WorldWideScience

Sample records for two-photon absorption coefficient

  1. Two-photon absorption coefficient dichroism in Ⅱ-Ⅵ semiconductor crystals

    Institute of Scientific and Technical Information of China (English)

    Ma Guo-Hong; Ma Hong-Liang; Tang Sing-Hai

    2007-01-01

    Considering two beams propagate in semiconductor crystal, this paper discusses the polarization dependence of pump beam-induced intensity attenuation of probe beam due to two-photon absorption (TPA). Numerical calculation and experimental measurement demonstrate that TPA coefficient is polarization dependent. For homogeneous materials,probe beam attenuation arises from the imaginary part of diagonal and off-diagonal components of third-order nonlinear susceptibilities.

  2. Determination of Kerr and two-photon absorption coefficients of indandione derivatives

    Science.gov (United States)

    Bundulis, Arturs; Mihailovs, Igors; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2017-05-01

    We studied nonlinear optical properties of two different aminobenziliden-1,3-indandione derivatives - DDMABI and DMABI-OH by employing the Z-scan method. Through this we described how different donor and acceptor groups influence third-order nonlinear optical properties such as Kerr effect and two-photon absorption. During experimental measurements we used 1064 nm Nd:YAG laser with 30 ps pulse duration and 10 Hz repetition rate. From acquired values of Kerr and two-photon absorption coefficients we calculated values for real and imaginary parts of third-order susceptibility, as well as second-order hyperpolarizability. Quantum chemical calculations were carried out for secondorder hyperpolarizability to study how well calculations correlate with experimental values. Acquired data for DDMABI and DMABI-OH were compared with data for other ABI derivatives studied previously.

  3. Giant Two-Photon Absorption Coefficient and Frequency Up-Converted Luminescence in Monolayer MoS2

    CERN Document Server

    Li, Yuanxin; Zhang, Saifeng; Zhang, Xiaoyan; Feng, Yanyan; Wang, Kangpeng; Zhang, Long; Wang, Jun

    2015-01-01

    Strong two-photon absorption (TPA) in monolayer MoS2 is demonstrated in contrast to saturable absorption (SA) in multilayer MoS2 under the excitation of femtosecond laser pulses in the near infrared region. MoS2 in the forms of monolayer single crystal and multilayer triangular islands are grown on either quartz or SiO2/Si by employing the seeding method through chemistry vapor deposition. The nonlinear transmission measurements reveal that monolayer MoS2 possesses a giant nonsaturation TPA coefficient, larger than that of conventional semiconductors. As a result of TPA, two-photon pumped frequency up-converted luminescence is observed directly in the monolayer MoS2. For the multilayer MoS2, the SA response is demonstrated with the ratio of the excited-state absorption cross section to ground-state cross section of 0.18. In addition, the laser damage threshold of the monolayer MoS2 is 97 GW/cm2, larger than that of the multilayer MoS2 of 78 GW/cm2.

  4. Two-photon absorption in arsenic sulfide glasses

    Science.gov (United States)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  5. Measurement of the Two-photon Absorption Coefficient of Gallium Phosphide (GaP) Using a Dispersion-minimized Sub-10 Femtosecond Z-scan Measurement System

    Science.gov (United States)

    2012-09-01

    samples of semiconductors and thin films of organic materials on substrates. The use of dispersive media in the optical path has been eliminated...other semiconductors such as cadmium sulfide (CdS) and zinc selenide (ZnSe). We will also begin measuring the two-photon absorption coefficient for...organic thin - film materials deposited on various substrates. 15 6. References 1. Sheik-Bahae, M.; Said, A. A.; Van Stryland, E. W. High

  6. Nonlinear quantitative photoacoustic tomography with two-photon absorption

    CERN Document Server

    Ren, Kui

    2016-01-01

    Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molecular imaging modality that aims at inferring two-photon absorption property of heterogeneous media from photoacoustic measurements. In this work, we analyze an inverse problem in quantitative TP-PAT where we intend to reconstruct optical coefficients in a semilinear elliptic PDE, the mathematical model for the propagation of near infra-red photons in tissue-like optical media with two-photon absorption, from the internal absorbed energy data. We derive uniqueness and stability results on the reconstructions of single and multiple optical coefficients, and present some numerical reconstruction results based on synthetic data to complement the theoretical analysis.

  7. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  8. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  9. Two-Photon Absorption in Organometallic Bromide Perovskites.

    Science.gov (United States)

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  10. Two-Photon Absorption of Metal-Assisted Chromophores.

    Science.gov (United States)

    Li, Xin; Rinkevicius, Zilvinas; Ågren, Hans

    2014-12-09

    Aiming to understand the effect of a metal surface on nonlinear optical properties and the combined effects of surface and solvent environments on such properties, we present a multiscale response theory study, integrated with dynamics of the two-photon absorption of 4-nitro-4'-amino-trans-stilbene physisorbed on noble metal surfaces, considering two such surfaces, Ag(111) and Au(111), and two solvents, cyclohexane and water, as cases for demonstration. A few conclusions of general character could be drawn: While the geometrical change of the chromophore induced by the environment was found to notably alter (diminish) the two-photon absorption cross section in the polar medium, the effects of the metal surface and solvent on the electronic structure of the chromophore surpasses the geometrical effects and leads to a considerably enhanced two-photon absorption cross section in the polar solvent. This enhancement of two-photon absorption arises essentially from the metal charge image induced enlargement of the difference between the dipole moment of the excited state and the ground state. The orientation-dependence of the two-photon absorption is found to connect with the lateral rotation of the chromophore, where the two-photon absorption reaches its maximum when the polarization of the incident light coincides with the long-axis of the chromophore. Our results demonstrate a distinct enhancement of the two-photon absorption by a metal surface and a polar medium and envisage the employment of metal-chromophore composite materials for future development of nonlinear optical materials with desirable properties.

  11. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    Science.gov (United States)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  12. A fluorescent benzothiazole probe with efficient two-photon absorption

    Science.gov (United States)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  13. Enhanced two-photon absorption using true thermal light

    CERN Document Server

    Jechow, Andreas; Kurzke, Henning; Heuer, Axel; Menzel, Ralf

    2013-01-01

    Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy but still affected by photo-damage of the probe. It was proposed that TPEF can be enhanced by using entangled photons, but has proven to be challenging. Recently it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging, sub-wavelength lithography and metrology. Here, we utilize true thermal light from a super-luminescence diode to demonstrate enhanced TPEF compared to coherent light using two common fluorophores and luminescent quantum dots. We find that the two-photon absorption rate is directly proportional to the measured degree of second-order coherence, as predicted by theory. Our results show that photon bunching can be exploited in two-photon microscopy with the photon statistic providing a new degree of freedom.

  14. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    Energy Technology Data Exchange (ETDEWEB)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  15. Chromophore design for large two-photon absorption

    Science.gov (United States)

    Dudley, Christopher

    2014-11-01

    Conjugated oligothiophene chromophores are compared and studied for designing large linear and nonlinear absorption cross-sections. Optical properties of chromophores synthesized by the Naval Research Laboratory are modeled to construct a design factor of merit to predict and understand two-photon absorption (TPA) designs. Computer modeling to optimize parameters to produce photo active chromophores is conducted. Geometry, π-center (electron relay) and the electron donor or acceptor groups attached to the π-centers are considered for importance in TPA. This work could serve equally well as guide for quick back of the envelop research or industrial design verifications as well as an outline for introducing computation methods to students.

  16. Two-photon absorption of Zn(II) octupolar molecules.

    Science.gov (United States)

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  17. Synthesis of a Series of Novel Organic Compounds with Two-photon Absorption and Two-photon pumped Lasing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of novel organic compounds named as CSPI, DPASPI, PSPI DEASPI and HEASPI respectively, with large two-photon absorption has been synthesized and their structures have been determined by 1HNMR and elemental analysis. The highest two-photon pumped (TPP) output /input efficiency is as high as 13.4% for PSPI in DMF with d0 = 0.03 mol/L and the effective two-photon absorption cross section is 8.8′10-48 cm4×s/photon for DPASPI in DMF with d0= 0.05mol/L.

  18. Morphology dependent two photon absorption in plasmonic structures and plasmonic-organic hybrids

    Science.gov (United States)

    Gambhir, Kaweri; Ray, Bhumika; Mehrotra, Ranjana; Sharma, Parag

    2017-05-01

    Two photon absorption coefficients of two distinct plasmonic structures, namely, gold nanoflowers (GNF) and gold nanopebbles (GNP) have been investigated and compared with conventional gold nanospheres (GNS). All three different nanoshapes were synthesized by changing the reaction solvent under the same experimental procedure. Further, hybrids of these plasmonic structures were prepared with an organic dye Eosin yellow (EY), to investigate the morphology effect of plasmonic structures on plasmonic-organic hybrids in terms of their linear extinction spectra and two photon absorption coefficients. The NLO investigations were conducted using 20 ps laser pulses of wavelength 532 nm as an excitation source in single beam Z-scan setup. UV/visible spectroscopy was employed for monitoring plasmon resonances and changes in linear extinction spectra. The experimental outcomes revealed two photon absorption coefficients of EY increased 120%, 32% and 39%, while 69%, 60% and 53% enhancement in the peaks of linear extinction maxima of EY has been observed, when hybridized with GNF, GNS and GNP, respectively. This boost in the optical coefficients may be attributed to dimerization of EY molecules on the surface of nanoparticles. Keeping the toxicity of EY in view, we propose that the two photon absorption coefficients of this dye and control thereof, by the addition of plasmonic structures would be helpful not only in understanding the interactions between plasmons and fluorophore, but also pave an efficient way, to reduce the operative concentration of this hazardous dye in a wide range of applications and thereby, mitigating the environmental degradation caused by its highly concentrated effluents.

  19. Theory of Two-Photon Absorptions in Graphene Fragments

    Science.gov (United States)

    Aryanpour, K.; Shukla, A.; Mazumdar, S.; Sandhu, A.; Roberts, A.

    2012-02-01

    Electron-electron correlations in graphene is currently an active field of research [1-3]. The carbon atoms in graphene have the same sp^2 hybridization as in strongly correlated π-conjugated polymer systems. The low energy behavior in graphene however appears to be reasonably described within the one-electron Dirac massless fermions model. Historically, the occurrence of the lowest two-photon state below the optical one-photon state provided the strongest proof for strong electron correlations in linear polyenes [4]. We systematically study the Coulomb interaction effects on the ground state and nonlinear absorptions in graphene fragments as a function of system size, beginning from the smallest stable fragment coronene. We report high order calculations of one- vs two-photon spin singlet and triplet states, in coronene, hexabenzocoronene and other molecular fragments that clearly indicate the strong role of electron-electron interactions. We will discuss the implications of our work on molecular systems for the thermodynamic limit of graphene. [4pt] [1] Siegel David A.; et al., PNAS, v108, 28, 11365-11369 (2011)[0pt] [2] Gr"onqvist J. H.; et al., arXiv: 1107.5653v1[0pt] [3] Uchoa B.; et al., arXiv: 1109.1577v1[0pt] [4] Ramasesha S.; et al., J. Chem. Phys. 80, 3278 (1984)

  20. Theoretical analysis on two-photon absorption spectroscopy in a confined four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Jintao Bai; Li Li; Yanpeng Zhang; Xun Hou

    2009-01-01

    We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorption due to enhanced contribution of slow atoms. We also find that the suppression and the enhancement of two-photon absorption can be modified by changing the strength of the control field and the detuning of three laser fields. This control of two-photon absorption may have some applications in information processing and optical devices.

  1. Two-photon absorption in gapped bilayer graphene with a tunable chemical potential

    Science.gov (United States)

    Brinkley, M. K.; Abergel, D. S. L.; Clader, B. D.

    2016-09-01

    Despite the now vast body of two-dimensional materials under study, bilayer graphene remains unique in two ways: it hosts a simultaneously tunable band gap and electron density; and stems from simple fabrication methods. These two advantages underscore why bilayer graphene is critical as a material for optoelectronic applications. In the work that follows, we calculate the one- and two-photon absorption coefficients for degenerate interband absorption in a graphene bilayer hosting an asymmetry gap and adjustable chemical potential—all at finite temperature. Our analysis is comprehensive, characterizing one- and two-photon absorptive behavior over wide ranges of photon energy, gap, chemical potential, and thermal broadening. The two-photon absorption coefficient for bilayer graphene displays a rich structure as a function of photon energy and band gap due to the existence of multiple absorption pathways and the nontrivial dispersion of the low energy bands. This systematic work will prove integral to the design of bilayer-graphene-based nonlinear optical devices.

  2. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  3. Two-Photon Absorption in Conjugated Energetic Molecules.

    Science.gov (United States)

    Bjorgaard, Josiah A; Sifain, Andrew E; Nelson, Tammie; Myers, Thomas W; Veauthier, Jacqueline M; Chavez, David E; Scharff, R Jason; Tretiak, Sergei

    2016-07-07

    Time-dependent density functional theory (TD-DFT) was used to investigate the relationship between molecular structure and the one- and two-photon absorption (OPA and TPA, respectively) properties of novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structures of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing the optical range of excitation. We found calculated vertical excitation energies to be in good agreement with experiment for most molecules. Peak TPA intensities were found to be significant and on the order of 10(2) GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity were used to examine the character of relevant transitions. Modification of molecular substituents, such as additional oxygen or other functional groups, produces significant changes in electronic structure, OPA, and TPA and improves oxygen balance. The results show that certain molecules are apt to undergo nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.

  4. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  5. Electromagnetically induced absorption and transparency in an optical-rf two-photon coupling configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fu Guangsheng [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Li Xiaoli [College of Physical Science and Technology, Hebei University, Baoding 071002 (China)], E-mail: xiaolixiaoli001@yahoo.com.cn; Zhuang Zhonghong; Zhang Lianshui; Yang Lijun; Li Xiaowei; Han Li [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Manson, Neil B.; Wei Changjiang [Laser Physics Center, Research School of Physical Sciences and Engineering, Australian Nation University, Canberra, ACT 0200 (Australia)

    2008-01-07

    We study electromagnetically induced absorption (EIA) and transparency (EIT) in an optical-rf two-photon coupling configuration. It is shown that the interference effect due to interacting dark resonances results in an EIA for a resonant two-photon coupling and this EIA is observed to evolve into an EIT when there is a detuning in the two-photon coupling.

  6. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    Science.gov (United States)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  7. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    Science.gov (United States)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  8. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    Science.gov (United States)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  9. Four-State Model for Three-Branch Molecule's Two-Photon Absorption Properties

    Institute of Scientific and Technical Information of China (English)

    SU Yan; WANG Pei-Ji; ZHAO Peng; RONG Zhen-Yu

    2006-01-01

    @@ We present a four-state model for calculating the two-photon absorption of multi-branched molecules by using the time-depended function method. The numerical results indicate that the two-photon absorption cross section has a strong enhancement for three-branch molecules compared to two-branch structures. The maximal two-photon-absorption cross section is 2.358 × 10-47 cm 4 s/photon. At the same time, the charge-transfer process for the charge-transfer states is visualized in order to explain mechanism about the maximal TPA cross section.

  10. Solvent and branching effect on the two-photon absorption properties of push-pull triphenylamine derivatives

    OpenAIRE

    Cvejn, Daniel; Michail, E.; Seintis, M.; Klikar, M.; Pytela, Oldřich; Mikysek, Tomáš; Almonasy, Numan; Ludwig, Miroslav; Giannetas, V.; Fakis, M.; Bureš, Filip

    2016-01-01

    The photophysical and two-photon absorption (2PA) properties of two tri-podal molecules and of their quadrupolar and dipolar counterparts are reported for a series of solvents with varying polarity. The molecules possess a tri-phenylamine electron donating group and mono-cyano acceptors while olefinic and acetylenic π-linkers have been used. Branching led to an increase of the molar extinction coefficient and to a slight bathochromic shift of the absorption spectra while the fluorescence quan...

  11. Optical limiting effect in a two-photon absorption dye doped solid matrix

    Science.gov (United States)

    He, Guang S.; Bhawalkar, Jayant D.; Zhao, Chan F.; Prasad, Paras N.

    1995-10-01

    We recently reported a new lasing dye, trans-4-[p-(N-ethyl-N-hydroxylethylamino)styryl]-N-methylpyridinium tetraphenylborate (ASPT), which has also been shown to possess a strong two-photon absorption (TPA) and subsequent frequency upconversion fluorescence behavior when excited with near infrared laser radiation. Based on the TPA mechanism, a highly efficient optical limiting performance has been demonstrated in a 2 cm long ASPT-doped epoxy rod pumped with 1.06 μm Q-switched laser pulses at 50-250 MW/cm2 intensity levels. The measured nonlinear absorption coefficient reached 6 cm/GW for the tested sample of dopant concentration d0=4×10-3 M/L. The molecular TPA cross section of ASPT in the epoxy matrix is estimated as σ2=2.5×10-18 cm4/GW or σ2'=4.7×10-46 cm4/photon/s, respectively. Two-photon pumped cavity lasing is also observed in an ASPT-doped polymer rod.

  12. Influence of Two Photon Absorption on Soliton Self-Frequency Shift

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd;

    2011-01-01

    The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....

  13. Two-photon absorption properties of a new series of 2CTσ chromophores

    Science.gov (United States)

    Zhou, Yu-fang; Meng, Fan-qing; Zhao, Xian; Xu, Dong; Jiang, Min-hu

    2000-10-01

    We have designed and synthesized a new series of two-photon ASPT-like charge transfer moieties linked by σ-bond spacers to N-position of pyridine cycle. Both theoretical and experimental results show there is no linear absorption in 600-1300 nm, so two-photon properties can be expected in this range. Two-photon absorption (TPA) cross-sections were calculated by using INDO/CI and SOS methods. The results show that those compounds possess large cross-sections as well as appropriate absorption wavelengths. Also the magnitude of the cross-section changes regularly with the number of the σ-bond spacers. These imply that they are good candidates for two-photon devices.

  14. Two-photon STED spectral determination for a new V-shaped organic fluorescent probe with efficient two-photon absorption.

    Science.gov (United States)

    Belfield, Kevin D; Bondar, Mykhailo V; Morales, Alma R; Padilha, Lazaro A; Przhonska, Olga V; Wang, Xuhua

    2011-10-24

    Two-photon stimulated emission depletion (STED) cross sections were determined over a broad spectral range for a novel two-photon absorbing organic molecule, representing the first such report. The synthesis, comprehensive linear photophysical, two-photon absorption (2PA), and stimulated emission properties of a new fluorene-based compound, (E)-2-{3-[2-(7-(diphenylamino)-9,9-diethyl-9H-fluoren-2-yl)vinyl]-5-methyl-4-oxocyclohexa-2,5-dienylidene} malononitrile (1), are presented. Linear spectral parameters, including excitation anisotropy and fluorescence lifetimes, were obtained over a broad range of organic solvents at room temperature. The degenerate two-photon absorption (2PA) spectrum of 1 was determined with a combination of the direct open-aperture Z-scan and relative two-photon-induced fluorescence methods using 1 kHz femtosecond excitation. The maximum value of the 2PA cross section ~1700 GM was observed in the main, long wavelength, one-photon absorption band. One- and two-photon stimulated emission spectra of 1 were obtained over a broad spectral range using a femtosecond pump-probe technique, resulting in relatively high two-photon stimulated emission depletion cross sections (~1200 GM). A potential application of 1 in bioimaging was demonstrated through one- and two-photon fluorescence microscopy images of HCT 116 cells incubated with micelle-encapsulated dye.

  15. Observation of two-photon absorption at UV radiation in ZnS quantum dots

    Indian Academy of Sciences (India)

    Manajit Chattopadhyay; Pathik Kumbhakar; Udit Chatterjee

    2014-02-01

    Research studies on quantum dots (QDs) of semiconductor materials are of potential interest in present days having promising applications in different optoelectronic devices. Among other materials, ZnS is a direct bandgap semiconductor material having a wide bandgap of 3.6 eV for its cubic phase at room temperature and it shows excellent optical properties. However, here the nonlinear optical (NLO) properties of chemically synthesized ZnS QDs of average size of ∼ 1.5 nm have been reported which are measured by using an indigenously developed Z-scan technique. The pump radiation is 355 nm which is the third harmonic of the Q-switched Nd:YAG laser radiation having pulsed duration of 10 ns with the repetition rate of 10 Hz. The measured experimental data have been analysed by using analytical models and two-photon absorption coefficients of the ZnS QDs at 355 nm have been extracted.

  16. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor-substituted organic molecules

    Science.gov (United States)

    Beels, Marten T.; Biaggio, Ivan; Reekie, Tristan; Chiu, Melanie; Diederich, François

    2015-04-01

    We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying concentrations. We find that donor-acceptor-substituted molecules that are characterized by extremely efficient off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000), 10.1021/cm990662r].

  17. Highly selective population of two excited states in nonresonant two-photon absorption

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse.In this paper,we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution.Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value.We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption,such as resonance-mediated(2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization.

  18. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    Science.gov (United States)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  19. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption.

    Science.gov (United States)

    Dong, Ningning; Li, Yuanxin; Zhang, Saifeng; McEvoy, Niall; Zhang, Xiaoyan; Cui, Yun; Zhang, Long; Duesberg, Georg S; Wang, Jun

    2016-09-01

    Both the nonlinear absorption and nonlinear refraction properties of WS2 and WSe2 semiconductor films have been characterized by using Z-scan technique with femtosecond pulses at the wavelength of 1040 nm. It is found that these films have two-photon absorption response with the nonlinear absorption coefficient of ∼103  cm GW-1, and a dispersion of nonlinear refractive index in the WS2 films that translated from positive in the monolayer to negative in bulk materials.

  20. Two-Photon Absorption Properties of Mn-Doped ZnS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jia-Jin; ZHANG Gui-Lan; GUO Yang-Xue; WANG Xiao-Yan; CHEN Wen-Ju; ZHANG Xiao-Song; HUA Yu-Lin

    2006-01-01

    @@ We investigate the two-photon absorption and nonlinear refractive index properties of a quantum dot material based on ZnS nanocrystals doped with Mn isoelectronic impurities, using the Z-scan technique with 532nm picosecond laser pulses. The Mn-doped ZnS quantum dots have an average two-photon absorption cross section as high as 13600 Goeppert-Mayer units, which turn it into a very promising material for fluorescent label and imaging in biological samples. In addition, we also found that the two-photon absorption coeflicient initially increases and then decreases with increasing pulse irradiance, which demonstrates the presence of the higherorder nonlinearity under the strong excitation.

  1. Temperature-dependent excitonic photoluminescence Excited by Two-Photon Absorption in Perovskite CsPbBr3 Quantum Dots

    CERN Document Server

    Wei, Ke; Xu, Zhongjie; Shen, Chao; Cheng, Xiangai; Jiang, Tian

    2016-01-01

    Recently lead halide nanocrystals (quantum dots) have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) have been studied across a broad temperature range from 80K to 380K. Two-photon absorption has been investigated with absorption coefficient up to 0.085 cm/GW at room temperature. Moreover, the photoluminescence excited by two-photon absorption shows a linear blue-shift (0.25meV/K) below temperature of ~220K and turned steady with fluctuation below 1nm (4.4meV) for higher temperature up to 380K. These phenomena are distinctly different from general red-shift of semiconductor and can be explained by the competition between lattice expansion and electron-phonon couplling.Our results reveal the strong nonlinear absorption and temperature-independent chromaticity in a large temperature range from 220K to 380K in the CsPbX3 QD...

  2. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  3. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    Science.gov (United States)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  4. Effects of torsional disorder and position isomerism on two-photon absorption properties of polar chromophore dimers

    Science.gov (United States)

    Jia, Hai-Hong; Zhao, Ke; Wu, Xiang-Lian

    2014-09-01

    Two-photon absorption properties of a push-pull molecule and its covalent dimers have been studied by density functional response theory in combination with polarizable continuum model. A set of constrained geometries with different torsional angles are optimized and used to calculate two-photon absorption spectra. It is found that the torsional disorder could possibly produce the experimental two-photon absorption additive behavior. We have also designed a series of covalent dimers and investigated the effects of position isomerism. Our results suggest that the cooperative two-photon absorption enhancement can be achieved when the subunits are substituted in closer proximity and have larger interchromophore angle.

  5. New insight in boron chemistry: Application in two-photon absorption

    Science.gov (United States)

    Bolze, F.; Hayek, A.; Sun, X. H.; Baldeck, P. L.; Bourgogne, C.; Nicoud, J.-F.

    2011-07-01

    Two groups of one-dimensional (1D) boron containing two-photon absorbing fluorophores have been prepared and characterized. One group includes boron atoms incorporated in the conjugated or pseudo conjugated central core and the other contain a boron cluster as an acceptor group at one end of the fluorophores. Two boron containing central cores (with two boron atoms) have been explored: the cyclodiborazane and the pyrazabole moieties. The chosen boron cluster, p-carborane, contains 10 boron atoms. All the prepared fluorophores present high two-photon absorption cross-sections. Some water-soluble as well as lipophylic dyes have been prepared and used in bio-imaging.

  6. Two-Photon Absorption-Induced Emission Properties of Dye HMASPS Doped Polymer

    Institute of Scientific and Technical Information of China (English)

    王东; 周广勇; 任燕; 杨胜军; 许心光; 邵宗书; 蒋民华

    2002-01-01

    The 0.01M two-photon absorption dye trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl-pyridinium p-toluene sulfonate (HMASPS) doped polymer has been prepared. When pumped by the picosecond pulse from the pulsed mode-locked Nd: YAG laser, the polymer emits more intense upconverted fluorescence and superradiance compared to the solution sample of the dye. The two-photon pumped lasing with oscillating pulses has also been obtained. Compared to the dye in its solution state, the emission spectra of the polymer are all blueshifted.The polymer has a long upconverted fluorescent lifetime of about 4.041 ± 0.04 ns.

  7. Evidence for strong electron correlations in graphene molecular fragments: Theory and experiments on two-photon absorptions

    Science.gov (United States)

    Aryanpour, Karan; Roberts, Adam; Sandhu, Arvinder; Shukla, Alok; Mazumdar, Sumit

    2013-03-01

    Historically, the occurrence of the lowest two-photon state below the optical one-photon state in linear polyenes, polyacetylenes and polydiacetylenes provided the strongest evidence for strong electron correlations in these linear π-conjugated systems. We demonstrate similar behavior in several molecular fragments of graphene with D6 h symmetry, theoretically and experimentally. Theoretically, we have calculated one versus two-photon absorptions in coronene, two different hexabenzocoronenes and circumcoronene, within the Pariser-Parr-Pople π-electron Hamiltonian using high order configuration interaction. Experimentally, we have performed z-scan measurements using a white light super-continuum source on coronene and hexa-peri-hexabenzocoronene to determine frequency-dependent two-photon absorption coefficients, for comparison to the ground state absorptions. Excellent agreement between experiment and theory in our work gives strong evidence for significant electron correlations between the π-electrons in the graphene molecular fragments. We particularly benchmark high order electron-hole excitations in graphene fragments as a key element behind the agreement between theory and experiment in this work. We acknowledge NSF-CHE-1151475 grant as our funding source.

  8. Colloidal quantum-dot-based silica gel glass: two-photon absorption, emission, and quenching mechanism.

    Science.gov (United States)

    Li, Jingzhou; Dong, Hongxing; Zhang, Saifeng; Ma, Yunfei; Wang, Jun; Zhang, Long

    2016-09-28

    Two-photon (TP) three-dimensional solid matrices have potential applications in high density optical data reading and storage, infrared-pumped visible displays, lasers, etc. Such technologies will benefit greatly from the advantageous properties of TP materials including tunable emission wavelength, photostability, and simple chemical processing. Here, this ideal TP solid is made possible by using a facile sol-gel process to engineer colloid quantum dots into silica gel glass. Characterization using an open-aperture Z-scan technique shows that the solid matrices exhibited significant TP optical properties with a TP absorption coefficient of (9.41 ± 0.39) × 10(-2) cm GW(-1) and a third-order nonlinear figure of merit of (7.30 ± 0.30) × 10(-14) esu cm. In addition, the dependence of the TP properties on high-temperature thermal treatment is studied in detail to obtain a clear insight for practical applications. The results illustrate that the sample can maintain stable TP performance below the synthesis temperature of the CdTe/CdS colloidal quantum dots. Furthermore, the mechanisms for thermal quenching of photoluminescence under different temperature regimes are clarified as a function of the composition.

  9. Two-photon absorption and two-photon circular dichroism of L-tryptophan in the near to far UV region

    Science.gov (United States)

    Vesga, Yuly; Hernandez, Florencio E.

    2017-09-01

    Herein we report on the first measurements of the two-photon absorption (TPA) spectrum of L-tryptophan in DMSO solution in the near to far UV region and the two-photon circular dichroism (TPCD) signal corresponding to a transition at 200 nm. We demonstrate the application of the Double L-scan technique in the near to far UV region to perform polarization dependent TPA measurements of chiral molecules. TPCD measurements below 400 nm reveal that chiral molecules in solution, such as tryptophan/DMSO, can undergo photochemical reactions in front of prolonged exposure to UV radiation.

  10. Two-photon absorption in mesoionic compounds pumped at the visible and at the infrared

    CERN Document Server

    Rakov, N; Da Rocha, G B; Simas, A M; Athayde-Filho, P A F; Miller, J

    2000-01-01

    Intensity dependent transmission and laser-induced fluorescence were observed in liquid solutions of mesoionic compounds (MIC) pumped with nanosecond lasers operating at 1064, 604, and 570 nm. The results indicate that two-photon absorption (TPA) is the dominant mechanism which causes the observed behavior. The TPA cross-sections measured have values from 0.33*10/sup -20/ cm/sup 4//GW to 0.43*10/sup -18/ cm /sup 4//GW. (20 refs).

  11. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Science.gov (United States)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  12. A Relative Study on Two-photon Absorption Properties of C60 and C70

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Xin(周新); REN,Ai-Min(任爱民); FENG,Ji-Kang(封继康); LIU,Xiao-Juan(刘孝娟)

    2004-01-01

    We have theoretically investigated the one- and two-photon absorption properties of C60 and C70 using the ZINDO method. From the results it is suggested that the one-photon absorption spectra are in agreement with the experimental observations. It is found that the maximum TPA cross section of C70 is more than twice that of C60,which is consistent with the experimental results. A notable point is that the TPA process of C60 is different from that of C70 as well as other ordinary conjugated molecules.

  13. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  14. Generalized Kramers-Heisenberg expressions for stimulated Raman scattering and two-photon absorption

    Science.gov (United States)

    Roslyak, Oleksiy; Marx, Christoph A.; Mukamel, Shaul

    2010-01-01

    The frequency-domain pump-probe signal of a material system interacting with two quantum modes of the radiation field is recast in terms of products of scattering amplitudes (T matrix elements) rather than the third-order susceptibility Im χ(3). The resulting expression offers a more intuitive physical picture for the optical process compared with the semiclassical approach which treats the radiation field as classical. It can be derived and interpreted using closed-time-path-loop diagrams which represent the joint state of the matter and the field for each contribution to the signal. The signal has two components representing stimulated Raman scattering ω1 − ω2 and two-photon absorption ω1 + ω2 two-photon resonances. Both are expressed as nonequi-librium steady-state photon and matter fluxes, as is common in the description of dissipative processes in open quantum systems. PMID:20613889

  15. Conjugated polymers with pyrrole as the conjugated bridge: synthesis, characterization, and two-photon absorption properties.

    Science.gov (United States)

    Li, Qianqian; Zhong, Cheng; Huang, Jing; Huang, Zhenli; Pei, Zhiguo; Liu, Jun; Qin, Jingui; Li, Zhen

    2011-07-14

    The synthesis, one- and two-photon absorption (2PA) and emission properties of two novel pyrrole-based conjugated polymers (P1 and P2) are reported. They emitted strong yellow-green and orange fluorescence with fluorescent quantum yields (Φ) of 46 and 33%, respectively. Their maximal 2PA cross sections (δ) measured by the two-photon-induced fluorescence method using femtosecond laser pulses in THF were 2392 and 1938 GM per repeating unit, respectively, indicating that the 2PA chromophores consisting of the triphenylamine with nonplanar structure as the donor and electron-rich pyrrole as the conjugated bridge could be the effective repeating units to enhance the δ values.

  16. Enhancement of Two-photon Absorption by Ce3+ Sensitization in Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    LI Jian-fu; SUN Cheng-lin; ZHOU Hai-ling; XU Li-hua; YANG Qing-xin; JIANG Zhan-kui

    2007-01-01

    The two-photon absorption (TPA) and TPA-induced frequency upconversion emission properties of the dyes4-[P-(dicyanoethylamino) crystal]-N-methypyrdinium iodide and the complex of 4-[ P-(dicyanoethylamino) crystal]-N-methypyrdinium iodide and Ce( NO3 )3 were experimentally studied. It was found that the TPA cross section for the dye sensitized by Ce3+ is two factors larger than that of the dye without being sensitized. A three-level system model of the dye molecules was used to analyze the enhancement of TPA by the sensitizer Ce3+, which indicated that the sensitizer results in the increase of the transition dipole moment from the one-photon allowed excited state(1Bu)to the two-photon allowed excited state(2Ag).

  17. Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Yiqun Wu; Yang Wang

    2012-01-01

    Two novel anthracene derivatives containing 4-vinylpyridine (FPEA) and 2-vinylpyridine (TPEA) poly(methyl methacrylate) films are prepared on quartz glass substrates.Their nonlinear absorption properties are investigated by using a 120-fs,800-am Ti:sapphire femtosecond pulsed laser operating at a 1-kHz repetition rate.The unique nonlinear absorption properties of these new compounds are observed by utilizing a Z-scan system.These two-photon absorption (TPA) properties are proven by the two-photon fluorescence excited at 800 nm.The FPEA and TPEA films have nonlinear TPA coefficients of 0.164 and 0.148 cm/GW and the TPA cross sections of 3.345 × 10-48 and 3.081 × 10-48 cm4.s/photon,respectively.The influence of the chemical structures on the nonlinear TPA properties of the compounds is also discussed.The highly nonlinear TPA activities of the films implied that the new anthracene derivatives are suitable materials with promising applications in super-high-density three-dimensional data storage and nano- or microstructure fabrication.

  18. Two-photon absorption and frequency-upconversion properties of a new organic dye HMASPS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two-photon absorption (TPA) and frequency- upconversion properties of a new upconversion laser dye trans-4-[p-(N-hydroxyethyl-N-methyl-amino)styryl]-N-meth- ylpyridinium toluene-p-sulfonate (abbreviated to HMASPS) were reported in this note. The linear absorption, TPA, single-photon induced fluorescence, TPA induced fluorescence and TPA induced upconverted lasing spectra of HMASPS solution in dimethyl formamide (abbreviated to DMF) were measured at room temperature. The red shift for the central wavelength of TPA induced fluorescence peak, which was compared with that of the single-photon induced fluorescen-ce peak, and the blue shift for that of TPA induced upcon-verted lasing compared with that of TPA induced fluores-cence, were explained by using re-absorption effect. TPA peak was at 930 nm. There is an 11 nm blue shift for two-photon energy of TPA peak compared with the linear ab-sorption peak. The molecular TPA cross-section at 1064 nm was measured to be 6.0′10-48 cm4 ·s/photon by using the open aperture Z-scanning system. The highest upconversion efficiency was measured to be 8.4% at 1064 nm.

  19. Aggregation induced enhanced emission of conjugated dendrimers with a large intrinsic two-photon absorption cross-section

    NARCIS (Netherlands)

    Xu, Bin; Zhang, Jibo; Fang, Honghua; Ma, Suqian; Chen, Qidai; Sun, Hongbo; Im, Chan; Tian, Wenjing

    2014-01-01

    Organic nonlinear optical materials combining high luminescence quantum yields and large two-photon absorption cross-sections are attractive for both fundamental research and practical applications, such as up-converted lasers and two-photon fluorescence microscopy. Herein, we reported a series of

  20. Two photon absorption and its saturation of WS2 and MoS2 monolayer and few-layer films

    CERN Document Server

    Zhang, Saifeng; McEvoy, Niall; O'Brien, Maria; Winters, Sinéad; Berner, Nina C; Yim, Chanyoung; Zhang, Xiaoyan; Chen, Zhanghai; Zhang, Long; Duesberg, Georg S; Wang, Jun

    2015-01-01

    The optical nonlinearity of WS2, MoS2 monolayer and few-layer films was investigated using the Z-scan technique with femtosecond pulses from the visible to the near infrared. The dependence of nonlinear absorption of the WS2 and MoS2 films on layer number and excitation wavelength was studied systematically. WS2 with 1~3 layers exhibits a giant two-photon absorption (TPA) coefficient. Saturation of TPA for WS2 with 1~3 layers and MoS2 with 25~27 layers was observed. The giant nonlinearity of WS2 and MoS2 is attributed to two dimensional confinement, a giant exciton effect and the band edge resonance of TPA.

