bisi, V; Bonetti, S; Bullock, F W; Cavalli, D; Engel, J P; Eranzinetti, C; Escubes, B; Esten, M J; Fogli-Muciaccia, M T; Gamba, D; Guyonnet, J L; Halsteinslid, A; Henderson, R C W; Huss, D; Jones, T W; Marzari-Chiesa, A; Mauri, F; Myklebost, K; Natali, S; Nuzzo, S; Paty, M; Pullia, A; Racca, C; Ramzan, F A; Riccati, L; Riester, J L; Rognebakke, A; Rollier, M; Romero, A; Skjeggestad, O

    1979-01-01

    On a selected sample of 2171 events, observed in the heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined to the laboratory energy 8 GeV. (7 refs).

  6. Two-Photon Exchange Effects in Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Myriam James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio μp GEp/GMp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q2, from 0.40 to 5.76 GeV2. Reduced cross sections were found to 1.1% or better for Q2 less than 3 GeV2 increasing to 4% at 5.76 GeV2 The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV2, increasing to 9% by 3 GeV2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure from zero.

  7. Extracting integrated and differential cross sections in low-energy heavy-ion reactions from backscattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, V.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Yerevan State University, Yerevan (Armenia); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Diaz-Torres, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Villazzano (Italy); Gomes, P.R.S. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi (Brazil); Lenske, H. [Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Giessen (Germany)

    2014-11-15

    We suggest new methods to extract elastic (quasi-elastic) scattering angular distribution and reaction (capture) cross sections from the experimental elastic (quasi-elastic) backscattering excitation function taken at a single angle. A novel Coulomb scattering relation between angular momentum and centrifugal energy is used. The methodology is developed for addressing complementary reaction observables, improving the description of elastic differential cross section. (orig.)

  8. A two-photon fluorescent probe with a large turn-on signal for imaging hydrogen sulfide in living tissues

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kaibo [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Lin, Weiying, E-mail: weiyinglin2013@163.com [Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Tan, Li; Cheng, Dan [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2015-01-01

    Highlights: • A two-photon fluorescent probe for sensing H{sub 2}S was developed. • The probe shows a large turn on signal (120-fold enhancement). • The probe is suitable for fluorescence imaging of H{sub 2}S in living cells and tissues. • The probe was capable of detecting H{sub 2}S up to 170 μm depth in live tissues. - Abstract: A two-photon fluorescence turn-on H{sub 2}S probe GCTPOC–H{sub 2}S based on a two-photon platform with a large cross-section, GCTPOC, and a sensitive H{sub 2}S recognition site, dinitrophenyl ether was constructed. The probe GCTPOC–H{sub 2}S exhibits desirable properties such as high sensitivity, high selectivity, functioning well at physiological pH and low cytotoxicity. In particular, the probe shows a 120-fold enhancement in the presence of Na{sub 2}S (500 μM), which is larger than the reported two-photon fluorescent H{sub 2}S probes. The large fluorescence enhancement of the two-photon probe GCTPOC–H{sub 2}S renders it attractive for imaging H{sub 2}S in living tissues with deep tissue penetration. Significantly, we have demonstrated that the probe GCTPOC–H{sub 2}S is suitable for fluorescence imaging of H{sub 2}S in living tissues with deep penetration by using two-photon microscopy. The further application of the two-photon probe for the investigation of biological functions and pathological roles of H{sub 2}S in living systems is under progress.

  9. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... In this paper, we have briefly reviewed the work on two-photon spectroscopy of alkali elements and its applications. The technique of Doppler-free two-photon spectroscopy is briefly summarized. A review of various techniques adopted for measuring absolute frequencies of the atomic transitions and ...

  10. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    Doppler-free two-photon spectroscopy uses two counterpropagating laser beams for exci- tation. In this technique, simultaneous absorption of two photons drives the atomic transition. If the atom absorbs one photon from each of the counterpropagating beam, then the Doppler shifts cancel in the rest frame of the atom.

  11. Mechanized evaluation of neutron cross-sections

    International Nuclear Information System (INIS)

    Horsley, A.; Parker, J.B.

    1967-01-01

    The evaluation work to provide accurate and consistent neutron cross-section data for multigroup neutronics calculations is not fully exploiting the available theoretical and experimental results; this has been so particularly since the introduction of on-line data handling techniques enabled experimenters to turn out vast quantities of numbers. This situation can be radically improved only by mechanizing the evaluation processes. Systems such as the SC1SRS tape will not only largely overcome the task of collecting data but will provide speedy access to it; by using computers and graph-plotting machines to tabulate and display this data, the labour of evaluation can be very greatly reduced. With some types of cross-section there is hope that by using modern curve-fitting techniques the actual evaluation and statistical accounting of the data can be performed automatically. Some areas where automatic evaluation would seem likely to succeed are specified and a discussion of the mathematical difficulties incurred, such as the elimination of anomalous data, is given. Particularly promising is the use of splines in the mechanized evaluation of data. Splines are the mathematical analogues of the draughtsman's spline used in drawing smooth curves. Their principal properties are the excellent approximations they give to the derivatives of a function; in contrast to conventional polynomial fitting, this feature ensures good interpolation and, when required, stable extrapolation. Various methods of using splines in data graduation and the problem of marrying these methods to standard statistical procedures are examined. The results of work done at AWRE with cubic splines on the mechanized evaluation of neutron scattering total cross-section and angular distribution data are presented. (author)

  12. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  13. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  14. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  15. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  16. Empirical continuation of the differential cross section

    International Nuclear Information System (INIS)

    Borbely, I.

    1978-12-01

    The theoretical basis as well as the practical methods of empirical continuation of the differential cross section into the nonphysical region of the cos theta variable are discussed. The equivalence of the different methods is proved. A physical applicability condition is given and the published applications are reviewed. In many cases the correctly applied procedure turns out to provide nonsignificant or even incorrect structure information which points to the necessity for careful and statistically complete analysis of the experimental data with a physical understanding of the analysed process. (author)

  17. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  18. Attempts to infer the neutron inelastic cross sections using charged particle induced reactions

    CERN Document Server

    Negret, A; Borcea, C; Bucurescu, D; Deleanu, D; Dessagne, Ph; Filipescu, D; Ghita, D; Glodariu, T; Kerveno, M; Marginean, N; Marginean, R; Mihai, C; Olacel, A; Pascu, S; Plompen, A J M; Sava, T; Stroe, L; Suliman, G

    2014-01-01

    Two experiments were performed at the Tandem accelerator of the Horia Hulubei National Institute for Physics and Nuclear Engineering, IFIN-HH with the purpose to investigate the possibility to use alpha-induced reactions for the calculation of neutron inelastic cross sections based on the Bohr hypothesis of the compound nucleus. A first experiment compared the gamma production cross sections excited in the $^{25}$Mg($\\alpha, n\\gamma$ )$^{28}$Si and the $^{28}Si(n, n′\\gamma)^{28}$Si reactions. A second measurement, supported by the ERINDA project, was dedicated to the measurement of $^{70}Zn(\\alpha, n\\gamma )^{73}$Ge cross sections with the purpose of inferring the neutron inelastic cross sections on $^{73}$Ge.

  19. Dynamical modeling of pulsed two-photon interference

    Science.gov (United States)

    Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-11-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong-Ou-Mandel, and Mach-Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers.

  20. Two-photon photoacoustics ultrasound measurement by a loss modulation technique

    Science.gov (United States)

    Lai, Yu-Hung; Chang, Chieh-Feng; Cheng, Yu-Hsiang; Sun, Chi-Kuang

    2013-03-01

    In this work, we investigated the principle of the two-photon absorption (TPA) detection with a loss modulation technique, and first demonstrated the existence of two-photon photoacoustics ultrasound excited by a femtosecond high repetition rate laser. By using the AO modulation with different modulation frequencies, we successfully create the beating of the light signal when the two arms of the beams are both spatial and temporal overlapping. The pulse train of the femtosecond laser causes the narrow band excitation, providing the frequency selectivity and sensitivity. Moreover, the pulse energy is no more than 15nJ/pulse, which is at least 3 orders of magnitude smaller than that of the nanosecond laser, and therefore prevents the thermal damage of the sample. With the help of lock-in detection and a low noise amplifier, we can separate the signal of two-photon absorption from one-photon absorption. We used an ultrasonic transducer to detect the response of the sample, and verified the existence of the two-photon photoacoustics ultrasound generating by the femtosecond laser. Several contrast agents, such as the black carbon solution, the fluorescence dye and the nano-particles, were used in the experiment. In the end, we demonstrated the application, two photo-acoustic imaging, which provides the high spatial resolution (<10μm) and large penetration depth (~1mm), to the simulated biological tissue. This is a milestone to develop the two-photon photoacoustics microscopy, which, in principle, has the great potential to achieve the in vitro and in vivo high resolution deep tissue imaging.

