WorldWideScience

Sample records for two-photon absorption cross-sections

  1. Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section

    NARCIS (Netherlands)

    Xu, Bin; Zhang, Jibo; Fang, Honghua; Ma, Suqian; Chen, Qidai; Sun, Hongbo; Im, Chan; Tian, Wenjing

    2014-01-01

    Organic nonlinear optical materials combining high luminescence quantum yields and large two-photon absorption cross-sections are attractive for both fundamental research and practical applications, such as up-converted lasers and two-photon fluorescence microscopy. Herein, we reported a series of

  2. Theoretical study relating the two-photon absorption cross section to the susceptibility controlling four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    A theory that it is necessary to extract a two-photon absorption cross section from a mixing signal is developed. The dependence of the cross section on the third-order susceptibility is shown and both the mixing signal and reference signal dependences on the susceptibility are given. Techniques to process the measured value of the susceptibility and relate it to the cross section are developed and limits of validity are established. Finally, a comparison is made between the expression for the cross section presently reported and values given elsewhere.

  3. Off-Resonant Two-Photon Absorption Cross-Section Enhancement of an Organic Chromophore on Gold Nanorods

    Science.gov (United States)

    Sivapalan, Sean T.; Vella, Jarrett H.; Yang, Timothy K.; Dalton, Matthew J.; Haley, Joy E.; Cooper, Thomas M.; Urbas, Augustine M.; Tan, Loon-Seng; Murphy, Catherine J.

    2013-01-01

    Surface-plasmon-initiated interference effects of polyelectrolyte-coated gold nanorods on the two-photon absorption of an organic chromophore were investigated. With polyelectrolyte bearing gold nanorods of 2,4,6 and 8 layers, the role of the plasmonic fields as function of distance on such effects was examined. An unusual distance dependence was found: enhancements in the two-photon cross-section were at a minimum at an intermediate distance, then rose again at a further distance. The observed values of enhancement were compared to theoretical predictions using finite element analysis and showed good agreementdue to constructive and destructive interference effects. PMID:23687561

  4. Entangled two photon absorption cross section on the 808 nm region for the common dyes Zinc tetraphenylporphyrin and Rhodamine B

    CERN Document Server

    Villabona-Monsalve, Juan P; Portela, Mayerlin Nuñez; Valencia, Alejandra

    2016-01-01

    We report the measurement of the entangled two photon absorption cross section, $\\sigma_E$, at 808 nm on organic chromophores in solution in a low photon flux regime. We performed measurements on Zinc tetraphenylporphyrin (ZnTPP) in Toluene and Rhodamine B (RhB) in Methanol. This is, to the best of our knowledge, the first time that $\\sigma_E$ is measured for RhB. Additionally, we report a systematic study of the dependence of $\\sigma_E$ on the molecular concentration for both molecular systems. In contrast to previous experiments, our measurements are based on detecting the pairs of photons that are transmitted by the molecular system. By using a coincidence count circuit it was possible to improve the signal to noise ratio. This type of work is important for the development of spectroscopic and microscopic techniques using entangled photons.

  5. Development of an automated two-photon absorption cross section spectrometer%双光子吸收截面自动化测量系统研究

    Institute of Scientific and Technical Information of China (English)

    屈军乐; 周藩; 邵永红; 张新富; 仉华; 姜娜; 彭孝军; 肖义

    2013-01-01

    为快速精确测量双光子材料的吸收截面,研究制作了一套基于双光子诱导荧光法的自动化双光子吸收截面谱仪.该系统基于虚拟仪器平台,实现了功率实时反馈、步进电机同步控制、荧光光谱快速采集、线性分析和双光子吸收光谱分析等功能,是集功率反馈控制到光谱采集、处理为一体的软件自动化操作平台,是研究双光子吸收截面的实用工具.%Two-photon absorption cross section is an important property of organic two-photon fluorophores and is critical to the study of two-photon materials. In order to measure two-photon absorption cross section quickly and accurately, we developed an automated two-photon absorption spectrometer that is based on two-photon induced fluorescence method. The system can perform the functions of real-time feedback of power, stepper motor synchronous control, fast acquisition of fluorescence spectra, linear analysis and two-photon absorption spectroscopy analysis using a virtual instrument platform. The system has an integrated and automated software platform for power feedback control, spectra acquisition and data processing. It can function as an important tool in the study of two-photon absorption cross section of fluorophores

  6. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging

    Science.gov (United States)

    Wang, Shichao; Xu, Shasha; Wang, Yiming; Tian, Xiaohe; Zhang, Yujin; Wang, Chuankui; Wu, Jieying; Yang, Jiaxiang; Tian, Yupeng

    2017-02-01

    Two centrosymmetric D-π-D type triphenylamine chromophores with long π-conjugated bridge and strong electron-donating moiety were designed, synthesized and fully characterized. The crystal analysis revealed that multiple Csbnd H ⋯ π interactions existed in two chromophores, which played a crucial role in generating molecular 1D chains and 2D layers structures. Linear and nonlinear optical properties of the chromophores were systematically investigated with the aid of theoretical calculations. Two chromophores both exhibited intense and wide-dispersed one-photon/two-photon excited fluorescence, bear prodigious 2PA cross section (δ). Especially for Dye2, with ethyoxyl groups, displayed the strong 2PA activity, large cross-sections (δmax > 16,000 GM) and high NLO efficiency (δmax/MW > 16 GM/(g·mol)) in the range of 680-830 nm in DMF. In addition, one- and two-photon fluorescence microscopy images of HepG2 cells incubated with Dye2 were obtained and found that Dye2 could effectively uptake toward living cells and display a uniformly localized in cytosolic space.

  7. Two-photon-absorption cross section of Nd3+ in yttrium aluminum garnet and yttrium lithium fluoride near 1.06 μm

    Science.gov (United States)

    Chase, L. L.; Payne, Stephen A.

    1986-12-01

    We have measured the spectrally integrated two-photon-absorption (TPA) cross sections for the 4I9/2--> 4G7/2 transitions of Nd3+ and obtained values of 1.2×10-40 and 0.15×10-40 cm4 for Nd3+-doped yttrium aluminum garnet (YAG) and yttrium lithium fluoride (YLF), respectively. These results are in satisfactory agreement with theoretical calculations based on the properties of Nd3+ free-ion wave functions. The difference between YAG and YLF, however, is not accounted for by the free-ion theory and suggests that the intermediate-state energies and wave functions are considerably host dependent. In addition, we conclude, based on our measurements, that rare-earth TPA will not contribute significantly to either losses or the nonlinear refractive index in typical laser media employing rare-earth ions.

  8. Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices.

    Science.gov (United States)

    Nanda, Kaushik D; Krylov, Anna I

    2017-07-20

    Observables such as two-photon absorption cross sections cannot be computed from the wave functions of initial and final states alone because of their nonlinear nature. Rather, they depend on the entire manifold of the excited states, which follows from the familiar sum-over-states expressions of second- and higher-order properties. Consequently, the interpretation of the computed nonlinear optical properties in terms of molecular orbitals is not straightforward and usually relies on approximate few-states models. Here, we show that the two-photon absorption (2PA) transitions can be visualized using response one-particle transition density matrices, which are defined as transition density matrices between the zero-order and first-order perturbed states. We also extend the concept of natural transition orbitals to 2PA transitions. We illustrate the utility of this new tool, which provides a rigorous black box alternative to traditional qualitative few-states analysis, by considering 2PA transitions in ethylene, trans-stilbene, and para-nitroaniline.

  9. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  10. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  11. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    Science.gov (United States)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  12. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks.

    Science.gov (United States)

    Nanda, Kaushik D; Krylov, Anna I

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  13. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Kaushik D.; Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  14. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    Science.gov (United States)

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-01

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  15. Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method

    Science.gov (United States)

    Nanda, Kaushik D.; Krylov, Anna I.

    2017-06-01

    We present static polarizabilities and two-photon absorption (2PA) cross sections for the low-lying electronic states of prototypical diradicals such as benzynes and analogues of m-xylylene and p-quinodimethane computed with the spin-flip equation-of-motion coupled-cluster singles and doubles (EOM-SF-CCSD) method. The static polarizabilities were calculated as analytic second derivatives of the EOM energies, and the 2PA cross sections were calculated using the expectation-value approach. We explain the trends in the nonlinear responses of the SF target states by constructing few-states models based on truncated sum-over-states expressions for these nonlinear properties. By using a Huckel-type treatment of the frontier molecular orbitals that host the unpaired electrons, we rationalize the trends in the dipole interactions between the SF target states relevant in the few-states models. We demonstrate the correlation between the nonlinear responses of these electronic states and the diradical character.

  16. Excited-state dynamics and two-photon absorption cross sections of fluorescent diphenyl-tin(IV) derivatives with schiff bases: a comparative study of the effect of chelation from the ultrafast to the steady-state time scale.

    Science.gov (United States)

    Zugazagoitia, Jimena S; Maya, Mauricio; Damián-Zea, Carlos; Navarro, Pedro; Beltrán, Hiram I; Peon, Jorge

    2010-01-21

    Schiff bases bearing an intramolecular hydrogen bond are known to undergo excited-state intramolecular proton transfer and E-Z isomerization, which are related to their thermochromism and solvatochromism properties. In this study, we explored these ultrafast photoinduced processes for two doubly hydroxylated Schiff bases, salicylidene-2-aminophenol and 2-hydroxynaphthylmethylidene-2-aminophenol. From comparisons with our previously reported results for the parent monohidroxylated Schiff base salicylideneaniline, we were able to establish the lack of an effect of a second intramolecular hydrogen bond in the excited-state intramolecular proton-transfer process. Moreover, we synthesized and studied the photophysics of 14 diphenyl-tin(IV) derivatives with Schiff bases with the same framework as the former two. In these organometallic compounds, we observed an increase of more than 50 times in the excited-state decay times in comparison with those of the free ligands. This finding is attributed to the coordination with the metallic center, which restricts the fluctuations of the geometry of the organic Schiff base skeleton. The emission bands of these complexes can be easily tuned through substitutions at the Schiff base ligand and can be made to be centered well above 600 nm. The much enhanced emissive behavior of all diphenyl-tin(IV) derivatives allowed the study of several properties of their electronically excited states, including the effects of different substituents on their femtosecond and picosecond dynamics. Considering potential applications, we also performed transient absorption experiments to assess the wavelength interval for stimulated emission of this type of compound. Finally, we determined their two-photon absorption cross sections in the 760-820-nm range by measuring their two-photon induced fluorescence excitation spectra. Mainly, our results illustrate that the diphenyl-tin(IV) moiety, thanks to its size and its coordination mode with a single

  17. Near infrared two-photon excitation cross-sections of voltage-sensitive dyes.

    Science.gov (United States)

    Fisher, Jonathan A N; Salzberg, Brian M; Yodh, Arjun G

    2005-10-15

    Microscopy based on voltage-sensitive dyes has proven effective for revealing spatio-temporal patterns of neuronal activity in vivo and in vitro. Two-photon microscopy using voltage-sensitive dyes offers the possibility of wide-field visualization of membrane potential on sub-cellular length scales, hundreds of microns below the tissue surface. Very little information is available, however, about the utility of voltage-sensitive dyes for two-photon imaging purposes. Here we report on measurements of two-photon fluorescence excitation cross-sections for nine voltage-sensitive dyes in a solvent, octanol, intended to simulate the membrane environment. Ultrashort light pulses from a Ti:sapphire laser were used for excitation from 790 to 960 nm, and fluorescein dye was used as a calibration standard. Overall, dyes RH795, RH421, RH414, di-8-ANEPPS, and di-8-ANEPPDHQ had the largest two-photon excitation cross-sections ( approximately 15 x 10(-50)cm4 s photon(-1)) in this wavelength region and are therefore potentially useful for two-photon microscopy. Interestingly, di-8-ANEPPDHQ, a chimera constructed from the potentiometric dyes RH795 and di-8-ANEPPS, exhibited larger cross-sections than either of its constituents.

  18. Two-Photon Absorption of Metal-Assisted Chromophores.

    Science.gov (United States)

    Li, Xin; Rinkevicius, Zilvinas; Ågren, Hans

    2014-12-09

    Aiming to understand the effect of a metal surface on nonlinear optical properties and the combined effects of surface and solvent environments on such properties, we present a multiscale response theory study, integrated with dynamics of the two-photon absorption of 4-nitro-4'-amino-trans-stilbene physisorbed on noble metal surfaces, considering two such surfaces, Ag(111) and Au(111), and two solvents, cyclohexane and water, as cases for demonstration. A few conclusions of general character could be drawn: While the geometrical change of the chromophore induced by the environment was found to notably alter (diminish) the two-photon absorption cross section in the polar medium, the effects of the metal surface and solvent on the electronic structure of the chromophore surpasses the geometrical effects and leads to a considerably enhanced two-photon absorption cross section in the polar solvent. This enhancement of two-photon absorption arises essentially from the metal charge image induced enlargement of the difference between the dipole moment of the excited state and the ground state. The orientation-dependence of the two-photon absorption is found to connect with the lateral rotation of the chromophore, where the two-photon absorption reaches its maximum when the polarization of the incident light coincides with the long-axis of the chromophore. Our results demonstrate a distinct enhancement of the two-photon absorption by a metal surface and a polar medium and envisage the employment of metal-chromophore composite materials for future development of nonlinear optical materials with desirable properties.

  19. A fluorescent benzothiazole probe with efficient two-photon absorption

    Science.gov (United States)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  20. General calculation of the cross section for dark matter annihilations into two photons

    CERN Document Server

    Garcia-Cely, Camilo

    2016-01-01

    Assuming that the underlying model satisfies some general requirements such as renormalizability and CP conservation, we calculate the non-relativistic one-loop cross section for any self-conjugate dark matter particle annihilating into two photons. We accomplish this by carefully classifying all possible one-loop diagrams and, from them, reading off the dark matter interactions with the particles running in the loop. Our approach is general and leads to the same results found in the literature for popular dark matter candidates such as the neutralinos of the MSSM, minimal dark matter, inert Higgs and Kaluza-Klein dark matter.

  1. Four-State Model for Three-Branch Molecule's Two-Photon Absorption Properties

    Institute of Scientific and Technical Information of China (English)

    SU Yan; WANG Pei-Ji; ZHAO Peng; RONG Zhen-Yu

    2006-01-01

    @@ We present a four-state model for calculating the two-photon absorption of multi-branched molecules by using the time-depended function method. The numerical results indicate that the two-photon absorption cross section has a strong enhancement for three-branch molecules compared to two-branch structures. The maximal two-photon-absorption cross section is 2.358 × 10-47 cm 4 s/photon. At the same time, the charge-transfer process for the charge-transfer states is visualized in order to explain mechanism about the maximal TPA cross section.

  2. Synthesis of a Series of Novel Organic Compounds with Two-photon Absorption and Two-photon pumped Lasing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of novel organic compounds named as CSPI, DPASPI, PSPI DEASPI and HEASPI respectively, with large two-photon absorption has been synthesized and their structures have been determined by 1HNMR and elemental analysis. The highest two-photon pumped (TPP) output /input efficiency is as high as 13.4% for PSPI in DMF with d0 = 0.03 mol/L and the effective two-photon absorption cross section is 8.8′10-48 cm4×s/photon for DPASPI in DMF with d0= 0.05mol/L.

  3. Rotational averaging of multiphoton absorption cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  4. Rotational averaging of multiphoton absorption cross sections

    Science.gov (United States)

    Friese, Daniel H.; Beerepoot, Maarten T. P.; Ruud, Kenneth

    2014-11-01

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  5. Two-photon absorption of Zn(II) octupolar molecules.

    Science.gov (United States)

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  6. Measurement of two-photon exchange effect by comparing elastic $e^\\pm p$ cross sections

    CERN Document Server

    Rimal, D; Raue, B A; Weinstein, L B; Arrington, J; Brooks, W K; Ungaro, M; Adhikari, K P; Akbar, Z; Pereira, S Anefalos; Badui, R A; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bennett, R P; Biselli, A S; Boiarinov, S; Briscoe, W J; Bültmann, S; Carman, D S; Celentano, A; Chetry, T; Ciullo, G; Clark, L; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; Deur, A; Djalali, C; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Eugenio, P; Fedotov, G; Fersch, R; Filippi, A; Fleming, J A; Forest, T A; Fradi, A; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gleason, C; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guo, L; Hafidi, K; Hanretty, C; Harrison, N; Hattawy, M; Heddle, D; Hicks, K; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jiang, H; Joosten, S; Keller, D; Khetarpal, P; Khachatryan, G; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Lanza, L; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; McKinnon, B; Mestayer, M D; Mirazita, M; Mokeev, V; Movsisyan, A; Munevar, E; Camacho, C Munoz; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Prok, Y; Protopopescu, D; Puckett, A J R; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schumacher, R A; Seder, E; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sokhan, D; Sparveris, N; Stankovic, Ivana; Stepanyan, S; Strauch, S; Sytnik, V; Taiuti, M; Torayev, B; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2016-01-01

    [Background] The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer ($Q^{2}$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. [Purpose] We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. [Methods] We produced a mixed simultaneous electron-positron beam in Jefferson Lab's Hall B by passing the 5.6 GeV primary electron beam through a radiator to p...

  7. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  8. Chromophore design for large two-photon absorption

    Science.gov (United States)

    Dudley, Christopher

    2014-11-01

    Conjugated oligothiophene chromophores are compared and studied for designing large linear and nonlinear absorption cross-sections. Optical properties of chromophores synthesized by the Naval Research Laboratory are modeled to construct a design factor of merit to predict and understand two-photon absorption (TPA) designs. Computer modeling to optimize parameters to produce photo active chromophores is conducted. Geometry, π-center (electron relay) and the electron donor or acceptor groups attached to the π-centers are considered for importance in TPA. This work could serve equally well as guide for quick back of the envelop research or industrial design verifications as well as an outline for introducing computation methods to students.

  9. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    Science.gov (United States)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  10. Two-photon absorption properties of a new series of 2CTσ chromophores

    Science.gov (United States)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  11. Synthesis and Nonlinear Optical Properties of a New Two-photon Polymerization Initiator: DPAMOB with a Large TPA Cross-section

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian; YU Xiao-Qiang; ZHANG Bao-Qin; FENG Yun-Guo; TAO Xu-Tang; JIANG Min-Hua

    2006-01-01

    E,E-1,4-Bis(4′-N,N-diphenylaminostyryl)-2,5-dimethoxybenzene (DPAMOB) has been synthesized by a simple and effective solid phase Wittig reaction and characterized by 1H NMR spectra and elemental analysis. Linear absorption, single-photon induced fluorescence and two-photon induced fluorescence spectra were experimentally studied. The new dye has a large two-photon absorption (TPA) cross-section of σr= 1007.2 GM [1 GM= 1 × 10-50results confirm that DPAMOB is a good TPA chromophore and can successfully initiate two-photon photopolymerization of ethoxylated trimethylolpropane triacrylate esters (SR454). Finally, a microstructure has been fabricated by use of DPAMOB as initiator.

  12. Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.

    Science.gov (United States)

    Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G

    2016-02-12

    Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value.

  13. Two-photon STED spectral determination for a new V-shaped organic fluorescent probe with efficient two-photon absorption.

    Science.gov (United States)

    Belfield, Kevin D; Bondar, Mykhailo V; Morales, Alma R; Padilha, Lazaro A; Przhonska, Olga V; Wang, Xuhua

    2011-10-24

    Two-photon stimulated emission depletion (STED) cross sections were determined over a broad spectral range for a novel two-photon absorbing organic molecule, representing the first such report. The synthesis, comprehensive linear photophysical, two-photon absorption (2PA), and stimulated emission properties of a new fluorene-based compound, (E)-2-{3-[2-(7-(diphenylamino)-9,9-diethyl-9H-fluoren-2-yl)vinyl]-5-methyl-4-oxocyclohexa-2,5-dienylidene} malononitrile (1), are presented. Linear spectral parameters, including excitation anisotropy and fluorescence lifetimes, were obtained over a broad range of organic solvents at room temperature. The degenerate two-photon absorption (2PA) spectrum of 1 was determined with a combination of the direct open-aperture Z-scan and relative two-photon-induced fluorescence methods using 1 kHz femtosecond excitation. The maximum value of the 2PA cross section ~1700 GM was observed in the main, long wavelength, one-photon absorption band. One- and two-photon stimulated emission spectra of 1 were obtained over a broad spectral range using a femtosecond pump-probe technique, resulting in relatively high two-photon stimulated emission depletion cross sections (~1200 GM). A potential application of 1 in bioimaging was demonstrated through one- and two-photon fluorescence microscopy images of HCT 116 cells incubated with micelle-encapsulated dye.

  14. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    Science.gov (United States)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  15. Photosensitizer-doped conjugated polymer nanoparticles with high cross-sections for one- and two-photon excitation.

    Science.gov (United States)

    Grimland, Jennifer L; Wu, Changfeng; Ramoutar, Ria R; Brumaghim, Julia L; McNeill, Jason

    2011-04-01

    We report a novel nanoparticle that is promising for photodynamic therapy applications, which consists of a π-conjugated polymer doped with a singlet oxygen photosensitizer. The nanoparticles exhibit highly efficient collection of excitation light due to the large excitation cross-section of the polymer. A quantum efficiency of singlet oxygen production of 0.5 was determined. Extraordinarily large two-photon excitation cross-sections were determined, indicating promise for near infrared multiphoton photodynamic therapy. Gel electrophoresis of DNA after near-UV irradiation in the presence of nanoparticles indicated both purine base and backbone DNA damage.

  16. Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis

    Science.gov (United States)

    Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.

    1999-01-01

    Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000

  17. Two-photon absorption in arsenic sulfide glasses

    Science.gov (United States)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  18. Measurement of the Cross Section for open b-Quark Production in Two-Photon Interactions at LEP

    CERN Document Server

    Schael, S; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, L; Schlatter, D; Teubert, F; Valassi, A; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, E; Vayaki, A; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, R; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu, S L; Wu, X; Zobernig, G; Dissertori, G

    2007-01-01

    Inclusive \\beauty-quark production in two-photon collisions has been measured at LEP using an integrated luminosity of $698\\mathrm{pb}^{-1}\\,$ collected by the ALEPH detector with $\\sqrt{s}$ between 130 and 209 \\GeV . The b quarks were identified using lifetime information. The cross section is found to be \\[ \\mathrm{ \\sigma(e^+ e^- \\rightarrow e^+ e^- b \\bar{b}\\, X) = (5.4\\pm 0.8\\,_{stat} \\pm 0.8\\,_{syst}} )\\,\\mathrm{pb},\\] which is consistent with Next-to-Leading Order QCD.

  19. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    Science.gov (United States)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  20. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    Science.gov (United States)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  1. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-03-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  2. Temperature-dependent high resolution absorption cross sections of propane

    Science.gov (United States)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  3. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Science.gov (United States)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  4. Two-Photon Absorption Properties of Mn-Doped ZnS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-Jin; ZHANG Gui-Lan; GUO Yang-Xue; WANG Xiao-Yan; CHEN Wen-Ju; ZHANG Xiao-Song; HUA Yu-Lin

    2006-01-01

    @@ We investigate the two-photon absorption and nonlinear refractive index properties of a quantum dot material based on ZnS nanocrystals doped with Mn isoelectronic impurities, using the Z-scan technique with 532nm picosecond laser pulses. The Mn-doped ZnS quantum dots have an average two-photon absorption cross section as high as 13600 Goeppert-Mayer units, which turn it into a very promising material for fluorescent label and imaging in biological samples. In addition, we also found that the two-photon absorption coeflicient initially increases and then decreases with increasing pulse irradiance, which demonstrates the presence of the higherorder nonlinearity under the strong excitation.

  5. New insight in boron chemistry: Application in two-photon absorption

    Science.gov (United States)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  6. Ozone absorption cross section measurements in the Wulf bands

    Science.gov (United States)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-08-01

    A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.

  7. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    Science.gov (United States)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  8. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    Science.gov (United States)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-09-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2-6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate.

  9. Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared

    CERN Document Server

    Rakov, N; Da Rocha, G B; Simas, A M; Athayde-Filho, P A F; Miller, J

    2000-01-01

    Intensity dependent transmission and laser-induced fluorescence were observed in liquid solutions of mesoionic compounds (MIC) pumped with nanosecond lasers operating at 1064, 604, and 570 nm. The results indicate that two-photon absorption (TPA) is the dominant mechanism which causes the observed behavior. The TPA cross-sections measured have values from 0.33*10/sup -20/ cm/sup 4//GW to 0.43*10/sup -18/ cm /sup 4//GW. (20 refs).

  10. Carbonyl Sulfide Isotopologues: Ultraviolet Absorption Cross Sections and Stratospheric Photolysis

    DEFF Research Database (Denmark)

    Danielache, Sebastian Oscar; Nanbu, Shinkoh; Eskebjerg, Carsten

    2009-01-01

    Ultraviolet absorption cross sections of the main and substituted carbonyl sulfide isotopologues were calculated using wavepacket dynamics. The calculated absorption cross section of 16O12C32S is in very good agreement with the accepted experimental spectrum between 190 and 250 nm. Relative to 16O......12C32S, isotopic substitution shows a significant enhancement of the cross section for 16O13C32S, a significant reduction for 18O12C32S and 17O12C32S and almost no change for the sulfur isotopologues 16O12C33S, 16O12C34S, and 16O12C36S. The analysis of the initial wavepackets shows that these changes...

  11. Estimation of the Human Absorption Cross Section Via Reverberation Models

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri;

    2016-01-01

    Since the presence of persons affects the reverberation time observed for in-room channels, the absorption cross section of a person can be estimated from measurements via Sabine's and Eyring's models for the reverberation time. We propose an estimator relying on the more accurate model by Eyring...... and compare the obtained results to those of Sabine's model. We find that the absorption by persons is large enough to be measured with a wideband channel sounder and that estimates of the human absorption cross section differ for the two models. The obtained values are comparable to values reported...... in the literature. We also suggest the use of controlled environments with low average absorption coefficients to obtain more reliable estimates. The obtained values can be used to predict the change of reverberation time with persons in the propagation environment. This allows prediction of channel characteristics...

  12. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  13. Theoretical studies on the one- and two-photon absorption properties of azulenylporphyrins and azulene-fused porphyrins

    Institute of Scientific and Technical Information of China (English)

    Li Wen-Chao; Feng Ji-Kang; Ren Ai-Min; Zhang Xiang-Biao; Sun Jia-Zhong

    2009-01-01

    The electronic structures, one-photon absorption (OPA) and two-photon absorption (TPA) properties of the azulenylporphyrins and azulene-fused porphyrins have been comparatively studied by using DFT/B3LYP/6-31G(d)and the ZINDO/SDCI method. With the number of azulenyl groups increasing, the OPA wavelengths of all molecules are red-shifted in 400-600 nm and the two-photon absorption cross section is gradually enlarged. The azulene-fused structures facilitate an expanding conjugated area and increasing TPA cross section. The origin of TPA properties of studied compounds is studied with a two-level model. In summary, the azulene-fused porphyrins exhibit strong two-photon absorption.

  14. Nonlinear quantitative photoacoustic tomography with two-photon absorption

    CERN Document Server

    Ren, Kui

    2016-01-01

    Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molecular imaging modality that aims at inferring two-photon absorption property of heterogeneous media from photoacoustic measurements. In this work, we analyze an inverse problem in quantitative TP-PAT where we intend to reconstruct optical coefficients in a semilinear elliptic PDE, the mathematical model for the propagation of near infra-red photons in tissue-like optical media with two-photon absorption, from the internal absorbed energy data. We derive uniqueness and stability results on the reconstructions of single and multiple optical coefficients, and present some numerical reconstruction results based on synthetic data to complement the theoretical analysis.

  15. Two-Photon Absorption and Optical Power Limiting Based on New Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 邵宗书; 蒋民华; 雷虹

    2001-01-01

    Two new organic dye samples J and L with a large two-photon absorption (TPA) cross section have been reported.The linear absorption spectra show that there is no linear absorption at the wavelength from 650 to 1200 nm.The molecular TPA cross section was measured to be as high as 2.59×10-47 cm4.s and 2.98×10-47 cm4.s at 1064 nm for samples J and L, respectively. The input-output curves indicate that there is a clear optical power limiting behaviour when the input intensity is higher than 0.4 GW/cm2. Furthermore, the basic theory of the TPA process has been discussed.

  16. A Relative Study on Two-photon Absorption Properties of C60 and C70

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Xin(周新); REN,Ai-Min(任爱民); FENG,Ji-Kang(封继康); LIU,Xiao-Juan(刘孝娟)

    2004-01-01

    We have theoretically investigated the one- and two-photon absorption properties of C60 and C70 using the ZINDO method. From the results it is suggested that the one-photon absorption spectra are in agreement with the experimental observations. It is found that the maximum TPA cross section of C70 is more than twice that of C60,which is consistent with the experimental results. A notable point is that the TPA process of C60 is different from that of C70 as well as other ordinary conjugated molecules.

  17. Molecular engineering of nanoscale quadrupolar chromophores for two-photon absorption

    Science.gov (United States)

    Porres, Laurent; Mongin, Olivier; Blanchard-Desce, Mireille H.; Ventelon, Lionel; Barzoukas, Marguerite; Moreaux, Laurent; Pons, Thomas; Mertz, Jerome

    2003-02-01

    Our aim has been the design of optimized NLO-phores with very high two-photon absorption (TPA) cross-sections (s2) in the red-NIR region, while maintaining high linear transparency and high fluorescence quantum yield. Our molecular engineering strategy is based on the push-push or pull-pull functionalization of semi-rigid nanoscale conjugated systems. The central building blocks were selected as rigid units that may assist quadrupolar intramolecular charge transfer by acting either as a (weak) donor or acceptor core. Quadrupolar molecules derived either from a phenyl unit, a rigidified biphenyl moiety or a fused bithiophene unit have been considered. Conjugated oligomers made of phenylene-vinylene and/or phenylene-ethynylene units were selected as connecting spacers between the core and the electroactive end groups to ensure effective electronic conjugation while maintaining suitable transparency/fluorescence. The TPA cross-sections were determined by investigating the two-photon-excited fluorescence properties using a Ti:sapphire laser delivering fs pulses. Both the nature of the end groups and of the core moiety play an important role in determining the TPA spectra. In addition, by adjusting the length and nature of the conjugated extensor, both amplification and spectral tuning of TPA cross-sections can be achieved. As a result, push-push fluorophores which demonstrate giant TPA cross-sections (up to 3000 GM) in the visible red, high fluorescence quantum yields and good transparency in the visible range have been obtained.

  18. Enhanced two-photon absorption using true thermal light

    CERN Document Server

    Jechow, Andreas; Kurzke, Henning; Heuer, Axel; Menzel, Ralf

    2013-01-01

    Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.

  19. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  20. Two-Photon Absorption in Organometallic Bromide Perovskites.

    Science.gov (United States)

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  1. Conjugated polymers with pyrrole as the conjugated bridge: synthesis, characterization, and two-photon absorption properties.

    Science.gov (United States)

    Li, Qianqian; Zhong, Cheng; Huang, Jing; Huang, Zhenli; Pei, Zhiguo; Liu, Jun; Qin, Jingui; Li, Zhen

    2011-07-14

    The synthesis, one- and two-photon absorption (2PA) and emission properties of two novel pyrrole-based conjugated polymers (P1 and P2) are reported. They emitted strong yellow-green and orange fluorescence with fluorescent quantum yields (Φ) of 46 and 33%, respectively. Their maximal 2PA cross sections (δ) measured by the two-photon-induced fluorescence method using femtosecond laser pulses in THF were 2392 and 1938 GM per repeating unit, respectively, indicating that the 2PA chromophores consisting of the triphenylamine with nonplanar structure as the donor and electron-rich pyrrole as the conjugated bridge could be the effective repeating units to enhance the δ values.

  2. Enhancement of Two-photon Absorption by Ce3+ Sensitization in Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    LI Jian-fu; SUN Cheng-lin; ZHOU Hai-ling; XU Li-hua; YANG Qing-xin; JIANG Zhan-kui

    2007-01-01

    The two-photon absorption (TPA) and TPA-induced frequency upconversion emission properties of the dyes4-[P-(dicyanoethylamino) crystal]-N-methypyrdinium iodide and the complex of 4-[ P-(dicyanoethylamino) crystal]-N-methypyrdinium iodide and Ce( NO3 )3 were experimentally studied. It was found that the TPA cross section for the dye sensitized by Ce3+ is two factors larger than that of the dye without being sensitized. A three-level system model of the dye molecules was used to analyze the enhancement of TPA by the sensitizer Ce3+, which indicated that the sensitizer results in the increase of the transition dipole moment from the one-photon allowed excited state(1Bu)to the two-photon allowed excited state(2Ag).

  3. Two-photon Absorption and Nonlinear Optical Properties of A New Organic Dye DEASPI

    Institute of Scientific and Technical Information of China (English)

    Guangyong ZHOU; Xiaomei WANG; Dong WANG; Chun WANG; Xian ZHAO; Zongshu SHAO; Minhua JIANG

    2001-01-01

    A new organic dye trans-4- [p-(N,N-diethylamino) styryl ]-N-methylpyridinium iodide (abbreviatedas DEASPI thereafter) with large two-photon absorption (TPA) cross section and excellent upconverted lasing properties was synthesized. The melting point and decompound point were measured to be 230℃ and 264.7℃ respectively. The molecular TPA cross section was meaThe linear and nonlinear optical properties of this dye were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted lasing energy is as high as 18.6% at the pump energy of 2.17 mJ from a mode-locked Nd:YAG ps laser.The nonlinear transmittance at the wavelengths from 720 to 1100 nm was measured. The dye solution also shows a clear optical power limiting effect.

  4. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    Institute of Scientific and Technical Information of China (English)

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  5. Determining the thermal neutron absorption cross section of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Kreft, A.; Dydejczyk, A.; Gyurcsak, J.

    1984-07-01

    A new simple rapid and cost effective method of determining the thermal neutron absorption cross section of rocks is proposed. It uses samples of about 2 kg and a measuring set-up consisting of paraffin block, Pu-Be neutron source emitting roughly 5 x 10/sup 5/ n/s, BF/sub 3/ proportional counter and conventional counting equipment. The method has been tested with a set of 49 artificial samples and 95% confidence intervals of about 0.27 m/sup -1/ have been estimated for 2 x 300 s counting times. Measurements carried out for several basalt samples have been compared with results obtained by a pulsed neutron technique.

  6. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collision

    Science.gov (United States)

    Cheung, Wang K.; Norbury, John W.

    1992-01-01

    The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange.

  7. Theoretical Studies on the One- and Two-Photon Absorption Properties of Double-bis(styryl)benzene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HAN,De-Ming; FENG,Ji-Kang; REN,Ai-Min; SHANG,Xiao-Hong; ZHANG,Xiang-Biao; MA,Yu-Guang; HE,Feng

    2008-01-01

    Two series of bis(styryl)benzene derivatives (BSBD), namely the single-BSBD and the double-BSBD, were investigated. The equilibrium geometries and electronic structures were obtained by using the density functional theory B3LYP and 6-31G basis set. In succession, the one- and two-photon absorption properties of all the molecules were studied theoretically with a ZINDO-SOS (sum-over-states) method in detail. It can be seen that the double-BSBDs have larger two-photon absorption (TPA) cross sections in the visible-IR range than the corresponding single-BSBDs,demonstrating that increasing the molecular dimension is a very effective method to enhance the values of the TPA cross sections. On the other hand, it can be also noticed that the values of the TPA cross sections are correlative with the ability of donating (accepting) electrons of the terminal substituent groups R[N(CH3)2, CH3, H and CF3] in these molecules. That is, the intramolecular charge transfer is also a factor for the enhancement of the TPA efficiency. To sum up, the idea of increasing the molecular dimension to enhance the TPA cross section value is a helpful direction to explore better TPA materials for practical applications. And the double-BSBD molecules are promising TPA materials for the further investigation from the standpoint of the high transparency and the larger TPA cross sections.

  8. Two-photon absorption and frequency-upconversion properties of a new organic dye HMASPS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two-photon absorption (TPA) and frequency- upconversion properties of a new upconversion laser dye trans-4-[p-(N-hydroxyethyl-N-methyl-amino)styryl]-N-meth- ylpyridinium toluene-p-sulfonate (abbreviated to HMASPS) were reported in this note. The linear absorption, TPA, single-photon induced fluorescence, TPA induced fluorescence and TPA induced upconverted lasing spectra of HMASPS solution in dimethyl formamide (abbreviated to DMF) were measured at room temperature. The red shift for the central wavelength of TPA induced fluorescence peak, which was compared with that of the single-photon induced fluorescen-ce peak, and the blue shift for that of TPA induced upcon-verted lasing compared with that of TPA induced fluores-cence, were explained by using re-absorption effect. TPA peak was at 930 nm. There is an 11 nm blue shift for two-photon energy of TPA peak compared with the linear ab-sorption peak. The molecular TPA cross-section at 1064 nm was measured to be 6.0′10-48 cm4 ·s/photon by using the open aperture Z-scanning system. The highest upconversion efficiency was measured to be 8.4% at 1064 nm.

  9. Theory of Two-Photon Absorptions in Graphene Fragments

    Science.gov (United States)

    Aryanpour, K.; Shukla, A.; Mazumdar, S.; Sandhu, A.; Roberts, A.