  1. Ophthalmic drug delivery utilizing two-photon absorption: a novel approach to treat posterior capsule opacification

    Science.gov (United States)

    Kim, H.-C.; Träger, J.; Zorn, M.; Haberkorn, N.; Hampp, N.

    2007-07-01

    Intraocular lens (IOL) implantation is the standard technique to treat cataract. Despite recent progress in surgical procedures, posterior capsule opacification is one of the sill remaining postoperative complications of cataract surgery. We present a novel strategy to reduce the incidence of posterior capsule opacification. A drug delivery polymer suitable for manufacturing intraocular lenses has been developed which enables repeated drug release in a non-invasive and controlled manner. The therapeutic molecules are attached through a UV light sensitive linkage to the polymer backbone which is mainly responsible for the optical properties of the intraocular lenses. However, UV light can not trigger the release of drug from the polymer due to the high absorption of the cornea. We developed linkers which enable drug release by two-photon absorption induced cleavage of the linker structure. Since the two-photon absorption requires high photon densities, this does not occur in ambient light conditions in daily life, but is easily triggered by focused laser beams from a pulsed laser. In this proof-of-principle study we have employed a cyclobutane type linker and investigated the properties of the therapeutic system with the approved drugs 5-fluorouracil and chlorambucil. The controlled drug delivery was successfully demonstrated in vitro and additional cell tests confirmed that the device itself shows no cytotoxicity until photochemical activation. This presented concept can provide a powerful method in ophthalmic drug delivery.

  2. Two-photon absorption and transient photothermal imaging of pigments in tissues

    Science.gov (United States)

    Ye, Tong; Fu, Dan; Matthews, Thomas E.; Hong, Lian; Simon, John D.; Warren, Warren S.

    2008-02-01

    As a main pigment in skin tissues, melanin plays an important role in photo-protecting skin from UV radiation. However, melanogenesis may be altered due to disease or environmental factors; for example, sun exposure may cause damage and mutation of melanocytes and induce melanoma. Imaging pigmentation changes may provide invaluable information to catch the malignant transformation in its early stage and in turn improve the prognosis of patients. We have demonstrated previously that transmission mode, two-photon, one- or two-color absorption microscopy could provide remarkable contrast in imaging melanin in skin. In this report we demonstrate significantly improved sensitivity, so that we are now able to image in epi-mode (or back reflection) in two-photon absorption. This improvement makes possible for us to characterize the different types of pigmentation on the skin in vivo at virtually any location. Another finding is that we can also image transient photothermal dynamics due to the light absorption of melanin. By carefully choosing excitation and probe wavelengths, we might be able to image melanin in different structures under different micro-environments in skin, which could provide useful photochemical and photophysical insights in understanding how pigments are involved in photoprotection and photodamage of cells.

  3. Two-Photon Absorption and Optical Power Limiting Based on New Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 邵宗书; 蒋民华; 雷虹

    2001-01-01

    Two new organic dye samples J and L with a large two-photon absorption (TPA) cross section have been reported.The linear absorption spectra show that there is no linear absorption at the wavelength from 650 to 1200 nm.The molecular TPA cross section was measured to be as high as 2.59×10-47 cm4.s and 2.98×10-47 cm4.s at 1064 nm for samples J and L, respectively. The input-output curves indicate that there is a clear optical power limiting behaviour when the input intensity is higher than 0.4 GW/cm2. Furthermore, the basic theory of the TPA process has been discussed.

  4. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    Science.gov (United States)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  5. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    Science.gov (United States)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-09-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2-6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate.

  6. Symmetry Breaking in Platinum Acetylide Chromophores Studied by Femtosecond Two-Photon Absorption Spectroscopy

    Science.gov (United States)

    2014-02-01

    The 1PA spectrum in toluene (solid line, top and right axes) and NLT of blank sample (filled black diamonds ) are shown for comparison. The Journal of...G.W., and M.D. ■ REFERENCES (1) Guha, S.; Frazier, C. C.; Porter , P. L.; Kang, K.; Finberg, S. E. Measurement of the 3rd-Order Hyperpolarizability of Pt...Poly-Ynes. Opt. Lett. 1989, 14, 952−954. (2) Guha, S.; kang, K.; Porter , P. L. Two-Photon Absorption-Induced Thermal Effects in Platinum Poly-Ynes

  7. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a sample and non-uniform intensity in the reverberation chambers under test. In this study, conversion methods from Sabine absorption...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...

  8. Biological oxygen sensing via two-photon absorption by an Ir(III) complex using a femtosecond fiber laser

    Science.gov (United States)

    Moritomo, Hiroki; Fujii, Akinari; Suzuki, Yasutaka; Yoshihara, Toshitada; Tobita, Seiji; Kawamata, Jun

    2016-09-01

    Near-infrared two-photon absorption of the phosphorescent Ir(III) complex (2,4-pentanedionato-κO 2,κO 4)bis[2-(6-phenanthridinyl-κN)benzo[b]thien-3-yl-κC]iridium (BTPHSA) was characterized. It exhibited a 800-1200 nm two-photon absorption band, and thus could be electronically excited by 1030-nm femtosecond Ti:sapphire and Yb-doped fiber lasers. By using BTPHSA, oxygen concentrations in human embryonic kidney 293 (HEK293) cells were imaged. These results demonstrate two-photon oxygen sensing of live tissues via easily operable excitation sources.

  9. Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique

    Science.gov (United States)

    Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru

    2017-06-01

    Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).

  10. One- and two-photon absorption properties of two metalloporphyrin complexes

    Institute of Scientific and Technical Information of China (English)

    Sun Yuan-Hong; Wang Chuan-Kui

    2011-01-01

    The linear and nonlinear optical properties of two metalloporphyrin complexes formed by the complementary coordination of central zinc or magnesium ions to the ligand 5,10,15-tri-(p-tolyl)-20-phenylethynylporphyrin are theoretically investigated by using the analytic response theory at the density functional theory level.The results indicate that the studied complexes present more symmetric geometry structures than the ligand.The charge-transfer states of the two complexes in the lower energy region are all almost degenerate but those of the ligand are well separated.The ratio of the two-photon absorption cross sections of the ligand,zinc-porphyrin and magnesium-porphyrin complexes is 1.0:1.5:1.8,demonstrating that the two-photon absorption capability can be greatly increased when the ligand is coordinated with a metal ion.Moreover,several physical micro-mechanisms including electron transitions and intramolecular charge-transfer processes are discussed to explore the differences in optical property between the ligand and two complexes.

  11. Two-photon absorption induced drug delivery from polymeric intraocular lenses

    Science.gov (United States)

    Hampp, Norbert A.; Kim, Hee-Cheol; Kreiling, Stefan; Hesse, Lutz; Greiner, Andreas

    2003-10-01

    Secondary cataracts are quite often observed after implantation of polymeric intraocular lenses. The reason for this complication is that lens epithelial cells remain in the capsular bag when the natural lens is removed. They begin proliferation and cause secondary cataracts. It is not desireable to add cell toxic agents at the time of the implantation because wound healing is negatively affected. We have developed polymeric intraocular lenses which are equipped with a drug depot which may be released non-invasively through photochemical treatment. In the example presented the drug is 5-fluoruracil (5FU) which is covalently bound to the polymer. Deliberation of 5FU from the polymer is done photochemically. Since light is transmitted permanently through the artificial intraocular lens and wearing of special glasses by the patient should be omitted conventional photochemistry is not a suitable tool for the drug release. The polymer-5FU linkage is designed in a way that it has a high two-photon absorption cross-section. Two-photon absorption is used to selectively release 5FU from the lens. The one-photon reaction is blocked since the cornea does absorb UV light. The principle shown here is not limited to 5FU but may be applied to other drugs also.

  12. Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan

    Science.gov (United States)

    Ajami, Aliasghar; Husinsky, Wolfgang; Tromayer, Maximilian; Gruber, Peter; Liska, Robert; Ovsianikov, Aleksandr

    2017-08-01

    To achieve efficient micro- and nanostructuring based on two-photon polymerization (2PP), the development and evaluation of specialized two-photon initiators (2PIs) are essential. Hence, a reliable method to determine the two-photon absorption (2PA) spectra of the synthesized 2PIs used for 2PP structuring is crucial. A technique by which absolute visible-to-near-infrared 2PA spectra of degenerate nature can be determined via performing a single dispersive white-light continuum (WLC) Z-scan has been realized. Using a dispersed white light beam containing 8 fs pulses at wavelengths ranging from 650 nm to 950 nm, the nonlinear transmittance as a function of the sample position can be measured for all spectral components by performing a single scan along the laser beam propagation direction. In this work, the 2PA spectrum of three different 2PIs was determined using this technique. 2PP structuring was also accomplished using the developed 2PIs at different wavelengths. Tuning the wavelength of the laser to match the peak of the 2PA spectra of the developed 2PIs resulted in lower intensity thresholds and facilitated higher structuring speeds. As an example, using M2CMK 2PI for 2PP, the scanning speed can be increased up to 5 folds when the laser wavelength is tuned to 760 nm (i.e., 2PA maximum) instead of the conventionally used 800 nm.

  13. Two-Photon-Absorption Induced Superradiance of a New Organic Dye PSPS

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 王筱梅; 杨胜军; 许心光; 赵显; 邵宗书; 蒋民华

    2002-01-01

    The linear and nonlinear optical properties of a new two-photon absorption (TPA) dye, trans-4-(4'-pyrrolidinyl styryl)-N-methyl pyridinium methyl sulfate (abbreviated as PSPS) is reported. Intense red superradiance with a peak located at 625nm can be observed from PSPS solution in benzyl alcohol when pumped by a focused picosecond laser beam operated at 1064nm. The lifetimes of one-photon absorption (OPA) and TPA fluorescence were measured to be 370 and 384ps, respectively. The pulse widths of OPA and TPA superradiance were 60 and 58 ps, respectively. The highest net upconversion efficiency from the absorbed pump laser to the upconverted superradiance is 8.3% at the pump energy of 0.6 mJ.

  14. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads

    Directory of Open Access Journals (Sweden)

    Seaho Jeon

    2016-05-01

    Full Text Available We synthesized four C60-(light-harvesting antenna dyads C60 (>CPAF-Cn (n = 4, 9, 12, or 18 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ2 and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18 and C60(>CPAF-C9, as better 2PA and excited-state absorbers.

  15. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    Science.gov (United States)

    Rana, Amit Kumar; J, Aneesh; Kumar, Yogendra; M. S, Arjunan; Adarsh, K. V.; Sen, Somaditya; Shirage, Parasharam M.

    2015-12-01

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  16. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Amit Kumar; Kumar, Yogendra; Arjunan, M.S.; Sen, Somaditya; Shirage, Parasharam M., E-mail: pmshirage@iiti.ac.in, E-mail: paras.shirage@gmail.com [Department of Physics, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); Centre of Materials Science and Engineering, Indian Institute of Technology Indore, Simrol Campus, Khandwa Road, Indore 452020 (India); J, Aneesh; Adarsh, K. V. [Department of Physics, Indian Institute of Science Education and Research, Bhopal 462023 (India)

    2015-12-07

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  17. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a specimen and non-uniform intensity in the test chamber. In this study, several methods that convert Sabine absorption coefficients...... into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  18. Molecular engineering of nanoscale quadrupolar chromophores for two-photon absorption

    Science.gov (United States)

    Porres, Laurent; Mongin, Olivier; Blanchard-Desce, Mireille H.; Ventelon, Lionel; Barzoukas, Marguerite; Moreaux, Laurent; Pons, Thomas; Mertz, Jerome

    2003-02-01

    Our aim has been the design of optimized NLO-phores with very high two-photon absorption (TPA) cross-sections (s2) in the red-NIR region, while maintaining high linear transparency and high fluorescence quantum yield. Our molecular engineering strategy is based on the push-push or pull-pull functionalization of semi-rigid nanoscale conjugated systems. The central building blocks were selected as rigid units that may assist quadrupolar intramolecular charge transfer by acting either as a (weak) donor or acceptor core. Quadrupolar molecules derived either from a phenyl unit, a rigidified biphenyl moiety or a fused bithiophene unit have been considered. Conjugated oligomers made of phenylene-vinylene and/or phenylene-ethynylene units were selected as connecting spacers between the core and the electroactive end groups to ensure effective electronic conjugation while maintaining suitable transparency/fluorescence. The TPA cross-sections were determined by investigating the two-photon-excited fluorescence properties using a Ti:sapphire laser delivering fs pulses. Both the nature of the end groups and of the core moiety play an important role in determining the TPA spectra. In addition, by adjusting the length and nature of the conjugated extensor, both amplification and spectral tuning of TPA cross-sections can be achieved. As a result, push-push fluorophores which demonstrate giant TPA cross-sections (up to 3000 GM) in the visible red, high fluorescence quantum yields and good transparency in the visible range have been obtained.

  19. Two-photon absorption-induced drug delivery from polymers for medical applications

    Science.gov (United States)

    Kim, Hee-Cheol; Kreiling, Stefan; Haertner, Sebastian; Hesse, Lutz; Greiner, Andreas; Hampp, Norbert A.

    2004-06-01

    Novel polymeric materials carrying a drug depot have been developed which are suitable for fabrication of photochemically modulated drug delivery devices. In order to avoid uncontrolled drug release the drug is covalently attached to the polymer backbone using a photo-active linker. Controlled drug release from the polymer can be accomplished either via single-photon excitation or by two-photon absorption (TPA). In particular the second possibility is of interest for applications where exposure to day light or UV light may not be omitted. One example are polymeric intraocular lenses (IOL), which are implanted instead of the opaque natural lens during cataract surgery. Secondary cataract formation is quite often observed after implantation of polymeric IOLs. In this study the well known cell toxic agent 5-fluorouracil (5FU) attached to a methylmethacrylate-based polymer was investigated as an IOL which can upon photochemical excitation release 5FU in order to treat or to prevent secondary cataract formation. The photochemical cleavage of the linker molecule was analyzed with single- and two-photon excitation. UV/VIS spectroscopy and HPLC analysis confirmed the release of 5FU form the polymer backbone. The diffusion of the drug precursor out from the polymer as well as the hydrolysis of the drug precursor which leads to 5FU formation were investigated in vitro.

  20. Numerical approaches for predicting two-photon absorption induced single-event effects in semiconductors

    Science.gov (United States)

    Hales, Joel M.; Khachatrian, Ani; Roche, Nicolas J.; Buchner, Stephen; Warner, Jeffrey; McMorrow, Dale

    2016-05-01

    Two numerical approaches for determining the charge generated in semiconductors via two-photon absorption (2PA) under conditions relevant for laser-based single-event effects (SEE) experiments are presented. The first approach uses a simple analytical expression incorporating a small number of experimental/material parameters while the second approach employs a comprehensive beam propagation method that accounts for all the complex nonlinear optical (NLO) interactions present. The impact of the excitation conditions, device geometry, and specific NLO interactions on the resulting collected charge in silicon devices is also discussed. These approaches can provide value to the radiation-effects community by predicting the impacts that varying experimental parameters will have on 2PA SEE measurements.

  1. Two-photon Absorption and Nonlinear Optical Properties of A New Organic Dye DEASPI

    Institute of Scientific and Technical Information of China (English)

    Guangyong ZHOU; Xiaomei WANG; Dong WANG; Chun WANG; Xian ZHAO; Zongshu SHAO; Minhua JIANG

    2001-01-01

    A new organic dye trans-4- [p-(N,N-diethylamino) styryl ]-N-methylpyridinium iodide (abbreviatedas DEASPI thereafter) with large two-photon absorption (TPA) cross section and excellent upconverted lasing properties was synthesized. The melting point and decompound point were measured to be 230℃ and 264.7℃ respectively. The molecular TPA cross section was meaThe linear and nonlinear optical properties of this dye were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted lasing energy is as high as 18.6% at the pump energy of 2.17 mJ from a mode-locked Nd:YAG ps laser.The nonlinear transmittance at the wavelengths from 720 to 1100 nm was measured. The dye solution also shows a clear optical power limiting effect.

  2. Two-photon Absorption In Quantum Dots,quantum Dashes And Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ravinder

    2009-08-31

    We have proposed the use of USQDs for various deep-tissue biological imaging applications, notably wavelength-multiplexed multicolor imaging and intra-nuclear studies such as those involving cell apoptosis, and have studied the issue of maximizing two-photon absorption-induced fluorescence (TPAF) signals from CdSe/ZnS USQDs to be used for this application. In particular, using 2 nm USQDs, we have shown that the TPAF signal at 780 nm is ~ 8 times that at 850 nm and 68 times that at 900 nm, two wavelengths that have been used in previous studies using CdSe/ZnS SQDs for deep-tissue imaging of biological studies via TPAF .

  3. Theoretical studies on the one- and two-photon absorption properties of azulenylporphyrins and azulene-fused porphyrins

    Institute of Scientific and Technical Information of China (English)

    Li Wen-Chao; Feng Ji-Kang; Ren Ai-Min; Zhang Xiang-Biao; Sun Jia-Zhong

    2009-01-01

    The electronic structures, one-photon absorption (OPA) and two-photon absorption (TPA) properties of the azulenylporphyrins and azulene-fused porphyrins have been comparatively studied by using DFT/B3LYP/6-31G(d)and the ZINDO/SDCI method. With the number of azulenyl groups increasing, the OPA wavelengths of all molecules are red-shifted in 400-600 nm and the two-photon absorption cross section is gradually enlarged. The azulene-fused structures facilitate an expanding conjugated area and increasing TPA cross section. The origin of TPA properties of studied compounds is studied with a two-level model. In summary, the azulene-fused porphyrins exhibit strong two-photon absorption.

  4. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    Institute of Scientific and Technical Information of China (English)

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  5. Polarization control efficiency manipulation in resonance-mediated two-photon absorption by femtosecond spectral frequency modulation

    Science.gov (United States)

    Yao, Yunhua; Cheng, Wenjing; Zheng, Ye; Xu, Cheng; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-04-01

    The femtosecond laser polarization modulation is considered as a very simple and efficient method to control the multi-photon absorption process. In this work, we theoretically and experimentally show that the polarization control efficiency in the resonance-mediated two-photon absorption can be artificially manipulated by modulating the femtosecond spectral frequency components. We theoretically demonstrate that the on- and near-resonant parts in the resonance-mediated two-photon absorption process depend on the different femtosecond spectral frequency components, and therefore their contributions in the whole excitation process can be controlled by properly designing the femtosecond spectral frequency components. The near-resonant two-photon absorption is correlated with the femtosecond laser polarization while the on-resonant two-photon absorption is independent of it, and thus the polarization control efficiency in the resonance-mediated two-photon absorption can be manipulated by the femtosecond spectral frequency modulation. We experimentally verify these theoretical results by performing the laser polarization control experiment in the Dy3+-doped glass sample under the modulated femtosecond spectral frequency components, and the experimental results show that the polarization control efficiency can be increased when the central spectral frequency components are cut off, while it is decreased when both the low and high spectral frequency components are cut off, which is in good agreement with the theoretical predictions. Our works can provide a feasible pathway to understand and control the resonance-mediated multi-photon absorption process under the femtosecond laser field excitation, and also may open a new opportunity to the related application areas.

  6. Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires

    Science.gov (United States)

    Gupta, Manoj Kumar; Aneesh, Janardhanakurup; Yadav, Rajesh; Adarsh, K. V.; Kim, Sang-Woo

    2017-05-01

    We present a high performance flexible piezoelectric nanogenerator (NG) device based on the hydrothermally grown lead-free piezoelectric lithium niobate (LiNbO3) nanowires (NWs) for scavenging mechanical energies. The non-linear optical coefficient and optical limiting properties of LiNbO3 were analyzed using femtosecond laser pulse assisted two photon absorption techniques for the first time. Further, a flexible hybrid type NG using a composite structure of the polydimethylsiloxane polymer and LiNbO3 NWs was fabricated, and their piezoelectric output signals were measured. A large output voltage of ˜4.0 V and a recordable large current density of about 1.5 μA cm-2 were obtained under the cyclic compressive force of 1 kgf. A subsequent UV-Vis analysis of the as-prepared sample provides a remarkable increase in the optical band gap (UV absorption cut-off, ˜251 nm) due to the nanoscale size effect. The high piezoelectric output voltage and current are discussed in terms of large band gap, significant nonlinear optical response, and electric dipole alignments under poling effects. Such high performance and unique optical properties of LiNbO3 show its great potential towards various next generation smart electronic applications and self-powered optoelectronic devices.

  7. Enhancement of Two-photon Absorption in Quantum Wells for Extremely Nondegenerate Photon Pairs

    CERN Document Server

    Pattanaik, Himansu S; Khurgin, Jacob B; Hagan, David J; Van Stryland, Eric W

    2015-01-01

    We recently demonstrated orders of magnitude enhancement of two-photon absorption (2PA) in direct gap semiconductors due to intermediate state resonance enhancement for photons of very different energies. It can be expected that further enhancement of nondegenerate 2PA will be observed in quantum wells (QWs) since the intraband matrix elements do not vanish near the band center as they do in the bulk, and the density of states in QWs is larger near the band edge. Here we present a perturbation-theory based theoretical description of nondegenerate 2PA in semiconductor QWs, where both frequency and polarization of two incident waves can vary independently. Analytical expressions for all possible permutations of frequencies and polarizations have been obtained, and the results are compared with degenerate 2PA in quantum wells along with degenerate and nondegenerate 2PA in bulk semiconductors. We show that using QWs in place of bulk semiconductors with both beams in the TM-polarized mode leads to an additional or...

  8. Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser.

    Science.gov (United States)

    Langer, Gregor; Bouchal, Klaus-Dieter; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2013-09-23

    In the present paper we demonstrate the possibility to image dyed solids, i.e. Rhodamine B dyed polyethylene spheres, by means of two-photon absorption-induced photoacoustic scanning microscopy. A two-photon luminescence image is recorded simultaneously with the photoacoustic image and we show that location and size of the photoacoustic and luminescence image match. In the experiments photoacoustic signals and luminescence signals are generated by pulses from a femtosecond laser. Photoacoustic signals are acquired with a hydrophone; luminescence signals with a spectrometer or an avalanche photo diode. In addition we derive the expected dependencies between excitation intensity and photoacoustic signal for single-photon absorption, two-photon absorption and for the combination of both. In order to verify our setup and evaluation method the theoretical predictions are compared with experimental results for liquid and solid specimens, i.e. a carbon fiber, Rhodamine B solution, silicon, and Rhodamine B dyed microspheres. The results suggest that the photoacoustic signals from the Rhodamine B dyed microspheres do indeed stem from two-photon absorption.

  9. Experimental evidence and theoretical modeling of two-photon absorption dynamics in the reduction of intensity noise of solid-state Er:Yb lasers.

    Science.gov (United States)

    El Amili, Abdelkrim; Kervella, Gaël; Alouini, Mehdi

    2013-04-01

    A theoretical and experimental investigation of the intensity noise reduction induced by two-photon absorption in a Er,Yb:Glass laser is reported. The time response of the two-photon absorption mechanism is shown to play an important role on the behavior of the intensity noise spectrum of the laser. A model including an additional rate equation for the two-photon-absorption losses is developed and allows the experimental observations to be predicted.

  10. Off-Resonant Two-Photon Absorption Cross-Section Enhancement of an Organic Chromophore on Gold Nanorods

    Science.gov (United States)

    Sivapalan, Sean T.; Vella, Jarrett H.; Yang, Timothy K.; Dalton, Matthew J.; Haley, Joy E.; Cooper, Thomas M.; Urbas, Augustine M.; Tan, Loon-Seng; Murphy, Catherine J.

    2013-01-01

    Surface-plasmon-initiated interference effects of polyelectrolyte-coated gold nanorods on the two-photon absorption of an organic chromophore were investigated. With polyelectrolyte bearing gold nanorods of 2,4,6 and 8 layers, the role of the plasmonic fields as function of distance on such effects was examined. An unusual distance dependence was found: enhancements in the two-photon cross-section were at a minimum at an intermediate distance, then rose again at a further distance. The observed values of enhancement were compared to theoretical predictions using finite element analysis and showed good agreementdue to constructive and destructive interference effects. PMID:23687561

  11. Optical control of cardiac cell excitability based on two-photon infrared absorption of AzoTAB

    CERN Document Server

    Shcherbakov, D; Erofeev, I; Astafiev, A

    2014-01-01

    Recent studies of AzoTAB activity in excitable cell cultures have shown that this substance is able to control excitability depending on isomer, cis or trans, predominating in the cellular membrane. Control of isomerization can be performed noninvasively by UV-visual radiation. At the same time it is well-known that azobenezenes can be effectively transformed from one isomer into another by two-photon absorption. Current work is devoted to the study of trans-AzoTAB two-photon transformation in aqueous solution and inside primal neonatal contractive rat cardiomyocytes. In accordance with results obtained Azo-TAB can be used as a probe for two-photon optical control of cardiac excitability.

  12. Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory

    2009-01-01

    The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted

  13. Synthesis and two-photon absorption property of new -conjugated donor-acceptor polymers carrying different heteroaromatics

    Indian Academy of Sciences (India)

    M S Sunitha; K A Vishnumurthy; A V Adhikari

    2013-01-01

    In this communication, we report the synthesis of three newly designed fluorescent polymers P1-P3, starting from simple thiophene derivatives through precursor polyhydrazide route. The new polymers, carrying donor and acceptor heterocyclic moieties with different spacer groups were found to be thermally stable and good of nonlinear optical (NLO) materials with two photon absorption property. The structures of newly synthesized monomers and polymers were confirmed by FTIR, NMR spectral and elemental analyses. Further, polymers were characterized by GPC and TGA studies. Their linear optical and electrochemical properties were evaluated by UV-vis, fluorescence spectroscopic and cyclic voltammetric (CV) studies, respectively, whereas their NLO properties were studied by Z-scan technique using Nd: YAG laser at 532 nm with 7 ns pulse. The electrochemical band gap of P1-P3 was determined to be 1.98, 1.91 and 2.05 eV, respectively. The NLO results reveal that polymers P1-P3 show good optical limiting property with TPA coefficient values 2.9 × 10−11 m/W, 8.0 × 10−11 m/W and 1.4 × 10−11 m/W, respectively.

  14. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Scime, Earl E. [West Virginia Univ., Morgantown, WV (United States)

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  15. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...

  16. Two-photon absorption of Tl1-xIn1-xSnxSe2 nanocrystallites

    Science.gov (United States)

    Myronchuk, Galyna; Parasyuk, Oleg; Piskach, Ludmila; Alzayed, Nasser Saleh; Prokhorenko, Serhii; Piasecki, Michal; Kityk, Iwan

    2016-12-01

    Novel materials for the infrared two-photon absorption — Tl1-xIn1-xSnxSe2 single crystals (x = 0.1,0.2) were grown. Two-photon absorption (TPA) was studied at CO2 laser wave-length 9.4μm with pulse duration 1μs. The studies were performed at different temperatures and for the nanocrystallite sizes varying within the 7-200 nm. The studies have shown that the TPA may be enhanced during the decrease of the nanocrystallite sizes below 50-60 nm. There exists also some critical x value at which the TPA value begin substantially to increase. The studied nanocrystallites are relatively stable to the infrared laser treatment and are not hygroscopic which allow to use them in different IR optoelectronic devices.

  17. Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Buganov, O. [Stepanov Institute of Physics, Minsk (Belarus); Korjik, M.; Fedorov, A. [Research Institute for Nuclear Problems, Belarus State University, 11 Bobruiskaya, 220030 Minsk (Belarus); Nargelas, S.; Tamulaitis, G. [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania); Tikhomirov, S. [Stepanov Institute of Physics, Minsk (Belarus); Vaitkevičius, A., E-mail: augustas.vaitkevicius@ff.vu.lt [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania)

    2015-12-21

    This work was aimed at searching for fast phenomena in scintillators in sub-10-ps range, a benchmark timing for the time response of radiation detectors in particle colliders. The pump-and-probe optical absorption technique with a tunable-wavelength parametric oscillator as the pump and a continuous-spectrum source as the probe beam was used to study lead tungstate PbWO{sub 4} (PWO) single crystals. It is shown that the rise time of the probe pulse absorption induced by the pump pulse is shorter than the pump pulse width of 200 fs. The approximately linear dependence of the probe absorption on the pump pulse energy density evidences that the induced absorption is caused by two-photon absorption involving one probe and one pump photon. We demonstrate that the intensity of the induced absorption at certain wavelengths is influenced by gamma irradiation, provided that an appropriate light polarization is selected. The application of the irradiation-sensitive nonlinearity for fast timing in radiation detectors is discussed. - Highlights: • Nonlinear transmittance with femtosecond rise time is observed in PWO scintillators. • The nonlinearity is caused by two-photon absorption of pump and probe photons. • Gamma irradiation imposes change in the nonlinearity for certain light polarization. • Application of the nonlinearity for fast timing in radiation detectors is feasible.

  18. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E. Z.; Watson, T. F.; Festy, F., E-mail: frederic.festy@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Division, King' s College London—Dental Institute, SE1 9RT London (United Kingdom)

    2014-08-11

    Semiconductor materials which exhibit two-photon absorption characteristic within a spectral region of interest can be useful in building an ultra-compact interferometric autocorrelator. In this paper, we report on the evidence of a nonlinear absorption process in GaP photodiodes which was exploited to measure the temporal profile of femtosecond Ti:sapphire laser pulses with a tunable peak wavelength above 680 nm. The two-photon mediated conductivity measurements were performed at an average laser power of less than a few tenths of milliwatts. Its suitability as a single detector in a broadband autocorrelator setup was assessed by investigating the nonlinear spectral sensitivity bandwidth of a GaP photodiode. The highly favourable nonlinear response was found to cover the entire tuning range of our Ti:sapphire laser and can potentially be extended to wavelengths below 680 nm. We also demonstrated the flexibility of GaP in determining the optimum compensation value of the group delay dispersion required to restore the positively chirped pulses inherent in our experimental optical system to the shortest pulse width possible. With the rise in the popularity of nonlinear microscopy, the broad two-photon response of GaP and the simplicity of this technique can provide an alternative way of measuring the excitation laser pulse duration at the focal point of any microscopy systems.

  19. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    Science.gov (United States)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  20. Theoretical investigation of one-photon and two-photon absorption properties for multiply N-confused porphyrins.

    Science.gov (United States)

    Yang, Zhao-Di; Feng, Ji-Kang; Ren, Ai-Min; Sun, Chia-Chung

    2006-12-28

    We have theoretically investigated a series of multiply N-confused porphyrins and their Zn or Cu complexes for the first time by using DFT(B3LYP/6-31G*) and ZINDO/SOS methods. The electronic structure, one-photon absorption (OPA), and two-photon absorption (TPA) properties have been studied in detail. The calculated results indicate that the OPA spectra of multiply N-confused porphyrins are red-shifted and the OPA intensities decrease compared to normal porphyrin. The maximum two photon absorption wavelengths lambda(max) are blue-shifted and the TPA cross sections delta(max) are increased 22.7-112.1 GM when the N atoms one by one are inverted from core to beta position to form multiply N-confused porphyrins. Especially delta(max) of N3CP get to 164.7 GM. The electron donors -C6F5s at meso-position can make the TPA cross section delta(max) increase. After forming metal complexes with Cu or Zn, the TPA properties of multiply N-confused porphyrins are further increased except for N3CP, N4CP. Our theoretical findings demonstrate that the multiply N-confused prophyrins as well as their metal complexes and derivatives are promising molecules that can be assembled series of materials with large TPA cross section, and are sure to be the subject of further investigation.

  1. Theoretical study relating the two-photon absorption cross section to the susceptibility controlling four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    A theory that it is necessary to extract a two-photon absorption cross section from a mixing signal is developed. The dependence of the cross section on the third-order susceptibility is shown and both the mixing signal and reference signal dependences on the susceptibility are given. Techniques to process the measured value of the susceptibility and relate it to the cross section are developed and limits of validity are established. Finally, a comparison is made between the expression for the cross section presently reported and values given elsewhere.

  2. Theoretical Studies on the One- and Two-Photon Absorption Properties of Double-bis(styryl)benzene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HAN,De-Ming; FENG,Ji-Kang; REN,Ai-Min; SHANG,Xiao-Hong; ZHANG,Xiang-Biao; MA,Yu-Guang; HE,Feng

    2008-01-01

    Two series of bis(styryl)benzene derivatives (BSBD), namely the single-BSBD and the double-BSBD, were investigated. The equilibrium geometries and electronic structures were obtained by using the density functional theory B3LYP and 6-31G basis set. In succession, the one- and two-photon absorption properties of all the molecules were studied theoretically with a ZINDO-SOS (sum-over-states) method in detail. It can be seen that the double-BSBDs have larger two-photon absorption (TPA) cross sections in the visible-IR range than the corresponding single-BSBDs,demonstrating that increasing the molecular dimension is a very effective method to enhance the values of the TPA cross sections. On the other hand, it can be also noticed that the values of the TPA cross sections are correlative with the ability of donating (accepting) electrons of the terminal substituent groups R[N(CH3)2, CH3, H and CF3] in these molecules. That is, the intramolecular charge transfer is also a factor for the enhancement of the TPA efficiency. To sum up, the idea of increasing the molecular dimension to enhance the TPA cross section value is a helpful direction to explore better TPA materials for practical applications. And the double-BSBD molecules are promising TPA materials for the further investigation from the standpoint of the high transparency and the larger TPA cross sections.

  3. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure-Property Relationship and Biological Imaging.

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-02-23

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  4. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure–Property Relationship and Biological Imaging

    Science.gov (United States)

    Zhang, Qiong; Tian, Xiaohe; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2017-01-01

    The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal

  5. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure–Property Relationship and Biological Imaging

    Directory of Open Access Journals (Sweden)

    Qiong Zhang

    2017-02-01

    Full Text Available The application of two-photon absorption (2PA materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1 The two-photon absorption cross-section (δ of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2 Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3 Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA

  6. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.

    Science.gov (United States)

    Lee, Chao-Kuei; Yang, Chan-Shan; Lin, Sung-Hui; Huang, Shiuan-Hua; Wada, Osamu; Pan, Ci-Ling

    2011-11-21

    Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed.

  7. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  8. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  9. Difluorenyl carbo-Benzenes: Synthesis, Electronic Structure, and Two-Photon Absorption Properties of Hydrocarbon Quadrupolar Chromophores.

    Science.gov (United States)

    Baglai, Iaroslav; de Anda-Villa, Manuel; Barba-Barba, Rodrigo M; Poidevin, Corentin; Ramos-Ortíz, Gabriel; Maraval, Valérie; Lepetit, Christine; Saffon-Merceron, Nathalie; Maldonado, José-Luis; Chauvin, Remi

    2015-09-28

    The synthesis, crystal and electronic structures, and one- and two-photon absorption properties of two quadrupolar fluorenyl-substituted tetraphenyl carbo-benzenes are described. These all-hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo-benzene core (C-C bonds for 3 a, C-C=C-C expanders for 3 b), exhibit quasi-superimposable one-photon absorption (1PA) spectra but different two-photon absorption (2PA) cross-sections σ2PA. Z-scan measurements (under NIR femtosecond excitation) indeed showed that the C≡C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at λ = 800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum-over-state estimations of σ2PA(λi), in which λi = 2 hc/Ei, h is Planck's constant, c is the speed of light, and Ei is the energy of the 2PA-allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z-scan results.

  10. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    Science.gov (United States)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  11. Development of an automated two-photon absorption cross section spectrometer%双光子吸收截面自动化测量系统研究

    Institute of Scientific and Technical Information of China (English)

    屈军乐; 周藩; 邵永红; 张新富; 仉华; 姜娜; 彭孝军; 肖义

    2013-01-01

    为快速精确测量双光子材料的吸收截面,研究制作了一套基于双光子诱导荧光法的自动化双光子吸收截面谱仪.该系统基于虚拟仪器平台,实现了功率实时反馈、步进电机同步控制、荧光光谱快速采集、线性分析和双光子吸收光谱分析等功能,是集功率反馈控制到光谱采集、处理为一体的软件自动化操作平台,是研究双光子吸收截面的实用工具.%Two-photon absorption cross section is an important property of organic two-photon fluorophores and is critical to the study of two-photon materials. In order to measure two-photon absorption cross section quickly and accurately, we developed an automated two-photon absorption spectrometer that is based on two-photon induced fluorescence method. The system can perform the functions of real-time feedback of power, stepper motor synchronous control, fast acquisition of fluorescence spectra, linear analysis and two-photon absorption spectroscopy analysis using a virtual instrument platform. The system has an integrated and automated software platform for power feedback control, spectra acquisition and data processing. It can function as an important tool in the study of two-photon absorption cross section of fluorophores

  12. New insights into two-photon absorption properties of functionalized aza-BODIPY dyes at telecommunication wavelengths: a theoretical study.