  1. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    Absorbing metamaterials (MM) offer the exciting possibility of near-unity absorption at specific resonance frequencies where the characteristic impedance Z(ω) is designed to match the free-space impedance and the imaginary part of the refractive index κ(ω) is as high as possible. Such materials...... have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  2. Rosenbluth Separation of the π0 Electroproduction Cross Section

    Science.gov (United States)

    Defurne, M.; Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J.-P.; de Jager, C. W.; de Leo, R.; Desnault, C.; Deur, A.; El Fassi, L.; Ent, R.; Flay, D.; Friend, M.; Fuchey, E.; Frullani, S.; Garibaldi, F.; Gaskell, D.; Giusa, A.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D.; Holmstrom, T.; Horn, T.; Huang, J.; Huang, M.; Huber, G. M.; Hyde, C. E.; Iqbal, S.; Itard, F.; Kang, Ho.; Kang, Hy.; Kelleher, A.; Keppel, C.; Koirala, S.; Korover, I.; LeRose, J. J.; Lindgren, R.; Long, E.; Magne, M.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Martí Jiménez-Argüello, A.; Meddi, F.; Meekins, D.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Muñoz Camacho, C.; Nadel-Turonski, P.; Nuruzzaman, N.; Paremuzyan, R.; Puckett, A.; Punjabi, V.; Qiang, Y.; Rakhman, A.; Rashad, M. N. H.; Riordan, S.; Roche, J.; Russo, G.; Sabatié, F.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Selvy, L.; Shahinyan, A.; Sirca, S.; Solvignon, P.; Sperduto, M. L.; Subedi, R.; Sulkosky, V.; Sutera, C.; Tobias, W. A.; Urciuoli, G. M.; Wang, D.; Wojtsekhowski, B.; Yao, H.; Ye, Z.; Zana, L.; Zhan, X.; Zhang, J.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Jefferson Lab Hall A Collaboration

    2016-12-01

    We present deeply virtual π0 electroproduction cross-section measurements at xB=0.36 and three different Q2 values ranging from 1.5 to 2 GeV 2 , obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term σL T. Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q2 regime.

  3. Near-UV photolysis cross sections of CH3OOH and HOCH2OOH determined via action spectroscopy

    Directory of Open Access Journals (Sweden)

    C. M. Roehl

    2007-01-01

    Full Text Available Knowledge of molecular photolysis cross sections is important for determining atmospheric lifetimes and fates of many species. A method and laser apparatus for measurement of these cross sections in the near-ultraviolet (UV region is described. The technique is based on action spectroscopy, where the yield of a photodissociation product (in this case OH is measured as a function of excitation energy. For compounds yielding OH, this method can be used to measure near-UV photodissociation cross section as low as 10−23 cm2 molecule−1. The method is applied to determine the photodissociation cross sections for methyl hydroperoxide (CH3OOH; MHP and hydroxymethyl hydroperoxide (HOCH2OOH; HMHP in the 305–365 nm wavelength range. The measured cross sections are in good agreement with previous measurements of absorption cross sections.

  4. Pion production cross sections and associated parameters

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1985-01-01

    Negative pions have been used for radiotherapy at the meson factories LAMPF (USA), SIN (Switzerland), and TRIUMF (Canada) and have been planned for use at new meson facilities under construction (USSR) and at proposed dedicated medical facilities. Providing therapeutically useful dose rates of pions requires a knowledge of the pion production cross sections as a function of primary proton energy (500 to 1000 MeV), pion energy (less than or equal to100 MeV), production angle, and target material. The current status of the data base in this area is presented including theoretical guidelines for extrapolation purposes. The target material and geometry, as well as the proton and pion beam parameters, will affect the electron (and muon) contamination in the beam which may have an important effect on both the LET characteristics of the dose and the dose distribution. In addition to cross-section data, channel characteristics such as length of pion trajectory, solid-angle acceptance, and momentum analysis will affect dose rate, distribution, and quality. Such considerations are briefly addressed in terms of existing facilities and proposed systems. 16 refs., 6 figs

  5. Calculation of cross sections for heavy isotopes

    International Nuclear Information System (INIS)

    Caner, M.

    1976-04-01

    In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240 Pu, 241 Pu, 242 Pu and 238 Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238 U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237 U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238 U secondary neutron energy distribution calculations. (B.G.)

  6. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  7. Cross section database for collision processes of helium atom with charged particles. 1. Electron impact processes

    International Nuclear Information System (INIS)

    Ralchenko, Yu.V.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de; Ralchenko, Yu.V.

    2000-10-01

    A comprehensive and critically assessed cross section database for the inelastic collision processes of ground state and excited helium atoms colliding with electrons, protons and multiply-charged ions has been prepared at the Data and Planning Center at NIFS. The present report describes the first part of the database containing the recommended data for electron impact excitation and ionization of neutral helium. An states (atomic terms) with n ≤ 4 are treated individually while the states with n > 4 are considered degenerate. For the processes involving transitions to and from n > 4 levels, suitable cross section scaling relations are presented. For a large number of electron impact transitions, both from the ground and excited states, new convergent close coupling (CCC) calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in a graphical form. (author)

  8. New evaluations of neutron cross sections for 14N and 16O

    International Nuclear Information System (INIS)

    Hale, G.M.; Young, P.G.; Chadwick, M.; Chen, Z.P.

    1991-01-01

    New evaluations of the neutron cross sections for 14 N and 16 O have been made for ENDF/B=VI. The evaluations are based at low energies on R-matrix analyses of reactions in the 15 N and 17 O systems, and at higher energies on GNASH calculations and experimental data evaluations, including covariance analyses. The 15 N system R-matrix analysis includes data from reactions among the channels n+ 14 N, p+ 14 C, and α+ 11 B at energies corresponding to excitations in 15 N below E x =13 MeV. The resonance structure of all cross sections in this energy range is fairly well reproduced. New data indicate a different J-value for the first resonance, however. Sub-threshold S-wave levels required to explain the large n+ 14 N total and elastic cross sections near zero energy give scattering lengths that differ significantly from the previous values. The R-matrix analysis of the 17 O system includes many new measurements of the n+ 16 O total cross section, done primarily at Oak Ridge and at Karlsruhe. The resonance structure of all the cross sections [total, (n,n), (n,α), and (α,α)] is well represented by the fit in the region below E n = 6.5 MeV. The new total cross section information gives different positions for some of the resonances and implies a different normalization for the (n,α) cross sections than that obtained in the ENDF/B-IV analysis. The evaluations at energies above the ranges of the R-matrix analyses incorporate results from a number of experiments performed since the previous ENDF/B evaluations. Especially important are new measurements of the total cross sections and differential elastic, and gamma-ray production cross sections

  9. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites

    International Nuclear Information System (INIS)

    Cox, Joel D; Singh, Mahi R; Antón, Miguel A; Carreño, Fernando

    2013-01-01

    Nonlinear two-photon absorption in a quantum dot–graphene nanoflake nanocomposite system has been investigated. An external laser field is applied to the nanocomposite to simultaneously observe two-photon processes in the quantum dot and excite localized surface plasmons in the graphene nanodisk. This resonance condition can be achieved by tuning the plasmon resonance frequency in the graphene nanoflake via electrostatic gating. It is found that the strong local field of the graphene plasmons can enhance and control nonlinear optical processes in the quantum dot. Specifically, we show that the two-photon absorption coefficient in the quantum dot can be switched between single- and double-peaked spectra by modifying the graphene–quantum dot separation. Two-photon processes in the quantum dot can also be switched on or off by slightly changing the gate voltage applied to the graphene. Our findings indicate that this system can be used for nonlinear optical applications such as all-optical switching, biosensing and signal processing. (paper)

  10. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.

    Science.gov (United States)

    Cox, Joel D; Singh, Mahi R; Antón, Miguel A; Carreño, Fernando

    2013-09-25

    Nonlinear two-photon absorption in a quantum dot-graphene nanoflake nanocomposite system has been investigated. An external laser field is applied to the nanocomposite to simultaneously observe two-photon processes in the quantum dot and excite localized surface plasmons in the graphene nanodisk. This resonance condition can be achieved by tuning the plasmon resonance frequency in the graphene nanoflake via electrostatic gating. It is found that the strong local field of the graphene plasmons can enhance and control nonlinear optical processes in the quantum dot. Specifically, we show that the two-photon absorption coefficient in the quantum dot can be switched between single- and double-peaked spectra by modifying the graphene-quantum dot separation. Two-photon processes in the quantum dot can also be switched on or off by slightly changing the gate voltage applied to the graphene. Our findings indicate that this system can be used for nonlinear optical applications such as all-optical switching, biosensing and signal processing.

  11. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    International Nuclear Information System (INIS)

    Nunzi, Dominique Jean-Michel

    1990-01-01

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author) [fr

  12. Two-photon quantum Rabi model with superconducting circuits

    Science.gov (United States)

    Felicetti, S.; Rossatto, D. Z.; Rico, E.; Solano, E.; Forn-Díaz, P.

    2018-01-01

    We propose a superconducting circuit to implement a two-photon quantum Rabi model in a solid-state device, where a qubit and a resonator are coupled by a two-photon interaction. We analyze the input-output relations for this circuit in the strong-coupling regime and find that fundamental quantum-optical phenomena are qualitatively modified. For instance, two-photon interactions are shown to yield a single- or two-photon blockade when a pumping field is either applied to the cavity mode or to the qubit, respectively. In addition, we derive an effective Hamiltonian for perturbative ultrastrong two-photon couplings in the dispersive regime, where two-photon interactions introduce a qubit-state-dependent Kerr term. Finally, we analyze the spectral collapse of the multiqubit two-photon quantum Rabi model and find a scaling of the critical coupling with the number of qubits. Using realistic parameters with the circuit proposed, three qubits are sufficient to reach the collapse point.

  13. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  14. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  15. Vibrationally inelastic integral cross sections for the scattering of He from H2

    International Nuclear Information System (INIS)

    Lin, C.S.; Secrest, D.