    2012-02-01

    Electron-electron correlations in graphene is currently an active field of research [1-3]. The carbon atoms in graphene have the same sp^2 hybridization as in strongly correlated π-conjugated polymer systems. The low energy behavior in graphene however appears to be reasonably described within the one-electron Dirac massless fermions model. Historically, the occurrence of the lowest two-photon state below the optical one-photon state provided the strongest proof for strong electron correlations in linear polyenes [4]. We systematically study the Coulomb interaction effects on the ground state and nonlinear absorptions in graphene fragments as a function of system size, beginning from the smallest stable fragment coronene. We report high order calculations of one- vs two-photon spin singlet and triplet states, in coronene, hexabenzocoronene and other molecular fragments that clearly indicate the strong role of electron-electron interactions. We will discuss the implications of our work on molecular systems for the thermodynamic limit of graphene. [4pt] [1] Siegel David A.; et al., PNAS, v108, 28, 11365-11369 (2011)[0pt] [2] Gr"onqvist J. H.; et al., arXiv: 1107.5653v1[0pt] [3] Uchoa B.; et al., arXiv: 1109.1577v1[0pt] [4] Ramasesha S.; et al., J. Chem. Phys. 80, 3278 (1984)

  10. Theoretical analysis on two-photon absorption spectroscopy in a confined four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Jintao Bai; Li Li; Yanpeng Zhang; Xun Hou

    2009-01-01

    We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorption due to enhanced contribution of slow atoms. We also find that the suppression and the enhancement of two-photon absorption can be modified by changing the strength of the control field and the detuning of three laser fields. This control of two-photon absorption may have some applications in information processing and optical devices.

  11. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    Science.gov (United States)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  12. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  13. Two-Photon Absorption in Conjugated Energetic Molecules.

    Science.gov (United States)

    Bjorgaard, Josiah A; Sifain, Andrew E; Nelson, Tammie; Myers, Thomas W; Veauthier, Jacqueline M; Chavez, David E; Scharff, R Jason; Tretiak, Sergei

    2016-07-07

    Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation. We found calculated vertical excitation energies to be in good agreement with experiment for most molecules. Peak TPA intensities were found to be significant and on the order of 10(2) GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity were used to examine the character of relevant transitions. Modification of molecular substituents, such as additional oxygen or other functional groups, produces significant changes in electronic structure, OPA, and TPA and improves oxygen balance. The results show that certain molecules are apt to undergo nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  14. One- and two-photon absorption properties of two metalloporphyrin complexes

    Institute of Scientific and Technical Information of China (English)

    Sun Yuan-Hong; Wang Chuan-Kui

    2011-01-01

    The linear and nonlinear optical properties of two metalloporphyrin complexes formed by the complementary coordination of central zinc or magnesium ions to the ligand 5,10,15-tri-(p-tolyl)-20-phenylethynylporphyrin are theoretically investigated by using the analytic response theory at the density functional theory level.The results indicate that the studied complexes present more symmetric geometry structures than the ligand.The charge-transfer states of the two complexes in the lower energy region are all almost degenerate but those of the ligand are well separated.The ratio of the two-photon absorption cross sections of the ligand,zinc-porphyrin and magnesium-porphyrin complexes is 1.0:1.5:1.8,demonstrating that the two-photon absorption capability can be greatly increased when the ligand is coordinated with a metal ion.Moreover,several physical micro-mechanisms including electron transitions and intramolecular charge-transfer processes are discussed to explore the differences in optical property between the ligand and two complexes.

  15. Optical limiting effect in a two-photon absorption dye doped solid matrix

    Science.gov (United States)

    He, Guang S.; Bhawalkar, Jayant D.; Zhao, Chan F.; Prasad, Paras N.

    1995-10-01

    We recently reported a new lasing dye, trans-4-[p-(N-ethyl-N-hydroxylethylamino)styryl]-N-methylpyridinium tetraphenylborate (ASPT), which has also been shown to possess a strong two-photon absorption (TPA) and subsequent frequency upconversion fluorescence behavior when excited with near infrared laser radiation. Based on the TPA mechanism, a highly efficient optical limiting performance has been demonstrated in a 2 cm long ASPT-doped epoxy rod pumped with 1.06 μm Q-switched laser pulses at 50-250 MW/cm2 intensity levels. The measured nonlinear absorption coefficient reached 6 cm/GW for the tested sample of dopant concentration d0=4×10-3 M/L. The molecular TPA cross section of ASPT in the epoxy matrix is estimated as σ2=2.5×10-18 cm4/GW or σ2'=4.7×10-46 cm4/photon/s, respectively. Two-photon pumped cavity lasing is also observed in an ASPT-doped polymer rod.

  16. Two-photon absorption induced drug delivery from polymeric intraocular lenses

    Science.gov (United States)

    Hampp, Norbert A.; Kim, Hee-Cheol; Kreiling, Stefan; Hesse, Lutz; Greiner, Andreas

    2003-10-01

    Secondary cataracts are quite often observed after implantation of polymeric intraocular lenses. The reason for this complication is that lens epithelial cells remain in the capsular bag when the natural lens is removed. They begin proliferation and cause secondary cataracts. It is not desireable to add cell toxic agents at the time of the implantation because wound healing is negatively affected. We have developed polymeric intraocular lenses which are equipped with a drug depot which may be released non-invasively through photochemical treatment. In the example presented the drug is 5-fluoruracil (5FU) which is covalently bound to the polymer. Deliberation of 5FU from the polymer is done photochemically. Since light is transmitted permanently through the artificial intraocular lens and wearing of special glasses by the patient should be omitted conventional photochemistry is not a suitable tool for the drug release. The polymer-5FU linkage is designed in a way that it has a high two-photon absorption cross-section. Two-photon absorption is used to selectively release 5FU from the lens. The one-photon reaction is blocked since the cornea does absorb UV light. The principle shown here is not limited to 5FU but may be applied to other drugs also.

  17. Electromagnetically induced absorption and transparency in an optical-rf two-photon coupling configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fu Guangsheng [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Li Xiaoli [College of Physical Science and Technology, Hebei University, Baoding 071002 (China)], E-mail: xiaolixiaoli001@yahoo.com.cn; Zhuang Zhonghong; Zhang Lianshui; Yang Lijun; Li Xiaowei; Han Li [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Manson, Neil B.; Wei Changjiang [Laser Physics Center, Research School of Physical Sciences and Engineering, Australian Nation University, Canberra, ACT 0200 (Australia)

    2008-01-07

    We study electromagnetically induced absorption (EIA) and transparency (EIT) in an optical-rf two-photon coupling configuration. It is shown that the interference effect due to interacting dark resonances results in an EIA for a resonant two-photon coupling and this EIA is observed to evolve into an EIT when there is a detuning in the two-photon coupling.

  18. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads

    Directory of Open Access Journals (Sweden)

    Seaho Jeon

    2016-05-01

    Full Text Available We synthesized four C60-(light-harvesting antenna dyads C60 (>CPAF-Cn (n = 4, 9, 12, or 18 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ2 and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18 and C60(>CPAF-C9, as better 2PA and excited-state absorbers.

  19. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    Science.gov (United States)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  20. Theoretical investigation of one-photon and two-photon absorption properties for multiply N-confused porphyrins.

    Science.gov (United States)

    Yang, Zhao-Di; Feng, Ji-Kang; Ren, Ai-Min; Sun, Chia-Chung

    2006-12-28

    We have theoretically investigated a series of multiply N-confused porphyrins and their Zn or Cu complexes for the first time by using DFT(B3LYP/6-31G*) and ZINDO/SOS methods. The electronic structure, one-photon absorption (OPA), and two-photon absorption (TPA) properties have been studied in detail. The calculated results indicate that the OPA spectra of multiply N-confused porphyrins are red-shifted and the OPA intensities decrease compared to normal porphyrin. The maximum two photon absorption wavelengths lambda(max) are blue-shifted and the TPA cross sections delta(max) are increased 22.7-112.1 GM when the N atoms one by one are inverted from core to beta position to form multiply N-confused porphyrins. Especially delta(max) of N3CP get to 164.7 GM. The electron donors -C6F5s at meso-position can make the TPA cross section delta(max) increase. After forming metal complexes with Cu or Zn, the TPA properties of multiply N-confused porphyrins are further increased except for N3CP, N4CP. Our theoretical findings demonstrate that the multiply N-confused prophyrins as well as their metal complexes and derivatives are promising molecules that can be assembled series of materials with large TPA cross section, and are sure to be the subject of further investigation.

  1. Effects of the structure of the branches on the two-photon absorption properties for the multi-branched molecules with nitrogen (N) as coupling center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effects of the structure of branches on the TPA properties for multi-branched molecules, the TPA cross section is calculated by using ZINDO/SOS method. The investigated mole- cules have different branches (chomorfores based on stilbene, dithienothiophene and flourene) with nitrogen(N) as coupling center. The results show that the cooperative enhancement in multi-branched molecules depends on the structures of the branches and the structures of branches play an important role in the enhancement of the TPA cross section. The designed molecules with stilbene and dithie- nothiophene as branched possess relatively larger two-photon absorption cross sections.

  2. Effects of the structure of the branches on the two-photon absorption properties for the multi-branched molecules with nitrogen (N) as coupling center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effects of the structure of branches on the TPA properties for multi-branched molecules, the TPA cross section is calculated by using ZINDO/SOS method. The investigated molecules have different branches (chomorfores based on stilbene, dithienothiophene and flourene) with nitrogen(N) as coupling center. The results show that the cooperative enhancement in multi-branched molecules depends on the structures of the branches and the structures of branches play an important role in the enhancement of the TPA cross section. The designed molecules with stilbene and dithienothiophene as branched possess relatively larger two-photon absorption cross sections.

  3. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  4. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass,which can be measured easily,as an independent variable,and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given.When the segregated solute disperses into the whole or just a part of melt homogenously,the concentration CS in solid interface will change by different formulas.If the crystal growth interface is conical and segregated solute disperses into melt in total or part,the solute concentration at r=2/3R,where r is the distance from the growth cross section center and R the crystal radius,is independent on the shape of the crystal growth interface,and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface.With CS variation formula in solid and absorption cross section σ for optical dopant,the absorption coefficients along the crystal growth direction can be calculated,and the corresponding experimental value can be obtained through the crystal optical absorption spectra.By minimizing the half sum,whose independent variables are k,ΔW or σ,of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection,k and σ,or k and ΔW,can be determined at the same time through the Levenberg-Marquardt iteration method.Finally,the effective segregation coefficient k,ΔW and absorption cross sections of Nd:GGG were determined,the results fitted by two formula gave more closed effective segregation coefficient,and the value ΔW also indicates that the segregated dopant had nearly dispersed into the whole melt.Experimental results show that the method to determine effective segregation coefficient k,ΔW and absorption cross sections σ is convenient and reliable,and the two segregation formulas can describe the segregation during the crystal growth from melt relatively commendably.

  5. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  6. Absorption Cross Section of Static Einstein-Maxwell Dilation Axion Black Hole for Scalar Particles

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-Qing; JING Ji-Liang

    2007-01-01

    The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated.It is shown that the ratio of the absorption cross section of the EMDA black hole to that of the Schwarzschild black hole decreases as the absolute value of the dilaton increases,and it becomes zero as the dilaton tends to its extremal value.It is also shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase,and it decreases as the mass of the particle decreases.

  7. Absorption Cross Section of Einstein-Maxwell Dilation Axion Black Hole for Dirac Particles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The absorption cross section of the Einstein-Maxwell Dilaton Axion (EMDA) black hole for Dirac particles is investigated. It is shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase, but it increases as the mass of the particle increases. It is also shown that the absorption cross section for the masslcss Dirac particles is 1/8 of the area of the horizon, which may be an universal property for minimally coupled massless Dirac particles.

  8. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)

    2012-12-15

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  9. Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"

    OpenAIRE

    Felber, J.; Gaehler, R.; Golub, R.

    2000-01-01

    Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd cross section for Ultra-cold neutrons with an exptrapolation of the cross section for thermal neutrons and interpreted the discrepancy in terms of coherence properties of the neutron. We show the extrapolation used is based on a misunderstanding and that coherence properties play no role in absorption.

  10. Measurement of the inclusive prompt photon cross section and preparation of the search of the Higgs boson decaying into two photons with the ATLAS detector at the LHC

    CERN Document Server

    Abreu, Henso

    This thesis presents the measurements with the ATLAS experiment of the cross section for inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy sqrt(s) = 7 TeV. The first results are based on an integrated luminosity of 880 nb−1 and the later results are based on 36 pb−1 , collected with the ATLAS detector at the Large Hadron Collider. The measurements performed with 880 nb−1 and 36 pb−1 cover the transverse energy range 15 ≤ ET < 100 GeV and 45 ≤ ET < 400 GeV, respectively. The results are compared to predictions from next-to-leading order perturbative QCD calculations. In addition, are also presented the first studies for the search for the Higgs boson in the decay channel into two photons with 38 pb−1 data collected by the ATLAS experiment in 2010 (and more recently with 210 pb−1 collected in 2011). Observed exclusion limits are quoted as a function of the Higgs mass in the range 110-140 GeV.

  11. Giant Two-Photon Absorption Coefficient and Frequency Up-Converted Luminescence in Monolayer MoS2

    CERN Document Server

    Li, Yuanxin; Zhang, Saifeng; Zhang, Xiaoyan; Feng, Yanyan; Wang, Kangpeng; Zhang, Long; Wang, Jun

    2015-01-01

    Strong two-photon absorption (TPA) in monolayer MoS2 is demonstrated in contrast to saturable absorption (SA) in multilayer MoS2 under the excitation of femtosecond laser pulses in the near infrared region. MoS2 in the forms of monolayer single crystal and multilayer triangular islands are grown on either quartz or SiO2/Si by employing the seeding method through chemistry vapor deposition. The nonlinear transmission measurements reveal that monolayer MoS2 possesses a giant nonsaturation TPA coefficient, larger than that of conventional semiconductors. As a result of TPA, two-photon pumped frequency up-converted luminescence is observed directly in the monolayer MoS2. For the multilayer MoS2, the SA response is demonstrated with the ratio of the excited-state absorption cross section to ground-state cross section of 0.18. In addition, the laser damage threshold of the monolayer MoS2 is 97 GW/cm2, larger than that of the multilayer MoS2 of 78 GW/cm2.

  12. High-resolution absorption cross sections of C$_{2}$H$_{6}$ at elevated temperatures

    OpenAIRE

    2015-01-01

    Infrared absorption cross sections near 3.3 $\\mu$m have been obtained for ethane, C$_{2}$H$_{6}$. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm$^{-1}$. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C$_{2}$H$_{6}$ cross sections at elevate...

  13. Thermal neutron absorption cross section and clay mineral content for Miocene Carpathian samples

    Science.gov (United States)

    Woznicka

    2000-12-01

    A correlation between the thermal neutron absorption cross section and the clay volume for samples from the chosen geological region is discussed. A comparison of the calculated and measured absorption cross sections as a function of clay volume allows an estimate to be made on the presence of highly absorbing impurities in clays. From the example presented, it was deduced that 105 ppm of B or 25 ppm of Gd in the clay minerals in the samples tested would be sufficient to explain the difference between the experimental and calculated cross sections.

  14. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  15. Effect of Pressure Broadening on Molecular Absorption Cross Sections in Exoplanetary Atmospheres

    CERN Document Server

    Hedges, Christina

    2016-01-01

    Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution, and completeness of broadening parameters - on molecular absorption cross sections. We use H$_2$O as a case study as it has the most complete absorption line data. For low resolution spectra (R$\\lesssim$100) for re...

  16. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy

    Science.gov (United States)

    Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A.

    2013-11-01

    Soot particles are a major absorber of shortwave radiation in the atmosphere. The mass absorption cross section is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption cross section of soot particles in the troposphere over Central Europe. Mass absorption cross sections were derived as the ratio between the light absorption coefficient determined by multiangle absorption photometry (MAAP) and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples and was calibrated in the laboratory using Printex®90 model particles. Mass absorption cross sections were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m2 g-1depending on measurement site and observational period. The highest values were found in a continentally aged air mass in winter, where soot particles were assumed to be mainly internally mixed. Our values are in the lower range of previously reported values, possibly due to instrumental differences to the former photometer and mass measurements. Overall, a value of 5.3m2 g-1from orthogonal regression over all samples is considered to be representative for the soot mass absorption cross section in the troposphere over Central Europe.

  17. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    Science.gov (United States)

    Herman, J. R.; Mentall, J. E.

    1982-10-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  18. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  19. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    Science.gov (United States)

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene.

  20. Absolute UV absorption cross sections of dimethyl substituted Criegee intermediate (CH3)2COO

    Science.gov (United States)

    Chang, Yuan-Pin; Chang, Chun-Hung; Takahashi, Kaito; Lin, Jim-Min, Jr.

    2016-06-01

    The absolute absorption cross sections of (CH3)2COO under a jet-cooled condition were measured via laser depletion to be (1.32 ± 0.10) × 10-17 cm2 molecule-1 at 308 nm and (9.6 ± 0.8) × 10-18 cm2 molecule-1 at 352 nm. The peak UV cross section is estimated to be (1.75 ± 0.14) × 10-17 cm2 molecule-1 at 330 nm, according to the UV spectrum of (CH3)2COO (Huang et al., 2015) scaled to the absolute cross section at 308 nm.

  1. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd;

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  2. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 degrees C

    DEFF Research Database (Denmark)

    Grosch, Helge; Sárossy, Zsuzsa; Egsgaard, Helge

    2015-01-01

    Absorption cross-sections and their temperature dependency, especially in the UV spectral range, of organic compounds such as phenol and naphthalene are of great interest in atmospheric research and high temperature processes. Due to the challenges of producing premixed gases of known concentration......, it is difficult to determine absorption cross-sections in experiments, especially at higher temperatures. In this paper, a gas flow of nitrogen with a stable but unknown concentration of phenol or naphthalene is produced, and their UV absorption spectra between 195 and 350 nm have been measured at higher....... Consequently, the absorption cross-sections for phenol and naphthalene at room temperature, 423 K, 573 K and 773 K in the range of 195-360 nm are presented in this study....

  3. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield.

    Science.gov (United States)

    Ke, Hanzhong; Li, Wenbin; Zhang, Tao; Zhu, Xunjin; Tam, Hoi-Lam; Hou, Anxin; Kwong, Daniel W J; Wong, Wai-Kwok

    2012-04-21

    Several acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids, PZn-PcYb, PH(2)-PcYb and PPd-PcYb, have been prepared and characterized by (1)H and (31)P NMR, mass spectrometry, and UV-vis spectroscopy. Their photophysical and photochemical properties, especially the relative singlet oxygen ((1)O(2)) quantum yields and the two-photon absorption cross-section (σ(2)), were investigated. These three newly synthesized compounds exhibited very large σ(2) values and substantial (1)O(2) quantum yields upon photo-excitation, making them potential candidates as one- and two-photon photodynamic therapeutic agents.

  4. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    Energy Technology Data Exchange (ETDEWEB)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  5. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  6. Experimental study on the temperature dependence of ultraviolet absorption cross-sections of sulfur dioxide

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The photoabsorption cross-sections of sulfur dioxide were measured in the spectral regions of 200-230 nm and 275 315 nm at 298-415 K,using a grating monochromator with a resolution of 0.2 nm.The discrete absorption cross-section is directly correlated with the number of quantum excited from the base state.The absorption cross-sections at the peaks of discrete bands decreased linearly with the increase of temperature,which corresponded to the decrease in the population of vibrational and rotational transitions from the base level to higher excitation levels.The absorption cross-section peaks decreased linearly when the temperature increased from 298 to 415 K,with relative drops of 74.0% and 75.8% at 200-230 nm and 275-315 nm,respectively.Another distinctive feature of sulfur dioxide absorption spectra in the above two spectral regions was the quasiperiodic structure of the absorption peaks,whose equal wavelength intervals were 1.53 nm and 1.95 nm,respectively.Red and blue shifts were not found at the absorption peak positions.

  7. High-resolution absorption cross sections of C$_{2}$H$_{6}$ at elevated temperatures

    CERN Document Server

    Hargreaves, Robert J; Dulick, Michael; Bernath, Peter F

    2015-01-01

    Infrared absorption cross sections near 3.3 $\\mu$m have been obtained for ethane, C$_{2}$H$_{6}$. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm$^{-1}$. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C$_{2}$H$_{6}$ cross sections at elevated temperatures.

  8. Improved measurement of the neutron absorption cross section for very low velocities

    Science.gov (United States)

    Schroffenegger, J.; Fierlinger, P.; Hollering, A.; Geltenbort, P.; Lauer, T.; Rauch, H.; Zechlau, T.

    2016-01-01

    The absorption cross section of natural Gd and isotopic enriched 157Gd for ultra-cold neutrons (UCN) as a function of the velocity has been measured within a time-of-flight-experiment. Particular attention is paid to small velocities in the region of a few m/s. This is intended to determine the validity of the 1 / v-law governing absorption cross sections in this region and the resulting divergence at v = 0. The experiment does not show any significant violation of 1 / v for v > 3 m /s.

  9. Improved measurement of the neutron absorption cross section for very low velocities

    Directory of Open Access Journals (Sweden)

    J. Schroffenegger

    2016-01-01

    Full Text Available The absorption cross section of natural Gd and isotopic enriched 157Gd for ultra-cold neutrons (UCN as a function of the velocity has been measured within a time-of-flight-experiment. Particular attention is paid to small velocities in the region of a few m/s. This is intended to determine the validity of the 1/v-law governing absorption cross sections in this region and the resulting divergence at v=0. The experiment does not show any significant violation of 1/v for v>3 m/s.

  10. Improved measurement of the neutron absorption cross section for very low velocities

    OpenAIRE

    J. Schroffenegger; Fierlinger, P.; Hollering, A.; Geltenbort, P; Lauer, T.(Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universität München, Garching, D-85748, Germany); Rauch, H.; Zechlau, T.

    2016-01-01

    The absorption cross section of natural Gd and isotopic enriched 157 Gd for ultra-cold neutrons (UCN) as a function of the velocity has been measured within a time-of-flight-experiment. Particular attention is paid to small velocities in the region of a few m/s. This is intended to determine the validity of the 1/v -law governing absorption cross sections in this region and the resulting divergence at v=0 . The experiment does not show any significant violation of 1/v for v>3 m/s .

  11. Two-photon absorption spectroscopy of stilbene and phenanthrene: Excited-state analysis and comparison with ethylene and toluene

    Science.gov (United States)

    de Wergifosse, Marc; Elles, Christopher G.; Krylov, Anna I.

    2017-05-01

    Two-photon absorption (2PA) spectra of several prototypical molecules (ethylene, toluene, trans- and cis-stilbene, and phenanthrene) are computed using the equation-of-motion coupled-cluster method with single and double substitutions. The states giving rise to the largest 2PA cross sections are analyzed in terms of their orbital character and symmetry-based selection rules. The brightest 2PA transitions correspond to Rydberg-like states from fully symmetric irreducible representations. Symmetry selection rules dictate that totally symmetric transitions typically have the largest 2PA cross sections for an orientationally averaged sample when there is no resonance enhancement via one-photon accessible intermediate states. Transition dipole arguments suggest that the strongest transitions also involve the most delocalized orbitals, including Rydberg states, for which the relative transition intensities can be rationalized in terms of atomic selection rules. Analysis of the 2PA transitions provides a foundation for predicting relative 2PA cross sections of conjugated molecules based on simple symmetry and molecular orbital arguments.

  12. Highly selective population of two excited states in nonresonant two-photon absorption

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse.In this paper,we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution.Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value.We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption,such as resonance-mediated(2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization.

  13. Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Yiqun Wu; Yang Wang

    2012-01-01

    Two novel anthracene derivatives containing 4-vinylpyridine (FPEA) and 2-vinylpyridine (TPEA) poly(methyl methacrylate) films are prepared on quartz glass substrates.Their nonlinear absorption properties are investigated by using a 120-fs,800-am Ti:sapphire femtosecond pulsed laser operating at a 1-kHz repetition rate.The unique nonlinear absorption properties of these new compounds are observed by utilizing a Z-scan system.These two-photon absorption (TPA) properties are proven by the two-photon fluorescence excited at 800 nm.The FPEA and TPEA films have nonlinear TPA coefficients of 0.164 and 0.148 cm/GW and the TPA cross sections of 3.345 × 10-48 and 3.081 × 10-48 cm4.s/photon,respectively.The influence of the chemical structures on the nonlinear TPA properties of the compounds is also discussed.The highly nonlinear TPA activities of the films implied that the new anthracene derivatives are suitable materials with promising applications in super-high-density three-dimensional data storage and nano- or microstructure fabrication.

  14. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    Science.gov (United States)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  15. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure-Property Relationship and Biological Imaging.

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-02-23

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  16. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure–Property Relationship and Biological Imaging

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-01-01

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  17. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure–Property Relationship and Biological Imaging

    Directory of Open Access Journals (Sweden)

    Qiong Zhang

    2017-02-01

    Full Text Available The application of two-photon absorption (2PA materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1 The two-photon absorption cross-section (δ of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2 Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3 Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA

  18. New insights into two-photon absorption properties of functionalized aza-BODIPY dyes at telecommunication wavelengths: a theoretical study.

    Science.gov (United States)

    Liu, Xiaoting; Zhang, Jilong; Li, Kai; Sun, Xiaobo; Wu, Zhijian; Ren, Aimin; Feng, Jikang

    2013-04-01

    Special attention has been paid to understanding the structural effect on electronic structure and absorption spectra for an extensive series of functionalized aza-BODIPY molecules. We have employed the quadratic response theory as well as a sum-over-states approach involving few intermediate states to calculate the two-photon cross section (δmax). The results suggest that chemical modifications on the aza-BODIPY core and peripheral moieties using various substituents can finely tune their linear and nonlinear optical properties. Therefore, some new fluorophores absorbing in the near infrared region and featuring considerably high δmax at telecommunication wavelengths are proposed, which are excellent candidates for nonlinear transmission and fluorescent labeling materials. The investigation contributes a useful starting point for further design of more effective aza-BODIPY dyes and can be valuable as a foundation for future experimental research and development.

  19. High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range.

    Science.gov (United States)

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-04-18

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680-1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed.

  20. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  1. Could the New Absorption Cross Section of J/psi Change the Aspect of Nuclear Absorption Mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The enlarged new absorption cross section of J/psi by pion and rho mesons were put into the hadron and string cascade model, JPCIAE, and the J/psi suppression factors in p-A, O-U, S-U and Pb-Pb minimum bias collisions at 200 AGeV/c were calculated with nuclear absorption mechanism only. The results seem to indicate that, with new enlarged cross section it is still hard to change the aspect that nuclear absorption itself could not easily account for the J/psi anomalous suppression in Pb-Pb collisions.

  2. UV-absorption cross sections of a series of monocyclic aromatic compounds

    Science.gov (United States)

    Trost, Barbara; Stutz, Jochen; Platt, Ulrich

    Aromatic hydrocarbons are of increasing importance as components of urban volatile organic compounds. Besides gas-chromatographic techniques, the detection of aromatic hydrocarbons by Differential Optical Absorption Spectroscopy (DOAS) is a promising alternative technique. The absolute calibration of DOAS-instruments is straightforward: Only the absorption cross sections of the species of interest and the instrument function are required. In this work we present measurements of high-resolution gas phase UV-absorption cross section spectra of benzene (C 6H 6), toluene (C 7H 8), p-, m-, o-xylene (C 8H 10), phenol (C 6H 5OH), benzaldehyde (C 7H 6O) and the cresol isomers (C 7H 8O), p-, m- and o-cresol in the wavelength interval between 230 and 290 nm. The spectral resolution is 0.11 nm (FWHM), except for o- and m-cresol, where the resolution is 0.32 nm (FWHM). These spectra can be used to calibrate DOAS-instruments. From these absorption cross sections typical detection limits for the atmospheric measurements with Long-Path-Differential Optical Absorption Spectroscopy are calculated to be in the range of a few ppt (phenol), to a few 10 ppt (cresol, benzaldehyde, benzene, p-xylene), up to 200 ppt ( o-xylene). The attainability of these detection limits is demonstrated by measurements of atmospheric phenol and benzaldehyde.

  3. Differential cross section measurements in events with two photons and N jets at √(s) = 8 TeV with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bessner, Martin; Tackmann, Kerstin [DESY (Germany)

    2016-07-01

    Isolated prompt photons allow to probe the physics of proton-proton collisions as they are sensitive to the gluon parton distribution functions. Preliminary measurements of cross sections of pairs of isolated prompt photons with and without additional jets are presented. Collision data from the ATLAS detector at the LHC is used, corresponding to an integrated luminosity of 20.3 fb{sup -1} collected in 2012 at a center-of-mass energy of 8 TeV. The cross sections have been measured differentially as function of different observables and the number of jets at the same time. Background subtraction and sources of systematic uncertainties are discussed. A focus is put on the unfolding procedure, where SVD unfolding has been generalized to work with two-dimensional distributions. The measurements of cross sections are compared to theory predictions.

  4. Two-photon absorption properties of cationic 1,4-bis(styryl)benzene derivative and its inclusion complexes with cyclodextrins.

    Science.gov (United States)

    Nag, Okhil Kumar; Nayak, Rati Ranjan; Lim, Chang Su; Kim, In Hong; Kyhm, Kwangseuk; Cho, Bong Rae; Woo, Han Young

    2010-07-29

    Two-photon absorption properties of 1,4-bis{4'-[N,N-bis(6''-trimethylammoniumhexyl)amino]styryl}benzene tetrabromide (C1) and its inclusion complexes (ICs) with cyclodextrins (CDs) have been studied. Upon complexation with CDs, the absorption spectra of C1 showed a slight red shift, whereas the emission spectra showed a blue shift with concomitant increase in the fluorescence quantum efficiency. A Stern-Volmer study using K(3)Fe(CN)(6) as a quencher revealed significant reduction in the photoinduced charge transfer quenching, in accord with the IC formation. Comparison of the spectroscopic results reveals that C1 forms increasingly more stable ICs in the order C1/beta-CD < C1/gamma-CD < C1/(3gamma:beta)-CD (gamma-CD/beta-CD 3:1, mole ratio). Moreover, the two-photon action cross section of C1 increased from 200 GM for C1 to 400 GM for C1/beta-CD, 460 GM for C1/gamma-CD, and 650 GM for C1/(3gamma:beta)-CD, respectively. Furthermore, the two-photon microscopy images of HeLa cells stained with C1 emitted strong two-photon excited fluorescence in the plasma membrane. These results provide a useful guideline for the development of efficient two-photon materials for bioimaging applications.

  5. Scattering and absorption differential cross sections for double photon Compton scattering

    Indian Academy of Sciences (India)

    B S Sandhu; M B Saddi; B Singh; B S Ghumman

    2001-10-01

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin aluminum foils are used as scatterer. The two simultaneously emitted photons in this process are detected in coincidence using two NaI(T1) scintillation detectors and a slow-fast coincidence set-up of 30 nsec resolving time. The measured values of scattering and absorption differential cross sections agree with theory within experimental estimated error.

  6. Effects of torsional disorder and position isomerism on two-photon absorption properties of polar chromophore dimers

    Science.gov (United States)

    Jia, Hai-Hong; Zhao, Ke; Wu, Xiang-Lian

    2014-09-01

    Two-photon absorption properties of a push-pull molecule and its covalent dimers have been studied by density functional response theory in combination with polarizable continuum model. A set of constrained geometries with different torsional angles are optimized and used to calculate two-photon absorption spectra. It is found that the torsional disorder could possibly produce the experimental two-photon absorption additive behavior. We have also designed a series of covalent dimers and investigated the effects of position isomerism. Our results suggest that the cooperative two-photon absorption enhancement can be achieved when the subunits are substituted in closer proximity and have larger interchromophore angle.

  7. Absolute absorption cross-section and photolysis rate of I2

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-05-01

    Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295 K, 760 Torr was therefore measured between 182 and 750 nm using a Fourier Transform spectrometer at a resolution of 4 cm−1 (0.1 nm at λ=500 nm. The maximum absorption cross-section in the visible region was observed at λ=533.0 nm to be σ=(4.84±0.60×10−18cm2 molecule−1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03 s−1 for the lower troposphere. This agrees well with the value of 0.15±0.03 s−1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.

  8. Absorption Cross-section and Decay Rate of Rotating Linear Dilaton Black Holes

    CERN Document Server

    Sakalli, I

    2016-01-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  9. Absorption cross-section and decay rate of rotating linear dilaton black holes

    Science.gov (United States)

    Sakalli, I.; Aslan, O. A.

    2016-02-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  10. Accurate measurements of ozone absorption cross-sections in the Hartley band

    OpenAIRE

    2015-01-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11...

  11. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    OpenAIRE

    2014-01-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and rep...

  12. Two-Photon Absorption-Induced Emission Properties of Dye HMASPS Doped Polymer

    Institute of Scientific and Technical Information of China (English)

    王东; 周广勇; 任燕; 杨胜军; 许心光; 邵宗书; 蒋民华

    2002-01-01

    The 0.01M two-photon absorption dye trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl-pyridinium p-toluene sulfonate (HMASPS) doped polymer has been prepared. When pumped by the picosecond pulse from the pulsed mode-locked Nd: YAG laser, the polymer emits more intense upconverted fluorescence and superradiance compared to the solution sample of the dye. The two-photon pumped lasing with oscillating pulses has also been obtained. Compared to the dye in its solution state, the emission spectra of the polymer are all blueshifted.The polymer has a long upconverted fluorescent lifetime of about 4.041 ± 0.04 ns.

  13. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a

    Science.gov (United States)

    Le Bris, Karine; Graham, Laura

    2015-01-01

    The integrated absorption cross-sections of HFC-143a (CH3CF3) differ substantially in the literature. This leads to an important uncertainty on the value of the radiative efficiency of this molecule. The ambiguity on the absorption cross-sections of HFC-143a is highlighted by the existence of two significantly different datasets in the HITRAN database. To solve the issue, we performed high-resolution Fourier transform infrared laboratory measurements of HFC-13a and compared the spectra with the two HITRAN datasets and with the data from the Pacific Northwest National Laboratory (PNNL). The experimental methods and data analysis techniques are examined and typical sources of errors are discussed. The integrated intensities of the main bands are compared to other literature values. It was found that the integrated absorption cross-section values in the highest range - around 13.8 ×10-17 cm .molecule-1 in the 570-1500 cm-1 spectral band - show the most consistency between authors.

  14. UV absorption cross-sections of selected sulfur-containing compounds at temperatures up to 500°C

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Clausen, Sønnik

    2015-01-01

    The temperature dependence of the ultraviolet absorption cross-sections of three different sulfur containing compounds, hydrogen sulfide (H2S), carbon disulfide (CS2) and carbonyl sulfide (OCS), are presented between 200nm and 360nm at a resolution of 0.018nm. The absorption cross-sections for each...

  15. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes.

    Science.gov (United States)

    Berciaud, Stéphane; Cognet, Laurent; Lounis, Brahim

    2008-08-15

    The absorption cross section of highly luminescent individual single-walled carbon nanotubes is determined using time-resolved and cw luminescence spectroscopy. A mean value of approximately 1 x 10(-17) cm2 per carbon atom is obtained for (6,5) tubes excited at their second optical transition, and corroborated by single tube photothermal absorption measurements. Biexponential luminescence decays are systematically observed, with short and long lifetimes around 45 and 250 ps. This behavior is attributed to the band edge exciton fine structure with a dark level lying a few meV below a bright one.

  16. Parametric Study of the Absorption Cross-Section for a Moderately Conducting Thin Cylinder.

    Science.gov (United States)

    Gurton, Kristan Peter

    A system has been developed to measure the absorption cross section of a single carbon fiber at 35 GHz as a function of length, orientation, and diameter. Typical lengths considered ranged from 1 to 20 mm, and diameters ranged from 3 to 8 um. The results were compared with the modified integral equation calculations of Waterman and Pedersen that describe the scattering and absorption behavior for a wire of finite length and conductivity. Good agreement was found for all lengths, orientations, and diameters studied.

  17. Parametric study of the absorption cross section for a moderately conducting thin cylinder

    Science.gov (United States)

    Gurton, Kristan P.; Bruce, Charles W.

    1995-05-01

    A system has been developed to measure the absorption cross section for a single carbon fiber at 35 GHz as a function of length, orientation, and diameter. Typical lengths of the fibers considered ranged from 1 to 20 mm, and diameters ranged from 3 to 8 mu m. The results were compared with the modified integral equation calculations of Waterman and Pedersen that describe the scattering and absorption behavior for a wire of finite length and conductivity. Good agreement was found for all lengths, orientations, and diameters studied.

  18. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential

    Science.gov (United States)

    Brinkley, M. K.; Abergel, D. S. L.; Clader, B. D.

    2016-09-01

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential—all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

  19. Difluorenyl carbo-Benzenes: Synthesis, Electronic Structure, and Two-Photon Absorption Properties of Hydrocarbon Quadrupolar Chromophores.