    Science.gov (United States)

    Liu, Xiaoting; Zhang, Jilong; Li, Kai; Sun, Xiaobo; Wu, Zhijian; Ren, Aimin; Feng, Jikang

    2013-04-01

    Special attention has been paid to understanding the structural effect on electronic structure and absorption spectra for an extensive series of functionalized aza-BODIPY molecules. We have employed the quadratic response theory as well as a sum-over-states approach involving few intermediate states to calculate the two-photon cross section (δmax). The results suggest that chemical modifications on the aza-BODIPY core and peripheral moieties using various substituents can finely tune their linear and nonlinear optical properties. Therefore, some new fluorophores absorbing in the near infrared region and featuring considerably high δmax at telecommunication wavelengths are proposed, which are excellent candidates for nonlinear transmission and fluorescent labeling materials. The investigation contributes a useful starting point for further design of more effective aza-BODIPY dyes and can be valuable as a foundation for future experimental research and development.

  13. Resonant metallic nanostructure for enhanced two-photon absorption in a thin GaAs p-i-n diode

    Energy Technology Data Exchange (ETDEWEB)

    Portier, Benjamin; Pardo, Fabrice; Péré-Laperne, Nicolas; Steveler, Emilie; Dupuis, Christophe; Bardou, Nathalie; Lemaître, Aristide; Pelouard, Jean-Luc, E-mail: jean-luc.pelouard@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), Route de Nozay, 91460 Marcoussis (France); Vest, Benjamin; Jaeck, Julien; Rosencher, Emmanuel [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); Haïdar, Riad [ONERA The French Aerospace Lab, Chemin de la Hunière, F-91760 Palaiseau (France); École Polytechnique, Département de Physique, F-91128 Palaiseau (France)

    2014-07-07

    Degenerate two-photon absorption (TPA) is investigated in a 186 nm thick gallium arsenide (GaAs) p-i-n diode embedded in a resonant metallic nanostructure. The full device consists in the GaAs layer, a gold subwavelength grating on the illuminated side, and a gold mirror on the opposite side. For TM-polarized light, the structure exhibits a resonance close to 1.47 μm, with a confined electric field in the intrinsic region, far from the metallic interfaces. A 109 times increase in photocurrent compared to a non-resonant device is obtained experimentally, while numerical simulations suggest that both gain in TPA-photocurrent and angular dependence can be further improved. For optimized grating parameters, a maximum gain of 241 is demonstrated numerically and over incidence angle range of (−30°; +30°).

  14. Entangled two photon absorption cross section on the 808 nm region for the common dyes Zinc tetraphenylporphyrin and Rhodamine B

    CERN Document Server

    Villabona-Monsalve, Juan P; Portela, Mayerlin Nuñez; Valencia, Alejandra

    2016-01-01

    We report the measurement of the entangled two photon absorption cross section, $\\sigma_E$, at 808 nm on organic chromophores in solution in a low photon flux regime. We performed measurements on Zinc tetraphenylporphyrin (ZnTPP) in Toluene and Rhodamine B (RhB) in Methanol. This is, to the best of our knowledge, the first time that $\\sigma_E$ is measured for RhB. Additionally, we report a systematic study of the dependence of $\\sigma_E$ on the molecular concentration for both molecular systems. In contrast to previous experiments, our measurements are based on detecting the pairs of photons that are transmitted by the molecular system. By using a coincidence count circuit it was possible to improve the signal to noise ratio. This type of work is important for the development of spectroscopic and microscopic techniques using entangled photons.

  15. High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range.

    Science.gov (United States)

    de Reguardati, Sophie; Pahapill, Juri; Mikhailov, Alexander; Stepanenko, Yuriy; Rebane, Aleksander

    2016-04-18

    Degenerate two-photon absorption (2PA) of a series of organic fluorophores is measured using femtosecond fluorescence excitation method in the wavelength range, λ2PA = 680-1050 nm, and ~100 MHz pulse repetition rate. The function of relative 2PA spectral shape is obtained with estimated accuracy 5%, and the absolute 2PA cross section is measured at selected wavelengths with the accuracy 8%. Significant improvement of the accuracy is achieved by means of rigorous evaluation of the quadratic dependence of the fluorescence signal on the incident photon flux in the whole wavelength range, by comparing results obtained from two independent experiments, as well as due to meticulous evaluation of critical experimental parameters, including the excitation spatial- and temporal pulse shape, laser power and sample geometry. Application of the reference standards in nonlinear transmittance measurements is discussed.

  16. Two-photon absorption, nonlinear optical and UV-vis spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuxi, E-mail: yuxisun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China) and Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Hao Qingli; Tang Weihua; Wang Yufeng [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Xujie, E-mail: yangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu Lude; Wang Xin [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-09-15

    Highlights: {yields} Three imine-bridged aromatic antipyrine derivatives as photo-responsive materials. {yields} The compounds exhibit two-photon absorption and first-hyperpolarization properties {yields} The compounds have long-range electron transfer characteristics. - Abstract: Organic compounds as functional materials have attracted much keen interest in the past three decades owing to their potential applications in science and technology. Currently, great efforts have been made in looking for suitable photo-responsive materials among the multifarious organic compounds. Herein we reported the photophysical properties of 2-furanylmethylene-aminoantipyrine (FMAAP), benzylideneaminoantipyrine (BIAAP) and cinnamilideneamino-antipyrine (CIAAP) studied by a combined experimental and theoretical investigation. Two-photon absorption measurements give the cross-section values of 1.350 x 10{sup -50} cm{sup 4} s/photon for FMAAP, 1.046 x 10{sup -50} cm{sup 4} s/photon for BIAAP and 2.047 x 10{sup -50} cm{sup 4} s/photon for CIAAP. The calculated first-hyperpolarization values are of 2.303 x 10{sup -30}, 1.257 x 10{sup -29}, 2.889 x 10{sup -29} cm{sup 5}/esu for FMAAP, BIAAP and CIAAP, respectively. UV-vis spectroscopy technique further reveals that the studied compounds display long-range electron transfer characteristics by absorbing light of specific wavelengths of 294.5 nm for FMAAP, 293.2 nm for BIAAP and 303.1 nm for CIAAP. All the results indicate that the studied compounds are promising candidates of functionally photo-responsive materials.

  17. Selective Two-Photon-Absorption-Induced Reactions of Anthracene-2-Carboxylic Acid on Tunable Plasmonic Substrate with Incoherent Light Source.

    Science.gov (United States)

    Pincella, Francesca; Isozaki, Katsuhiro; Taguchi, Tomoya; Song, Yeji; Miki, Kazushi

    2015-02-01

    In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials.

  18. Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers

    Science.gov (United States)

    Avrutin, E. A.; Ryvkin, B. S.

    2017-01-01

    The effect of the transverse laser structure on two-photon absorption (TPA) related effects in high-power diode lasers is analysed theoretically. The direct effect of TPA is found to depend significantly on the transverse waveguide structure, and predicted to be weaker in broad and asymmetric waveguide designs. The indirect effect of TPA, via carrier generation in the waveguide and free-carrier absorption, is analysed for the case of a symmetric laser waveguide and shown to be strongly dependent on the active layer position. With the active layer near the mode peak, the indirect effect is weaker than the direct effect due to the population of TPA-created carriers being efficiently depleted by their diffusion and capture into the active layer, whereas for the active layer position strongly shifted towards the p-cladding, the indirect effect can become the dominant power limitation at very high currents. It is shown that for optimizing a laser design for pulsed high power operation, both TPA related effects and the inhomogeneous carrier accumulation in the waveguide caused by diffusive current need to be taken into account.

  19. Fs-transient absorption and fluorescence upconversion after two- photon excitation of carotenoids in solution and in LHC II

    CERN Document Server

    Wall, P J; Fleming, G R

    2000-01-01

    With time resolved two-photon techniques we determined the lifetime and two-photon spectrum of the forbidden S/sub 1/ state of beta - carotene (9+or-0.2 ps), lutein (15+or-0.5 ps) and the energy transferring carotenoids in LHC II (250+or-50 fs). (7 refs).

  20. Two-photon absorption spectroscopy of stilbene and phenanthrene: Excited-state analysis and comparison with ethylene and toluene

    Science.gov (United States)

    de Wergifosse, Marc; Elles, Christopher G.; Krylov, Anna I.

    2017-05-01

    Two-photon absorption (2PA) spectra of several prototypical molecules (ethylene, toluene, trans- and cis-stilbene, and phenanthrene) are computed using the equation-of-motion coupled-cluster method with single and double substitutions. The states giving rise to the largest 2PA cross sections are analyzed in terms of their orbital character and symmetry-based selection rules. The brightest 2PA transitions correspond to Rydberg-like states from fully symmetric irreducible representations. Symmetry selection rules dictate that totally symmetric transitions typically have the largest 2PA cross sections for an orientationally averaged sample when there is no resonance enhancement via one-photon accessible intermediate states. Transition dipole arguments suggest that the strongest transitions also involve the most delocalized orbitals, including Rydberg states, for which the relative transition intensities can be rationalized in terms of atomic selection rules. Analysis of the 2PA transitions provides a foundation for predicting relative 2PA cross sections of conjugated molecules based on simple symmetry and molecular orbital arguments.

  1. Two-photon absorption properties of cationic 1,4-bis(styryl)benzene derivative and its inclusion complexes with cyclodextrins.

    Science.gov (United States)

    Nag, Okhil Kumar; Nayak, Rati Ranjan; Lim, Chang Su; Kim, In Hong; Kyhm, Kwangseuk; Cho, Bong Rae; Woo, Han Young

    2010-07-29

    Two-photon absorption properties of 1,4-bis{4'-[N,N-bis(6''-trimethylammoniumhexyl)amino]styryl}benzene tetrabromide (C1) and its inclusion complexes (ICs) with cyclodextrins (CDs) have been studied. Upon complexation with CDs, the absorption spectra of C1 showed a slight red shift, whereas the emission spectra showed a blue shift with concomitant increase in the fluorescence quantum efficiency. A Stern-Volmer study using K(3)Fe(CN)(6) as a quencher revealed significant reduction in the photoinduced charge transfer quenching, in accord with the IC formation. Comparison of the spectroscopic results reveals that C1 forms increasingly more stable ICs in the order C1/beta-CD < C1/gamma-CD < C1/(3gamma:beta)-CD (gamma-CD/beta-CD 3:1, mole ratio). Moreover, the two-photon action cross section of C1 increased from 200 GM for C1 to 400 GM for C1/beta-CD, 460 GM for C1/gamma-CD, and 650 GM for C1/(3gamma:beta)-CD, respectively. Furthermore, the two-photon microscopy images of HeLa cells stained with C1 emitted strong two-photon excited fluorescence in the plasma membrane. These results provide a useful guideline for the development of efficient two-photon materials for bioimaging applications.

  2. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield.

    Science.gov (United States)

    Ke, Hanzhong; Li, Wenbin; Zhang, Tao; Zhu, Xunjin; Tam, Hoi-Lam; Hou, Anxin; Kwong, Daniel W J; Wong, Wai-Kwok

    2012-04-21

    Several acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids, PZn-PcYb, PH(2)-PcYb and PPd-PcYb, have been prepared and characterized by (1)H and (31)P NMR, mass spectrometry, and UV-vis spectroscopy. Their photophysical and photochemical properties, especially the relative singlet oxygen ((1)O(2)) quantum yields and the two-photon absorption cross-section (σ(2)), were investigated. These three newly synthesized compounds exhibited very large σ(2) values and substantial (1)O(2) quantum yields upon photo-excitation, making them potential candidates as one- and two-photon photodynamic therapeutic agents.

  3. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    Science.gov (United States)

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  4. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Arpana, E-mail: agrawal.arpana01@gmail.com; Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima [Laser Bhawan, School of Physics, Devi Ahilya University, Khandwa Road, Indore-452001 (India); Phase, D. M. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India)

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  5. Saturable absorption and two-photon absorption of 1,2,5-thiadiazolo[3,4-g]quinoxaline based derivatives with near-infrared fluorescence

    Science.gov (United States)

    Du, Yabing; Lin, Xiaodong; Jia, Tingjian; Dong, Jun

    2015-03-01

    Organic molecules with near-infrared (NIR) fluorescence are extremely interesting for the applications in nonlinear optical devices and bioimaging. However, such kind of materials have been relatively rarely studied. In this work, the nonlinear optical properties of 1,2,5-thiadiazolo[3,4-g]quinoxaline based derivatives with NIR fluorescence emission have been investigated for the first time. Under the excitation of femtosecond pulses at 532 nm, the chromophore with dithienyl as donor (TQ2) presents saturable absorption (SA) behavior, while no SA has been observed in the derivative with biphenyl (TQ1) as donor. Moreover, TQ2 exhibits much larger two-photon absorption (TPA) cross-sections with strong NIR fluorescence in the second biological window. The larger nonlinear optical properties of TQ2 is due to the introduction of stronger electron-donating group (dithienyl) and the resultant enhanced intramolecular charge transfer properties. At the end, TPA based optical limiting behaviors of the molecules are demonstrated in THF solutions, thanks to their large solubility and strong TPA.

  6. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  7. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge

    Science.gov (United States)

    Ooi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.

    2017-01-01

    CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. PMID:28051064

  8. Regularity of the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    M Krishna

    2010-06-01

    In this paper we consider the interband light absorption coefficient (ILAC), in a symmetric form, in the case of random operators on the -dimensional lattice. We show that the symmetrized version of ILAC is either continuous or has a component which has the same modulus of continuity as the density of states.

  9. An alternative coefficient for sound absorption

    NARCIS (Netherlands)

    Wijnant, Y.H.; Kuipers, E.R.; Boer, de A.; Sas, P.; Jonckheere, S.; Moens, D.

    2013-01-01

    The acoustic absorption coefficient is a number that indicates which fraction of the incident acoustic power impinging on a surface is being absorbed. The incident acoustic power is obtained by spatial integration of the incident intensity, which is (classically) defined as the time-averaged intensi

  10. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye.

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-15

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  11. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging

    Science.gov (United States)

    Wang, Shichao; Xu, Shasha; Wang, Yiming; Tian, Xiaohe; Zhang, Yujin; Wang, Chuankui; Wu, Jieying; Yang, Jiaxiang; Tian, Yupeng

    2017-02-01

    Two centrosymmetric D-π-D type triphenylamine chromophores with long π-conjugated bridge and strong electron-donating moiety were designed, synthesized and fully characterized. The crystal analysis revealed that multiple Csbnd H ⋯ π interactions existed in two chromophores, which played a crucial role in generating molecular 1D chains and 2D layers structures. Linear and nonlinear optical properties of the chromophores were systematically investigated with the aid of theoretical calculations. Two chromophores both exhibited intense and wide-dispersed one-photon/two-photon excited fluorescence, bear prodigious 2PA cross section (δ). Especially for Dye2, with ethyoxyl groups, displayed the strong 2PA activity, large cross-sections (δmax > 16,000 GM) and high NLO efficiency (δmax/MW > 16 GM/(g·mol)) in the range of 680-830 nm in DMF. In addition, one- and two-photon fluorescence microscopy images of HepG2 cells incubated with Dye2 were obtained and found that Dye2 could effectively uptake toward living cells and display a uniformly localized in cytosolic space.

  12. Relation between bond-length alternation and two-photon absorption of a push pull conjugated molecules: a quantum-chemical study

    Science.gov (United States)

    Bartkowiak, W.; Zaleśny, R.; Leszczynski, J.

    2003-02-01

    The results of the semiempirical study of the structure/property relationships for the two-photon absorption cross-section ( δ) of a series of prototypical π-conjugated push-pull molecules are presented. The calculations of δ for the first charge-transfer (CT) excited state were performed as a function of the bond length alternation (BLA). The molecular hyperpolarizabilities ( β and γ) were calculated using the finite-field (FF) method. The obtained data were analyzed based on the simple two-state models. A strong dependence of δ on the BLA parameter was noticed.

  13. Relation between bond-length alternation and two-photon absorption of a push-pull conjugated molecules: a quantum-chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, W.; Zalesny, R.; Leszczynski, J

    2003-02-01

    The results of the semiempirical study of the structure/property relationships for the two-photon absorption cross-section ({delta}) of a series of prototypical {pi}-conjugated push-pull molecules are presented. The calculations of {delta} for the first charge-transfer (CT) excited state were performed as a function of the bond length alternation (BLA). The molecular hyperpolarizabilities ({beta} and {gamma}) were calculated using the finite-field (FF) method. The obtained data were analyzed based on the simple two-state models. A strong dependence of {delta} on the BLA parameter was noticed.

  14. Effects of the structure of the branches on the two-photon absorption properties for the multi-branched molecules with nitrogen (N) as coupling center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effects of the structure of branches on the TPA properties for multi-branched molecules, the TPA cross section is calculated by using ZINDO/SOS method. The investigated mole- cules have different branches (chomorfores based on stilbene, dithienothiophene and flourene) with nitrogen(N) as coupling center. The results show that the cooperative enhancement in multi-branched molecules depends on the structures of the branches and the structures of branches play an important role in the enhancement of the TPA cross section. The designed molecules with stilbene and dithie- nothiophene as branched possess relatively larger two-photon absorption cross sections.

  15. Effects of the structure of the branches on the two-photon absorption properties for the multi-branched molecules with nitrogen (N) as coupling center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to investigate the effects of the structure of branches on the TPA properties for multi-branched molecules, the TPA cross section is calculated by using ZINDO/SOS method. The investigated molecules have different branches (chomorfores based on stilbene, dithienothiophene and flourene) with nitrogen(N) as coupling center. The results show that the cooperative enhancement in multi-branched molecules depends on the structures of the branches and the structures of branches play an important role in the enhancement of the TPA cross section. The designed molecules with stilbene and dithienothiophene as branched possess relatively larger two-photon absorption cross sections.

  16. Multi-point strain and displacement sensor based on intensity-modulated light and two-photon absorption process in Si-avalanche photodiode

    Science.gov (United States)

    Miyazawa, Hiromasa; Nemoto, Masaya; Yamada, Yoshiki; Tanaka, Yosuke; Kurokawa, Takashi

    2017-04-01

    We propose a system for precise measurement of multi-point displacement and strain using fiber Bragg grating (FBG) sensors along with intensity-modulated light and two-photon absorption process in a Si-avalanche photodiode (Si-APD). This method sweeps both the optical wavelength and the phase difference between the two modulation signals. The FBGs' reflection spectra and their change due to strain are successfully observed at the same time with the precision measurement of the FBG's displacement, where the relative measurement uncertainty is 10-4. This fiber sensing system is especially suitable for structural health monitoring.

  17. Two-photon absorption and efficient encapsulation of near-infrared-emitting CdSe{sub x}Te{sub 1−x} quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Szeremeta, Janusz [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Lamch, Lukasz [Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wawrzynczyk, Dominika [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wilk, Kazimiera A. [Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Samoc, Marek [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Nyk, Marcin, E-mail: marcin.nyk@pwr.edu.pl [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-07-29

    Highlights: • Synthesis of the IR emitting alloyed CdSe{sub x}Te{sub 1−x} quantum dots has been performed. • Two-photon absorption cross section of the CdSe{sub x}Te{sub 1−x} QDs was measured in the IR range. • The QDs were encapsulated into Brij 58® micelles and transferred to the aqueous environment. • A blue-shift of fluorescence of QDs in the micelles was observed. - Abstract: Hydrophobic CdSe{sub x}Te{sub 1−x} quantum dots with near infrared emission in the 700–750 nm range were synthesized by a wet chemistry technique. Their nonlinear optical properties were studied using Z-scan technique with a tunable femtosecond laser system. The peak value of the two-photon absorption cross section was found to be ∼2400 GM at 1400 nm. To demonstrate a possible way of utilizing the CdSe{sub x}Te{sub 1−x} quantum dots in aqueous environment we describe here a convenient method of preparation of Brij 58® micellar systems loaded with the quantum dots. The obtained nanoconstructs were characterized using optical spectroscopy, TEM and DLS. The micelles colloidal stability, and the influence of the encapsulation process on the spectroscopic properties of the quantum dots are discussed. In particular, we have observed a 60 nm blue-shift of the emission maxima upon loading quantum dots inside the micelles.

  18. Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices.

    Science.gov (United States)

    Nanda, Kaushik D; Krylov, Anna I

    2017-07-20

    Observables such as two-photon absorption cross sections cannot be computed from the wave functions of initial and final states alone because of their nonlinear nature. Rather, they depend on the entire manifold of the excited states, which follows from the familiar sum-over-states expressions of second- and higher-order properties. Consequently, the interpretation of the computed nonlinear optical properties in terms of molecular orbitals is not straightforward and usually relies on approximate few-states models. Here, we show that the two-photon absorption (2PA) transitions can be visualized using response one-particle transition density matrices, which are defined as transition density matrices between the zero-order and first-order perturbed states. We also extend the concept of natural transition orbitals to 2PA transitions. We illustrate the utility of this new tool, which provides a rigorous black box alternative to traditional qualitative few-states analysis, by considering 2PA transitions in ethylene, trans-stilbene, and para-nitroaniline.

  19. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra.

    Science.gov (United States)

    Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A

    2012-02-14

    An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

  20. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  1. N-annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption.

    Science.gov (United States)

    Luo, Jie; Lee, Sangsu; Son, Minjung; Zheng, Bin; Huang, Kuo-Wei; Qi, Qingbiao; Zeng, Wangdong; Li, Gongqiang; Kim, Dongho; Wu, Jishan

    2015-02-23

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1 a/1 b with very intense absorption (ε>1.3×10(5) M(-1) cm(-1)) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10(-6) and 6.0×10(-6) for 1 a and 1 b, respectively. The NP-substituted porphyrin dimers 2 a/2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  2. Synthesis of Dual NIR Two-photon Absorptive [60]fullerenyl Multiadducts for Nonlinear Light-transmittance Reduction Application

    Science.gov (United States)

    2014-11-01

    based reverse saturable absorption (RSA) [1,2] events of both the C60 cage and antenna units in the combined wide UV-visible‒NIR region and effective...is available at http://spiedigitallibrary.org. 14. ABSTRACT Synthesis of several C60-( antenna )x conjugates was performed to demonstrate high...range of wavelengths. It was achieved by covalent attachment of a hybrid combination of two types of light- harvesting fluorescent antenna

  3. Precision distance measurement using a two-photon absorption process in a silicon avalanche photodiode with saw-tooth phase modulation.

    Science.gov (United States)

    Tanaka, Yosuke; Tominaka, Seiji; Kurokawa, Takashi

    2015-10-01

    We present a novel configuration of a precision laser distance measurement based on the two-photon absorption (TPA) photocurrent from a silicon avalanche photodiode (Si-APD). The proposed system uses saw-tooth phase modulation, known as serrodyne modulation, in order to shift the frequency of the reference light from that of the probe light. It suppresses the coherent interference noise between the probe and the reference. The serrodyne modulation also enables lock-in detection of the TPA photocurrent. Furthermore, it contributes to the reduction of the system components. The precision measurement is experimentally demonstrated by measuring a fiber length difference of 2.6 m with a standard deviation of 27 μm under constant temperature. The high-precision displacement measurement is also demonstrated by measuring the temperature-induced change in the optical path length difference of a fiber interferometer.

  4. Generation of ultrafast pulse via combined effects of stimulated Raman scattering and non-degenerate two-photon absorption in silicon nanophotonic chip

    Indian Academy of Sciences (India)

    Jianwei Wu; Fengguang Luo; Mingcui Cao

    2009-04-01

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are co-propagating in the silicon chip so that the CW will be modulated inversely by the dark pulse during the propagation. As a result, an ultrafast bright pulse is achieved using the technique. Simulation results show that an ultrafast pulse with a pulsewidth (full-width at half-maximum (FWHM)) of about 50 fs is generated at the end of a 5-mm long silicon chip, when the initial conditions, including an input maximum of 0.5 W and FWHM of ∼ 176 fs for dark pulse, and CW with power of 5 W, are chosen.

  5. Two-photon-absorption cross section of Nd3+ in yttrium aluminum garnet and yttrium lithium fluoride near 1.06 μm

    Science.gov (United States)

    Chase, L. L.; Payne, Stephen A.

    1986-12-01

    We have measured the spectrally integrated two-photon-absorption (TPA) cross sections for the 4I9/2--> 4G7/2 transitions of Nd3+ and obtained values of 1.2×10-40 and 0.15×10-40 cm4 for Nd3+-doped yttrium aluminum garnet (YAG) and yttrium lithium fluoride (YLF), respectively. These results are in satisfactory agreement with theoretical calculations based on the properties of Nd3+ free-ion wave functions. The difference between YAG and YLF, however, is not accounted for by the free-ion theory and suggests that the intermediate-state energies and wave functions are considerably host dependent. In addition, we conclude, based on our measurements, that rare-earth TPA will not contribute significantly to either losses or the nonlinear refractive index in typical laser media employing rare-earth ions.

  6. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach.

    Science.gov (United States)

    Ma, HuiLi; Zhao, Yi; Liang, WanZhen

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI(-))), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI(-) although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm(-1) agrees well with the experimental measurement.

  7. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    Energy Technology Data Exchange (ETDEWEB)

    Ma, HuiLi [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Institute of Fujian Provincial Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Zhao, Yi; Liang, WanZhen, E-mail: liangwz@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Institute of Fujian Provincial Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI{sup −})), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI{sup −} although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm{sup −1} agrees well with the experimental measurement.

  8. Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: a route to triphenylamine-based chromophores with enhanced two-photon absorption.

    Science.gov (United States)

    Hrobárik, Peter; Hrobáriková, Veronika; Sigmundová, Ivica; Zahradník, Pavol; Fakis, Mihalis; Polyzos, Ioannis; Persephonis, Peter

    2011-11-01

    A series of dipolar and octupolar triphenylamine-derived dyes containing a benzothiazole positioned in the matched or mismatched fashion have been designed and synthesized via palladium-catalyzed Sonogashira cross-coupling reactions. Linear and nonlinear optical properties of the designed molecules were tuned by an additional electron-withdrawing group (EWG) and by changing the relative positions of the donor and acceptor substituents on the heterocyclic ring. This allowed us to examine the effect of positional isomerism and extend the structure-property relationships useful in the engineering of novel heteroaromatic-based systems with enhanced two-photon absorption (TPA). The TPA cross-sections (δ(TPA)) in the target compounds dramatically increased with the branching of the triphenylamine core and with the strength of the auxiliary acceptor. In addition, a change from the commonly used polarity in push-pull benzothiazoles to a reverse one has been revealed as a particularly useful strategy (regioisomeric control) for enhancing TPA cross-sections and shifting the absorption and emission maxima to longer wavelengths. The maximum TPA cross-sections of the star-shaped three-branched triphenylamines are ∼500-2300 GM in the near-infrared region (740-810 nm); thereby the molecular weight normalized δ(TPA)/MW values of the best performing dyes within the series (2.0-2.4 GM·g(-1)·mol) are comparable to those of the most efficient TPA chromophores reported to date. The large TPA cross-sections combined with high emission quantum yields and large Stokes shifts make these compounds excellent candidates for various TPA applications, including two-photon fluorescence microscopy.

  9. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  10. Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas

    Science.gov (United States)

    Schmidt, Jacob B.; Roy, Sukesh; Kulatilaka, Waruna D.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.; Gord, James R.

    2017-01-01

    Femtosecond, two-photon-absorption laser-induced fluorescence (fs-TALIF) is employed to measure space- and time-resolved distributions of atomic hydrogen and oxygen in moderate-pressure, non-equilibrium, nanosecond-duration pulsed-discharge plasmas. Temporally and spatially resolved hydrogen and oxygen TALIF images are obtained over a range of low-temperature plasmas in mixtures of helium and argon at 100 Torr total pressure. The high-peak-intensity, low-average-energy fs pulses combined with the increased spectral bandwidth compared to traditional ns-duration laser pulses provide a large number of photon pairs that are responsible for the two-photon excitation, which results in an enhanced TALIF signal. Krypton and xenon TALIF are used for quantitative calibration of the hydrogen and oxygen concentrations, respectively, with similar excitation schemes being employed. This enables 2D collection of atomic-hydrogen and -oxygen TALIF signals with absolute number densities ranging from 2  ×  1012 cm-3 to 6  ×  1015 cm-3 and 1  ×  1013 cm-3 to 3  ×  1016 cm-3, respectively. These 2D images are the first application of TALIF imaging in moderate-pressure plasma discharges. 1D self-consistent modeling predictions show agreement with experimental results within the estimated experimental error of 25%. The present results can be used to further the development of higher fidelity kinetic models while quantifying plasma-source characteristics.

  11. Two-photon physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  12. Theoretical analysis of the two-photon absorption spectrum of Tb sup 3 sup + in Cs sub 2 NaTbCl sub 6

    CERN Document Server

    Wang Dian Yuan; Xia Shang Da; Tanner, P A

    2003-01-01

    Eighteen selected two-photon absorption (TPA) transition line strengths with polarization angles theta = 0 deg. and 45 deg., spanning several orders of magnitude, have been calculated for the Tb sup 3 sup + ion in the cubic host Cs sub 2 NaTbCl sub 6. The results are in reasonable agreement with experimental results in the literature. The calculation utilized the crystal field (CF) wavefunctions for the initial and final states of the 4f sup 8 configuration, and utilized free ion or CF wavefunctions (with the corresponding energies) for 4f sup 7 core states of the whole intermediate 4f sup 7 5d configuration comprising 34 320 states. The intensities of certain transitions were found to be very sensitive to the inclusion of the CF interaction within the 4f sup 7 core. In contrast to previous fourth- or third-order calculations of the TPA transition line strength of the strong transition ( sup 7 F sub 6)A sub 1 sub g -> ( sup 5 D sub 4)A sub 1 sub g using pure Russell-Saunders (RS) wavefunctions for the | sup 7...

  13. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  14. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Yoshiyuki; Ono, Ryo [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8568 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-06-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.

  15. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  16. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  17. One- and two-photon absorption of fluorescein dianion in water: a study using S-QM/MM methodology and ZINDO method.

    Science.gov (United States)

    Silva, D L; Barreto, R C; Lacerda, E G; Coutinho, K; Canuto, S

    2014-02-05

    One- and two-photon absorption (1PA and 2PA) of fluorescein dianion (FSD) in water were studied using a combined and sequential Quantum Mechanics/Molecular Dynamics methodology. Different sets of 250 statistically relevant (uncorrelated) configurations composed by the solute and several solvent molecules were sampled from the classical simulation. On these configurations, the electronic properties were calculated a posteriori using the Zerner's intermediate neglect of differential overlap (ZINDO) method. The linear and nonlinear absorption of FSD in water were calculated using discrete and explicit solvent models. In the largest case, the relevant configurations are composed by FSD and 47 explicit water molecules embedded in the electrostatic field of all remaining water molecules. Both INDO/CIS and INDO/CISD calculations were performed to study the absorption processes of FSD and the Sum-Over-States (SOS) model was used to describe the 2PA process. A semi-classical method for spectrum simulations was employed to simulate the 1PA and 2PA cross-section spectra of FSD in water. For comparison purposes, in the case of the 2PA process two approaches, the "full expression" and "resonant expression" methods, were employed to simulate the nonlinear spectrum. The last method assumes resonant conditions and on the computation point of view it represents an interesting option to study the 2PA process. The INDO/CI calculations give a satisfactory description of the 1PA spectrum of FSD and properly describe the unusual blue-shift of its first π→π(*) transition in water. In the case of 2PA, the introduction of doubly excited configuration interactions (INDO/CISD) has proven to be essential for an appropriate description of the process at the higher energy spectral region. It was observed that the solvent effects do not drastically change the cross-sections of both processes. The simulated 2PA cross-section spectrum provided by the "full expression" method presents a better

  18. Reflection and absorption coefficients for use in room acoustic simulations

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    Two ideas to improve the boundary conditions for room acoustic simulations are presented. First, all rooms have finite boundary surfaces, thereby a reflection coefficient for finite surfaces should be physically more suitable than that for infinitely large surfaces. Second, absorption coefficients...... measured by the chamber method, so-called the Sabine absorption coefficients, have certain problems to be used in geometrical acoustics simulations; one serious problem is that they often exceed unity for porous absorbers due to the finite sample size and non-uniform intensity in the test reverberation...... chamber. Therefore the Sabine absorption coefficients should be converted into the random incidence absorption coefficients, which never exceed unity, thus are more proper for room acoustic simulations....

  19. Observation of Nondegenerate Two-Photon Gain in GaAs

    CERN Document Server

    Reichert, Matthew; Salamo, Greg; Hagan, David J; Van Stryland, Eric W

    2016-01-01

    Two-photon lasers require materials with large two-photon gain (2PG) coefficients and low linear and nonlinear losses. Our previous demonstration of large enhancement of two-photon absorption in semiconductors for very different photon energies translates directly into enhancement of 2PG. We experimentally demonstrate nondegenerate 2PG in optically excited bulk GaAs via femtosecond pump-probe measurements. 2PG is isolated from other pump induced effects through the difference between measurements performed with parallel and perpendicular polarizations of pump and probe. An enhancement in the 2PG coefficient of nearly two orders-of-magnitude is reported. The results point a possible way toward two-photon semiconductor lasers.

  20. Two-photon cryomicroscope

    Science.gov (United States)

    Breunig, H. G.; Köhler, C.; König, K.

    2012-03-01

    We report on a new two-photon cryomicroscope which consist of a compact laser-scanning microscope combined with a motorized heating and freezing stage. Samples can be cooled down to -196 °C (77 K) and heated up to 600 °C (873 K) with adjustable heating/freezing rates between 0.01 K / min and 150 K / min. Two-photon imaging is realized by near infrared femtosecond-laser pulse excitation. The abilities of the two-photon cryomicroscope are illustrated in several measurements: imaging of fluorescent microspheres inside a piece of ice illustrates the feasibility of deep-microscopic imaging inside frozen sample. The temperature-dependent structural integrity of collagen is monitored by detection of second harmonic generation signals from porcine cornea. The measurements reveal also the dependence of the collagendenaturation temperature on hydration state of the cornea collagen. Furthermore, the potential of the two-photon cryomicroscope for optimization of freezing and thawing procedures as well as to evaluate the viability of frozen cells and tissue is discussed.

  1. Platinum Acetylide Two-Photon Chromophores (Preprint)

    Science.gov (United States)

    2007-04-01

    the higher energy range that lead to its photodegradation . Secondly, because there is a quadratic dependence of two-photon absorption (2PA) on the...to either an electron donating amino- fluorenyl or electron withdrawing benzothiazolyl-fluorene that are themselves known as two-photon absorbing dyes ...groups in place of phenyl groups have shown a doubling of the intrinsic cr2value at 740 nm.40,41In this paper we describe novel platinum dyes that

  2. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  3. Sideband-Induced Two-Photon Transparency

    Institute of Scientific and Technical Information of China (English)

    CHENG Guang-Ling; HU Xiang-Ming

    2006-01-01

    @@ We show that it is possible to use a single sideband to induce two-photon transparency in a three-level cascade medium. The medium simultaneously absorbs two photons as a one-step process when the middle level is far off one-photon resonance. A resonant sideband coupling on the upper transition and the two-photon one-step process drive the medium into a trapped state, and the dominant component is the ground state. Thus almost all population is trapped in the ground state and the two-photon absorption is dramatically suppressed. We present a numerical calculation for arbitrary values of the atomic and field parameters and also provide an analytic description for the required conditions.

  4. Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.

    Science.gov (United States)

    Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K

    2014-06-05

    In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.

  5. Research on the coefficient of sound absorption in turbid water

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-wei; LI Qi

    2008-01-01

    China's coastal waters are turbid and the properties of the seabed are complex.This negatively impacts the performance of underwater detection equipment.The properties of sound absorption in turbid water are not well understood.In this paper,the coefficient of sound absorption in turbid water was measured by the reverberation technique.All work was done in a reverberation barrel made of seamless aluminum.First,pure water was poured into the reverberation barrel and its reverberation time measured.Next,various concentrations of turbid water were poured into the barrel and their reverberation time measured.After all data had been gathered,the coefficient of sound absorption in turbid water of different concentrations was calculated. From this we determined a law of sound absorption in turbid water as summarized in the paper.