    1979-01-01

    Integral cross sections are presented for the scattering of He from H 2 on the Gordon--Secrest potential. Results are reported at four energies, two above the first excited vibrational state and two above the second excited vibrational state. The energies are high enough that the vibrational transition from the ground to the first vibrational state is significant. Enough channels were included in the calculation to ensure that the integral cross sections are correct to two or three figures for the model potential used. A discussion of convergence is included. These accurate cross sections serve as test points for approximate calculations of vibrational energy transfer. The results are compared with the coupled states approximation, effective potential calculations, the semiclassical strong-coupling correspondence principle, and classical trajectory calculations which had been reported earlier for this potential model by other workers. Results of the comparisons are discussed

  16. Valence shell photoionization energies and cross-sections of NF sub 3 and PF sub 3

    CERN Document Server

    Jürgensen, A

    2003-01-01

    Relative outer valence shell ionization potentials and cross-sections were determined for the isostructural, Group 15, trifluorides NF sub 3 and PF sub 3 in the gas phase using synchrotron radiation. Excitation photon energies ranged from 70 to 160 eV. The experimental spectra were assigned and cross-sections analyzed with the aid of both MS-X alpha and ab initio calculations. Spectral differences in peak energies and relative intensities are related to structural and electronic differences between these two fluoride molecules. Valence shell ionization potentials were compared to calculated values obtained by several different methods. The partial photoionization cross-sections for each orbital were obtained as a function of excitation energy and compared to theoretical results obtained with the X alpha method.

  17. Topological supersymmetric structure of hadron cross sections

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Ouvry, S.

    1980-12-01

    Recently a way of fully implementing unitarity in the framework of a Dual Topological Unitarization theory, including not only mesons but also baryons, was found. This theory consists in the topological description of hadron interactions involving confined quarks in terms of two 2-dimensional surfaces (a closed 'quantum' surface and a bounded 'classical' surface). We show that this description directly leads, at the zeroth order of the topological expansion, to certain relations between hadron cross-sections, in nice agreement with experimental data. A new topological suppression mechanism is shown to play an important dynamical role. We also point out a new topological supersymmetry property, which leads to realistic experimental consequences. A possible topological origin of the rho and ω universality relations emerges as a by-product of our study

  18. Partial cross sections in H- photodetachment

    International Nuclear Information System (INIS)

    Halka, M.

    1993-04-01

    This dissertation reports experimental measurements of partial decay cross sections in the H - photodetachment spectrum. Observed decays of the 1 P 0 H -** (n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H - beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame

  19. Angle-averaged Compton cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.

  20. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  1. Differential cross section of atomic hydrogen photoionization

    International Nuclear Information System (INIS)

    Kondratovich, V.D.; Ostrovskij, V.N.

    1986-01-01

    Differential cross-section of atomic hydrogen photoeffect in external electric field was investigated in semiclassical approximation. Interference was described. It occurred due to the fact that infinite number of photoelectron trajectories leads to any point of classically accessible motion region. Interference picture can reach macroscopic sizes. The picture is determined by location of function nodes, describing finite electron motion along one of parabolic coordinates. The squares of external picture rings are determined only by electric field intensity in the general case at rather high energies. Quantum expression for photocurrent density was obtained using Green function in superposition of Coulomb and uniform field as well as semiclassical approximation. Possible applications of macroscopic interference picture to specification of atom ionization potentials, selective detection of atoms or particular molecules, as well as weak magnetic field and observation of Aaronov-Bom effect are discussed

  2. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  3. ISSUES IN NEUTRON CROSS SECTION COVARIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M.; Oblozinsky,P.

    2010-04-30

    We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.

  4. Total Neutron Cross Section Instrumentation at UML

    Science.gov (United States)

    Seo, P.-N.; Egan, J. J.; Kegel, G. H. R.; Mittler, A.; Tedesco, J.

    1997-10-01

    The UML type CN Van de Graaff accelerator incorporates a terminal pulsing system operating at 5 MHz. Proton bursts are Mobley-compressed to subnanosecond durations. When used with a thick metallic Li target, a pulsed pseudo-white neutron spectrum is produced suitable for neutron total cross section measurements. The spectrum is characterized by its sharp high energy cut-off, e.g. at 500 keV. Precautions are necessary because neutrons of different energies are recorded in the same time bin if their flight times differ by 200 ns. Pulse height discrimination may be used to eliminate lower energy neutrons; this is inefficient because higher energy neutron signals are also eliminated, to some degree. Two-dimensional data acquisition is the preferred approach. We review two systems of this type and we describe the system in use at UML.

  5. Angle-averaged Compton cross sections

    International Nuclear Information System (INIS)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV

  6. Sudakov resummation of multiparton QCD cross sections

    CERN Document Server

    Bonciani, R; Mangano, Michelangelo L; Nason, P

    2003-01-01

    We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Sudakov-type logarithms in processes with an arbirtrary number of hard-scattering partons. These results document the formulae used by the authors in several previous phenomenological studies. The resummation formulae presented here, which are valid for phase-space factorizable observables, determine the resummation correction in a process-independent fashion. All process dependence is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov weights associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell--Yan and prompt-photon production.

  7. Chronic malnutrition: a cross-section analysis

    Directory of Open Access Journals (Sweden)

    Emely Beatriz García González

    2014-01-01

    Full Text Available ABSTRACT Introduction: The objective of the study was to determine the main causes of chronic malnutrition worldwide. Materials and Methods: A cross-sectional study was employed to analyze the main determinants of chronic malnutrition in a sample of 86 countries. The variables used are based on the UNICEF conceptual framework of malnutrition. This framework classifies the determinants of malnutrition in three main causes: basic, immediate, and underlying. Findings: Droughts, floods, and extreme temperatures, and GDP per capita are the main basic determinants of malnutrition in the sample of countries. In addition one underlying determinant had a major impact in the prevalence of malnutrition: improved sanitation facilities. Conclusions: The findings of this study demonstrated that the variables within the basic and underlying cause classification are the ones with a greater impact on chronic malnutrition.

  8. Chronic malnutrition: a cross-section analysis

    Directory of Open Access Journals (Sweden)

    Emely Beatriz García González

    2014-01-01

    Full Text Available Introduction: The objective of the study was to determine the main causes of chronic malnutrition worldwide. Materials and Methods: A cross-sectional study was employed to analyze the main determinants of chronic malnutrition in a sample of 86 countries. The variables used are based on the UNICEF conceptual framework of malnutrition. This framework classifies the determinants of malnutrition in three main causes: basic, immediate, and underlying. Findings: Droughts, floods, and extreme temperatures, and GDP per capita are the main basic determinants of malnutrition in the sample of countries. In addition one underlying determinant had a major impact in the prevalence of malnutrition: improved sanitation facilities. Conclusions: The findings of this study demonstrated that the variables within the basic and underlying cause classification are the ones with a greater impact on chronic malnutrition.

  9. Reaction cross section for Ne isotopes

    International Nuclear Information System (INIS)

    Panda, R.N.; Sahu, B.K.; Patra, S.K.

    2012-01-01

    In the present contribution, first the bulk properties are calculated, such as binding energy (BE), root mean square charge radius r ch , matter radius r m and quadrupole deformation parameter β 2 for 18-32 Ne isotopes in the Relativistic mean field (RMF) and effective field theory motivated RMF (E-RMF) formalisms . Then the total nuclear reaction cross section σR is analyzes for the scattering of 20 Ne and 28-32 Ne from a 12 C target at 240 MeV/nucleon by using the RMF model. Thus the objective of the present study is to calculate the bulk properties as well as a systematic analysis of σR over a range of neutron rich nuclei in the frame work of Glauber model

  10. Whispering gallery modes in two-photon fluorescence from spherical DCM dye microresonators

    Science.gov (United States)

    Mamonov, Evgeniy A.; Maydykovskiy, Anton I.; Mitetelo, Nikolai V.; Venkatakrishnarao, Dasari; Chandrasekar, Rajadurai; Murzina, Tatyana V.

    2018-03-01

    Organic microstructures are well known for their resonator properties, which bring about whispering gallery mode (WGM) excitation. Here we report on experimental evidence of the WGM in the two-photon fluorescence (TPF) of DCM dye microspheres made using the self-assembly method. The WGM excitation accompanying the overall TPF in the spectral range from 530\\div640 nm demonstrated a quality factor of approximately 102 for spheres that were several microns in diameter. The power dependence of the TPF intensity proved the second order nature of the interaction process involved.

  11. Neutron-induced cross-sections via the surrogate method

    International Nuclear Information System (INIS)

    Boutoux, G.

    2011-11-01

    The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma decay probabilities for 176 Lu and 173 Yb by using the surrogate reactions 174 Yb( 3 He,pγ) 176 Lu * and 174 Yb( 3 He,αγ) 173 Yb * , respectively, and compare them with the well-known corresponding probabilities obtained in the 175 Lu(n,γ) and 172 Yb(n,γ) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method. This work is organised in the following way: in chapter 1, the theoretical aspects related to the surrogate method will be introduced. The validity of the surrogate method will be investigated by means of statistical model calculations. In chapter 2, a review on

  12. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  13. (e, 3e) Differential cross section of He (2 S) and He (2 S)

    Indian Academy of Sciences (India)

    Keywords. Angular distribution; differential cross section; electronic excitation; ionization of molecules ... In this paper we study (e 3e) process on metastable para-helium He (21S) and ortho- helium He (23S) and ..... Acknowledgements. This work was supported by the Department of Science and Technology, Government of.