    Science.gov (United States)

    Baglai, Iaroslav; de Anda-Villa, Manuel; Barba-Barba, Rodrigo M; Poidevin, Corentin; Ramos-Ortíz, Gabriel; Maraval, Valérie; Lepetit, Christine; Saffon-Merceron, Nathalie; Maldonado, José-Luis; Chauvin, Remi

    2015-09-28

    The synthesis, crystal and electronic structures, and one- and two-photon absorption properties of two quadrupolar fluorenyl-substituted tetraphenyl carbo-benzenes are described. These all-hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo-benzene core (C-C bonds for 3 a, C-C=C-C expanders for 3 b), exhibit quasi-superimposable one-photon absorption (1PA) spectra but different two-photon absorption (2PA) cross-sections σ2PA. Z-scan measurements (under NIR femtosecond excitation) indeed showed that the C≡C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at λ = 800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum-over-state estimations of σ2PA(λi), in which λi = 2 hc/Ei, h is Planck's constant, c is the speed of light, and Ei is the energy of the 2PA-allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z-scan results.

  20. Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter

    CERN Document Server

    Mendoza, E; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Saarmento, H; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Guerrero, C; Andrzejewski, J; Karadimos, D; Mengoni, A; Ganesan, S; Vlachoudis, V; Becares, V; Cortes, G; Variale, V; Losito, H; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Becvar, F; Goncalves, I F; Cerutti, F; Ventura, A; Mosconi, M; Tagliente, G; Duran, I; Casado, A; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Vidriales, J J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    The n\\_TOF collaboration operates a Total Absorption Calorimeter (TAC) {[}1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu {[}2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.

  1. Absorption cross section determination of biogenic C5-aldehydes in the actinic region

    Science.gov (United States)

    Lanza, Beatriz; Jiménez, Elena; Ballesteros, Bernabé; Albaladejo, José

    2008-03-01

    UV absorption cross sections ( σλ) for 3-methylbutanal, trans-2-methyl-2-butenal, and 3-methyl-2-butenal have been determined between 255 and 390 nm and as a function of temperature (273-305 K). A D 2 lamp and a 0.5 m spectrograph coupled to a charged-couple device were employed in these measurements. σλ values were found to be independent of temperature in the range studied. The cross section data reported in this Letter were used to provide estimates of the photolysis rate coefficients ( Ji) for these compounds as a function of altitude in the troposphere. Photolysis and OH reaction both appear to be important in determining the atmospheric fate of these compounds.

  2. Two-photon absorption and two-photon circular dichroism of L-tryptophan in the near to far UV region

    Science.gov (United States)

    Vesga, Yuly; Hernandez, Florencio E.

    2017-09-01

    Herein we report on the first measurements of the two-photon absorption (TPA) spectrum of L-tryptophan in DMSO solution in the near to far UV region and the two-photon circular dichroism (TPCD) signal corresponding to a transition at 200 nm. We demonstrate the application of the Double L-scan technique in the near to far UV region to perform polarization dependent TPA measurements of chiral molecules. TPCD measurements below 400 nm reveal that chiral molecules in solution, such as tryptophan/DMSO, can undergo photochemical reactions in front of prolonged exposure to UV radiation.

  3. Determination of Kerr and two-photon absorption coefficients of indandione derivatives

    Science.gov (United States)

    Bundulis, Arturs; Mihailovs, Igors; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2017-05-01

    We studied nonlinear optical properties of two different aminobenziliden-1,3-indandione derivatives - DDMABI and DMABI-OH by employing the Z-scan method. Through this we described how different donor and acceptor groups influence third-order nonlinear optical properties such as Kerr effect and two-photon absorption. During experimental measurements we used 1064 nm Nd:YAG laser with 30 ps pulse duration and 10 Hz repetition rate. From acquired values of Kerr and two-photon absorption coefficients we calculated values for real and imaginary parts of third-order susceptibility, as well as second-order hyperpolarizability. Quantum chemical calculations were carried out for secondorder hyperpolarizability to study how well calculations correlate with experimental values. Acquired data for DDMABI and DMABI-OH were compared with data for other ABI derivatives studied previously.

  4. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015

    Science.gov (United States)

    Orphal, Johannes; Staehelin, Johannes; Tamminen, Johanna; Braathen, Geir; De Backer, Marie-Renée; Bais, Alkiviadis; Balis, Dimitris; Barbe, Alain; Bhartia, Pawan K.; Birk, Manfred; Burkholder, James B.; Chance, Kelly; von Clarmann, Thomas; Cox, Anthony; Degenstein, Doug; Evans, Robert; Flaud, Jean-Marie; Flittner, David; Godin-Beekmann, Sophie; Gorshelev, Viktor; Gratien, Aline; Hare, Edward; Janssen, Christof; Kyrölä, Erkki; McElroy, Thomas; McPeters, Richard; Pastel, Maud; Petersen, Michael; Petropavlovskikh, Irina; Picquet-Varrault, Benedicte; Pitts, Michael; Labow, Gordon; Rotger-Languereau, Maud; Leblanc, Thierry; Lerot, Christophe; Liu, Xiong; Moussay, Philippe; Redondas, Alberto; Van Roozendael, Michel; Sander, Stanley P.; Schneider, Matthias; Serdyuchenko, Anna; Veefkind, Pepijn; Viallon, Joële; Viatte, Camille; Wagner, Georg; Weber, Mark; Wielgosz, Robert I.; Zehner, Claus

    2016-09-01

    The activity "Absorption Cross-Sections of Ozone" (ACSO) started in 2008 as a joint initiative of the International Ozone Commission (IO3C), the World Meteorological Organization (WMO) and the IGACO ("Integrated Global Atmospheric Chemistry Observations") O3/UV subgroup to study, evaluate, and recommend the most suitable ozone absorption cross-section laboratory data to be used in atmospheric ozone measurements. The evaluation was basically restricted to ozone absorption cross-sections in the UV range with particular focus on the Huggins band. Up until now, the data of Bass and Paur published in 1985 (BP, 1985) are still officially recommended for such measurements. During the last decade it became obvious that BP (1985) cross-section data have deficits for use in advanced space-borne ozone measurements. At the same time, it was recognized that the origin of systematic differences in ground-based measurements of ozone required further investigation, in particular whether the BP (1985) cross-section data might contribute to these differences. In ACSO, different sets of laboratory ozone absorption cross-section data (including their dependence on temperature) of the group of Reims (France) (Brion et al., 1993, 1998, 1992, 1995, abbreviated as BDM, 1995) and those of Serdyuchenko et al. (2014), and Gorshelev et al. (2014), (abbreviated as SER, 2014) were examined for use in atmospheric ozone measurements in the Huggins band. In conclusion, ACSO recommends: The spectroscopic data of BP (1985) should no longer be used for retrieval of atmospheric ozone measurements. For retrieval of ground-based instruments of total ozone and ozone profile measurements by the Umkehr method performed by Brewer and Dobson instruments data of SER (2014) are recommended to be used. When SER (2014) is used, the difference between total ozone measurements of Brewer and Dobson instruments are very small and the difference between Dobson measurements at AD and CD wavelength pairs are diminished

  5. Morphology dependent two photon absorption in plasmonic structures and plasmonic-organic hybrids

    Science.gov (United States)

    Gambhir, Kaweri; Ray, Bhumika; Mehrotra, Ranjana; Sharma, Parag

    2017-05-01

    Two photon absorption coefficients of two distinct plasmonic structures, namely, gold nanoflowers (GNF) and gold nanopebbles (GNP) have been investigated and compared with conventional gold nanospheres (GNS). All three different nanoshapes were synthesized by changing the reaction solvent under the same experimental procedure. Further, hybrids of these plasmonic structures were prepared with an organic dye Eosin yellow (EY), to investigate the morphology effect of plasmonic structures on plasmonic-organic hybrids in terms of their linear extinction spectra and two photon absorption coefficients. The NLO investigations were conducted using 20 ps laser pulses of wavelength 532 nm as an excitation source in single beam Z-scan setup. UV/visible spectroscopy was employed for monitoring plasmon resonances and changes in linear extinction spectra. The experimental outcomes revealed two photon absorption coefficients of EY increased 120%, 32% and 39%, while 69%, 60% and 53% enhancement in the peaks of linear extinction maxima of EY has been observed, when hybridized with GNF, GNS and GNP, respectively. This boost in the optical coefficients may be attributed to dimerization of EY molecules on the surface of nanoparticles. Keeping the toxicity of EY in view, we propose that the two photon absorption coefficients of this dye and control thereof, by the addition of plasmonic structures would be helpful not only in understanding the interactions between plasmons and fluorophore, but also pave an efficient way, to reduce the operative concentration of this hazardous dye in a wide range of applications and thereby, mitigating the environmental degradation caused by its highly concentrated effluents.

  6. Two-photon absorption coefficient dichroism in Ⅱ-Ⅵ semiconductor crystals

    Institute of Scientific and Technical Information of China (English)

    Ma Guo-Hong; Ma Hong-Liang; Tang Sing-Hai

    2007-01-01

    Considering two beams propagate in semiconductor crystal, this paper discusses the polarization dependence of pump beam-induced intensity attenuation of probe beam due to two-photon absorption (TPA). Numerical calculation and experimental measurement demonstrate that TPA coefficient is polarization dependent. For homogeneous materials,probe beam attenuation arises from the imaginary part of diagonal and off-diagonal components of third-order nonlinear susceptibilities.

  7. Relation between bond-length alternation and two-photon absorption of a push pull conjugated molecules: a quantum-chemical study

    Science.gov (United States)

    Bartkowiak, W.; Zaleśny, R.; Leszczynski, J.

    2003-02-01

    The results of the semiempirical study of the structure/property relationships for the two-photon absorption cross-section ( δ) of a series of prototypical π-conjugated push-pull molecules are presented. The calculations of δ for the first charge-transfer (CT) excited state were performed as a function of the bond length alternation (BLA). The molecular hyperpolarizabilities ( β and γ) were calculated using the finite-field (FF) method. The obtained data were analyzed based on the simple two-state models. A strong dependence of δ on the BLA parameter was noticed.

  8. Relation between bond-length alternation and two-photon absorption of a push-pull conjugated molecules: a quantum-chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, W.; Zalesny, R.; Leszczynski, J

    2003-02-01

    The results of the semiempirical study of the structure/property relationships for the two-photon absorption cross-section ({delta}) of a series of prototypical {pi}-conjugated push-pull molecules are presented. The calculations of {delta} for the first charge-transfer (CT) excited state were performed as a function of the bond length alternation (BLA). The molecular hyperpolarizabilities ({beta} and {gamma}) were calculated using the finite-field (FF) method. The obtained data were analyzed based on the simple two-state models. A strong dependence of {delta} on the BLA parameter was noticed.

  9. Two-photon absorption, nonlinear optical and UV-vis spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuxi, E-mail: yuxisun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China) and Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Hao Qingli; Tang Weihua; Wang Yufeng [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Xujie, E-mail: yangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu Lude; Wang Xin [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-09-15

    Highlights: {yields} Three imine-bridged aromatic antipyrine derivatives as photo-responsive materials. {yields} The compounds exhibit two-photon absorption and first-hyperpolarization properties {yields} The compounds have long-range electron transfer characteristics. - Abstract: Organic compounds as functional materials have attracted much keen interest in the past three decades owing to their potential applications in science and technology. Currently, great efforts have been made in looking for suitable photo-responsive materials among the multifarious organic compounds. Herein we reported the photophysical properties of 2-furanylmethylene-aminoantipyrine (FMAAP), benzylideneaminoantipyrine (BIAAP) and cinnamilideneamino-antipyrine (CIAAP) studied by a combined experimental and theoretical investigation. Two-photon absorption measurements give the cross-section values of 1.350 x 10{sup -50} cm{sup 4} s/photon for FMAAP, 1.046 x 10{sup -50} cm{sup 4} s/photon for BIAAP and 2.047 x 10{sup -50} cm{sup 4} s/photon for CIAAP. The calculated first-hyperpolarization values are of 2.303 x 10{sup -30}, 1.257 x 10{sup -29}, 2.889 x 10{sup -29} cm{sup 5}/esu for FMAAP, BIAAP and CIAAP, respectively. UV-vis spectroscopy technique further reveals that the studied compounds display long-range electron transfer characteristics by absorbing light of specific wavelengths of 294.5 nm for FMAAP, 293.2 nm for BIAAP and 303.1 nm for CIAAP. All the results indicate that the studied compounds are promising candidates of functionally photo-responsive materials.

  10. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    Science.gov (United States)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  11. Ab initio many-body calculations of the 4He photo-absorption cross section

    CERN Document Server

    Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr

    2013-01-01

    A major goal of nuclear theory is to make quantitative calculations of low-energy nuclear observables starting from microscopic internucleon forces. Computationally, this is complicated by the large model spaces needed to reach convergence in many-body approaches, such as the no-core shell model (NCSM). In recent years, the similarity renormalization group (SRG) has provided a powerful and versatile means to soften interactions for ab initio structure calculations, thus leading to convergence within smaller model spaces. Here we compute the 4He total photo absorption cross section and study, for the first time, the consistency of the SRG approach in a continuum observable.

  12. Shape dependency of the extinction and absorption cross sections of dust aerosols modeled as randomly oriented spheroids

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2011-09-01

    Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.

  13. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    Directory of Open Access Journals (Sweden)

    J. Viallon

    2014-08-01

    Full Text Available Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10−18 cm2 molecule−1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10−18, 10.44 × 10−18, and 11.07 × 10−18 cm2 molecule−1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  14. Accurate measurements of ozone absorption cross-sections in the Hartley band

    Science.gov (United States)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  15. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    Science.gov (United States)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  16. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    Science.gov (United States)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  17. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  18. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  19. Generalized Kramers-Heisenberg expressions for stimulated Raman scattering and two-photon absorption

    Science.gov (United States)

    Roslyak, Oleksiy; Marx, Christoph A.; Mukamel, Shaul

    2010-01-01

    The frequency-domain pump-probe signal of a material system interacting with two quantum modes of the radiation field is recast in terms of products of scattering amplitudes (T matrix elements) rather than the third-order susceptibility Im χ(3). The resulting expression offers a more intuitive physical picture for the optical process compared with the semiclassical approach which treats the radiation field as classical. It can be derived and interpreted using closed-time-path-loop diagrams which represent the joint state of the matter and the field for each contribution to the signal. The signal has two components representing stimulated Raman scattering ω1 − ω2 and two-photon absorption ω1 + ω2 two-photon resonances. Both are expressed as nonequi-librium steady-state photon and matter fluxes, as is common in the description of dissipative processes in open quantum systems. PMID:20613889

  20. Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: a route to triphenylamine-based chromophores with enhanced two-photon absorption.

    Science.gov (United States)

    Hrobárik, Peter; Hrobáriková, Veronika; Sigmundová, Ivica; Zahradník, Pavol; Fakis, Mihalis; Polyzos, Ioannis; Persephonis, Peter

    2011-11-01

    A series of dipolar and octupolar triphenylamine-derived dyes containing a benzothiazole positioned in the matched or mismatched fashion have been designed and synthesized via palladium-catalyzed Sonogashira cross-coupling reactions. Linear and nonlinear optical properties of the designed molecules were tuned by an additional electron-withdrawing group (EWG) and by changing the relative positions of the donor and acceptor substituents on the heterocyclic ring. This allowed us to examine the effect of positional isomerism and extend the structure-property relationships useful in the engineering of novel heteroaromatic-based systems with enhanced two-photon absorption (TPA). The TPA cross-sections (δ(TPA)) in the target compounds dramatically increased with the branching of the triphenylamine core and with the strength of the auxiliary acceptor. In addition, a change from the commonly used polarity in push-pull benzothiazoles to a reverse one has been revealed as a particularly useful strategy (regioisomeric control) for enhancing TPA cross-sections and shifting the absorption and emission maxima to longer wavelengths. The maximum TPA cross-sections of the star-shaped three-branched triphenylamines are ∼500-2300 GM in the near-infrared region (740-810 nm); thereby the molecular weight normalized δ(TPA)/MW values of the best performing dyes within the series (2.0-2.4 GM·g(-1)·mol) are comparable to those of the most efficient TPA chromophores reported to date. The large TPA cross-sections combined with high emission quantum yields and large Stokes shifts make these compounds excellent candidates for various TPA applications, including two-photon fluorescence microscopy.

  1. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    Science.gov (United States)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  2. First-principles calculation of multiphoton absorption cross section of α-quartz under femtosecond laser irradiation

    Science.gov (United States)

    Yu, Dong; Jiang, Lan; Wang, Feng; Qu, Liangti; Lu, Yongfeng

    2016-05-01

    Time-dependent density functional theory-based first-principles calculations have been used to study the ionization process and electron excitation. The results show that the number of excited electrons follows the power law σ k I k at peak intensities of I key role. The multiphoton absorption cross section of α-quartz σ k is further calculated to be 3.54 × 1011 cm-3 ps-1 (cm2/TW)6. Using the plasma model, the theoretical results of the damage threshold fluences are consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. By employing the calculated cross section value in the plasma model, the damage threshold fluences are theoretically estimated, being consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. The preliminary multiscale model shows great potential in the simulation of laser processing.

  3. New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12

    Directory of Open Access Journals (Sweden)

    J. J. Harrison

    2015-03-01

    Full Text Available Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12 is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800–1270 cm−1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR and a 26 cm-pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm−1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference over a range of temperatures and pressures (7.5–761 Torr and 190–294 K appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.

  4. New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)

    Science.gov (United States)

    Harrison, Jeremy J.

    2016-06-01

    The most widely used hydrochlorofluorocarbon (HCFC) commercially since the 1930s has been chloro-difluoromethane, or HCFC-22, which has the undesirable effect of depleting stratospheric ozone. As this molecule is currently being phased out under the Montreal Protocol, monitoring its concentration profiles using infrared sounders crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of chlorodifluoromethane over the spectral range 730-1380 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of chlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD denotes the maximum optical path difference) over a range of temperatures and pressures (7.5-762 Torr and 191-295 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN (HIgh-resolution TRANsmission) and GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques) databases; in particular it provides coverage over a wider range of pressures and temperatures, has more accurate wavenumber scales, more consistent integrated band intensities, improved signal-to-noise, is free of channel fringing, and additionally covers the ν2 and ν7 bands.

  5. Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSe{sub x}Te{sub 1−x} quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Szeremeta, Janusz [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Lamch, Lukasz [Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wawrzynczyk, Dominika [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wilk, Kazimiera A. [Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Samoc, Marek [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Nyk, Marcin, E-mail: marcin.nyk@pwr.edu.pl [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-07-29

    Highlights: • Synthesis of the IR emitting alloyed CdSe{sub x}Te{sub 1−x} quantum dots has been performed. • Two-photon absorption cross section of the CdSe{sub x}Te{sub 1−x} QDs was measured in the IR range. • The QDs were encapsulated into Brij 58® micelles and transferred to the aqueous environment. • A blue-shift of fluorescence of QDs in the micelles was observed. - Abstract: Hydrophobic CdSe{sub x}Te{sub 1−x} quantum dots with near infrared emission in the 700–750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSe{sub x}Te{sub 1−x} quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.

  6. Vacuum-UV spectroscopy of interstellar ice analogs. I. Absorption cross-sections of polar-ice molecules

    CERN Document Server

    Cruz-Diaz, G A; Chen, Y -J; Yih, T -S

    2014-01-01

    The VUV absorption cross sections of most molecular solids present in interstellar ice mantles with the exception of H2O, NH3, and CO2 have not been reported yet. Models of ice photoprocessing depend on the VUV absorption cross section of the ice to estimate the penetration depth and radiation dose, and in the past, gas phase cross section values were used as an approximation. We aim to estimate the VUV absorption cross section of molecular ice components. Pure ices composed of CO, H2O, CH3OH, NH3, or H2S were deposited at 8 K. The column density of the ice samples was measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We provide VUV absorption cross sections of the reported molecular ices. Our results agree with those previously reported for H2O and NH3 ices. Vacuum-UV absorption cross section of CH3OH, CO, and H2S in solid phase are reported for the first...

  7. Ophthalmic drug delivery utilizing two-photon absorption: a novel approach to treat posterior capsule opacification

    Science.gov (United States)

    Kim, H.-C.; Träger, J.; Zorn, M.; Haberkorn, N.; Hampp, N.

    2007-07-01

    Intraocular lens (IOL) implantation is the standard technique to treat cataract. Despite recent progress in surgical procedures, posterior capsule opacification is one of the sill remaining postoperative complications of cataract surgery. We present a novel strategy to reduce the incidence of posterior capsule opacification. A drug delivery polymer suitable for manufacturing intraocular lenses has been developed which enables repeated drug release in a non-invasive and controlled manner. The therapeutic molecules are attached through a UV light sensitive linkage to the polymer backbone which is mainly responsible for the optical properties of the intraocular lenses. However, UV light can not trigger the release of drug from the polymer due to the high absorption of the cornea. We developed linkers which enable drug release by two-photon absorption induced cleavage of the linker structure. Since the two-photon absorption requires high photon densities, this does not occur in ambient light conditions in daily life, but is easily triggered by focused laser beams from a pulsed laser. In this proof-of-principle study we have employed a cyclobutane type linker and investigated the properties of the therapeutic system with the approved drugs 5-fluorouracil and chlorambucil. The controlled drug delivery was successfully demonstrated in vitro and additional cell tests confirmed that the device itself shows no cytotoxicity until photochemical activation. This presented concept can provide a powerful method in ophthalmic drug delivery.

  8. Two-photon absorption and transient photothermal imaging of pigments in tissues

    Science.gov (United States)

    Ye, Tong; Fu, Dan; Matthews, Thomas E.; Hong, Lian; Simon, John D.; Warren, Warren S.

    2008-02-01

    As a main pigment in skin tissues, melanin plays an important role in photo-protecting skin from UV radiation. However, melanogenesis may be altered due to disease or environmental factors; for example, sun exposure may cause damage and mutation of melanocytes and induce melanoma. Imaging pigmentation changes may provide invaluable information to catch the malignant transformation in its early stage and in turn improve the prognosis of patients. We have demonstrated previously that transmission mode, two-photon, one- or two-color absorption microscopy could provide remarkable contrast in imaging melanin in skin. In this report we demonstrate significantly improved sensitivity, so that we are now able to image in epi-mode (or back reflection) in two-photon absorption. This improvement makes possible for us to characterize the different types of pigmentation on the skin in vivo at virtually any location. Another finding is that we can also image transient photothermal dynamics due to the light absorption of melanin. By carefully choosing excitation and probe wavelengths, we might be able to image melanin in different structures under different micro-environments in skin, which could provide useful photochemical and photophysical insights in understanding how pigments are involved in photoprotection and photodamage of cells.

  9. Symmetry Breaking in Platinum Acetylide Chromophores Studied by Femtosecond Two-Photon Absorption Spectroscopy

    Science.gov (United States)

    2014-02-01

    The 1PA spectrum in toluene (solid line, top and right axes) and NLT of blank sample (filled black diamonds ) are shown for comparison. The Journal of...G.W., and M.D. ■ REFERENCES (1) Guha, S.; Frazier, C. C.; Porter , P. L.; Kang, K.; Finberg, S. E. Measurement of the 3rd-Order Hyperpolarizability of Pt...Poly-Ynes. Opt. Lett. 1989, 14, 952−954. (2) Guha, S.; kang, K.; Porter , P. L. Two-Photon Absorption-Induced Thermal Effects in Platinum Poly-Ynes

  10. Vacuum-UV spectroscopy of interstellar ice analogs. I. Absorption cross-sections of polar-ice molecules

    Science.gov (United States)

    Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Chen, Y.-J.; Yih, T.-S.

    2014-02-01

    Context. The vacuum-UV (VUV) absorption cross sections of most molecular solids present in interstellar ice mantles with the exception of H2O, NH3, and CO2 have not been reported yet. Models of ice photoprocessing depend on the VUV absorption cross section of the ice to estimate the penetration depth and radiation dose, and in the past, gas phase cross section values were used as an approximation. Aims: We aim to estimate the VUV absorption cross section of molecular ice components. Methods: Pure ices composed of CO, H2O, CH3OH, NH3, or H2S were deposited at 8 K. The column density of the ice samples was measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. Results: We provide VUV absorption cross sections of the reported molecular ices. Our results agree with those previously reported for H2O and NH3 ices. Vacuum-UV absorption cross section of CH3OH, CO, and H2S in solid phase are reported for the first time. H2S presents the highest absorption in the 120-160 nm range. Conclusions: Our method allows fast and readily available VUV spectroscopy of ices without the need to use a synchrotron beamline. We found that the ice absorption cross sections can be very different from the gas-phase values, and therefore, our data will significantly improve models that simulate the VUV photoprocessing and photodesorption of ice mantles. Photodesorption rates of pure ices, expressed in molecules per absorbed photon, can be derived from our data. Data can be found at http://ghosst.osug.fr/

  11. Absorption and scattering cross-section extinction values of silver nanoparticles

    Science.gov (United States)

    Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu

    2016-08-01

    We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (extinction grows as the cube of the diameter for all three wavelengths. For larger particles the extinction determined from absorbance exhibits a sixth order dependence on the diameters for 532 nm and 671 nm. This kind of behavior is typical of scattering processes that should dominate for large particles. For 405 nm the plasmonic resonant absorption dominates over scattering making difficult the observation of the sixth order dependence even for particles larger than 50 nm. The absorption cross-section measured by the photothermal method does not show the sixth order dependence. It depends on the cube of the particle's diameter for all nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.

  12. Absorption cross section of building materials at mm wavelength in a reverberation chamber

    Science.gov (United States)

    Micheli, D.; Delfini, A.; Pastore, R.; Marchetti, M.; Diana, R.; Gradoni, G.

    2017-02-01

    The reverberation chamber (RC) method is used to estimate the average absorption cross section of building materials at mm wave frequencies. Analysed samples include concrete, travertine and bricks of different types. The investigation is carried out in the frequency range between 50 GHz and 68 GHz, which is of interest in the next generation of mobile telecommunication system. A cylindrical cavity is transformed into a RC through the use of a mechanical model stirrer. The chamber field is statistically homogeneous and depolarized; therefore it can be used to probe the average response of the sample under test. In particular, through a differential measure of the average quality factor (average insertion loss) it is possible estimate the fraction of power absorbed by the sample under test. Several cube-shape samples have been characterized and compared. Obtained results show that analysed samples have remarkably different levels of the electromagnetic wave absorption, depending on both material density and chemical composition. The absorption of pure water is used as a baseline to determine the dynamic range of the measurement.

  13. Biological oxygen sensing via two-photon absorption by an Ir(III) complex using a femtosecond fiber laser

    Science.gov (United States)

    Moritomo, Hiroki; Fujii, Akinari; Suzuki, Yasutaka; Yoshihara, Toshitada; Tobita, Seiji; Kawamata, Jun

    2016-09-01

    Near-infrared two-photon absorption of the phosphorescent Ir(III) complex (2,4-pentanedionato-κO 2,κO 4)bis[2-(6-phenanthridinyl-κN)benzo[b]thien-3-yl-κC]iridium (BTPHSA) was characterized. It exhibited a 800-1200 nm two-photon absorption band, and thus could be electronically excited by 1030-nm femtosecond Ti:sapphire and Yb-doped fiber lasers. By using BTPHSA, oxygen concentrations in human embryonic kidney 293 (HEK293) cells were imaged. These results demonstrate two-photon oxygen sensing of live tissues via easily operable excitation sources.

  14. Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique

    Science.gov (United States)

    Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru

    2017-06-01

    Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).

  15. Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan

    Science.gov (United States)

    Ajami, Aliasghar; Husinsky, Wolfgang; Tromayer, Maximilian; Gruber, Peter; Liska, Robert; Ovsianikov, Aleksandr

    2017-08-01

    To achieve efficient micro- and nanostructuring based on two-photon polymerization (2PP), the development and evaluation of specialized two-photon initiators (2PIs) are essential. Hence, a reliable method to determine the two-photon absorption (2PA) spectra of the synthesized 2PIs used for 2PP structuring is crucial. A technique by which absolute visible-to-near-infrared 2PA spectra of degenerate nature can be determined via performing a single dispersive white-light continuum (WLC) Z-scan has been realized. Using a dispersed white light beam containing 8 fs pulses at wavelengths ranging from 650 nm to 950 nm, the nonlinear transmittance as a function of the sample position can be measured for all spectral components by performing a single scan along the laser beam propagation direction. In this work, the 2PA spectrum of three different 2PIs was determined using this technique. 2PP structuring was also accomplished using the developed 2PIs at different wavelengths. Tuning the wavelength of the laser to match the peak of the 2PA spectra of the developed 2PIs resulted in lower intensity thresholds and facilitated higher structuring speeds. As an example, using M2CMK 2PI for 2PP, the scanning speed can be increased up to 5 folds when the laser wavelength is tuned to 760 nm (i.e., 2PA maximum) instead of the conventionally used 800 nm.

  16. Two-Photon-Absorption Induced Superradiance of a New Organic Dye PSPS

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 王筱梅; 杨胜军; 许心光; 赵显; 邵宗书; 蒋民华

    2002-01-01

    The linear and nonlinear optical properties of a new two-photon absorption (TPA) dye, trans-4-(4'-pyrrolidinyl styryl)-N-methyl pyridinium methyl sulfate (abbreviated as PSPS) is reported. Intense red superradiance with a peak located at 625nm can be observed from PSPS solution in benzyl alcohol when pumped by a focused picosecond laser beam operated at 1064nm. The lifetimes of one-photon absorption (OPA) and TPA fluorescence were measured to be 370 and 384ps, respectively. The pulse widths of OPA and TPA superradiance were 60 and 58 ps, respectively. The highest net upconversion efficiency from the absorbed pump laser to the upconverted superradiance is 8.3% at the pump energy of 0.6 mJ.

  17. Two-photon absorption-induced drug delivery from polymers for medical applications

    Science.gov (United States)

    Kim, Hee-Cheol; Kreiling, Stefan; Haertner, Sebastian; Hesse, Lutz; Greiner, Andreas; Hampp, Norbert A.

    2004-06-01

    Novel polymeric materials carrying a drug depot have been developed which are suitable for fabrication of photochemically modulated drug delivery devices. In order to avoid uncontrolled drug release the drug is covalently attached to the polymer backbone using a photo-active linker. Controlled drug release from the polymer can be accomplished either via single-photon excitation or by two-photon absorption (TPA). In particular the second possibility is of interest for applications where exposure to day light or UV light may not be omitted. One example are polymeric intraocular lenses (IOL), which are implanted instead of the opaque natural lens during cataract surgery. Secondary cataract formation is quite often observed after implantation of polymeric IOLs. In this study the well known cell toxic agent 5-fluorouracil (5FU) attached to a methylmethacrylate-based polymer was investigated as an IOL which can upon photochemical excitation release 5FU in order to treat or to prevent secondary cataract formation. The photochemical cleavage of the linker molecule was analyzed with single- and two-photon excitation. UV/VIS spectroscopy and HPLC analysis confirmed the release of 5FU form the polymer backbone. The diffusion of the drug precursor out from the polymer as well as the hydrolysis of the drug precursor which leads to 5FU formation were investigated in vitro.

  18. An Evaluation of Mass Absorption Cross-Section for Optical Carbon Analysis on Teflon Filter Media.

    Science.gov (United States)

    Presler-Jur, Paige; Doraiswamy, Prakash; Hammond, Oki; Rice, Joann

    2017-04-05

    Black carbon (BC) or elemental carbon (EC) is a by-product of incomplete fuel combustion, and contributes adversely to human health, visibility, and climate impacts. Previous studies have examined non-destructive techniques for particle light attenuation measurements on Teflon(®) filters to estimate BC. The incorporation of an inline Magee Scientific OT21 Transmissometer into the MTL AH-225 robotic weighing system provides the opportunity to perform optical transmission measurements on Teflon(®) filters at the same time as the gravimetric mass measurement. In this study, we characterize the performance of the inline OT21, and apply it to determine the mass absorption cross-section (MAC) of PM2.5 BC across the U.S. We analyzed 5393 archived Teflon(®) filters from the Chemical Speciation Network (CSN) collected during 2010-2011 and determined MAC by comparing light attenuation on Teflon(®) filters to corresponding thermal EC on quartz-fiber filters. Results demonstrated the importance of the initial transmission (I0) value used in light attenuation calculations. While light transmission varied greatly within filter lots, the average I0 of filter blanks during from the sampling period provided an estimate for archived filters. For newly collected samples, it is recommended that filter-specific I0 measurements be made (i.e., same filter before sample collection). The estimated MAC ranged from 6.9 to 9.4 m(2)/g that varied by region and season across the U.S., indicating that using a default value may lead to under- or over-estimated BC concentrations. An analysis of the chemical composition of these samples indicated good correlation with EC for samples with higher EC content as a fraction of total PM2.5 mass, while the presence of light scattering species such as crustal elements impacted the correlation affecting the MAC estimate. Overall, the method is demonstrated to be a quick, cost-effective approach to estimate BC from archived and newly sampled Teflon

  19. Saturable absorption and two-photon absorption of 1,2,5-thiadiazolo[3,4-g]quinoxaline based derivatives with near-infrared fluorescence

    Science.gov (United States)

    Du, Yabing; Lin, Xiaodong; Jia, Tingjian; Dong, Jun

    2015-03-01

    Organic molecules with near-infrared (NIR) fluorescence are extremely interesting for the applications in nonlinear optical devices and bioimaging. However, such kind of materials have been relatively rarely studied. In this work, the nonlinear optical properties of 1,2,5-thiadiazolo[3,4-g]quinoxaline based derivatives with NIR fluorescence emission have been investigated for the first time. Under the excitation of femtosecond pulses at 532 nm, the chromophore with dithienyl as donor (TQ2) presents saturable absorption (SA) behavior, while no SA has been observed in the derivative with biphenyl (TQ1) as donor. Moreover, TQ2 exhibits much larger two-photon absorption (TPA) cross-sections with strong NIR fluorescence in the second biological window. The larger nonlinear optical properties of TQ2 is due to the introduction of stronger electron-donating group (dithienyl) and the resultant enhanced intramolecular charge transfer properties. At the end, TPA based optical limiting behaviors of the molecules are demonstrated in THF solutions, thanks to their large solubility and strong TPA.

  20. Numerical approaches for predicting two-photon absorption induced single-event effects in semiconductors

    Science.gov (United States)

    Hales, Joel M.; Khachatrian, Ani; Roche, Nicolas J.; Buchner, Stephen; Warner, Jeffrey; McMorrow, Dale

    2016-05-01

    Two numerical approaches for determining the charge generated in semiconductors via two-photon absorption (2PA) under conditions relevant for laser-based single-event effects (SEE) experiments are presented. The first approach uses a simple analytical expression incorporating a small number of experimental/material parameters while the second approach employs a comprehensive beam propagation method that accounts for all the complex nonlinear optical (NLO) interactions present. The impact of the excitation conditions, device geometry, and specific NLO interactions on the resulting collected charge in silicon devices is also discussed. These approaches can provide value to the radiation-effects community by predicting the impacts that varying experimental parameters will have on 2PA SEE measurements.

  1. Observation of two-photon absorption at UV radiation in ZnS quantum dots

    Indian Academy of Sciences (India)

    Manajit Chattopadhyay; Pathik Kumbhakar; Udit Chatterjee

    2014-02-01

    Research studies on quantum dots (QDs) of semiconductor materials are of potential interest in present days having promising applications in different optoelectronic devices. Among other materials, ZnS is a direct bandgap semiconductor material having a wide bandgap of 3.6 eV for its cubic phase at room temperature and it shows excellent optical properties. However, here the nonlinear optical (NLO) properties of chemically synthesized ZnS QDs of average size of ∼ 1.5 nm have been reported which are measured by using an indigenously developed Z-scan technique. The pump radiation is 355 nm which is the third harmonic of the Q-switched Nd:YAG laser radiation having pulsed duration of 10 ns with the repetition rate of 10 Hz. The measured experimental data have been analysed by using analytical models and two-photon absorption coefficients of the ZnS QDs at 355 nm have been extracted.

  2. Two-photon Absorption In Quantum Dots,quantum Dashes And Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ravinder

    2009-08-31

    We have proposed the use of USQDs for various deep-tissue biological imaging applications, notably wavelength-multiplexed multicolor imaging and intra-nuclear studies such as those involving cell apoptosis, and have studied the issue of maximizing two-photon absorption-induced fluorescence (TPAF) signals from CdSe/ZnS USQDs to be used for this application. In particular, using 2 nm USQDs, we have shown that the TPAF signal at 780 nm is ~ 8 times that at 850 nm and 68 times that at 900 nm, two wavelengths that have been used in previous studies using CdSe/ZnS SQDs for deep-tissue imaging of biological studies via TPAF .

  3. Halo Gas Cross Sections And Covering Fractions of MgII Absorption Selected Galaxies

    CERN Document Server

    Kacprzak, G G; Steidel, C C; Murphy, M T

    2007-01-01

    We examine halo gas cross sections and covering fractions, f_c, of intermediate redshift MgII absorption selected galaxies. We computed statistical absorber halo radii, R_x, using current values of dN/dz and Schechter luminosity function parameters, and have compared these values to the distribution of impact parameters and luminosities from a sample of 37 galaxies. For equivalent widths W_r(2796) > 0.3 Ang, we find 43 R_x and several non-absorbing galaxies lie at D ~ 0.6 for our sample. Moreover, the data suggest halo radii of MgII absorbing galaxies do not follow a luminosity scaling with beta in the range of 0.2-0.28, if f_c= 1 as previously reported. However, provided f_c~0.6, we find that halo radii can remain consistent with a Holmberg-like luminosity relation with beta > 0.2 and R* = R_x/sqrt(f_c)= 110 kpc. No luminosity scaling (beta=0) is also consistent with the observed distribution of impact parameters if f_c < 0.37. The data support a scenario in which gaseous halos are patchy and likely hav...