  6. Theoretical assessment of sound absorption coefficient for anisotropic nonwovens

    Directory of Open Access Journals (Sweden)

    Klara Kalinova

    2012-03-01

    Full Text Available The anisotropy factor as a function of fiber arrangement, fiber fineness and sample thickness has been derived from the theories of soundwave transformation due to phase changing. The sound absorption coefficient of the anisotropic fibrous material is then theoretically calculated. The fibrous materials were prepared so that the fibers are arranged parallel (perpendicularly laid fiber web called STRUTO technology in the direction of soundwave propagation or perpendicularly (longitudinally laid fiber web to the direction of sound propagation. The sound absorption coefficient was measured due to the Impedance tube. The theoretical results are in good agreement with experimental findings.

  7. Two-photon quantum interference in plasmonics: theory and applications.

    Science.gov (United States)

    Gupta, S Dutta; Agarwal, G S

    2014-01-15

    We report perfect two-photon quantum interference with near-unity visibility in a resonant tunneling plasmonic structure in folded Kretschmann geometry. This is despite absorption-induced loss of unitarity in plasmonic systems. The effect is traced to perfect destructive interference between the squares of amplitude reflection and transmission coefficients. We further highlight yet another remarkable potential of coincidence measurements as a probe with better resolution as compared to standard spectroscopic techniques. The finer features show up in both angle resolved and frequency resolved studies.

  8. Lifshitz Tails for the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    W Kirsch; M Krishna

    2010-09-01

    In this paper we consider the interband light absorption coefficient (ILAC) for various models. We show that at the lower and upper edges of the spectrum the Lifshitz tails behaviour of the density of states implies similar behaviour for the ILAC at appropriate energies. The Lifshitz tails property is also exhibited at some points corresponding to the internal band edges of the spectrum.

  9. A New Way to Study Water-Vapor Absorption Coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱ ozone monitor,water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.

  10. Medical prototyping using two photon polymerization

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-12-01

    Full Text Available Two photon polymerization involves nearly simultaneous absorption of ultrashort laser pulses for selective curing of photosensitive material. This process has recently been used to create small-scale medical devices out of several classes of photosensitive materials, such as acrylate-based polymers, organically-modified ceramic materials, zirconium sol-gels, and titanium-containing hybrid materials. In this review, the use of two photon polymerization for fabrication of several types of small-scale medical devices, including microneedles, artificial tissues, microfluidic devices, pumps, sensors, and valves, from computer models is described. Necessary steps in the development of two photon polymerization as a commercially viable medical device manufacturing method are also considered.

  11. Two-photon absorption prop erties of novel charge transfer molecules with divinyl sulfide/sulfone center%以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性∗

    Institute of Scientific and Technical Information of China (English)

    武香莲; 赵珂; 贾海洪; 王富青

    2015-01-01

    Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same compu-tational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sec-tions are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a

  12. Two photon physics. Personal recollection

    CERN Document Server

    Ginzburg, Ilya F

    2015-01-01

    The term two--photon processes is used for the reactions in which some system of particles is produced in collision of two photons, either real or virtual. In the study of these processes our main goal was to suggest approach, allowing to extract from the data information on proper two--photon process separating it from mechanism which responsible for the production of photons. Here I present my view for history of two--photon physics. I don't try to give complete review, concentrating mainly on works of our team (which cover essential part of the topic) and some colleagues. My citation is strongly incomplete. I cite here only papers which were essential in our understanding of the problems. The choice of presented details is the result of my discussions with Gleb Kotkin and Valery Serbo. 1. Prehistory. 2. Two photon processes at e^+e^- colliders. 3. Photon colliders. 4. Notes on physical program.

  13. Size segregated light absorption coefficient of the atmospheric aerosol

    Science.gov (United States)

    Horvath, H.

    The light absorption coefficient of atmospheric aerosols in the visible can be determined by depositing the particles on a filter and measuring its "transmission" in a special optical arrangement. With an impactor with rotating impaction plates producing a homogeneous deposit, it is possible to extend this technique to size segregated aerosol samples. A simultaneous determination of the mass size distribution is possible. Test measurements with black carbon aerosol have shown the feasibility of this method. Samples of the atmospheric aerosol have been taken in and near Vienna, in Naples and near Bologna. The light absorption of the aerosol is always highest for particle diameters between 0.1 and 0.2 μm. Only in the humid environment of the Po valley it had a slightly larger peak size, whereas the size of the nonabsorbing particles increased considerably. The light absorption of the atmospheric aerosol is always higher in an urban environment. 'The mass absorption coefficient of the aerosol at all four locations was very similar, and completely different from values which could be. expected using effective refractive indices which are frequently used in models. Using the data measured in this work two alternate models for the effective refractive index and black carbon content of the aerosol are suggested: (a) a size-dependent refractive index, where the imaginary part varies from -0.25 for particles smaller than 30 nm to - 0.003 for particles larger than 2 μm; this could especially be applied if an internal mixing of the aerosol is to be expected, or (2) a size-dependent fraction of elemental carbon in the case of external mixing with 43% of carbon particles for sizes below 30 nm decreasing to 10% for sizes up to 0.4 μm.

  14. A method for monitoring nuclear absorption coefficients of aviation fuels

    Science.gov (United States)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  15. Optimization of the acoustic absorption coefficients of certain functional absorbents

    Science.gov (United States)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  16. Two-photon ionization of colliding atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1977-09-01

    Semiclassical expressions of two-photon ionization of two colliding atoms are derived for a wide range of electromagnetic field intensity and detunings from the isolated atom line. The dependence of the ionization yield on the details of the interaction potential of the system is derived. This process promises an extremely sensitive method for studying line broadening on the far wing, especially when absorption or fluorescence becomes very weak.

  17. Excited-state dynamics and two-photon absorption cross sections of fluorescent diphenyl-tin(IV) derivatives with schiff bases: a comparative study of the effect of chelation from the ultrafast to the steady-state time scale.

    Science.gov (United States)

    Zugazagoitia, Jimena S; Maya, Mauricio; Damián-Zea, Carlos; Navarro, Pedro; Beltrán, Hiram I; Peon, Jorge

    2010-01-21

    Schiff bases bearing an intramolecular hydrogen bond are known to undergo excited-state intramolecular proton transfer and E-Z isomerization, which are related to their thermochromism and solvatochromism properties. In this study, we explored these ultrafast photoinduced processes for two doubly hydroxylated Schiff bases, salicylidene-2-aminophenol and 2-hydroxynaphthylmethylidene-2-aminophenol. From comparisons with our previously reported results for the parent monohidroxylated Schiff base salicylideneaniline, we were able to establish the lack of an effect of a second intramolecular hydrogen bond in the excited-state intramolecular proton-transfer process. Moreover, we synthesized and studied the photophysics of 14 diphenyl-tin(IV) derivatives with Schiff bases with the same framework as the former two. In these organometallic compounds, we observed an increase of more than 50 times in the excited-state decay times in comparison with those of the free ligands. This finding is attributed to the coordination with the metallic center, which restricts the fluctuations of the geometry of the organic Schiff base skeleton. The emission bands of these complexes can be easily tuned through substitutions at the Schiff base ligand and can be made to be centered well above 600 nm. The much enhanced emissive behavior of all diphenyl-tin(IV) derivatives allowed the study of several properties of their electronically excited states, including the effects of different substituents on their femtosecond and picosecond dynamics. Considering potential applications, we also performed transient absorption experiments to assess the wavelength interval for stimulated emission of this type of compound. Finally, we determined their two-photon absorption cross sections in the 760-820-nm range by measuring their two-photon induced fluorescence excitation spectra. Mainly, our results illustrate that the diphenyl-tin(IV) moiety, thanks to its size and its coordination mode with a single

  18. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...... for making efficient two-photon singlet oxygen sensitizers were then constructed from these results. Charge-transfer in the excited state of the prepared molecules was shown to play a pivotal role in the generationof singlet oxygen. This was established through studies of substituent effects on both...... the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...

  19. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  20. Photon absorption potential coefficient as a tool for materials engineering

    Science.gov (United States)

    Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole

    2016-09-01

    Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and

  1. Phased Beam Tracing Method Using the Reflection Coefficient Calculated from the Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon; Rindel, Jens Holger

    2005-01-01

    the measured surface impedance. However, it is not always possible to get the measured impedance data of the surface, so that a practical way of getting reflection characteristics is needed. Generally, in the architectural acoustics field, the absorption coefficients have been employed in the calculations......The phased beam tracing method (PBTM) is a technique which can calculate the pressure impulse response instead of energy impulse response, by taking the phase information into account. Inclusion of the phase information can extend the application of beam tracing technique to the mid frequency range...

  2. A nomogram for prediction of absorption rate coefficient

    Institute of Scientific and Technical Information of China (English)

    李玉红; 赵欣; 嵇晴; 徐建国; 孙瑞元

    2004-01-01

    Background Previous studies have suggested that nomogram can simplize complicated calculations of several varibles. A simple nomogram was constructed to estimate absorption rate coefficient (ka) by using the peak time (tpeak) and the elimination rate coefficient (ke) of drugs administered orally. Methods The nomogram was based on the plasma concentration-time (C-T) curve equation and the function relation between tpeak, ka and ke. A mathematical analysis was presented for the construction of single chart nomogram. To check the degree of accuracy of the developed nomogram, we used it to analyze retrospective profiles of 46 drugs and compared the ka values obtained graphically and those calculated by numerically solving the descriptive equation. In addition, we measured the carbocisteine concentration of 18 healthy volunteers by HPLC with fluorescence detection. To analyze performance error, the measured carbocisteine concentrations were compared with predicted concentrations by the ka obtained from the nomograms along with the other pharmacokinetic parameters. Results The estimated of ka values from nomograms were in very close proximity with the numerical values. The performance error was as follows: median performance error (MDPE) and median absolute performance error (MDAPE) were 1.32% and 18.15%, respectively. Conclusions The developed nomogram is accurate and reliable. The size of performance error meets the demand of clinical pharmacokinetics. Therefore, the nomograms can offer another convenient and easy method for rational individualized dosage regimens.

  3. A [111]-Cut Si Hemisphere Two-Photon Response Photodetector

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-Huan; CHEN Zhan-Guo; JIA Gang; WANG Hai-Yan; GAO Yan-Jun; LI Yi1

    2011-01-01

    Properties of two-photon response in a [lll]-cut nearly-intrinsic Si hemisphere photodetector are studied. The measured photocurrent of the photodetector responding to the 1.32μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voitage. Also, the photocurrent is independent of polarization. Such properties are in good agreement with the theory of two-photon absorption. The isotropic photocurrent generated from the [lll]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of Xxxxx /Xxxyy for silicon performing at 1.32μm is calculated to be 2.4 via the fitted function of the anisotropic photocurrent from the [110]-cut sample.%Properties of two-photon response in a [111]-cut nearly-intrinsic Si hemisphere photodetector are studied.The measured photocurrent of the photodetector responding to the 1.32 μm continuous wave laser shows a quadratic dependence on the coupled optical power and is saturated with the bias voltage.Also,the photocurrent is independent of polarization.Such properties are in good agreement with the theory of two-photon absorption.The isotropic photocurrent generated from the [111]-cut Si hemisphere is compared to the anisotropic one induced in the [110]-cut Si sample and the ratio of Xxxxx /Xxxyy for silicon performing at 1.32μm is calculated to be 2.4via the fitted function of the anisotropic photocurrent from the [110]-cut sample.Silicon materials have a variety of applications in microelectronics and silicon optoelectronics and are still attractive to relevant researchers.Commercial Si photodetectors are largely designed based on singlephoton absorption (SPA).However,nonlinear characteristics have been exhibited in silicon devices.Specifically,two-photon absorption (TPA) has attracted much attention in such devices of Si p-n and p-i-n photodiodes,Si waveguides and Si avalanche diodes,etc.for the autocorrelation measurements of

  4. Higgs Decay to Two Photons

    OpenAIRE

    Marciano, William J.; Zhang, Cen; Willenbrock, Scott

    2011-01-01

    The amplitude for Higgs decay to two photons is calculated in renormalizable and unitary gauges using dimensional regularization at intermediate steps. The result is finite, gauge independent, and in agreement with previously published results. The large Higgs mass limit is examined using the Goldstone-boson equivalence theorem as a check on the use of dimensional regularization and to explain the absence of decoupling.

  5. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks.

    Science.gov (United States)

    Nanda, Kaushik D; Krylov, Anna I

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  6. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Kaushik D.; Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  7. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    Science.gov (United States)

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-01

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  8. Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method

    Science.gov (United States)

    Nanda, Kaushik D.; Krylov, Anna I.

    2017-06-01

    We present static polarizabilities and two-photon absorption (2PA) cross sections for the low-lying electronic states of prototypical diradicals such as benzynes and analogues of m-xylylene and p-quinodimethane computed with the spin-flip equation-of-motion coupled-cluster singles and doubles (EOM-SF-CCSD) method. The static polarizabilities were calculated as analytic second derivatives of the EOM energies, and the 2PA cross sections were calculated using the expectation-value approach. We explain the trends in the nonlinear responses of the SF target states by constructing few-states models based on truncated sum-over-states expressions for these nonlinear properties. By using a Huckel-type treatment of the frontier molecular orbitals that host the unpaired electrons, we rationalize the trends in the dipole interactions between the SF target states relevant in the few-states models. We demonstrate the correlation between the nonlinear responses of these electronic states and the diradical character.

  9. The Hyperspectral Absorption Sensor - Advantages and challenges of continuous, in situ absorption coefficient measurements

    Science.gov (United States)

    Wollschläger, J.; Röttgers, R.; Petersen, W.; Zielinski, O.

    2016-12-01

    The marine environment is a highly dynamic system and rapid changes can occur on both spatial and temporal scales. This is especially true for the phytoplankton, which forms the basis of the marine food web. Comprehensive monitoring and investigation of its often patchy distribution and seasonal succession requires sensors which are fast, can be used in situ, and are automatable to reduce operational costs. Optical sensors fulfil all of these requirements. Due to its variety of (sometimes group-specific) photosynthetic and photoprotective pigments, phytoplankton has a considerable influence on the water's inherent and apparent optical properties. This offers the possibility to obtain information about the phytoplankton present by measuring these properties, for example the absorption coefficients of the water at the photosynthetic active wavelengths. However, common obstacles for obtaining high quality absorption coefficient measurements are the often low concentration of absorbing material present as well as errors introduced by light scattering on particles. These problems can be overcome by instruments taking advantage of integrating cavities, like the point-source integrating cavity absorption meter (PSICAM). The Hyperspectral Absorption Sensor (HyAbS) is the result of an attempt to combine the advantages of the PSICAM approach with the high resolution of continuous measurements. Its setup and working principle is described, and challenges and potential solutions with respect to its long-term automated operation are highlighted. This includes the replacement of the dye-based calibration of the instrument by a solid standard calibration. Finally, also results from field test with respect to phytoplankton investigation are given.

  10. Inference of the microwave absorption coefficient from stray radiation measurements in Wendelstein 7-X

    Science.gov (United States)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Marushchenko, N.; Stange, T.; Braune, H.; Gellert, F.; Hirsch, M.; Hoefel, U.; Knauer, J.; Oosterbeek, J. W.; Turkin, Y.; The Wendelstein 7-X Team

    2017-03-01

    The efficiency of electron cyclotron heating is determined by the microwave absorption of the plasma. Good microwave absorption is also crucial for the machine safety. In this paper we present a method of evaluating the microwave absorption coefficient from stray radiation measurements. The discussed method is computationally simple and can be applied potentially in real time. Evolution of the second harmonic extraordinary mode (X2) microwave absorption coefficient in Wendelstein 7-X during the start-up phase is presented, as well as an estimate of the absorption coefficient for the second harmonic ordinary mode (O2) wave.

  11. Two-photon pumped lead halide perovskite nanowire lasers

    CERN Document Server

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  12. Three-dimensional microfabrication using two-photon polymerization

    Science.gov (United States)

    Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina

    1998-09-01

    Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two-photon

  13. Two-Photon Flow Cytometry

    Science.gov (United States)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  14. Predicted sound absorption coefficients of absorber materials lined in a chamber

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2014-01-01

    Full Text Available Aims: The present study was aimed to measurement of sound absorption coefficient of mineral wool and determination of their absorption ability. Materials and Methods: Mineral wool was used to find noise absorption coefficient. Random and normal sound absorption coefficient values were predicted. Then, the measures of transmission loss calculated as an overall value, for applied absorbent material and bare sheet metal. Results: The measured values of noise with one octave band frequency demonstrated an attenuation of 5.5-7 dB for these frequencies. The absorption coefficients of materials showed that mineral wool had more normal sound coefficients than its random sound absorption coefficient values. Conclusion: It can be concluded that predicted normal sound absorption coefficients of used mineral wool materials were near to the areas of standard line. It seems that the amount or thickness of absorbent lining was a main reason of noise reduction in low band frequencies. Mineral wool has a higher density and can provide better acoustical and insulating results than fiberglass. Besides, mineral wool doesn′t lose its insulating value when wet and has an outstanding resistance to fire.

  15. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  16. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Science.gov (United States)

    Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan

    2015-02-01

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.

  17. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus 68100, Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey)

    2015-02-01

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s{sup 2}, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.

  18. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    Science.gov (United States)

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.

  19. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    OpenAIRE

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Lihong V. Wang

    2012-01-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method...

  20. Bayesian inversion from sabine absorption coefficients to flow resistivity values for porous absorbers

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2015-01-01

    diffraction, named Thomasson’s finite size correction. As input data, a set of the Sabine absorption coefficients in a recent absorption round robin test in 13 European chambers was used. Finally, the flow resistivity of the test specimen is characterized via the Bayesian framework, together...

  1. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  2. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  3. Noninvasive determination of absorption coefficient and reduced scattering coefficient of human skin tissues in vivo with oblique-incidence reflectometry

    Institute of Scientific and Technical Information of China (English)

    Ping Sun; Yu Wang; Xiaoli Mo; Jinghui Xie

    2008-01-01

    A spatial distribution of diffuse reflectance produced by obliquely incident light is not centered about the point of light entry. The value of shift in the center of diffuse reflectance is directly related to the absorption coefficient μa and the effective attenuation coefficient μeff. μa and the reduced scattering coefficient μ's of human skin tissues in vivo are measured by oblique-incidence reflectometry based on the two-source diffuse theory model. For ten Chinese volunteers aged 15-63 years, μa and μ's are noninvasively determined to be 0.029 - 0.075 and 0.52 - 0.97 mm-1, respectively.

  4. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  5. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    Science.gov (United States)

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications.

  6. Resonant two-photon ionization of phenol in methylene chloride doped solid argon using 248 nm KrF laser and 254 nm Hg lamp radiation, a comparative study. The UV/VIS absorption spectrum of phenol radical cation

    Science.gov (United States)

    Kesper, Karl; Diehl, Frank; Simon, Jens Georg Günther; Specht, Harald; Schweig, Armin

    1991-06-01

    Resonant two-photon ionization (TPI) of phenol (PhOH) has been successfully achieved in methylene chloride (CH 2Cl 2) doped solid argon using a KrF laser and a Hg resonance lamp. The result constitutes the first-time TPI of a typically organic molecule in this medium using an excimer laser as well as the first-time spectroscopic identification of PhOH +•. A qualitative model is proposed which is consistent with both the unexpected photostability of PhOH +• and the incomplete running of the TPI process in the applied medium.

  7. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    Science.gov (United States)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles.

  8. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence(TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization(TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  9. Synthesis of two carbazole-based dyes and application of two-photon initiating polymerization

    Institute of Scientific and Technical Information of China (English)

    HU RenTao; LU LiangFei; RUAN BanFeng; WANG Peng; ZHANG MingLiang; ZHOU HongPing; LI ShengLi; WU JieYing; TIAN YuPeng

    2009-01-01

    Two carbazole-based polymerization initiators possessing blue fluorescence emission have been synthesized via Wittig reaction in the solid phase at room temperature.Two-photon excited fluorescence (TPEF) spectra for them were investigated under 800 nm fs laser pulse and two-photon absorption cross sections were determined by the Z-scan technique.Then two-photon initiating polymerization (TPIP) microfabrication experiments were successfully carried out.Three-dimensional lattice and artificial defects were gained,indicating that they were viable candidates for the two-photon polymerization initiator in practical application of microfabrication.

  10. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    Science.gov (United States)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  11. Numerically optimized band boundaries of Planck mean absorption coefficients in air plasma

    Science.gov (United States)

    Kloc, P.; Aubrecht, V.; Bartlova, M.

    2017-08-01

    Radiation heat transfer plays an important role in the energy balance of plasma in an electric arc and its accurate prediction is essential for the development of new electrical devices. Unfortunately, a very complex spectrum of the absorption coefficient makes accurate radiation heat transfer calculations a very challenging task, especially with complex geometries. Numerical approximation of the absorption coefficient is therefore commonly used to reduce computing demands. This paper presents our contribution to the topic of computing requirements reduction, namely the problem of frequency band selection for mean absorption coefficients (MACs). We show that, with the proper band distribution and averaging method, even a very low number of bands can be sufficient for an accurate approximation of the real radiation heat transfer. The band selection process is based upon numerical optimization with a mean value of each band being calculated as a line limited Planck MAC. Both the line limiting factor and associated characteristic plasma absorption length are investigated in detail and an optimal value equal to the three plasma radii is proposed. Tables for three bands mean absorption coefficients in air at the pressure of 1 bar and temperature range spanning from 300 K to 30 kK are included in this paper. These tables serve as input parameters for a fast evaluation of radiation transfer using either the P1 or discrete ordinates method (DOM) approximation with satisfactory accuracy.

  12. Extraction of absorption coefficients from GaN nanowires grown on opaque substrates

    CERN Document Server

    Jayaprakash, Rahul; Germanis, Savvas; Androulidaki, Maria; Tsagaraki, Katerina; Georgakilas, Alexandros; Pelekanos, Nikos T

    2014-01-01

    We demonstrate a new method to measure absorption coefficients in any family of nanowires, provided they are grown on a substrate having considerable difference in permittivity with the nanowire-air matrix. In the case of high crystal quality, strain-free GaN nanowires, grown on Si (111) substrates with a density of ~1010 cm-2, the extracted absorption coefficients do not exhibit any enhancement compared to bulk GaN values, unlike relevant claims in the literature. This may be attributed to the relatively small diameters, short heights, and high densities of our nanowire arrays.

  13. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...... for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which...

  14. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers

    DEFF Research Database (Denmark)

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho

    2016-01-01

    absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts...... for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which...

  15. Exploring control parameters of two photon processes in solutions

    Indian Academy of Sciences (India)

    Debabrata Goswami; Amit Nag

    2012-01-01

    Two-photon microscopy depends extensively on the two-photon absorption cross-sections of biologically relevant chromophores. High repetition rate (HRR) lasers are essential in multiphoton microscopy for generating satisfactory signal to noise at low average powers. However, HRR lasers generate thermal distortions in samples even with the slightest single photon absorption. We use an optical chopper with HRR lasers to intermittently `blank’ irradiation and effectively minimize thermal effects to result in a femtosecond z-scan setup that precisely measures the two-photon absorption (TPA) cross-sections of chromophores. Though several experimental factors impact such TPA measurements, a systematic effort to modulate and influence TPA characteristics is yet to evolve. Here, we present the effect of several control parameters on the TPA process that are independent of chromophore characteristics for femtosecond laser pulse based measurements; and demonstrate how the femtosecond laser pulse repetition rate, chromophore environment and incident laser polarization can become effective control parameters for such nonlinear optical properties.

  16. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    Science.gov (United States)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  17. Fano interference in two-photon transport

    Science.gov (United States)

    Xu, Shanshan; Fan, Shanhui

    2016-10-01

    We present a general input-output formalism for the few-photon transport in multiple waveguide channels coupled to a local cavity. Using this formalism, we study the effect of Fano interference in two-photon quantum transport. We show that the physics of Fano interference can manifest as an asymmetric spectral line shape in the frequency dependence of the two-photon correlation function. The two-photon fluorescence spectrum, on the other hand, does not exhibit the physics of Fano interference.

  18. Evaluation of UV absorption coefficient in laser-modified fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Negres, R A; Burke, M W; Sutton, S B; DeMange, P; Feit, M D; Demos, S G

    2006-08-21

    Laser-induced damage in transparent dielectrics leads to the formation of laser-modified material as a result of exposure to extreme localized temperatures and pressures. In this work, we used an infrared thermal imaging system in combination with a fluorescence microscope to map the dynamics of the local surface temperature and fluorescence intensity under cw, UV excitation of laser-modified fused silica within a damage site. Based on a thermal diffusion model, we estimate the energy deposited via linear absorption mechanisms and derive the absorption coefficient of the modified material. In addition, irreversible changes in the absorption following extended laser exposure were observed.

  19. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-01-01

    There has been much interest recently in coherent multiphoton transitions in many-level systems. The present work considers the effect of relaxation in the response of a three-level system to a smoothly varying, near-resonant, two-photon field. The relaxation-dependent contributions to the nonlinear refractive index are calculated. It is shown that the coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. 1 figure. (RWR)

  20. Two-Photon Physics in Hadronic Processes

    Energy Technology Data Exchange (ETDEWEB)

    Carl Carlson; Marc Vanderhaeghen

    2007-11-01

    Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.

  1. Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry

    Directory of Open Access Journals (Sweden)

    H.Cabrera

    2006-01-01

    Full Text Available We use an optimized pump-probe mode-mismatched thermal lens scheme to determine the optical absorption coefficient and thermal diffusivity of ethanol, benzene, acetone, methanol, toluene and chloroform. In this scheme the excitation beam is focused in the presence of a collimated probe beam. The agreement between experimentally obtained results and values reported in the literature is good.

  2. Estimating the Sabine absorption coefficient of fibrous materials for various backing conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2017-01-01

    conditions by extracting the air flow resistivity of the test specimen and the frequency-dependent effect of the chamber on the measured absorption coefficients. Two homogeneous fibrous absorbers are measured for experimental validation, showing good agreements between the predictions and measurements...

  3. Correlations of two photons at hadron colliders

    OpenAIRE

    Kozlov, G. A.

    2011-01-01

    We study the Bose-Einstein correlations of two photons and their coherent properties that can provide the information about the space-time structure of the emitting source through the Higgs-boson decays into two photons. We argue that such an investigation could probe the Higgs-boson mass. The model is rather sensitive to the temperature of the environment and to the external distortion effect in medium.

  4. Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions.

    Science.gov (United States)

    Nelson, N B; Prézelin, B B

    1993-11-20

    Measuring the absolute absorption of suspensions of absorbing particles with unknown scattering characteristics is not possible in conventional spectrophotometers or in integrating spheres that have the sample located outside the sphere. A method for the calibration and use of an integrating sphere with a centrally located sample to measure absolute absorption coefficients of scattering suspensions is presented. Under the tested conditions the integrating sphere used in this study was insensitive to changes in the scattering coefficient of the sample but had a nonlinear response to increasing absorption of the sample, which could be corrected with an empirically derived function. This response was analyzed by using a Monte Carlo simulation, and results indicated that amplification of the absorption signal was primarily due to photons reflected from the sphere surface and the baffle reentering the cuvette. The calibration procedure described here may be generally applicable to spheres of different configurati n. An example of the use of the sphere for determining the absorption and scattering coefficients of marine phytoplankton samples is presented.

  5. Spectral Features of FM Spectroscopy of Two-Photon Interactions

    Institute of Scientific and Technical Information of China (English)

    夏慧荣; JohnL.Hall

    1994-01-01

    The spectral features of FM two-photon resonant interaction processes have been calculated for five different frequency modulation versions of counter-propagating incident fields. It is found that the proposed new modulation version (case b in the text) provides novel spectral features for a completely canceled absorption and a sharp dispersion shape at the fundamental beat note. Moreover, its absorption feature appears at the second harmonic of the RF modulation frequency generated by the joint modes via six interaction pathways without mutual phase shift. Such features persist even when the effects of the second-order sidebands of the incident fields are taken into account. Application potentials are emphasized.

  6. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    Directory of Open Access Journals (Sweden)

    N. Utry

    2014-09-01

    Full Text Available Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite, oxides (quartz, hematite and rutile, and carbonate (limestone were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  7. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    Science.gov (United States)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at

  8. Chlorophyll specific absorption coefficient and phytoplankton biomass in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2015-01-01

    The role of total particulate matter, the sum of phytoplankton and nonalgal particles, is essential to understanding the distribution and pathways of particulate carbon in the ocean. Their relative contributions to light absorption and scattering are fundamental to understanding remotely sensed ocean color. Until recently, data regarding the contribution of phytoplankton and algal particles to the inherent optical properties of the Red Sea was nonexistent. Some of the first measurements of these inherent optical properties in the Red Sea including phytoplankton specific absorption coefficients (aph*(λ)) were obtained by the TARA Oceans expedition in January 2010. From these observations, chlorophyll a was calculated using the Line Height Method (LHM) that minimizes the contribution to total and particulate absorption by non-algal particles (NAP) and CDOM. Bricaud and Stramski’s (1990) a method was then used to decompose hyperspectral total particulate absorption into the contributions by phytoplankton and nonalgal particles.

  9. Two-photon-induced cycloreversion reaction of chalcone photodimers

    Science.gov (United States)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  10. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    CERN Document Server

    Palastro, J P; Johnson, L A; Hafizi, B; Wahlstrand, J K; Milchberg, H M

    2016-01-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive, vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than, but quickly surpassing, the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of 3rd harmonic generation, providing an additional two-photon excitation channel, fundamental + 3rd harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive, vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in atmosphere.

  11. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    Science.gov (United States)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  12. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    Science.gov (United States)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  13. Absorption coefficients of GeSn extracted from PIN photodetector response

    Science.gov (United States)

    Ye, Kaiheng; Zhang, Wogong; Oehme, Michael; Schmid, Marc; Gollhofer, Martin; Kostecki, Konrad; Widmann, Daniel; Körner, Roman; Kasper, Erich; Schulze, Jörg

    2015-08-01

    In this paper the optical absorption of the GeSn PIN photodetector was investigated. The vertical GeSn PIN photodetectors were fabricated by molecular beam epitaxy (MBE) and dry etching. By means of current density-voltage (J-V) and capacity-voltage (C-V) measurements the photodetector device was characterized. The absorption coefficients of GeSn material were finally extracted from the optical response of PIN structure. With further direct bandgap analysis the influences of device structure was proved negligible.

  14. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  15. Two Photon Couplings of Hybrid Mesons

    CERN Document Server

    Page, P R

    1996-01-01

    A new formalism is developed for the two photon production of hybrid mesons via intermediate hadronic decays. In an adiabatic and non--relativistic context with spin 1 pair creation we obtain the first absolute estimates of unmixed hybrid production strengths to be small (0.03 - 3 eV) in relation to experimental meson widths (0.1 - 5 keV). Within this context, two photon collisions therefore strongly discriminate between hybrid and conventional meson wave function components at BaBar, Cleo II, LEP2 and LHC, filtering out non--gluonic components. Decay widths of unmixed hybrids are tiny. The formalism also induces conventional meson two photon widths roughly in agreement with experiment.

  16. Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution

    Energy Technology Data Exchange (ETDEWEB)

    DeRose, Paul C. [Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899-8394 (United States)]. E-mail: paul.derose@nist.gov; Kramer, Gary W. [Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899-8394 (United States)

    2005-06-15

    The absorption coefficient of standard reference material[registered] (SRM[registered]) 1932, fluorescein in a borate buffer solution (pH=9.5) has been determined at {lambda}=488.0, 490.0, 490.5 and 491.0 nm using the US national reference UV/visible spectrophotometer. The purity of the fluorescein was determined to be 97.6% as part of the certification of SRM 1932. The solution measured was prepared gravimetrically by diluting SRM 1932 with additional borate buffer. The value of the absorption coefficient was corrected for bias due to fluorescence that reaches the detector and for dye purity. Bias due to fluorescence was found to be on the order of -1% for both monochromatic and polychromatic (e.g., diode-array based) spectrophotometers.

  17. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-01-01

    A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test...

  18. Semi-empirical schemes for the x-ray mass absorption coefficients used in XRF analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    X-ray mass absorption coefficients play an important role in the accu-racy of any XRF intensity calculation. It is necessary to determine the proper schemesfor providing satisfying values μ/p. In this work we examined and compared variousschemes. A program based on the existing schemes to provide more accurate andconvenient μ/p values was then introduced. The results from the program appears tobe tolerable.

  19. INVERSE COMPUTATION OF OPTICAL-ABSORPTION COEFFICIENT IN INHOMOGENEOUS MATERIAL WITH VARIED THERMAL CONDUCTIVITY

    Institute of Scientific and Technical Information of China (English)

    ZhuJianxin

    2002-01-01

    In this paper,for an inhomogeneous material in which the thermal conductivity varies as a function of depth,an efficient treatment is proposed to inversely calculate the depth distribution of optical-absorption coefficient by the surface temperature of the material. It is demonstrated that the results of inverse computation by that method are more similar to the experimental ones measured by some destructive method. Thus ,the treatment is more feasible to nondestructively estimate the distribution.

  20. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...... the theoretical absorption coefficient and the reverberation room measurement. The angle-weighted absorption coefficient, together with the size correction, agrees satisfactorily with the measured absorption data by the reverberation chamber method. At high frequencies and for large samples, the averaged...... weighting corresponds well with the measurement, whereas at low frequencies and for small panels, the relatively flat distribution agrees better....

  1. Modeling of the Interminiband Absorption Coefficient in InGaN Quantum Dot Superlattices

    Directory of Open Access Journals (Sweden)

    Giovanni Giannoccaro

    2016-01-01

    Full Text Available In this paper, a model to estimate minibands and theinterminiband absorption coefficient for a wurtzite (WZ indium gallium nitride (InGaN self-assembled quantum dot superlattice (QDSL is developed. It considers a simplified cuboid shape for quantum dots (QDs. The semi-analytical investigation starts from evaluation through the three-dimensional (3D finite element method (FEM simulations of crystal mechanical deformation derived from heterostructure lattice mismatch under spontaneous and piezoelectric polarization effects. From these results, mean values in QDs and barrier regions of charge carriers’ electric potentials and effective masses for the conduction band (CB and three valence sub-bands for each direction are evaluated. For the minibands’ investigation, the single-particle time-independent Schrödinger equation in effective mass approximation is decoupled in three directions and resolved using the one-dimensional (1D Kronig–Penney model. The built-in electric field is also considered along the polar axis direction, obtaining Wannier–Stark ladders. Then, theinterminiband absorption coefficient in thermal equilibrium for transverse electric (TE and magnetic (TM incident light polarization is calculated using Fermi’s golden rule implementation based on a numerical integration into the first Brillouin zone. For more detailed results, an absorption coefficient component related to superlattice free excitons is also introduced. Finally, some simulation results, observations and comments are given.

  2. The influence of surface preparation on the absorption coefficient of laser radiation

    Science.gov (United States)

    Kurp, Piotr; Mucha, Zygmunt; Mulczyk, Krystian; Gradoń, Ryszard; Trela, Paweł

    2016-12-01

    The absorption coefficient of the surface of a workpiece is of importance in laser treatment, particularly in the treatment where the temperature of an element must be strictly controlled. Laser surface treatment (such as hardening, metallic glazing) and laser forming can be primarily included in this type of technology. In another case, surface temperature must be precisely controlled, especially if structural changes are to be avoided. There are a number of ways to increase the absorption coefficient of the surface of an element. Since the laser forming is the research subject of the authors of the presented paper, it was necessary to determine the absorption coefficient for the different surfaces preparation of workpieces. Raw surface, oxidized surface, sandblasted surface, black enamel covered surface and waterglass covered surface were examined, respectively. The experiment was performed using a CO2 laser with a head for a surface treatment which generates a rectangular beam of dimensions 2x20 mm, and the samples were made of X5CrNi18-10 stainless steel.

  3. Non-uniform sound intensity distributions when measuring absorption coefficients in reverberation chambers using a phased beam tracing

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2010-01-01

    intensity distributions above 1 kHz were similar for all studied cases, but some variations in low frequency intensity distributions were observed. If the non-uniform intensity distribution and a finite size effect are taken into account for correcting the theoretical absorption coefficients, a good......Measured absorption coefficients in reverberation chambers often differ from theoretical random incidence absorption coefficients, because ideal assumptions for the theoretical random incidence absorption coefficient are not fulfilled during measurements in actual reverberation chambers. Therefore...... sound intensity distributions on absorber under measurement conditions have been simulated using a phased beam tracing, and used as correction functions for reducing discrepancies between the measured and theoretical absorption coefficients. Two reverberation rooms were investigated by assuming...