  14. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  15. Results on two-photon interactions from Mark II at SPEAR

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, G.S.; Alam, M.S.; Blocker, C.A.

    1979-10-01

    Preliminary results on two-photon interactions from the SLAC-LBL Mark II magnetic detector at SPEAR are presented. The cross section for eta' production by the reaction e/sup +/e/sup -/ ..-->.. e/sup +/e/sup -/ eta' has been measured over the beam energy range from 2 to 4 GeV. The radiative width GAMMA/sub ..gamma gamma../(eta') has been determined to be 5.8 +- 1.1 keV (+- 20% systematic uncertainty). Upper limits on the radiative widths of the f(1270), and A/sub 2/(1310) and f'(1515) mesons have been determined.

  16. Observation of the two-photon decay of a light penetrating particle

    Science.gov (United States)

    Faissner, H.; Frenzel, E.; Heinrigs, W.; Preussger, A.; Samm, D.; Samm, U.

    1981-07-01

    Coincident two-photon events, emerging from a 2 m long decay region, and pointing back to the SIN 590 MeV proton beam dump were detected in a thin-foil optical spark chamber. There was a significant excess of photons at small angles ( Eγ1 Eγ2 front of the decay region, but vanished with the wall put at its end. Presumably a light boson χ 0 comes from the beam dump, penetrates the shielding, and decays: χ0 → 2 γ The measured rate of (14.5 ± 5.0) events in 129 Coulomb fixes a combination of production cross section and life-time. If the new boson χ 0 was the axion, one can solve for the Higgs parameter X = 3.0 ± 0.3, and infer τa ≈ 7 ms, and ma = (250 ± 25) keV.

  17. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M. C.; Botha, J. R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Carrington, P. J. [Department of Electronic and Electrical Engineering, University College London, London (United Kingdom); Krier, A. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  18. Development of Novel Two-Photon Absorbing Chromophores

    National Research Council Canada - National Science Library

    Cooper, Thomas M; Heinrichs, James; Tan, Loon-Seng; Urbas, Augustine M; Fleitz, Paul A; Rogers, Joy E; Slagle, Jonathan E; McLean, Daniel G; Sutherland, Richard L; Brant, Mark

    2006-01-01

    There has been much interest in the development of two-photon absorbing materials and many efforts to understand the nonlinear absorption properties of these dyes, but this area is still not well understood...

  19. Standard Model Higgs decay for two Photons in CMS

    CERN Multimedia

    Daniel Denegri

    2000-01-01

    Simulated two-photon mass distribution for SM Higgs and expected background in the CMS PbW04 crystal calorimeter for an integrated luminosity of 10 . 5 pb-1, with detailed simulation of calorimeter response.

  20. Electromagnetically induced two-photon transparency in rubidium atoms

    International Nuclear Information System (INIS)

    Wang, D.; Gao, J.Y.; Xu, J.H.; Bassani, F.; La Rocca, G.C.; Salerno Univ.

    2001-01-01

    We present an experimental demonstration of electromagnetically induced two-photon transparency (EITT) in room temperature rubidium vapor. The 8S 1/2 to 5P 1/2 fluorescence is used to monitor the 5S 1/2 (F = 3) to 8S 1/2 (F = 3) two-photon absorption near resonance with the intermediate state 5P 3/2 . A controlling pump laser beam is employed to coherently couple the 5P 3/2 and 5D 5/2 states, thus producing two dressed intermediate states which give rise to destructive interference in the two-photon transition. An induced two-photon transparency of about 80% has been obtained at resonance; our experimental findings are in good agreement with the general theory of Agarwal et al. (1996), when the appropriate spectroscopic parameters are used. (orig.)

  1. Photoneutron cross sections measurements in 13C with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato; Carbonari, Artur W.; Terremoto, Luis A.A.; Goncalez, Odair L.

    2007-01-01

    Photoneutrons cross sections measurements of 13 C have been obtained in energy interval between 5,3 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 - 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (2MW) research reactor. The sample have been irradiated inside a 4p geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A methodology for unfolding the set of experimental compound cross sections, have been used in order to obtain the cross sections at specific excitation energy values (principal gamma lines energies of the capture targets). The cross sections were compared with experimental data, reported by other authors, using different gamma-ray sources. A good agreement was observed between in this work and reported in the literature. (author)

  2. Photoneutron cross sections measurements in {sup 13}C with thermal neutron capture gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Renato; Carbonari, Artur W.; Terremoto, Luis A.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: rsemmler@ipen.br; carbonar@ipen.br; laaterre@ipen.br; Goncalez, Odair L. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mail: odairl@ieav.cta.br

    2007-07-01

    Photoneutrons cross sections measurements of {sup 13}C have been obtained in energy interval between 5,3 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 - 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (2MW) research reactor. The sample have been irradiated inside a 4p geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A methodology for unfolding the set of experimental compound cross sections, have been used in order to obtain the cross sections at specific excitation energy values (principal gamma lines energies of the capture targets). The cross sections were compared with experimental data, reported by other authors, using different gamma-ray sources. A good agreement was observed between in this work and reported in the literature. (author)

  3. Malachite green derivatives for two-photon RNA detection.

    Science.gov (United States)

    Lux, Jacques; Peña, Eduardo José; Bolze, Frédéric; Heinlein, Manfred; Nicoud, Jean-François

    2012-05-29

    The design, preparation and characterisation of a library of malachite green (MG) derivatives for two-photon RNA labelling is described. Some of these MG derivatives exhibit an increased affinity for an MG-aptamer, as well as improved two-photon sensitivity when compared to the classical malachite green chloride. The underlying mechanisms and potential benefits for in vivo RNA visualisation are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  5. Two-photon photovoltaic effect in gallium arsenide.

    Science.gov (United States)

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  6. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  7. Above-threshold structure in {sup 244}Cm neutron-induced fission cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)

  8. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xudong; Zhang, Xin; Wang, Shuangqing; Li, Shayu [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Rui, E-mail: hurui@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yi, E-mail: yili@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Guoqiang, E-mail: gqyang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    Highlights: • A novel “turn-on” two-photon fluorescent probe based on a π-conjugated triarylboron luminogen was designed and synthesized. • Fast, selective and sensitive detection of biothiols in 100% aqueous solution by simply loaded on a nanogel. • Single-photon and two-photon fluorescent bioimaging of biothiols in NIH/3T3 fibroblasts. - Abstract: A novel “turn-on” two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic{sup ®} F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min{sup −1}, and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.

  9. Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy.

    Science.gov (United States)

    Huang, Huaiyi; Yu, Bole; Zhang, Pingyu; Huang, Juanjuan; Chen, Yu; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-11-16

    Photodynamic therapy (PDT) is a noninvasive medical technique that has received increasing attention over the last years and been applied for the treatment of certain types of cancer. However, the currently clinically used PDT agents have several limitations, such as low water solubility, poor photostability, and limited selectivity towards cancer cells, aside from having very low two-photon cross-sections around 800 nm, which limits their potential use in TP-PDT. To tackle these drawbacks, three highly positively charged ruthenium(II) polypyridyl complexes were synthesized. These complexes selectively localize in the lysosomes, an ideal localization for PDT purposes. One of these complexes showed an impressive phototoxicity index upon irradiation at 800 nm in 3D HeLa multicellular tumor spheroids and thus holds great promise for applications in two-photon photodynamic therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.

    Science.gov (United States)

    Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo

    2017-07-12

    Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.

  11. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    Science.gov (United States)

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  12. Functional polymers by two-photon 3D lithography

    Energy Technology Data Exchange (ETDEWEB)

    Infuehr, Robert [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna (Austria) and Institute of Applied Synthetic Chemistry, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Pucher, Niklas; Heller, Christian [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna (Austria); Institute of Applied Synthetic Chemistry, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Lichtenegger, Helga [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna (Austria); Liska, Robert [Institute of Applied Synthetic Chemistry, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Schmidt, Volker; Kuna, Ladislav; Haase, Anja [Institute of Nanostructured Materials and Photonics, Joanneum Research, Franz-Pichler-Strasse 30, 8160 Weiz (Austria); Stampfl, Juergen [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, 1040 Vienna (Austria)

    2007-12-15

    In the presented work, two-photon 3D lithography and selective single-photon photopolymerization in a prefabricated polydimethylsiloxane matrix is presented as an approach with potential applicability of waveguide writing in 3D by two-photon polymerization. Photopolymers based on acrylate chemistry were used in order to evaluate the optical capabilities of the available two-photon system. Several photoinitiators, tailored for two-photon absorption, were tested in a mixture of trimethylolpropane triacrylate and ethoxylated trimethylolpropane triacrylate. Best results were obtained with a recently synthesized diynone-based photoinitiator. Feature resolutions in the range of 300 nm were achieved. Due to the cross-conjugated nature of that donor-{pi}-acceptor-{pi}-donor system a high two-photon absorption activity was achieved. Therefore, a resin mixture containing only 0.025 wt% of photoinitiator was practical for structuring by two-photon polymerization. The required initiator content was therefore a factor of 100 lower than in traditional one-photon lithography. The aim of the second part of this work was to fabricate optical waveguides by selectively irradiating a polymer network, which was swollen by a monomer. The monomer was polymerized by conventional single-photon polymerization and the uncured monomer was removed by evaporation at elevated temperatures. This treatment leads to a local change in refractive index. Refractive index changes in the range of {delta}n = 0.01 ({delta}n/n = 0.7%) were achieved, which is sufficient for structuring waveguides for optoelectronic applications.