  4. Determination of absorption cross-section of Si nanocrystals by two independent methods based on either absorption or luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M. [Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Remeš, Z. [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, Prague 6 (Czech Republic); Gutsch, S.; Hiller, D.; Zacharias, M. [Faculty of Engineering, IMTEK, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

    2016-01-11

    Absorption cross-section (ACS) of silicon nanocrystals (SiNCs) is determined via two completely independent approaches: (i) Excitation-intensity-dependent photoluminescence (PL) kinetics under modulated (long square pulses) pumping and (ii) absorbance measured by the photothermal deflection spectroscopy combined with morphology information obtained by the high-resolution transmission electron microscopy. This unique comparison reveals consistent ACS values around 10{sup −15} cm{sup 2} for violet excitation of SiNCs of about 3–5 nm in diameter and this value is comparable to most of direct band-gap semiconductor nanocrystals; however, it decreases steeply towards longer wavelengths. Moreover, we analyze the PL-modulation technique in detail and propose an improved experimental procedure which enables simpler implementation of this method to determine ACS of various (nano)materials in both solid and liquid states.

  5. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges

    Science.gov (United States)

    Etzkorn, Thomas; Klotz, Björn; Sørensen, Søren; Patroescu, Iulia V.; Barnes, Ian; Becker, Karl H.; Platt, Ulrich

    Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm -1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported. The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and ( E,Z)- and ( E,E)-2,4-hexadienedial). The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.

  6. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    Science.gov (United States)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  7. Two-photon absorption prop erties of novel charge transfer molecules with divinyl sulfide/sulfone center%以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性∗

    Institute of Scientific and Technical Information of China (English)

    武香莲; 赵珂; 贾海洪; 王富青

    2015-01-01

    Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same compu-tational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sec-tions are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a

  8. Stabilization of Mass Absorption Cross Section of Elemental Carbon for Filter-Based Absorption Photometer by Heated Inlet

    Science.gov (United States)

    Kondo, Y.; Sahu, L.; Takegawa, N.; Miyazaki, Y.; Han, S.; Moteki, N.; Hu, M.; Kim Oanh, N.; Kim, Y.

    2008-12-01

    Accurate measurements of elemental carbon (EC) or black carbon on a long-term basis are important for the studies of impacts of EC on climate and human health. In principle, mass concentrations of EC (MEC) can be estimated by the measurement of light absorption coefficient by EC. Filter-based methods, which quantify the absorption coefficient (kabs) from the change in transmission through a filter loaded with particles, have been widely used to measure MEC because of the ease of the operation. However, in practice, reliable determination of MEC has been very difficult because of the large variability in the mass absorption cross sections (Cabs), which is a conversion factor from kabs to MEC. Coating of EC by volatile compounds and co-existence of light-scattering particles greatly contributes to the variability of Cabs. In order to overcome this difficulty, volatile aerosol components were removed before collection of EC particles on filters by heating an inlet section to 400°C. The heated inlet vaporized almost completely sulfate, nitrate, ammonium, and organics without any detectable loss of EC. Simultaneous measurements of kabs by two types photometers (Particle Soot Absorption Photometer (PSAP) and Continuous Soot Monitoring System (COSMOS)) together with MEC by the EC-OC analyzer were made to determine Cabs at 6 different locations in Asia (Japan, Korea, China, and Thailand) in different seasons. The Cabs was stable to be 10.5±0.7 m2 g-1 at the wavelength of 565 nm for EC strongly impacted by emissions from vehicles and biomass burning. The stability of the Cabs for different EC sources and under the different physical and chemical conditions provides a firm basis for its use in estimating MEC in fine mode with an accuracy of about 10%.

  9. A Comprehensive Catalogue of Absorption Cross-Sections of Halocarbons and Related Molecules

    Science.gov (United States)

    Shine, Keith P.; Hodnebrog, O.; Fuglestvedt, J. S.; Myhre, G.; Marston, G.; Nielsen, C. J.; Wallington, T. J.

    2014-06-01

    The collation and applications of a comprehensive database of infrared cross-sections of 200 halocarbons and related molecules is described. The first phase of this research was published by Hodnebrog et al. (Reviews of Geophysics, 2013, doi:10.1002/rog.20013) in which cross-sections were drawn from a wide range of laboratory studies in the published literature and, when these were not available, from ab initio calculations. The criteria for selection of particular cross-section data sets will be described. The primary purpose of the database is for use in the calculation of radiative forcing and climate metrics such as the Global Warming Potential, and illustrations of their usage will be given. The work on the database is intended to be an ongoing exercise and the plan is to revise and expand the database as new data become available.

  10. Polarization control efficiency manipulation in resonance-mediated two-photon absorption by femtosecond spectral frequency modulation

    Science.gov (United States)

    Yao, Yunhua; Cheng, Wenjing; Zheng, Ye; Xu, Cheng; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-04-01

    The femtosecond laser polarization modulation is considered as a very simple and efficient method to control the multi-photon absorption process. In this work, we theoretically and experimentally show that the polarization control efficiency in the resonance-mediated two-photon absorption can be artificially manipulated by modulating the femtosecond spectral frequency components. We theoretically demonstrate that the on- and near-resonant parts in the resonance-mediated two-photon absorption process depend on the different femtosecond spectral frequency components, and therefore their contributions in the whole excitation process can be controlled by properly designing the femtosecond spectral frequency components. The near-resonant two-photon absorption is correlated with the femtosecond laser polarization while the on-resonant two-photon absorption is independent of it, and thus the polarization control efficiency in the resonance-mediated two-photon absorption can be manipulated by the femtosecond spectral frequency modulation. We experimentally verify these theoretical results by performing the laser polarization control experiment in the Dy3+-doped glass sample under the modulated femtosecond spectral frequency components, and the experimental results show that the polarization control efficiency can be increased when the central spectral frequency components are cut off, while it is decreased when both the low and high spectral frequency components are cut off, which is in good agreement with the theoretical predictions. Our works can provide a feasible pathway to understand and control the resonance-mediated multi-photon absorption process under the femtosecond laser field excitation, and also may open a new opportunity to the related application areas.

  11. Enhancement of Two-photon Absorption in Quantum Wells for Extremely Nondegenerate Photon Pairs

    CERN Document Server

    Pattanaik, Himansu S; Khurgin, Jacob B; Hagan, David J; Van Stryland, Eric W

    2015-01-01

    We recently demonstrated orders of magnitude enhancement of two-photon absorption (2PA) in direct gap semiconductors due to intermediate state resonance enhancement for photons of very different energies. It can be expected that further enhancement of nondegenerate 2PA will be observed in quantum wells (QWs) since the intraband matrix elements do not vanish near the band center as they do in the bulk, and the density of states in QWs is larger near the band edge. Here we present a perturbation-theory based theoretical description of nondegenerate 2PA in semiconductor QWs, where both frequency and polarization of two incident waves can vary independently. Analytical expressions for all possible permutations of frequencies and polarizations have been obtained, and the results are compared with degenerate 2PA in quantum wells along with degenerate and nondegenerate 2PA in bulk semiconductors. We show that using QWs in place of bulk semiconductors with both beams in the TM-polarized mode leads to an additional or...

  12. Colloidal quantum-dot-based silica gel glass: two-photon absorption, emission, and quenching mechanism.

    Science.gov (United States)

    Li, Jingzhou; Dong, Hongxing; Zhang, Saifeng; Ma, Yunfei; Wang, Jun; Zhang, Long

    2016-09-28

    Two-photon (TP) three-dimensional solid matrices have potential applications in high density optical data reading and storage, infrared-pumped visible displays, lasers, etc. Such technologies will benefit greatly from the advantageous properties of TP materials including tunable emission wavelength, photostability, and simple chemical processing. Here, this ideal TP solid is made possible by using a facile sol-gel process to engineer colloid quantum dots into silica gel glass. Characterization using an open-aperture Z-scan technique shows that the solid matrices exhibited significant TP optical properties with a TP absorption coefficient of (9.41 ± 0.39) × 10(-2) cm GW(-1) and a third-order nonlinear figure of merit of (7.30 ± 0.30) × 10(-14) esu cm. In addition, the dependence of the TP properties on high-temperature thermal treatment is studied in detail to obtain a clear insight for practical applications. The results illustrate that the sample can maintain stable TP performance below the synthesis temperature of the CdTe/CdS colloidal quantum dots. Furthermore, the mechanisms for thermal quenching of photoluminescence under different temperature regimes are clarified as a function of the composition.

  13. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    Science.gov (United States)

    Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Chen, Y.-J.; Yih, T.-S.

    2014-02-01

    Context. Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. Aims: The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. Methods: The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. Results: We found that, as expected, solid N2 has the lowest VUV-absorption cross section, which about three orders of magnitude lower than that of other species such as O2, which is also homonuclear. Methane (CH4) ice presents a high absorption near Ly-α (121.6 nm) and does not absorb below 148 nm. Estimating the ice absorption cross sections is essential for models of ice photoprocessing and allows estimating the ice photodesorption rates as the number of photodesorbed molecules per absorbed photon in the ice. Data can be found at http://ghosst.osug.fr/

  14. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  15. N-annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption.

    Science.gov (United States)

    Luo, Jie; Lee, Sangsu; Son, Minjung; Zheng, Bin; Huang, Kuo-Wei; Qi, Qingbiao; Zeng, Wangdong; Li, Gongqiang; Kim, Dongho; Wu, Jishan

    2015-02-23

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1 a/1 b with very intense absorption (ε>1.3×10(5) M(-1) cm(-1)) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10(-6) and 6.0×10(-6) for 1 a and 1 b, respectively. The NP-substituted porphyrin dimers 2 a/2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  16. Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser.

    Science.gov (United States)

    Langer, Gregor; Bouchal, Klaus-Dieter; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2013-09-23

    In the present paper we demonstrate the possibility to image dyed solids, i.e. Rhodamine B dyed polyethylene spheres, by means of two-photon absorption-induced photoacoustic scanning microscopy. A two-photon luminescence image is recorded simultaneously with the photoacoustic image and we show that location and size of the photoacoustic and luminescence image match. In the experiments photoacoustic signals and luminescence signals are generated by pulses from a femtosecond laser. Photoacoustic signals are acquired with a hydrophone; luminescence signals with a spectrometer or an avalanche photo diode. In addition we derive the expected dependencies between excitation intensity and photoacoustic signal for single-photon absorption, two-photon absorption and for the combination of both. In order to verify our setup and evaluation method the theoretical predictions are compared with experimental results for liquid and solid specimens, i.e. a carbon fiber, Rhodamine B solution, silicon, and Rhodamine B dyed microspheres. The results suggest that the photoacoustic signals from the Rhodamine B dyed microspheres do indeed stem from two-photon absorption.

  17. Rocket Radiation Handbook, Volume 2. Model Equations for Photon Emission Rates and Absorption Cross-Sections

    Science.gov (United States)

    1973-12-01

    cm2) (Refs. 7 and 9) (9Cross-Section, a(10- 16 cm 2) First Second At ~ Atom or Fuchtbauer., Molecule Joos and Zemansky Kunze Din kelac ke r Hg He 15.0...G. and M. W. Zemansky , Resonance Radiation and ExcitedI4 Atoms, Cambridge, 1934. 10. Herzberg, G., Infrared and Raman Spectra, Van Nostrand, 1945. 11

  18. Experimental evidence and theoretical modeling of two-photon absorption dynamics in the reduction of intensity noise of solid-state Er:Yb lasers.

    Science.gov (United States)

    El Amili, Abdelkrim; Kervella, Gaël; Alouini, Mehdi

    2013-04-01

    A theoretical and experimental investigation of the intensity noise reduction induced by two-photon absorption in a Er,Yb:Glass laser is reported. The time response of the two-photon absorption mechanism is shown to play an important role on the behavior of the intensity noise spectrum of the laser. A model including an additional rate equation for the two-photon-absorption losses is developed and allows the experimental observations to be predicted.

  19. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  20. Solvent and branching effect on the two-photon absorption properties of push-pull triphenylamine derivatives

    OpenAIRE

    Cvejn, Daniel; Michail, E.; Seintis, M.; Klikar, M.; Pytela, Oldřich; Mikysek, Tomáš; Almonasy, Numan; Ludwig, Miroslav; Giannetas, V.; Fakis, M.; Bureš, Filip

    2016-01-01

    The photophysical and two-photon absorption (2PA) properties of two tri-podal molecules and of their quadrupolar and dipolar counterparts are reported for a series of solvents with varying polarity. The molecules possess a tri-phenylamine electron donating group and mono-cyano acceptors while olefinic and acetylenic π-linkers have been used. Branching led to an increase of the molar extinction coefficient and to a slight bathochromic shift of the absorption spectra while the fluorescence quan...

  1. Optical control of cardiac cell excitability based on two-photon infrared absorption of AzoTAB

    CERN Document Server

    Shcherbakov, D; Erofeev, I; Astafiev, A

    2014-01-01

    Recent studies of AzoTAB activity in excitable cell cultures have shown that this substance is able to control excitability depending on isomer, cis or trans, predominating in the cellular membrane. Control of isomerization can be performed noninvasively by UV-visual radiation. At the same time it is well-known that azobenezenes can be effectively transformed from one isomer into another by two-photon absorption. Current work is devoted to the study of trans-AzoTAB two-photon transformation in aqueous solution and inside primal neonatal contractive rat cardiomyocytes. In accordance with results obtained Azo-TAB can be used as a probe for two-photon optical control of cardiac excitability.

  2. Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory

    2009-01-01

    The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted

  3. Pressure-dependent water absorption cross sections for exoplanets and other atmospheres

    Science.gov (United States)

    Barton, Emma J.; Hill, C.; Yurchenko, Sergei N.; Tennyson, Jonathan; Dudaryonok, Anna S.; Lavrentieva, Nina N.

    2017-01-01

    Many atmospheres (cool stars, brown dwarfs, giant planets, extrasolar planets) are predominately composed of molecular hydrogen and helium. H216O is one of the best measured molecules in extrasolar planetary atmospheres to date and a major compound in the atmospheres of brown-dwarfs and oxygen-rich cool stars, yet the scope of experimental and theoretical studies on the pressure broadening of water vapour lines by collision with hydrogen and helium remains limited. Theoretical H2- and He-broadening parameters of water vapour lines (rotational quantum number J up to 50) are obtained for temperatures in the range 300-2000 K. Two approaches for calculation of line widths were used: (i) the averaged energy difference method and (ii) the empirical expression for J ‧ J ″ -dependence. Voigt profiles based on these widths and the BT2 line list are used to generate high resolution (Δ ν ˜ = 0.01cm-1) pressure broadened cross sections for a fixed range of temperatures and pressures between 300 and 2000 K and 0.001-10 bar. An interpolation procedure which can be used to determine cross sections at intermediate temperature and pressure is described. Pressure broadening parameters and cross sections are presented in new ExoMol format.

  4. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scime, Earl E. [West Virginia Univ., Morgantown, WV (United States)

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  5. Temperature-dependent excitonic photoluminescence Excited by Two-Photon Absorption in Perovskite CsPbBr3 Quantum Dots

    CERN Document Server

    Wei, Ke; Xu, Zhongjie; Shen, Chao; Cheng, Xiangai; Jiang, Tian

    2016-01-01

    Recently lead halide nanocrystals (quantum dots) have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) have been studied across a broad temperature range from 80K to 380K. Two-photon absorption has been investigated with absorption coefficient up to 0.085 cm/GW at room temperature. Moreover, the photoluminescence excited by two-photon absorption shows a linear blue-shift (0.25meV/K) below temperature of ~220K and turned steady with fluctuation below 1nm (4.4meV) for higher temperature up to 380K. These phenomena are distinctly different from general red-shift of semiconductor and can be explained by the competition between lattice expansion and electron-phonon couplling.Our results reveal the strong nonlinear absorption and temperature-independent chromaticity in a large temperature range from 220K to 380K in the CsPbX3 QD...

  6. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  7. Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers

    Science.gov (United States)

    Myhre, G.; Nielsen, C. J.; Powell, D. L.; Stordal, F.

    Quantitative infrared cross-sections of the unbranched hydrofluoro(poly)ethers CHF 2OCHF 2, CHF 2OCF 2OCHF 2 and CHF 2OCF 2CF 2OCHF 2 have been obtained at 298 K in the region 25-4000 cm -1. Radiative forcing calculations have been performed for these compounds and for CHF 2OCF 2OCF 2CF 2OCHF 2, and the values found per molecule are high compared to those of other CFCs and CFC replacements. Atmospheric lifetimes, calculated on the basis of experimental reaction rates with OH radicals, and global warming potentials are presented for all four compounds.

  8. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption.

    Science.gov (United States)

    Dong, Ningning; Li, Yuanxin; Zhang, Saifeng; McEvoy, Niall; Zhang, Xiaoyan; Cui, Yun; Zhang, Long; Duesberg, Georg S; Wang, Jun

    2016-09-01

    Both the nonlinear absorption and nonlinear refraction properties of WS2 and WSe2 semiconductor films have been characterized by using Z-scan technique with femtosecond pulses at the wavelength of 1040 nm. It is found that these films have two-photon absorption response with the nonlinear absorption coefficient of ∼103  cm GW-1, and a dispersion of nonlinear refractive index in the WS2 films that translated from positive in the monolayer to negative in bulk materials.

  9. Two-photon absorption of Tl1-xIn1-xSnxSe2 nanocrystallites

    Science.gov (United States)

    Myronchuk, Galyna; Parasyuk, Oleg; Piskach, Ludmila; Alzayed, Nasser Saleh; Prokhorenko, Serhii; Piasecki, Michal; Kityk, Iwan

    2016-12-01

    Novel materials for the infrared two-photon absorption — Tl1-xIn1-xSnxSe2 single crystals (x = 0.1,0.2) were grown. Two-photon absorption (TPA) was studied at CO2 laser wave-length 9.4μm with pulse duration 1μs. The studies were performed at different temperatures and for the nanocrystallite sizes varying within the 7-200 nm. The studies have shown that the TPA may be enhanced during the decrease of the nanocrystallite sizes below 50-60 nm. There exists also some critical x value at which the TPA value begin substantially to increase. The studied nanocrystallites are relatively stable to the infrared laser treatment and are not hygroscopic which allow to use them in different IR optoelectronic devices.

  10. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    CERN Document Server

    Cruz-Diaz, G A; Chen, Y -J; Yih, T -S

    2014-01-01

    Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cros...

  11. Measurements of the absorption cross section of (13)CHO(13)CHO at visible wavelengths and application to DOAS retrievals.

    Science.gov (United States)

    Goss, Natasha R; Waxman, Eleanor M; Coburn, Sean C; Koenig, Theodore K; Thalman, Ryan; Dommen, Josef; Hannigan, James W; Tyndall, Geoffrey S; Volkamer, Rainer

    2015-05-14

    The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν < 0.5 cm(-1); Δλ < 0.01 nm). These shifts are used to investigate the selective detection of (12)C glyoxal (natural isotope abundance) and (13)C glyoxal by in situ cavity enhanced differential optical absorption spectroscopy (CE-DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information.

  12. Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Buganov, O. [Stepanov Institute of Physics, Minsk (Belarus); Korjik, M.; Fedorov, A. [Research Institute for Nuclear Problems, Belarus State University, 11 Bobruiskaya, 220030 Minsk (Belarus); Nargelas, S.; Tamulaitis, G. [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania); Tikhomirov, S. [Stepanov Institute of Physics, Minsk (Belarus); Vaitkevičius, A., E-mail: augustas.vaitkevicius@ff.vu.lt [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania)

    2015-12-21

    This work was aimed at searching for fast phenomena in scintillators in sub-10-ps range, a benchmark timing for the time response of radiation detectors in particle colliders. The pump-and-probe optical absorption technique with a tunable-wavelength parametric oscillator as the pump and a continuous-spectrum source as the probe beam was used to study lead tungstate PbWO{sub 4} (PWO) single crystals. It is shown that the rise time of the probe pulse absorption induced by the pump pulse is shorter than the pump pulse width of 200 fs. The approximately linear dependence of the probe absorption on the pump pulse energy density evidences that the induced absorption is caused by two-photon absorption involving one probe and one pump photon. We demonstrate that the intensity of the induced absorption at certain wavelengths is influenced by gamma irradiation, provided that an appropriate light polarization is selected. The application of the irradiation-sensitive nonlinearity for fast timing in radiation detectors is discussed. - Highlights: • Nonlinear transmittance with femtosecond rise time is observed in PWO scintillators. • The nonlinearity is caused by two-photon absorption of pump and probe photons. • Gamma irradiation imposes change in the nonlinearity for certain light polarization. • Application of the nonlinearity for fast timing in radiation detectors is feasible.

  13. Evidence for strong electron correlations in graphene molecular fragments: Theory and experiments on two-photon absorptions

    Science.gov (United States)

    Aryanpour, Karan; Roberts, Adam; Sandhu, Arvinder; Shukla, Alok; Mazumdar, Sumit

    2013-03-01

    Historically, the occurrence of the lowest two-photon state below the optical one-photon state in linear polyenes, polyacetylenes and polydiacetylenes provided the strongest evidence for strong electron correlations in these linear π-conjugated systems. We demonstrate similar behavior in several molecular fragments of graphene with D6 h symmetry, theoretically and experimentally. Theoretically, we have calculated one versus two-photon absorptions in coronene, two different hexabenzocoronenes and circumcoronene, within the Pariser-Parr-Pople π-electron Hamiltonian using high order configuration interaction. Experimentally, we have performed z-scan measurements using a white light super-continuum source on coronene and hexa-peri-hexabenzocoronene to determine frequency-dependent two-photon absorption coefficients, for comparison to the ground state absorptions. Excellent agreement between experiment and theory in our work gives strong evidence for significant electron correlations between the π-electrons in the graphene molecular fragments. We particularly benchmark high order electron-hole excitations in graphene fragments as a key element behind the agreement between theory and experiment in this work. We acknowledge NSF-CHE-1151475 grant as our funding source.

  14. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach.

    Science.gov (United States)

    Ma, HuiLi; Zhao, Yi; Liang, WanZhen

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI(-))), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI(-) although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm(-1) agrees well with the experimental measurement.

  15. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    Energy Technology Data Exchange (ETDEWEB)

    Ma, HuiLi [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Institute of Fujian Provincial Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Zhao, Yi; Liang, WanZhen, E-mail: liangwz@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Institute of Fujian Provincial Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI{sup −})), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI{sup −} although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm{sup −1} agrees well with the experimental measurement.

  16. On the photochemistry of IONO2: absorption cross section (240-370 nm) and photolysis product yields at 248 nm.

    Science.gov (United States)

    Joseph, D M; Ashworth, S H; Plane, J M C

    2007-11-01

    The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO) iodine oxides, but the formation and subsequent photolysis of IONO(2) is very inefficient as an ozone-depleting cycle.

  17. Temperature-dependent absorption cross sections of ozone in the Wulf-Chappuis band at 759-768 nm

    Science.gov (United States)

    Enami, Shinichi; Ueda, Junya; Nakano, Yukio; Hashimoto, Satoshi; Kawasaki, Masahiro

    2004-03-01

    Absorption cross sections of ozone in the Wulf-Chappuis band at 759-768 nm have been determined using cavity ring-down spectroscopy at 215-298 K. Precise measurements at 762.07 and 764.47 nm revealed a slight temperature dependence of the absorption cross sections: ?(762.07 nm, 298 K) = (2.86 ± 0.04) × 10-22 cm2 molecule-1; ?(762.07 nm, 215 K) = (2.62 ± 0.04) × 10-22; ?(764.47 nm, 296 K) = (2.70 ± 0.03) × 10-22; and ?(764.47 nm, 214 K) = (2.44 ± 0.03) × 10-22. Results at 762.07 nm are indistinguishable within the experimental uncertainties from those reported by [1994]. Results from the present work facilitate a more accurate retrieval of atmospheric temperature, cloud height, and cloud coverage data from satellite measurements of absorption by O2 in the A band around 761 nm.

  18. Evaluation of the use of five laboratory determined ozone absorption cross sections in brewer and dobson retrieval algorithms

    Directory of Open Access Journals (Sweden)

    A. Redondas

    2013-09-01

    Full Text Available The primary ground-based instruments used to report total column ozone (TOC are Brewer and Dobson Spectrophotometers, in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process a TOC value is produced. Inherent in the algorithm is the use of a laboratory determined cross-section data set. We used five ozone cross section data sets: three Bass and Paur, Daumont, Malicet and Brion (DMB and a new Institute of Environmental Physics (IUP, University of Bremen, set. The three Bass and Paur (1985 sets are: quadratic temperature coefficients from IGACO web page (IGQ4, the Brewer network operational calibration set (BOp, and the set used by Bernhard et al. (2005, in the reanalysis of the Dobson absorption coefficient values (B05. The ozone absorption coefficients for Brewer and Dobson are then calculated using the normal Brewer operative method which is essentially the same as used on Dobson. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments: we find the UIP data set changes the calculated TOC by −0.5%, the DBM data set changes the calculate TOC by −3.2%, and the IGQ4 data set at −45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. The application of a common Langley calibration and the IUP cross section the differences between Brewer and Dobson vanish whereas using Bass and Paur and DBM produce differences of 1.5% and 2

  19. One- and two-photon absorption of fluorescein dianion in water: a study using S-QM/MM methodology and ZINDO method.

    Science.gov (United States)

    Silva, D L; Barreto, R C; Lacerda, E G; Coutinho, K; Canuto, S

    2014-02-05

    One- and two-photon absorption (1PA and 2PA) of fluorescein dianion (FSD) in water were studied using a combined and sequential Quantum Mechanics/Molecular Dynamics methodology. Different sets of 250 statistically relevant (uncorrelated) configurations composed by the solute and several solvent molecules were sampled from the classical simulation. On these configurations, the electronic properties were calculated a posteriori using the Zerner's intermediate neglect of differential overlap (ZINDO) method. The linear and nonlinear absorption of FSD in water were calculated using discrete and explicit solvent models. In the largest case, the relevant configurations are composed by FSD and 47 explicit water molecules embedded in the electrostatic field of all remaining water molecules. Both INDO/CIS and INDO/CISD calculations were performed to study the absorption processes of FSD and the Sum-Over-States (SOS) model was used to describe the 2PA process. A semi-classical method for spectrum simulations was employed to simulate the 1PA and 2PA cross-section spectra of FSD in water. For comparison purposes, in the case of the 2PA process two approaches, the "full expression" and "resonant expression" methods, were employed to simulate the nonlinear spectrum. The last method assumes resonant conditions and on the computation point of view it represents an interesting option to study the 2PA process. The INDO/CI calculations give a satisfactory description of the 1PA spectrum of FSD and properly describe the unusual blue-shift of its first π→π(*) transition in water. In the case of 2PA, the introduction of doubly excited configuration interactions (INDO/CISD) has proven to be essential for an appropriate description of the process at the higher energy spectral region. It was observed that the solvent effects do not drastically change the cross-sections of both processes. The simulated 2PA cross-section spectrum provided by the "full expression" method presents a better

  20. The UV-visible absorption cross-sections of IONO2

    Directory of Open Access Journals (Sweden)

    J. C. Mössinger

    2002-01-01

    Full Text Available The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245--415 nm using the technique of laser photolysis with time-resolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post flash spectra were deconvolved to remove contributions to the observed absorption from other reactant and product species. The resulting spectrum attributed to IONO2 consists of several overlapping broad absorption bands. Assuming a quantum yield of unity for IONO2 photolysis, model calculations show that during sunlit hours at noon, 53° N, the first order solar photolysis rate coefficient (J value for IONO2 is 4.0 x 10-2 s-1.

  1. The UV-visible absorption cross-sections of IONO2

    Directory of Open Access Journals (Sweden)

    R. A. Cox

    2002-06-01

    Full Text Available The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245--415 nm using the technique of laser photolysis with time-resolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post-flash spectra were deconvolved to remove contributions to the observed absorption from other reactant and product species. The resulting spectrum attributed to IONO2 consists of several overlapping broad absorption bands. Assuming a quantum yield of unity for IONO2 photolysis, model calculations show that during sunlit hours at noon, 53° N, the first order solar photolysis rate coefficient (J value for IONO2 is 4.6 x 10-2 s-1.

  2. EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, R. J.; Bernath, P. F.; Dulick, M. [Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529 (United States); Bailey, J., E-mail: rhargrea@odu.edu [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-11-01

    Hot methane is found in many “cool” sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  3. Empirical line lists and absorption cross sections for methane at high temperature

    CERN Document Server

    Hargreaves, Robert J; Bailey, Jeremy; Dulick, Michael

    2015-01-01

    Hot methane is found in many "cool" sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  4. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Division, King' s College London—Dental Institute, SE1 9RT London (United Kingdom)

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of a GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.

  5. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  6. Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    T. Brauers

    2007-07-01

    Full Text Available The results from a simulation chamber study on the formaldehyde (HCHO absorption cross section in the UV spectral region are presented. We performed 4 experiments at ambient HCHO concentrations with simultaneous measurements of two DOAS instruments in the atmosphere simulation chamber SAPHIR in Jülich. The two instruments differ in their spectral resolution, one working at 0.2 nm (broad-band, BB-DOAS, the other at 2.7 pm (high-resolution, HR-DOAS. Both instruments use dedicated multi reflection cells to achieve long light path lengths of 960 m and 2240 m, respectively, inside the chamber. During two experiments HCHO was injected into the clean chamber by thermolysis of well defined amounts of para-formaldehyde reaching mixing rations of 30 ppbV at maximum. The HCHO concentration calculated from the injection and the chamber volume agrees with the BB-DOAS measured value when the absorption cross section of Meller and Moortgat (2000 and the temperature coefficient of Cantrell (1990 were used for data evaluation. In two further experiments we produced HCHO in-situ from the ozone + ethene reaction which was intended to provide an independent way of HCHO calibration through the measurements of ozone and ethene. However, we found an unexpected deviation from the current understanding of the ozone + ethene reaction when CO was added to suppress possible oxidation of ethene by OH radicals. The reaction of the Criegee intermediate with CO could be 240 times slower than currently assumed. Based on the BB-DOAS measurements we could deduce a high-resolution cross section for HCHO which was not measured directly so far.

  7. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2011-04-25

    Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.

  8. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    Science.gov (United States)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  9. New and improved infra-red absorption cross sections and ACE-FTS retrievals of carbon tetrachloride (CCl4)

    Science.gov (United States)

    Harrison, Jeremy J.; Boone, Christopher D.; Bernath, Peter F.

    2017-01-01

    Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on account of its ability to deplete stratospheric ozone. As such, the inconsistency between observations of its abundance and estimated sources and sinks is an important problem requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role to play, particularly limb sounders which can provide vertical profiles into the stratosphere and therefore validate stratospheric loss rates in atmospheric models. This work is in two parts. The first describes new and improved high-resolution infra-red absorption cross sections of carbon tetrachloride/dry synthetic air over the spectral range 700-860 cm-1 for a range of temperatures and pressures (7.5-760 Torr and 208-296 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases. The second describes a new, preliminary ACE-FTS carbon tetrachloride retrieval that improves upon the v3.0/v3.5 data products, which are biased high by up to 20-30% relative to ground measurements. Making use of the new spectroscopic data, this retrieval also improves the microwindow selection, contains additional interfering species, and utilises a new instrumental lineshape; it will form the basis for the upcoming v4.0 CCl4 data product.

  10. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    Science.gov (United States)

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sams, R. L.; Johnson, T. J.

    2014-04-01

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600-6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.94 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.

  11. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    Directory of Open Access Journals (Sweden)

    C. S. Brauer

    2014-04-01

    Full Text Available Isoprene (C5H8, 2-methyl-1,3-butadiene is a volatile organic compound (VOC that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm−1 region. The pressure-broadened (1 atmosphere N2 spectra were recorded at 278, 298 and 323 K in a 19.94 cm path length cell at 0.112 cm−1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.

  12. Apparent PS II absorption cross-section and estimation of mean PAR in optically thin and dense suspensions of Chlorella.

    Science.gov (United States)

    Klughammer, Christof; Schreiber, Ulrich

    2015-01-01

    Theoretical prediction of effective mean PAR in optically dense samples is complicated by various optical effects, including light scattering and reflections. Direct information on the mean rate of photon absorption by PS II is provided by the kinetics of the fluorescence rise induced upon onset of strong actinic illumination (O-I1 rise). A recently introduced kinetic multi-color PAM fluorometer was applied to study the relationship between initial slope and cell density in the relatively simple model system of suspensions of Chlorella. Use of a curve fitting routine was made which was originally developed for assessment of the wavelength-dependent absorption cross-section of PS II, σ II(λ), in dilute suspensions. The model underlying analysis of the O-I1 rise kinetics is outlined and data on the relationship between fitted values of σ II(λ) and PAR in dilute samples are presented. With increasing cell density, lowering of apparent cross-section, (λ), with respect to σ II(λ), relates to a decrease of effective mean PAR, (λ), relative to incident PAR(λ). When ML and AL are applied in the same direction, the decline of (λ)/σ II(λ) with increasing optical density is less steep than that of the theoretically predicted (λ)/PAR(λ). It approaches a value of 0.5 when the same colors of ML and AL are used, in agreement with theory. These observations open the way for estimating mean PAR in optically dense samples via measurements of (λ)/σ II(λ)).

  13. The application of reduced absorption cross section on the identification of the compounds with similar function-groups

    Science.gov (United States)

    Yu, Fei; Zuo, Jian; Mu, Kai-jun; Zhang, Zhen-wei; Zhang, Liang-liang; Zhang, Lei-wei; Zhang, Cun-lin

    2013-08-01

    Terahertz spectroscopy is a powerful tool for materials investigation. The low frequency vibrations were usually investigated by means of absorption coefficient regardless of the refractive index. It leads to the disregard of some inherent low-frequency vibrational information of the chemical compounds. Moreover, due to the scattering inside the sample, there are some distortions of the absorption features, so that the absorption dependent material identification is not valid enough. Here, a statistical parameter named reduced absorption cross section (RACS) is introduced. This can not only help us investigate the molecular dynamics but also distinguish one chemical compound with another which has similar function-groups. Experiments are carried out on L-Tyrosine and L-Phenylalanine and the different mass ratios of their mixtures as an example of the application of RACS. The results come out that the RACS spectrum of L-Tyrosine and L-Phenylalanine reserve the spectral fingerprint information of absorption spectrum. The log plot of RACSs of the two amino acids show power-law behavior σR(~ν) ~ (ν~α), and there is a linear relation between the wavenumber and the RACS in the double logarithmic plot. The exponents α, at the same time, are the slopes of the RACS curves in the double logarithmic plot. The big differences of the exponents α between the two amino acids and their mixtures can be seen visually from the slopes of the RACS curves. So we can use RACS analytical method to distinguish some complex compounds with similar function-groups and mixtures from another which has similar absorption peaks in THz region.

  14. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    OpenAIRE

    Kaya, Sarp; Sellberg, Jonas A.; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.; Nilsson, Anders

    2014-01-01

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in ...

  15. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.

    Science.gov (United States)

    Lee, Chao-Kuei; Yang, Chan-Shan; Lin, Sung-Hui; Huang, Shiuan-Hua; Wada, Osamu; Pan, Ci-Ling

    2011-11-21

    Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed.

  16. Two photon absorption and its saturation of WS2 and MoS2 monolayer and few-layer films

    CERN Document Server

    Zhang, Saifeng; McEvoy, Niall; O'Brien, Maria; Winters, Sinéad; Berner, Nina C; Yim, Chanyoung; Zhang, Xiaoyan; Chen, Zhanghai; Zhang, Long; Duesberg, Georg S; Wang, Jun

    2015-01-01

    The optical nonlinearity of WS2, MoS2 monolayer and few-layer films was investigated using the Z-scan technique with femtosecond pulses from the visible to the near infrared. The dependence of nonlinear absorption of the WS2 and MoS2 films on layer number and excitation wavelength was studied systematically. WS2 with 1~3 layers exhibits a giant two-photon absorption (TPA) coefficient. Saturation of TPA for WS2 with 1~3 layers and MoS2 with 25~27 layers was observed. The giant nonlinearity of WS2 and MoS2 is attributed to two dimensional confinement, a giant exciton effect and the band edge resonance of TPA.

  17. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  18. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  19. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence(TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization(TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  20. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    HU RenTao; LU LiangFei; RUAN BanFeng; WANG Peng; ZHANG MingLiang; ZHOU HongPing; LI ShengLi; WU JieYing; TIAN YuPeng

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence (TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization (TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  1. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    Science.gov (United States)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  2. QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION

    Energy Technology Data Exchange (ETDEWEB)

    Meiring, J. D.; Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Werk, J. K.; Prochaska, J. X. [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States); Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jenkins, E. B. [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Lehner, N.; Sembach, K. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-04-10

    Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.