  4. Dependence of dose coefficients for inhaled 239Pu on absorption parameters.

    Science.gov (United States)

    Suzuki, K; Sekimoto, H; Ishigure, N

    2001-01-01

    With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.

  5. Predicting the Sabine absorption coefficients of fibrous absorbers for various air backing conditions with a frequency-dependent diffuseness correction

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    characteristics of their own configurations. This study aims to predict the absorption coefficient for various mounting conditions from a single measurement of an arbitrary mounting condition by extracting the air flow resistivity of the test specimen and the frequency-dependent effect of the chamber......Fibrous absorbers can be installed with various air backing conditions to fulfil a given low frequency acoustic requirement. Since absorber manufacturers cannot provide the absorption coefficients for all possible mounting conditions, acousticians have difficulties knowing the absorption...

  6. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    Science.gov (United States)

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  7. Two-photon physics at LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan; Lehto, Mark [University of Sheffield Department of Physics, Sheffield S3 7RH (United Kingdom); Seymour, Michael H.; Close, Frank; Wright, Alison [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Affholderbach, Klaus; Cowan, Glen [Universitaet Siegen, Fachbereich Physik, D-57068 Siegen (Germany); Finch, Alex [University of Lancaster, Lancaster LA1 4YB (United Kingdom); Lauber, Jan [University College London, Gower Street, London WC1E 6BT (United Kingdom)

    1998-02-01

    The working group on two-photon physics concentrated on three main subtopics: modelling the hadronic final state of deep inelastic scattering on a photon; unfolding the deep inelastic scattering data to obtain the photon structure function; and resonant production of exclusive final states, particularly of glueball candidates. In all three areas, new results were presented. (author)

  8. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    Science.gov (United States)

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  9. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    Science.gov (United States)

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  10. Pancreatic enzyme replacement therapy in cystic fibrosis: dose, variability and coefficient of fat absorption.

    Science.gov (United States)

    Calvo-Lerma, Joaquim; Martínez-Barona, Sandra; Masip, Etna; Fornés, Victoria; Ribes-Koninckx, Carmen

    2017-07-27

    Pancreatic enzyme replacement therapy (PERT) remains a backbone in the nutritional treatment of cystic fibrosis. Currently, there is a lack of an evidence-based tool that allows dose adjustment. To date, no studies have found an association between PERT dose and fat absorption. Therefore, the aim of the study was to assess the influence of both the PERT dose and the variability in this dose on the coefficient of fat absorption (CFA). This is a retrospective longitudinal study of 16 pediatric patients (192 food records) with three consecutive visits to the hospital over a twelve-month period. Dietary fat intake and PERT were assessed via a four-day food record and fat content in stools was determined by means of a three-day stool sample collection. A beta regression model was built to explain the association between the CFA and the interaction between the PERT dose (lipase units [LU]/g dietary fat) and the variability in the PERT dose (standard deviation [SD]). The coefficient of fat absorption increased with the PERT dose when the variability in the dose was low. In contrast, even at the highest PERT dose values, the CFA decreased when the variability was high. The confidence interval suggested an association, although the analysis was not statistically significant. The variability in the PERT dose adjustment should be taken into consideration when performing studies on PERT efficiency. A clinical goal should be the maintenance of a constant PERT dose rather than trying to obtain an optimal value.

  11. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.

  12. Transparency induced by two photon interference in a beam splitter

    Institute of Scientific and Technical Information of China (English)

    Wang Kai-Ge; Yang Guo-Jian

    2004-01-01

    We propose a special two-photon state which is completely transparent in a 50/50 beam splitter. This effect is caused by the destructive two-photon interference and shows the signature of photon entanglement. We find that the symmetry of the two-photon spectrum plays the key role for the properties of two-photon interference.

  13. Measurement of the absorption coefficient of a glucose solution through transmission of light and polarymetry techniques

    Science.gov (United States)

    Yáñez M., J.

    2011-10-01

    Diabetes is a disease with no cure, but can be controlled to improve the quality of life of sufferers. Currently there are means to control, but this means they have the disadvantage that in order to measure the amount of glucose is necessary to take blood samples that are painful. This paper presents a system for measuring glucose using non-invasive optical techniques: using absorption spectroscopy and polarimetry technique. It shows the results obtained from experiments done on samples containing distilled water and different amounts of glucose to study the absorption coefficient of glucose with both techniques. Water is used because it is one of the main elements in the blood and interferes with glucose measurement. This experiment will develop a prototype to measure glucose through a non-invasive technique.

  14. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...... with the basic two-level Doppler cooling process this allows for reduction of the atomic sample temperature by more than a factor of 10 over a broad frequency range. First experimental evidence for the two-photon cooling process is presented and compared to model calculations. Agreement between theory...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  15. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    Science.gov (United States)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  16. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    Science.gov (United States)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  17. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    Science.gov (United States)

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  18. Linear absorption coefficient of in-plane graphene on a silicon microring resonator

    CERN Document Server

    Cai, Heng; Zhang, He; Huang, Qingzhong; Xia, Jinsong; Barille, Regis; Wang, Yi

    2016-01-01

    We demonstrate that linear absorption coefficient (LAC) of a graphene-silicon hybrid waveguide (GSHW) is determined by the optical transmission spectra of a graphene coated symmetrically coupled add-drop silicon microring resonator (SC-ADSMR), of which the value is around 0.23 dB/um. In contrast to the traditional cut-back method, the measured results are not dependent on the coupling efficiency of the fiber tip and the waveguide. Moreover, precision evaluation of graphene coated silicon microring resonator (SMR) is crucial for the optoelectronic devices targeting for compact footprint and low power consumption.

  19. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.;

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined...

  20. Two-Photon Collective Atomic Recoil Lasing

    Directory of Open Access Journals (Sweden)

    James A. McKelvie

    2015-11-01

    Full Text Available We present a theoretical study of the interaction between light and a cold gasof three-level, ladder configuration atoms close to two-photon resonance. In particular, weinvestigate the existence of collective atomic recoil lasing (CARL instabilities in differentregimes of internal atomic excitation and compare to previous studies of the CARL instabilityinvolving two-level atoms. In the case of two-level atoms, the CARL instability is quenchedat high pump rates with significant atomic excitation by saturation of the (one-photoncoherence, which produces the optical forces responsible for the instability and rapid heatingdue to high spontaneous emission rates. We show that in the two-photon CARL schemestudied here involving three-level atoms, CARL instabilities can survive at high pump rateswhen the atoms have significant excitation, due to the contributions to the optical forces frommultiple coherences and the reduction of spontaneous emission due to transitions betweenthe populated states being dipole forbidden. This two-photon CARL scheme may form thebasis of methods to increase the effective nonlinear optical response of cold atomic gases.

  1. Two-photon super bunching of thermal light via multiple two-photon-path interference

    CERN Document Server

    Hong, Peilong; Zhang, Guoquan

    2012-01-01

    We propose a novel scheme to achieve two-photon super bunching of thermal light through multiple two-photon-path interference, in which two mutually first-order incoherent optical channels are introduced by inserting a modified Michelson interferometer into a traditional two-photon HBT interferometer, and the bunching peak-to-background ratio can reach 3 theoretically. Experimentally, the super bunching peak-to-background ratio was measured to be 2.4, much larger than the ratio 1.7 measured with the same thermal source in a traditional HBT interferometer. The peak-to-background ratio of two-photon super bunching of thermal light can be increased up to $2\\times1.5^n$ by inserting cascadingly $n$ pairs of mutually first-order incoherent optical channels into the traditional two-photon HBT interferometer. The two-photon super bunching of thermal light should be of great significance in improving the visibility of classical ghost imaging.

  2. Localized Polymerization Using Single Photon Photoinitiators in Two-photon process for Fabricating Subwavelength Structures

    CERN Document Server

    Ummethala, Govind; Chaudhary, Raghvendra P; Hawal, Suyog; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    Localized polymerization in subwavelength volumes using two photon dyes has now become a well-established method for fabrication of subwavelength structures. Unfortunately, the two photon absorption dyes used in such process are not only expensive but also proprietary. LTPO-L is an inexpensive, easily available single photon photoinitiator and has been used extensively for single photon absorption of UV light for polymerization. These polymerization volumes however are not localized and extend to micron size resolution having limited applications. We have exploited high quantum yield of radicals of LTPO-Lfor absorption of two photons to achieve localized polymerization in subwavelength volumes, much below the diffraction limit. Critical concentration (10wt%) of LTPO-Lin acrylate (Sartomer) was found optimal to achieve subwavelength localized polymerization and has been demonstrated by fabricating 2D/3D complex nanostructures and functional devices such as variable polymeric gratings with nanoscaled subwavelen...

  3. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, N., E-mail: n.zamani@sutech.ac.ir [Department of Physics, College of Science, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Keshavarz, A., E-mail: keshavarz@sutech.ac.ir [Department of Physics, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Nadgaran, H., E-mail: nadgaran@susc.ac.ir [Department of Physics, College of Science, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge–Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  4. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    Science.gov (United States)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  5. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  6. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    Science.gov (United States)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  7. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  8. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  9. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  10. Adiabatic following in two-photon transition

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Nayfeh, A.H.

    1977-03-01

    The coherent interaction of two smoothly varying, near-resonant, two-photon pulses with a three-level system can be described by ''two-photon damped Bloch equations'' which are analogous to those for a one-photon transition in a two-level system except for the presence of a two-photon coupling and a frequency shift. These equations are solved for the cases ..gamma../sub 1/, ..gamma../sub 2/ very-much-less-than ..cap omega.., ..gamma../sub 1/ = ..gamma../sub 2/, and ..gamma../sub 2/k/sup 2/epsilon/sup 4//..cap omega../sup 2/, ..gamma../sub 1/ very-much-less-than ..cap omega.., where ..gamma../sub 1/ and ..gamma../sub 2/ are the atomic energy and phase relaxation widths, respectively, and ..cap omega.. is the Rabi frequency. The leading contribution to the refractive index is intensity dependent, caused by the level shifts inherent in multiphoton processes; it includes a relaxation dependent part which is important at times shorter than ..gamma../sup -1//sub 1/. The second-order contributions depend on the square of the intensity and the time-integrated square of the intensity. The latter contribution, which is relaxation dependent, causes line asymmetry at the long-wavelength wing; it consists of a term proportional to ..gamma../sub 2/-..gamma../sub 1/ and only important at early times and a term proportional to 2..gamma../sub 2/-..gamma../sub 1/.

  11. Denoising two-photon calcium imaging data.

    Science.gov (United States)

    Malik, Wasim Q; Schummers, James; Sur, Mriganka; Brown, Emery N

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models.

  12. Nonresonant two-photon transitions in length and velocity gauges

    Science.gov (United States)

    Jentschura, U. D.

    2016-08-01

    We reexamine the invariance of two-photon transition matrix elements and corresponding two-photon Rabi frequencies under the "gauge" transformation from the length to the velocity gauge. It is shown that gauge invariance, in the most general sense, only holds at exact resonance, for both one-color as well as two-color absorption. The arguments leading to this conclusion are supported by analytic calculations which express the matrix elements in terms of hypergeometric functions, and ramified by a "master identity" which is fulfilled by off-diagonal matrix elements of the Schrödinger propagator under the transformation from the velocity to the length gauge. The study of the gauge dependence of atomic processes highlights subtle connections between the concept of asymptotic states, the gauge transformation of the wave function, and infinitesimal damping parameters for perturbations and interaction Hamiltonians that switch off the terms in the infinite past and future [of the form exp(-ɛ |t |)] . We include a pertinent discussion.

  13. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... the theoretical absorption coefficient and the reverberation room measurement. The angle-weighted absorption coefficient, together with the size correction, agrees satisfactorily with the measured absorption data by the reverberation chamber method. At high frequencies and for large samples, the averaged...

  14. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  15. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    Science.gov (United States)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  16. Coefficient of Performance Optimization of Single-Effect Lithium-Bromide Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S......⊘nderborg, Denmark. Since the model is too complex to study analytically, we vary different input variables within the permissible operating range of the heat pump and evaluate COP at the resulting steady-state operating points. It is found that the best set-point for each individual input is located at an extreme......-state operation of the heat pump, while avoiding crystallization issues....

  17. Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water

    Science.gov (United States)

    Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.

    1998-07-01

    We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

  18. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    Science.gov (United States)

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.

  19. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    Science.gov (United States)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  20. Remote sensing retrieval of total absorption coefficient in the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    QING Song; ZHANG Jie; CUI Tingwei; BAO Yuhai

    2012-01-01

    Temporal and spatial patterns of inherent optical properties in the Bohai Sea are very complex.In this paper,we used 77 groups of field data of AOPs(apparent optical properties)and lOPs(inherent optical properties)collected in June,August,and September of 2005 in the Bohai Sea,to retrieve the spectral total absorption coefficient a(λ)with the quasi-analytical algorithm(QAA).For QAA implementation,different bands in the region 680-730 nm(in 5 nm intervals)were selected and compared,to determine the optimal band domain of the reference wavelength.On this basis,we proposed a new algorithm(QAA-Com),a combination of QAA-685 and QAA-715,according to turbidity characterized by a(440).The percentage difference of model retrievals in the visible domain was between 4.5%-45.1%,in average of 18.8% for a(λ).The QAA model was then applied to Medium Resolution Imaging Spectrometer(MERIS)radiometric products,which were temporally and spatially matched with in-situ optical measurements.Differences between MERIS retrievals and in-situ values were in the range 9.2%-27.8% for a(λ)in the visible domain.Major errors in satellite retrieval are attributable to uncertainties of QAA model parameters and in-situ measurements,as well as imperfect atmospheric correction of MERIS data by the European Space Agency (ESA).During a storm surge in April 2009,time series of MERIS images together with the QAA model were used to analyze spatial and temporal variability of the total absorption coefficient pattern in the Bohai Sea.It is necessary to collect more independent field data to improve this algorithm.

  1. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  2. Ultra-low values of the absorption coefficient for band-band transitions in moderately doped Si obtained from luminescence

    Science.gov (United States)

    Daub, E.; Würfel, P.

    1996-11-01

    The absolute value of the absorption coefficient αbb(ℏω) for band-band transitions near the band edge was determined in moderately doped silicon by photoluminescence spectra analysis. The major advantage of this method in determining αbb(ℏω) is the lack of interference with free carrier absorption, in contrast to conventional methods like transmission or photothermal deflection measurements. We deduce values for αbb(ℏω), which are nearly five orders of magnitude smaller than the absorption coefficient αfc(ℏω) for free carrier absorption. With this method it is possible to examine in detail the influence of doping on the absorption coefficient for band-band transitions near the absorption edge. The appearance of band tails and band-gap narrowing are very well reflected. With conventional methods, which can only detect the overall absorption of the incident radiation, the determination of αbb(ℏω) in the vicinity of the band edge is impossible for moderately and heavily doped silicon, because it is completely masked by the free carrier absorption.

  3. Coherent control of non-resonant two-photon transition in molecular system

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Wang Zu-Geng; Sun Zhen-Rong

    2010-01-01

    In this paper,we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and π phase step-function shape).The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth.Our results demonstrate that,the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field,and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth.

  4. Design, synthesis, and characterization of photoinitiators for two-photon polymerization

    Science.gov (United States)

    Whitby, Reece; MacMillan, Ryan; Janssens, Stefaan; Raymond, Sebastiampillai; Clarke, Dave; Kay, Andrew; Jin, Jianyong; Simpson, Cather M.

    2016-09-01

    A series of dipolar and quadrupolar two-photon absorption (2PA) photoinitiators (PIs) based around the well-known triphenylamine (TPA) core and tricyanofuran (TCF) acceptors have been prepared for use in two-photon polymerisation (TPP). The synthesised dipolar species are designated as 5 and 7, and the remaining quadrupolar species are 6, 8, 9 and 10. Large two-photon absorption cross-sections (δ2PA) ranging between 333 - 507 GM were measured at 780 nm using the z-scan technique. Fluorescence quantum yields (ΦF) were below 3% across the series when compared to Rhodamine 6G as a reference standard. Finally, TPP tests were conducted on PIs 7 and 8 to assess their ability to initiate the polymerisation of acrylate monomers using an 800 nm femtosecond Ti:Sapphire laser system.

  5. Dependence of dose coefficients for {sup 239}Pu on transfer rates and absorption parameters

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan); Ishigure, N. [Division of Radiotoxicology and Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2000-05-01

    As it is reported of the biokinetic models and parameter values of the International Commission on Radiological Protection (ICRP) for dose estimation have uncertainties owing to insufficiency of human data. For most radionuclides, the data underlying such models and parameters of ICRP usually depend on animal experiments. Moreover, these values or model parameter are also greatly different between mammalian species. Recently, various radiation protection organizations are considering the biokinetic uncertainties from standpoints of data's sources, quality and completeness. In practice, a sensitivity analysis of doses to parameters is significant for the purpose of risk assessment. In general, movement or material in the body is depicted as a system of first-order processes, and parameter values are expressed as transfer rates between compartments. In this study, we made a code to reproduce the ICRP's dose coefficients for {sup 239}Pu, which is one of the most important elements for occupational exposure and its effective dose is much concerned with its own distribution in the body for dominance of alpha-decay. By using this code, we modified each transfer rate in a factor of 2, 3 and 4 in order to evaluate the effects, and calculated the sensitivities of effective doses due to these changes. Additionally, we examined the effects of modification of absorption parameters f{sub r}, S{sub r} and S{sub s}, which represent the absorption of particles from respiratory tract into blood. Consequently, the transfer rates that give a large sensitivity were specified, and it was shown that changes of transfer rates and absorption parameters are not so influential on effective doses for {sup 239}Pu in many cases. (author)

  6. Analytical modeling of photon absorption coefficient in mono and bilayer circular graphene quantum dots for light absorber applications

    Science.gov (United States)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-02-01

    We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved

  7. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical proc

  8. Two-photon imaging of stem cells

    Science.gov (United States)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  9. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    Science.gov (United States)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  10. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  11. Experimental method for the determination of two-photon cross sections using four-wave mixing

    Science.gov (United States)

    Burris, J.; Mcilrath, T. J.

    1985-01-01

    The two-photon absorption cross section for the R22 + S12(J double prime = 9 1/2) transition in nitric oxide's gamma band has been determined. The value is in good agreement with previous measurements on several other NO transitions. The technique described here can be used to obtain accurate cross sections for other diatomic molecules.

  12. Two-photon excited highly polarized and directional upconversion emission from slab organic crystals

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Yang, Jie; Xia, Hong; Ma, Yu-Guang; Wang, Hai-Yu; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    Effective upconversion emission from an organic crystal of cyano-substituted oligo (p-phenylenevinylene) (CNDPASDB) based on two-photon absorption is presented. Frequency upconverted cavityless lasing, or amplified spontaneous emission, from the crystal pumped by a femtosecond laser of 800 nm was ob

  13. Two-photon Interference with Non-identical Photons

    CERN Document Server

    Liu, Jianbin; Zheng, Huaibin; Chen, Hui; Li, Fu-Li; Xu, Zhuo

    2014-01-01

    The indistinguishability of non-identical photons is dependent on detection system in quantum physics. If two photons with different wavelengths are indistinguishable for a detection system, there can be two-photon interference when these two photons are incident to two input ports of a Hong-Ou-Mandel interferometer, respectively. The reason why two-photon interference phenomena are different for classical and nonclassical light is not due to interference, but due to the properties of light and detection system. These conclusions are helpful to understand the physics and applications of two-photon interference.

  14. Boundary Element Method for Reconstructing Absorption and Diffusion Coefficients of Biological Tissues in DOT/MicroCT Imaging.

    Science.gov (United States)

    Xie, Wenhao; Deng, Yong; Lian, Lichao; Yan, Dongmei; Yang, Xiaoquan; Luo, Qingming

    2016-01-01

    The functional information, the absorption and diffusion coefficients, as well as the structural information of biological tissues can be provided by the DOT(Diffuse Optical Tomograph)/MicroCT. In this paper, we use boundary element method to calculate the forward problem of DOT based on the structure prior given by the MicroCT, and then we reconstruct the absorption and diffusion coefficients of different biological tissues by the Levenberg-Marquardt algorithm. The method only needs surface meshing, reducing the complexity of calculation; in addition, it reconstructs a single value within an organ, which reduces the ill-posedness of the inverse problem to make reconstruction results have good noise stability. This indicates that the boundary element method-based reconstruction can serve as an new scheme for getting absorption and diffusion coefficients in DOT/MicroCT multimodality imaging.

  15. Second harmonic generation and two-photon luminescence upconversion in glasses doped with ZnSe nanocrystalline quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Thantu, Napoleon [Idaho National Engineering and Environmental Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States)]. E-mail: Napoleon.Thantu@ngc.com

    2005-01-01

    We report two-photon excited emission in borosilicate glasses doped with ZnSe nanocrystalline quantum dots. The emission, predominantly near the two-photon energy and detected in the direction of the excitation beam, is in the visible, and the fundamental excitation is the near-infrared output of a tunable femtosecond laser. Depending on the two-photon energy, time- and frequency-resolved measurements at room temperature reveal that the emission largely consists of second harmonic generation (SHG) and two-photon luminescence upconversion, and a much smaller luminescence from redshifted, low-lying trap states and other trap levels residing near the semiconductor band edge. We discuss the SHG origin in terms of bulk-like and surface contributions from the nanocrystals and the two-photon resonant enhancement near the excitonic absorption.

  16. Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species

    Science.gov (United States)

    Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)

    2013-01-01

    Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.

  17. Study on absorption coefficients of dual-energy γ-rays in determining phase fractions of multiphase flows

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-biao; LI Dong-hui; WU Ying-xiang

    2005-01-01

    This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotopes of 241Am and 137Cs with emission energies of 59.5 keV and 662 keV respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The statistical error has been analyzed on the basis of the accurate absorption coefficient which enables determination phrase fractions almost independent of the flow regime. Improvement has been achieved on the measurement accuracy of phase fractions.

  18. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  19. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization

    Science.gov (United States)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine

    2015-04-01

    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  20. Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Beijing free electron laser (BFEL) has been employed for the first time to study the nonlinear photoconductivity characteristics of the typical infrared photoelectronic material Hg1-xCdxTe. Taking advantage of the high photon flux density of BFEL, we have investigated the photoconductivity characteristics in Hg1-xCdxTe induced by two-photon absorption by means of the photoconductivity technique, observed the photoconductivity signals saturation, and studied the two-photon photoconductivity characteristics on different bias voltages across the sample.

  1. Low temperature FIR and submm mass absorption coefficient of interstellar silicate dust analogues

    CERN Document Server

    Coupeaud, A; Meny, C; Nayral, C; Delpech, F; Leroux, H; Depecker, C; Creff, G; Brubach, J B; Roy, P

    2011-01-01

    Cold dust grains emission in the FIR/submm is usually expressed as a modified black body law in which the dust mass absorption coefficient (MAC), is described with a temperature- and wavelength-independent emissivity spectral index, beta. However, numerous data from space and balloon-born missions and recently from Herschel and Planck show that dust emission is not well understood, as revealed by the observed anti-correlation of beta with the grain temperature. In order to give astronomers the necessary data to interpret FIR/submm observations, we synthesised analogues of interstellar amorphous and crystalline silicate grains, rich in Mg and Ca, and having stiochiometry of olivine and pyroxene and measured their MAC, in the 100-1000/1500 \\mum range for grain temperatures varying from 300 to 10 K. We find that the grain MAC decreases when the grain temperature decreases and that the local spectral index, beta, defined as the slope of the MAC curve, is anti-correlated with the grain temperature. These variation...

  2. Noise-driven optical absorption coefficients of impurity doped quantum dots

    Science.gov (United States)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  3. Solvent effects on optical properties of a newly synthesized two-photon polymerization initiator: BPYPA

    Institute of Scientific and Technical Information of China (English)

    Guo Ya-Hui; Sun Yuan-Hong; Tao Li-Min; Zhao Ke; Wang Chuan-Kui

    2005-01-01

    Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorption processes,of a newly synthesized asymmetrical charge-transfer organic molecule bis-(4-bromo-phenyl)-[4-(2-pyridin-4-yl-vinyl)phenyl]-amine (BPYPA). There exist two charge-transfer states for the compound in visible region. The two-photon absorption cross section calculated by a three-state model and solvatochromic shift of the charge-transfer states are found to be solvent-dependent, where a nonmonotonic behaviour with respect to the polarity of the solvents is observed. The numerical results show that the organic molecule exhibits a rather large two-photon absorption cross section as compared with the compound 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine (DBASVP) reported previously, and is predicted to be a good two-photon polymerization initiator. The hydrogen-bond effect is analysed. The computational results are in good agreement with the measurements.

  4. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide

    Science.gov (United States)

    Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra

    2014-08-01

    Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.

  5. Two-photon conductivity in semiconductors: a new tool for the study of the quantum properties of light

    Science.gov (United States)

    Rosencher, E.; Boitier, F.; Godard, A.; Fabre, C.

    2012-01-01

    Two-photon absorption in GaAs occurs once two photon impinge on the semiconductor surface within the virtual state lifetime, i.e. few fs. Two photon conductivity (TPC) in GaAs is thus particulary well fitted to measure photon coincidence rates in the femtosecond range. Using this new TPC technique we have evidenced various original quantum properties of light, such as photon bunching in thermal light and extrabunching of twin beams. This technique opens new avenues in quantum optics, for quantum cryptography, ghost imaging or non linear optics.

  6. Enhancement of a Two-Photon-Induced Reaction in Solution Using Light-Harvesting Gold Nanodimer Structures.

    Science.gov (United States)

    Wu, Botao; Ueno, Kosei; Yokota, Yukie; Sun, Kai; Zeng, Heping; Misawa, Hiroaki

    2012-06-07

    We performed a quantitative analysis of plasmon-assisted two-photon photochromic reactions on light-harvesting gold nanodimer structures. Our strategy for the quantitative analysis of two-photon-induced photochemical reactions on gold nanostructures is using not only a confined photochemical reaction chamber but also a solution system. The strong intensification of near-field light at the nanogap positions on gold nanodimer pairs promoted two-photon absorption by a closed-form diarylethene derivative, resulting in highly efficient photochromic conversion to the open-form structure.

  7. Multiscale vision model for event detection and reconstruction in two-photon imaging data

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lind, Barbara;

    2014-01-01

    on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed...... of the multiscale vision model is similar in the denoising, but provides a better segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated thresholding and segmentation utilities....

  8. Refractive Index and Absorption Coefficient of Undoped and Mg-Doped Lithium Tantalate in the Terahertz Range

    Science.gov (United States)

    Buzády, Andrea; Unferdorben, Márta; Tóth, György; Hebling, János; Hajdara, Ivett; Kovács, László; Pálfalvi, László

    2017-08-01

    Dielectric material parameters of lithium tantalate (LT) in the terahertz region have been investigated using terahertz time-domain spectroscopy (THz-TDS). Undoped congruent, undoped stoichiometric, and Mg-doped stoichiometric LT crystals were measured. The Mg content was 0.5 and 1.0 mol% for the stoichiometric composition. Index of refraction and absorption coefficient spectra were determined in the 0.3-2.0-THz frequency range for beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal at room temperature. For the calculation of the refractive index and absorption coefficient spectra from the measured data, we used TeraMat software (Menlo System) belonging to the spectrometer. The refractive index and the absorption coefficient for stoichiometric crystals were lower than for the congruent one. In the case of stoichiometric crystals, the Mg dopant caused a slight reduction of both ordinary and extraordinary refractive index compared to the undoped crystal. However, the presence of Mg did not reduce the absorption coefficient either for the ordinary or for the extraordinary polarization. In order to fit the measurement data, a Lorentz oscillator model was used. Good agreement was obtained between the measured data and the fitting curves by using the Lorentz oscillator model containing three terms.

  9. Pancreatic Enzyme Therapy and Coefficient of Fat Absorption in Children and AdolReplacement escents With Cystic Fibrosis

    NARCIS (Netherlands)

    Woestenenk, Janna W; van der Ent, Cornelis K.; Houwen, Roderick H J; van der Ent, CK

    2015-01-01

    Objectives: Pancreatic enzyme replacement therapy (PERT) is the proven therapy to substantially reduce fat malabsorption in patients with cystic fibrosis (CF). Few details of the daily practice regarding PERT and the resulting coefficient of fat absorption (CFA) are known. We therefore recorded the

  10. Pancreatic Enzyme Therapy and Coefficient of Fat Absorption in Children and AdolReplacement escents With Cystic Fibrosis

    NARCIS (Netherlands)

    Woestenenk, Janna W; van der Ent, Cornelis K.; Houwen, Roderick H J; van der Ent, CK

    Objectives: Pancreatic enzyme replacement therapy (PERT) is the proven therapy to substantially reduce fat malabsorption in patients with cystic fibrosis (CF). Few details of the daily practice regarding PERT and the resulting coefficient of fat absorption (CFA) are known. We therefore recorded the

  11. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    Science.gov (United States)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  12. Multiyear Measurements of the Aerosol Absorption Coefficient Near the Surface in a Small-Sized Urban Area in Portugal

    Directory of Open Access Journals (Sweden)

    Sérgio Nepomuceno Pereira

    2014-01-01

    Full Text Available Measurements of the aerosol absorption coefficient, between 2007 and 2013, were made at the ground level in Évora, a Portuguese small town located in the southwestern Iberia Peninsula. Such a relatively long time series of absorbing aerosols is unique in Portugal and uncommon elsewhere. The average aerosol absorption coefficient was close to 9 Mm−1 and clear cycles at both daily and seasonal time scales were found. An average increase by a factor of two (from 6 to 12 Mm−1 was observed in winter if compared to summer season. The daily variations were similarly shaped for all seasons, with two morning and afternoon peaks, but with magnitudes modulated by the seasonal evolution. That was not the case if Sundays were considered. These variations can be explained in terms of the impact of local particle sources, related mainly to traffic and biomass burning and upward mixing of the aerosol due to variable mixing layer heights, either daily or seasonally. Also, a strong negative correlation between the aerosol absorption coefficient and the wind speed was verified, and an exponential decay function was found to fit very well to the data. The wind direction seems to be not correlated with the aerosol absorption coefficient.

  13. Stationary States in Saturated Two-Photon Processes and Generation of Phase-Averaged Mixtures of Even and Odd Quantum States

    CERN Document Server

    Dodonov, V V

    1998-01-01

    We consider a relaxation of a single mode of the quantized field in a presence of one- and two-photon absorption and emission processes. Exact stationary solutions of the master equation for the diagonal elements of the density matrix in the Fock basis are found in the case of completely saturated two-photon emission. If two-photon processes dominate over single-photon ones, the stationary state is a mixture of phase averaged even and odd coherent states.

  14. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta of China

    Directory of Open Access Journals (Sweden)

    B. L. Zhuang

    2015-06-01

    Full Text Available Absorbing aerosols can significantly modulate shortwave solar radiation in the atmosphere, affecting regional and global climate. Aerosol absorption coefficient (AAC is an indicator to assess the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption angstrom exponent (AAE in urban Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the 7-channel Aethalometer (model AE-31, Magee Scientific, USA. The AAC is estimated with direct and indirect corrections, which show consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m−1 in urban Nanjing, which is much lower than that in Pearl River Delta and as the same as that in rural areas (Lin'an in Yangtze River Delta. The AAC in urban Nanjing shows strong seasonality (diurnal variations, high in cold seasons (at rush hours and low in summer (in afternoon. It also show synoptic and quasi-two-week cycles in response to weather systems. Its frequency distribution follows a typical lognormal pattern. The 532 nm-AAC ranging from 15 to 65 M m−1 dominates, accounting for more than 72% of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollutions. Air masses from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006 is about 1.56, which might be more reasonable compared to that from the Weingartner correction (Weingartner et al., 2003. Low AAEs mainly appear in summer in response to the relative humidity (RH. AAC increases with increasing AAE at a fixed aerosol loading. The RH-AAC relationship is more complex. Overall, AAC peaks

  15. One- and Two-photon Excited Fluorescence of Zinc(Ⅱ), Cadmium(Ⅱ) Complexes Containing Phenothiazine Ligand

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new ligand, 10-ethylphenothiazinyl - 3 - yl - methylene thiosemicarbazon (HL) and its complexes ML2 (M=Zn2+, Cd2+), which exhibit intensive two-photon excited (TPE) fluorescence at 800 nm laser pulses in femtosecond regime, were synthesized and characterized.The measured power dependence of the fluorescence signals provided direct evidence for TPE.All of them exhibited a large two-photon absorptive cross section and, more importantly from the application point of view, high photochemical/photothermal stability.

  16. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    Science.gov (United States)

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  17. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    CERN Document Server

    Lee, Seunghyun; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S; Geistlinger, Katharina; Kumar, Sunil S; Wester, Roland

    2016-01-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J=1<-0 and J =2<-1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598596.08(19) MHz for J=1<-0 and 1196791.57(27) MHz for J=2<-1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  18. Efficient two-photon sensitized luminescence of europium (Ⅲ) complex based on hypersensitive transitions

    Institute of Scientific and Technical Information of China (English)

    Meng Shi; Hua Li; Mei Pan; Fufang Su; Lili Ma; Peigao Han; Hezhou Wang

    2011-01-01

    Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses. The luminescence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm). Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the C3 symmetry of the coordination field.%@@ Red frequency-upconversion fluorescence emission is observed in europium(Ⅲ) complex with encapsulating polybenzimidazole tripodal ligands, pumped with 930- and 1070-nm picosecond laser pulses.The luminescence of transition 5D0 →7F2 (612 nm) is induced by two-photon absorption of hypersensitive transitions 7F0 →5D2 (465 nm) and 7F1 →5D1 (535 nm).Analysis results suggest that the two-photon excitation strength of these hypersensitive transitions is increased dramatically owing to the Ca symmetry of the coordination field.

  19. [Intensity loss of two-photon excitation fluorescence microscopy images of mouse oocyte chromosomes].

    Science.gov (United States)

    Zhao, Feng-Ying; Wu, Hong-Xin; Chen, Die-Yan; Ma, Wan-Yun

    2014-07-01

    As an optical microscope with high resolution, two-photon excitation (TPE) fluorescence microscope is widely used in noninvasive 3D optical imaging of biological samples. Compared with confocal laser scanning microscope, TPE fluorescence microscope provides a deeper detecting depth. In spite of that, the image quality of sample always declines as the detecting depth increases when a noninvasive 3D optical imaging of thicker samples is performed. Mouse oocytes with a large diameter, which play an important role in clinical and biological fields, have obvious absorption and scattering effects. In the present paper, we performed compensation for two-photon fluorescence images of mouse oocyte chromosomes. Using volume as a parameter, the attenuation degree of these chromosomes was also studied. The result of our data suggested that there exists a severe axial intensity loss in two-photon microscopic images of mouse oocytes due to the absorption and scattering effects. It is necessary to make compensation for these images of mouse oocyte chromosomes obtained from two-photon microscopic system. It will be specially needed in studying the quantitative three-dimensional information of mouse oocytes.

  20. Several Organic Salts with High Two-Photon Active

    Institute of Scientific and Technical Information of China (English)

    TIAN, Yu-Peng; JIANG, Min-Hua; WANG, He-Zhou; FANG, Qi

    2001-01-01

    Several organic salts with D-A molecular structure and different counterion have been prepared and experimentally investigated. The two-photon induced frequency-upconverted spectra and two-photon pumped lasing are measured for the organic salt solutions in various solvents. The results indicate that counterions have influence on their stability and lasing property.

  1. Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm

    Science.gov (United States)

    Riedel, D.; Castex, M. C.

    First measurements of effective absorption coefficient and penetration depth are given here from the ablation of poly-methylmethacrylate (PMMA) and poly-tetrafluoroethylene (PTFE) samples at 125 nm ( 10 eV). The coherent VUV source used which provides smooth, efficient and clean etched areas, is briefly described. Experimental curves of etch depth as a function of the number of laser shots and etch rate as a function of energy density are obtained and compared with previous works performed at 157 nm (F2 laser) and 193 nm (ArF laser). Experimental results are described with a Beer-Lambert absorption law and discussed.

  2. Two-Photon Photodynamic Therapy by Water-Soluble Self-Assembled Conjugated Porphyrins

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2013-01-01

    Full Text Available Studies on two-photon absorption (2PA photodynamic therapy (PDT by using three water-soluble porphyrin self-assemblies consisting of ethynylene-linked conjugated bis (imidazolylporphyrin are reviewed. 2PA cross-section values in water were obtained by an open aperture Z-scan measurement, and values were extremely large compared with those of monomeric porphyrins such as hematoporphyrin. These compounds were found to generate singlet oxygen efficiently upon one- as well as two-photon absorption as demonstrated by the time-resolved luminescence measurement at the characteristic band of singlet oxygen at 1270 nm and by using its scavenger. Photocytotoxicities for HeLa cancer cells were examined and found to be as high as those of hematoporphyrin, demonstrating that these compounds are potential candidates for 2PA-photodynamic therapy agents.