  13. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    Science.gov (United States)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  14. Double-Tag Events in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q2_1 and Q2_2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W2_gammagamma/(Q_1Q_2)), for an average photon virtuality = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 <= Y <= 5. An excess is observed in the interval 5 < Y <= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

  15. Polarised structure functions and two-photon physics at Super-B

    Energy Technology Data Exchange (ETDEWEB)

    Shore, G.M. [Swansea University, Department of Physics, Swansea (United Kingdom)

    2013-03-15

    The potential of polarised, high-luminosity, moderate-energy e{sup +}e{sup -} colliders for performing unique measurements in fundamental QCD is described, with particular reference to the proposed Super-B facility. An extensive programme of two-photon physics is proposed, focusing on measurements of the polarised photon structure functions g{sub 1}{sup {gamma}} and g{sub 2}{sup {gamma}} and pseudoscalar meson transition functions. The experimental requirements for Super-B to make the first measurement of the first moment sum rule for the off-shell polarised photon structure function g{sub 1}{sup {gamma}}(x, Q{sup 2}; K{sup 2}) are described in detail. Cross-section formulae and experimental issues for investigations of NLO and higher-twist effects in g{sub 1}{sup {gamma}} and g{sub 2}{sup {gamma}} together with exclusive two-photon meson production are presented. This programme of QCD studies complements the core mission of Super-B as a high-luminosity B factory investigating flavour physics and rare processes signalling new physics beyond the standard model. (orig.)

  16. Mass and Cross Section Measurements of light-flavored Squarks at CLIC

    CERN Document Server

    WEUSTE, L.

    2011-01-01

    We present a study of the prospects for the measurement of TeV-scale light-flavored right-squark masses and and the production cross sections at a 3 TeV e+e- collider based on CLIC technology. The analysis, performed in the framework of the CLIC Conceptual Design Report, is based on full Geant4 simulations of the CLIC ILD detector concept, including standard model physics background and machine related hadronic background from two-photon processes. The events were reconstructed using particle flow event reconstruction, and the mass and cross sections were obtained from a template fit built from generator-level simulations with smearing to parametrize the detector response. For an integrated luminosity of 2 ab^-1, a statistical precision of 5.9 GeV, corresponding to 0.52%, was obtained for unseparated first and second generation right squarks. For the combined cross section, a precision of 0.07 fb, corresponding to 5%, was obtained.

  17. Two-photon-induced x-ray emission in neon atoms

    International Nuclear Information System (INIS)

    Sun Yuping; Wang Chuankui; Rinkevicius, Zilvinas; Gel'mukhanov, Faris; Carniato, Stephane; Simon, Marc; Taieeb, Richard

    2010-01-01

    We investigated the resonant x-ray emission from a neon atom induced by the two-photon population of a double-core-hole excited state. Two qualitatively different schemes of this process are studied: The first one involves an off-resonant intermediate single-core-hole state; the second scheme passes through a resonant core-ionized intermediate state. The numerical simulations of the resonant x-ray emission performed for different peak intensities and pulse durations show significant population of the double-core-hole final states. Therefore, rather strong two-photon absorption-induced x-ray emission is predicted for both studied schemes. Thus, high counting rates in experimental measurements are expected.

  18. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    Science.gov (United States)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  19. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses.

    Science.gov (United States)

    Pillai, Rajesh S; Boudoux, Caroline; Labroille, Guillaume; Olivier, Nicolas; Veilleux, Israel; Farge, Emmanuel; Joffre, Manuel; Beaurepaire, Emmanuel

    2009-07-20

    Coherent control can be used to selectively enhance or cancel concurrent multiphoton processes, and has been suggested as a means to achieve nonlinear microscopy of multiple signals. Here we report multiplexed two-photon imaging in vivo with fast pixel rates and micrometer resolution. We control broadband laser pulses with a shaping scheme combining diffraction on an optically-addressed spatial light modulator and a scanning mirror allowing to switch between programmable shapes at kiloHertz rates. Using coherent control of the two-photon excited fluorescence, it was possible to perform selective microscopy of GFP and endogenous fluorescence in developing Drosophila embryos. This study establishes that broadband pulse shaping is a viable means for achieving multiplexed nonlinear imaging of biological tissues.

  20. Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser

    DEFF Research Database (Denmark)

    Capua, Amir; Kami, Ouri; Eisenstein, Gadi

    2012-01-01

    We demonstrate a novel laser oscillation scheme in an InAs / InP wire-like quantum dash gain medium. A short optical pulse excites carriers by two photon absorption which relax to the energy levels providing gain thereby enabling laser oscillations. The nonlinear dynamic interaction is analyzed a...

  1. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    Science.gov (United States)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  2. Search for the Standard Model Higgs boson in the two photon decay channel with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek

    2013-07-16

    A search for the Standard Model Higgs boson in the two photon decay channel is reported, using 1.08 fb^-1 of proton-proton collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS detector. No significant excess is observed in the investigated mass range of 110-150 GeV. Upper limits on the cross-section times branching ratio of between 2.0 and 5.8 times the Standard Model prediction are derived for this mass range.

  3. Resonance capture cross section of 207Pb

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  4. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given

  5. Partial cross sections of helium satellites at medium photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Wehlitz, R.; Sellin, I.A. [Univ. of Tennessee, Knoxville, TN (United States); Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  6. Partial cross sections of helium satellites at medium photon energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-01-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He + nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al

  7. Proton induced nuclide production cross section by HETC-3STEP/FRG-R

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan); Yoshizawa, Nobuaki; Takada, Hiroshi

    1998-03-01

    High Energy Transport Code (HETC) based on the intranuclear-cascade-evaporation model is modified to calculate the fragmentation cross section. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The level density parameter depending on the excitation energy is taken in the evaporation process. The fragmentation reaction is incorporated into HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG-R) reproduces experimental fragment yields to a reasonable degree. (author)

  8. Alignment effects in two-photon double ionization of H2 in femtosecond xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2011-01-01

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schroedinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  9. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  10. Cross-Sections Classes of Structural Steel Members

    Directory of Open Access Journals (Sweden)

    Daniela Preda

    2007-01-01

    Full Text Available Cross-sectional classification, introduced in EUROCODE 3, is destined to comply with any type of cross-section, disregarding the slenderness of cross-sectional wall plates. From practical reasons, this classification refers to cross-sections considered as a general matter. But in the same cross-section, the plates loaded with compression stresses, thus exposed to local buckling can belong to different classes of sections depending upon the loads acting on that cross-section. Furthermore, the stress diagrams corresponding to these cross-sectional plates are themselves closely related to applied loads and they influence directly the degrees of sensitivity to local buckling. On the other hand, the different degrees of sensitivity to local buckling depend on the slenderness of cross-sectional plates. A cross-section is normally classified by quoting the highest (least favourable class of its compression elements. The strength calculation (and general stability of structural members depends on the cross-section classes.

  11. Vibrational state-resolved differential cross sections for the D + H2 → DH + H reaction

    International Nuclear Information System (INIS)

    Continetti, R.E.

    1989-11-01

    In this thesis, crossed-molecular-beams studies of the reaction D + H 2 → DH + H at collision energies of 0.53 and 1.01 eV are reported. Chapter 1 provides a survey of important experimental and theoretical studies on the dynamics of the hydrogen exchange reaction. Chapter 2 discusses the development of the excimer-laser photolysis D atom beam source that was used in these studies and preliminary experiments on the D + H 2 reaction. In Chapter 3, the differential cross section measurements are presented and compared to recent theoretical predictions. The measured differential cross sections for rotationally excited DH products showed significant deviations from recent quantum scattering calculations, in the first detailed comparison of experimental and theoretical differential cross sections. These results indicate that further work on the H 3 potential energy surface, particularly the bending potential, is in order

  12. Theoretical study of cross sections of proton-induced reactions on cobalt

    Directory of Open Access Journals (Sweden)

    Mustafa Yiğit

    2018-04-01

    Full Text Available Nuclear fusion may be among the strongest sustainable ways to replace fossil fuels because it does not contribute to acid rain or global warming. In this context, activated cobalt materials in corrosion products for fusion energy are significant in determination of dose levels during maintenance after a coolant leak in a nuclear fusion reactor. Therefore, cross-section studies on cobalt material are very important for fusion reactor design. In this article, the excitation functions of some nuclear reaction channels induced by proton particles on 59Co structural material were predicted using different models. The nuclear level densities were calculated using different choices of available level density models in ALICE/ASH code. Finally, the newly calculated cross sections for the investigated nuclear reactions are compared with the experimental values and TENDL data based on TALYS nuclear code. Keywords: Cobalt, Nuclear Structural Materials, Reaction Cross Section, TENDL Database

  13. Double Differential Cross-Sections for Electron Impact Ionization of Atoms and Molecules

    Directory of Open Access Journals (Sweden)

    Mevlut Dogan

    2013-01-01

    Full Text Available The single ionizing collision between an incident electron and an atom/molecule ends up two kinds of outgoing electrons called scattered and ejected electrons. As features of electron impact ionization, these two types of electrons are indistinguishable. Double differential cross-sections (DDCS can be obtained by measuring the energy and angular distributions of one of the two outgoing electrons with an electron analyzer. We used He, Ar, H2, and CH4 targets in order to understand the ionization mechanisms of atomic and molecular systems. We measured differential cross-sections (DCS and double differential cross-sections at 250 eV electron impact energy. The elastic DCSs were measured for He, Ar, H2, and CH4, whereas the inelastic DCSs of He were obtained for 21P excitation level for 200 eV impact electron energy.