  3. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    Energy Technology Data Exchange (ETDEWEB)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc, E-mail: jean-luc.pelouard@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), Route de Nozay, 91460 Marcoussis (France); Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); Haïdar, Riad [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); École Polytechnique, Département de Physique, F-91128 Palaiseau (France)

    2014-07-07

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  4. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    Science.gov (United States)

    Rana, Amit Kumar; J, Aneesh; Kumar, Yogendra; M. S, Arjunan; Adarsh, K. V.; Sen, Somaditya; Shirage, Parasharam M.

    2015-12-01

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  5. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Amit Kumar; Kumar, Yogendra; Arjunan, M.S.; Sen, Somaditya; Shirage, Parasharam M., E-mail: pmshirage@iiti.ac.in, E-mail: paras.shirage@gmail.com [Department of Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Centre of Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); J, Aneesh; Adarsh, K. V. [Department of Physics, Indian Institute of Science Education and Research, Bhopal 462023 (India)

    2015-12-07

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  6. Estimation of thermal neutron absorption cross-section from K, U and Th concentrations for Miocene rocks from the Carpathian Piedmont in Poland using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, Jerzy E-mail: jerzy.loskiewicz@ifj.edu.pl; Swakon, Jan; Kulczykowska, Krystyna

    2000-06-01

    The radiometric K, U and Th concentrations and neutron absorption cross-section {sigma}{sub a} of rock samples obtained from coring are analysed. The cores are from well bores located in the Sucha-Jordanow region (Carpathian Mountains) and from gas producing Miocene formations in the Carpathian foothills. Correlation coefficients between the neutron absorption cross-section ({sigma}{sub a}) and K, U and Th concentrations are presented. Neural network representation of the function {sigma}{sub a}={integral}(K, U, Th) obtained for a region can later be used for {sigma}{sub a} estimation from spectrometric probe results in uncored wells.

  7. Temperature dependent O3 absorption cross sections for GOME, SCIAMACHY and GOME-2: I. Re-analysis of Flight Model Data and Retrieval Tests.

    Science.gov (United States)

    Chehade, Wissam; Weber, Mark; Gorshelev, Victor; Serdyuchenko, Anna; Burrows, John P.

    For a long term coverage of global O3 measurements from SCIAMACHY (SCanning Imag-ing Absorption spectroMeter for Atmospheric CHartographY), GOME1, and GOME2 (Global Ozone Monitoring Experiment), high quality absorption cross section spectra is a pre-requisite. Laboratory measurements of cross section spectra of O3 (at 203K, 223K, 243K, 273K and 293K) were performed using CATGAS (Calibration Apparatus for Trace Gas Absorption Spec-troscopy) under representative in-flight conditions with SCIAMACHY and GOME-2 spectrom-eters to obviate the need of an instrumental slit function correction. For the data acquired from the CATGAS campaigns, a re-analysis is carried out to improve the overestimation in the total O3 retrieval by SCIAMACHY and GOME2 using the flight model (FM) reference data from SCIAMACHY and GOME2, respectively, with respect to GOME1. The reanalysis attempts to re-evaluate the concatenation of ozone optical density measurements obtained from CATGAS measurements and applying new ways to absolutely calibrate the cross-.sections using absolute reference cross-section data at reference wavelengths, Finally, a satellite retrieval error analy-sis will be performed to validate the updated satellite reference cross-sections. The updated reference data can be used for combining the data from the three instruments (plus the two upcoming GOME-2) generating a consisting long-term dataset of total ozone.

  8. Ho:YAG absorption cross sections from 1700 to 2200 nm at 83, 175, and 295 K.

    Science.gov (United States)

    Brown, David C; Envid, Victoria; Zembek, Jason

    2012-12-01

    We have obtained absorption spectroscopic cross sections as a function of wavelength for the laser material Ho:YAG at 295, 175, and 83 K, in the spectral range from 1700 to 2200 nm. The absorption range corresponds to (5)I8-(5)I7 transitions from the ground state to the first excited state amenable to direct pumping by laser diodes and Tm fiber lasers. The data allow a direct comparison of the absorption cross-section intensities and linewidths as temperature is lowered from room temperature to cryogenic temperatures. Universal absorption curves and numerical tables are presented for pump sources that are assumed to have a gaussian spectral lineshape, as a function of center wavelength, bandwidth, and optical density (doping density×penetration depth), at 295 and 83 K. Curves and tables are presented for both 295 and 83 K and may be used to optimize the pump absorption and laser efficiency.

  9. Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires

    Science.gov (United States)

    Gupta, Manoj Kumar; Aneesh, Janardhanakurup; Yadav, Rajesh; Adarsh, K. V.; Kim, Sang-Woo

    2017-05-01

    We present a high performance flexible piezoelectric nanogenerator (NG) device based on the hydrothermally grown lead-free piezoelectric lithium niobate (LiNbO3) nanowires (NWs) for scavenging mechanical energies. The non-linear optical coefficient and optical limiting properties of LiNbO3 were analyzed using femtosecond laser pulse assisted two photon absorption techniques for the first time. Further, a flexible hybrid type NG using a composite structure of the polydimethylsiloxane polymer and LiNbO3 NWs was fabricated, and their piezoelectric output signals were measured. A large output voltage of ˜4.0 V and a recordable large current density of about 1.5 μA cm-2 were obtained under the cyclic compressive force of 1 kgf. A subsequent UV-Vis analysis of the as-prepared sample provides a remarkable increase in the optical band gap (UV absorption cut-off, ˜251 nm) due to the nanoscale size effect. The high piezoelectric output voltage and current are discussed in terms of large band gap, significant nonlinear optical response, and electric dipole alignments under poling effects. Such high performance and unique optical properties of LiNbO3 show its great potential towards various next generation smart electronic applications and self-powered optoelectronic devices.

  10. Selective Two-Photon-Absorption-Induced Reactions of Anthracene-2-Carboxylic Acid on Tunable Plasmonic Substrate with Incoherent Light Source.

    Science.gov (United States)

    Pincella, Francesca; Isozaki, Katsuhiro; Taguchi, Tomoya; Song, Yeji; Miki, Kazushi

    2015-02-01

    In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials.

  11. Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers

    Science.gov (United States)

    Avrutin, E. A.; Ryvkin, B. S.

    2017-01-01

    The effect of the transverse laser structure on two-photon absorption (TPA) related effects in high-power diode lasers is analysed theoretically. The direct effect of TPA is found to depend significantly on the transverse waveguide structure, and predicted to be weaker in broad and asymmetric waveguide designs. The indirect effect of TPA, via carrier generation in the waveguide and free-carrier absorption, is analysed for the case of a symmetric laser waveguide and shown to be strongly dependent on the active layer position. With the active layer near the mode peak, the indirect effect is weaker than the direct effect due to the population of TPA-created carriers being efficiently depleted by their diffusion and capture into the active layer, whereas for the active layer position strongly shifted towards the p-cladding, the indirect effect can become the dominant power limitation at very high currents. It is shown that for optimizing a laser design for pulsed high power operation, both TPA related effects and the inhomogeneous carrier accumulation in the waveguide caused by diffusive current need to be taken into account.

  12. Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots

    NARCIS (Netherlands)

    de Mello Donega, C.; Koole, R.

    2009-01-01

    In this paper, the size dependence of the band gap, of the spontaneous emission rate, and of the absorption cross section of quantum dots is systematically investigated over a wide size range, using colloidal CdSe and CdTe QDs as model systems (diameters ranging from 1.2 to 8 nm and from 2 to 9.5 nm

  13. Classical Calculations of Scattering Signatures from a Gravitational Singularity or the Scattering and Absorption Cross-Sections of a Black Hole

    Indian Academy of Sciences (India)

    Felix C. Difilippo

    2012-09-01

    Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.

  14. High-precision Measurement of the 238U(n,γ) Cross Section with the Total Absorption Calorimeter (TAC) at n_TOF, CERN

    CERN Document Server

    Wright, T; Billowes, J; Ware, T; Cano-Ott, D; Mendoza, E; Massimi, C; Mingrone, F; Gunsing, F; Berthoumieux, E; Lampoudis, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Giubrone, G; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mengoni, A; Milazzo, P M; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Weigand, M; Weiß, C; Žugec, P

    2014-01-01

    The neutron capture cross section of U-238 is fundamental to the design and operation of current reactors and future fast nuclear reactors, and thus must be measured to a high level of accuracy. An experiment has been performed at the CERN n TOF facility using a 4 pi Total Absorption Calorimeter (TAC) to measure the capture cross section in the resolved resonance region between 1 eV and 25 keV. A preliminary analysis of the TAC data is presented with particular emphasis to the experimental background in this energy region of interest.

  15. Fs-transient absorption and fluorescence upconversion after two- photon excitation of carotenoids in solution and in LHC II

    CERN Document Server

    Wall, P J; Fleming, G R

    2000-01-01

    With time resolved two-photon techniques we determined the lifetime and two-photon spectrum of the forbidden S/sub 1/ state of beta - carotene (9+or-0.2 ps), lutein (15+or-0.5 ps) and the energy transferring carotenoids in LHC II (250+or-50 fs). (7 refs).

  16. Synthesis and two-photon absorption property of new -conjugated donor-acceptor polymers carrying different heteroaromatics

    Indian Academy of Sciences (India)

    M S Sunitha; K A Vishnumurthy; A V Adhikari

    2013-01-01

    In this communication, we report the synthesis of three newly designed fluorescent polymers P1-P3, starting from simple thiophene derivatives through precursor polyhydrazide route. The new polymers, carrying donor and acceptor heterocyclic moieties with different spacer groups were found to be thermally stable and good of nonlinear optical (NLO) materials with two photon absorption property. The structures of newly synthesized monomers and polymers were confirmed by FTIR, NMR spectral and elemental analyses. Further, polymers were characterized by GPC and TGA studies. Their linear optical and electrochemical properties were evaluated by UV-vis, fluorescence spectroscopic and cyclic voltammetric (CV) studies, respectively, whereas their NLO properties were studied by Z-scan technique using Nd: YAG laser at 532 nm with 7 ns pulse. The electrochemical band gap of P1-P3 was determined to be 1.98, 1.91 and 2.05 eV, respectively. The NLO results reveal that polymers P1-P3 show good optical limiting property with TPA coefficient values 2.9 × 10−11 m/W, 8.0 × 10−11 m/W and 1.4 × 10−11 m/W, respectively.

  17. High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K

    Directory of Open Access Journals (Sweden)

    V. Gorshelev

    2013-07-01

    Full Text Available In this paper we discuss the methodology of taking broadband relative and absolute measurements of ozone cross-sections including uncertainty budget, experimental set-ups, and methods for data analysis. We report on new ozone absorption cross-section measurements in the solar spectral region using a combination of Fourier transform and echelle spectrometers. The new cross-sections cover the spectral range 213–1100 nm at a spectral resolution of 0.02–0.06 nm in the UV-vis and 0.12–0.24 nm in the IR at eleven temperatures from 193 to 293 K in steps of 10 K. The absolute accuracy is better than three percent for most parts of the spectral region and wavelength calibration accuracy is better than 0.005 nm. The new room temperature cross-sections data are compared in detail with previously available literature data. The temperature dependence of our cross-sections is described in a companion paper.

  18. Temperature dependent ozone absorption cross section spectra measured with the GOME-2 FM3 spectrometer and first application in satellite retrievals

    Directory of Open Access Journals (Sweden)

    W. Chehade

    2012-10-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME-2 Flight Model (FM absorption cross section spectra of ozone were measured under representative atmospheric conditions in the laboratory setup at temperatures between 203 K and 293 K in the wavelength range of 230–790 nm at a medium spectral resolution of 0.24 to 0.54 nm. Since the exact ozone amounts were unknown in the gas flow system used, the measured ozone cross sections were required to be scaled to absolute cross section units using published literature data. The Hartley, Huggins and Chappuis bands were recorded simultaneously and their temperature dependence is in good agreement with previous studies (strong temperature effect in the Huggins band and weak in the Hartley and Chappuis bands. The overall agreement of the GOME-2 FM cross sections with the literature data is well within 3%. The total ozone column retrieved from the GOME-2/MetOp-A satellite using the new cross section data is within 1% compared to the ozone amounts retrieved routinely from GOME-2.

  19. Reduced mass absorption cross section of black carbon under an extremely polluted condition in southern suburb of Beijing, China

    Science.gov (United States)

    Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.

    2015-12-01

    Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.

  20. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  1. UV absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 between 210 and 350 K and the atmospheric implications

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2010-07-01

    Full Text Available Absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm at temperatures in the range 210–350 K. In addition, UV absorption spectra of CCl4 are reported between 200–235 nm as a function of temperature (225–350 K. The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5–7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented.

  2. UV absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 between 210 and 350 K and the atmospheric implications

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2010-04-01

    Full Text Available Absorption cross sections of nitrous oxide (N2O and carbon tetrachloride (CCl4 are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm at temperatures in the range 210–350 K. In addition, UV absorption spectra of CCl4 are reported between 200–235 nm as a function of temperature (225–350 K. The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5–7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented.

  3. Three-dimensional microfabrication using two-photon polymerization

    Science.gov (United States)

    Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina

    1998-09-01

    Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two-photon

  4. Theoretical X-ray production cross sections at incident photon energies across Li (i=1-3) absorption edges of Br

    Science.gov (United States)

    Puri, Sanjiv

    2015-08-01

    The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  5. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    Science.gov (United States)

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  6. Photolysis rate coefficients in the upper atmosphere: Effect of line by line calculations of the O{sub 2} absorption cross section in the Schumann-Runge bands

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rafael P. [INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000, Cordoba (Argentina); Palancar, Gustavo G. [INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000, Cordoba (Argentina)]. E-mail: palancar@fcq.unc.edu.ar; Madronich, Sasha [Atmospheric Chemistry Division, National Center for Atmospheric Research, 1850 Table mesa Drive, Boulder, CO, 80303 (United States); Toselli, Beatriz M. [INFIQC, Centro Laser de Ciencias Moleculares, Departamento de Fisico Quimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, 5000, Cordoba (Argentina)]. E-mail: tosellib@fcq.unc.edu.ar

    2007-03-15

    A line by line (LBL) method to calculate highly resolved O{sub 2} absorption cross sections in the Schumann-Runge (SR) bands region was developed and integrated in the widely used Tropospheric Ultraviolet Visible (TUV) model to calculate accurate photolysis rate coefficients (J values) in the upper atmosphere at both small and large solar zenith angles (SZA). In order to obtain the O{sub 2} cross section between 49,000 and 57,000cm{sup -1}, an algorithm which considers the position, strength, and half width of each spectral line was used. Every transition was calculated by using the HIgh-resolution TRANsmission molecular absorption database (HITRAN) and a Voigt profile. The temperature dependence of both the strength and the half widths was considered within the range of temperatures characteristic of the US standard atmosphere, although the results show a very good agreement also at 79K. The cross section calculation was carried out on a 0.5cm{sup -1} grid and the contributions from all the lines lying at +/-500cm{sup -1} were considered for every wavelength. Both the SR and the Herzberg continuums were included. By coupling the LBL method to the TUV model, full radiative transfer calculations that compute J values including Rayleigh scattering at high altitudes and large SZA can now be done. Thus, the J values calculations were performed for altitudes from 0 to 120km and for SZA up to 89{sup o}. The results show, in the J{sub O{sub 2}} case, differences of more than +/-10% (e.g. at 96km and 30{sup o}) when compared against the last version of the TUV model (4.4), which uses the Koppers and Murtagh parameterization for the O{sub 2} cross section. Consequently, the J values of species with cross sections overlapping the SR band region show variable differences at lower altitudes. Although many species have been analyzed, the results for only four of them (O{sub 2}, N{sub 2}O, HNO{sub 3}, CFC12) are presented. Due to the fact that the HNO{sub 3} absorption cross

  7. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    Science.gov (United States)

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  8. Exploring control parameters of two photon processes in solutions

    Indian Academy of Sciences (India)

    Debabrata Goswami; Amit Nag

    2012-01-01

    Two-photon microscopy depends extensively on the two-photon absorption cross-sections of biologically relevant chromophores. High repetition rate (HRR) lasers are essential in multiphoton microscopy for generating satisfactory signal to noise at low average powers. However, HRR lasers generate thermal distortions in samples even with the slightest single photon absorption. We use an optical chopper with HRR lasers to intermittently `blank’ irradiation and effectively minimize thermal effects to result in a femtosecond z-scan setup that precisely measures the two-photon absorption (TPA) cross-sections of chromophores. Though several experimental factors impact such TPA measurements, a systematic effort to modulate and influence TPA characteristics is yet to evolve. Here, we present the effect of several control parameters on the TPA process that are independent of chromophore characteristics for femtosecond laser pulse based measurements; and demonstrate how the femtosecond laser pulse repetition rate, chromophore environment and incident laser polarization can become effective control parameters for such nonlinear optical properties.

  9. Measurement of the Two-photon Absorption Coefficient of Gallium Phosphide (GaP) Using a Dispersion-minimized Sub-10 Femtosecond Z-scan Measurement System

    Science.gov (United States)

    2012-09-01

    samples of semiconductors and thin films of organic materials on substrates. The use of dispersive media in the optical path has been eliminated...other semiconductors such as cadmium sulfide (CdS) and zinc selenide (ZnSe). We will also begin measuring the two-photon absorption coefficient for...organic thin - film materials deposited on various substrates. 15 6. References 1. Sheik-Bahae, M.; Said, A. A.; Van Stryland, E. W. High

  10. One- and Two-photon Excited Fluorescence of Zinc(Ⅱ), Cadmium(Ⅱ) Complexes Containing Phenothiazine Ligand

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new ligand, 10-ethylphenothiazinyl - 3 - yl - methylene thiosemicarbazon (HL) and its complexes ML2 (M=Zn2+, Cd2+), which exhibit intensive two-photon excited (TPE) fluorescence at 800 nm laser pulses in femtosecond regime, were synthesized and characterized.The measured power dependence of the fluorescence signals provided direct evidence for TPE.All of them exhibited a large two-photon absorptive cross section and, more importantly from the application point of view, high photochemical/photothermal stability.

  11. Absorption cross-sections of the C-h overtone of volatile organic compounds: 2 methyl-1,3-butadiene (isoprene), 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene.

    Science.gov (United States)

    Cias, Pawel; Wang, Chuji; Dibble, Theodore S

    2007-02-01

    Many molecules or transient radicals have well-documented absorption cross-sections in the ultraviolet (UV) region, but their absorption cross-sections in the near-infrared (NIR) region are much less often known and are difficult to measure. We propose a method to determine the unknown NIR absorption cross-sections using the known absorption cross-sections in the UV region, in which single-path UV absorption spectroscopy and NIR continuous wave cavity ringdown spectroscopy (cw-CRDS) are employed in a cross-arm reaction chamber for simultaneous measurements. Without knowing the actual sample partial pressures (or concentrations), the NIR absorption cross-sections can be accurately determined through the two sets of measurements. The method is demonstrated by measuring the NIR absorption cross-section of the first overtone of the asymmetric C-H stretch of 2-methyl-1,3-butadiene (isoprene) (3.24 (+/-0.16) x 10(-22) cm(2) molecule(-1)) at 1651.52 nm using the known value of the absorption cross-section at 220 nm. The diode laser wavelength was calibrated by atmospheric cavity ringdown spectra of CH(4), CO(2), and H(2)O. By comparison with sample pressure measurements, this method can also be used as a pressure calibration means for the reaction chamber, and this has been demonstrated with two additional measurements of the absorption cross-sections of 1,3-butadiene and 2,3-dimethyl-1,3-butadiene (2.50 (+/- 0.08) x 10(-22) and 2.82 (+/-0.16) x 10(-22) cm(2) molecule(-1), respectively) at 1651.52 nm. The applicability of the method to determining absorption cross-sections using the simultaneous measurements of cw-CRDS and single-path absorption spectroscopy is discussed.

  12. Toward Improving Atmospheric Models and Ozone Projections: Laboratory UV Absorption Cross Sections and Equilibrium Constant of ClOOCl

    Science.gov (United States)

    Wilmouth, D. M.; Klobas, J. E.; Anderson, J. G.

    2015-12-01

    Thirty years have now passed since the discovery of the Antarctic ozone hole, and despite comprehensive international agreements being in place to phase out CFCs and halons, polar ozone losses generally remain severe. The relevant halogen compounds have very long atmospheric lifetimes, which ensures that seasonal polar ozone depletion will likely continue for decades to come. Changes in the climate system can further impact stratospheric ozone abundance through changes in the temperature and water vapor structure of the atmosphere and through the potential initiation of solar radiation management efforts. In many ways, the rate at which climate is changing must now be considered fast relative to the slow removal of halogens from the atmosphere. Photochemical models of Earth's atmosphere play a critical role in understanding and projecting ozone levels, but in order for these models to be accurate, they must be built on a foundation of accurate laboratory data. ClOOCl is the centerpiece of the catalytic cycle that accounts for more than 50% of the chlorine-catalyzed ozone loss in the Arctic and Antarctic stratosphere every spring, and so uncertainties in the ultraviolet cross sections of ClOOCl are particularly important. Additionally, the equilibrium constant of the dimerization reaction of ClO merits further study, as there are important discrepancies between in situ measurements and lab-based models, and the JPL-11 recommended equilibrium constant includes high error bars at atmospherically relevant temperatures (~75% at 200 K). Here we analyze available data for the ClOOCl ultraviolet cross sections and equilibrium constant and present new laboratory spectroscopic results.

  13. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  14. Rotationally inelastic scattering in CH4+He, Ne, and Ar: State-to-state cross sections via direct infrared laser absorption in crossed supersonic jets

    Science.gov (United States)

    Chapman, William B.; Schiffman, Aram; Hutson, Jeremy M.; Nesbitt, David J.

    1996-09-01

    Absolute integral state-to-state cross sections are reported for rotationally inelastic scattering in crossed jets of CH4 with the rare gases He, Ne, Ar, at center of mass collision energies of 460±90, 350±70, and 300±60 cm-1, respectively. CH4 seeded in Ar buffer gas is cooled in a pulsed supersonic expansion into the three lowest rotational levels allowed by nuclear spin statistics corresponding to A(J=0), F(J=1), and E(J=2) symmetry. Rotational excitation occurs in single collisions with rare gas atoms from a second pulsed supersonic jet. The column integrated densities of CH4 in both initial and final scattering states are subsequently probed in the jet intersection region via direct absorption of light from a narrow bandwidth (0.0001 cm-1), single mode color center laser. Total inelastic cross sections for collisional loss out of the J=0, 1, and 2 methane states are determined in absolute units from the linear decrease of infrared absorption signals as a function of collider gas concentration. Tuning of the ir laser source also permits probing of the collisionally excited rotational states with quantum state and velocity resolution; column integrated scattering densities are measured for all energetically accessible final states and used to infer absolute inelastic cross sections for state-to-state energy transfer. The observed trends are in good qualitative agreement with quantum state resolved pressure broadening studies; however, the dependences of the rotationally inelastic cross sections on nuclear spin modification (i.e., J) and rotational inelasticity (i.e., ΔJ) is not well predicted by conventional angular momentum or energy gap models. More rigorous comparison with the quantum state-resolved scattering data is obtained from full close coupled scattering calculations on trial potential energy surfaces by Buck and co-workers [Chem. Phys. Lett. 98, 199 (1983); Mol. Phys. 55, 1233, 1255 (1985)] for each of the three CH4+rare gas systems. Agreement

  15. Temperature dependent emission and absorption cross section of Yb3+ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier.

    Science.gov (United States)

    Banerjee, Saumyabrata; Koerner, Joerg; Siebold, Mathias; Yang, Qiuhong; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; Loeser, Markus; Zhang, Haojia; Lu, Shenzhou; Hein, Joachim; Schramm, Ulrich; Kaluza, Malte C; Collier, John L

    2013-07-01

    Temperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup. The amplification bandwidth at room temperature confirms the potential of Yb:YLO ceramic for broad bandwidth amplification at cryogenic temperatures.

  16. On the optimization of the isotopic neutron source method for measuring the thermal neutron absorption cross section: advantages and disadvantages of BF3 and 3He counters.

    Science.gov (United States)

    Bolewski, A; Ciechanowski, M; Dydejczyk, A; Kreft, A

    2008-04-01

    The effect of the detector characteristics on the performance of an isotopic neutron source device for measuring thermal neutron absorption cross section (Sigma) has been examined by means of Monte Carlo simulations. Three specific experimental arrangements, alternately with BF(3) counters and (3)He counters of the same sizes, have been modelled using the MCNP-4C code. Results of Monte Carlo calculations show that devices with BF(3) counters are more sensitive to Sigma, but high-pressure (3)He counters offer faster assays.

  17. Transmission measurement of photo-absorption cross section of aluminum in soft X-ray region of 50 to 250 eV

    Institute of Scientific and Technical Information of China (English)

    CHEN Kai; CUI Ming-Qi; ZHENG Lei

    2008-01-01

    The photo-absorption cross section of aluminum was obtained from the ratio of transmission of aluminum thin-films with different area densities from 50 to 250 eV with synchrotron radiation monochromatic beam.Two samples with different area densities were used to minimize the uncertainty caused by the sample surface oxidation and systematic factors of the X-ray source,beamline,and detector.The experimental results are in good agreement with the published data and FEFF program calculations in general.

  18. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge

    Science.gov (United States)

    Ooi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.

    2017-01-01

    CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. PMID:28051064

  19. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  20. Polarization Effects in Two-Photon Free-Free Transitions in Laser-Assisted Electron-Hydrogen Collisions

    CERN Document Server

    Cionga, Aurelia

    2013-01-01

    Two-photon free-free transitions in elastic laser-assisted electron-hydrogen collisions are studied in the domain of high scattering energies and low or moderate field intensities, in the third order of perturbation theory, taking into account all the involved Feynman diagrams. Based on the analytical expressions of the transition amplitudes, the differential cross sections for two-photon absorption/emission are computed at impact energy $E_i=100$ eV. The effect of field polarizations on the angular distribution and on the frequency dependence of the differential cross section is analyzed.

  1. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye.

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-15

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  2. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms.

    Science.gov (United States)

    Méléder, Vona; Laviale, Martin; Jesus, Bruno; Mouget, Jean Luc; Lavaud, Johann; Kazemipour, Farzaneh; Launeau, Patrick; Barillé, Laurent

    2013-12-05

    The objective of the present study was to estimate in vivo pigment composition and to retrieve absorption cross-section values, a(∗), of photosynthetic micro-organisms using a non-invasive technique of reflectance spectrometry. To test the methodology, organisms from different taxonomical groups and different pigment composition were used (Spirulina platensis a Cyanophyta, Porphyridium cruentum a Rhodophyta, Dunaliella tertiolecta a Chlorophyta and Entomoneis paludosa a Bacillariophyta) and photoacclimated to two different irradiance levels: 25 μmol photonm(-2)s(-1) (Low Light, LL) and 500 μmol photonm(-2)s(-1) (High Light, HL). Second derivative spectra from reflectance were used to identify pigment in vivo absorption bands that were linked to specific pigments detected by high performance liquid chromatography. Whereas some absorption bands such as those induced by Chlorophyll (Chl) a (416, 440, 625 and around 675 nm) were ubiquous, others were taxonomically specific (e.g. 636 nm for Chl c in E. paludosa) and/or photo-physiological dependent (e.g. 489 nm for zeaxanthin in the HL-acclimated S. platensis). The optical absorption cross-section, a(∗), was retrieved from reflectance data using a radiative transfer model previously developed for microphytobenthos. Despite the cellular Chl a decrease observed from LL to HL (up to 88% for S. platensis), the a(∗) increased, except for P. cruentum. This was attributed to a 'package effect' and to a greater absorption by photoprotective carotenoids that did not contribute to the energy transfer to the core Chl a.

  3. Er{sup 3+} ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, El Sayed, E-mail: omn_yousef2000@yahoo.com [Physics Dep., Faculty of Science, King Khalid University, P.O. Box 9003, Abha (Saudi Arabia); Physics Dep., Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt)

    2013-06-05

    Highlights: ► Present glasses have high thermal stability. ► The glass sample C has the effective emission cross section bandwidth (64 nm). It has large stimulated emission cross-section (0.89 × 10{sup −20} cm{sup 2}). ► The optical gain coefficient to the population inversion of the {sup 4}I{sub 13/2} level is 8.87 cm{sup −1}. -- Abstract: Three samples of tellurite glasses within system 46TeO{sub 2}⋅15ZnO⋅9.0P{sub 2}O{sub 5}⋅30LiNbO{sub 3} doped with xEr{sub 2}O{sub 3} ions (where x = 4000, 8000 and 10,000 ppm) have been prepared by using the conventional melt-quenching method. These glasses have high thermal stability proved by using differential thermal analysis (DTA) measurements. Elastic properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap technique at 5 MHz. Elastic moduli such as: longitudinal (λ), shear (μ), Bulk (B) and Young’s (Y) increased with the Er{sup 3+} concentration in the prepared glasses matrix. The optical properties of the glasses were estimated by measuring UV–vis-NIR spectroscopy. The Judd–Ofelt parameters, Ω{sub t} (t = 2, 4, 6) of Er{sup 3+} were evaluated from optical absorption spectra. The oscillator strength type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er{sup 3+} have been predicted using intensity Judd–Ofelt parameters. Gain cross-section for the Er{sup 3+} laser transition {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} was obtained. The results show 46TeO{sub 2}⋅15ZnO⋅9.0P{sub 2}O{sub 5}⋅30LiNbO{sub 3}⋅10,000 ppm Er{sub 2}O{sub 3} glass has the effective emission cross section bandwidth (64 nm) and large stimulated emission cross-section (0.89 × 10{sup −20} cm{sup 2}). The thermal stability, elastic and spectroscopic properties indicate that this glass doped with Er{sup 3+} is a promising candidate for optical applications and may be suitable

  4. Determination of the stimulated emission cross section of neodymium glasses by measurement of the absorption from the thermally populated /sup 4/I/sub 11/2/ levels

    Energy Technology Data Exchange (ETDEWEB)

    Ageeva, L.E.; Brachovskaya, N.B.; Lunter, S.G.; Przhevuskii, A.K.; Tolstoi, M.N.

    1977-11-01

    The temperature dependence of the intensity of the absorption band corresponding to the /sup 4/I/sub 11/2/..-->../sup 4/F/sub 3/2/ transition was measured for the neodymium glasses GLS-3 (silicate) and GLS-24 (phosphate) in the range of 300-720/sup 0/K. The data were used to calculate the stimulated emission cross sections sigma/sub 0/=1.7 x 10/sup -20/ cm/sup 2/ (GLS-2, GLS-3) and sigma/sub 0/=3.3 x 10/sup -20/ cm/sup 2/ (GLS-21, -22, -23, -24). This investigation, together with a comparison with the results of measuring the cross section sigma/sub 0/ by other spectroscopic methods, suggested that the integrated intensity of the /sup 4/F/sub 3/2/..-->../sup 4/I/sub 11/2/ transition was practically unaffected by a considerable variation in the populations of the levels governing the fine structure. It was found by two independent methods that the absorption of Nd/sup 3 +/ ions at 1.06 ..mu.. at T=300/sup 0/K was 3 x 10/sup -4/ cm/sup -1/ (GLS-3) and 6 x 10/sup -4/ cm/sup -1/ (GLS-24).

  5. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Sanjiv [Department of Basic & Applied Sciences, Punjabi University, Patiala-147002, Punjab, India. E-mail address: sanjivpurichd@yahoo.com (India)

    2015-08-28

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  6. On the theoretical and experimental uncertainties in the extraction of the J/psi absorption cross section in cold nuclear matter

    CERN Document Server

    Rakotozafindrabe, A; Fleuret, F; Lansberg, J P

    2010-01-01

    We investigate the cold nuclear matter effects on $J/\\psi$ production, whose understanding is fundamental to study the quark-gluon plasma. Two of these effects are of particular relevance: the shadowing of the parton distributions and the nuclear absorption of the $c\\bar{c}$ pair. If $J/\\psi$'s are not produced {\\it via} a $2 \\to 1$ process as suggested by recent theoretical works, one has to modify accordingly the way to compute the nuclear shadowing. This naturally induces differences in the absorption cross-section fit to the data. A careful analysis of these differences however requires taking into account the experimental uncertainties and their correlations, as done in this work for $d$Au collisions at $\\sqrtsNN=200\\mathrm{GeV}$, using several shadowing parametrisations.

  7. Cross-sections of excited-state absorption at 800 nm in erbium-doped ZBLAN fiber

    NARCIS (Netherlands)

    Pollnau, Markus; Ghisler, Ch.; Lüthy, W.; Weber, H.P.

    1998-01-01

    Excited-state absorption (ESA) fromthe metastable levels 4I13/2 and 4I11/2 of erbium is measured in a fluorozirconate fiber in the wavelength range 780–840 nm. Using a pump- and probe-beam technique and choosing the pump wavelength such that the perturbation by pump ESA is minimized in the

  8. Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios

    Directory of Open Access Journals (Sweden)

    R. Subramanian

    2010-01-01

    Full Text Available A single particle soot photometer (SP2 was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO, sampling black carbon (BC over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 μg/m3 and over hill-fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO and BC suggests a CO background of around 65 ppbv, and a background-corrected BC/COnet ratio of 2.89±0.89 (ng/m3-STP/ppbv (average ± standard deviation. This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC of 10.9±2.1 m2/g at 660 nm (or 13.1 m2/g @ 550 nm, assuming MAC is inversely dependent on wavelength. This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA, while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.

  9. Black carbon over Mexico: The effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R.; Kok, G. L.; Baumgardner, Darrel; Clarke, A. D.; Shinozuka, Y.; Campos, Teresa; Heizer, CG; Stephens, Britton; de Foy, B.; Voss, Paul B.; Zaveri, Rahul A.

    2010-01-13

    A single particle soot photometer (SP2) was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 Fg/m34 ) and over hill fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC suggests a CO background of around 65 ppbv, and a backgroundcorrected BC/COnet ratio of 2.89±0.89 (ng/m39 -STP)/ppbv (average ± standard deviation). This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC) of 10.9±2.1 m212 /g at 660 nm (or 13.1 m213 /g @ 550 nm, assuming MAC is inversely dependent on wavelength). This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.

  10. Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios

    Science.gov (United States)

    Subramanian, R.; Kok, G. L.; Baumgardner, D.; Clarke, A.; Shinozuka, Y.; Campos, T. L.; Heizer, C. G.; Stephens, B. B.; de Foy, B.; Voss, P. B.; Zaveri, R. A.

    2010-01-01

    A single particle soot photometer (SP2) was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 μg/m3) and over hill-fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC suggests a CO background of around 65 ppbv, and a background-corrected BC/COnet ratio of 2.89±0.89 (ng/m3-STP)/ppbv (average ± standard deviation). This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC) of 10.9±2.1 m2/g at 660 nm (or 13.1 m2/g @ 550 nm, assuming MAC is inversely dependent on wavelength). This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.

  11. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  12. Accuracy of the thermal neutron absorption cross section measurements (based on examples of selected pulsed beam methods); Dokladnosc pomiarow przekroju czynnego absorpcji neutronow termicznych (na przykladzie wybranych metod impulsowych)

    Energy Technology Data Exchange (ETDEWEB)

    Krynicka, E. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-12-31

    The problem of accuracy of the thermal neutron macroscopic absorption cross section determination is discussed on examples of selected measurement methods which use non-stationary neutron fields. The computer simulation method elaborated by the author is presented as a procedure for estimating the standard deviation of the measured absorption cross section. The computer simulation method presented can be easily utilized to estimate the accuracy of measurement of various physical magnitudes. (author) 46 refs, 3 figs, 1 tab

  13. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    Science.gov (United States)

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands.

  14. Multi-point strain and displacement sensor based on intensity-modulated light and two-photon absorption process in Si-avalanche photodiode

    Science.gov (United States)

    Miyazawa, Hiromasa; Nemoto, Masaya; Yamada, Yoshiki; Tanaka, Yosuke; Kurokawa, Takashi

    2017-04-01

    We propose a system for precise measurement of multi-point displacement and strain using fiber Bragg grating (FBG) sensors along with intensity-modulated light and two-photon absorption process in a Si-avalanche photodiode (Si-APD). This method sweeps both the optical wavelength and the phase difference between the two modulation signals. The FBGs' reflection spectra and their change due to strain are successfully observed at the same time with the precision measurement of the FBG's displacement, where the relative measurement uncertainty is 10-4. This fiber sensing system is especially suitable for structural health monitoring.

  15. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    Science.gov (United States)

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications.

  16. Two-photon-induced cycloreversion reaction of chalcone photodimers

    Science.gov (United States)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  17. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra.

    Science.gov (United States)

    Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A

    2012-02-14

    An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

  18. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization

    Science.gov (United States)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine

    2015-04-01

    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  19. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    Science.gov (United States)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  20. Design, synthesis, and characterization of photoinitiators for two-photon polymerization

    Science.gov (United States)

    Whitby, Reece; MacMillan, Ryan; Janssens, Stefaan; Raymond, Sebastiampillai; Clarke, Dave; Kay, Andrew; Jin, Jianyong; Simpson, Cather M.