  3. Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration

    Science.gov (United States)

    Biagioni, P.; Celebrano, M.; Savoini, M.; Grancini, G.; Brida, D.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Duò, L.; Hecht, B.; Cerullo, G.; Finazzi, M.

    2009-07-01

    Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width δ of the excitation laser pulses for a fixed average power. In the δ>1ps regime, the TPPL yield decreases as δ is increased, while for shorter pulse widths it becomes independent of δ and, consequently, of the laser-pulse peak power. This peculiar dynamics is understood and modeled by considering that two-photon absorption in Au is a two-step process governed by the lifetime of the metastable state populated by the first photon absorption.

  4. Absorption Coefficients of SF{6}, SF{4}, SOF{2} and SO{2}F{2} in the Vacuum Ultraviolet

    Science.gov (United States)

    Pradayrol, C.; Casanovas, A. M.; Deharo, I.; Guelfucci, J. P.; Casanovas, J.

    1996-05-01

    Absorption coefficients k0(m^{-1} 100 kPa^{-1}) of SF{6} and of its main gaseous by-products SF{4}, SOF{2} and SO{2}F{2} were measured in the VUV region. The experiments were carried out at a temperature of 298 K and a spectral resolution of 0.1 nm over the wavelength range 115 - 180 nm for SF{6}, 115 - 220 nm for SF{4}, 120 - 195 nm for SOF{2} and 120 - 210 nm for SO{2}F{2}. The highest absorption coefficient values were obtained for SF{4} and the lowest for SF{6}. Les coefficients d'absorption k0(m^{-1} 100 kPa^{-1}) du SF{6} et de ses principaux produits de décomposition gazeux, SF{4}, SOF{2} et SO{2}F{2} ont été mesurés dans le domaine de l'ultraviolet sous vide. Les expériences ont été réalisées à la température de 298 K avec une résolution de 0,1 nm dans la gamme 115 180 nm pour le SF{6}, 115 220 nm pour le SF{4}, 120 195 nm pour le SOF{2} et 120 210 nm pour le SO{2}F{2}. Les coefficients d'absorption les plus élevés ont été mesurés pour le SF{4} et les plus faibles pour le SF{6}.

  5. Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth.

    Science.gov (United States)

    Skoog, Shelby A; Nguyen, Alexander K; Kumar, Girish; Zheng, Jiwen; Goering, Peter L; Koroleva, Anastasia; Chichkov, Boris N; Narayan, Roger J

    2014-06-01

    Two-photon polymerization is a technique that involves simultaneous absorption of two photons from a femtosecond laser for selective polymerization of a photosensitive material. In this study, two-photon polymerization was used for layer-by-layer fabrication of 3-D scaffolds composed of an inorganic-organic zirconium oxide hybrid material. Four types of scaffold microarchitectures were created, which exhibit layers of parallel line features at various orientations as well as pores between the line features. Long-term cell culture studies involving human bone marrow stromal cells were conducted using these 3-D scaffolds. Cellular adhesion and proliferation were demonstrated on all of the scaffold types; tissuelike structure was shown to span the pores. This study indicates that two-photon polymerization may be used to create microstructured scaffolds out of an inorganic-organic zirconium oxide hybrid material for use in 3-D tissue culture systems.

  6. Two-and three-photon absorption in a novel fluorene-based compound

    Institute of Scientific and Technical Information of China (English)

    Wenbo Ma; Yiqun Wu; Donghong Gu; Fuxi Gan

    2005-01-01

    @@ A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02 × 10-3 cm/GW (due to two-photon absorption, exciting wavelength is 800 nm) and 3.6×10-20 cm3/W2 (due to three-photon absorption, exciting wavelength is 1064 nm). This new compound possesses strong fluorescence induced by two-photon absorption and obvious three-photon absorption optical limiting effects.

  7. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  8. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  9. Two-photon interference of temporally separated photons

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  10. Two photon dissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm: translational energy releases in the H atom channel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Keun; Kim, Hong Lae [Kangwon National Univ., Chuncheon (Korea, Republic of); Park, Chan Ryang [Kookmin Univ., Seoul (Korea, Republic of)

    2002-02-01

    Hydrogen atom production channels from photodissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm have been investigated by detecting H atoms using two photon absorption at 243.2 nm and induced fluorescence at 121.6 nm. Translational energies of the H atoms were measured by Doppler broadened H atom spectra. By absorption of two photons at 243 nm, the H atoms are statistically produced from benzene and phenylacetylene whereas the H atoms from the aldehyde group in benzaldehyde are produced from different pathways. The possible dissociation mechanisms are discussed from the measured translational energy releases.

  11. Mitigating thermal mechanical damage potential during two-photon dermal imaging.

    Science.gov (United States)

    Masters, Barry R; So, Peter T C; Buehler, Christof; Barry, Nicholas; Sutin, Jason D; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Two-photon excitation fluorescence microscopy allows in vivo high-resolution imaging of human skin structure and biochemistry with a penetration depth over 100 microm. The major damage mechanism during two-photon skin imaging is associated with the formation of cavitation at the epidermal-dermal junction, which results in thermal mechanical damage of the tissue. In this report, we verify that this damage mechanism is of thermal origin and is associated with one-photon absorption of infrared excitation light by melanin granules present in the epidermal-dermal junction. The thermal mechanical damage threshold for selected Caucasian skin specimens from a skin bank as a function of laser pulse energy and repetition rate has been determined. The experimentally established thermal mechanical damage threshold is consistent with a simple heat diffusion model for skin under femtosecond pulse laser illumination. Minimizing thermal mechanical damage is vital for the potential use of two-photon imaging in noninvasive optical biopsy of human skin in vivo. We describe a technique to mitigate specimen thermal mechanical damage based on the use of a laser pulse picker that reduces the laser repetition rate by selecting a fraction of pulses from a laser pulse train. Since the laser pulse picker decreases laser average power while maintaining laser pulse peak power, thermal mechanical damage can be minimized while two-photon fluorescence excitation efficiency is maximized.

  12. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  13. Quantum homodyne tomography of a two-photon Fock state

    CERN Document Server

    Ourjoumtsev, A; Grangier, P; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-01-01

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed non-degenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  14. Quantum homodyne tomography of a two-photon Fock state.

    Science.gov (United States)

    Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-06-02

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed nondegenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  15. Scattering of two photons from two distant qubits: exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Matti; Pletyukhov, Mikhail [Institute for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen (Germany)

    2015-07-01

    We consider the inelastic scattering of two photons from two qubits separated by an arbitrary distance and coupled to a one-dimensional transmission line. We present an exact, analytical solution to the problem, and use it to explore a particular configuration of qubits which is transparent to single-photon scattering, thus highlighting non-Markovian effects of inelastic two-photon scattering: Strong two-photon interference and momentum dependent photon (anti)bunching. This latter effect can be seen as an inelastic generalization of the Hong-Ou-Mandel effect.

  16. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern China

    Institute of Scientific and Technical Information of China (English)

    CAO Wenxi; YANG Yuezhong; LIU Sheng; XU Xiaoqiang; YANG Dingtian; ZHANG Jianlin

    2005-01-01

    The spectral absorption coefficient of phytoplankton in coastal waters of southern China is investigated. Large variations in the absorption coefficient of phytoplankton are found. The absorption coefficient of phytoplankton at 443 nm ranged from 0. 006 m- 1 to 0. 484 m - 1, with an average value of 0. 067 m - 1. The chlorophyll-specific absorption coefficient of phytoplankton is also a bio-optical varito pigment composition of phytoplankton and package effect. The chlorophyll-specific absorption coefficient of phytoplankton decreases with the increasing of chlorophyll a concentration. This relationship can be described by a power law function, with the parameters and the coefficient of determination r2 as functions of wavelength, but the parameters describing the relationships in present study differed from that in Case 1 waters, thus the regional adjustment of model parameters was of particular significance for improving the accuracy of bio-optical algorithms for estimation of Chl-a concentration and primary production from remotely sensed data. Regression analysis of reflectance (R rs) ratio and absorption coefficient of phytoplankton (a ph) indicates a close correlation between them, which means that it is possible to retrieve absorption coefficient of phytoplankton using ocean color remote sensing data in optically complex coastal waters.

  17. Absorption coefficient modeling of microcrystalline silicon thin film using Maxwell-Garnett effective medium theory.

    Science.gov (United States)

    Chen, Sheng-Hui; Wang, Hsuan-Wen; Chang, Ting-Wei

    2012-03-12

    Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.

  18. NLO Electroweak Corrections to Higgs Decay to Two Photons

    OpenAIRE

    Actis, Stefano

    2009-01-01

    The recent calculation of the next-to-leading order electroweak corrections to the decay of the Standard Model Higgs boson to two photons in the framework of the complex-mass scheme is briefly summarized.

  19. Standard Model Higgs decay for two Photons in CMS

    CERN Multimedia

    Daniel Denegri

    2000-01-01

    Simulated two-photon mass distribution for SM Higgs and expected background in the CMS PbW04 crystal calorimeter for an integrated luminosity of 10 . 5 pb-1, with detailed simulation of calorimeter response.

  20. Pulse-shaping based two-photon FRET stoichiometry.

    Science.gov (United States)

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  1. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  2. Intersubband transition in lattice-matched BGaN/AlN quantum well structures with high absorption coefficients.

    Science.gov (United States)

    Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong

    2017-02-20

    Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.

  3. Two-photon or higher-order absorbing optical materials and methods of use

    Science.gov (United States)

    Marder, Seth (Inventor); Perry, Joseph (Inventor)

    2012-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.

  4. Preliminary results of an algorithm to determine the total absorption coefficient of water

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.J.; Lotlikar, A.

    coefficient of net irradiance, KE were obtained from radiative transfer simulations using Hydrolight with large in-situ measured data from the coastal and estuarine waters of Goa. A refined algorithm of spectral micro as in Ref. [1] is used...

  5. Voltage-sensitive rhodol with enhanced two-photon brightness.

    Science.gov (United States)

    Kulkarni, Rishikesh U; Kramer, Daniel J; Pourmandi, Narges; Karbasi, Kaveh; Bateup, Helen S; Miller, Evan W

    2017-03-14

    We have designed, synthesized, and applied a rhodol-based chromophore to a molecular wire-based platform for voltage sensing to achieve fast, sensitive, and bright voltage sensing using two-photon (2P) illumination. Rhodol VoltageFluor-5 (RVF5) is a voltage-sensitive dye with improved 2P cross-section for use in thick tissue or brain samples. RVF5 features a dichlororhodol core with pyrrolidyl substitution at the nitrogen center. In mammalian cells under one-photon (1P) illumination, RVF5 demonstrates high voltage sensitivity (28% ΔF/F per 100 mV) and improved photostability relative to first-generation voltage sensors. This photostability enables multisite optical recordings from neurons lacking tuberous sclerosis complex 1, Tsc1, in a mouse model of genetic epilepsy. Using RVF5, we show that Tsc1 KO neurons exhibit increased activity relative to wild-type neurons and additionally show that the proportion of active neurons in the network increases with the loss of Tsc1. The high photostability and voltage sensitivity of RVF5 is recapitulated under 2P illumination. Finally, the ability to chemically tune the 2P absorption profile through the use of rhodol scaffolds affords the unique opportunity to image neuronal voltage changes in acutely prepared mouse brain slices using 2P illumination. Stimulation of the mouse hippocampus evoked spiking activity that was readily discerned with bath-applied RVF5, demonstrating the utility of RVF5 and molecular wire-based voltage sensors with 2P-optimized fluorophores for imaging voltage in intact brain tissue.

  6. Two-photon excitation photodynamic therapy with Photofrin

    Science.gov (United States)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  7. Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal

    Science.gov (United States)

    Lukanin, V. I.; Karasik, A. Ya

    2016-09-01

    A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.

  8. NORMAL INCIDENCE SOUND ABSORPTION COEFFICIENT OF DIRECT PIERCING CARVED WOOD PANEL WITH DAUN SIREH MOTIF USING BOUNDARY ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Mohd Zamri Jusoh

    2013-06-01

    Full Text Available The Direct Piercing Carved Wood Panel (DPCWP installed in Masjid Abidin, Kuala Terengganu, is one example that carries much aesthetic and artistic value. The use of DPCWP in earlier mosques was envisaged to improve the intelligibility of indoor speech because the perforated panels allow some of the sound energy to pass through. In this paper, the normal incidence sound absorption coefficient of DPCWP with Daun Sireh motif, which is a form of floral pattern, is discussed. The Daun Sireh motif was chosen and investigated for 30%, 35%, 40%, and 45% perforation ratios. The simulations were conducted using BEASY Acoustic Software based on the boundary element method. The simulation results were compared with measurements obtained by using the sound intensity technique. An accompanying discussion on both the numerical and the measurement tendencies of the sound absorption characteristics of the DPCWP is provided. The results show that the DPCWP with Daun Sireh motif can act as a good sound absorber.

  9. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    Science.gov (United States)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  10. Two-photon spectroscopy of trapped HD$^+$ ions in the Lamb-Dicke regime

    CERN Document Server

    Tran, Vu Quang; Douillet, Albane; Koelemeij, Jeroen C J; Hilico, Laurent

    2013-01-01

    We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi-coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the $10^{-14}$ accuracy level for improved tests of molecular QED, a new det...

  11. Slow reflection and two-photon generation of microcavity exciton-polaritons

    CERN Document Server

    Steger, Mark; Snoke, David W; Pfeiffer, Loren; West, Ken

    2014-01-01

    We resonantly inject polaritons into a microcavity and track them in time and space as they feel a force due to the cavity gradient. This is an example of "slow reflection," as the polaritons, which can be viewed as renormalized photons, slow down to zero velocity and then move back in the opposite direction. These measurements accurately measure the lifetime of the polaritons in our samples, which is 180 $\\pm$ 10 ps, corresponding to a cavity leakage time of 135 ps and a cavity $Q$ of 320,000. Such long-lived polaritons propagate millimeters in these wedge-shaped microcavities. Additionally, we generate polaritons by two-photon excitation directly into the polariton states, allowing the possibility of modulation of the two-photon absorption by a polariton condensate.

  12. Diagnostics of MCF plasmas using Lyman-{alpha} fluorescence excited by one or two photons

    Energy Technology Data Exchange (ETDEWEB)

    Voslamber, D

    1998-11-01

    Laser-induced Lyman-{alpha} fluorescence of the hydrogen isotopes is investigated with regard to diagnostic applications in magnetically confined fusion plasmas. A formal analysis is presented for two excitation schemes: one-photon and Doppler-free two-photon excitation. The analysis includes estimates of the expected experimental errors arising from the photon noise and from the sensitivity of the observed fluorescence signals to variations of the plasma and laser parameters. Both excitation schemes are suitable primarily for application in the plasma edge, but even in the plasma bulk of large machines they can still be applied in combination with a diagnostic neutral beam. The two-photon excitation scheme is particularly attractive because it involves absorption spectra that are resolved within the Doppler width. This implies a large diagnostic potential and in particular offers a way to measure the deuterium-tritium fuel mix in fusion reactors. (author) 37 refs.

  13. Direct two-photon excitation of isomeric transition in thorium-229 nucleus

    CERN Document Server

    Romanenko, V I; Yatsenko, L P; Romanenko, A V; Litvinov, A N; Kazakov, G A

    2012-01-01

    A possibility of the two-photon excitation of an isomeric state in a nucleus of thorium-229 has been discussed. The fluorescence intensity of the excitation is demonstrated to be identical for the irradiation of nuclei with either monochromatic light or polychromatic radiation consisting of a sequence of short light pulses of the same intensity. The two-photon excitation of Th^{3+} ion in an electromagnetic trap with a focused laser beam with a wavelength of about 320 nm and power of 100 mW can lead to the absorption saturation, at which the fluorescence emission with the frequency of the transition in a nucleus is maximal. In crystals doped with Th^{4+} to a concentration of about 10^{18} cm^{-3} and irradiated with a laser radiation 10 W in power, the emission of several photons per second with a wavelength of about 160 nm becomes possible.

  14. Ag@Aggregation-induced emission dye core/shell nanostructures with enhanced one- and two-photon fluorescence

    Science.gov (United States)

    Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang

    2017-10-01

    Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.

  15. Coincidence in the two-photon spectra of Li and Li2 at 735 nm

    Science.gov (United States)

    DeGraffenreid, W.; Sansonetti, Craig J.

    2005-02-01

    A coincidence between the 22S1/2-32S1/2 two-photon transition in the atomic spectrum of 6Li and the X 1Σ+g→ E 1Σ+g two-photon ro-vibrational series of 7Li2 was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the 6Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  16. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  17. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    Science.gov (United States)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  18. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  19. Mechanochemical synthesis of stoichiometric nickel and nickel-zinc ferrite powders with Nicolson-Ross analysis of absorption coefficients

    Directory of Open Access Journals (Sweden)

    Jovalekić Čedomir

    2012-01-01

    Full Text Available The interest in finding new methods for preparation of nickel ferrite (NiFe2O4 and nickel-zinc ferrite (NixZn1-xFe2O4 powders has recently increased, due to the fact that physical and chemical properties of these soft magnetic materials depend strongly on the preparation conditions. In this paper, powder samples of ferrites were obtained by: 1 classic sintering procedure (NixZn1-xFe2O4, x = 0.9 and 2 planetary mill synthesis (both NiFe2O4 and NixZn1-xFe2O4. Mechanochemical reaction leading to the formation of NixZn1-xFe2O4 (x = 1 and 0.9 spinel phase was monitored by SEM, TEM, and XRD. Values of the real and imaginary parts of permittivity and permeability were measured for the obtained nickel and nickel-zinc ferrite samples in the 7-12 GHz frequency range. Based on the obtained results, the EMR absorption coefficients were calculated for all three sample types. It has been concluded that the method of preparation and the final particle size influence the EMR absorption coefficient of nickel and nickel-zinc ferrites.

  20. Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe

    Institute of Scientific and Technical Information of China (English)

    YUAN; Xianzhang

    2001-01-01

    [1]Nathan, V., Guenther, A. H., Mitra, S. S., Review of multiphoton absortion in crystalline solids, J. Opt. Soc. Am. B, 1985, 2: 294—316.[2]Gibson, A. F., Hatch, C. B., Maggs, P. N. D. et al., Two-photon absorption in indium antimonide and germanium, J. Phys., C, 1976, 9: 3259—3275.[3]Miller, A., Johnston, A., Dempsey, J. et al., Two-photon absorption in InSb and Hg1-xCdxTe, J. Phys. C, 1929, 12: 4839—4849.[4]Burghoorn, J., Anderegg, V. F., Klaassen, T. O. et al., Free electron laser induced two-photon absorption in Hg1-xCdxTe, Appl. Phys. Lett., 1992, 61(19): 2320—2322.[5]Hui, Z. X., Yang, Z. H., Free Electron Laser (in Chinese), Beijing: National Defense Industry Press, 1995, 7—8.[6]Matter, J. C., Smirt, A. L., Scully, M. O., Saturable transmission in mercury cadmium telluride, Appl. Phys. Lett., 1976, 28(9): 507—509.[7]Nurmikko, A. V., Nonlinear absorption at 10.6 μm in Hg1-xCdxTe, Optics Communications, 1976, 18(4): 522—524.[8]Catalano, I. M., Cingolani, A., Minafra, A., Multiphoton transitions in ionic crystals, Phys. Rev. B, 1972, 5(4): 1629—1632.[9]Blakemore, J. S., Semiconductor Statistics, Oxford: Pergamon, 1962, 221—222.[10]Shen, S. C., Optical Property of Semiconductor (in Chinese), Beijing: Science Press, 1992, 392—394.

  1. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Markager, S.

    2004-01-01

    We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...... the best model fit compared to a power model on non-transformed data previously applied to parameterize the relationship between a*ph (¿) and [Chl a]. The variation in a*ph (¿) was parameterized over four orders of magnitude in [Chl a] (0.01-100 mg Chl a m-3) producing a 13-fold range in a*ph (0.19 to 0.......015 m2 mg-1 Chl a) at 440 nm, the peak absorption of Chl a in the blue part of the spectrum. The variations in the modelled a*ph spectra were within realistic predictions of a*ph (¿) and the model satisfactorily reproduced the spectral flattening with increasing [Chl a]. The parameterization of a...

  2. Two-photon interference between disparate sources for quantum networking

    Science.gov (United States)

    McMillan, A. R.; Labonté, L.; Clark, A. S.; Bell, B.; Alibart, O.; Martin, A.; Wadsworth, W. J.; Tanzilli, S.; Rarity, J. G.

    2013-06-01

    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 +/- 4%, which paves the way to hybrid universal quantum networks.

  3. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors

    Indian Academy of Sciences (India)

    A. A. Mihajlov; V. A. Srećković; N. M. Sakan

    2015-12-01

    The electron–ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities and temperatures. The relevant quantum mechanical method of the calculation of the corresponding spectral coefficient processes is described and discussed. The results obtained for the plasmas with the electron densities from 1014 cm$^{-3}$ to 2 · 1019 cm$^{−3}$ and temperatures from 5 · 103 K to 3 · 104 K in the wavelength region 100 nm < < 3000 nm are presented. Also, these results can be of interest for different laboratory plasmas.

  4. Polarization Effects in Two-Photon Free-Free Transitions in Laser-Assisted Electron-Hydrogen Collisions

    CERN Document Server

    Cionga, Aurelia

    2013-01-01

    Two-photon free-free transitions in elastic laser-assisted electron-hydrogen collisions are studied in the domain of high scattering energies and low or moderate field intensities, in the third order of perturbation theory, taking into account all the involved Feynman diagrams. Based on the analytical expressions of the transition amplitudes, the differential cross sections for two-photon absorption/emission are computed at impact energy $E_i=100$ eV. The effect of field polarizations on the angular distribution and on the frequency dependence of the differential cross section is analyzed.

  5. Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser

    DEFF Research Database (Denmark)

    Capua, Amir; Kami, Ouri; Eisenstein, Gadi;

    2012-01-01

    We demonstrate a novel laser oscillation scheme in an InAs / InP wire-like quantum dash gain medium. A short optical pulse excites carriers by two photon absorption which relax to the energy levels providing gain thereby enabling laser oscillations. The nonlinear dynamic interaction is analyzed...... and quantified using multi-color pump-probe measurements and shows a highly efficient nonlinear two photon excitation process which is larger by more than an order of magnitude compared to common quantum well and bulk gain media. The dynamic response of the nonlinearly induced laser line is characterized...

  6. Two-photon interference with non-identical photons

    Science.gov (United States)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  7. Two-Photon Total Annihilation of Molecular Positronium

    CERN Document Server

    Pérez-Ríos, Jesús; Greene, Chris H

    2014-01-01

    The rate for complete two-photon annihilation of molecular positronium Ps$_{2}$ is reported. This decay channel involves a four-body collision among the fermions forming Ps$_{2}$, and two photons of 1.022 MeV, each, as the final state. The quantum electrodynamics result for the rate of this process is found to be $\\Gamma_{Ps_{2} \\rightarrow \\gamma\\gamma}$ = 9.0 $\\times 10^{-12}$ s$^{-1}$. This decay channel completes the most comprehensive decay chart for Ps$_{2}$ up to date.

  8. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  9. Precision two-photon spectroscopy of alkali elements

    Indian Academy of Sciences (India)

    P V Kiran Kumar; M V Suryanarayana

    2014-08-01

    In this paper, we have briefly reviewed the work on two-photon spectroscopy of alkali elements and its applications. The technique of Doppler-free two-photon spectroscopy is briefly summarized. A review of various techniques adopted for measuring absolute frequencies of the atomic transitions and precision measurements of isotope shifts and hyperfine structures (HFS) is presented. Some of the recent works on precision measurements of HFS constants of 6 ${}^2S_{1/2}$ level of ${}^{39}$K and ${}^{41}$K, 9 ${}^2S_{1/2}$ level and 7 ${}^2D_{3/2}$ level of 133Cs are also discussed.

  10. Modulation of attosecond beating by resonant two-photon transition

    CERN Document Server

    Galán, Álvaro Jiménez; Martín, Fernando

    2015-01-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the $\\pi$ jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  11. Absorption Coefficients of the Methane-Nitrogen Binary Ice System: Implications for Pluto

    CERN Document Server

    Protopapa, S; Tegler, S C; Bergonio, J M

    2015-01-01

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane $\\bf{\\bar{N_{2}}}$:CH$_{4}$ and methane saturated with nitrogen $\\bf{\\bar{CH_{4}}}$:N$_{2}$. No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N$_{2}$:CH$_{4}$) and nitrogen diluted in methane (CH$_{4}$:N$_{2}$) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 $\\mu$m at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is prese...

  12. Stepwise Two-Photon-Gated Photochemical Reaction in Photochromic [2.2]Paracyclophane-Bridged Bis(imidazole dimer).

    Science.gov (United States)

    Mutoh, Katsuya; Nakagawa, Yuki; Sakamoto, Akira; Kobayashi, Yoichi; Abe, Jiro

    2015-05-06

    Stepwise two-photon processes not only have great potential for efficient light harvesting but also can provide valuable insights into novel photochemical sciences. Here we have designed a [2.2]paracyclophane-bridged bis(imidazole dimer), a molecule that is composed of two photochromic units and absorbs two photons in a stepwise manner. The absorption of the first photon leads to the formation of a short-lived biradical species (half-life = 88 ms at 298 K), while the absorption of the additional photon by the biradical species triggers a subsequent photochromic reaction to afford a long-lived quinoid species. The short-lived biradical species and the long-lived quinoid species display significantly different absorption spectra and rates of the thermal back-reaction. The stepwise two-photon excitation process in this photochromic system can be initiated even by incoherent continuous-wave light irradiation, indicating that this two-photon reaction is highly efficient. Our molecule based on the bridged bis(imidazole dimer) unit should be a good candidate for multiphoton-gated optical materials.

  13. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    Science.gov (United States)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    Despite of its importance, the possibilities to determine the direct radiative forcing by atmospheric aerosols is very limited due to lack of the reliable on-line instruments. Therefore there is an increasing concern for novel methods promising more accurate and reliable results in this field. The accuracy and reliability of the available on-line instruments like SP2 (Single Particle Soot Photometer), MAAP (Multi Angle Absorption Photometer), are limited by the weakness of the spectral resolution or the sampling artefact of filter matrix during the light attenuation measurement on the deposited filter. These methods neither suitable for direct determination of the light absorption by aerosols nor dispose the capability of the source apportionment. In this work we present a novel photoacoustic based instrument for direct light absorption measurements in the atmosphere and demonstrate the suitability of that both in laboratory and field circumstances. We have developed a novel Multi Wavelength PhotoAcoustic System (WaSul-MuWaPas) based on the diode laser pumped, high repetition rate, Q-switched Nd:YAG laser and its frequency converted harmonics for direct determination of light absorption by aerosols. This instrument has designed to make in situ measurements at four different wavelengths simultaneously from the NIR to the UV wavelength range (1064nm, 532nm, 355nm, 266nm). The Wasul-MuWaPas measures directly the optical absorption coefficient on airborne particles, not belong to the integrated plate type technique (filter-free operation), operating at wide wavelength range (source apportionment possibilities), due to the possibilities of the wavelength independent cell constant determination the measurement method is absolute. Because of these the Wasul-MuWaPas system may become one of the best candidate for absorption measurements of various atmospheric aerosols such as black carbon, mineral dust, and secondary organic and inorganic aerosols as well as for source

  14. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    Science.gov (United States)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  15. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    Science.gov (United States)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.

  16. A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures.

    Science.gov (United States)

    Li, Jun; Zhou, Xianming; Li, Jiabo

    2008-12-01

    An experimental method was developed to perform time-resolved, single-pass optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to approximately 200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.

  17. Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles.

    Science.gov (United States)

    Urban, Ben E; Neogi, Purnima B; Butler, Sween J; Fujita, Yasuhisa; Neogi, Arup

    2012-03-01

    The optical properties of colloidal ZnO nanoparticle (NP) solutions, with size ranging from several nm to around 200 nm, have been tailored to have high optical nonlinearity for bioimaging with no auto-fluorescence above 750 nm and minimal auto-fluorescence below 750 nm. The high second harmonic conversion efficiency enables selective tissue imaging and cell tracking using tunable near-infrared femtosecond laser source ranging from 750-980 nm. For laser energies exceeding the two-photon energy of the bandgap of ZnO (half of 3.34 eV), the SHG signal greatly decreases and the two-photon emission becomes the dominant signal. The heat generated due to two-photon absorption within the ZnO NPs enable selective cell or localized tissue destruction using excitation wavelength ranging from 710-750 nm. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Steady state anisotropy two-photon microscopy resolves multiple, spectrally similar fluorophores, enabling in vivo multilabel imaging.

    Science.gov (United States)

    Dubach, J Matthew; Vinegoni, Claudio; Weissleder, Ralph

    2014-08-01

    The use of spectrally distinguishable fluorescent dyes enables imaging of multiple targets. However, in two-photon microscopy, the number of fluorescent labels with distinct emission spectra that can be effectively excited and resolved is constrained by the confined tuning range of the excitation laser and the broad and overlapping nature of fluorophore two-photon absorption spectra. This limitation effectively reduces the number of available imaging channels. Here, we demonstrate that two-photon steady state anisotropy imaging (2PSSA) offers the capability to resolve otherwise unresolvable fluorescent tracers both in live cells and in mouse tumor models. This approach expands the number of biological targets that can be imaged simultaneously, increasing the total amount of information that can be obtained through imaging.

  19. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    Energy Technology Data Exchange (ETDEWEB)

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz, E-mail: k.Gericke@tu-bs.de [Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig (Germany); Shternin, Peter S., E-mail: pshternin@gmail.com; Vasyutinskii, Oleg S., E-mail: osv@pms.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251 (Russian Federation); Smolin, Andrey G. [Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.

  20. Internal conversions in Higgs decays to two photons

    OpenAIRE

    Firan, Ana; Stroynowski, Ryszard

    2007-01-01

    We evaluate the partial widths for internal conversions in the Higgs decays to two photons. For the Higgs masses of interest at LHC in the range of 100-150 GeV, the conversions to pairs of fermions represent significant fraction of Higgs decays.

  1. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan

    2013-11-01

    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  2. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  3. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D6h point group symmetry versus ovalene with D2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D2h ovalene but not in those with D6h symmetry.

  4. Studies on absorption coefficients of dual-energy γ-rays and measuring error correction for multiphase fraction determination

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, principle and mathematical method of determining the phase fractions of multiphase flows by using a dual-energy γ-ray system have been described. The dual-energy γ-ray device is composed of radioactive isotopes of 241Am and 137Cs with γ-ray energies of 59.5 and 662 keV, respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The modified arithmetic is beneficial to removing the extra Compton scattering from the measured value. The result shows that the dual-energy γ-ray technique can be used in three-phase flow with average accuracy greater than 95%, which enables us to determine phase fractions almost independent of the flow regime. Improvement has been achieved on measurement accuracy of phase fractions.

  5. TECHNIQUE OF ESTIMATE OF ABSORPTION COEFFICIENT LASER RADIATION IN BORON DOPED DIAMONDS BY INTENSITY OF RAMAN SCATTERING

    Directory of Open Access Journals (Sweden)

    O. N. Poklonskaya

    2013-01-01

    Full Text Available Results of measurements of Raman scattering at the room temperature in air in boron doped synthetic diamonds (five with boron concentrations 2·1017; 6·1017; 2·1018; 1,7·1019; 1·1020 cm–3 and one intentionally undoped are presented. The laser with wavelength 532 nm was used for Raman scattering excitation. Dependences of integral intensity and halfwidth of diamond Raman line with respect to the doping level are presented. In the geometrical optics approximation an expression for doped to undoped integral intensity ratio is obtained. Qualitative estimates of conductivity of the studied samples are conducted. The obtained results can be applied for mapping of near-surface laser radiation absorption coefficient of synthetic single crystal diamonds and for their quality control.

  6. Guideline for Adopting the Local Reaction Assumption for Porous Absorbers in Terms of Random Incidence Absorption Coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material...... and air cavity is important, since the thicker the cavity, the more extendedly reacting the absorber. If the absorber thickness is approximately 40% of the cavity depth, the local reaction models give errors below 10% even for a low flow resistivity case....... resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the assumption of local reaction always underestimates the random incidence absorption coefficient and the local reaction models give...

  7. Resonant transfer of one- and two-photon excitations in quantum dot-bacteriorhodopsin complexes

    Science.gov (United States)

    Krivenkov, V. A.; Samokhvalov, P. S.; Bilan, R. S.; Chistyakov, A. A.; Nabiev, I. R.

    2017-01-01

    Light-sensitive protein bacteriorhodopsin (BR), which is capable of electrical response upon exposure to light, is a promising material for photovoltaics and optoelectronics. However, the rather narrow absorption spectrum of BR does not allow achieving efficient conversion of the light energy in the blue and infrared spectral regions. This paper summarizes the results of studies showing the possibility of extending the spectral region of the BR function by means of the Förster resonance energy transfer (FRET) from CdSe/ZnS quantum dots (QDs), which have a broad spectrum of one-photon absorption and a large twophoton absorption cross section (TPACS), to BR upon one- and two-photon excitation. In particular, it is shown that, on the basis of QDs and BR-containing purple membranes, it is possible to create electrostatically associated bio-nano hybrid systems in which FRET is implemented. In addition, the large TPACS of QDs, which is two orders of magnitude larger than those of BR and organic dyes, opens up a means for selective two-photon excitation of synthesized bio-nano hybrid complexes. On the basis of the results of this work, the spectral region in which BR converts the light energy into electrical energy can be extended from the UV to near-IR region, creating new opportunities for the use of this material in photovoltaics and optoelectronics.

  8. Suitable photo-resists for two-photon polymerization using femtosecond fiber lasers

    KAUST Repository

    Rajamanickam, V.P.

    2014-06-01

    We present suitable materials with good optical and mechanical properties, simple processing, efficient and optimized for two-photon polymerization (TPP) with femtosecond fiber lasers. We selected readily available acrylic monomer Bisphenol A ethoxylate diacrylate (BPA-EDA) with three different photo-initiators (PIs), isopropyl thioxanthone (ITX), 7-diethylamino-3-thenoylcoumarin (DETC), and 4,4′ bis(diethylamino) benzophenone (BDEB), since their absorption spectra match well with the laser wavelength at 780 nm. These PIs grant efficient radical generation, reactivity and high solubility in acrylic monomers. Finally, good optical and mechanical properties are demonstrated by the fabrication of different micro-structures.

  9. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  10. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    Science.gov (United States)

    Imhof, Martin; Rhinow, Daniel; Hampp, Norbert

    2014-02-01

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  11. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Martin; Hampp, Norbert, E-mail: hampp@staff.uni-marburg.de [Department of Chemistry, Material Sciences Center, University of Marburg, Hans-Meerwein-Str., D-35032 Marburg (Germany); Rhinow, Daniel [Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt (Germany)

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  12. Atomic coherence control on the entanglement of two atoms in two-photon processes

    Institute of Scientific and Technical Information of China (English)

    Hu Yao-Hua; Fang Mao-Fa; Wu Qin

    2007-01-01

    Considering two identical two-level atoms interacting with a single-mode thermal field through two-photon processes, this paper studies the atomic coherence control on the entanglement between two two-level atoms, and finds that the entanglement is greatly enhanced due to the initial atomic coherence. The results show that the entanglement can be manipulated by changing the initial parameters of the system, such as the superposition coefficients and the relative phases of the initial atomic coherent state and the mean photon number of the cavity field.

  13. The two-photon exchange contribution to muonic hydrogen from chiral perturbation theory

    CERN Document Server

    Peset, Clara

    2014-01-01

    We compute the spin-dependent and spin-independent structure functions of the forward virtual-photon Compton tensor of the proton at one loop using heavy baryon effective theory including the Delta particle. We compare with previous results when existing. Using these results we obtain the leading hadronic contributions, associated to the pion and Delta particles, to the Wilson coefficients of the lepton-proton four fermion operators in NRQED. The spin-independent coefficient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, $\\Delta E_{\\rm TPE}(\\pi\\&\\Delta)=34(13)$ $\\mu$eV. We also compute the charge, $\\langle r^n \\rangle$, and Zemach, $\\langle r^n \\rangle_{(2)}$, moments for $n \\geq 3$. Finally, we discuss the spin-dependent case, for which we compute the difference between the four-fermion Wilson coefficients relevant for hydrogen and muonic hydrogen.