  14. Interference and complementarity for two-photon hybrid entangled states

    International Nuclear Information System (INIS)

    Nogueira, W. A. T.; Santibanez, M.; Delgado, A.; Saavedra, C.; Neves, L.; Lima, G.; Padua, S.

    2010-01-01

    In this work we generate two-photon hybrid entangled states (HESs), where the polarization of one photon is entangled with the transverse spatial degree of freedom of the second photon. The photon pair is created by parametric down-conversion in a polarization-entangled state. A birefringent double-slit couples the polarization and spatial degrees of freedom of these photons, and finally, suitable spatial and polarization projections generate the HES. We investigate some interesting aspects of the two-photon hybrid interference and present this study in the context of the complementarity relation that exists between the visibility of the one-photon and that of the two-photon interference patterns.

  15. Targeted two-photon photodynamic therapy for the treatment of subcutaneous tumors

    Science.gov (United States)

    Spangler, Charles W.; Starkey, Jean R.; Meng, Fanqing; Gong, Aijun; Drobizhev, Mikhail; Rebane, Aleksander; Moss, B.

    2005-04-01

    Photodynamic therapy (PDT) has developed into a mature technology over the past several years, and is currently being exploited for the treatment of a variety of cancerous tumors, and more recently for age-related wet macular degeneration of the eye. However, there are still some unresolved problems with PDT that are retarding a more general acceptance in clinical settings, and thus, for the most part, the treatment of most cancerous rumors still involves some combination of invasive surgery, chemotherapy and radiation treatment, particularly subcutaneous tumors. Currently approved PDT agents are activated in the Visible portion of the spectrum below 700 nm, Laser light in this spectral region cannot penetrate the skin more than a few millimeters, and it would be more desirable if PDT could be initiated deep in the Near-infrared (NIR) in the tissue transparency window (700-1000 nm). MPA Technologies, Inc. and Rasiris, Inc. have been co-developing new porphyrin PDT designed to have greatly enhanced intrinsic two-photon cross-sections (>800 GM units) whose two-photon absorption maxima lie deep in the tissue transparency window (ca. 780-850 nm), and have solubility characteristics that would allow for direct IV injection into animal models. Classical PDT also suffers from the lengthy time necessary for accumulation at the tumor site, a relative lack of discrimination between healthy and diseased tissue, particularly at the tumor margins, and difficulty in clearing from the system in a reasonable amount of time post-PDT. We have recently discovered a new design paradigm for the delivery of our two-photon activated PDT agents by incorporating the porphyrins into a triad ensemble that includes a small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR one-photon imaging agent that allows the tracking of the triad in terms of accumulation and clearance rates. We are currently using these new two-photon PDT triads in efficacy

  16. Validity of the independent-processes approximation for resonance structures in electron-ion scattering cross sections

    International Nuclear Information System (INIS)

    Badnell, N.R.; Pindzola, M.S.; Griffin, D.C.

    1991-01-01

    The total inelastic cross section for electron-ion scattering may be found in the independent-processes approximation by adding the resonant cross section to the nonresonant background cross section. We study the validity of this approximation for electron excitation of multiply charged ions. The resonant-excitation cross section is calculated independently using distorted waves for various Li-like and Na-like ions using (N+1)-electron atomic-structure methods previously developed for the calculation of dielectronic-recombination cross sections. To check the effects of interference between the two scattering processes, we also carry out detailed close-coupling calculations for the same atomic ions using the R-matrix method. For low ionization stages, interference effects manifest themselves sometimes as strong window features in the close-coupling cross section, which are not present in the independent-processes cross section. For higher ionization stages, however, the resonance features found in the independent-processes approximation are found to be in good agreement with the close-coupling results

  17. Quantitative photoacoustic imaging of two-photon absorption

    Science.gov (United States)

    Bardsley, Patrick; Ren, Kui; Zhang, Rongting

    2018-01-01

    Photoacoustic tomography (PAT) is a hybrid imaging modality where we intend to reconstruct optical properties of heterogeneous media from measured ultrasound signals generated by the photoacoustic effect. In recent years, there have been considerable interests in using PAT to image two-photon absorption, in addition to the usual single-photon absorption, inside diffusive media. We present a mathematical model for quantitative image reconstruction in two-photon photoacoustic tomography (TP-PAT). We propose a computational strategy for the reconstruction of the optical absorption coefficients and provide some numerical evidences based on synthetic photoacoustic acoustic data to demonstrate the feasibility of quantitative reconstructions in TP-PAT.

  18. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun

    2011-01-01

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s 2 1 S 0 ) to the upper state (6s7s 1 S 0 ), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p 1 P 1 ). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s 2 3 P 1 ). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10 6 photons/s detected at a solid angle of 0.01 sr.

  19. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun [Korea University, Seoul (Korea, Republic of)

    2011-10-15

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s{sup 2} {sup 1}S{sub 0}) to the upper state (6s7s {sup 1}S{sub 0}), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p {sup 1}P{sub 1}). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s{sup 2} {sup 3}P{sub 1}). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10{sup 6} photons/s detected at a solid angle of 0.01 sr.

  20. Near-UV photolysis cross sections of CH_3OOH and HOCH_2OOH determined via action spectroscopy

    OpenAIRE

    Roehl, C. M.; Marka, Z.; Fry, J. L.; Wennberg, P. O.

    2006-01-01

    Knowledge of molecular photolysis cross sections is important for determining atmospheric lifetimes and fates of many species. A method and laser apparatus for measurement of these cross sections in the near-ultraviolet (UV) region is described. The technique is based on action spectroscopy, where the yield of a photodissociation product (in this case OH) is measured as a function of excitation energy. For compounds yielding OH, this method can be used to measure near-UV pho...

  1. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    OpenAIRE

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. Th...

  2. Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, Marine [UMR 5253 CNRS-UM2-ENSCM-UM1, Institut Charles Gerhardt Montpellier (France); Gary-Bobo, Magali [Faculte de Pharmacie, Universite Montpellier 1, Universite Montpellier 2, Institut des Biomolecules Max Mousseron UMR 5247 CNRS (France); Lartigue, Lenaiec; Brevet, David [UMR 5253 CNRS-UM2-ENSCM-UM1, Institut Charles Gerhardt Montpellier (France); Morere, Alain; Garcia, Marcel [Faculte de Pharmacie, Universite Montpellier 1, Universite Montpellier 2, Institut des Biomolecules Max Mousseron UMR 5247 CNRS (France); Maillard, Philippe [Universite Paris-Sud, UMR 176 CNRS, Institut Curie (France); Raehm, Laurence; Guari, Yannick, E-mail: yannick.guari@um2.fr; Larionova, Joulia; Durand, Jean-Olivier, E-mail: durand@univ-montp2.fr [UMR 5253 CNRS-UM2-ENSCM-UM1, Institut Charles Gerhardt Montpellier (France); Mongin, Olivier [Universite de Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226 (France); Blanchard-Desce, Mireille [Universite Bordeaux, Institut des Sciences Moleculaires, UMR CNRS 5255 (France)

    2013-05-15

    An original fluorophore engineered for two-photon excitation or a porphyrin derivative were entrapped in the silica shell of magnetic porous silica nanoparticles during the synthesis of the silica moiety without damaging the structure of the organic part. The mild conditions involved allowed obtaining microporous or mesoporous silica magnetic nanoparticles, respectively. Mannose was grafted on the surface of the nanoparticles to target MCF-7 breast cancer cells. The studies of magnetic properties of these hybrid nanoparticles show that they present a blocking temperature at 190 K. The nano-objects designed with the two-photon fluorophore were efficient for two-photon imaging of MCF-7 cancer cells, whereas the nano-objects with the photosensitizer efficiently killed cancer cells. The presence of the mannose moiety was demonstrated to improve both imaging and therapy properties.

  3. Experiments on Antiprotons: Cross Sections of Complex Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Jr., Lewis E.; Chamberlain, Owen; Keller, Donald V.; Mermod, Ronald; Rogers, Ernest H.; Steiner, Herbert M.; Wiegand, Clyde

    1957-07-22

    Experiments are described that have been designed to measure separately annihilation and reaction cross sections for antiprotons of approximately 450 MeV on oxygen, copper, silver, and lead. A new and more luminous spectrograph has been built for this experiment. The antiproton cross sections a r e compared with total proton cross sections, and are found to be larger by a factor varying from 1.74 for oxygen to 1.39 for silver. Calculations based on the optical model give a reasonable connection between these cross sections and the 6-p and 6-n cross sections. Finally, the information available on antiproton production cross sections is collected. There are indications that a free nucleon is several times as effective as a bound one for producing antiprotons.