    2016-09-01

    A series of dipolar and quadrupolar two-photon absorption (2PA) photoinitiators (PIs) based around the well-known triphenylamine (TPA) core and tricyanofuran (TCF) acceptors have been prepared for use in two-photon polymerisation (TPP). The synthesised dipolar species are designated as 5 and 7, and the remaining quadrupolar species are 6, 8, 9 and 10. Large two-photon absorption cross-sections (δ2PA) ranging between 333 - 507 GM were measured at 780 nm using the z-scan technique. Fluorescence quantum yields (ΦF) were below 3% across the series when compared to Rhodamine 6G as a reference standard. Finally, TPP tests were conducted on PIs 7 and 8 to assess their ability to initiate the polymerisation of acrylate monomers using an 800 nm femtosecond Ti:Sapphire laser system.

  1. A Novel Algorithm Applied to Common Thermal-Optical Transmission Data for Determining Mass Absorption Cross Sections of Atmospheric Black Carbon: Applications to the Indian Outflow

    Science.gov (United States)

    Andersson, A.; Sheesley, R. J.; Kirillova, E.; Gustafsson, O.

    2010-12-01

    High wintertime concentrations of black carbon aerosols (BCA) over South Asia and the Northern Indian Ocean are thought to have a large impact on the regional climate. Direct absorption of sunlight by BCAs causes heating of the atmosphere and cooling at the surface. To quantify such effects it is important to characterize a number of different properties of the aerosols. Here we present a novel application of the thermal-optical (OCEC) instrument in which the laser beam is used to obtain optical information about the aerosols. In particular, the novel algorithm accounts for non-carbon contributions to the light extinction. Combining these light extinction coefficients with the simultaneously constrained Elemental Carbon (EC) concentrations, the Mass Absorption Cross Section (MAC) is computed. Samples were collected during a continuous 14-month campaign Dec 2008 - Mar 2009 at Sinaghad in Western India and on Hanimaadhoo, the Northernmost Island in the Maldives. This data set suggests that the MAC of the BCAs are variable, sometimes by a factor of 3 compared to the mean. This observation adds to the complexity of calculating the radiative forcing for BCAs, reinforcing previous observations that parameters such as aerosol mixing state and sources need to be taken into account.

  2. Kinetics of the gas phase reaction OH+NO(+M)->HONO(+M) and the determination of the UV absorption cross sections of HONO

    DEFF Research Database (Denmark)

    Pagsberg, P.; Bjergbakke, E.; Ratajczak, E.;

    1997-01-01

    The reaction OH + NO(+ M) --> HONO(+ M) with M = SF6 as a third body has been employed as a clean source for recording the near-ultraviolet absorption spectrum of HONO without interference from other absorbing species. The reaction was initiated by the pulse radiolysis of SF6/H2O/NO mixtures...... with total pressures in the range 10-1000 mbar at 298 K. The pressure dependence of the rate coefficient was studied by time-resolved UV and IR spectroscopy. By analysis of the fall-off curve we have derived a value for the limiting low pressure rate constant k(0)/[SF6] = (1.5 +/- 0.1) X 10(-30) cm(6......) molecule(-2) s(-1) at 298 K, using the values of k(infinity) = (3.3 +/- 0.3) X 10(-11) cm(3) molecule(-1) s(-1) and F-cent = 0.81 reported by Tree and co-workers. The UV spectrum of HONO was recorded in the range 320-400 nm and an absolute absorption cross section of sigma = (5.02 +/- 0.76) X 10(-19) cm(2...

  3. Synthesis of Dual NIR Two-photon Absorptive [60]fullerenyl Multiadducts for Nonlinear Light-transmittance Reduction Application

    Science.gov (United States)

    2014-11-01

    based reverse saturable absorption (RSA) [1,2] events of both the C60 cage and antenna units in the combined wide UV-visible‒NIR region and effective...is available at http://spiedigitallibrary.org. 14. ABSTRACT Synthesis of several C60-( antenna )x conjugates was performed to demonstrate high...range of wavelengths. It was achieved by covalent attachment of a hybrid combination of two types of light- harvesting fluorescent antenna

  4. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA

    Directory of Open Access Journals (Sweden)

    J. C. Barnard

    2008-05-01

    Full Text Available Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR and an actinic flux spectroradiometer (SR, we derive aerosol single scattering albedo, π0,λ, as a function of wavelength, λ. We find that in the near-UV spectral range (250 to 400 nm π0,λ is much lower compared to π0,λ at 500 nm indicating enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving the organic part of the aerosol as the only possible absorber. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS along with the inferred π0,λ to estimate the Mass Absorption Cross section (MAC for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as "radiatively correct" because when used in radiative transfer calculations the calculated irradiances/actinic fluxes match those measured at the wavelengths considered here. For an illustrative case study described here, we estimate that the light absorption by the "brown" (organic carbonaceous aerosol can add about 40% to the light absorption of black carbon in Mexico City. This contribution will vary depending on the relative abundance of organic carbon relative to black carbon. Furthermore, our analysis indicates that organic aerosol would slow down photochemistry by selectively scavenging the light reaching the ground at those wavelengths that drive photochemical reactions. Finally, satellite retrievals of trace gases that are used to infer emissions currently assume that the MAC of organic carbon is zero. For trace gases that are

  5. Solvent effects on optical properties of a newly synthesized two-photon polymerization initiator: BPYPA

    Institute of Scientific and Technical Information of China (English)

    Guo Ya-Hui; Sun Yuan-Hong; Tao Li-Min; Zhao Ke; Wang Chuan-Kui

    2005-01-01

    Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorption processes,of a newly synthesized asymmetrical charge-transfer organic molecule bis-(4-bromo-phenyl)-[4-(2-pyridin-4-yl-vinyl)phenyl]-amine (BPYPA). There exist two charge-transfer states for the compound in visible region. The two-photon absorption cross section calculated by a three-state model and solvatochromic shift of the charge-transfer states are found to be solvent-dependent, where a nonmonotonic behaviour with respect to the polarity of the solvents is observed. The numerical results show that the organic molecule exhibits a rather large two-photon absorption cross section as compared with the compound 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine (DBASVP) reported previously, and is predicted to be a good two-photon polymerization initiator. The hydrogen-bond effect is analysed. The computational results are in good agreement with the measurements.

  6. Precision distance measurement using a two-photon absorption process in a silicon avalanche photodiode with saw-tooth phase modulation.

    Science.gov (United States)

    Tanaka, Yosuke; Tominaka, Seiji; Kurokawa, Takashi

    2015-10-01

    We present a novel configuration of a precision laser distance measurement based on the two-photon absorption (TPA) photocurrent from a silicon avalanche photodiode (Si-APD). The proposed system uses saw-tooth phase modulation, known as serrodyne modulation, in order to shift the frequency of the reference light from that of the probe light. It suppresses the coherent interference noise between the probe and the reference. The serrodyne modulation also enables lock-in detection of the TPA photocurrent. Furthermore, it contributes to the reduction of the system components. The precision measurement is experimentally demonstrated by measuring a fiber length difference of 2.6 m with a standard deviation of 27 μm under constant temperature. The high-precision displacement measurement is also demonstrated by measuring the temperature-induced change in the optical path length difference of a fiber interferometer.

  7. Generation of ultrafast pulse via combined effects of stimulated Raman scattering and non-degenerate two-photon absorption in silicon nanophotonic chip

    Indian Academy of Sciences (India)

    Jianwei Wu; Fengguang Luo; Mingcui Cao

    2009-04-01

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are co-propagating in the silicon chip so that the CW will be modulated inversely by the dark pulse during the propagation. As a result, an ultrafast bright pulse is achieved using the technique. Simulation results show that an ultrafast pulse with a pulsewidth (full-width at half-maximum (FWHM)) of about 50 fs is generated at the end of a 5-mm long silicon chip, when the initial conditions, including an input maximum of 0.5 W and FWHM of ∼ 176 fs for dark pulse, and CW with power of 5 W, are chosen.

  8. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  9. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  10. Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas

    Science.gov (United States)

    Schmidt, Jacob B.; Roy, Sukesh; Kulatilaka, Waruna D.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.; Gord, James R.

    2017-01-01

    Femtosecond, two-photon-absorption laser-induced fluorescence (fs-TALIF) is employed to measure space- and time-resolved distributions of atomic hydrogen and oxygen in moderate-pressure, non-equilibrium, nanosecond-duration pulsed-discharge plasmas. Temporally and spatially resolved hydrogen and oxygen TALIF images are obtained over a range of low-temperature plasmas in mixtures of helium and argon at 100 Torr total pressure. The high-peak-intensity, low-average-energy fs pulses combined with the increased spectral bandwidth compared to traditional ns-duration laser pulses provide a large number of photon pairs that are responsible for the two-photon excitation, which results in an enhanced TALIF signal. Krypton and xenon TALIF are used for quantitative calibration of the hydrogen and oxygen concentrations, respectively, with similar excitation schemes being employed. This enables 2D collection of atomic-hydrogen and -oxygen TALIF signals with absolute number densities ranging from 2  ×  1012 cm-3 to 6  ×  1015 cm-3 and 1  ×  1013 cm-3 to 3  ×  1016 cm-3, respectively. These 2D images are the first application of TALIF imaging in moderate-pressure plasma discharges. 1D self-consistent modeling predictions show agreement with experimental results within the estimated experimental error of 25%. The present results can be used to further the development of higher fidelity kinetic models while quantifying plasma-source characteristics.

  11. Two-photon physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  12. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    Science.gov (United States)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  13. Average absorption cross-section of the human body measured at 1-12 GHz in a reverberant chamber: results of a human volunteer study

    Science.gov (United States)

    Flintoft, I. D.; Robinson, M. P.; Melia, G. C. R.; Marvin, A. C.; Dawson, J. F.

    2014-07-01

    The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m2 for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human exposure

  14. Average absorption cross-section of the human body measured at 1-12 GHz in a reverberant chamber: results of a human volunteer study.

    Science.gov (United States)

    Flintoft, I D; Robinson, M P; Melia, G C R; Marvin, A C; Dawson, J F

    2014-07-07

    The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m(2); for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human

  15. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Science.gov (United States)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-02-01

    The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  16. Atmospheric Chemistry of 1-Methoxy 2-Propyl Acetate: UV Absorption Cross Sections, Rate Coefficients, and Products of Its Reactions with OH Radicals and Cl Atoms.

    Science.gov (United States)

    Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique

    2016-11-17

    The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.

  17. Porosity estimates on basaltic basement samples using the neutron absorption cross section (Σ): Implications for fluid flow and alteration of the oceanic crust

    Science.gov (United States)

    Reichow, M. K.; Brewer, T. S.; Marvin, L. G.; Lee, S. V.

    2008-12-01

    Little information presently exists on the heterogeneity of hydrothermal alteration in the oceanic crust or the variability of the associated thermal, fluid, and chemical fluxes. Formation porosities are important controls on these fluxes and porosity measurements are routinely collected during wireline logging operations. These estimates on the formation porosity are measures of the moderating power of the formation in response to bombardment by neutrons. The neutron absorption macroscopic cross-section (Σ = σρ) is a representation of the ability of the rock to slow down neutrons, and as such can be used to invert the porosity of a sample. Boron, lithium and other trace elements are important controls on σ-values, and the distribution of these is influenced by secondary low-temperature alteration processes. Consequently, computed σ-values may be used to discriminate between various basalt types and to identify areas of secondary alteration. Critical in this analysis is the degree of alteration, since elements such as B and Li can dramatically affect the sigma value and leading to erroneous porosity values. We analysed over 150 'pool-samples' for S, Li, Be and B element concentrations to estimate their contribution to the measured neutron porosity. These chemical analyses allow the calculation of the model sigma values for individual samples. Using a range of variably altered samples recovered during IODP Expeditions 309 and 312 we provide bulk estimates of alteration within the drilled section using the measured neutron porosity. B concentration in Hole 1256D increases with depth, with sharp rises at 959 and 1139 mbsf. Elevated wireline neutron porosities cannot always be directly linked with high B content. However, our preliminary results imply that increased neutron porosity (~15) at depths below 1100 mbsf may reflect hydrothermal alteration rather than formation porosity. This interpretation is supported when compared with generally lower computed

  18. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    Science.gov (United States)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  19. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide

    Science.gov (United States)

    Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra

    2014-08-01

    Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.

  20. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Science.gov (United States)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-09-01

    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  1. Theoretical analysis of the two-photon absorption spectrum of Tb sup 3 sup + in Cs sub 2 NaTbCl sub 6

    CERN Document Server

    Wang Dian Yuan; Xia Shang Da; Tanner, P A

    2003-01-01

    Eighteen selected two-photon absorption (TPA) transition line strengths with polarization angles theta = 0 deg. and 45 deg., spanning several orders of magnitude, have been calculated for the Tb sup 3 sup + ion in the cubic host Cs sub 2 NaTbCl sub 6. The results are in reasonable agreement with experimental results in the literature. The calculation utilized the crystal field (CF) wavefunctions for the initial and final states of the 4f sup 8 configuration, and utilized free ion or CF wavefunctions (with the corresponding energies) for 4f sup 7 core states of the whole intermediate 4f sup 7 5d configuration comprising 34 320 states. The intensities of certain transitions were found to be very sensitive to the inclusion of the CF interaction within the 4f sup 7 core. In contrast to previous fourth- or third-order calculations of the TPA transition line strength of the strong transition ( sup 7 F sub 6)A sub 1 sub g -> ( sup 5 D sub 4)A sub 1 sub g using pure Russell-Saunders (RS) wavefunctions for the | sup 7...

  2. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  3. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  4. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  5. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  6. Two-Photon Photodynamic Therapy by Water-Soluble Self-Assembled Conjugated Porphyrins

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2013-01-01

    Full Text Available Studies on two-photon absorption (2PA photodynamic therapy (PDT by using three water-soluble porphyrin self-assemblies consisting of ethynylene-linked conjugated bis (imidazolylporphyrin are reviewed. 2PA cross-section values in water were obtained by an open aperture Z-scan measurement, and values were extremely large compared with those of monomeric porphyrins such as hematoporphyrin. These compounds were found to generate singlet oxygen efficiently upon one- as well as two-photon absorption as demonstrated by the time-resolved luminescence measurement at the characteristic band of singlet oxygen at 1270 nm and by using its scavenger. Photocytotoxicities for HeLa cancer cells were examined and found to be as high as those of hematoporphyrin, demonstrating that these compounds are potential candidates for 2PA-photodynamic therapy agents.

  7. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  8. Study of the OH and Cl-initiated oxidation, IR absorption cross-section, radiative forcing, and global warming potential of four C4-hydrofluoroethers.

    Science.gov (United States)

    Oyaro, Nathan; Sellevåg, Stig R; Nielsen, Claus J

    2004-11-01

    Infrared absorption cross-sections and OH and Cl reaction rate coefficients for four C4-hydrofluoroethers (CF3)2CHOCH3, CF3CH2OCH2CF3, CF3CF2CH2OCH3, and CHF2CF2CH2OCH3 are reported. Relative rate measurements at 298 K and 1013 hPa of OH and Cl reaction rate coefficients give k(OH+(CF3)2CHOCH3) = (1.27+/-0.13) x 10(-13), k(OH+CF3CH2OCH2CF3) = (1.51+/-0.24) x 10(-13), k(OH+CF3CF2CH2OCH3) = (6.42+/-0.33) x 10(-13), k(OH+CHF2CF2CH2OCH3) = (8.7 +/-0.5) x 10(-13), k(Cl+(CF3)2CHOCH3) = (8.4+/-1.3) x 10(-12), k(Cl+CF3CH2OCH2CF3) = (6.5+/-1.7) x 10(-13), k(Cl+CF3CF2CH2OCH3) = (4.0+/-0.8) x 10(-11), and k(Cl+CHF2CF2CH2OCH3) = (2.65+/-0.17) x 10(-11) cm3 molecule(-1) s(-1). The primary products of the OH and Cl reactions with the fluorinated ethers have been identified as esters, and OH and Cl reaction rate coefficients for one of these, CF3CH2OCHO, are reported: k(OH+CF3CH2OCHO) = (7.7+/-0.9) x 10(-14) and kCl+CF3CH2OCHO) = (6.3+/-1.9) x 10(-14) cm3 molecule(-1) s(-1) The rate coefficient for the Cl-atom reaction with CHF2CH2F is derived as k(Cl+CHF2CH2F) = (3.0+/-0.9) x 10(-14) cm3 molecule(-1) s(-1) at 298 K. The error limits include 3sigma from the statistical data analyses as well as the errors in the rate coefficients of the reference compounds employed. The tropospheric lifetimes of the hydrofluoroethers are estimated to be short tauOH((CF3)2CHOCH3) approximately 100 days, tauOH(CF3CH2OCH2CF3) approximately 80 days, tauOH(CF3CF2CH2OCH3) approximately 20 days, and tauOH(CHF2CF2CH2OCH3) approximately 14 days, and their global warming potentials are small compared to CFC-11.

  9. Two-photon cryomicroscope

    Science.gov (United States)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  10. Platinum Acetylide Two-Photon Chromophores (Preprint)

    Science.gov (United States)

    2007-04-01

    the higher energy range that lead to its photodegradation . Secondly, because there is a quadratic dependence of two-photon absorption (2PA) on the...to either an electron donating amino- fluorenyl or electron withdrawing benzothiazolyl-fluorene that are themselves known as two-photon absorbing dyes ...groups in place of phenyl groups have shown a doubling of the intrinsic cr2value at 740 nm.40,41In this paper we describe novel platinum dyes that

  11. New Arsenic Cross Section Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-04

    This report presents calculations for the new arsenic cross section. Cross sections for 73,74,75 As above the resonance range were calculated with a newly developed Hauser-Feshbach code, CoH3.

  12. Measurement of the neutron capture cross section of the fissile isotope $^{235}$U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors

    CERN Document Server

    Mendoza, E; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Lampoudis, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Zugec, P

    2014-01-01

    Actual and future nuclear technologies require more accurate nuclear data on the (n, $\\gamma$) cross sections and $\\alpha$-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission $\\gamma$-ray background competing with the weaker $\\gamma$-ray cascades used as the experimental signature of the (n, $\\gamma$) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,$\\gamma$ ) cross section and $\\alpha$- ratios of fissile isotopes and used for the case of the $^{235}$U isotope. The setup consists in a set of micromegas fission detectors surrounding $^{235}$U samples and placed inside the segmented BaF$_2$ Total Absorption Calorimeter.

  13. Measurement of the Neutron Capture Cross Section of the Fissile Isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a Fission Tagging Based on Micromegas Detectors

    CERN Document Server

    Balibrea, J; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lampoudis, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    Current and future nuclear technologies require more accurate nuclear data on (n,γ) cross sections and the α-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission γ-ray background competing with the weaker γ-ray cascades used as the experimental signature of the (n,γ) process. A specific setup was used at the CERN n_TOF facility in 2012 for the measurement of the (n,γ) cross section and α-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists of a set of micromegas fission detectors surrounding the 235U samples all placed inside a segmented BaF2 Total Absorption Calorimeter.

  14. Total Cross Section in $\\gamma\\gamma$ Collisions at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Todorova-Nová, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ewers, A; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M

    2001-01-01

    The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV < Wgammagamma < 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

  15. A Theoretical Study of Photoabsorption Cross Sections of Na2+

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Hua; GAO Xiang; HAN Xiao-Ying; LI Jia-Ming

    2007-01-01

    @@ In the framework of quantum defect theory, we calculate photoabsorption cross sections of Na2+. Based on our calculations, there is an absorption window in the photoabsorption cross sections of Na2+, and more than one bump above the absorption window. The calculated photoabsorption cross sections provide an explanation for the abnormal bump in the experimental measurements of Hudson, which is a long-standing experimental puzzle.

  16. Sideband-Induced Two-Photon Transparency

    Institute of Scientific and Technical Information of China (English)

    CHENG Guang-Ling; HU Xiang-Ming

    2006-01-01

    @@ We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far off one-photon resonance. A resonant sideband coupling on the upper transition and the two-photon one-step process drive the medium into a trapped state, and the dominant component is the ground state. Thus almost all population is trapped in the ground state and the two-photon absorption is dramatically suppressed. We present a numerical calculation for arbitrary values of the atomic and field parameters and also provide an analytic description for the required conditions.

  17. Fluorescent detection and imaging of Hg{sup 2+} using a novel phenanthroline derivative based single- and two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian, E-mail: zhangx@qlu.edu.cn; Li, Long-long; Liu, Ying-kai

    2016-02-01

    A novel phenanthroline derivative, 4-[4-(N-methyl)styrene]-imidazo[4,5-f][1,10]phenanthroline-benzene iodated salt (MSIPBI), was synthesized, and the linear absorption and fluorescent spectra of MSIPBI in different solvents were investigated. The photophysical properties in unbound and in ligand–metal complexes were evaluated by UV absorption and one- and two-photon fluorescent spectra, and the quantum yields, two-photon active cross-sections and the binding constant of dye–metal were calculated. The results indicated that MSIPBI has a large Stokes shift (more than 167 nm), and the dye was selective and sensitive for the detection of Hg{sup 2+} with a two-photon active cross-section of 55.5 GM in tris–HCl buffer solution at 800 nm. Furthermore, the results of the fluorescence microscopy imaging indicated that MSIPBI is an efficient fluorescent probe for the detection of Hg{sup 2+} in living cells by one- and two-photon excitation. Moreover, the experiments of determination Hg{sup 2+} in river water and tap water were finished. - Highlights: • A novel phenanthroline derivative (MSIPBI) has been synthesized. • The dye of MSIPBI was selective and sensitive to detect Hg{sup 2+}. • MSIPBI has a large Stokes shift (≥ 167 nm). • Hg{sup 2+} in living cells was successfully imaged by one- and two-photon excitation.

  18. Probe into Design of Novel Variable Cross-section Double Cavity Noise Absorption Structure%新型变截面双空腔吸声结构设计探讨

    Institute of Scientific and Technical Information of China (English)

    吕忠达; 陈涛; 邱贤锋

    2012-01-01

    In order to change current situations of serious pollution of traffic noise, this paper deigns a novel variable cross-section double cavity noise absorption structure, which is composed of five parts, i. e. metal acoustic panel, front variable cross-section cavity, middle absorption insulating layer, rear cavity and back sound insulating board. Based on measurement test for acoustic absorption factors in reverberation room, all acoustic absorption factors of this noise absorption structure at medium and low frequency range of 250 ~ 1 000 Hz are over 0. 65, and overall noise reduction coefficients are more than 0.60 with remarkable improvement in comparison with conventional noise absorption structure.%为改变高速公路交通噪声的严重污染现状,设计一种新型变截面双空腔吸声结构,其是由金属吸声板、前部变截面空腔、中间吸声隔层、后部空腔、背部隔声板5大部分构成.由混响室吸声系数的测定试验可知,该吸声结构在250~1 000 Hz中低频段的吸声系数均在0.65以上,总体降噪系数均大于0.60,较传统吸声结构,其吸声降噪效果有显著提升.

  19. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  20. The electronic structure and the O 1s x-ray absorption cross section of the perovskite-derived compound SrNbO{sub 3.4}

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.; Schuppler, S.; Kuntscher, C.A. [Forschungszentrum Karlsruhe, INFP, PO Box 3640, D-76021 Karlsruhe (Germany)

    2000-02-28

    We present the results of self-consistent LMTO-ASA band structure calculations for SrNbO{sub 3.4} based on the LDA. Eight bands per spin cut the Fermi surface. In accordance with experiment, we obtain a low density of states at the Fermi level, rising steeply with increasing energy. This explains qualitatively the low susceptibility found in this material. Similar to the simple perovskite structure SrNbO{sub 3}, the conduction band complex is separated from the 5.6 eV wide valence band region by a gap of 1.7 eV. The spatial charge distribution shows that the bonding between the niobium and the oxygen atoms within the two-dimensional octahedral network is of primarily ionic character. A band complex of width 3.45 eV found at 17 eV below E{sub F} is due to the O 2s states. The reasonable agreement between our calculated XAS cross sections for different light polarizations with recent experimental results suggest that an LDA treatment of this class of substances is appropriate, whereas Coulomb correlations play a minor role. (author)

  1. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  2. The total charm cross section

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2007-09-14

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that the uncertainty on the total charm cross section is difficult to quantify.

  3. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Ding, Lei [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Zhang, Chun; Ren, Aiming [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Li, Bo [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2015-02-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ{sub cut-off} ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10{sup 3}GM) and high thermal stability (T{sub d} = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10{sup 3}GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties.

  4. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA)

    OpenAIRE

    Barnard, J.C.; Volkamer, R.; E. I. Kassianov

    2008-01-01

    Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer (SR), we derive aerosol single scattering albedo, π0,λ, as a function of wavelength, λ. We find that in the near-UV spectral range (250 to 400 nm) π0,&lambd...

  5. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  6. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D6h point group symmetry versus ovalene with D2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D2h ovalene but not in those with D6h symmetry.

  7. Medical prototyping using two photon polymerization

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-12-01

    Full Text Available Two photon polymerization involves nearly simultaneous absorption of ultrashort laser pulses for selective curing of photosensitive material. This process has recently been used to create small-scale medical devices out of several classes of photosensitive materials, such as acrylate-based polymers, organically-modified ceramic materials, zirconium sol-gels, and titanium-containing hybrid materials. In this review, the use of two photon polymerization for fabrication of several types of small-scale medical devices, including microneedles, artificial tissues, microfluidic devices, pumps, sensors, and valves, from computer models is described. Necessary steps in the development of two photon polymerization as a commercially viable medical device manufacturing method are also considered.

  8. Two-photon fluorescence probes for imaging of mitochondria and lysosomes.

    Science.gov (United States)

    Yang, Wanggui; Chan, Pui Shan; Chan, Miu Shan; Li, King Fai; Lo, Pik Kwan; Mak, Nai Ki; Cheah, Kok Wai; Wong, Man Shing

    2013-04-28

    Novel biocompatible cyanines show not only a very large two-photon cross-section of up to 5130 GM at 910 nm in aqueous medium for high-contrast and -brightness two-photon fluorescence live cell imaging but also highly selective subcellular localization properties including localization of mitochondria and lysosomes.

  9. Two-photon production of charged pion and kaon pairs

    CERN Document Server

    Dominick, J; Sanghera, S; Shelkov, V; Skwarnicki, T; Stroynowski, R; Volobuev, I P; Wei, G; Zadorozhny, P; Artuso, M; Goldberg, M; He, D; Horwitz, N; Kennett, R; Mountain, R; Moneti, G C; Muheim, F; Mukhin, Y; Playfer, S; Rozen, Y; Stone, S; Thulasidas, M; Vasseur, G; Zhu, G; Bartelt, J; Csorna, S E; Egyed, Z; Jain, V; Kinoshita, K; Edwards, K W; Ogg, M; Britton, D I; Hyatt, E R F; MacFarlane, D B; Patel, P M; Akerib, D S; Barish, B C; Chadha, M; Chan, S; Cowen, D F; Eigen, G; Miller, J S; O'Grady, C; Urheim, J; Weinstein, A J; Acosta, D; Athanas, M; Masek, G E; Paar, H P; Sivertz, M; Gronberg, J B; Kutschke, R; Menary, S R; Morrison, R J; Nakanishi, S; Nelson, H N; Nelson, T K; Qiao, C; Richman, J D; Ryd, A; Tajima, H; Sperka, D; Witherell, M S; Procario, M; Balest, R; Cho, K; Daoudi, M; Ford, W T; Johnson, D R; Lingel, K; Lohner, M; Rankin, P; Smith, J G; Alexander, J P; Bebek, C; Berkelman, K; Bloom, K; Browder, T E; Cassel, David G; Cho, H A; Coffman, D M; Drell, P S; Ehrlich, R; Gaidarev, P B; Galik, R S; García-Sciveres, M; Geiser, B; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Jones, C D; Jones, S L; Kandaswamy, J; Katayama, N; Kim, P C; Kreinick, D L; Ludwig, G S; Masui, J; Mevissen, J; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Salman, S; Sapper, M; Würthwein, F; Avery, P; Freyberger, A P; Rodríguez, J; Stephens, R; Yang, S; Yelton, J; Cinabro, D; Henderson, S; Liu, T; Saulnier, M; Wilson, R; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Gollin, G; Ong, B; Palmer, M; Selen, M; Thaler, J J; Sadoff, A J; Ammar, R; Ball, S; Baringer, P; Bean, A; Besson, D; Coppage, D; Copty, N K; Davis, R; Hancock, N; Kelly, M; Kwak, N; Lam, H; Kubota, Y; Lattery, M; Nelson, J K; Patton, S; Perticone, D; Poling, R A; Savinov, V; Schrenk, S; Wang, R; Alam, M S; Kim, I J; Nemati, B; O'Neill, J J; Severini, H; Sun, C R; Zoeller, M M; Crawford, G; Daubenmier, C M; Fulton, R; Fujino, D; Gan, K K; Honscheid, K; Kagan, H; Kass, R; Lee, J; Malchow, R L; Skovpen, Y; Sung, M; White, C; Butler, F; Fu, X; Kalbfleisch, G R; Ross, W R; Skubic, P L; Snow, J; Wang, P L; Wood, M; Brown, D N; Fast, J; McIlwain, R L; Miao, T; Miller, D H; Modesitt, M; Payne, D; Shibata, E I; Shipsey, I P J; Wang Pei Ning; Battle, M; Ernst, J; Kwon, Y; Roberts, S; Thorndike, E H; Wang, C H

    1994-01-01

    A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~\\rm fb^{-1} of data collected by the CLEO II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0~GeV/c^2, and at scattering angles more than 53^\\circ away from the \\gamma\\gamma collision axis in the \\gamma\\gamma center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5~GeV/c^2. hardcopies with figures can be obtained by writing to to: Pam Morehouse ...

  10. Observation of high-$p_{T}$ jets in two-photon interactions

    CERN Document Server

    Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nosaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C

    1981-01-01

    Events with a characteristic two-jet topology have been observed in two-photon interactions. The production cross section is found to be higher than the point-like gamma gamma -qq cross section, which is approached only at transverse momenta larger than 3 GeV/c. (11 refs).

  11. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  12. Emission turn-on and solubility turn-off in conjugated polymers: one- and two-photon-induced removal of fluorescence-quenching solubilizing groups.

    Science.gov (United States)

    Schelkle, Korwin M; Becht, Steffy; Faraji, Shirin; Petzoldt, Martin; Müllen, Klaus; Buckup, Tiago; Dreuw, Andreas; Motzkus, Marcus; Hamburger, Manuel

    2015-01-01

    The synthesis of highly efficient two-photon uncaging groups and their potential use in functional conjugated polymers for post-polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two-photon process through a combination of exceptionally high two-photon absorption cross-sections and high reaction quantum yields. Furthermore, π-conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn-on of the fluorescence while solubility of the π-conjugated materials is drastically reduced.

  13. Parametric equations for calculation of macroscopic cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  14. Two photon physics. Personal recollection

    CERN Document Server

    Ginzburg, Ilya F

    2015-01-01

    The term two--photon processes is used for the reactions in which some system of particles is produced in collision of two photons, either real or virtual. In the study of these processes our main goal was to suggest approach, allowing to extract from the data information on proper two--photon process separating it from mechanism which responsible for the production of photons. Here I present my view for history of two--photon physics. I don't try to give complete review, concentrating mainly on works of our team (which cover essential part of the topic) and some colleagues. My citation is strongly incomplete. I cite here only papers which were essential in our understanding of the problems. The choice of presented details is the result of my discussions with Gleb Kotkin and Valery Serbo. 1. Prehistory. 2. Two photon processes at e^+e^- colliders. 3. Photon colliders. 4. Notes on physical program.

  15. Search for a Higgs boson decaying into two photons in the CMS detector

    Indian Academy of Sciences (India)

    Roberta Volpe; on behalf of the CMS Collaboration

    2012-11-01

    A search for a Higgs boson decaying into two photons in collisions at the LHC at a centre-of-mass energy of 7 TeV is presented. The analysis is performed on a dataset corresponding to 1.66 fb-1 of data recorded in 2011 by the CMS experiment. Limits are set on the cross-section of a Standard Model Higgs boson decaying into two photons, and on the cross-section of a fermiophobic Higgs boson decaying into two photons.

  16. Inclusive $D*^{+-}$ Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV e^+e^-D^{*+-}X)$ in this kinematical region is measured and the sigma(e^+e^- ---> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

  17. Nonsequential Two-Photon Double Ionization of Atoms: Identifying the Mechanism

    CERN Document Server

    F\\orre, Morten; Nepstad, Raymond

    2010-01-01

    We develop an approximate model for the process of direct (nonsequential) two-photon double ionization of atoms. Employing the model, we calculate (generalized) total cross sections as well as energy-resolved differential cross sections of helium for photon energies ranging from 39 to 54 eV. A comparison with results of \\textit{ab initio} calculations reveals that the agreement is at a quantitative level. We thus demonstrate that this complex ionization process is fully described by the simple model, providing insight into the underlying physical mechanism. Finally, we use the model to calculate generalized cross sections for the two-photon double ionization of neon in the nonsequential regime.

  18. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    Science.gov (United States)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  19. Two-photon ionization of colliding atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1977-09-01

    Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization yield on the details of the interaction potential of the system is derived. This process promises an extremely sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence becomes very weak.

  20. A study of the temperature dependence of the infrared absorption cross-sections of 2,2,3,3,3-pentafluoropropanol in the range of 298-362 K

    Science.gov (United States)

    Godin, Paul J.; Cabaj, Alex; Xu, Li-Hong; Le Bris, Karine; Strong, Kimberly

    2017-01-01

    Absorption cross-sections of 2,2,3,3,3-pentafluoropropanol (PFPO) were derived from Fourier transform infrared spectra recorded from 565 to 3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 298-362 K. These results were compared to previously published theoretical density functional theory (DFT) calculations and experimental measurements made at room temperature. We find good agreement between our experimentally derived results, DFT calculations, and previously published data. The only temperature dependence observed was in the centroid shift of the 850-1500 cm-1 band and in the amplitude of some of the absorption peaks. However, this temperature dependence does not result in a significant trend in integrated band strength as a function of temperature. We calculate an average integrated band strength of (1.991±0.001)×10-16 cm molecule-1 for PFPO over the spectral range studied. Radiative efficiencies (REs) and the global warming potential (GWP) for PFPO were also derived. We find an average RE of 0.2603 ± 0.0007 Wm-2ppbv-1 and a GWP100 of 19.8. The calculated radiative efficiencies show that no dependence on temperature and our findings are consistent with previous studies, increasing our confidence in the value of the GWP of PFPO.

  1. Optically Pumped Atomic Rubidium Lasers: Two-Photon and Exciplex Excitation Mechanisms

    Science.gov (United States)

    Gallagher, Jeffrey E.

    The Doppler-broadened two-photon absorption (TPA) cross-section for the 52S1/2 → 52 D5/2 transition in Rb is measured using direct absorption methods. The selection rule |DeltaF| ≤ 2 applied to both isotopes yields 17 transitions in 3 Doppler limited lines. A detailed model of the intensity profile was also developed to account for a focused Gaussian beam (with an M2 value of 1.09) propagating through a two-photon absorption medium. A peak absorbance of 24% was observed for an intensity of 6.28 kWcm2 at the focus, a Rb density of 4.6x1015 cm-3 , and a path length of 15 cm. Alkali concentrations from 1.61 - 8.52x1015 cm -3 were monitored in the far wing of the D 2 line. Extracting the hyperfine-broadened TPA cross-section from 87 test configurations, while varying the pump power, alkali concentration and focal length, yielded an error-weighted average of 6.75x10^-21 cm4W with a standard deviation of 3.61x10-21 cm4W. This cross-section is sufficient for a pulsed dye laser to bleach the pump transition in the Two-Photon Pumped Alkali Laser (TPAL) that lases at 420 nm and 5.2 microm. Optically pumped atomic rubidium lasers pumped in the blue satellite of the D2 line from the ground Rb-Ar or Rb-Kr collision pair to the dissociative B2S+1/2 state produce laser emission at 780.2 nm. Lasing is achieved for pump wavelengths of 752.3 to greater than 760 nm for the Rb-Ar system and 757.1 -- 760.4 nm for the Rb-Kr system. Slope efficiencies increase with both Rb and Ar concentrations and exceed 0.25% using a heat pipe configuration. The gain is very high with photon build-up times of 1--3.7 ns. Laser induced heating and subsequent condensation of alkali vapor in the heat pipe configuration currently limits operation to less than 2500 Torr.

  2. Resonant transfer of one- and two-photon excitations in quantum dot-bacteriorhodopsin complexes

    Science.gov (United States)

    Krivenkov, V. A.; Samokhvalov, P. S.; Bilan, R. S.; Chistyakov, A. A.; Nabiev, I. R.

    2017-01-01

    Light-sensitive protein bacteriorhodopsin (BR), which is capable of electrical response upon exposure to light, is a promising material for photovoltaics and optoelectronics. However, the rather narrow absorption spectrum of BR does not allow achieving efficient conversion of the light energy in the blue and infrared spectral regions. This paper summarizes the results of studies showing the possibility of extending the spectral region of the BR function by means of the Förster resonance energy transfer (FRET) from CdSe/ZnS quantum dots (QDs), which have a broad spectrum of one-photon absorption and a large twophoton absorption cross section (TPACS), to BR upon one- and two-photon excitation. In particular, it is shown that, on the basis of QDs and BR-containing purple membranes, it is possible to create electrostatically associated bio-nano hybrid systems in which FRET is implemented. In addition, the large TPACS of QDs, which is two orders of magnitude larger than those of BR and organic dyes, opens up a means for selective two-photon excitation of synthesized bio-nano hybrid complexes. On the basis of the results of this work, the spectral region in which BR converts the light energy into electrical energy can be extended from the UV to near-IR region, creating new opportunities for the use of this material in photovoltaics and optoelectronics.

  3. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  4. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  5. Revolutionizing Cross-sectional Imaging

    CERN Document Server

    Fan, Yifang; Luo, Liangping; Lin, Wentao; Li, Zhiyu; Zhong, Xin; Shi, Changzheng; Newman, Tony; Zhou, Yi; Lv, Changsheng; Fan, Yuzhou

    2014-01-01

    Cross-sectional imaging is so important that, six Nobel Prizes have been awarded to the field of nuclear magnetic resonance alone because it revolutionized clinical diagnosis. The BigBrain project supported by up to 1 billion euro each over a time period of 10 years predicts to "revolutionize our ability to understand internal brain organization" (Evan 2013). If we claim that cross-sectional imaging diagnosis is only semi-quantitative, some may believe because no doctor would ever tell their patient that we can observe the changes of this cross-sectional image next time. If we claim that BigBrain will make no difference in clinical medicine, then few would believe because no doctor would ever tell their patient to scan this part of the image and compare it with that from the BigBrain. If we claim that the BigBrain Project and the Human Brain Project have defects in their key method, one might believe it. But this is true. The key lies in the reconstruction of any cross-sectional image along any axis. Using Ga...

  6. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing

    Science.gov (United States)

    Yu, Jiancan; Cui, Yuanjing; Xu, Hui; Yang, Yu; Wang, Zhiyu; Chen, Banglin; Qian, Guodong

    2013-10-01

    Two-photon-pumped dye lasers are very important because of their applications in wavelength up-conversion, optical data storage, biological imaging and photodynamic therapy. Such lasers are very difficult to realize in the solid state because of the aggregation-caused quenching. Here we demonstrate a new two-photon-pumped micro-laser by encapsulating the cationic pyridinium hemicyanine dye into an anionic metal-organic framework (MOF). The resultant MOF⊃dye composite exhibits significant two-photon fluorescence because of the large absorption cross-section and the encapsulation-enhanced luminescent efficiency of the dye. Furthermore, the well-faceted MOF crystal serves as a natural Fabry-Perot resonance cavity, leading to lasing around 640 nm when pumped with a 1064-nm pulse laser. This strategy not only combines the crystalline benefit of MOFs and luminescent behaviour of organic dyes but also creates a new synergistic two-photon-pumped lasing functionality, opening a new avenue for the future creation of solid-state photonic materials and devices.

  7. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation

    Science.gov (United States)

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-01-01

    We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ~2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ~800 nm for Ag29(DHLA)12 is higher than 104 GM and the hyperpolarizability is 106 × 10-30 esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties.We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ~2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ~800 nm for Ag29(DHLA)12 is higher than 104

  8. Relativistic calculations of the non-resonant two-photon ionization of neutral atoms

    CERN Document Server

    Hofbrucker, Jiri; Fritzsche, Stephan

    2016-01-01

    The non-resonant two-photon one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section, for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold, for the case of Ne, for example, the cross section drops there by a factor of three.

  9. Two-photon spectroscopic behaviors and photodynamic effect on the BEL-7402 cancer cells of the new chlorophyll photosensitizer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The spectroscopic properties of a new chlorophyll derivate photosensitizer(CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti:sapphire laser.The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm.The normalized fluorescence spectra of CDP in tetrahydrofuran(THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands(675 nm).The life-times of two-and one-photon induced fluorescence of this molecule are of the order of 5.0 ns.By comparing the data it is shown that there is some difference between the two lifetimes,but the differ-ence is less than one nanosecond.The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ′2 ≈ 31.5×10-50 cm4·s·photon-1.The results of two-photon photodynamic therapy(TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment.Our results indicate that the two-photon-induced photophysical,photo-chemical and photosensitizing processes of CDP may be basically similar to those of one-photon ex-citation.These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers’ effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.

  10. Two-photon spectroscopic behaviors and photodynamic effect on the BEL-7402 cancer cells of the new chlorophyll photosensitizer

    Institute of Scientific and Technical Information of China (English)

    ZHAO PeiDe; ZHANG GuiLan; CHEN WenJu; CHEN Ping; TANG GuoQing; LIU JinWei; LIN Lie; GUO Peng; YU Qing; YAO JianZhong; MA DongMing

    2008-01-01

    The spectroscopic properties of a new chlorophyll derivate photosensitizer (CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti: sapphire laser. The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm. The normalized fluorescence spectra of CDP in tetrahydrofuran (THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands (675 nm). The life-times of two- and one-photon induced fluorescence of this molecule are of the order of 5.0 ns. By comparing the data it is shown that there is some difference between the two lifetimes, but the differ-ence is less than one nanosecond. The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ'2≈31.5×10-50 cm4·s·photon-1. The results of two-photon photodynamic therapy (TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment. Our results indicate that the two-photon-induced photophysical, photochemical and photosensitizing processes of CDP may be basically similar to those of one-photon excitation. These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers' effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.

  11. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  12. Near-infrared-emitting squaraine dyes with high 2PA cross-sections for multiphoton fluorescence imaging.

    Science.gov (United States)

    Ahn, Hyo-Yang; Yao, Sheng; Wang, Xuhua; Belfield, Kevin D

    2012-06-27

    Designed to achieve high two-photon absorptivity, new near-infrared (NIR) emitting squaraine dyes, (E)-2-(1-(2-(2-methoxyethoxy)ethyl)-5-(3,4,5-trimethoxystyryl)-1H-pyrrol-2-yl)-4-(1-(2-(2-methoxyethoxy)ethyl)-5-(3,4,5-trimethoxystyryl)-2H-pyrrolium-2-ylidene)-3-oxocyclobut-1-enolate (1) and (Z)-2-(4-(dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate (2), were synthesized and characterized. Their linear photophysical properties were investigated via UV-visible absorption spectroscopy and fluorescence spectroscopy in various solvents, while their nonlinear photophysical properties were investigated using a combination of two-photon induced fluorescence and open aperture z-scan methods. Squaraine 1 exhibited a high two-photon absorption (2PA) cross-section (δ2PA), ∼20 000 GM at 800 nm, and high photostability with the photochemical decomposition quantum yield one order of magnitude lower than Cy 5, a commercially available pentamethine cyanine NIR dye. The cytotoxicity of the squaraine dyes were evaluated in HCT 116 and COS 7 cell lines to assess the potential of these probes for biomedical imaging. The viability of both cell lines was maintained above 80% at dye concentrations up to 30 μM, indicating good biocompatibility of the probes. Finally, one-photon fluorescence microscopy (1PFM) and two-photon fluorescence microscopy (2PFM) imaging was accomplished after incubation of micelle-encapsulated squaraine probes with HCT 116 and COS 7 cells, demonstrating their potential in 2PFM bioimaging.

  13. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  14. Higgs Decay to Two Photons

    OpenAIRE

    Marciano, William J.; Zhang, Cen; Willenbrock, Scott

    2011-01-01

    The amplitude for Higgs decay to two photons is calculated in renormalizable and unitary gauges using dimensional regularization at intermediate steps. The result is finite, gauge independent, and in agreement with previously published results. The large Higgs mass limit is examined using the Goldstone-boson equivalence theorem as a check on the use of dimensional regularization and to explain the absence of decoupling.

  15. Photodissociation cross section of ClOOCl at 330 nm.

    Science.gov (United States)

    Jin, Bing; Chen, I-Cheng; Huang, Wen-Tsung; Lien, Chien-Yu; Guchhait, Nikhil; Lin, Jim J

    2010-04-15

    The photolysis rate of ClOOCl is crucial in the catalytic destruction of polar stratospheric ozone. In this work, we determined the photodissociation cross section of ClOOCl at 330 nm with a molecular beam and with mass-resolved detection. The photodissociation cross section is the product of the absorption cross section and the dissociation quantum yield. We formed an effusive molecular beam of ClOOCl at a nozzle temperature of 200 or 250 K and determined its photodissociation probability by measuring the decrease of the ClOOCl intensity upon laser irradiation. By comparing with a reference molecule (Cl(2)), of which the absorption cross section and dissociation quantum yield are well-known, we determined the absolute photodissociation cross section of ClOOCl at 330 nm to be (2.31 +/- 0.11) x 10(-19) cm(2) at 200 K and (2.47 +/- 0.12) x 10(-19) cm(2) at 250 K. Impurity interference has been a well-recognized problem in conventional spectroscopic studies of ClOOCl; our mass-resolved measurement directly overcomes such a problem. This measurement of the ClOOCl photolysis cross section at 330 nm is particularly useful in constraining its atmospheric photolysis rate, which in the polar stratosphere peaks near this wavelength.

  16. Deep-red polymer dots with bright two-photon fluorescence and high biocompatibility for in vivo mouse brain imaging

    Science.gov (United States)

    Alifu, Nuernisha; Sun, Zezhou; Zebibula, Abudureheman; Zhu, Zhenggang; Zhao, Xinyuan; Wu, Changfeng; Wang, Yalun; Qian, Jun

    2017-09-01

    With high contrast and deep penetration, two-photon fluorescence (2PF) imaging has become one of the most promising in vivo fluorescence imaging techniques. To obtain good imaging contrast, fluorescent nanoprobes with good 2PF properties are highly needed. In this work, bright 2PF polymer dots (P dots) were applied for in vivo mouse brain imaging. Deep-red emissive P dots with PFBT as the donor and PFDBT5 as the acceptor were synthesized and used as a contrast agent. P dots were further encapsulated by poly(styrene-co-maleic anhydride) (PSMA) and grafted with poly(ethylene glycol) (PEG). The P dots-PEG exhibit large two-photon absorption (2PA) cross-sections (δ≥8500 g), good water dispersibility, and high biocompatibility. P dots-PEG was further utilized first time for in vivo vascular imaging of mouse ear and brain, under 690-900 nm femtosecond (fs) laser excitation. Due to the large 2PA cross-section and deep-red emission, a large imaging depth ( 720 μm) was achieved.

  17. Total cross sections for ultracold neutrons scattered from gases

    Science.gov (United States)

    Seestrom, S. J.; Adamek, E. R.; Barlow, D.; Blatnik, M.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Fox, W.; Hoffbauer, M.; Hickerson, K. P.; Holley, A. T.; Liu, C.-Y.; Makela, M.; Medina, J.; Morley, D. J.; Morris, C. L.; Pattie, R. W.; Ramsey, J.; Roberts, A.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S. K. L.; Slaughter, B. A.; Walstrom, P. L.; Wang, Z.; Wexler, J.; Womack, T. L.; Young, A. R.; Vanderwerp, J.; Zeck, B. A.

    2017-01-01

    We have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n -butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He . The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to our previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.

  18. Voltage-sensitive rhodol with enhanced two-photon brightness.

    Science.gov (United States)

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  19. Two-photon excitation photodynamic therapy with Photofrin

    Science.gov (United States)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  20. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang, Yue; Zhao, Xin; Sun, Handong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [Division of Physics and Applied Physics, and Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Yang; Grimsdale, Andrew C. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-01-04

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokes shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.

  1. Theoretical investigation on ratiometric two-photon fluorescent probe for Zn2+ detection based on ICT mechanism

    Science.gov (United States)

    Huang, Shuang; Yang, Bao-Zhu; Ren, Ai-Min

    2016-06-01

    OPA (one-photon absorption), TPA (two-photon absorption) and fluorescence properties of a free ligand L upon coordination with Zn2+, and the regeneration with CN- were investigated in theory. According to our research, OPA spectra of ligand L show red-shift binding with Zn2+ while blue-shift with CN-. The fluorescence spectra and TPA wavelength are shifted in the same situation as those of OPA spectra. The value of TPA cross-section decreased at first, and then increased to 1813 GM for [L-Zn(CN)4]2-. Intramolecular charge transfer (ICT) mechanism was investigated by natural bond orbital (NBO) analysis. It demonstrates that L is hopeful to be a good ratiometric fluorescent probe for zinc ion detection in solution, and it can regenerate after CN- was introduced.

  2. Two-photon pumped cavity lasing in novel dye doped bulk matrix rods

    Science.gov (United States)

    He, Guang S.; Zhao, Chan F.; Bhawalkar, Jayant D.; Prasad, Paras N.

    1995-12-01

    Trans-4-[p-(N-ethyl-N-hydroxyethylamino)styryl]-N-methylpyridi that possesses a much greater two-photon absorption cross section and much stronger upconversion fluorescence emission than common organic dyes (such as rhodamine), when excited with near infrared laser radiation. Utilizing ASPT doped bulk polymer rods, two-photon pumped frequency upconverted cavity lasing has been accomplished using a Q-switched Nd:YAG laser as the pump source. The wavelength and pulse duration were ˜600 nm and 3-6 ns, respectively, for the cavity lasing; whereas the corresponding values for pump pulses were 1.06 μm and ˜10 ns, respectively. For a 7 mm long sample rod with a dopant concentration d0=8×10-3 M/L, the conversion efficiency from the absorbed pump energy to the cavity lasing output was ˜3.5% at a pump energy level of 1.3 mJ. The lasing lifetime, in terms of pulse numbers, was more than 4×104 pulses at 2 Hz repetition rate and room temperature.

  3. Properties of two-photon pumped cavity lasing in novel dye doped solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    He, G.S.; Bhawalkar, J.D.; Zhao, C.; Prasad, P.N. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemistry

    1996-05-01

    Two-photon pumped frequency upconversion cavity lasing at {approximately}600 nm is accomplished in three types of dye-doped solid rods pumped with {approximately}10 ns and 1.06-{micro}m IR laser pulses. The dopant is a new dye, trans-4-[p-(N-ethyl-N-(hydroxyethyl)amino)styryl]-N-methylpyridinium tetraphenylborate, abbreviated as ASPT, which possesses a greater two-photon absorption cross section and stronger upconversion fluorescence emission than common commercial dyes (such as rhodamine). Three different materials were chosen as solid matrices: poly(2-hydroxyethyl methacrylate), VYCOR porous glass, and sol-gel glass. Using a Q-switched Nd:YAG pulse laser as the pump source, strong cavity lasing could be achieved in these three ASPT doped solid rods as well as in ASPT solution in a liquid cell. The spectral, temporal, and spatial characteristics of the cavity lasing output have been systematically investigated. The measured output-input characteristics, lasing lifetime, and damage threshold for the three different rods are presented.

  4. Photoproduction total cross section and shower development

    CERN Document Server

    Cornet, F; Grau, A; Pancheri, G; Sciutto, S J

    2015-01-01

    The total photoproduction cross section at ultra-high energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air-showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  5. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  6. 46 CFR 64.25 - Cross section.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cross section. 64.25 Section 64.25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.25 Cross section. A tank must have a cross section design that is— (a...

  7. Light-harvesting ytterbium(III)-porphyrinate-BODIPY conjugates: synthesis, excitation-energy transfer, and two-photon-induced near-infrared-emission studies.

    Science.gov (United States)

    Zhang, Tao; Zhu, Xunjin; Wong, Wai-Kwok; Tam, Hoi-Lam; Wong, Wai-Yeung

    2013-01-07

    Based on a donor-acceptor framework, several conjugates have been designed and prepared in which an electron-donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron-acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower-energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the Yb(III) emission in the near-infrared (NIR) region with a quantum efficiency of up to 0.73% and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two-photon-absorption cross-sections that ranged from 1048-2226 GM and strong two-photon-induced NIR emission.

  8. Tracking of mercury ions in living cells with a fluorescent chemodosimeter under single- or two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhoujun [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Wang Peinan [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)], E-mail: pnwang@fudan.edu.cn; Zhang Yu [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Chen Jiyao; Zhen Shen [Department of Physics, Fudan University, Shanghai 200433 (China); Leng Bing; Tian He [Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China)

    2007-08-10

    Tracking of Hg{sup 2+} in solutions as well as in living cells was conducted with a fluorescent chemodosimeter by measuring the spectral shift of its fluorescence under single- or two-photon excitation. The spectral hypsochromic shifts of this chemodosimeter when reacting with Hg{sup 2+} were found to be about 50 nm in acetonitrile/water solutions and 32 nm in Euglena gracilis 277 living cells. This chemodosimeter shows high sensitivity and selectivity, and is not influenced by the pH values. It can signal Hg{sup 2+} in solutions down to the ppb range under either single-photon excitation (SPE) at 405 nm or two-photon excitation (TPE) at 800 nm. However, with low cellular chemodosimeter concentrations, the SPE spectra were disturbed by the auto-fluorescence from the native fluorophore in the cell, while the TPE spectra were still of high quality since the two-photon absorption cross section of this chemodosimeter is much larger than that of the native fluorophores in the cell.

  9. Two-photon pumped lead halide perovskite nanowire lasers

    CERN Document Server

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  10. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density.

    Science.gov (United States)

    Wang, Jing; Zhang, Zehui; Zha, Shuai; Zhu, Yinyan; Wu, Peiyi; Ehrenberg, Benjamin; Chen, Ji-Yao

    2014-11-01

    The 5,10,15,20-tetrakis(1-methyl 4-pyridinio) porphyrins (TMPyP), a photosensitizer used for photodynamic therapy of cancers (PDT), were linked to carbon dots (CDots) to form the conjugates of CDot-TMPyP by the electrostatic force. The 415 nm emission band of CDots was well overlapped with the absorption band of TMPyP, so that the Cdots in conjugates can work as donor to transfer the energy to TMPyP moiety by fluorescence resonance energy transfer (FRET) with an FRET efficiency of 45%, determined by the fluorescence lifetime change between the free CDots and conjugated CDots. The two-photon absorption cross section (TPACS) of TMPyP is as low as 110 GM and the TMPyP thus be not suitable for two-photon PDT. Whereas the CDots have high TPACS, and their TPACS are excitation wavelength dependent with the maximum value of 15000 GM at 700 nm. Therefore, the conjugates of CDot-TMPyP were explored for two-photon excitation (TPE) PDT. The two-photon image of CDot-TMPyP in Hela cells was clearly seen under the excitation of a 700 nm femto-second (fs) laser. The singlet oxygen production of CDot-TMPyP was also much higher than that of TMPyP alone under TPE of a 700 nm fs laser. The in vitro PDT killing was further achieved with CDot-TMPyP by TPE of the 700 nm fs laser. Particularly herein the low power density of fs laser from unfocused laser beam was successfully used to carry out the TPE PDT, because of the high TPACS of CDots. These results demonstrate that the CDot-TMPyP conjugates are promising for TPE PDT and needed to investigate further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. SNL RML recommended dosimetry cross section compendium

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  12. [Fast neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  13. Measurement of bottom quark production in two photon collisions

    CERN Document Server

    Saremi, Sepehr

    2001-01-01

    The cross section for bottom quark production in two-photon collisions, sigma( e+e- → e+e- bb¯X), is measured for the first time. The measurement is performed with the L3 detector at the Large Electron Positron (LEP) collider at the European Center for Nuclear and Particle Physics (CERN). The data corresponds to 410 pb-1 taken at center-of-mass energies from 189 GeV to 202 GeV. Hadrons containing a bottom quark are identified by detecting electrons or muons from their semi-leptonic decays. The measured cross section is in excess of the Next to Leading Order QCD prediction by a factor of three.

  14. Two-Photon Flow Cytometry

    Science.gov (United States)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  15. A Theranostic Agent Combining a Two-Photon-Absorbing Photosensitizer for Photodynamic Therapy and a Gadolinium(III) Complex for MRI Detection.

    Science.gov (United States)

    Schmitt, Julie; Heitz, Valérie; Sour, Angélique; Bolze, Frédéric; Kessler, Pascal; Flamigni, Lucia; Ventura, Barbara; Bonnet, Célia S; Tóth, Éva

    2016-02-18

    The convergent synthesis and characterization of a potential theranostic agent, [DPP-ZnP-GdDOTA](-), which combines a diketopyrrolopyrrole-porphyrin component DPP-ZnP as a two-photon photosensitizer for photodynamic therapy (PDT) with a gadolinium(III) DOTA complex as a magnetic resonance imaging probe, is presented. [DPP-ZnP-GdDOTA](-) has a remarkably high longitudinal water proton relaxivity (19.94 mm(-1)  s(-1) at 20 MHz and 25 °C) for a monohydrated molecular system of this size. The Nuclear Magnetic Relaxation Dispersion (NMRD) profile is characteristic of slow rotation, related to the extended and rigid aromatic units integrated in the molecule and to self-aggregation occurring in aqueous solution. The two-photon properties were examined and large two-photon absorption cross-sections around 1000 GM were determined between 910 and 940 nm in DCM with 1 % pyridine and in DMSO. Furthermore, the new conjugate was able to generate singlet oxygen, with quantum yield of 0.42 and 0.68 in DCM with 1 % pyridine and DMSO, respectively. Cellular studies were also performed. The [DPP-ZnP-GdDOTA](-) conjugate demonstrated low dark toxicity and was able to induce high one-photon and moderate two-photon phototoxicity on cancer cells.

  16. Neutron capture cross section standards for BNL 325, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  17. Vertically stabilized elongated cross-section tokamak

    Science.gov (United States)

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  18. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  19. Cross Sections for Electron Collisions with Methane

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  20. Annular-Cross-Section CFE Chamber

    Science.gov (United States)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  1. Improved Empirical Parametrization of Fragmentation Cross Sections

    CERN Document Server

    Sümmerer, Klaus

    2012-01-01

    A new version is proposed for the universal empirical formula, EPAX, which describes fragmentation cross sections in high-energy heavy-ion reactions. The new version, EPAX 3, can be shown to yield cross sections that are in better agreement with experimental data for the most neutron-rich fragments than the previous version. At the same time, the very good agreement of EPAX 2 with data on the neutron-deficient side has been largely maintained. Comparison with measured cross sections show that the bulk of the data is reproduced within a factor of about 2, for cross sections down to the pico-barn range.

  2. Inclusive D*(+/-) production in two photon collisions at LEP

    CERN Document Server

    Prokofiev, Denis Olegovich

    2001-01-01

    In this thesis I present my results on the measurement of the open charm production in two-photon collision events done with the L3 detector at Large Electron Positron machine (LEP). The data sample was collected from 1997 through 2000 at center-of-mass energies ranging from 183 GeV to 209 GeV, corresponding to a total integrated luminosity of 683.4pb −1. The open charm production in two-photon collision events extrapolated to the full phase space is estimated to be: s&parl0;e+e-&rarrr;e +e-cc&d1;X&parr0;=9 23±69±109±222pb. The differential cross sections d s /dpT(D*±) and d s /d:η(D*±): are also measured as functions of transverse momentum pT(D*±) and the absolute value of pseudorapidity :η(D*±):, respectively. A fit to the data estimating the relative contributions of Direct and Resolved open charm production mechanisms is performed, giving (28.7 ± 5.6)% and (71.3 ± 8.8)%, respectively. Using those relative fractions, the Direct and Resolved process cross sections yield: s&p...

  3. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols.

    Science.gov (United States)

    Mueller-Harvey, Irene; Feucht, Walter; Polster, Juergen; Trnková, Lucie; Burgos, Pierre; Parker, Anthony W; Botchway, Stanley W

    2012-03-16

    Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ~1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ(2)=1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea.

  4. Nucleon-XcJ Dissociation Cross Sections

    Institute of Scientific and Technical Information of China (English)

    冯又层; 许晓明; 周代翠

    2002-01-01

    Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.

  5. Neutrino Cross Sections at Solar Energies

    Science.gov (United States)

    Strigari, Louis

    2017-01-01

    I will review neutrino nucleus cross section measurements and uncertainties for energies applicable to solar neutrinos. I will discuss how these cross sections are important for interpreting solar neutrino experimental data, and highlight the most important neutrino-nucleus interactions that will be relevant for forthcoming dark matter direct detection experiments. NSF PHY-1522717.

  6. Two photon exchange in elastic electron-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Peter Blunden; Wolodymyr Melnitchouk; John Tjon

    2005-06-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.

  7. Recent two-photon physics results from ARGUS

    Science.gov (United States)

    Živko Representing Argus Collaboration, Tomi

    1995-07-01

    Two photon production of π+π+π0π-π-, K+K-π+π-, K+K-π+π0π-, π+π0π-, and π+π- has been studied using the ARGUS detector at the e+e- storage ring DORIS II at DESY. A partial wave analysis was performed on the five-pion and three-pion final states. In the reaction γγ→ωρ0 is showed that the partial-wave with spin and parity (JP,Jz)=(2+,±2) dominates. The cross section and angular distributions of the reaction γγ→φρ0→K+K-π+π- were measured for the first time. The production of the vector-meson pair φω is observed in the two-photon reaction γγ→K+K-π+π0π-. The two-photon width of the tensor meson a2(1320) was measured in the decay channel π+π0π-. An upper limit, significantly lower than indicated by previous experiments was set on the radiative width of the π2(1670) meson. An upper limit was set on the radiative width of the f0(975)in the decay channel π+π-.

  8. 非相干光宽带腔增强吸收光谱技术应用于SO2弱吸收的测量%An Incoherent Broadband Optical Cavity Spectroscopy for Measuring Weak Absorption Cross Section of Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    段俊; 秦敏; 方武; 胡仁志; 卢雪; 沈兰兰; 王丹; 谢品华; 刘建国

    2016-01-01

    As a highly sensitive detection technology ,incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) have successfully measured a variety of trace gases .According to the principle of cavity enhanced absorption spectroscopy ,if the accurate concentration of the target gas ,the curve of the mirror reflectance ,effective absorption path length ,the light intensity of the absorbing gas and non-absorbing gas are known ,the absorption cross section of the absorption gas can be measured .The accurate measurements of absorption cross section are necessary for satellite retrievals of atmospheric trace gases and the atmos-pheric research .This paper describes an incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) instrument with 365 nm LED as the light source for measuring absorption cross section of SO2 from 357 to 385 nm which is arising from the spin-forbidden a3 B1 — X1 A1 transition .In comparison to the literature absorption cross section of SO 2 ,and correlation coeffi-cient r is 0.997 3 .The result shows the potential of the IBBCEAS system for measuring weak absorption cross section .%非相干光宽带腔增强吸收光谱作为高灵敏检测技术 ,已成功应用于多种大气痕量气体浓度的测量.根据腔增强吸收光谱技术测量原理可知 ,若已知测量气体准确浓度 ,镜片反射率随波长的变化曲线、有效吸收长度、光学腔内有无测量气体吸收前后的光辐射变化 ,可测量出待测气体的吸收截面.SO2 由于 a 3 B1 —X1 A1 自旋禁阻跃迁 ,在345~420 nm波段吸收截面较低(~10-22 cm2/molecule) ,其测量有一定难度 ,而准确的弱吸收截面对于卫星反演大气痕量气体浓度以及大气研究等方面均有重要意义.采用365 nm L ED光源的宽带腔增强吸收光谱实验装置测量357~385 nm波段范围SO2 的弱吸收 ,获得该波段SO2 弱吸收截面 ,并与已公开发表的SO2 吸收截面进行对比 ,相关系数 r为0. 997 3 ,验证

  9. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  10. Measuring the JPsi-Nucleon dissociation cross section with PANDA

    CERN Document Server

    Bühler, Paul

    2011-01-01

    With the PANDA detector at the HESR at FAIR it will be possible to study the production and absorption of charmed hadrons in nuclear targets. Of special interest in this context is the determination of the JPsi-nucleon dissociation cross section. This can be determined with measurements of the JPsi yield in antiproton-nucleus reactions using different target materials. The experiment is described and numerical simulations are presented.

  11. nxs a program library for neutron cross section calculations

    OpenAIRE

    Boin, M.

    2012-01-01

    A collection of routines for calculating neutron scattering and absorption cross sections on the basis of crystal structure descriptions is presented and implemented in the new and reusable nxs program library. An example program providing a graphical user interface to the nxs functions is created to demonstrate their usage. The flexibility of the library and the possibilities for multiple areas of application are shown by further examples involving Monte Carlo neutron simulations concerned ...

  12. Differential cross sections of positron hydrogen collisions

    Institute of Scientific and Technical Information of China (English)

    于荣梅; 濮春英; 黄晓玉; 殷复荣; 刘旭焱; 焦利光; 周雅君

    2016-01-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.

  13. A nuclear cross section data handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  14. Systematics of (n,2n) Cross Sections

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The experimental data of (n, 2n) cross sections were collected and evaluated as complete as possible. There are 640 sets of experimental data for 130 nuclei. The data were fitted to the expressions that describe the

  15. Study of π0 pair production in single-tag two-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, M.; Uehara, S.; Watanabe, Y.; Nakazawa, H.; Abdesselam, A.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Behera, P.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, S. -K.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Dingfelder, J.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Giordano, F.; Glattauer, R.; Goh, Y. M.; Goldenzweig, P.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Hou, W. -S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Joffe, D.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kim, D. Y.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Ko, B. R.; Korpar, S.; Križan, P.; Krokovny, P.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, D. H.; Lee, I. S.; Li, C.; Li, L.; Li, Y.; Libby, J.; Liventsev, D.; Lukin, P.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moll, A.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Rauch, J.; Ribežl, E.; Ritter, M.; Rostomyan, A.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Simon, F.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Teramoto, Y.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Williams, K. M.; Won, E.; Yamaoka, J.; Yamashita, Y.; Yashchenko, S.; Ye, H.; Yusa, Y.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2016-02-01

    We report a measurement of the differential cross section of π^0 pair production in single-tag two-photon collisions, y*y->π^0π^0, in e+e- scattering. The cross section is measured for Q^2up to 30 GeV^2 is the negative of the invariant mass squared of the tagged photon

  16. SU-E-I-43: Photoelectric Cross Section Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Haga, A; Nakagawa, K [The University of Tokyo Hospital, Tokyo (Japan); Kotoku, J [Teikyo University, Tokyo (Japan); Horikawa, Y [Juntendo University, Tokyo, Tokyo (Japan)

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock

  17. The 237U(n,f) Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Britt, H C; Wilhelmy, J B

    2003-03-03

    The purpose of this note is to combine existing information on the {sup 237}U(n,f) cross section to determine if some consistency can be obtained for the neutron induced fission excitation of {sup 237}U. The neutron induced fission cross section of the 6.8 day {sup 237}U was measured directly by McNally et al. in 1968 using the Pommard nuclear device test. At the same time critical assembly measurements were done at Los Alamos using the Flattop assembly. A previous measurement was also made at LASL in 1954 with two different neutron sources, each peaked near 200 keV. The results were 0.66 {+-} 0.10 b and 0.70 {+-} 0.07 b for the (n,f) cross section. More recently Younes and Britt have reanalyzed direct reaction charged particle data of Cramer and Britt that had determined the fission probability of the {sup 238}U compound nucleus as a function of nuclear excitation energy. They have combined fission probabilities with calculated neutron absorption cross sections, including corrections for the differences in angular momentum between the direct and neutron induced reactions. From this analysis they have extracted equivalent {sup 237}U(n,f) cross sections. The technique for extracting surrogate (n,f) cross sections from (t,pf) data has been demonstrated in a recent publication for the test case {sup 235}U(n,f). In addition to this experimental information, Lynn and Hayes have recently done a new theoretical study of the fission cross sections for a series of isotopes in this region. A summary plot of the data is shown in Fig. 1. Below 0.5 MeV the McNally, Cowan, and Younes-Britt results are in reasonable agreement. The average cross section in the Younes-Britt results, for En = 0.1 to 0.4 MeV, is 0.80 times the McNally values which is well within the errors of the McNally experiment. Above 0.5 MeV the McNally results diverge toward higher values. It should be noted that this divergence begins approximately at the {sup 237}Np threshold and that {sup 237}Np is the

  18. Total Cross Sections for Neutron Scattering

    OpenAIRE

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1994-01-01

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although ...

  19. Neutron capture cross sections from Surrogate measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2010-03-01

    Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.

  20. Modified Empirical Parametrization of Fragmentation Cross Sections

    CERN Document Server

    Sümmerer, K

    2000-01-01

    New experimental data obtained mainly at the GSI/FRS facility allow to modify the empirical parametrization of fragmentation cross sections, EPAX. It will be shown that minor modifications of the parameters lead to a much better reproduction of measured cross sections. The most significant changes refer to the description of fragmentation yields close to the projectile and of the memory effect of neutron-deficient projectiles.

  1. Path forward for dosimetry cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, P.J. [Sandia National Laboratories, Albuquerque, NM 87185-1146 (United States); Peters, C.D. [Sandia Staffing Alliance, Albuquerque, NM 87110 (United States)

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of

  2. Resonant two-photon ionization of phenol in methylene chloride doped solid argon using 248 nm KrF laser and 254 nm Hg lamp radiation, a comparative study. The UV/VIS absorption spectrum of phenol radical cation

    Science.gov (United States)

    Kesper, Karl; Diehl, Frank; Simon, Jens Georg Günther; Specht, Harald; Schweig, Armin

    1991-06-01

    Resonant two-photon ionization (TPI) of phenol (PhOH) has been successfully achieved in methylene chloride (CH 2Cl 2) doped solid argon using a KrF laser and a Hg resonance lamp. The result constitutes the first-time TPI of a typically organic molecule in this medium using an excimer laser as well as the first-time spectroscopic identification of PhOH +•. A qualitative model is proposed which is consistent with both the unexpected photostability of PhOH +• and the incomplete running of the TPI process in the applied medium.

  3. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    Science.gov (United States)

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  4. Energy transfer in aminonaphthalimide-boron-dipyrromethene (BODIPY) dyads upon one- and two-photon excitation: applications for cellular imaging.

    Science.gov (United States)

    Collado, Daniel; Remón, Patricia; Vida, Yolanda; Najera, Francisco; Sen, Pratik; Pischel, Uwe; Perez-Inestrosa, Ezequiel

    2014-03-01

    Aminonaphthalimide-BODIPY energy transfer cassettes were found to show very fast (kEET ≈ 10(10)-10(11) s(-1) and efficient BODIPY fluorescence sensitization. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two-photon absorption cross-section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ ≈ 10 GM for the BODIPY versus 19-26 GM in the dyad at λ(exc)=840 nm; 1 GM (Goeppert-Mayer unit)=10(-50) cm(4) smolecule(-1) photon-(1)]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfercassette concept, was demonstrated by time-dependent density functional theory calculations. The applicability of the new probes in the one- and twophoton excitation mode was demonstrated in a proof-of-principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY-containing dyad.

  5. Search for Standard Model Higgs boson in the two-photon final state in ATLAS

    Directory of Open Access Journals (Sweden)

    Davignon Olivier

    2012-06-01

    Full Text Available We report on the search for the Standard Model Higgs boson decaying into two photons based on proton-proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The dataset has an integrated luminosity of about 1:08 fb−1. The expected cross section exclusion at 95% confidence level varies between 2:0 and 5:8 times the Standard Model cross section over the diphoton mass range 110 – 150 GeV. The maximum deviations from the background-only expectation are consistent with statistical fluctuations.

  6. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.

    Science.gov (United States)

    Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra

    2015-05-27

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.

  7. Top quark production cross-section measurements

    CERN Document Server

    Suzuki, Shota; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  8. Reduction Methods for Total Reaction Cross Sections

    Science.gov (United States)

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  9. Zn2+ responsive two-photon fluorescent probes based on branch structure: a computational investigation

    Science.gov (United States)

    Huang, Shuang; Yang, Bao-Zhu; Guo, Jing-Fu; Ren, Ai-Min

    2015-03-01

    A series of zinc ion fluorescent probes on the basis of multi-branched ligands were investigated in theory. The three-branched ligand TPPA (N,N,N‧,N‧-tetraphenyl-p-phenylenediamine) has better three-dimensional spatial localisation, which can detect zinc at the parts per million level. The complex coordinated with Zn2+ can show a significant improvement in two-photon absorption (TPA) cross-section in the near-infrared (NIR) excitation region. The calculated results reveal that the stability and sensitivity of Zn2+ complexes will be enhanced by increasing the number of branches. The selectivity of double phenyl-p-phenylenediamine (DPPA) ligand to Zn2+ will be better compared to Cd2+. With regard to the studied ligands single phenyl-p-phenylenediamine (SPPA), two connected single phenyl-p-phenylenediamine (2CSPPA), DPPA and TPPA, λEMmax shows a red-shift and ƒEM gets stronger upon the addition of Zn2+. Most of the molecules exhibit TPA peaks in the NIR region. The theoretical investigations demonstrate that DPPA-Zn2+ shows good TPA activity at a telecommunication wavelength.

  10. A two-photon probe for Al(3+) in aqueous solution and its application in bioimaging.

    Science.gov (United States)

    Wang, Haihong; Wang, Bei; Shi, Zhaohua; Tang, Xiaoliang; Dou, Wei; Han, Qingxin; Zhang, Yange; Liu, Weisheng

    2015-03-15

    A salicylimine probe L with a simple structure has been researched more in-depth on fluorescence sensor properties based on two-photon (TP) absorption. L displays excellent selective turn-on fluorescence response for Al(3+) in hexamethylenetetramine-buffered (HMTA) aqueous solution (0.3M, pH=5.8) under one-photon (OP) excitation. With the help of OP fluorescence, TP fluorescence titration, UV-spectra titration and Job's plot, the stoichiometric ratio of L with Al(3+) was determined to be 1:1. The coordination sites and the coordination mechanism of L with Al(3+) were analyzed in detail through (1)H NMR data. Not only with a detection limit of 5.2×10(-9)M in vitro, but also the probe has been successfully used in the live cells and tissues for the imaging of Al(3+) with TP fluorescence microscopy due to the enlarged TP cross section, providing a novel testing method for measuring Al(3+) in solution or cell tissue with low autofluorescence and cytotoxicity.

  11. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  12. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  13. Reaction cross section of 22C

    Science.gov (United States)

    Togano, Yasuhiro; Samurai Collaboration

    2014-09-01

    Reaction cross section of 22C on a carbon target at an energy of 240 MeV/nucleon have been measured by using the transmission method. The most neutron-rich carbon isotopes 22C is a candidate of a two-neutron halo nucleus. Tanaka et al. [1] measured the reaction cross section of 22C on a hydrogen target at 40 MeV/nucleon. It is showed 22C to have a large matter radius of 5 . 9 +/- 0 . 9 fm, which is much larger than the ones of carbon isotopes with N SAMURAI spectrometer at RIBF. The 22C beam at 240 MeV/nucleon was impinged on a carbon target, and the reaction product was identified by using SAMURAI spectrometer. In the present talk, the extracted reaction cross section and derived matter density distribution of 22C will be presented.

  14. Dijet cross sections in photoproduction at HERA

    CERN Document Server

    Derrick, Malcolm; Magill, S; Mikunas, D; Musgrave, B; Repond, J; Stanek, R; Talaga, R L; Zhang, H; Ayad, R; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Bruni, P; Cara Romeo, G; Castellini, G; Chiarini, M; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; Gialas, I; Giusti, P; Iacobucci, G; Laurenti, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Nemoz, C; Palmonari, F; Polini, A; Sartorelli, G; Timellini, R; Zamora-Garcia, Yu E; Zichichi, Antonino; Bargende, A; Crittenden, James Arthur; Desch, Klaus; Diekmann, B; Doeker, T; Eckert, M; Feld, L; Frey, A; Geerts, M; Geitz, G; Grothe, M; Haas, T; Hartmann, H; Haun, D; Heinloth, K; Hilger, E; Jakob, H P; Katz, U F; Mari, S M; Mass, A; Mengel, S; Mollen, J; Paul, E; Rembser, C; Schattevoy, R; Schramm, D; Stamm, J; Wedemeyer, R; Campbell-Robson, S; Cassidy, A; Dyce, N; Foster, B; George, S; Gilmore, R; Heath, G P; Heath, H F; Llewellyn, T J; Morgado, C J S; Norman, D J P; O'Mara, J A; Tapper, R J; Wilson, S S; Yoshida, R; Rau, R R; Arneodo, M; Iannotti, L; Schioppa, M; Susinno, G; Bernstein, A M; Caldwell, A; Cartiglia, N; Parsons, J A; Ritz, S; Sciulli, F; Straub, P B; Wai, L; Yang, S; Zhu, Q; Borzemski, P; Chwastowski, J; Eskreys, Andrzej; Piotrzkowski, K; Zachara, M; Zawiejski, L; Adamczyk, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowalski, T; Rulikowska-Zarebska, E; Suszycki, L; Zajac, J; Kotanski, Andrzej; Przybycien, M B; Bauerdick, L A T; Behrens, U; Beier, H; Bienlein, J K; Coldewey, C; Deppe, O; Desler, K; Drews, G; Flasinski, M; Gilkinson, D J; Glasman, C; Göttlicher, P; Grosse-Knetter, J; Gutjahr, B; Hain, W; Hasell, D; Hessling, H; Hultschig, H; Iga, Y; Joos, P; Kasemann, M; Klanner, Robert; Koch, W; Köpke, L; Kötz, U; Kowalski, H; Labs, J; Ladage, A; Löhr, B; Loewe, M; Lüke, D; Manczak, O; Ng, J S T; Nickel, S; Notz, D; Ohrenberg, K; Roco, M T; Rohde, M; Roldán, J; Schneekloth, U; Schulz, W; Selonke, F; Stiliaris, E; Surrow, B; Voss, T; Westphal, D; Wolf, G; Youngman, C; Zhou, J F; Grabosch, H J; Kharchilava, A I; Leich, A; Mattingly, M C K; Meyer, A; Schlenstedt, S; Wulff, N; Barbagli, G; Pelfer, P G; Anzivino, Giuseppina; Maccarrone, G D; De Pasquale, S; Votano, L; Bamberger, Andreas; Eisenhardt, S; Freidhof, A; Söldner-Rembold, S; Schröder, J; Trefzger, T M; Brook, N H; Bussey, Peter J; Doyle, A T; Fleck, I; Saxon, D H; Utley, M L; Wilson, A S; Dannemann, A; Holm, U; Horstmann, D; Neumann, T; Sinkus, R; Wick, K; Badura, E; Burow, B D; Hagge, L; Lohrmann, E; Mainusch, J; Milewski, J; Nakahata, M; Pavel, N; Poelz, G; Schott, W; Zetsche, F; Bacon, Trevor C; Butterworth, Ian; Gallo, E; Harris, V L; Hung, B Y H; Long, K R; Miller, D B; Morawitz, P P O; Prinias, A; Sedgbeer, J K; Whitfield, A F; Mallik, U; McCliment, E; Wang, M Z; Wang, S M; Wu, J T; Zhang, Y; Cloth, P; Filges, D; An Shiz Hong; Hong, S M; Nam, S W; Park, S K; Suh, M H; Yon, S H; Imlay, R; Kartik, S; Kim, H J; McNeil, R R; Metcalf, W; Nadendla, V K; Barreiro, F; Cases, G; Graciani, R; Hernández, J M; Hervás, L; Labarga, L; Del Peso, J; Puga, J; Terrón, J; De Trocóniz, J F; Smith, G R; Corriveau, F; Hanna, D S; Hartmann, J; Hung, L W; Lim, J N; Matthews, C G; Patel, P M; Sinclair, L E; Stairs, D G; Saint-Laurent, M G; Ullmann, R T; Zacek, G; Bashkirov, V; Dolgoshein, B A; Stifutkin, A; Bashindzhagian, G L; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Kobrin, V D; Kuzmin, V A; Proskuryakov, A S; Savin, A A; Shcheglova, L M; Solomin, A N; Zotov, N P; Botje, M; Chlebana, F S; Dake, A P; Engelen, J; De Kamps, M; Kooijman, P M; Kruse, A; Tiecke, H G; Verkerke, W; Vreeswijk, M; Wiggers, L; De Wolf, E; Van Woudenberg, R; Acosta, D; Bylsma, B G; Durkin, L S; Honscheid, K; Li Chuan; Ling, T Y; McLean, K W; Murray, W N; Park, I H; Romanowsky, T A; Seidlein, R; Bailey, D S; Blair, G A; Byrne, A; Cashmore, Roger J; Cooper-Sarkar, A M; Daniels, D C; Devenish, R C E; Harnew, N; Lancaster, M; Luffman, P; Lindemann, L; McFall, J D; Nath, C; Noyes, V A; Quadt, A; Uijterwaal, H; Walczak, R; Wilson, F F; Yip, T; Abbiendi, G; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; De Giorgi, M; Dosselli, U; Limentani, S; Morandin, M; Posocco, M; Stanco, L; Stroili, R; Voci, C; Bulmahn, J; Butterworth, J M; Feild, R G; Oh, B Y; Whitmore, J; D'Agostini, Giulio; Marini, G; Nigro, A; Tassi, E; Hart, J C; McCubbin, N A; Prytz, K; Shah, T P; Short, T L; Barberis, E; Dubbs, T; Heusch, C A; Van Hook, M; Hubbard, B; Lockman, W; Rahn, J T; Sadrozinski, H F W; Seiden, A; Biltzinger, J; Seifert, R J; Walenta, Albert H; Zech, G; Abramowicz, H; Briskin, G M; Dagan, S; Levy, A; Hasegawa, T; Hazumi, M; Ishii, T; Kuze, M; Mine, S; Nagasawa, Y; Nakao, M; Susuki, I; Tokushuku, K; Yamada, S; Yamazaki, Y; Chiba, M; Hamatsu, R; Hirose, T; Homma, K; Kitamura, S; Nakamitsu, Y; Yamauchi, K; Cirio, R; Costa, M; Ferrero, M I; Lamberti, L; Maselli, S; Peroni, C; Sacchi, R; Solano, A; Staiano, A; Dardo, M; Bailey, D C; Bandyopadhyay, D; Bénard, F; Brkic, M; Crombie, M B; Gingrich, D M; Hartner, G F; Joo, K K; Levman, G M; Martin, J F; Orr, R S; Sampson, C R; Teuscher, R; Catterall, C D; Jones, T W; Kaziewicz, P B; Lane, J B; Saunders, R L; Shulman, J; Blankenship, K; Kochocki, J A; Lu, B; Mo, L W; Bogusz, W; Charchula, K; Ciborowski, J; Gajewski, J; Grzelak, G; Kasprzak, M; Krzyzanowski, M; Muchorowski, K; Nowak, R J; Pawlak, J M; Tymieniecka, T; Wróblewski, A K; Zakrzewski, J A; Zarnecki, A F; Adamus, M; Eisenberg, Y; Karshon, U; Revel, D; Zer-Zion, D; Ali, I; Badgett, W F; Behrens, B H; Dasu, S; Fordham, C; Foudas, C; Goussiou, A; Loveless, R J; Reeder, D D; Silverstein, S; Smith, W H; Vaiciulis, A W; Wodarczyk, M; Tsurugai, T; Bhadra, S; Cardy, M L; Fagerstroem, C P; Frisken, W R; Furutani, K M; Khakzad, M; Schmidke, W B; Levy, A

    1995-01-01

    Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg \\ge 0.75 and xg < 0.75. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.

  15. Photodisintegration Cross Section of 241Am

    Science.gov (United States)

    Tonchev, A. P.; Hammond, S.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Rusev, G.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2009-03-01

    The photodisintegration cross section of radioactive 241Am has been obtained for the first time using monoenergetic γ-ray beams from the HIγS facility. The induced activity of 240Am produced via the 241Am(γ,n) reaction in the γ-ray energy range from 9.5 to 16 MeV was measured by the activation technique utilizing high resolution HPGe detectors. The 241Am(γ,n) cross section was determined both by measuring the absolute γ-ray flux and by comparison to the 197Au(γ,n) and 58Ni(γ,n) cross section standards. The experimental data for the 241Am(γ,n) reaction in the giant dipole resonance energy region is compared with statistical nuclear-model calculations.

  16. Calculating Cross Sections of Composite Interstellar Grains

    CERN Document Server

    Voshchinnikov, N V; Voshchinnikov, Nikolai V.; Mathis, John S.

    1999-01-01

    Interstellar grains may be composite collections of particles of distinct materials, including voids, agglomerated together. We determine the various optical cross sections of such composite grains, given the optical properties of each constituent, using an approximate model of the composite grain. We assume it consists of many concentric spherical layers of the various materials, each with a specified volume fraction. In such a case the usual Mie theory can be generalized and the extinction, scattering, and other cross sections determined exactly. We find that the ordering of the materials in the layering makes some difference to the derived cross sections, but averaging over the various permutations of the order of the materials provides rapid convergence as the number of shells (each of which is filled by all of the materials proportionately to their volume fractions) is increased. Three shells, each with one layer of a particular constituent material, give a very satisfactory estimate of the average cross...

  17. Time-dependent R-matrix theory applied to two-photon double ionization of He

    Science.gov (United States)

    van der Hart, H. W.

    2014-05-01

    We introduce a time-dependent R-matrix theory generalized to describe double-ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wave-function description in an extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wave-function densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double-ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.

  18. Time-dependent R-matrix theory applied to two-photon double ionization of He

    CERN Document Server

    van der Hart, H W

    2014-01-01

    We introduce a time-dependent R-matrix theory generalised to describe double ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wavefunction description in a extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wavefunction densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.

  19. Fano interference in two-photon transport

    Science.gov (United States)

    Xu, Shanshan; Fan, Shanhui

    2016-10-01

    We present a general input-output formalism for the few-photon transport in multiple waveguide channels coupled to a local cavity. Using this formalism, we study the effect of Fano interference in two-photon quantum transport. We show that the physics of Fano interference can manifest as an asymmetric spectral line shape in the frequency dependence of the two-photon correlation function. The two-photon fluorescence spectrum, on the other hand, does not exhibit the physics of Fano interference.

  20. The hadronic cross section measurement at KLOE

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, A.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Barva, M.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Caloi, R.; Campana, P.; Capon, G.; Capussela, T.; Carboni, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Santis, A.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Di Micco, B.; Doria, A.; Dreucci, M.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franzini, P.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Graziani, E.; Incagli, M.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe Postfach 3640, D-76021 Karlsruhe (Germany); Lu, F.; Martemianov, M.; Martini, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Perfetto, F.; Petrolo, E.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Sibidanov, A.; Spadaro, T.; Spiriti, E.; Tabidze, M.; Testa, M.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Ventura, A.; Versaci, R.; Villella, I.; Xu, G

    2005-07-15

    KLOE uses the radiative return to measure cross section {sigma}(e{sup +}e{sup -}->{pi}{sup +}{pi}{sup -}{gamma}) at the electron-positron collider DA{phi}NE. Divinding by a theoretical radiator function, we obtain the cross section {sigma}(e{sup +}e{sup -}->{pi}{sup +}{pi}{sup -}{gamma}) for the mass range 0.35

  1. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  2. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for Enwell with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  3. Neutron Capture Cross Section of 239Pu

    Science.gov (United States)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  4. Review of two-photon exchange in electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  5. Two-photon annihilation into octet meson pairs. Symmetry relations in the handbag approach

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, P. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2009-11-15

    We explore the implications of SU(3) flavor symmetry in the soft handbag mechanism for two-photon annihilation into pairs of pseudoscalar octet mesons. In this approach we obtain a good description of the experimental results for all measured channels at high energy, with two complex form factors adjusted to the data. We also predict the cross section for {gamma}{gamma}{yields}{eta}{eta}. (orig.)

  6. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-01-01

    There has been much interest recently in coherent multiphoton transitions in many-level systems. The present work considers the effect of relaxation in the response of a three-level system to a smoothly varying, near-resonant, two-photon field. The relaxation-dependent contributions to the nonlinear refractive index are calculated. It is shown that the coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. 1 figure. (RWR)

  7. Two-Photon Physics in Hadronic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Carl Carlson; Marc Vanderhaeghen

    2007-11-01

    Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.

  8. Correlations of two photons at hadron colliders

    OpenAIRE

    Kozlov, G. A.

    2011-01-01

    We study the Bose-Einstein correlations of two photons and their coherent properties that can provide the information about the space-time structure of the emitting source through the Higgs-boson decays into two photons. We argue that such an investigation could probe the Higgs-boson mass. The model is rather sensitive to the temperature of the environment and to the external distortion effect in medium.

  9. Top Quark Production Cross Section Measurements

    CERN Document Server

    Massa, Lorenzo; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sectionsinproton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at centre of mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross section of a single top quark in association witha W boson, the second largest single-top production mode, is also presented. Finally, measurements of t...

  10. Top quark production cross-section measurements

    CERN Document Server

    Massa, Lorenzo; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at centre-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production crosssection of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of t...

  11. Cotton fibre cross-section properties

    Science.gov (United States)

    From a structural perspective the cotton fibre is a singularly discrete, elongated plant cell with no junctions or inter-cellular boundaries. Its form in nature is essentially unadulterated from the field to the spinning mill where its cross-section properties, as for any textile fibre, are central ...

  12. Power corrections in eikonal cross sections

    OpenAIRE

    2000-01-01

    We discuss power corrections associated with the infrared behavior of the perturbative running coupling in the eikonal approximation to Drell-Yan and other annihilation cross sections in hadron-hadron scattering. General properties of the eikonal approximation imply that only even powers of the energy scale are necessary.

  13. Spectral Features of FM Spectroscopy of Two-Photon Interactions

    Institute of Scientific and Technical Information of China (English)

    夏慧荣; JohnL.Hall

    1994-01-01

    The spectral features of FM two-photon resonant interaction processes have been calculated for five different frequency modulation versions of counter-propagating incident fields. It is found that the proposed new modulation version (case b in the text) provides novel spectral features for a completely canceled absorption and a sharp dispersion shape at the fundamental beat note. Moreover, its absorption feature appears at the second harmonic of the RF modulation frequency generated by the joint modes via six interaction pathways without mutual phase shift. Such features persist even when the effects of the second-order sidebands of the incident fields are taken into account. Application potentials are emphasized.

  14. Subtracted dispersion relation formalism for the two-photon exchange correction to elastic electron-proton scattering: Comparison with data

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, O. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Taras Shevchenko National University of Kyiv, Department of Physics, Kyiv (Ukraine); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany)

    2015-02-01

    We apply a subtracted dispersion relation formalism with the aim to improve predictions for the two-photon exchange corrections to elastic electron-proton scattering observables at finite momentum transfers. We study the formalism on the elastic contribution, and make a detailed comparison with existing data for unpolarized cross sections as well as polarization transfer observables. (orig.)

  15. Measurements of photoionization cross sections from the 4p, 5d and 7s excited states of potassium

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nasir [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, University of Agriculture, Faisalabad (Pakistan); Mahmood, S. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, UAJ and K, Muzaffarabad (Pakistan); Haq, S.U.; Kalyar, M.A.; Rafiq, M. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Baig, M.A. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: baig@qau.edu.pk

    2008-03-15

    New measurements of the photoionization cross sections from the 4p {sup 2}P{sub 1/2,3/2}, 5d {sup 2}D{sub 5/2,3/2} and 7s {sup 2}S{sub 1/2} excited states of potassium are presented. The cross sections have been measured by two-step excitation and ionization using a Nd:YAG laser in conjunction with a thermionic diode ion detector. By applying the saturation technique, the absolute values of the cross sections from the 4p {sup 2}P{sub 3/2} and 4p {sup 2}P{sub 1/2} states at 355 nm are determined as 7.2{+-}1.1 and 5.6{+-}0.8 Mb, respectively. The photoionization cross section from the 5d {sup 2}D{sub 5/2,3/2} excited state has been measured using two excitation paths, two-step excitation and two-photon excitation from the ground state. The measured values of the cross sections from the 5d {sup 2}D{sub 5/2} state by two-photon excitation from the ground state is 28.9{+-}4.3 Mb, whereas in the two-step excitation, the cross section from the 5d {sup 2}D{sub 3/2} state via the 4p {sup 2}P{sub 1/2} state and from the 5d {sup 2}D{sub 5/2,3/2} states via the 4p {sup 2}P{sub 3/2} state are determined as 25.1{+-}3.8 and 30.2{+-}4.5 Mb, respectively. Besides, we have measured the photoionization cross sections from the 7s {sup 2}S{sub 1/2} excited state using the two-photon excitation from the ground state as 0.61{+-}0.09 Mb.

  16. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    Science.gov (United States)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  17. Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim

    2010-07-07

    Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.

  18. Measurement of inclusive $D^{star plus minus}$ production in two-photon collisions at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Ziegler, F; Zilizi, G; Zöller, M

    1999-01-01

    Inclusive production of $\\mathrm{D^{*\\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \\mathrm{pb^{-1}}$. Differential cross sections of the process $\\mathrm{e^+e^- \\rightarrow D^{*\\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\\mathrm{D^{*\\pm}}$ mesons in the kinematic region $1$ GeV $< p_{T}^{\\mathrm{D^*}} < 5 $ GeV and $\\mathrm{|\\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \\pm 22(stat.) \\pm 26(syst.) $ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

  19. Inclusive $D^{*\\pm}$ production in two-photon collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Carr-Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, L; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdari, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, A; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang Zhao Min; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    Inclusive D*/sup +or-/ production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb/sup -1/ of data collected at centre-of-mass energies from 183 to 209 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D*/sup +or-/ mesons in the kinematic region 1 GeV

    cross sections sigma (e/sup +/e/sup -/ to e/sup +/e/sup -/D*/sup +or-/X) in this kinematical region is measured and the sigma (e/sup +/e/sup -/ to e/sup +/e/sup - /ccX) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations. (19 refs).

  20. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    CERN Document Server

    Palastro, J P; Johnson, L A; Hafizi, B; Wahlstrand, J K; Milchberg, H M

    2016-01-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive, vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than, but quickly surpassing, the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of 3rd harmonic generation, providing an additional two-photon excitation channel, fundamental + 3rd harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive, vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in atmosphere.

  1. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  2. Electron capture cross sections for stellar nucleosynthesis

    CERN Document Server

    Giannaka, P G

    2015-01-01

    In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  3. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  4. Inclusive jet cross section at D0

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, M. [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1996-09-01

    Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.

  5. Inclusive jet cross section measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C. [Universita di Torino and INFN, Trieste (Italy)

    1996-08-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  6. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  7. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  8. Fully double-logarithm-resummed cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-04-15

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in electron-positron annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-next-to-leading order. (orig.)

  9. Dijet cross sections in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, Inna [DESY, Hamburg (Germany)

    2012-07-01

    At high collision energies accessible at ep collider HERA hard hadronic jets can be produced. At leading order, at low virtualities of the exchanged photon, two processes contribute to the jet production. In the direct photon process an almost real photon interacts as a point-like particle with a parton of the proton. In contrast in resolved processes the photon fluctuates to an hadronic state. The measurements of the jet production give an important information about the structure of the photon and the proton. Dijet cross sections have been measured in the reaction ep{yields} e+jet+jet+X with the ZEUS detector using an integrated luminosity of 189 pb{sup -1}. Differential cross sections are presented as functions of average jet transverse energy and presudorapidity for dijet events with E{sub T}{sup jet1} > 21 GeV, E{sub T}{sup jet2} > 17 GeV, -1 < {eta}{sup jet1(2)} < 3 for {gamma}p centre-of-mass energies in range 142 < W{sub {gamma}p} < 293 GeV and photon virtuality Q{sup 2} < 1 GeV{sup 2}. In addition, the dijet cross section was measured as a function of the fraction of the incoming photon momentum taken by the dijet system. The dijet cross sections were also measured as functions of the dijet invariant mass, M{sub jj} and scattering angle in the dijet centre-of-mass system for E{sub T}{sup jet1(2)} > 17 GeV, -1 < {eta}{sup jet1(2)} < 3 and M{sub jj} > 60 GeV. Next-to-leading order calculations give a good description of the measurements. These measurements can be used to further constraint the gluon component of the proton parton density function at medium to high x.

  10. Fusion cross sections measurements with MUSIC

    Science.gov (United States)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  11. MCNPX Simulations for Neutron Cross Section Measurements

    OpenAIRE

    Tesinsky, Milan

    2010-01-01

    This thesis presents MCNPX simulations of the SCANDAL set-up used at the Theodor Svedberg Laboratory for neutron scattering cross-section measurements. The thesis describes processes and data important for the upcoming off-line data analysis. In the experiment, neutrons scattered off the target are converted to protons which are stopped in scintillator crystals. The results of presented simulations include a description of the proton spectra in dependence of the neutron-to-proton conversion a...

  12. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  13. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification in a lith......Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....

  14. Inelastic cross section measurements at LHC

    CERN Document Server

    Bindi, M; The ATLAS collaboration

    2012-01-01

    The dependence of the rate of proton–proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurements of the inelastic proton–proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS and CMS detectors at the Large Hadron Collider. For ATLAS the events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3 ± 2.1 mb is measured for ξ > 5×10−6, where ξ is calculated from the invariant mass, MX, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV. For CMS a new method to measure the inelastic pp cross section ha...

  15. Active-beam cross-sectional modeling

    Science.gov (United States)

    Cesnik, Carlos E. S.; Ortega-Morales, Miguel

    2000-06-01

    A finite-element based analysis for modeling active composite beams with embedded anisotropic actuation is presented. It is derived from three-dimensional electroelasticity, where the original problem is reduced via the variational asymptotic method. The resulting cross-sectional analysis takes into consideration passive and active anisotropic and nonhomogeneous materials, and represents general (thin-walled, thick-walled, solid) cross-sectional geometries. The formulation requires neither the costly use of 3-D finite element discretization nor the loss of accuracy inherent to any simplified representation of the cross section. The developed formulation is numerically implemented in VABS-A, and several numerical and experimental tests cases are used to support validation of the proposed theory. Also, the effect of the presence of a core in originally hallow configurations is presented and counter-intuitive conclusions are discussed. The generality of the method and accuracy of the results increase confidence at the design stage that the active beam structure will perform as expected and, consequently, should lower costs from experimental tests and further adjustments.

  16. Regional cross section program for Illinois basin

    Energy Technology Data Exchange (ETDEWEB)

    Treworgy, J.D.; Whitaker, S.T. (Illinois State Geological Survey, Champaign (USA))

    1989-08-01

    For the first time, the Illinois State Geological Survey will publish a network of regional cross sections portraying the structural and stratigraphic framework of the entire Illinois basin. The network of 16 structural cross sections radiating outward from the Union Oil 1 Cisne Community well (Sec. 3, T1N, 7E, Wayne County, Illinois) will consist of wireline logs showing formation boundaries and gross lithofacies of the entire stratigraphic column for over 140 wells. Indiana and Kentucky portions of the network will be prepared in conjunction with their respective state geological surveys. Wireline logs are being digitized and stored to allow reproduction of log curves at different scales and in various combinations. Initial cross sections will be published at a vertical scale of 1 in. = 400 ft and a horizontal scale of 1 in. = 8 mi (1:500,000). To assure the most accurate structural and lithologic portrayals possible, numerous wireline logs are being examined in addition to the 140 illustrated on the sections. Available seismic data, sample and core descriptions, and existing structure, isopach, and facies maps are also being used. Text describing the sections will be included on each sheet. Topics will cover a brief history of deposition and structural evolution, distribution of source rocks, reservoir rocks and seals, and significant fields and plays.

  17. Two Photon Couplings of Hybrid Mesons

    CERN Document Server

    Page, P R

    1996-01-01

    A new formalism is developed for the two photon production of hybrid mesons via intermediate hadronic decays. In an adiabatic and non--relativistic context with spin 1 pair creation we obtain the first absolute estimates of unmixed hybrid production strengths to be small (0.03 - 3 eV) in relation to experimental meson widths (0.1 - 5 keV). Within this context, two photon collisions therefore strongly discriminate between hybrid and conventional meson wave function components at BaBar, Cleo II, LEP2 and LHC, filtering out non--gluonic components. Decay widths of unmixed hybrids are tiny. The formalism also induces conventional meson two photon widths roughly in agreement with experiment.

  18. Propionaldehyde infrared cross-sections and band strengths

    Science.gov (United States)

    Köroğlu, Batikan; Loparo, Zachary; Nath, Janardan; Peale, Robert E.; Vasu, Subith S.

    2015-02-01

    The use of oxygenated biofuels reduces the greenhouse gas emissions; however, they also result in increased toxic aldehyde by-products, mainly formaldehyde, acetaldehyde, acrolein, and propionaldehyde. These aldehydes are carcinogenic and/or toxic and therefore it is important to understand their formation and destruction pathways in combustion and atmospheric systems. Accurate information about their infrared cross-sections and integrated strengths are crucially needed for development of quantitative detection schemes and modeling tools. Critical to the development of such diagnostics are accurate characterization of the absorption features of these species. In this study, the gas phase infrared spectra of propionaldehyde (also called propanal, CH3-CH2-CHO), a saturated three carbon aldehyde found in the exhaust emissions of biodiesel or diesel fuels, was studied using high resolution Fourier Transform Infrared (FTIR) spectroscopy over the wavenumber range of 750-3300 cm-1 and at room temperature 295 K. The absorption cross sections of propionaldehyde were recorded at resolutions of 0.08 and 0.096 cm-1 and at seven different pressures (4-33 Torr). The calculated band-strengths were reported and the integrated band intensity results were compared with values taken from the Pacific Northwest National Laboratory (PNNL) database (showing less than 2% discrepancy). The peak positions of the 19 different vibrational bands of propionaldehyde were also compared with previous studies taken at a lower resolution of 1 cm-1. To the best of our knowledge, the current FTIR measurements provide the first highest resolution infrared cross section data for propionaldehyde.

  19. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Harvey, Irene, E-mail: i.mueller-harvey@reading.ac.uk [Chemistry and Biochemistry Laboratory, Food Production and Quality Research Division, School of Agriculture, Policy and Development, University of Reading, P O Box 236, Reading RG6 6AT (United Kingdom); Feucht, Walter, E-mail: walter.feucht@gmail.com [Department of Plant Sciences, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Polster, Juergen, E-mail: j.polster@wzw.tum.de [Department of Physical Biochemistry, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Trnkova, Lucie, E-mail: lucie.trnkova@uhk.cz [University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove (Czech Republic); Burgos, Pierre, E-mail: pierre.burgos@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Parker, Anthony W., E-mail: tony.parker@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Botchway, Stanley W., E-mail: stan.botchway@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer This fluorescence lifetime imaging microscopy (FLIM) technique for flavanols overcomes autofluorescence interference in cells. Black-Right-Pointing-Pointer Plant flavanols differed in their lifetimes. Black-Right-Pointing-Pointer Dissolved and bound flavanols revealed contrasting lifetime changes. Black-Right-Pointing-Pointer This technique will allow studying of flavanol trafficking in live cells. - Abstract: Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were {approx}1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime ({tau}{sub 2} = 1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there

  20. Stratospheric Determination of Effective Photodissociation Cross Sections for Molecular Oxygen: 191-204 nm

    Science.gov (United States)

    1983-10-20

    near 200 nm, is greater than expected, indicating that the recoin- mended 6 02 Herzberg continuum cross sections may be too large. Photo- -~ chemical...ToT(A) convolved with altitude-dependent effective absorption cross sections, t’eff(ZAX)9󈧎 (Allen & Frederick , 1982, ref. 10, will subsequently be 1...The preliminary data from that flight will be used to augment this study and tighten the error estimates. IV. Theory: As Allen and Frederick 10

  1. New cross sections for H on H2 collisional transitions

    Science.gov (United States)

    Zou, Qianxia

    The cross section for H on H2 collisions is important for astrophysics as well as our understanding of the simple chemical systems. This is the simplest atom-molecule cross section. With a new H3 potential surface by Mielke et al., we have modified the ABC code by Skouteris, Castillo and Manolopoulos to calculate new cross sections. These cross sections are compared to previous cross section calculations.

  2. Averaging cross section data so we can fit it

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  3. Two-photon physics at LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan; Lehto, Mark [University of Sheffield Department of Physics, Sheffield S3 7RH (United Kingdom); Seymour, Michael H.; Close, Frank; Wright, Alison [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Affholderbach, Klaus; Cowan, Glen [Universitaet Siegen, Fachbereich Physik, D-57068 Siegen (Germany); Finch, Alex [University of Lancaster, Lancaster LA1 4YB (United Kingdom); Lauber, Jan [University College London, Gower Street, London WC1E 6BT (United Kingdom)

    1998-02-01

    The working group on two-photon physics concentrated on three main subtopics: modelling the hadronic final state of deep inelastic scattering on a photon; unfolding the deep inelastic scattering data to obtain the photon structure function; and resonant production of exclusive final states, particularly of glueball candidates. In all three areas, new results were presented. (author)

  4. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  5. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  6. Automatic Computation of Cross Sections in HEP

    CERN Document Server

    Yuasa, F; Ishikawa, T; Jimbo, M; Kaneko, T; Kato, K; Kawabata, S; Kon, T; Kurihara, Y; Kuroda, M; Nakazawa, N; Shimizu, Y; Tanaka, H

    2000-01-01

    For the study of reactions in High Energy Physics (HEP) automatic computation systems have been developed and are widely used nowadays. GRACE is one of such systems and it has achieved much success in analyzing experimental data. Since we deal with the cross section whose value can be given by calculating hundreds of Feynman diagrams, we manage the large scale calculation, so that effective symbolic manipulation, the treat of singularity in the numerical integration are required. The talk will describe the software design of GRACE system and computational techniques in the GRACE.

  7. Critical behavior of cross sections at LHC

    Science.gov (United States)

    Dremin, I. M.

    2016-07-01

    Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.

  8. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  9. Critical behavior of cross sections at LHC

    CERN Document Server

    Dremin, I M

    2016-01-01

    Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.

  10. Nuclear interaction cross sections for proton radiotherapy

    CERN Document Server

    Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A

    1999-01-01

    Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.

  11. Multicollinearity in cross-sectional regressions

    Science.gov (United States)

    Lauridsen, Jørgen; Mur, Jesùs

    2006-10-01

    The paper examines robustness of results from cross-sectional regression paying attention to the impact of multicollinearity. It is well known that the reliability of estimators (least-squares or maximum-likelihood) gets worse as the linear relationships between the regressors become more acute. We resolve the discussion in a spatial context, looking closely into the behaviour shown, under several unfavourable conditions, by the most outstanding misspecification tests when collinear variables are added to the regression. A Monte Carlo simulation is performed. The conclusions point to the fact that these statistics react in different ways to the problems posed.

  12. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  13. Top cross section measurements at ATLAS

    CERN Document Server

    Okumura, Y; The ATLAS collaboration

    2011-01-01

    We present a measurement of the top-quark pair-production in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider using the full 2010 data sample. The cross sections are measured in the lepton+jets and dilepton channels. This is a 15 minute talk (+ 6min discussion) to be given at "DIS2011" Workshop , Newport News, VA USA. The conference starts on April 11, 2011. The talk is scheduled for April 13, 2011.

  14. Two-photon quantum interference in plasmonics: theory and applications.

    Science.gov (United States)

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  15. Determining the Quark Charges by One and Two Photon Processes.

    Science.gov (United States)

    Janah, Arjun

    1982-05-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known "color-suppression" effect. Single photon/weak-boson processes such as (nu)N (--->) (nu)X distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e('+)e('-) (--->) e('+)e('-) + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum -dependent) color suppression and (b) the added contribution from pair production of charged gluons. This is done, and it is observed that: (i) in icq, the ratio R('(gamma)(gamma)(2 jet)) is not simply a number given by the quark charges; it depends on the gluon mass, on kinematics and on the particular differential cross-section considered; (ii) the deviation of icq cross-sections from the fcq values depends crucially on whether one includes "untagged" events; if this is done, the deviation is large; the charged gluon contribution is mainly responsible for this deviation; the quark contribution is smaller than naively expected. Finally, comparison is made with experimental data on e('+)e('-) (--->) e('+)e('-) + 2 jets. Here, icq is found to be in better agreement than fcq, for a broad range of gluon masses. A suitably modified equivalent photon approximation is employed.

  16. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    Science.gov (United States)

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  17. Mass and Cross Section Measurement of light-flavored Squarks at CLIC

    CERN Document Server

    Simon, Frank

    2012-01-01

    We present a study of the prospects for the measurement of TeV-scale light-flavored right-squark masses and the corresponding production cross section at a 3 TeV e+e- collider based on CLIC technology. The analysis, performed in the framework of the CLIC Conceptual Design Report, is based on full Geant4 simulations of the CLIC_ILD detector concept, including standard model physics background and machine related hadronic background from two-photon processes. The events are reconstructed using particle flow event reconstruction, and the mass is obtained from a template fit built from generator-level simulations with smearing to parametrize the detector response. For an integrated luminosity of 2/ab, a statistical precision of 5.9 GeV, corresponding to 0.52%, is obtained for unseparated first and second generation right squarks. For the combined cross section, a precision of 0.07 fb, corresponding to 5%, is obtained.

  18. Measurement of the cross-section for the process $\\gamma^* \\gamma^* \\to$ hadrons at LEP

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Gong, Z F; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kapustinsky, J S; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I

    1999-01-01

    Measurements of the two-photon interaction e+e- --> e+e- hadrons at sqrt(s) = 91 GeV and sqrt(s) = 183 GeV are presented. The double-tag events, collected with the L3 detector, correspond to integrated luminosities of 140 pb-1 at 91 GeV and 52 pb-1 at 183 GeV. The cross-section of gamma*gamma* collisions has been measured at = 3.5 GeV^2 and = 14 GeV^2. The data agree well with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data.

  19. Platinum Acetylide Two-Photon Chromophores (Postprint)

    Science.gov (United States)

    2007-01-01

    advantageous for two reasons. First, by using lower-energy photons, a material will be protected from photodegradation effects. Second, the quadratic...absorbing dyes .19,20,33-39 We show the chromophores depicted in Figure 1 exhibit a remarkable increase in the 2PA cross-section (σ2) over PE2 mentioned

  20. Total cross sections for neutron scattering

    Science.gov (United States)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1995-02-01

    Measurements of neutron total cross sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross sections for neutron scattering from 16O and 40Ca are calculated as a function of energy from 50 to 700 MeV laboratory energy with a microscopic first-order optical potential derived within the framework of the Watson expansion. Although these results are aleady in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment. In the region between 100 and 200 MeV, where off-shell tρ calculations for both 16O and 40Ca overpredict the experiment, the modification due to the nuclear medium reduces the calculated values. Above 300 MeV these corrections are very small and depending on the employed nuclear mean field tend to compensate for the underprediction of the off-shell tρ results.