  14. A research on statistical retrieval algorithms and spectral characteristics of the total absorption coefficients in the Yellow Sea and the East China Sea

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaomei; TANG Junwu; SONG Qingjun; Ding Jing; MA Chaofei

    2006-01-01

    This paper suggests a group of statistical algorithms for calculating the total absorption coefficients based on in situ data of apparent optical property and inherent optical property collected with strict quality assurance according to NASA ocean bio-optic protocols in the Yellow Sea and the East China Sea in spring 2003. The band-ratios of Rrs412/Rrs555, Rrs490/Rrs555 are used in the algorithms to derive the total absorption coefficients (at) at 412, 440, 488, 510, 532 and 555nm bands, respectively. The average relative errors between inversed and measured values are less than 25.8%, with the correlative coefficients (R2) being 0.75-0.85. Error sensitivity analysis shows that the maximum retrieval error is less than 24.0% at (5% error in Rrs's. So the statistical algorithms of this paper are practicable. In this paper, the relations between the total absorption coefficients at 412, 488, 510, 532, 555 nm and that of 440nm are also studied. The results show that the relations between the total absorption coefficients of 400-600 nm and that of 440 nm are correlated well and all of their correlative coefficients R2 are greater than 0.99. Furthermore, a regression analysis is also done for the slope of the linear relations and wavelengths, and the R2 is also 0.99. Thus it is possible to retrieve other bands' total absorption coefficients with only one band absorption value, which significantly reduce the number of unknown parameters in studying other ocean color related problems.

  15. 540--900 nm photodissociation of 300 K NCNO: One- and two-photon processes

    Energy Technology Data Exchange (ETDEWEB)

    Nadler, I.; Pfab, J.; Reisler, H.; Wittig, C.

    1984-07-15

    The laser photodissociation of 300 K NCNO throughout the region 540--900 nm is reported, and both 1- and 2-photon processes are discussed. By monitoring CN fragments produced via the 1-photon process, we show that with photolysis wavelengths >592 nm, dissociation occurs predominantly by exciting NCNO ''hot bands.'' At shorter photolysis wavelengths, dissociation from the ground vibrational state of NCNO is observed as well, but the contributions from hot bands are still manifest in high CN rotational levels which are energetically inaccessible from the ground state (D/sub 0/ = 48.8 kcal mol/sup -1/). Energy distributions in the CN fragments were determined for excess energies up to 1800 cm/sup -1/, and are in agreement with phase space theory calculations and a vibrational predissociation mechanism. In addition, throughout the region 620--900 nm, stepwise two-photon photodissociation proceeds using the A /sup 1/A'' state as a gateway, and results in rotationally and vibrationally ''hot'' CN fragments. The hot CN fragment yield vs photolysis wavelength shows peaks which correspond exactly to peaks in the NCNO absorption spectrum, allowing us to obtain high resolution spectra of the A /sup 1/A''reverse arrow X /sup 1/A' absorption system. The one- and two-photon processes are in competition, and the latter disappears at wavelengths where one-photon photodissociation of NCNO via its ground vibrational level sets in. The nature of the electronic states involved in the one- and two-photon processes is also discussed.

  16. Synthesizing arbitrary two-photon polarization mixed states

    CERN Document Server

    Wei, T C; Branning, D; Goldbart, P M; James, D F V; Jeffrey, E; Kwiat, P G; Mukhopadhyay, S; Peters, N A; Wei, Tzu-Chieh; Altepeter, Joseph B.; Branning, David; Goldbart, Paul M.; Jeffrey, Evan; Kwiat, Paul G.; Mukhopadhyay, Swagatam; Peters, Nicholas A.

    2005-01-01

    Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: Scheme I requires several sets of crystals, while Scheme II requires only a single set, but relies on decohering the pump beam. Additionally, we describe two further schemes which are much easier to implement. Although the total capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maximally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.

  17. Direct frequency comb two-photon laser cooling and trapping

    Science.gov (United States)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  18. Modulation of attosecond beating in resonant two-photon ionization

    CERN Document Server

    Galán, Álvaro J; Martín, Fernando

    2014-01-01

    We present a theoretical study of the photoelectron attosecond beating at the basis of RABBIT (Reconstruction of Attosecond Beating By Interference of Two-photon transitions) in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, its sidebands exhibit a peaked phase shift as well as a modulation of the beating frequency itself. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a sensitive non-holographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena quantitatively with a general finite-pulse analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes, at a negligible computational cost. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  19. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.

    Science.gov (United States)

    Zhu, Guangping; Xu, Chunxiang; Zhu, Jing; Lu, Changgui; Cui, Yiping; Sun, Xiaowei

    2008-11-01

    High density zinc oxide nanorods with uniform size were synthesized on (100) silicon substrate by vapor-phase transport method. The scanning electron microscopy images reveal that the nanorods have an average diameter of about 400 nm. The X-ray diffraction pattern demonstrates the wurtzite crystalline structure of the ZnO nanorods growing along [0001] direction. The single-photon excited photoluminescence presents a strong ultraviolet emission band at 394 nm and a weak visible emission band at 600 nm. When the ZnO nanorods were respectively pumped by various wavelength lasers from 520 nm to 700 nm, two-photon excited ultraviolet photoluminescence was observed. The dependence of the two-photon excited photoluminescence intensity on the excitation wavelength and power was investigated in detail.

  20. High-order dispersion effects in two-photon interference

    CERN Document Server

    Mazzotta, Z; Cipriani, D; Olivares, S; Paris, M G A

    2016-01-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performances. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects.

  1. Two-photon interference from two blinking quantum emitters

    Science.gov (United States)

    Jöns, Klaus D.; Stensson, Katarina; Reindl, Marcus; Swillo, Marcin; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo; Björk, Gunnar

    2017-08-01

    We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the Hong-Ou-Mandel second-order intensity correlation function g(2 )(τ ) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2 )(0 ) =0.5 value when distinguishable photons from two emitters impinge on a beam splitter. Our findings explain the significant differences between linear losses and blinking for correlation measurements between independent sources and are experimentally verified using a parametric down-conversion photon-pair source. We show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishability of photons emitted by independent quantum emitters.

  2. Two-photon interaction between trapped ions and cavity fields

    CERN Document Server

    Semião, F L

    2006-01-01

    In this paper, we generalize the ordinary two-photon Jaynes-Cummings model (TPJCM) by considering the atom (or ion) to be trapped in a simple harmonic well. A typical setup would be an optical cavity containing a single ion in a Paul trap. Due to the inclusion of atomic vibrational motion, the atom-field coupling becomes highly nonlinear what brings out quite different behaviors for the system dynamics when compared to the ordinary TPJCM. In particular, we derive an effective two-photon Hamiltonian with dependence on the number operator of the ion's center-of-mass motion. This dependence occurs both in the cavity induced Stark-shifs and in the ion-field coupling, and its role in the dynamics is illustrated by showing the time evolution of the probability of occupation of the electronic levels for simple initial preparations of the state of the system.

  3. Two-photon microscopy using fiber-based nanosecond excitation.

    Science.gov (United States)

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  4. Four-dimensional multi-site two-photon excitation

    CERN Document Server

    Daria, Vincent Ricardo; Bowman, Richard; Redman, Stephen; Bachor, Hans-A

    2009-01-01

    We report the first demonstration of dynamic and arbitrary multi-site two-photon excitation in three-dimensional (3D) space using the holographic projection method. Rapid temporal response (fourth dimension) is achieved through high-speed non-iterative and non-optimized calculation of the hologram using a video graphics accelerator board. We verify that the projected asymmetric spot configurations have sufficient spatiotemporal photon density for localized two-photon excitation. This system is a significant advance and ready for applications such as time-resolved 3D photolysis of complex biological cell and neuronal networks, 3D microscopy, non-linear micro-fabrication and volume holographic optical storage.

  5. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    Science.gov (United States)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  6. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  7. Band-to-band and free-carrier absorption coefficients in heavily doped silicon at 4 K and at room temperature

    Science.gov (United States)

    Jain, S. C.; Nathan, A.; Briglio, D. R.; Roulston, D. J.; Selvakumar, C. R.; Yang, T.

    1991-03-01

    Using the raw experimental data of Schmid and the known values of band-gap narrowing and Fermi energies for different doping concentrations, the band-to-band and free-carrier absorption coefficients in heavily doped Si are calculated. The behavior of boron-doped Si is different from that of arsenic doped Si. Near threshold, our values of the absorption coefficients are significantly different from those derived by Schmid from the same data. The enhancement of band-to-band transitions due to impurity or free-carrier scattering is not as important in heavily doped Si as in heavily doped Ge. Numerically fitted empirical expressions for the absorption coefficients, suitable for computer simulation studies of opto-electronic devices are given.

  8. Simultaneous two-photon excitation of photodynamic therapy agents

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, E.A.; Fisher, W.G. [Oak Ridge National Lab., TN (United States)]|[Photogen, Inc., Knoxville, TN (United States); Partridge, W.P. [Oak Ridge National Lab., TN (United States); Dees, H.C. [Photogen, Inc., Knoxville, TN (United States); Petersen, M.G. [Univ. of Tennessee, Knoxville, TN (United States). College of Veterinary Medicine

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  9. Two-photon imaging through a multimode fiber

    CERN Document Server

    Morales-Delgado, Edgar E; Moser, Christophe

    2015-01-01

    In this work we demonstrate 3D imaging using two-photon excitation through a 20 cm long multimode optical fiber (MMF) of 350 micrometers diameter. The imaging principle is similar to single photon fluorescence through a MMF, except that a focused femtosecond pulse is delivered and scanned over the sample. In our approach, focusing and scanning through the fiber is accomplished by digital phase conjugation using mode selection by time gating with an ultra-fast reference pulse. The excited two-photon emission is collected through the same fiber. We demonstrate depth sectioning by scanning the focused pulse in a 3D volume over a sample consisting of fluorescent beads suspended in a polymer. The achieved resolution is 1 micrometer laterally and 15 micrometers axially. Scanning is performed over an 80x80 micrometers field of view. To our knowledge, this is the first demonstration of high-resolution three-dimensional imaging using two-photon fluorescence through a multimode fiber.

  10. Two-photon production of charged pion and kaon pairs

    CERN Document Server

    Dominick, J; Sanghera, S; Shelkov, V; Skwarnicki, T; Stroynowski, R; Volobuev, I P; Wei, G; Zadorozhny, P; Artuso, M; Goldberg, M; He, D; Horwitz, N; Kennett, R; Mountain, R; Moneti, G C; Muheim, F; Mukhin, Y; Playfer, S; Rozen, Y; Stone, S; Thulasidas, M; Vasseur, G; Zhu, G; Bartelt, J; Csorna, S E; Egyed, Z; Jain, V; Kinoshita, K; Edwards, K W; Ogg, M; Britton, D I; Hyatt, E R F; MacFarlane, D B; Patel, P M; Akerib, D S; Barish, B C; Chadha, M; Chan, S; Cowen, D F; Eigen, G; Miller, J S; O'Grady, C; Urheim, J; Weinstein, A J; Acosta, D; Athanas, M; Masek, G E; Paar, H P; Sivertz, M; Gronberg, J B; Kutschke, R; Menary, S R; Morrison, R J; Nakanishi, S; Nelson, H N; Nelson, T K; Qiao, C; Richman, J D; Ryd, A; Tajima, H; Sperka, D; Witherell, M S; Procario, M; Balest, R; Cho, K; Daoudi, M; Ford, W T; Johnson, D R; Lingel, K; Lohner, M; Rankin, P; Smith, J G; Alexander, J P; Bebek, C; Berkelman, K; Bloom, K; Browder, T E; Cassel, David G; Cho, H A; Coffman, D M; Drell, P S; Ehrlich, R; Gaidarev, P B; Galik, R S; García-Sciveres, M; Geiser, B; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Jones, C D; Jones, S L; Kandaswamy, J; Katayama, N; Kim, P C; Kreinick, D L; Ludwig, G S; Masui, J; Mevissen, J; Mistry, N B; Ng, C R; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Salman, S; Sapper, M; Würthwein, F; Avery, P; Freyberger, A P; Rodríguez, J; Stephens, R; Yang, S; Yelton, J; Cinabro, D; Henderson, S; Liu, T; Saulnier, M; Wilson, R; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Gollin, G; Ong, B; Palmer, M; Selen, M; Thaler, J J; Sadoff, A J; Ammar, R; Ball, S; Baringer, P; Bean, A; Besson, D; Coppage, D; Copty, N K; Davis, R; Hancock, N; Kelly, M; Kwak, N; Lam, H; Kubota, Y; Lattery, M; Nelson, J K; Patton, S; Perticone, D; Poling, R A; Savinov, V; Schrenk, S; Wang, R; Alam, M S; Kim, I J; Nemati, B; O'Neill, J J; Severini, H; Sun, C R; Zoeller, M M; Crawford, G; Daubenmier, C M; Fulton, R; Fujino, D; Gan, K K; Honscheid, K; Kagan, H; Kass, R; Lee, J; Malchow, R L; Skovpen, Y; Sung, M; White, C; Butler, F; Fu, X; Kalbfleisch, G R; Ross, W R; Skubic, P L; Snow, J; Wang, P L; Wood, M; Brown, D N; Fast, J; McIlwain, R L; Miao, T; Miller, D H; Modesitt, M; Payne, D; Shibata, E I; Shipsey, I P J; Wang Pei Ning; Battle, M; Ernst, J; Kwon, Y; Roberts, S; Thorndike, E H; Wang, C H

    1994-01-01

    A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~\\rm fb^{-1} of data collected by the CLEO II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0~GeV/c^2, and at scattering angles more than 53^\\circ away from the \\gamma\\gamma collision axis in the \\gamma\\gamma center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5~GeV/c^2. hardcopies with figures can be obtained by writing to to: Pam Morehouse ...

  11. Two photon exchange in elastic electron-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Peter Blunden; Wolodymyr Melnitchouk; John Tjon

    2005-06-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio. The two-photon exchange contribution to the longitudinal polarization transfer ratio P{sub L} is small, whereas the contribution to the transverse polarization transfer ratio P{sub T} is enhanced at backward angles by several percent, increasing with Q{sup 2}. This gives rise to a several percent enhancement of the polarization transfer ratio P{sub T}/P{sub l} at large Q{sup 2} and backward angles. We compare the two-photon exchange effects with data on the ratio of e{sup +p} to e{sup -p} cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the {sup 3}He form factors.

  12. Recent two-photon physics results from ARGUS

    Science.gov (United States)

    Živko Representing Argus Collaboration, Tomi

    1995-07-01

    Two photon production of π+π+π0π-π-, K+K-π+π-, K+K-π+π0π-, π+π0π-, and π+π- has been studied using the ARGUS detector at the e+e- storage ring DORIS II at DESY. A partial wave analysis was performed on the five-pion and three-pion final states. In the reaction γγ→ωρ0 is showed that the partial-wave with spin and parity (JP,Jz)=(2+,±2) dominates. The cross section and angular distributions of the reaction γγ→φρ0→K+K-π+π- were measured for the first time. The production of the vector-meson pair φω is observed in the two-photon reaction γγ→K+K-π+π0π-. The two-photon width of the tensor meson a2(1320) was measured in the decay channel π+π0π-. An upper limit, significantly lower than indicated by previous experiments was set on the radiative width of the π2(1670) meson. An upper limit was set on the radiative width of the f0(975)in the decay channel π+π-.

  13. Two-photon spectroscopic behaviors and photodynamic effect on the BEL-7402 cancer cells of the new chlorophyll photosensitizer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The spectroscopic properties of a new chlorophyll derivate photosensitizer(CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti:sapphire laser.The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm.The normalized fluorescence spectra of CDP in tetrahydrofuran(THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands(675 nm).The life-times of two-and one-photon induced fluorescence of this molecule are of the order of 5.0 ns.By comparing the data it is shown that there is some difference between the two lifetimes,but the differ-ence is less than one nanosecond.The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ′2 ≈ 31.5×10-50 cm4·s·photon-1.The results of two-photon photodynamic therapy(TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment.Our results indicate that the two-photon-induced photophysical,photo-chemical and photosensitizing processes of CDP may be basically similar to those of one-photon ex-citation.These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers’ effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.

  14. Two-photon spectroscopic behaviors and photodynamic effect on the BEL-7402 cancer cells of the new chlorophyll photosensitizer

    Institute of Scientific and Technical Information of China (English)

    ZHAO PeiDe; ZHANG GuiLan; CHEN WenJu; CHEN Ping; TANG GuoQing; LIU JinWei; LIN Lie; GUO Peng; YU Qing; YAO JianZhong; MA DongMing

    2008-01-01

    The spectroscopic properties of a new chlorophyll derivate photosensitizer (CDP) are studied under the excitation wavelengths at 800 and 400 nm using femtosecond pulses from a Ti: sapphire laser. The damaging effect of CDP on the BEL-7402 cancer cells is also investigated upon two-photon illumination at 800 nm. The normalized fluorescence spectra of CDP in tetrahydrofuran (THF) show that two-photon and one-photon spectra have the same distributions and the same emission bands (675 nm). The life-times of two- and one-photon induced fluorescence of this molecule are of the order of 5.0 ns. By comparing the data it is shown that there is some difference between the two lifetimes, but the differ-ence is less than one nanosecond. The two-photon absorption cross section of the molecule is also measured at 800 nm and estimated as about σ'2≈31.5×10-50 cm4·s·photon-1. The results of two-photon photodynamic therapy (TPPDT) tests show that CDP can kill all of the tested cancer cells according to the usual Eosine assessment. Our results indicate that the two-photon-induced photophysical, photochemical and photosensitizing processes of CDP may be basically similar to those of one-photon excitation. These behaviors of the sample suggest that one may find other possible methods to estimate some photosensitizers' effects in details such as their distribution in cells and the reactive targets of the sub-cellular parts of some tumor cells via two-photon excitation techniques.

  15. Ultralow Absorption Coefficient and Temperature Dependence of Radiative Recombination of CH3NH3PbI3 Perovskite from Photoluminescence.

    Science.gov (United States)

    Barugkin, Chog; Cong, Jinjin; Duong, The; Rahman, Shakir; Nguyen, Hieu T; Macdonald, Daniel; White, Thomas P; Catchpole, Kylie R

    2015-03-05

    Spectrally resolved photoluminescence is used to measure the band-to-band absorption coefficient α(BB)(ℏω) of organic-inorganic hybrid perovskite methylammonium lead iodide (CH₃NH₃PbI₃) films from 675 to 1400 nm. Unlike other methods used to extract the absorption coefficient, photoluminescence is only affected by band-to-band absorption and is capable of detecting absorption events at very low energy levels. Absorption coefficients as low as 10⁻¹⁴ cm⁻¹ are detected at room temperature for long wavelengths, which is 14 orders of magnitude lower than reported values at shorter wavelengths. The temperature dependence of α(BB)(ℏω) is calculated from the photoluminescence spectra of CH₃NH₃PbI₃ in the temperature range 80-360 K. Based on the temperature-dependent α(BB)(ℏω), the product of the radiative recombination coefficient and square of the intrinsic carrier density, B(T) × n(i)², is also obtained.

  16. A Fiberoptic Irradiance Microsensor (Cosine Collector) - Application for In-Situ Measurements of Absorption-Coefficients in Sediments and Microbial Mats

    DEFF Research Database (Denmark)

    LASSEN, C.; JØRGENSEN, BB

    1994-01-01

    measures of available light for photosynthesis parameter is discussed. From the distribution of scalar irradiance and irradiance, in situ absorption coefficients were calculated. Within the upper 3 mm of the gelatinous mat, the vertical attenuation coefficients of scalar irradiance, upward radiance...... to downward irradiance depended on spectral absorption characteristics of the sediment and ranged from 1.2 at 430 nm in the Microcoleus mat to 2.0 at 760 nm in the Aphanothece-Phormidium mat. As the light field became more isotropic with depth, the ratio of scalar irradiance to downward irradiance increased...

  17. Quantification of the dynamic changes in the absorption coefficient of liquid water at erbium:YAG and carbon dioxide laser wavelengths

    Science.gov (United States)

    Shori, Ramesh K.

    The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second

  18. (Un)determined finite regularization dependent quantum corrections: the Higgs decay into two photons and the two photon scattering examples

    CERN Document Server

    Cherchiglia, A L; Nemes, M C; Sampaio, Marcos

    2012-01-01

    We investigate the appearance of arbitrary, regularization dependent parameters introduced by divergent integrals in two a priori finite but superficially divergent amplitudes: the Higgs decay into two photons and the two photon scattering. We use a general parametrization of ultraviolet divergences which explicitates such ambiguities. Thus we separate in a consistent way using Implicit Regularization the divergent, finite and regularization dependent parts of the amplitudes which in turn are written as surface terms. We find that, although finite, these amplitudes are ambiguous before the imposition of physical conditions namely momentum routing invariance in the loops of Feynman diagrams. In the examples we study momentum routing invariance turns out to be equivalent to gauge invariance. We also discuss the results obtained by different regularizations and show how they can be reproduced within our framework allowing for a clear view on the origin of regularization ambiguities.

  19. An Empirical Determination of the Dust Mass Absorption Coefficient, $\\kappa_{d}$, Using the Herschel Reference Survey

    CERN Document Server

    Clark, Christopher J R; Gomez, Haley L; Davies, Jonathan I

    2016-01-01

    We use the published photometry and spectroscopy of 22 galaxies in the Herschel Reference Survey to determine that the value of the dust mass absorption coefficient $\\kappa_{d}$ at a wavelength of 500 $\\mu m$ is $\\kappa_{500} = 0.051^{+0.070}_{-0.026}\\,{\\rm m^{2}\\,kg^{-1}}$. We do so by taking advantage of the fact that the dust-to-metals ratio in the interstellar medium of galaxies appears to be constant. We argue that our value for $\\kappa_{d}$ supersedes that of James et al. (2002) -- who pioneered this approach for determining $\\kappa_{d}$ -- because we take advantage of superior data, and account for a number of significant systematic effects that they did not consider. We comprehensively incorporate all methodological and observational contributions to establish the uncertainty on our value, which represents a marked improvement on the oft-quoted 'order-of-magnitude' uncertainty on $\\kappa_{d}$. We find no evidence that the value of $\\kappa_{d}$ differs significantly between galaxies, or that it correla...

  20. Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [CINVESTAV del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D. F. (Mexico)

    2009-01-15

    A simple model for the generation of carriers by photons incident on a (linearly) decreasing band-gap material, such as has been described in recent CIGS solar cells, is developed. The model can be generalized for different cases such as increasing band-gap grading or for having a more complex band-gap profile. The model developed for direct band semiconductors such as CIGS or AlGaAs allows us to define an effective absorption coefficient, so that the ideal photocurrent density can be calculated in a similar manner as for solar cells with non-graded band-gap materials. We show that this model gives completely different results as those expected from intuitive approaches for calculating this ideal photocurrent density. We also show that grading of the band-gap of the absorbing material in solar cells makes the photocurrent less sensitive to the total band-gap change, in such a way that the design of the band-gap variation can be more flexible in order to have other advantages such as higher built-in voltage or higher back surface field in the device structure. (author)

  1. Multiscale vision model for event detection and reconstruction in two-photon imaging data

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lind, Barbara Lykke;

    2014-01-01

    Reliable detection of calcium waves in multiphoton imaging data is challenging because of the low signal-to-noise ratio and because of the unpredictability of the time and location of these spontaneous events. This paper describes our approach to calcium wave detection and reconstruction based...... on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed...... in the context of detection and reconstruction of intercellular glial calcium waves. We extend the framework by a different decomposition algorithm and iterative reconstruction of the detected objects. Comparison with several popular state-of-the-art image denoising methods shows that performance...

  2. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing

    Science.gov (United States)

    Yu, Jiancan; Cui, Yuanjing; Xu, Hui; Yang, Yu; Wang, Zhiyu; Chen, Banglin; Qian, Guodong

    2013-10-01

    Two-photon-pumped dye lasers are very important because of their applications in wavelength up-conversion, optical data storage, biological imaging and photodynamic therapy. Such lasers are very difficult to realize in the solid state because of the aggregation-caused quenching. Here we demonstrate a new two-photon-pumped micro-laser by encapsulating the cationic pyridinium hemicyanine dye into an anionic metal-organic framework (MOF). The resultant MOF⊃dye composite exhibits significant two-photon fluorescence because of the large absorption cross-section and the encapsulation-enhanced luminescent efficiency of the dye. Furthermore, the well-faceted MOF crystal serves as a natural Fabry-Perot resonance cavity, leading to lasing around 640 nm when pumped with a 1064-nm pulse laser. This strategy not only combines the crystalline benefit of MOFs and luminescent behaviour of organic dyes but also creates a new synergistic two-photon-pumped lasing functionality, opening a new avenue for the future creation of solid-state photonic materials and devices.

  3. Two-photon imaging and analysis of neural network dynamics

    Science.gov (United States)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  4. Two-photon imaging and analysis of neural network dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luetcke, Henry; Helmchen, Fritjof [Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2011-08-15

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  5. Remote Sensing D/H Ratios in Methane Ice: Temperature-Dependent Absorption Coefficients of CH3D in Methane Ice and in Nitrogen Ice

    CERN Document Server

    Grundy, W M; Bovyn, M J; Tegler, S C; Cornelison, D M

    2011-01-01

    The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer solar system bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 \\mum to study CH3D bands at 2.47, 2.87, and 4.56 \\mum, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.

  6. New two-photon based nanoscopic modalities and optogenetics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    -matter interaction on these scales involves the combination of optimal light-sculpting [4] with the use of optimized shapes in micro-robotics structures [5]. Microfabrication processes such as two-photon photo-polymerization offer three-dimensional resolutions for creating custom-designed monolithic microstructures...... that can be equipped with optical trapping handles for convenient mechanical control using only optical forces [6]. These microstructures illustrated above can be effectively handled with simultaneous top- and side-view on our BioPhotonics Workstation to undertake six-degree-of-freedom optical actuation...

  7. Two-photon polymerization of immune cell scaffolds

    DEFF Research Database (Denmark)

    Olsen, Mark Holm

    and easy to use chip integrated migration platform. Free-form constructs with three-dimensional (3D) microporosity were fabricated by two-photon polymerization inside the closed microchannel of an injection molded commercially available polymer chip for analysis of directed cell migration. Acrylate...... also present a poly (ethylene glycol) diacrylate (PEGDA) based strategy to fabricate soft 3D hydrogel scaffolds. Our experiments with the hydrogel confirm we can control the mechanical properties and introduce biochemical cues on the surface that are recognized by fibroblast cells. Finally we present...

  8. The Nelson Model with Less Than Two Photons

    CERN Document Server

    Galtbayar, A; Yajima, K

    2002-01-01

    We study the spectral and scattering theory of the Nelson model for an atom interacting with a photon field in the subspace with less than two photons. For the free electron-photon system, the spectral property of the reduced Hamiltonian in the center of mass coordinates and the large time dynamics are determined. If the electron is under the influence of the nucleus via spatially decaying potentials, we locate the essential spectrum, prove the absence of singular continuous spectrum and the existence of the ground state, and construct wave operators giving the asymptotic dynamics.

  9. Two-photon tomography using on-chip quantum walks

    CERN Document Server

    Titchener, James; Sukhorukov, Andrey

    2016-01-01

    We present a conceptual approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits, and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum-walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so is well suited for integration with on-chip superconducting photon detectors.

  10. Two Photon Decays of Charmonia from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards

    2006-07-12

    We make the first calculation in lattice QCD of two-photon decays of mesons. Working in the charmonium sector, using the LSZ reduction to relate a photon to a sum of hadronic vector eigenstates, we compute form-factors in both the space-like and time-like domains for the transitions {eta}{sub c} {yields} {gamma}*{gamma}* and {chi}{sub c0} {yields} {gamma}*{gamma}*. At the on-shell point we find approximate agreement with experimental world-average values.

  11. Quantum teleportation of one- and two-photon superposition states

    Institute of Scientific and Technical Information of China (English)

    李英; 张天才; 张俊香; 谢常德

    2003-01-01

    Quantum teleportation of one- and two-photon superposition states based on EPR entanglement of continuouswave two-mode squeezed state is discussed. The fidelities of teleportation are deduced for two different input quantum states. The dependence of the fidelity on the parameters of EPR entanglement and the gain of the classical channels are shown numerically. Comparing with the teleportation of Fock state and coherent state, it is pointed out that for given EPR entanglement and classical gain, the higher the nonclassicality of the input state, the lower the accessible fidelity of teleportation.

  12. Inclusive $D*^{+-}$ Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M

    2002-01-01

    Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV e^+e^-D^{*+-}X)$ in this kinematical region is measured and the sigma(e^+e^- ---> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

  13. Two-photon photoassociative spectroscopy of ultracold 88-Sr

    CERN Document Server

    de Escobar, Y N Martinez; Pellegrini, P; Nagel, S B; Traverso, A; Yan, M; Côté, R; Killian, T C

    2008-01-01

    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X$^1\\Sigma_g^+$ state of the $^{88}$Sr$_2$ dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, $a_{88}=-1.4(6) a_0$. For the intermediate state, we use a bound level on the metastable $^1S_0$-$^3P_1$ potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.

  14. Two-photon photoassociative spectroscopy of ultracold Sr88

    Science.gov (United States)

    Martinez de Escobar, Y. N.; Mickelson, P. G.; Pellegrini, P.; Nagel, S. B.; Traverso, A.; Yan, M.; Côté, R.; Killian, T. C.

    2008-12-01

    We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the XΣg+1 state of the Sr288 dimer. Measurement of the binding energy allows us to determine the s -wave scattering length a88=-1.4(6)a0 . For the intermediate state, we use a bound level on the metastable S01-P13 potential, which provides large Franck-Condon transition factors and narrow one-photon photoassociative lines that are advantageous for observing quantum-optical effects such as Autler-Townes resonance splittings.

  15. Two-Photon Nonlinear Jaynes-Cummings Model with Stark Shift%具有Stark位移的非线性双光子Jaynes-Cummings模型

    Institute of Scientific and Technical Information of China (English)

    董传华; 卢俊

    2002-01-01

    Two-photon Jaynes-Cummimgs model is generalized to the case of Kerr medium in this paper. The field and atom are prepared initially in two-photon superposition state and ground state respectively. Nonlinear coefficient affects the dynamic behaviors of the field and atom. Evolutions of the squeezing for the operators of field and atom and the quantum inversion are discussed. In particular, the higher-order squeezing for atomic dipole and the effects of nonlinearity on it, which have not been studied by other authors,are investigated. Increasing the nonlinear coefficient will decrease the squeezing depth of atomic dipole.

  16. Resonance Two-Photon Ionization of Diarylethene in the Presence of Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Michihiro Hara

    2013-01-01

    Full Text Available The transient absorption of the diarylethene 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl-3,3,4,4,5,5-hexafluoro-1-cyclopentene (DE was measured using 266 nm laser flash photolysis in the presence of various cyclodextrins (CDs in aqueous solvent. Ionization of DE occurred within the laser flash (5 ns to give the DE radical cation and water-solvated electron. The electron was generated by two-photon excitation through simultaneous irradiation with 266 nm laser light, and the ionization quantum yields of DE in the presence of α-CD, β-CD, m-β-CD, and γ-CD depended on the properties of the DE/CD complexes. These results suggest that useful two-photon ionization occurred for these complexes. The ionization quantum yield of DE was found to increase in aqueous solution after the addition of m-β-CD (50 mM, in which m-β-CD likely controlled the photochromic reactivity of DE.

  17. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    Science.gov (United States)

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-01-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling. PMID:27576922

  18. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo

    Science.gov (United States)

    Song, Wei; Xu, Qiang; Zhang, Yang; Zhan, Yang; Zheng, Wei; Song, Liang

    2016-08-01

    The ability to obtain comprehensive structural and functional information from intact biological tissue in vivo is highly desirable for many important biomedical applications, including cancer and brain studies. Here, we developed a fully integrated multimodal microscopy that can provide photoacoustic (optical absorption), two-photon (fluorescence), and second harmonic generation (SHG) information from tissue in vivo, with intrinsically co-registered images. Moreover, using a delicately designed optical-acoustic coupling configuration, a high-frequency miniature ultrasonic transducer was integrated into a water-immersion optical objective, thus allowing all three imaging modalities to provide a high lateral resolution of ~290 nm with reflection-mode imaging capability, which is essential for studying intricate anatomy, such as that of the brain. Taking advantage of the complementary and comprehensive contrasts of the system, we demonstrated high-resolution imaging of various tissues in living mice, including microvasculature (by photoacoustics), epidermis cells, cortical neurons (by two-photon fluorescence), and extracellular collagen fibers (by SHG). The intrinsic image co-registration of the three modalities conveniently provided improved visualization and understanding of the tissue microarchitecture. The reported results suggest that, by revealing complementary tissue microstructures in vivo, this multimodal microscopy can potentially facilitate a broad range of biomedical studies, such as imaging of the tumor microenvironment and neurovascular coupling.

  19. Two-photon pumped cavity lasing in novel dye doped bulk matrix rods

    Science.gov (United States)

    He, Guang S.; Zhao, Chan F.; Bhawalkar, Jayant D.; Prasad, Paras N.

    1995-12-01

    Trans-4-[p-(N-ethyl-N-hydroxyethylamino)styryl]-N-methylpyridi that possesses a much greater two-photon absorption cross section and much stronger upconversion fluorescence emission than common organic dyes (such as rhodamine), when excited with near infrared laser radiation. Utilizing ASPT doped bulk polymer rods, two-photon pumped frequency upconverted cavity lasing has been accomplished using a Q-switched Nd:YAG laser as the pump source. The wavelength and pulse duration were ˜600 nm and 3-6 ns, respectively, for the cavity lasing; whereas the corresponding values for pump pulses were 1.06 μm and ˜10 ns, respectively. For a 7 mm long sample rod with a dopant concentration d0=8×10-3 M/L, the conversion efficiency from the absorbed pump energy to the cavity lasing output was ˜3.5% at a pump energy level of 1.3 mJ. The lasing lifetime, in terms of pulse numbers, was more than 4×104 pulses at 2 Hz repetition rate and room temperature.

  20. Properties of two-photon pumped cavity lasing in novel dye doped solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    He, G.S.; Bhawalkar, J.D.; Zhao, C.; Prasad, P.N. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemistry

    1996-05-01

    Two-photon pumped frequency upconversion cavity lasing at {approximately}600 nm is accomplished in three types of dye-doped solid rods pumped with {approximately}10 ns and 1.06-{micro}m IR laser pulses. The dopant is a new dye, trans-4-[p-(N-ethyl-N-(hydroxyethyl)amino)styryl]-N-methylpyridinium tetraphenylborate, abbreviated as ASPT, which possesses a greater two-photon absorption cross section and stronger upconversion fluorescence emission than common commercial dyes (such as rhodamine). Three different materials were chosen as solid matrices: poly(2-hydroxyethyl methacrylate), VYCOR porous glass, and sol-gel glass. Using a Q-switched Nd:YAG pulse laser as the pump source, strong cavity lasing could be achieved in these three ASPT doped solid rods as well as in ASPT solution in a liquid cell. The spectral, temporal, and spatial characteristics of the cavity lasing output have been systematically investigated. The measured output-input characteristics, lasing lifetime, and damage threshold for the three different rods are presented.

  1. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels.

    Science.gov (United States)

    Liu, Guohua; Du, Kang; Haussener, Sophia; Wang, Kaiying

    2016-10-20

    Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels.

  2. On the origin of large two-photon activity of DANS molecule.

    Science.gov (United States)

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan

    2012-11-15

    In this work, using the quadratic response theory and two-state model approach, we have explained the origin of high two-photon activity and the corresponding solvent dependence of 4,4'-dimethyl-amino-nitro-stilbene (DANS) molecule. For this purpose, we have made two structural modifications in the DANS molecule (1) at the donor-acceptor part and (2) at the unsaturated bridge between the two rings and calculated the one- and two-photon (OP and TP) absorption parameters of all the systems in gas phase and in three different solvents, viz., MeCN, THF, and toluene. We found that the removal of donor-acceptor groups from the original DANS molecule vanishes the transition moment between the ground and excited states and also the corresponding dipole moment difference, and the saturation of the π-conjugation bridge between the two rings keeping the donor-acceptor groups intact causes a large decrease in the ground to excited state transition moment. These changes, in turn, decrease the overall TP activity of the molecules as compared to DANS. On the basis of our analysis, we have concluded that neither the donor-acceptor pair nor the π-conjugation bridge between the two, rather their cooperative involvement leads to a large overlap between the ground and virtual and also the virtual and charge-transfer states, which are eventually responsible for the very large TP activity of DANS.