  4. Fast-neutron total and scattering cross sections of Cr, Fe and 60Ni

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1979-01-01

    Neutron total cross sections are measured with broad resolutions (50 to 100 keV) from approx. = 1.0 to 4.5 MeV at intervals of less than or equal to 50 keV and to accuracies of approx. = 1% using a variety of sample thicknesses. Differential elastic-scattering cross sections are measured at greater than or equal to 10 scattering angles distributed between 20 to 160 deg. from approx. = 1.5 to 4.0 MeV at intervals of less than or equal to 50 keV. Angle-integrated elastic scattering cross sections are deduced from the measured values to accuracies greater than or equal to 5%. Inelastic-neutron-scattering cross sections are determined up to incident neutron energies of 4.0 MeV, at scattering angles distributed between 20 to 160 deg., and for 5 observed excitations in Cr, for 7 in Fe and for 6 in 60 Ni. The experimental results are discussed in terms of conventional optical-statistical models with attention to cross section fluctuations and in the context of direct-scattering processes. The experimental and calculational results are compared with the corresponding evaluated quantities given in the ENDF/B file with attention to regions of agreement and inconsistency. 14 references

  5. Resonance structure of 32S+n from measurements of neutron total and capture cross sections

    International Nuclear Information System (INIS)

    Halperin, J.; Johnson, C.H.; Winters, R.R.; Macklin, R.L.

    1980-01-01

    Neutron total and capture cross sections of 32 S have been measured up to 1100 keV neutron energy [E/sub exc/( 33 S) =9700 keV]. Spin and parity assignments have been made for 28 of the 64 resonances found in this region. Values of total radiation widths, reduced neutron widths, level spacings, and neutron strength functions have been evaluated for s/sub 1/2/, p/sub 1/2/, p/sub 3/2/, and d/sub 5/2/ levels. Single particle contributions using the valency model account for a significant portion of the total radiation width only for the p/sub 1/2/-wave resonances. A significant number of resonances can be identified with reported levels excited in 32 S(d,p) and 29 Si(α,n) reactions. A calculation of the Maxwellian average cross section appropriate to stellar interiors indicates an average capture cross section at 30 keV, sigma-bar approx. = 4.2(2) mb, a result that is relatively insensitive to the assumed stellar temperature. Direct (potential) capture and the s-wave resonance capture contributions to the thermal capture cross section do not fully account for the reported thermal cross section (530 +- 40 mb) and a bound state is invoked to account for the discrepancy

  6. Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals.

    Science.gov (United States)

    Acosta-Maeda, Tayro E; Misra, Anupam K; Porter, John N; Bates, David E; Sharma, Shiv K

    2017-05-01

    We determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained. With the intensity-calibrated instrument, we collected remote Raman data from a standard 1 mm path length fused silica spectrophotometer cell filled with cyclohexane. The measured value of the differential Raman cross-section for the 801 cm -1 vibrational mode of cyclohexane is 4.55 × 10 -30 cm 2 sr -1 molecule -1 when excited by a 532 nm laser, in good agreement with the values reported in the literature. Using the measured cyclohexane Raman cross-section as a reference and relative Raman mode intensities of the various ions and organic liquids, we calculated the Raman cross-sections of the strongest Raman lines of nitrate, sulfate, carbonate, phosphate ions, and organic liquids by maintaining same experimental conditions for remote Raman detection. These relative Raman cross-section values will be useful for estimating detection capabilities of remote Raman systems for planetary exploration.

  7. A new two-photon mechanism of the formation of a continuous spectrum of photons emitted by secondary emission products of atomic particles

    International Nuclear Information System (INIS)

    Veksler, V.I.

    1986-01-01

    A two-photon mechanism of the formation of a continuous spectrum of photons emitted by products of metal sputtering is considered. The following process of the two-photon mechanism is considered: the continuous spectrum is formed under quadrupole two-photon transitions in sputtered excited atoms having vacancies at the d level in atoms of transition metals or at the of level in lanthanides found against the filled conduction band. It is shown that the suggested mechanism should play an essential role in the formation of the continuous spectrum of optical radiation

  8. Two-photon fluorescence biosensing with conventional and photonic crystal fibers

    Science.gov (United States)

    Myaing, Mon Thiri; Ye, Jing Yong; Norris, Theodore B.; Thomas, Thommey P.; Baker, James R., Jr.; Wadsworth, William J.; Bouwmans, Geraud; Knight, Jonathan C.; Russell, Philip S. J.

    2004-06-01

    Fluorescence is a powerful tool for biosensing, but conventional fluorescence measurements are limited because solid tumors are highly scattering media. To obtain quantitative in vivo fluorescence information from tumors, we have developed a two-photon optical fiber fluorescence (TPOFF) probe where excitation light is delivered and the two-photon fluorescence (TPF) excited at the tip of the fiber is collected back through the same fiber. In order to determine whether this system can provide quantitative information, we measured the fluorescence from a variety of systems including mouse tumors (both ex vivo and in vivo) which were transfected with the gene to express varying amounts of green fluorescence protein (GFP), and tumors which were labeled with targeted dendrimer-based drug delivery agents. The TPOFF technique showed results quantitatively in agreement with those from flow cytometry and confocal microscopy. In order to improve the sensitivity of our fiber probe, we developed a dual-clad photonic-crystal fiber which allowed single-mode excitation and multimode (high numerical aperture) collection of TPF. These experiments indicate that the TPOFF technique is highly promising for real-time, in vivo, quantitative fluorescence measurements.

  9. Diffraction and quantum control of wave functions in nonresonant two-photon absorption

    Science.gov (United States)

    Li, Baihong; Pang, Huafeng; Wang, Doudou; Zhang, Tao; Dong, Ruifang; Li, Yongfang

    2018-03-01

    In this study, the nonresonant two-photon absorption process in a two-level atom, induced by a weak chirped pulse, is theoretically investigated in the frequency domain. An analytical expression of the wave function expressed by Fresnel functions is obtained, and the two-photon transition probability (TPTP) versus the integral bandwidth, spectral width, and chirp parameter is analyzed. The results indicate that the oscillation evolution of the TPTP result from quantum diffraction of the wave function, which can be explained by analogy with Fresnel diffraction from a wide slit in the spatial domain. Moreover, the ratio between the real and imaginary parts of the excited state wave function and, hence, the atomic polarization, can be controlled by the initial phase of the excitation pulse. In some special initial phase of the excitation pulse, the wave functions with purely real or imaginary parts can be obtained by measuring the population probability. This work provides a novel perspective for understanding the physical details of the interactions between atoms and chirped light pulses in the multiphoton process.

  10. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  11. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  12. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  13. Differential neutron cross section for free interstitial production in copper

    International Nuclear Information System (INIS)

    Goldstone, J.A.; Parkin, D.M.; Simpson, H.M.

    1979-01-01

    Free interstitials produced by monoenergetic neutrons were monitored by changes in Young's modulus of a vibrating foil specimen. These changes can be related to the number of pinners on dislocations which depends on the number of defects produced. The pinning rate is compared with displacement cross section calculations and agrees with the Norgett--Robinson--Torrens (NRT) model. Electron irradiations on the same sample yield estimates of the free interstitial production cross section to be approx. 1% of the NRT cross section

  14. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  15. Two Photon Induced Lasing in 1550 nm Quantum Dash Optical Gain Media

    DEFF Research Database (Denmark)

    Capua, Amir; Saal, Abigael; Reithmaier, Johann Peter

    2011-01-01

    We report on a unique lasing mechanism observed in quantum dash Gain media. While the gain media is electrically pumped below lasing threshold, a strong optical pulse excites carriers by two photon absorption into high energy states of the quantum dashes and wetting layer. Fast inter band carrier...... relaxation and capture processes into the ground states of the quantum dashes result in increased gain followed by lasing at the gain peak irrespective of the stimulating pulse wavelength. The temporal response of the lasing line is examined on a 40 GHz scope and full characterization of the pulse...

  16. Multiresonant two-photon-absorption-induced four wave mixing in crystalline rare earth insulators

    International Nuclear Information System (INIS)

    Cone, R.L.; Ender, D.A.; Otteson, M.S.; Fisher, P.L.; Friedman, J.M.; Guggenheim, H.J.

    1982-01-01

    Coherent nonlinear optical generation of omega 4 = omega 1 + omega 2 - omega 3 exhibits strong sharp intermediate (omega 1 ) and two-photon (omega 1 + omega 2 ) resonances in crystalline Tb(OH) 3 and LiTbF 4 , providing a novel method for high resolution coherent measurement of both excited electronic configurations and intermediate 4f/sup n/ states of rare earth ions. New regions of the UV and VUV are thus made accessible to existing tuneable visible and near ultraviolet lasers. Selection of sharp features from broad overlapping absorptions, line narrowing due to phase matching selectivity, and coherent transient applications are discussed

  17. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  18. Intensity of two-photon absorption transitions for Ni2+ in MgO

    International Nuclear Information System (INIS)

    Sztucki, J.; Daoud, M.; Kibler, M.

    1991-01-01

    The parity-allowed two-photon transitions between the ground state 3 A 2 (T 2 ) of the configuration 3d 8 in cubical symmetry and the excited states of the same configuration are obtained via a simple model. This model is developed in a symmetry adapted framework by using second-order mechanisms and ionic wave-functions. It is applied to the recent experimental results obtained by McClure and co-workers for Ni 2+ in MgO. (author) 21 refs.; 2 tabs

  19. In vivo two-photon fluorescence imaging with Cr:forsterite lasers using transgenic lines tagged by HcRed

    Science.gov (United States)

    Tsai, Tsung-Han; Chen, Szu-Yu; Tai, Shih-Peng; Lin, Cheng-Yung; Tsai, Huai-Jen; Sun, Chi-Kuang

    2005-03-01

    Transgenic lines carrying a specific tissue tagged by green-fluorescence-protein (GFP) have been a powerful tool to developmental biology because they encapsulate the expression of endogenous genes. Traditionally with two-photon fluorescence microscopy based on a femtosecond Ti:sapphire laser (with a wavelength between 700-980nm), green fluorescence can be excited by simultaneous absorption of two photons for high-resolution three-dimensional (3D) optical imaging. However for in vivo biological applications, Ti:sapphire-laser based optical technology presents several limitations including finite penetration depth, strong on-focus cell damage, and phototoxicity. For high optical penetration and minimized photodamages, two-photon imaging based on light sources with an optical wavelength located around the biological penetration window (~1300nm) is desired, where unwanted light-tissue interactions including scattering, absorption, and photodamages can all be minimized. Previous experiments around the optical penetration window indicated inefficient green fluorescence excitation of GFP through three-photon absorption. Red fluorescence protein is thus highly desired for future non-invasive in vivo two-photon imaging. Screening from embryos injected with DNA fragment containing a heart-specific regulatory element of zebrafish cardiac myosin light chain 2 gene (cmlc2) fused with HcRed gene, we generate a zebrafish line that has strong two-photon red fluorescence expressed in cardiac cells based on a 1230nm femtosecond light source working in the biological penetration window. Combined with its nonlinearity, high penetration depth, and minimized photodamages, this method provides superb imaging capability compared with the traditional GFP based two-photon microscopy, offering deep insight into the noninvasive in vivo studies of gene expression in vertebrate embryos.

  20. Singular gauge fields in inclusive and differential cross sections

    International Nuclear Information System (INIS)

    Ore, F.R. Jr.; Sterman, G.

    1981-01-01

    We study differential and inclusive cross sections for the creation of massless fermions in the presence of a static external non-Abelian field A/sub c1/. We calculate to all orders in A/sub cl/ the correction to the quantum cross section which is suppressed by one power of the energy. Corrections of this type are found to be important even at high energy for sufficiently exclusive cross sections if the classical field has singularities along a line. Their contribution to inclusive cross sections, on the other hand, remains small at high energies

  1. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  2. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  3. Near-threshold electron impact doubly differential cross sections for the ionization of neon and xenon

    International Nuclear Information System (INIS)

    Yates, Brent R; Keane, Kyle; Khakoo, Murtadha A

    2009-01-01

    Normalized doubly differential cross sections (DDCSs) for the electron impact single ionization of Ne and Xe are presented. The Ne measurements are taken at incident energies of 23.5 eV, 25 eV, 30 eV and 40 eV while the Xe measurements are taken at 14 eV, 15 eV and 20 eV. Scattering angles in the experiment range from 15 deg. to 120 deg. The measurements use a moveable target method for an accurate determination of the experimental background. Normalization of the differential data is initially made to available experimental cross sections for excitation of the ground np 6 to the np 5 (n + 1)s excited states of the noble gas and then, if necessary after integration, to available experimental total ionization cross sections. We show that our single differential cross sections, derived from integrating the DDCSs, show a convex profile (frown) for Ne whereas they are concave (smile) for Xe similar to what is observed for He and we suggest a tentative mechanism for this effect.

  4. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    (HFS), isotope shifts, Stark shifts, Zeeman splittings and Lamb shifts for different atoms and molecules. The two-photon 1s→ 2s transition in hydrogen has attained fundamental importance due to its natural width of ∼1 Hz, making it suitable for use in atomic clocks. Pramana – J. Phys., Vol. 83, No. 2, August 2014. 189 ...

  5. Space-time description of the two-photon decay

    International Nuclear Information System (INIS)

    Hrasko, P.

    1981-09-01

    The time correlation of photons in a two-photon decay is shown to depend on the instantaneous nature of the wave-function collapse in an essential way so the latter hypothesis can be verified by the experimental study of these correlations. (author)

  6. The 2 1Ag state of isolated cis-trans-1,3,5,7-octatetraene: two-color resonance enhanced two-photon ionization studies

    NARCIS (Netherlands)

    Kohler, B.E.; Shaler, T.; Buma, W.J.

    1992-01-01

    Vibrationally resolved 1 1Ag2 1Ag excitation spectra and decay times for cis,trans-1,3,5,7-octatetraene seeded in a supersonic He expansion have been measured by two-color resonance enhanced two-photon ionization spectroscopy. The excitation energy of the 1 1Ag2 1Ag 0-0 band (29 035 cm-1 ) is ~6500

  7. Radiative return at NLO and the measurement of the hadronic cross-section in electron-positron annihilation

    CERN Document Server

    Rodrigo, German; Kuhn, Johann H.; Szopa, Marcin

    2002-01-01

    Electron-positron annihilation into hadrons plus an energetic photon from initial state radiation allows the hadronic cross-section to be measured over a wide range of energies. The full next-to-leading order QED corrections for the cross-section for e^+ e^- annihilation into a real tagged photon and a virtual photon converting into hadrons are calculated where the tagged photon is radiated off the initial electron or positron. This includes virtual and soft photon corrections to the process e^+ e^- \\to \\gamma +\\gamma^* and the emission of two real hard photons: e^+ e^- \\to \\gamma + \\gamma + \\gamma^*. A Monte Carlo generator has been constructed, which incorporates these corrections and simulates the production of two charged pions or muons plus one or two photons. Predictions are presented for centre-of-mass energies between 1 and 10 GeV, corresponding to the energies of DAPHNE, CLEO-C and B-meson factories.

  8. Positron Scattering from Molecules: An Experimental Cross Section Compilation for Positron Transport Studies and Benchmarking Theory

    Science.gov (United States)

    Brunger, M. J.; Buckman, S. J.; Ratnavelu, K.

    2017-06-01

    We present a compilation of recommended positron-molecule cross sections for a range of scattering processes including elastic scattering, vibrational excitation, discrete electronic-state excitation, positronium formation, ionization, and also for the grand total cross section. Where possible, in particular for possible application in positron transport simulations for a given molecule, we try and list data for energies in the range 0.1-1000 eV although in practice the actual energy is highly target-molecule and scattering process specific. Aside from being relevant to positron transport studies, through, for example, Monte Carlo simulations, the present compilation should also be germane for benchmarking the validity and accuracy of positron-molecule scattering calculations and, just as importantly, to allow a comparison with corresponding electron scattering results. That latter comparison can shed real light on the projectile-target interactions that underpin the scattering dynamics.

  9. The effect of the decay data on activation cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong

    2002-01-01

    The effect of the decay data on evaluation of activation cross section is investigated. Present work shows that these effects must be considered carefully when activation cross section is evaluated. Sometime they are main reason for causing the discrepancies among the experimental data

  10. determination of neutron-induced activation cross sections using nirr ...

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    Jun 1, 2010 ... Keywords: RNAA, Thermal capture cross section, Resonance integral, k0-factors. INTRODUCTION. A database of activation cross sections for neutron energies (of up to 20MeV) is required for the design of a D-T fusion reactor, neutron dosimetry and neutron shielding in a reactor facility, and for confirming.

  11. Nuclear characteristics of Pu fueled LWR and cross section sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering

    1998-03-01

    The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)

  12. Temperature dependence of the HNO3 UV absorption cross sections

    Science.gov (United States)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  13. Fusion cross sections from measurements of delayed X-rays

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Gregorio, D.E. di; Fernandez Niello, J.O; Elgue, M.

    1988-01-01

    The program XRAY is a FORTRAN 77 computer code for the extraction of fusion cross sections from delayed X-ray measurements. This is accomplished by calculating the theoretical expressions of the time dependence of the evaporation-residue cross sections and taking them as adjustable parameters in a χ 2 minimization procedure. (orig.)

  14. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  15. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  16. The 10B(n,α)7Li cross section

    International Nuclear Information System (INIS)

    1997-01-01

    The data base relevant to an evaluation of the 10 B(n,α) standard cross sections have been improved through interlaboratory collaboration. Changes in the evaluated 10 B(n,α) cross sections resulted form the measurements made since the ENDF/B-VI evaluation have been estimated. 12 refs, 4 figs

  17. pp production cross sections and the constraint method

    International Nuclear Information System (INIS)

    Anjos, J.C.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    A method of constructing production cross sections that satisfy the constraints represented by the first few moments is shown to give an excellent account of the data when applied to the high energy pp production cross section ν sub(n) (s) plotted as functions of n. (Author) [pt

  18. An empirical fit to estimated neutron emission cross sections from ...

    Indian Academy of Sciences (India)

    Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has ...

  19. Graphs of neutron cross section data for fusion reactor development

    International Nuclear Information System (INIS)

    Asami, Tetsuo; Tanaka, Shigeya

    1979-03-01

    Graphs of neutron cross section data relevant to fusion reactor development are presented. Nuclides and reaction types in the present compilation are based on a WRENDA request list from Japan for fusion reactor development. The compilation contains various partial cross sections for 55 nuclides from 6 Li to 237 Np in the energy range up to 20 MeV. (author)

  20. Measurement of neutron-induced activation cross-sections using ...

    Indian Academy of Sciences (India)

    Manish Sharma et al. Table 1. Geometrical details of Co- and Ta-activation detectors used in Gam- ma-2 experiment. Element. 181Ta. 59Co. Cross-sectional area. 2.64 cm2 ... the details of the activated detectors, Au, Bi, and Th as well as the methodology of analysis for the estimation of 'one group cross-section'. Further ...