  3. In situ electrical and thermal monitoring of printed electronics by two-photon mapping.

    Science.gov (United States)

    Pastorelli, Francesco; Accanto, Nicolò; Jørgensen, Mikkel; van Hulst, Niek F; Krebs, Frederik C

    2017-06-19

    Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed electronic devices relies principally on the carrier mobility and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid, in situ, non-destructive and low-cost testing method is needed. In this study, we demonstrate that nonlinear optical microscopy is a promising technique to achieve this goal. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence and second harmonic response. We show that, in our experimental conditions, it is possible to relate the total amount of photoluminescence detected to important material properties such as the charge carrier density and the molecular packing of the printed polymer material, all with a spatial resolution of 400 nm. Importantly, this technique can be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates.

  4. Optically Pumped Atomic Rubidium Lasers: Two-Photon and Exciplex Excitation Mechanisms

    Science.gov (United States)

    Gallagher, Jeffrey E.

    The Doppler-broadened two-photon absorption (TPA) cross-section for the 52S1/2 → 52 D5/2 transition in Rb is measured using direct absorption methods. The selection rule |DeltaF| ≤ 2 applied to both isotopes yields 17 transitions in 3 Doppler limited lines. A detailed model of the intensity profile was also developed to account for a focused Gaussian beam (with an M2 value of 1.09) propagating through a two-photon absorption medium. A peak absorbance of 24% was observed for an intensity of 6.28 kWcm2 at the focus, a Rb density of 4.6x1015 cm-3 , and a path length of 15 cm. Alkali concentrations from 1.61 - 8.52x1015 cm -3 were monitored in the far wing of the D 2 line. Extracting the hyperfine-broadened TPA cross-section from 87 test configurations, while varying the pump power, alkali concentration and focal length, yielded an error-weighted average of 6.75x10^-21 cm4W with a standard deviation of 3.61x10-21 cm4W. This cross-section is sufficient for a pulsed dye laser to bleach the pump transition in the Two-Photon Pumped Alkali Laser (TPAL) that lases at 420 nm and 5.2 microm. Optically pumped atomic rubidium lasers pumped in the blue satellite of the D2 line from the ground Rb-Ar or Rb-Kr collision pair to the dissociative B2S+1/2 state produce laser emission at 780.2 nm. Lasing is achieved for pump wavelengths of 752.3 to greater than 760 nm for the Rb-Ar system and 757.1 -- 760.4 nm for the Rb-Kr system. Slope efficiencies increase with both Rb and Ar concentrations and exceed 0.25% using a heat pipe configuration. The gain is very high with photon build-up times of 1--3.7 ns. Laser induced heating and subsequent condensation of alkali vapor in the heat pipe configuration currently limits operation to less than 2500 Torr.

  5. Two-Photon Holographic Stimulation of ReaChR

    Science.gov (United States)

    Chaigneau, Emmanuelle; Ronzitti, Emiliano; Gajowa, Marta A.; Soler-Llavina, Gilberto J.; Tanese, Dimitrii; Brureau, Anthony Y. B.; Papagiakoumou, Eirini; Zeng, Hongkui; Emiliani, Valentina

    2016-01-01

    Optogenetics provides a unique approach to remotely manipulate brain activity with light. Reaching the degree of spatiotemporal control necessary to dissect the role of individual cells in neuronal networks, some of which reside deep in the brain, requires joint progress in opsin engineering and light sculpting methods. Here we investigate for the first time two-photon stimulation of the red-shifted opsin ReaChR. We use two-photon (2P) holographic illumination to control the activation of individually chosen neurons expressing ReaChR in acute brain slices. We demonstrated reliable action potential generation in ReaChR-expressing neurons and studied holographic 2P-evoked spiking performances depending on illumination power and pulse width using an amplified laser and a standard femtosecond Ti:Sapphire oscillator laser. These findings provide detailed knowledge of ReaChR's behavior under 2P illumination paving the way for achieving in depth remote control of multiple cells with high spatiotemporal resolution deep within scattering tissue. PMID:27803649

  6. Inclusive D*(+/-) production in two photon collisions at LEP

    CERN Document Server

    Prokofiev, Denis Olegovich

    2001-01-01

    In this thesis I present my results on the measurement of the open charm production in two-photon collision events done with the L3 detector at Large Electron Positron machine (LEP). The data sample was collected from 1997 through 2000 at center-of-mass energies ranging from 183 GeV to 209 GeV, corresponding to a total integrated luminosity of 683.4pb −1. The open charm production in two-photon collision events extrapolated to the full phase space is estimated to be: s&parl0;e+e-&rarrr;e +e-cc&d1;X&parr0;=9 23±69±109±222pb. The differential cross sections d s /dpT(D*±) and d s /d:η(D*±): are also measured as functions of transverse momentum pT(D*±) and the absolute value of pseudorapidity :η(D*±):, respectively. A fit to the data estimating the relative contributions of Direct and Resolved open charm production mechanisms is performed, giving (28.7 ± 5.6)% and (71.3 ± 8.8)%, respectively. Using those relative fractions, the Direct and Resolved process cross sections yield: s&p...

  7. High-order dispersion effects in two-photon interference

    Science.gov (United States)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  8. Simultaneous two-photon excitation of photodynamic therapy agents

    Science.gov (United States)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  9. Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference

    Institute of Scientific and Technical Information of China (English)

    LV Fan; SUN Fang-Wen; ZOU Chang-Ling; HAN Zheng-Fu; GUO Guang-Can

    2011-01-01

    We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons. Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.%@@ We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons.Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.

  10. Synthesis and Nonlinear Optical Properties of a New Two-photon Polymerization Initiator: DPAMOB with a Large TPA Cross-section

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian; YU Xiao-Qiang; ZHANG Bao-Qin; FENG Yun-Guo; TAO Xu-Tang; JIANG Min-Hua

    2006-01-01

    E,E-1,4-Bis(4′-N,N-diphenylaminostyryl)-2,5-dimethoxybenzene (DPAMOB) has been synthesized by a simple and effective solid phase Wittig reaction and characterized by 1H NMR spectra and elemental analysis. Linear absorption, single-photon induced fluorescence and two-photon induced fluorescence spectra were experimentally studied. The new dye has a large two-photon absorption (TPA) cross-section of σr= 1007.2 GM [1 GM= 1 × 10-50results confirm that DPAMOB is a good TPA chromophore and can successfully initiate two-photon photopolymerization of ethoxylated trimethylolpropane triacrylate esters (SR454). Finally, a microstructure has been fabricated by use of DPAMOB as initiator.

  11. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation

    Science.gov (United States)

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-01-01

    We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ~2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ~800 nm for Ag29(DHLA)12 is higher than 104 GM and the hyperpolarizability is 106 × 10-30 esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties.We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ~2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ~800 nm for Ag29(DHLA)12 is higher than 104

  12. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Ding, Lei [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Zhang, Chun; Ren, Aiming [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Li, Bo [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2015-02-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ{sub cut-off} ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10{sup 3}GM) and high thermal stability (T{sub d} = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10{sup 3}GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties.

  13. Two-photon photodissociation of H 2O via the B˜ state

    Science.gov (United States)

    Underwood, J.; Wittig, C.

    2004-03-01

    The H 2O B˜← X˜ system has been excited by using 266 nm two-photon absorption, and H-atom products have been probed by using high- n Rydberg time-of-flight spectroscopy. The B˜/ X˜ conical intersection results in the efficient transfer of flux from B˜ to X˜, with dissociation occurring mainly on X˜ . Though the OH(X 2Π) product is highly rotationally excited, this bias is less than that observed at higher energies. The OH(A 2Σ +)/OH(X 2Π) branching ratio is <0.1%, which is significantly smaller than branching ratios obtained at higher excitation energies, and two orders of magnitude less than predicted by theory.

  14. Fully integrated reflection-mode photoacoustic/two-photon microscopy in vivo (Conference Presentation)

    Science.gov (United States)

    Song, Liang; Song, Wei; Zhang, Yang; Zheng, Wei

    2016-03-01

    Using a water-immersion optical objective in conjunction with a miniature 40-MHz ultrasonic transducer, we developed reflection-mode photoacoustic microscopy with a transverse resolution as high as 320 nm. Here, we further integrated two-photon microscopy capability into the system to enable multimodality in vivo biomedical imaging at submicron resolution. As a result, the system is capable of tri-modality label-free imaging of microvasculature, collagen, and cell morphology, based on the contrast of optical absorption, second-harmonic generation, and autofluorescence, respectively. In addition, we demonstrated simultaneous microscopic imaging of neuron and microvasculature in the brain cortex of a living mouse, which may offer new opportunities for studying the mechanisms of neurovascular coupling.

  15. Two Photon Induced Lasing in 1550 nm Quantum Dash Optical Gain Media

    DEFF Research Database (Denmark)

    Capua, Amir; Saal, Abigael; Reithmaier, Johann Peter

    2011-01-01

    We report on a unique lasing mechanism observed in quantum dash Gain media. While the gain media is electrically pumped below lasing threshold, a strong optical pulse excites carriers by two photon absorption into high energy states of the quantum dashes and wetting layer. Fast inter band carrier...... by the XFROG scheme is performed. We show the lasing mechanism to be governed mainly by the wetting layer dynamics and extract a direct measurement of the carrier-carrier scattering time constant....... relaxation and capture processes into the ground states of the quantum dashes result in increased gain followed by lasing at the gain peak irrespective of the stimulating pulse wavelength. The temporal response of the lasing line is examined on a 40 GHz scope and full characterization of the pulse...

  16. Ultrabroadband ghost imaging exploiting optoelectronic amplified spontaneous emission and two-photon detection.

    Science.gov (United States)

    Hartmann, Sébastien; Molitor, Andreas; Elsäßer, Wolfgang

    2015-12-15

    Ghost imaging (GI) is one of the recent fascinating and probably counterintuitive topics of quantum optics. Here, we present an alternative classical GI scheme using spectrally ultrabroadband amplified spontaneous emission from an optoelectronic quantum dot based superluminescent diode source. This light source exhibits highly incoherent properties regarding both first- and second-order correlations with a 70 nm-wide optical spectrum as well as thermal-like photon statistics. Exploiting a two-photon-absorption detection method, we demonstrate for the first time, to the best of our knowledge, a GI experiment handling the corresponding femtosecond correlation timescales. By introducing compact broadband light sources to GI, this work contributes toward practical application of GI.

  17. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al–He{sub n} vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm{sup −1}). However, using the same laser wavelength, we were unable to detect any Al{sub n} photoion with n larger than two.

  18. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets.

    Science.gov (United States)

    Krasnokutski, Serge A; Huisken, Friedrich

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al-He(n) vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm(-1)). However, using the same laser wavelength, we were unable to detect any Al(n) photoion with n larger than two.

  19. Kerr nonlinearity and multi-photon absorption in germanium at mid-infrared wavelengths

    Science.gov (United States)

    Sohn, B.-U.; Monmeyran, C.; Kimerling, L. C.; Agarwal, A. M.; Tan, D. T. H.

    2017-08-01

    Multiphoton absorption coefficients and nonlinear refractive indices of germanium in the near and mid-infrared (2-5 μm) are reported. The nonlinear coefficients are measured by open and closed aperture Z-scan with 150 fs pulses at a repetition rate of 1 kHz. The nonlinear refractive index of Ge has a peak value of 9.1 ×10-5cm2/GW at a wavelength of 3 μm. The effect of free electrons generated by multiphoton absorption is discussed by investigating the variation of multiphoton absorption coefficients at different input powers. Kramers-Kronig relations are also discussed with regard to the relationship between nonlinear refractive index and two photon absorption coefficient.

  20. Low temperature MIR to submillimeter mass absorption coefficient of interstellar dust analogues. I. Mg-rich glassy silicates

    Science.gov (United States)

    Demyk, K.; Meny, C.; Lu, X.-H.; Papatheodorou, G.; Toplis, M. J.; Leroux, H.; Depecker, C.; Brubach, J.-B.; Roy, P.; Nayral, C.; Ojo, W.-S.; Delpech, F.; Paradis, D.; Gromov, V.

    2017-04-01

    Context. The submillimeter spectral domain has been extensively explored by the Herschel and Planck satellites and is now reachable from the ground with ALMA. A wealth of data, revealing cold dust thermal emission, is available for astronomical environments ranging from interstellar clouds, cold clumps, circumstellar envelops, and protoplanetary disks. The interpretation of these observations relies on the understanding and modeling of cold dust emission and on the knowledge of the dust optical properties. Aims: The aim of this work is to provide astronomers with a set of spectroscopic data of realistic interstellar dust analogues that can be used to interpret the observations. It pursues the experimental effort aimed at characterizing the spectroscopic properties of interstellar dust analogues at low temperature in the mid-infrared (MIR) to millimeter spectral domain. Compared to previous studies, it extends the range of studied dust analogues in terms of composition and of structure of the material. Methods: Glassy silicates of mean composition (1-x)MgO - xSiO2 with x = 0.35 (close to forsterite, Mg2SiO4), 0.50 (close to enstatite, MgSiO3) and 0.40 (close to Mg1.5SiO3.5 or MgSiO3:Mg2SiO4 = 50:50) were synthesized. The mass absorption coefficient (MAC) of the samples was measured in the spectral domain 30-1000 μm for grain temperature in the range 300-10 K and at room temperature in the 5-40 μm domain. Results: We find that the MAC of all samples varies with the grains temperature and that its spectral shape cannot be approximated by a single power law in λ- β. In the FIR/submm, and above 30 K, the MAC value at a given wavelength increases with the temperature as thermally activated absorption processes appear. The studied materials exhibit different and complex behaviors at long wavelengths (λ ≥ 200 to 700 μm depending on the samples). These behaviors are attributed to the amorphous nature of dust and to the amount and nature of the defects within this

  1. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  2. Two-Photon Micromaser with Initial Atomic Coherence

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Hui; DU Si-De; CHEN Xiao-Shuang

    2005-01-01

    @@ We investigate the quantum dynamics ora two-photon micromaser pumped by atoms injected in the superpositionstate of the upper and intermediate levels. We simulate a master equation governing the system by the MonteCarlo wavefunction approach and analyse the steady-state behaviour as a function of the atomic transit time.The atomic coherence can effectively enhance the intensity and sub-Poissonian of the cavity field as comparedwith the atomic mixture. It is also discovered that the phase of the cavity field can be shifted by adjusting thedetuning between the atom and field. This result shows that it is possible to manipulate the phase of the cavityfield by detuning, due to atomic coherence.

  3. Two-photon resonant, stimulated processes in krypton and xenon

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p..-->..s, d..-->..p, and f..-->..d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p..-->..s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs.

  4. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  5. Two-photon assisted clock comparison to picosecond precision

    CERN Document Server

    Zhang, Shi-Wei; Yao, Yin-Ping; Wan, Ren-Gang; Zhang, Tong-Yi

    2015-01-01

    We have experimentally demonstrated a clock comparison scheme utilizing time-correlated photon pairs generated from the spontaneous parametric down conversion process of a laser pumped beta-barium borate crystal. The coincidence of two-photon events are analyzed by the cross correlation of the two time stamp sequences. Combining the coarse and fine part of the time differences at different resolutions, a 64 ps precision for clock synchronization has been realized. We also investigate the effects of hardware devices used in the system on the precision of clock comparison. The results indicate that the detector's time jitter and the background noise will degrade the system performance. With this method, comparison and synchronization of two remote clocks could be implemented with a precision at the level of a few tens of picoseconds.

  6. Measurement of bottom quark production in two photon collisions

    CERN Document Server

    Saremi, Sepehr

    2001-01-01

    The cross section for bottom quark production in two-photon collisions, sigma( e+e- → e+e- bb¯X), is measured for the first time. The measurement is performed with the L3 detector at the Large Electron Positron (LEP) collider at the European Center for Nuclear and Particle Physics (CERN). The data corresponds to 410 pb-1 taken at center-of-mass energies from 189 GeV to 202 GeV. Hadrons containing a bottom quark are identified by detecting electrons or muons from their semi-leptonic decays. The measured cross section is in excess of the Next to Leading Order QCD prediction by a factor of three.

  7. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  8. Anomalous two-photon spectral features in warm rubidium vapor

    Science.gov (United States)

    Perrella, C.; Light, P. S.; Milburn, T. J.; Kielpinski, D.; Stace, T. M.; Luiten, A. N.

    2016-09-01

    We report observation of anomalous fluorescence spectral features in the environs of a two-photon transition in a rubidium vapor when excited with two different wavelength lasers that are both counterpropagating through the vapor. These features are characterized by an unusual trade-off between the detunings of the driving fields. Three different hypothetical processes are presented to explain the observed spectra: a simultaneous three-atom and four-photon collision, a four-photon excitation involving a light field produced via amplified spontaneous emission, and population pumping perturbing the expected steady-state spectra. Numerical modeling of each hypothetical process is presented, supporting the population pumping process as the most plausible mechanism.

  9. Two-photon transition form factor of c ¯ quarkonia

    Science.gov (United States)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  10. Nuclear two-photon decay in 0 +→0 + transitions

    Science.gov (United States)

    Kramp, J.; Habs, D.; Kroth, R.; Music, M.; Schirmer, J.; Schwalm, D.; Broude, C.

    1987-11-01

    The two-photon decay of the first excited 0 + state of 16O has been measured using the Heidelberg-Darmstadt crystal ball. A branching ratio of {Γ γγ}/{Γ tot} = (6.6±0.5) · 10 -4 was obtained. As in the cases of 40Ca and 90Zr previously reported by us, the 2γ decay of 16O proceeds via double E1 and M1 transitions of similar strength; the evidence is the observed interference term in the 2γ angular correlation. The ratio of the matrix elements {α E1 }/{χ} for 16O was restricted to the two inverse values (-6.2±1.5) or (-0.16±0.04). An interpretation of 2γ matrix elements observed for 16O, 40Ca and 90Zr in terms of the electric polarizabilities and magnetic susceptibility is given leading to a qualitative understanding of this decay mode.

  11. Fluorescent detection and imaging of Hg{sup 2+} using a novel phenanthroline derivative based single- and two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xian, E-mail: zhangx@qlu.edu.cn; Li, Long-long; Liu, Ying-kai

    2016-02-01

    A novel phenanthroline derivative, 4-[4-(N-methyl)styrene]-imidazo[4,5-f][1,10]phenanthroline-benzene iodated salt (MSIPBI), was synthesized, and the linear absorption and fluorescent spectra of MSIPBI in different solvents were investigated. The photophysical properties in unbound and in ligand–metal complexes were evaluated by UV absorption and one- and two-photon fluorescent spectra, and the quantum yields, two-photon active cross-sections and the binding constant of dye–metal were calculated. The results indicated that MSIPBI has a large Stokes shift (more than 167 nm), and the dye was selective and sensitive for the detection of Hg{sup 2+} with a two-photon active cross-section of 55.5 GM in tris–HCl buffer solution at 800 nm. Furthermore, the results of the fluorescence microscopy imaging indicated that MSIPBI is an efficient fluorescent probe for the detection of Hg{sup 2+} in living cells by one- and two-photon excitation. Moreover, the experiments of determination Hg{sup 2+} in river water and tap water were finished. - Highlights: • A novel phenanthroline derivative (MSIPBI) has been synthesized. • The dye of MSIPBI was selective and sensitive to detect Hg{sup 2+}. • MSIPBI has a large Stokes shift (≥ 167 nm). • Hg{sup 2+} in living cells was successfully imaged by one- and two-photon excitation.

  12. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density.

    Science.gov (United States)

    Wang, Jing; Zhang, Zehui; Zha, Shuai; Zhu, Yinyan; Wu, Peiyi; Ehrenberg, Benjamin; Chen, Ji-Yao

    2014-11-01

    The 5,10,15,20-tetrakis(1-methyl 4-pyridinio) porphyrins (TMPyP), a photosensitizer used for photodynamic therapy of cancers (PDT), were linked to carbon dots (CDots) to form the conjugates of CDot-TMPyP by the electrostatic force. The 415 nm emission band of CDots was well overlapped with the absorption band of TMPyP, so that the Cdots in conjugates can work as donor to transfer the energy to TMPyP moiety by fluorescence resonance energy transfer (FRET) with an FRET efficiency of 45%, determined by the fluorescence lifetime change between the free CDots and conjugated CDots. The two-photon absorption cross section (TPACS) of TMPyP is as low as 110 GM and the TMPyP thus be not suitable for two-photon PDT. Whereas the CDots have high TPACS, and their TPACS are excitation wavelength dependent with the maximum value of 15000 GM at 700 nm. Therefore, the conjugates of CDot-TMPyP were explored for two-photon excitation (TPE) PDT. The two-photon image of CDot-TMPyP in Hela cells was clearly seen under the excitation of a 700 nm femto-second (fs) laser. The singlet oxygen production of CDot-TMPyP was also much higher than that of TMPyP alone under TPE of a 700 nm fs laser. The in vitro PDT killing was further achieved with CDot-TMPyP by TPE of the 700 nm fs laser. Particularly herein the low power density of fs laser from unfocused laser beam was successfully used to carry out the TPE PDT, because of the high TPACS of CDots. These results demonstrate that the CDot-TMPyP conjugates are promising for TPE PDT and needed to investigate further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Two-Photon Pumped Amplified Spontaneous Emission from Cyano-Substituted Oligo(p-phenylenevinylene) Crystals with Aggregation-Induced Emission Enhancement

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Yang, Jie; Xia, Hong; Gao, Bing-Rong; Feng, Jing; Ma, Yu-Guang; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    We report the effective two-photon absorption-induced upconversion amplified spontaneous emission (ASE) in the cyano-substituted oligo(p-phenylenevinylene) 1,4-bis[1-cyano-2-(4-(diphenylamino)phenyl)vinyl]benzene (TPCNDSB) organic crystals. The material shows enhanced emission in the solid state (31

  14. Coincidence in the two-photon spectra of Li and Li{sub 2} at 735 nm

    Energy Technology Data Exchange (ETDEWEB)

    DeGraffenreid, W [Department of Physics and Astronomy, California State University, Sacramento, Sacramento, CA 95819-6041 (United States); Sansonetti, Craig J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2005-02-28

    A coincidence between the 2{sup 2}S{sub 1/2}-3{sup 2}S{sub 1/2} two-photon transition in the atomic spectrum of {sup 6}Li and the X {sup 1}{sigma}{sup +}{sub g}{yields} E {sup 1}{sigma}{sup +}{sub g} two-photon ro-vibrational series of {sup 7}Li{sub 2} was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the {sup 6}Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  15. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M. [Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Institute of Physics, Torun (Poland)

    2014-11-11

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 10{sup 14}-10{sup 17} cm{sup -3}. (orig.)

  16. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    Science.gov (United States)

    Pawlak, M.

    2015-01-01

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 1014-1017 cm-3.

  17. Absorption coefficient and refractive index changes of a quantum ring in the presence of spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.

    2017-10-01

    Effects of applied magnetic field, temperature and dimensions on the optical absorption coefficients (AC) and refractive index (RI) changes of a GaAs quantum ring are investigated in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). To this end, the finite difference method (FDM) is used in order to numerically calculate the energy eigenvalues and eigenstates of the system while the compact density matrix approach is hired to calculate the optical properties. It is shown that application of magnetic field, temperature as well as the geometrical size in the presence of spin-orbit interactions, alter the electronic structure and consequently influence the linear and third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system. Results show an obvious blue shift in optical curves with enhancing external magnetic field and temperature while the increment of dimensions result in red shift.

  18. Fluorescence enhancement of asCP595 is due to consecutive absorbance of two photons

    Science.gov (United States)

    Savitsky, Alexander P.; Agranat, Michail B.; Lukyanov, Konstantin A.; Schuttrigkeit, Tanja; von Feilitzsch, Till; Kompa, Christian; Michel-Beyerle, Maria-Elisabeth

    2004-06-01

    Colored proteins are widely used as gene markers in biotechnology. Chromophores result from autocatalytic posttranslational reactions involving several amino acids. The protein asCP595 was isolated for the first time from the coral as a weakly fluorescent chromoprotein with a fluorescence maximum at 595 nm. Strong illumination in the blue wing of the low energy absorption band results in a superlinear increase of the fluorescence yield and shifts its fluorescence spectrum by about 10 nm to the red. Time resolved fluorescence measurements using excitation pulses with 10 ps duration revealed a multiexponential decay pattern with time constants in the range from 20 ps to 2.1 ns. The ratio of amplitudes related to the different time constants depends on the intensity of illumination favoring the ns component at high intensities. Transient absorption measurements using ultrashort excitation pulses (150 fs, 1 kHz repetition rate) did not reveal excited states with nanosecond lifetimes as observed in fluorescence upon excitation using 10 ps pulses. This observation leads to the notion that within 10 ps a second photon is absorbed by a state not yet populated within 150 fs. As a consequence we propose two different excited singlet states operative in asCP595, one with low fluorescence quantum yield peaking at 595 nm and one with high fluorescence quantum yield peaking at 605 nm which is populated via the consecutive absorption of two photons at high excitation intensities.

  19. Reduction of tire road noise by acoustic absorption: Numerical evaluation of the pass-by noise level reduction using the normal incidence acoustic absorption coefficient

    OpenAIRE

    Hamet, J. F.

    2004-01-01

    Convention GRD2/2000/30202; Rapport de recherche; Comments: This report is an INRETS-LTE edition of the SILVIA -INRETS-013-WP2 report "Estimation of the attenuation of rolling noise by acoustic absorption", dated 19/09/2004. Summary: Part of INRETS task in the SILVIA project is to study the influence of the pavement characteristics on the generation and the propagation of road traffic noise using existing models. This work addresses the reduction of tire-road noise by absorption effects. It a...

  20. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    Science.gov (United States)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  1. Comprehensive analysis of the optical Kerr coefficient of graphene

    Science.gov (United States)

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-01

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S -matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.

  2. Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis

    Science.gov (United States)

    Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.

    2017-01-01

    In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1  ×  1015 Hz and for low temperature (species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.

  3. Analytical expressions of the intermediate pressure, the coefficient of performance and the exergy efficiency of half-effect absorption cooling chillers

    Energy Technology Data Exchange (ETDEWEB)

    Ort, Nesibe; Yoruk, Sedat [Ataturk University, Department of Chemical Engineering (Turkey)], e-mail: nesibe.ort@atauni.edu.tr, email: syoruk@atauni.edu.tr; Dilmac, Omer F. [Yyldyz Technical University, Department of Chemical Engineering (Turkey)], email: omerfarukdl@yahoo.com

    2011-07-01

    With the energy crisis and the rising concerns about the environment, energy-saving measures are increasingly needed. In the building sector, air conditioning systems consume important amounts of energy and absorption cooling systems, which use low grade heat, have become popular due to their energetic and environmental performances. Absorption cooling systems are composed of a condenser, an evaporator, 2 generators and 2 absorbers and 2 fluids, the refrigerant and the absorbent, are used in the cycle. The aim of this paper is to provide a method for assessing the intermediate pressure (Pi), the coefficient of performance (COP) and the exergy efficiency immediately. To do so, simple analytical expressions were used. The Pi, the COP and the exergy efficiency were found and results showed that COP decreases when the temperature of the condenser increases. This document provided a method to obtain the values of important parameters of absorption cooling systems immediately.

  4. Nonlinear absorption coefficient and optically detected electrophonon resonance in cylindrical GaAs/AlAs quantum wires with different confined phonon models

    Science.gov (United States)

    Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh

    2017-03-01

    A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.

  5. Modelling of the Water Absorption Kinetics and Determination of the Water Diffusion Coefficient in the Pith of Raffia vinifera of Bandjoun, Cameroon

    Directory of Open Access Journals (Sweden)

    E. Tiaya Mbou

    2017-01-01

    Full Text Available The present work focuses on the study of the water absorption phenomenon through the pith of Raffia vinifera along the stem. The water absorption kinetics was studied experimentally by the gravimetric method with the discontinuous control of the sampling mass at temperature of 30°C. The samples of 70 mm × 8 mm × 4 mm were taken from twelve sampling zones of the stem of Raffia vinifera. The result shows that the percentage of water absorption of the pith of Raffia vinifera increases from the periphery to the center in the radial position and from the base to the leaves in the longitudinal position. Fick’s second law was adopted for the study of the water diffusion. Eleven models were tested for the modelling of the water absorption kinetics and the model of Sikame Tagne (2014 is the optimal model. The diffusion coefficients of two stages were determined by the solution of the Fick equation in the twelve sampling zones described by Sikame Tagne et al. (2014. The diffusion coefficients decreased from the center to the periphery in the radial position and from the base to the leaves in the longitudinal position.

  6. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  7. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    Science.gov (United States)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  8. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    Energy Technology Data Exchange (ETDEWEB)

    Eles, P.T

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necessitating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent fraction of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  9. Two-photon polymerization for fabrication of biomedical devices

    Science.gov (United States)

    Ovsianikov, Aleksandr; Doraiswamy, Anand; Narayan, R.; Chichkov, B. N.

    2007-01-01

    Two-photon polymerization (2PP) is a novel technology which allows the fabrication of complex three-dimensional (3D) microstructures and nanostructures. The number of applications of this technology is rapidly increasing; it includes the fabrication of 3D photonic crystals [1-4], medical devices, and tissue scaffolds [5-6]. In this contribution, we discuss current applications of 2PP for microstructuring of biomedical devices used in drug delivery. While in general this sector is still dominated by oral administration of drugs, precise dosing, safety, and convenience are being addressed by transdermal drug delivery systems. Currently, main limitations arise from low permeability of the skin. As a result, only few types of pharmacological substances can be delivered in this manner [7]. Application of microneedle arrays, whose function is to help overcome the barrier presented by the epidermis layer of the skin, provides a very promising solution. Using 2PP we have fabricated arrays of hollow microneedles with different geometries. The effect of microneedle geometry on skin penetration is examined. Our results indicate that microneedles created using 2PP technique are suitable for in vivo use, and for integration with the next generation of MEMS- and NEMS-based drug delivery devices.

  10. Review of two-photon exchange in electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  11. Higgs decay into two photons in a warped extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Juliane; Hoerner, Clara; Malm, Raoul; Novotny, Kristiane; Schmell, Christoph [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Neubert, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Cornell University, Department of Physics, LEPP, Ithaca, NY (United States)

    2014-05-15

    A detailed five-dimensional calculation of the Higgs-boson decay into two photons is performed in both the minimal and the custodially protected Randall-Sundrum (RS) model, where the Standard Model (SM) fields propagate in the bulk and the scalar sector lives on or near the IR brane. It is explicitly shown that the R{sub ξ} gauge invariance of the sum of diagrams involving bosonic fields in the SM also applies to the case of these RS scenarios. An exact expression for the h → γγ amplitude in terms of the five-dimensional (5D) gauge-boson and fermion propagators is presented, which includes the full dependence on the Higgs-boson mass. Closed expressions for the 5D W-boson propagators in theminimal and the custodial RS model are derived, which are valid to all orders in v{sup 2}/M{sup 2}{sub KK}. In contrast to the fermion case, the result for the bosonic contributions to the h → γγ amplitude is insensitive to the details of the localization of the Higgs profile on or near the IR brane. The various RS predictions for the rate of the pp → h → γγ process are compared with the latest LHC data, and exclusion regions for the RS model parameters are derived. (orig.)

  12. Two-photon excited photoconversion of cyanine-based dyes

    Science.gov (United States)

    Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun

    2016-03-01

    The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.

  13. Two-Photon-Exchange Effects and $\\Delta(1232)$ Deformation

    CERN Document Server

    Zhou, Hai-Qing

    2016-01-01

    The two-photon-exchange (TPE) contribution in $ep\\rightarrow ep\\pi ^0$ with $W=M_{\\Delta}$ and small $Q^2$ is calculated and its corrections to the ratios of electromagnetic transition form factors $R_{EM} = E_{1+}^{(3/2)}/M_{1+}^{(3/2)} $ and $R_{SM} = S_{1+}^{(3/2)}/M_{1+}^{(3/2)}$, are analysed. A simple hadronic model is used to estimate the TPE amplitude. Two phenomenological models, MAID2007 and SAID, are used to approximate the full $ep\\rightarrow ep\\pi ^0$ cross sections which contain both the TPE and the one-photon-exchange (OPE) contributions. The genuine the OPE amplitude is then extracted from an integral equation by iteration. We find that the TPE contribution is not sensitive to whether MAID or SAID is used as input in the region with $Q^2<2$ GeV$^2$. It gives small correction to $R_{EM}$ while for $R_{SM}$, the correction is about -10\\% at small $\\epsilon$ and about $1\\%$ at large $\\epsilon$ for $Q^2\\approx2.5$ GeV$^2$. The large correction from TPE at small $\\epsilon$ must be included in th...

  14. Two-photon autofluorescence spectroscopy of oral mucosa tissue

    Science.gov (United States)

    Edward, Kert; Shilagard, Tuya; Qiu, Suimin; Vargas, Gracie

    2011-03-01

    The survival rate for individuals diagnosed with oral cancer is correlated with the stage of detection. Thus the development of novel techniques for the earliest possible detection of malignancies is of critical importance. Single photon (1P) autofluorescence spectroscopy has proven to be a powerful diagnostic tool in this regard, but 2P (two photon) spectroscopy remains essentially unexplored. In this investigation, a spectroscopic system was incorporated into a custom-built 2P laser scanning microscope. Oral cancer was induced in the buccal pouch of Syrian Golden hamsters by tri-weekly topical application of 9,10-dimethyl-1,2-benzanthracene (DMBA).Three separated sites where investigated in each hamster at four excitation wavelengths from 780 nm to 890 nm. A Total of 8 hamsters were investigated (4 normal and 4 DMBA treated). All investigated sites were imaged via 2p imaging, marked for biopsy, processed for histology and H&E staining, and graded by a pathologist. The in vivo emission spectrum for normal, mild/high grade dysplasia and squamous cell carcinoma is presented. It is shown that the hamsters with various stages of dysplasia are characterized by spectral differences as a function of depth and excitation wavelength, compared to normal hamsters.

  15. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  16. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    Science.gov (United States)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  17. Tracking of mercury ions in living cells with a fluorescent chemodosimeter under single- or two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhoujun [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Wang Peinan [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)], E-mail: pnwang@fudan.edu.cn; Zhang Yu [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Chen Jiyao; Zhen Shen [Department of Physics, Fudan University, Shanghai 200433 (China); Leng Bing; Tian He [Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China)

    2007-08-10

    Tracking of Hg{sup 2+} in solutions as well as in living cells was conducted with a fluorescent chemodosimeter by measuring the spectral shift of its fluorescence under single- or two-photon excitation. The spectral hypsochromic shifts of this chemodosimeter when reacting with Hg{sup 2+} were found to be about 50 nm in acetonitrile/water solutions and 32 nm in Euglena gracilis 277 living cells. This chemodosimeter shows high sensitivity and selectivity, and is not influenced by the pH values. It can signal Hg{sup 2+} in solutions down to the ppb range under either single-photon excitation (SPE) at 405 nm or two-photon excitation (TPE) at 800 nm. However, with low cellular chemodosimeter concentrations, the SPE spectra were disturbed by the auto-fluorescence from the native fluorophore in the cell, while the TPE spectra were still of high quality since the two-photon absorption cross section of this chemodosimeter is much larger than that of the native fluorophores in the cell.

  18. Ab initio study of the one- and two-photon circular dichroism of R-(+)-3-methyl-cyclopentanone

    Science.gov (United States)

    Rizzo, Antonio; Lin, Na; Ruud, Kenneth

    2008-04-01

    One- and two-photon circular dichroism spectra of R-(+)-3-methyl-cyclopentanone, a system that has been the subject of recent experimental studies of (2+1) resonance-enhanced multiphoton ionization circular dichroism, have been calculated with an origin-invariant density functional theory approximation in the region of the lowest electronic excited states, both for the gas phase and for a selection of solvents. A polarizable continuum model is used in the calculations performed on the solvated system. Two low-lying conformers are analyzed, and a comparison of the intensities and characteristic features is made with the corresponding two-photon absorption for each species, also for the Boltzmann-averaged spectra. The effect of the choice of geometry, basis set, and exchange-correlation functional is carefully analyzed. It is found that a density functional theory approach using the Coulomb attenuating method variant of Becke's three-parameter exchange and the Lee-Yang-Parr correlation functionals with correlation-consistent basis sets of double-zeta quality can reproduce the experimental electronic circular dichroism spectra very well. The features appearing in experiment are characterized in terms of molecular excitations, and the differences in the response of each state in the one- and two-photon processes are highlighted.

  19. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.

    Science.gov (United States)

    Guo, Zijian; Hu, Song; Wang, Lihong V

    2010-06-15

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.

  20. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ..omega../sub VUV/ = 2..omega../sub L1/ +- ..omega../sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs.