WorldWideScience

Sample records for two-phase xenon time

  1. Two-phase xenon detector with gas amplification and electroluminescent signal detection

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Burenkov, A.A.; Grishkin, Yu.L.; Kovalenko, A.G.; Lebedenko, V.N.; Stekhanov, V.N.

    2008-01-01

    An optical technique for detecting ionization electrons produced during ionization of the liquid phase has been experimentally tested in two-phase (liquid-gas) xenon. The effects of gas and electroluminescent amplifications at the wire anode are simultaneously used for detection. This method allows construction of a supersensitive detector of small ionization signals-down to those corresponding to the detection of single electrons [ru

  2. RESULTS FROM THE XENON100 EXPERIMENT

    Directory of Open Access Journals (Sweden)

    Rino Persiani

    2013-12-01

    Full Text Available The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS, with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase the sensitivity by two orders of magnitude.

  3. Compute raided classification of ventilation patterns inpatients with chronic obstructive pulmonary diseases at two-phase xenon-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Son Ho; Goo, Jin Mo; Lee, Chang Hyun; Lee, You Kyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Julip; Hong, Helen [Dept. of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2014-06-15

    To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater k value was improved from moderate (k=0.59: 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent with the CAC map.

  4. A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

    Science.gov (United States)

    Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien

    2018-05-01

    A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

  5. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    Science.gov (United States)

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  6. Appropriate xenon-inhalation time in xenon-enhanced CT using the end-tidal gas-sampling method

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Hideo; Furuhata, Shigeru; Onozuka, Satoshi; Uchida, Koichi; Fujii, Koji; Suga, Sadao; Kawase, Takeshi; Toya, Shigeo; Shiga, Hayao

    1988-12-01

    For the end-tidal gas-sampling method of xenon-enhanced CT (Xe-CT), the respective functional images of K, lambda, and the regional cerebral blood flow (rCBF) were studied and compared using the data at 7-, 10-, 15- and 25-minute inhalations. The most appropriate inhalation time of xenon gas was evaluated in 14 clinical cases. An end-tidal xenon curve which represents the arterial xenon concentration was monitored with a xenon analyzer; the xenon concentration was gradually increased to a level of 50% by using a xenon inhalator with a closed circuit to prevent the overestimation of the xenon concentration sampled from the mask. Serial CT scans were taken over a period of 25 minutes of inhalation. The functional images of K, lambda, and rCBF were calculated for serial CT scans for 7, 10, 15 and 25 minutes using Fick's equation. Those various images and absolute values were then compared. The rCBF value of a 15-minute inhalation was approximately 15% greater than that of 25 minutes, while the values of K, lambda, rCBF from a 15-minute inhalation were significantly correlated to those from 25 minutes. The regression line made it possible to estimate 25-minute inhalation values from those of 15 minutes. In imaging, the rCBF mapping of the 15-minute inhalation was found to be more reliable than that of 25 minutes. This study suggests that the minimal time of xenon inhalation is 15 minutes for the end-tidal gas-sampling method. A longer inhalation may be necessary for the estimation of rCBF in the low-flow area, such as the white matter or the pathological region.

  7. Electron drift in a large scale solid xenon

    International Nuclear Information System (INIS)

    Yoo, J.; Jaskierny, W.F.

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon

  8. Commissioning of the XENON1T liquid level measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Geis, Christopher [Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    Two-phase xenon time projection chambers (TPCs) have been operated very successfully in direct detection experiments for dark matter. This kind of detector uses liquid xenon as the sensitive target and is operated in two-phase (liquid/gas) mode, where the liquid level needs to be monitored and controlled with sub-millimeter precision. We present the installation, commissioning and first measurement data of two kinds of level meters operated in the XENON1T TPC: short level meters are three-plated capacitors measuring the level of the liquid-gas interface with a measurement range h∼5 mm and a resolution of ΔC/h∼1 pF/mm. The long level meters are cylindrical double-walled capacitors, measuring the overall filling level of the XENON1T TPC at a measurement range of h=1.4 m and a resolution of ΔC/h∼0.1 pF/mm. Further, we present the design and programming of the readout electronic based on the UTI chip by Smartec, which allows to read all six levelmeters simultaneously.

  9. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    Science.gov (United States)

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  10. Latest results from XENON100 data

    International Nuclear Information System (INIS)

    Scotto Lavina, L.

    2014-01-01

    XENON100 is the current phase of the XENON dark matter program, which aims for the direct detection of WIMPs with liquid xenon time-projection chambers. We present the status of the experiment after 224.6 live days taken in 2011 and 2012 during which the detector successfully improved in terms of more calibration data, higher xenon purity, lower threshold and better background removal. The analysis has yielded no evidence for dark matter interactions. The status of the next generation XENON1T detector will be briefly described. The goal of XENON1T is to increase the fiducial volume by a factor 10 and reduce the background noise by a factor 100

  11. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  12. Modeling Pulse Characteristics in Xenon with NEST

    OpenAIRE

    Mock, Jeremy; Barry, Nichole; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are ...

  13. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  14. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  15. Xenon-Xenon collision events in CMS

    CERN Multimedia

    Mc Cauley, Thomas

    2017-01-01

    One of the first-ever xenon-xenon collision events recorded by CMS during the LHC’s one-day-only heavy-ion run with xenon nuclei. The large number of tracks emerging from the centre of the detector show the many simultaneous nucleon-nucleon interactions that take place when two xenon nuclei, each with 54 protons and 75 neutrons, collide inside CMS.

  16. The XENON1T dark matter experiment

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-12-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  17. The XENON1T dark matter experiment

    International Nuclear Information System (INIS)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Giboni, K.L.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Plante, G.; Rizzo, A.; Stern, M.; Tatananni, D.; Zhang, Y.; Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Doets, M.; Hogenbirk, E.; Tiseni, A.; Walet, R.; Agostini, F.; Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Othegraven, R.; Scheibelhut, M.; Schindler, S.; Amaro, F.D.; Antunes, B.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M.; Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I.; Balata, M.; Bruno, G.; Corrieri, R.; Disdier, J.M.; Rosso, A.G.; Molinario, A.; Orlandi, D.; Parlati, S.; Tatananni, L.; Wang, Z.; Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; James, A.; Kazama, S.; Kessler, G.; Kish, A.; Maier, R.; Mayani, D.; Pakarha, P.; Piastra, F.; Wulf, J.; Bauermeister, B.; Calven, J.; Conrad, J.; Ferella, A.D.; Moraa, K.; Pelssers, B.; Berger, T.; Brown, E.; Piro, M.C.; Breskin, A.; Budnik, R.; Duchovni, E.; Front, D.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N.; Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H.; Wack, O.; Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. von; Chiarini, A.; Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M.; Cussonneau, J.P.; Diglio, S.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D.; Fei, J.; Lombardi, F.; Ni, K.; Ye, J.; Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Vargas, M.; Weinheimer, C.; Wittweg, C.; Fulgione, W.; Grandi, L.; Saldanha, R.; Shockley, E.; Tunnell, C.; Upole, N.; Lindemann, S.; Messina, M.; Naganoma, J.; Shagin, P.; Pienaar, J.; Garcia, D.R.; Reichard, S.; Lavina, L.S.; Stein, A.; Wang, H.; Trinchero, G.; Wei, Y.

    2017-01-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. (orig.)

  18. The XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Giboni, K.L.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Plante, G.; Rizzo, A.; Stern, M.; Tatananni, D.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Doets, M.; Hogenbirk, E.; Tiseni, A.; Walet, R. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Othegraven, R.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Antunes, B.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, LIBPhys, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Balata, M.; Bruno, G.; Corrieri, R.; Disdier, J.M.; Rosso, A.G.; Molinario, A.; Orlandi, D.; Parlati, S.; Tatananni, L.; Wang, Z. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; James, A.; Kazama, S.; Kessler, G.; Kish, A.; Maier, R.; Mayani, D.; Pakarha, P.; Piastra, F.; Wulf, J. [University of Zurich, Physik Institut, Zurich (Switzerland); Bauermeister, B.; Calven, J.; Conrad, J.; Ferella, A.D.; Moraa, K.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Breskin, A.; Budnik, R.; Duchovni, E.; Front, D.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H.; Wack, O. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Sivers, M. von [Freiburg Univ. (Germany). Physikalisches Inst.; Bern Univ. (Switzerland). Albert Einstein Center for Fundamental Physics; Cervantes, M.; Lang, R.F.; Masson, D.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Chiarini, A.; Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Cussonneau, J.P.; Diglio, S.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [CNRS/IN2P3, Universite de Nantes, SUBATECH, IMT Atlantique, Nantes (France); Fei, J.; Lombardi, F.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Vargas, M.; Weinheimer, C.; Wittweg, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Tunnell, C.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Messina, M. [Columbia University, Physics Department, New York, NY (United States); New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Pienaar, J. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Garcia, D.R. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Reichard, S. [University of Zurich, Physik Institut, Zurich (Switzerland); Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Lavina, L.S. [Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, LPNHE, Paris (France); Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Wei, Y. [University of Zurich, Physik Institut, Zurich (Switzerland); University of California, Department of Physics, San Diego, CA (United States); Collaboration: XENON Collaboration

    2017-12-15

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. (orig.)

  19. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  20. Modeling pulse characteristics in Xenon with NEST

    International Nuclear Information System (INIS)

    Mock, J; Stolp, D; Szydagis, M; Tripathi, M; Uvarov, S; Woods, M; Walsh, N; Barry, N; Kazkaz, K

    2014-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, the ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors

  1. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  2. Reactive quenching of two-photon excited xenon atoms by Cl2

    International Nuclear Information System (INIS)

    Bruce, M.R.; Layne, W.B.; Meyer, E.; Keto, J.W.

    1987-01-01

    Total binary and tertiary quench rates have been measured for the reaction Xe (5p 5 6p) + Cl 2 at thermal temperatures. Xenon atoms are excited by state-selective, two-photon absorption with a uv laser. The time dependent fluorescence from the excited atom in the IR and from XeCl* (B) product near 308 nm have been measured with subnanosecond time resolution. The decay rates are measured as a function of Cl 2 pressure to 20 Torr and Xe pressure to 400 Torr. The measured reaction rates (k 2 ∼ 10 -9 cm 3 sec -1 ) are consistent with a harpoon model described in a separate paper. We also measure large termolecular reaction rates for collisions with xenon atoms (k 3 ∼ 10 -28 cm 6 sec -1 ). Total product fluorescence has been examined using a gated optical multichannel analyzer. We measure unit branching fractions for high vibrational levels of XeCl* (B) with very little C state fluorescence observed. The measured termolecular rates suggest similar processes will dominate at the high buffer-gas pressures used in XeCl lasers. The effect of these large reactive cross sections for neutral xenon atoms on models of the XeCl laser will be discussed

  3. The XENON project for dark matter direct detection at LNGS

    Science.gov (United States)

    Molinario, Andrea

    2017-12-01

    The XENON project at INFN Laboratori Nazionali del Gran Sasso, Italy, aims at dark matter direct detection with liquid xenon dual-phase time projection chambers. Latest results of XENON100 detector exclude various models of leptophilic dark matter. A search for low mass weakly interacting massive particles was also performed, lowering the energy threshold for detection to 0.7 keV for nuclear recoils. The multi-ton XENON1T detector is fully installed and operating. It is expected to reach a sensitivity a factor 100 better than XENON100 with a 2 ton·year exposure.

  4. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    Science.gov (United States)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  5. Control of xenon oscillations in Advanced Heavy Water Reactor via two-stage decomposition

    International Nuclear Information System (INIS)

    Munje, R.K.; Parkhe, J.G.; Patre, B.M.

    2015-01-01

    Highlights: • Singularly perturbed model of Advanced Heavy Water Reactor is explored. • Composite controller is designed using slow subsystem alone, which achieves asymptotic stability. • Nonlinear simulations are carried out under different transient conditions. • Performance of the controller is found to be satisfactory. - Abstract: Xenon induced spatial oscillations developed in large nuclear reactors, like Advanced Heavy Water Reactor (AHWR) need to be controlled for safe operation. Otherwise, a serious situation may arise in which different regions of the core may undergo variations in neutron flux in opposite phase. If these oscillations are left uncontrolled, the power density and rate of change of power at some locations in the reactor core may exceed their respective thermal limits, resulting in fuel failure. In this paper, a state feedback based control strategy is investigated for spatial control of AHWR. The nonlinear model of AHWR including xenon and iodine dynamics is characterized by 90 states, 5 inputs and 18 outputs. The linear model of AHWR, obtained by linearizing the nonlinear equations is found to be highly ill-conditioned. This higher order model of AHWR is first decomposed into two comparatively lower order subsystems, namely, 73rd order ‘slow’ subsystem and 17th order ‘fast’ subsystem using two-stage decomposition. Composite control law is then derived from individual subsystem feedback controls and applied to the vectorized nonlinear model of AHWR. Through the dynamic simulations it is observed that the controller is able to suppress xenon induced spatial oscillations developed in AHWR and the overall performance is found to be satisfactory

  6. Time dependent analysis of Xenon spatial oscillations in small power reactors

    International Nuclear Information System (INIS)

    Decco, Claudia Cristina Ghirardello

    1997-01-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  7. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  8. Design and commissioning of ReStoX for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Scheibelhut, Melanie [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The XENON1T experiment, currently under construction at the Gran Sasso underground laboratory LNGS, uses the concept of a xenon dual-phase (liquid/gas) time projection chamber to search for Dark Matter particles. This requires cooling to about 175 K and liquefaction of the noble gas. The ReStoX (Recovery and Storage of Xenon) is a novel device to store and recover up to 7 tons of xenon - either in liquid phase at cryogenic temperatures and 1-2 bar of pressure, or in gaseous form at room temperature at about 70 bar of pressure. The ReStoX system consists of a double insulated stainless steel sphere with liquid nitrogen cooling loops distributed across the inner sphere. A condenser on the inside, also operated with liquid nitrogen, provides a cooling power of 3 kW. ReStoX is designed to provide an effective means for various operating modes: to fill the TPC fast, to recover xenon from the TPC under normal and emergency conditions, to store xenon safely in liquid or gaseous form, or to remain in cold standby nearly empty as a safety device. Here we present the design and first commissioning results.

  9. Phase transitions in the argon, krypton and xenon in generalized Van der Waals theory

    International Nuclear Information System (INIS)

    Cavalcanti, H.M.

    1977-01-01

    Fluid-solid like phase transitions for three monoatomic substances, argon, krypton and xenon are treated, using the extension of the Van der Waals theory to the crystalline state. The method utilized is based on 'Maxwell construction' of identical areas [pt

  10. Distribution of xenon between gaseous and liquid CO2

    International Nuclear Information System (INIS)

    Ackley, R.D.; Notz, K.J.

    1976-10-01

    The distribution of xenon at low concentrations between gaseous and liquid CO 2 was measured over essentially the entire liquid range of CO 2 . These measurements involved using a collimated radiation-detection cell to determine the relative quantities of 133 Xe-traced xenon in the separate phases contained in a vertical cylinder under isothermal conditions. The results are expressed in terms of a distribution ratio (mole fraction of xenon in the gaseous phase divided by mole fraction of xenon in the liquid phase) which decreased from 7.53 at -54.8 0 C to 1.10 at 30.5 0 C. These data were used to calculate various other solubility-related quantities

  11. ATLAS Event Display: First Xenon-Xenon Run 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Event display from the xenon-xenon collision run of 12-13 October 2017. Curved cyan lines show the trajectories of charged particles in the tracking systems. The bottom right plot shows the distribution of energy deposited in the calorimeters, demonstrating the high particle multiplicity of the event. Two muon candidates are reconstructed at high pseudorapidity, as seen in the bottom left plot

  12. Two-photon resonant, stimulated processes in krypton and xenon

    International Nuclear Information System (INIS)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p→s, d→p, and f→d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p→s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs

  13. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  14. Two-group Analysis of Xenon Stability in Slab Geometry by Modal Expansion

    International Nuclear Information System (INIS)

    Norinder, O.

    1963-05-01

    Xenon spatial stability is analyzed with the flux represented by two neutron energy groups. General formulas are given for expansions in a system of modes. Detailed formulas are recorded for a slab described by sinusoidal modes. A short description is given of a Mercury Autocode program for numerical calculations in slab geometry. The essential input parameters and results are noted for 80 computed cases. The main body of the calculations were intended to clarify the xenon stability properties of the Marviken reactor, which was found to have a sufficient margin against unstable xenon oscillations. The neutron flux detection and the control rod insertion in the slab were found to have a large influence on the stability in spite of the nonexistence of space-selective control in the systems investigated. Very good agreement was found between stability limits calculated according to Randall and St. John and stability limits calculated by the program

  15. Two-group Analysis of Xenon Stability in Slab Geometry by Modal Expansion

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1963-05-15

    Xenon spatial stability is analyzed with the flux represented by two neutron energy groups. General formulas are given for expansions in a system of modes. Detailed formulas are recorded for a slab described by sinusoidal modes. A short description is given of a Mercury Autocode program for numerical calculations in slab geometry. The essential input parameters and results are noted for 80 computed cases. The main body of the calculations were intended to clarify the xenon stability properties of the Marviken reactor, which was found to have a sufficient margin against unstable xenon oscillations. The neutron flux detection and the control rod insertion in the slab were found to have a large influence on the stability in spite of the nonexistence of space-selective control in the systems investigated. Very good agreement was found between stability limits calculated according to Randall and St. John and stability limits calculated by the program.

  16. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Science.gov (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  17. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  18. Investigations on a highly luminous condensed xenon scintillator

    International Nuclear Information System (INIS)

    Lansiart, Alain; Seigneur, Alain; Morucci, J.-P.

    1976-12-01

    The means of creating a maximal amount of light by absorption of gamma radiation in condensed xenon were investigated. One of the methods relies on the light production around wires in liquid xenon when several kilovolts are applied to them. Another method uses the saturating vapor present over solid xenon; the electric field pulls out electrons from the solid and accelerates them in the gas phase where they produce light through inelastic collisions [fr

  19. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  20. Time-resolved X-ray absorption spectroscopy for laser-ablated silicon particles in xenon gas

    International Nuclear Information System (INIS)

    Makimura, Tetsuya; Sakuramoto, Tamaki; Murakami, Kouichi

    1996-01-01

    We developed a laboratory-scale in situ apparatus for soft X-ray absorption spectroscopy with a time resolution of 10 ns and a space resolution of 100 μm. Utilizing this spectrometer, we have investigated the dynamics of silicon atoms formed by laser ablation in xenon gas. It was found that 4d-electrons in the xenon atoms are excited through collision with electrons in the laser-generated silicon plasma. (author)

  1. Theoretical Study On The Interaction Between Xenon And Positive Silver Clusters In Gas Phase And On The (001) Chabazite Surface

    International Nuclear Information System (INIS)

    Hunter, D.

    2009-01-01

    A systematic study on the adsorption of xenon on silver clusters in the gas phase and on the (001) surface of silver-exchanged chabazite is reported. Density functional theory at the B3LYP level with the cluster model was employed. The results indicate that the dominant part of the binding is the σ donation, which is the charge transfer from the 5p orbital of Xe to the 5s orbital of Ag and is not the previously suggested d π -d π back-donation. A correlation between the binding energy and the degree of σ donation is found. Xenon was found to bind strongly to silver cluster cations and not to neutral ones. The binding strength decreases as the cluster size increases for both cases, clusters in the gas-phase and on the chabazite surface. The Ag + cation is the strongest binding site for xenon both in gas phase and on the chabazite surface with the binding energies of 73.9 and 14.5 kJ/mol, respectively. The results also suggest that the smaller silver clusters contribute to the negative chemical shifts observed in the 129 Xe NMR spectra in experiments.

  2. Quantitative cerebral blood flow calculation method using xenon CT. Introduction of a factor reflecting diffusing capacity of the lung for xenon

    International Nuclear Information System (INIS)

    Sase, Shigeru; Honda, Mitsuru; Noguchi, Yoshitaka

    2007-01-01

    In calculating cerebral blood flow (CBF) using the Fick principle, time-course information on arterial tracer concentration is indispensable and exerts considerable influence on the accuracy of CBF. In xenon-enhanced CT (Xe-CT), the time-course change rate for end-tidal xenon concentration (Ke), which can be measured, and that for arterial xenon concentration (Ka) have been assumed to be equal. However, it has been pointed out that there are large differences between Ke and Ka in many cases. We have introduced a single factor (γ) which correlates Ke with Ka in the equation Ka=γ x (1-e -Ke/γ ). This factor, γ, reflects the diffusing capacity of the lung for xenon; larger γ values correspond to larger diffusing capacities and Ka is equal to Ke when γ is infinity. Kety's equation contains two parameters: CBF and xenon solubility coefficient We added a third parameter, γ, to Kety's equation, and developed an efficient method to obtain the γ value for each Xe-CT study. Applying this method to ten normal subjects (35.4±16.3 years, mean±standard deviation (SD)), we obtained γ value of 1.01±0.17 and the average CBF value of 38.8±7.5 mL/100 g/min in basal ganglia. The wash-in period could be shortened to two minutes using this method. Xe-CT with this factor (γ) as a parameter enhances its clinical availability as well as the accuracy of CBF. (author)

  3. Two-dimensional readout in a liquid xenon ionisation chamber

    CERN Document Server

    Solovov, V; Ferreira-Marques, R; Lopes, M I; Pereira, A; Policarpo, Armando

    2002-01-01

    A two-dimensional readout with metal strips deposited on both sides of a glass plate is investigated aiming to assess the possibility of its use in a liquid xenon ionisation chamber for positron emission tomography. Here, we present results obtained with an alpha-source. It is shown that position resolution of <=1 mm, fwhm, can be achieved for free charge depositions equivalent to those due to gamma-rays with energy from 220 down to 110 keV.

  4. First 0ν half-life limit from the Gotthard xenon time projection chamber

    International Nuclear Information System (INIS)

    Wong, H.T.; Boehm, F.; Fisher, P.

    1991-01-01

    A xenon Time Projection Chamber with an active volume of 207 liters has been built to study 0ν and 2ν double beta decay in 136 Xe. The TPC has been installed in the Gotthard Tunnel Underground Laboratory, and is currently taking data with 5 atm of xenon enriched in 62.5% 136 Xe. The first 166 hours of data are presented. Based on this data set, we deduce a half-life limit of T(0 + → 0 + ) > 6.2 x 10 21 years for the 0ν mode, at a 90% C.L. (author)

  5. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056 (United States)

    2016-11-15

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  6. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Science.gov (United States)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  7. Liquid xenon in nuclear medicine: state-of-the-art and the PETALO approach

    Science.gov (United States)

    Ferrario, P.

    2018-01-01

    Liquid xenon has several attractive features, which make it suitable for applications to nuclear medicine, such as high scintillation yield and fast scintillation decay time, better than currently used crystals. Since the '90s, several attempts have been made to build Positron Emission Tomography scanners based on liquid xenon, which can be divided into two different approaches: on one hand, the detection of the ionization charge in TPCs, and, on the other one, the detection of scintillation light with photomultipliers. PETALO (Positron Emission Tof Apparatus with Liquid xenOn) is a novel concept, which combines liquid xenon scintillating cells and silicon photomultipliers for the readout. A first Monte Carlo investigation has pointed out that this technology would provide an excellent intrinsic time resolution, which makes it possible to measure the Time-Of-Flight with high efficiency. Also, the transparency of liquid xenon to UV and blue wavelengths opens the possibility of exploiting both scintillation and Cherenkov light for a high-sensitivity TOF-PET.

  8. Xenon changes under power-burst conditions

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1983-01-01

    Under ordinary operating conditions the xenon concentration in a reactor core can change significantly in times on the order of hours. Core transients of safety significance are much more rapid and hence calculations are done with xenon concentration held constant. However, in certain transients (such as reactivity initiated accidents) there is a very large power surge and the question arises as to whether under these circumstances the xenon concentration could change. This would be particularly important if the xenon were reduced thereby tending to make the accident autocatalytic. The objective of the present study is to quantify this effect to see if it could be important

  9. NMR investigations of surfaces and interfaces using spin-polarized xenon

    International Nuclear Information System (INIS)

    Gaede, H.C.; Lawrence Berkeley Lab., CA

    1995-07-01

    129 Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129 Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10 5 times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13 C signal of CO 2 of xenon occluded in solid CO 2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ∼1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6

  10. The search for dark matter in xenon: Innovative calibration strategies and novel search channels

    Science.gov (United States)

    Reichard, Shayne Edward

    V. I calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow for the determination of the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass. Similarly, now that liquid xenon detectors have reached the tonne scale, they have sensitivity to all flavors of supernova neutrinos via coherent elastic neutrino-nucleus scattering. I consider for the first time a realistic detector model to simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. I show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 sigma, observing approximately 35 (123; 704) events from a 27 Solar mass supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the supernova neutrino light curve. My results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while

  11. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  12. Control aid for xenon vibration in reactor

    International Nuclear Information System (INIS)

    Kanekawa, Takashi.

    1990-01-01

    In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)

  13. Dark matter analysis of XENON100 data and cut development utilizing the novel PAX raw data processor

    Energy Technology Data Exchange (ETDEWEB)

    Wittweg, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany)

    2016-07-01

    The XENON100 experiment located at LNGS is aimed at the direct detection of weakly interacting massive particles (WIMPs). It utilizes an ultra-low background dual-phase xenon TPC which yields two separate scintillation signals that facilitate background discrimination and event selection. Limits on various interaction types have been published by the collaboration (Science 349 (2015) 6250, 851-854). In the analysis dark matter candidate events have to pass cuts with respect to data quality, consistency and physical features of the interaction. The former ones are implemented with regard to the used data processor's capabilities for noise discrimination and peak-finding. The Processor for Analyzing Xenon (PAX), developed for the XENON1T experiment, enhances these capabilities compared to XENON100. A greater robustness against noise and an increased peak-identification efficiency open up new opportunities for physically motivated cuts while rendering old ones obsolete. The poster will focus on the implementation of new cuts into the analysis chain. Both PAX and the xenon analysis will be introduced. A planned full-scale dark matter analysis of PAX-processed XENON100 data will be outlined.

  14. Study of light detection and sensitivity for a ton-scale liquid xenon dark matter detector

    International Nuclear Information System (INIS)

    Wei, Y; Lin, Q; Xiao, X; Ni, K

    2013-01-01

    Ton-scale liquid xenon detectors operated in two-phase mode are proposed and being constructed recently to explore the favored parameter space for the Weakly Interacting Massive Particles (WIMPs) dark matter. To achieve a better light collection efficiency while limiting the number of electronics channels compared to the previous generation detectors, large-size photo-multiplier tubes (PMTs) such as the 3-inch-diameter R11410 from Hamamatsu are suggested to replace the 1-inch-square R8520 PMTs. In a two-phase xenon dark matter detector, two PMT arrays on the top and bottom are usually used. In this study, we compare the performance of two different ton-scale liquid xenon detector configurations with the same number of either R11410 (config.1) or R8520 (config.2) for the top PMT array, while both using R11410 PMTs for the bottom array. The self-shielding of liquid xenon suppresses the background from the PMTs and the dominant background is from the pp solar neutrinos in the central fiducial volume. The light collection efficiency for the primary scintillation light is largely affected by the xenon purity and the reflectivity of the reflectors. In the optimistic situation with a 10 m light absorption length and a 95% reflectivity, the light collection efficiency is 43%(34%) for config.1(config.2). In the conservative situation with a 2.5 m light absorption length and a 85% reflectivity, the value is only 18%(13%) for config.1(config.2). The difference between the two configurations is due to the larger PMT coverage on the top for config.1. The slightly different position resolutions for the two configurations have a negligible effect on the sensitivity. Based on the above considerations, we estimate the sensitivity reach of the two detector configurations. Both configurations can reach a sensitivity of 2 ∼ 3 × 10 −47 cm 2 for spin-independent WIMP-nucleon cross section for 100 GeV/c 2 WIMPs after two live-years of operation. The one with R8520 PMTs for the top

  15. Search for magnetic inelastic dark matter with XENON100

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M. [Physics Department, Columbia University, New York, NY 10027 (United States); Aalbers, J.; Breur, P.A.; Brown, A. [Nikhef and the University of Amsterdam, Science Park, 1098XG Amsterdam (Netherlands); Agostini, F.; Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, 67100 L' Aquila (Italy); Alfonsi, M. [Institut für Physik and Exzellenzcluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz (Germany); Amaro, F.D. [LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L. [Physik-Institut, University of Zurich, 8057 Zurich (Switzerland); Bauermeister, B.; Calvén, J. [Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, Stockholm SE-10691 (Sweden); Berger, T.; Brown, E. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Bruenner, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Budnik, R. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Bütikofer, L., E-mail: lukas.buetikofer@lhep.unibe.ch, E-mail: xenon@lngs.infn.it [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany); and others

    2017-10-01

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c{sup 2} and 122.7 GeV/c{sup 2} are excluded at 3.3 σ and 9.3 σ, respectively.

  16. Recent developments in evaluating xenon induced flux transients in large HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, A.

    1974-03-15

    A description is provided of the two-dimensional finite-difference xenon code system ASTERIX (A System for Transient Evaluation of Reactor instabilities Induced by Xenon) that was designed for very exact computations of space dependent xenon transients in HTR's and their control. By its modular structure, the code allows for a most flexible use in calculating load following transients, xenon oscillations in x/y, r/z and r/theta geometries and various control operations with either homogeneous poison or discrete rod representations with flux boundary conditions. The most recent upgrade ASTERIX-T includes a detailed temperature feedback option for azimuthal HTR transient calculations, based on an iterative procedure for the evaluation of the power distribution in each time step with succeeding diffusion, temperature and spectrum calculations for the group constants in every spectral region, thus avoiding earlier more problematic approximations of the temperature dependence of the cross sections.

  17. Gross xenon stability

    International Nuclear Information System (INIS)

    Lewins, J.D.; Wilson, P.P.H.

    1997-01-01

    The effect of xenon in thermal reactors on steady operation is generally destabilizing. Illustrating this involves the study of appropriate transfer functions, which may be conveniently displayed in three ways: as Bode, Nyquist, and root-locus diagrams. The three forms allow different aspects to be highlighted. These are illustrated for the effect of xenon with allowance not only for the stabilizing effect of the direct yield in fission but also to show the consequences of neglecting the time dependence due to the thermal capacity of the reactor. With careful interpretation, all these forms give an interpretation of stability that is consistent with direct evaluation and promote the understanding of the onset of gross oscillations in power

  18. The Large Underground Xenon (LUX) experiment

    International Nuclear Information System (INIS)

    Akerib, D.S.; Bai, X.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; Byram, D.; Cahn, S.B.; Camp, C.; Carmona-Benitez, M.C.; Carr, D.; Chapman, J.J.; Chiller, A.; Chiller, C.; Clark, K.; Classen, T.; Coffey, T.; Curioni, A.

    2013-01-01

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross-section per nucleon of 2×10 −46 cm 2 , equivalent to ∼1event/100kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have <1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector

  19. Ventilator-driven xenon ventilation studies

    International Nuclear Information System (INIS)

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-01-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration

  20. Stationary striations due to interaction of two ionization waves in xenon glow discharge

    International Nuclear Information System (INIS)

    Maruyama, T.; Nishina, S.; Kitamura, H.; Itagaki, K.; Mizuochi, H.

    1990-01-01

    Experimental observations on stationary striations in the positive column of xenon discharge are reported. Stationary striations are observed when two ionization waves exist simultaneously in the positive column at low pressure and high current region. These stationary striations are caused by nonlinear interference of two backward ionization waves of which frequencies are either equal or are in the ratio 1:2. The spatial intervals for the striated pattern are equal to the reciprocal of the difference between the wave-numbers of two ionization waves. (orig.)

  1. Calculation of xenon-oscillations in the HPLWR

    International Nuclear Information System (INIS)

    Reiss, T.; Feher, S.; Czifrus, Sz.

    2009-01-01

    The European version of the Supercritical Water Cooled Reactor (SCWR) is being developed under the name High Performance Light Water Reactor (HPLWR). In the most recent design, a three-pass core is foreseen with a heat-up of the coolant (supercritical pressure water) from 280degC to 500degC. Due to the operating pressure of 25 MPa, there is no phase change in the core but the density drop of the coolant can be as high as one order of magnitude. This results in a system which is sensitive to local temperature, power and density oscillations. This attribute is enhanced by the pseudocritical transformation of supercritical pressure water. Due to the relatively large dimensions of the core, xenon-oscillations are probable. The characteristic time of this process is several hours, thus a coupled quasi-stationary neutronics-thermohydraulics (CQNT) code completed with the xenon poisoning differential equations (XPDE) can predict the extent of xenon-oscillations. A program system is being developed at the Budapest University of Technology which is capable to perform full core CQNT calculations including the XPDE. The program system is designed to calculate one-pass (which was the first core proposal for HPLWRs, today called PWR-SC) and three-pass cores. The CQNT code is made up of an MCNP part (neutronics part) and of a thermohydraulics part developed at our Institute. Since full core MCNP calculations are very time consuming, upon symmetry considerations only one eighth of the core is modelled. On the other hand, this approach of modelling momentarily limits the phenomena which can be studied to axial oscillations. (author)

  2. Xenon recovery from molybdenum-99 production

    International Nuclear Information System (INIS)

    Jubin, R.T.; Paviet, P.D.; Bresee, J.C.

    2016-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) sponsors research and development on the recycle of used commercial nuclear fuel as an option for future nuclear fuel cycles that offers increased use of uranium and thorium resources and a possible reduction in the overall cost of nuclear waste management. The two alternatives, direct disposal of used fuel and fuel recycle, are broadly referred to as open and closed fuel cycles. One requirement of a closed fuel cycle is the safe management of radioactive off-gases, which includes 14 C, radioiodine and the noble gases, including radio-xenon. The longest lived relevant radio-xenon isotope is 127 Xe; with a half-life of just 36.35 days it is feasible to trap and hold the radio-xenon to allow for decay to safe environmental levels. However, the very weak chemical bonds of noble gases, in this case xenon, make them difficult to trap, which led to an extensive DOE-NE study of noble gas adsorption on various molecular sieves as an alternative to costly cryogenics processes. Preliminary results indicate that xenon adsorption at near room temperature on molecular sieves, both synthetic and natural, may have both cost and efficiency advantages over cryogenic processes. These results appear to have direct application in helping achieve the United Nations Security Council goal of reducing xenon emissions from medical isotope producers

  3. Properties of excited xenon atoms in a plasma display panel

    International Nuclear Information System (INIS)

    Uhm, Han S.; Hong, Byoung H.; Oh, Phil Y.; Choi, Eun H.

    2009-01-01

    The luminance efficiency of a plasma display panel is directly related to the vacuum ultraviolet (VUV) light that is emitted from excited xenon (Xe) atoms and molecules. It is therefore necessary to investigate the properties of excited xenon atoms. This study presents experimental data associated with the behavior of excited xenon atoms in a PDP discharge cell and compares the data with the theoretical results obtained using an analytical model. The properties of excited xenon atoms in the discharge cells of a plasma display panel are investigated by measuring the excited atom density through the use of laser absorption spectroscopy. The density of the excited xenon atoms increases from zero, reaches its peak, and decreases with time in the discharge cells. The profile of the excited xenon atoms is also studied in terms of the xenon mole fraction. The typical density of the excited xenon atoms in the metastable state is on the order of 10 13 atoms per cubic cm.

  4. Xenon-Water Interaction in Bacterial Suspensions as Studied by NMR

    DEFF Research Database (Denmark)

    Rodin, V.; Ponomarev, Alexander; Gerasimov, Maxim

    2017-01-01

    suspensions of Escherichia coli in the presence of xenon using nuclear magnetic resonance (NMR). The work studied how the spin-lattice relaxation times of water protons in suspension change under xenon conditions. Xenon is able to form clathrate hydrates with water molecules at a temperature above the melting...... point of ice. The work studied NMR relaxation times which reflect the rotation freedom of water molecules in suspension. Lower relaxation times indicate reduced rotational freedom of water. Single exponential behavior of spin-lattice relaxation of protons in the suspensions of microorganisms has been...

  5. An approach to stability analysis of spatial xenon oscillations in WWER-1000 reactors

    International Nuclear Information System (INIS)

    Parhizkari, H.; Aghaie, M.; Zolfaghari, A.; Minuchehr, A.

    2015-01-01

    Highlights: • The multipoint methodology is developed for xenon oscillation in the BNPP. • The axial, radial and azimuthal offsets are calculated in the BOC and EOC. • It is shown that the all of oscillation modes are safe in the BOC. • The axial oscillation is not safe in the EOC and needs governor control system. • The multipoint kinetics show good agreement for spatial oscillations. - Abstract: Spatial power oscillations due to spatial distribution of xenon transient are well known as xenon oscillation in large reactors. Xenon-induced spatial power oscillations occur as a result of rapid perturbations to power distribution that cause the xenon and iodine distribution to be out of phase with the perturbed power distribution. This results in a shift in xenon and iodine distributions that causes the power distribution to change in an opposite direction from the initial perturbation. In this paper xenon-induced power oscillation is described by a system of differential equations with non-linearity between xenon and flux distributions; the dynamics of process is described by a discrete distributed parameter model, with the neutron flux, the delayed neutrons, the core temperature and the xenon and iodine concentrations as the “states” of the system. It is shown that it is possible to describe the discrete distributed-parameter as a set of coupled point-reactor models. It is also shown that using this scheme it is possible to analyze the control aspects of a multi-section large core reactor by treating only two adjacent sections of the core. To illustrate the capability and efficiency of the proposed scheme Bushehr Nuclear Power Plant, BNPP, which is a WWER-1000 reactor, is chosen to show the performance of the methodology. The axial, azimuthal and radial power oscillation at the beginning of cycle, BOC, and the end of cycle, EOC, for BNPP are investigated; the results are in good agreement with safety analysis report of the reference plant

  6. Search for 136Xe neutrinoless double beta decay with the Enriched Xenon Observatory (EXO)

    International Nuclear Information System (INIS)

    Giroux, G.

    2014-01-01

    The EXO collaboration is searching for the neutrinoless double beta decay of 136 Xe. Such observation would determine an absolute mass scale for the neutrinos, establish their Majorana nature, and uncover physics beyond the Standard Model. The EXO-200 detector is a single phase liquid xenon ultra low background TPC (Time Projection Chamber), with an active mass of 110 kg of 80.6% enriched xenon in the isotope 136. The detector is currently operating at the WIPP site and has been collecting data with enriched xenon since May 2011. The data collected give a lower limit for the neutrinoless double beta decay half-life of 136 Xe: T > 1.6*10 25 years at 90% C.L. The same data give a lower limit for the 2 neutrinos double beta decay of 136 Xe: T > 2.23*10 21 years that agrees with experimental values found in the literature

  7. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    Science.gov (United States)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  8. Dual display of flow/lambda results in xenon CT

    International Nuclear Information System (INIS)

    Lindstrom, W.W.; Gruenaver, L.M.; Dinewitz, I.J.

    1989-01-01

    Measurement of cortical blood flow has always been limited by the unavoidable inclusion of white matter and sulcal cerebrospinal fluid (CSF) in selected regions of interest. Xenon CT gives clear separation of anatomy, but precise ROI tracing is time consuming. CSF and gray and white matter have differing xenon solubilities (lambda), however, so the authors produce two-dimensional histograms of flow/lambda values within an ROI encompassing the desired anatomy and select lambda subregions for tissue-specific quantitative flow/lambda means and deviations. They report how this display is dynamic, allowing the physician to roam around the anatomy at will, with 1-second statistical updating

  9. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  10. Material radioassay and selection for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, LIBPhys, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Di Giovanni, A.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Sivers, M. von [Rensselaer Polytechnic Institute, Troy, NY (United States). Dept. of Physics, Applied Physics and Astronomy; Bern Univ. (Switzerland). Albert Einstein Center for Fundamental Physics; Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Marrodan Undagoitia, T.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A.; Laubenstein, M.; Nisi, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/IN2P3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Scotto Lavina, L. [Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, LPNHE, Paris (France); Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Collaboration: XENON Collaboration

    2017-12-15

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations. (orig.)

  11. Appropriate xenon-inhalation speed in xenon-enhanced CT using the end-tidal gas-sampling method

    International Nuclear Information System (INIS)

    Suga, Sadao; Toya, Shigeo; Kawase, Takeshi; Koyama, Hideki; Shiga, Hayao

    1986-01-01

    This report describes some problems when end-tidal xenon gas is substituted for the arterial xenon concentration in xenon-enhanced CT. The authors used a newly developed xenon inhalator with a xenon-gas-concentration analyzer and performed xenon-enhanced CT by means of the ''arterio-venous shunt'' method and the ''end-tidal gas-sampling'' method simultaneously. By the former method, the arterial build-up rate (K) was obtained directly from the CT slices of a blood circuit passing through the phantom. By the latter method, it was calculated from the xenon concentration of end-tidal gas sampled from the mask. The speed of xenon supply was varied between 0.6 - 1.2 L/min. in 11 patients with or without a cerebral lesion. The results revealed that rapid xenon inhalation caused a discrepancy in the arterial K between the ''shunt'' method and the ''end-tidal'' method. This discrepancy may be responsible for the mixing of inhalated gas and expired gas in respiratory dead space, such as the nasal cavity or the mask. The cerebral blood flow was underestimated because of the higher arterial K in the latter method. Too much slow inhalation, however, was timewasting, and it increased the body motion in the subanesthetic state. Therefore, an inhalation speed of the arterial K of as much as 0.2 was ideal to represent the end-tidal xenon concentration for the arterial K in the ''end-tidal gas-sampling'' method. When attention is given to this point, this method may offer a reliable absolute value in xenon-enhanced CT. (author)

  12. Xenon recovery from molybdenum-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37931 (United States); Paviet, P.D.; Bresee, J.C. [U.S. Department of Energy,1000 Independence Ave, S.W., Washington DC, 20585-1290 (United States)

    2016-07-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) sponsors research and development on the recycle of used commercial nuclear fuel as an option for future nuclear fuel cycles that offers increased use of uranium and thorium resources and a possible reduction in the overall cost of nuclear waste management. The two alternatives, direct disposal of used fuel and fuel recycle, are broadly referred to as open and closed fuel cycles. One requirement of a closed fuel cycle is the safe management of radioactive off-gases, which includes {sup 14}C, radioiodine and the noble gases, including radio-xenon. The longest lived relevant radio-xenon isotope is {sup 127}Xe; with a half-life of just 36.35 days it is feasible to trap and hold the radio-xenon to allow for decay to safe environmental levels. However, the very weak chemical bonds of noble gases, in this case xenon, make them difficult to trap, which led to an extensive DOE-NE study of noble gas adsorption on various molecular sieves as an alternative to costly cryogenics processes. Preliminary results indicate that xenon adsorption at near room temperature on molecular sieves, both synthetic and natural, may have both cost and efficiency advantages over cryogenic processes. These results appear to have direct application in helping achieve the United Nations Security Council goal of reducing xenon emissions from medical isotope producers.

  13. Effect of capacitor loss on discharging characteristics of xenon flash lamp

    International Nuclear Information System (INIS)

    Zhang Chu; Lin Dejiang; Xu Chunmei; Shen Hongbin; Chen Xiaohan

    2012-01-01

    The effect of storage capacitor's loss on the discharging characteristics of the xenon flash lamp was studied, and the xenon flash lamp discharging circuit was analyzed and improved. The capacitor can be equivalent to a series of an ideal capacitor and loss resistance. The improved formula of the xenon lamp discharging characteristics was given when actual capacitance loss is not zero, and the xenon lamp discharging current and discharging power are calculated and analyzed in detail with the increase of the capacitor loss. The results show that the increase of loss will lead to the decrease of xenon lamp discharging current and peak power and the xenon lamp flash time, and influence laser pumping efficiency. The loss will also lead to the capacitor inverse charging in LC discharging circuit; this will influence normal working of the capacitor and decrease the lift of the xenon lamp. The actual energy storage capacitor charging and discharging experiments show that the increase of capacitor loss will lead to the decrease of xenon lamp light-emitting waveform peak, shortening of the flash time and increase of the electrode sputter, thus verity, the reasonableness of theoretical analysis. In addition, the experiments show that environmental factors have very significant impact on the increase of the storage capacitor loss. (authors)

  14. Xenon-induced axial power oscillations in the 400 MW PBMR

    International Nuclear Information System (INIS)

    Strydom, Gerhard

    2008-01-01

    The redistribution of the spatial xenon concentration in the 400 MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400 MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%-50%-100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400 MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations

  15. Identification of two-phase flow regimes by time-series modeling

    International Nuclear Information System (INIS)

    King, C.H.; Ouyang, M.S.; Pei, B.S.

    1987-01-01

    The identification of two-phase flow patterns in pipes or ducts is important to the design and operation of thermal-hydraulic systems, especially in the nuclear reactor cores of boiling water reactors or in the steam generators of pressurized water reactors. Basically, two-phase flow shows some fluctuating characteristics even at steady-state conditions. These fluctuating characteristics can be analyzed by statistical methods for obtaining flow signatures. There have been a number of experimental studies conducted that are concerned with the statistical properties of void fraction or pressure pulsation in two-phase flow. In this study, the authors propose a new technique of identifying the patterns of air-water two-phase flow in a vertical pipe. This technique is based on analyzing the statistic characteristics of the pressure signals of the test loop by time-series modeling

  16. Autoionization in xenon

    International Nuclear Information System (INIS)

    Knight, R.D.; Wang, L.G.

    1986-01-01

    The authors have studied both even- and odd-parity autoionizing levels in xenon. These levels lie between the Xe/sup +/ /sup 2/P/sub 3/2/ and /sup 2/P/sub 1/2/ ionization limits. Their technique is laser spectroscopy of a thermal metastable atomic beam of xenon. One-photon laser spectroscopy from the 6s'[1/2]/sub 0/ level has been used to study the np'[1/2]/sub 1/ and np'[3/2]/sub 1/ autoionization doublets, n = 7-20. These had previously been observed only for n = 7,8. The authors are using a MQDT analysis of both discrete and autoionizing even-parity J = 1 levels (five channels) to understand the autoionization line profiles. They have also used two-photon laser spectroscopy from the 6s[3/2]/sub 2/ metastable level via various J = 1,2 6p' levels to observe the odd-parity ns'[1/2]/sub 0 1/, nd'[3/2]/sub 1 2/, and nd'[5/2]/sub 2 3/ autoionizing levels to n > 50. This is the first observation of J not equal to 1 odd-parity autoionization in xenon. The most striking feature of these spectra is the complete absence of the very intense, very broad transitions to nd'[3/2]/sub 1/, which dominate the photoabsorption spectrum from the xenon J = 0 ground state. The other nd' levels (J = 2.3) and ns'[1/2]/sub 0/ are all comparable in width to the previously observed ns'[1/2]/sub 1/ levels. The authors present the results of position and width measurements for these levels

  17. Lambda-guided calculation method (LGC method) for xenon/CT CBF

    Energy Technology Data Exchange (ETDEWEB)

    Sase, Shigeru [Anzai Medical Co., Ltd., Tokyo (Japan); Honda, Mitsuru; Kushida, Tsuyoshi; Seiki, Yoshikatsu; Machida, Keiichi; Shibata, Iekado [Toho Univ., Tokyo (Japan). School of Medicine

    2001-12-01

    A quantitative CBF calculation method for xenon/CT was developed by logically estimating time-course change rate (rate constant) of arterial xenon concentration from that of end-tidal xenon concentration. A single factor ({gamma}) was introduced to correlate the end-tidal rate constant (Ke) with the arterial rate constant (Ka) in a simplified equation. This factor ({gamma}) is thought to reflect the diffusing capacity of the lung for xenon. When an appropriate value is given to {gamma}, it is possible to calculate the arterial rate constant (Calculated Ka) from Ke. To determine {gamma} for each xenon/CT CBF examination, a procedure was established which utilizes the characteristics of white matter lambda; lambda refers to xenon brain-blood partition coefficient. Xenon/CT studies were performed on four healthy volunteers. Hemispheric CBF values (47.0{+-}9.0 ml/100 g/min) with use of Calculated Ka were close to the reported normative values. For a 27-year-old healthy man, the rate constant for the common carotid artery was successfully measured and nearly equal to Calculated Ka. The authors conclude the method proposed in this work, lambda-guided calculation method, could make xenon/CT CBF substantially reliable and quantitative by effective use of end-tidal xenon. (author)

  18. Lambda-guided calculation method (LGC method) for xenon/CT CBF

    International Nuclear Information System (INIS)

    Sase, Shigeru; Honda, Mitsuru; Kushida, Tsuyoshi; Seiki, Yoshikatsu; Machida, Keiichi; Shibata, Iekado

    2001-01-01

    A quantitative CBF calculation method for xenon/CT was developed by logically estimating time-course change rate (rate constant) of arterial xenon concentration from that of end-tidal xenon concentration. A single factor (γ) was introduced to correlate the end-tidal rate constant (Ke) with the arterial rate constant (Ka) in a simplified equation. This factor (γ) is thought to reflect the diffusing capacity of the lung for xenon. When an appropriate value is given to γ, it is possible to calculate the arterial rate constant (Calculated Ka) from Ke. To determine γ for each xenon/CT CBF examination, a procedure was established which utilizes the characteristics of white matter lambda; lambda refers to xenon brain-blood partition coefficient. Xenon/CT studies were performed on four healthy volunteers. Hemispheric CBF values (47.0±9.0 ml/100 g/min) with use of Calculated Ka were close to the reported normative values. For a 27-year-old healthy man, the rate constant for the common carotid artery was successfully measured and nearly equal to Calculated Ka. The authors conclude the method proposed in this work, lambda-guided calculation method, could make xenon/CT CBF substantially reliable and quantitative by effective use of end-tidal xenon. (author)

  19. Weird muonium diffusion in solid xenon

    International Nuclear Information System (INIS)

    Storchak, V.G.; Kirillov, B.F.; Pirogov, A.V.

    1992-09-01

    Muon and muonium spin rotation and relaxation parameters were studied in liquid and solid xenon. The small diamagnetic fraction (∼ 10%) observed in condensed xenon is believed to be Xeμ + . The muonium hyperfine frequency was measured for the first time in liquid Xe and was found to be in agreement with the vacuum value. A nonmonotonic temperature dependence of the muonium relaxation rate probably indicates that muonium diffusion in solid Xe is of quantum nature. 16 refs., 3 figs

  20. Reliability and error analysis on xenon/CT CBF

    International Nuclear Information System (INIS)

    Zhang, Z.

    2000-01-01

    This article provides a quantitative error analysis of a simulation model of xenon/CT CBF in order to investigate the behavior and effect of different types of errors such as CT noise, motion artifacts, lower percentage of xenon supply, lower tissue enhancements, etc. A mathematical model is built to simulate these errors. By adjusting the initial parameters of the simulation model, we can scale the Gaussian noise, control the percentage of xenon supply, and change the tissue enhancement with different kVp settings. The motion artifact will be treated separately by geometrically shifting the sequential CT images. The input function is chosen from an end-tidal xenon curve of a practical study. Four kinds of cerebral blood flow, 10, 20, 50, and 80 cc/100 g/min, are examined under different error environments and the corresponding CT images are generated following the currently popular timing protocol. The simulated studies will be fed to a regular xenon/CT CBF system for calculation and evaluation. A quantitative comparison is given to reveal the behavior and effect of individual error resources. Mixed error testing is also provided to inspect the combination effect of errors. The experiment shows that CT noise is still a major error resource. The motion artifact affects the CBF results more geometrically than quantitatively. Lower xenon supply has a lesser effect on the results, but will reduce the signal/noise ratio. The lower xenon enhancement will lower the flow values in all areas of brain. (author)

  1. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  2. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    Science.gov (United States)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  3. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  4. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    Science.gov (United States)

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  5. Xenon Fractionation and Archean Hydrogen Escape

    Science.gov (United States)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  6. Markov transition probability-based network from time series for characterizing experimental two-phase flow

    International Nuclear Information System (INIS)

    Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De

    2013-01-01

    We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas—liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas—liquid flow patterns. (general)

  7. Separation and purification of xenon

    International Nuclear Information System (INIS)

    Schlea, C.S.

    1978-01-01

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF 4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure

  8. Search for double beta decay processes of {sup 124}Xe with XENON100 and XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Fieguth, Alexander [IKP, Westfaelische-Wilhelms-Universitaet Muenster (Germany)

    2016-07-01

    Driven by the search for dark matter particles the XENON dark matter project recently installed its next stage multi-ton experiment XENON1T at the LNGS, which will probe the spin-indpendent-WIMP-Nucleon cross section down to 2.10{sup -47} cm{sup 2}. Besides its main purpose different particle physics topics can be addressed by the taken data. One example are the double beta decay processes of natural isotope {sup 124}Xe. This isotope is expected to decay via two-neutrino double electron capture (2νECEC) and due to its high Q-value of 2864 keV additionally through 2νβ{sup +}β{sup +}. Since these processes have not been detected so far, there is only a lower limit the respective half-life (e.g. > 4.7.10{sup 21} yr for 2νECEC). A detection of the 2νECEC is possible using XENON1T data by looking for its clear signature of secondary X-rays or Auger electrons and at least new lower half-life limits for all other decay channels can be obtained. While these processes are expected from standard model physics, a detection of a decay without neutrinos (e.g 0νECEC) would hint towards beyond the standard model physics and could derive conclusions on the neutrino mass. Until XENON1T is taking data, the search for all processes can be tested in the recorded data of its predecessor XENON100.

  9. Observation and applications of single-electron charge signals in the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are

  10. Observation of a barium xenon exciplex within a large argon cluster.

    Science.gov (United States)

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  11. Radon removal from gaseous xenon with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  12. Numerical study on xenon positive column discharges of mercury-free lamp

    International Nuclear Information System (INIS)

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  13. Experimental development of a liquid xenon Compton telescope for functional medical imaging

    International Nuclear Information System (INIS)

    Oger, Tugdual

    2012-01-01

    3γ imaging is a new nuclear medical imaging technique which has been suggested by Subatech laboratory. This technique involves locating three-dimensional position of the decay of an innovative radioisotope (β + ,γ) emitter, the 44 Sc. The principle consist in the detection of two photons of 511 keV gamma rays from the decay of the positron, provided by a PET ring detector, associated to the detection of the third photon by a Liquid xenon Compton telescope. The energy deposited in the interaction between the photon and xenon and its position are identified by measuring the ionization signal with a Micromegas chamber (Micro-Mesh Gaseous Structure), while the trigger and time measurement of the interaction are provided by the detection of the scintillation signal. The principle of the TPC is thus used to Compton imaging. In order to demonstrate experimentally the feasibility of imaging 3γ, a small prototype, XEMIS (Xenon Medical Imaging System) was developed. This thesis is an important step towards the proof of feasibility. In this work are exposed the characterization of the detector response for a beam of 511 keV gamma rays and the analysis of data derived from it. The measurement of energy and time resolutions will be presented, as well as the purity of the liquid xenon. (author) [fr

  14. Mapping local cerebral blood flow by means of computerized tomography with a short inhalation of low-dose stable xenon

    International Nuclear Information System (INIS)

    Nakagawara, Jyoji; Karasawa, Jun; Tasawa, Toshiaki; Touho, Hajime; Nakauchi, Mikio; Kagawa, Masa-aki; Asai, Masa-aki; Kuriyama, Yoshihiro; Kikuchi, Haruhiko.

    1986-01-01

    A non-invasive technique has been developed for mapping the local blood-brain partition coefficient (λi), the local build-up rate constant (κi), and the local cerebral blood flow (l-CBF) by means of xenon-enhanced computerized tomography (CT) using a YMS CT 9000 scanner. After denitrogenation for 10 minutes, a 30 % xenon/oxygen mixture is inhaled for 4 - 8 minutes through a rubber face-mask and a delivery system of stable xenon. The time course of local cerebral CT enhancement is utilized in order to calculate, the λi, κi, and l-CBF values. The CT enhancement data during the washin-washout phase are fitted to the mathematical functions, based on Kety's formula, using least-squares curve-fitting analysis. Several case studies of patients with cerebral vascular accidents are presented to demonstrate the characterization of the λi and l-CBF patterns in various tissues; the results are of sufficient quality for the management of patients. The theoretical assumptions underlying stable xenon CT CBF measurements are discussed. (author)

  15. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    Science.gov (United States)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  16. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  17. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  18. Two-phase flow models

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

  19. Time dependent analysis of Xenon spatial oscillations in small power reactors; Analise temporal das oscilacoes espaciais de Xenonio em reatores de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Decco, Claudia Cristina Ghirardello

    1997-07-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  20. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  1. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  2. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  3. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin; Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju; Krauss, Bernhard

    2010-01-01

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 ± 6.4 HU vs 26.1 ± 6.5 HU; P 25-75 , (γ = -0.68-0.88, P ≤ 0.002). Volume percentages of xenon ventilation defects (35.0 ± 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 ± 18.6%). However, mismatches between the volume percentages were variable up to 21.4-33.3%. Mean effective dose of xenon CT was 1.9 ± 0.5 mSv. In addition to high-resolution anatomic information, xenon ventilation CT using dual-source and dual-energy technique demonstrates impaired regional ventilation and its heterogeneity accurately in children with BO without additional radiation exposure. (orig.)

  4. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    Science.gov (United States)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  5. Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon

    International Nuclear Information System (INIS)

    Schwalbe, L.A.; Crawford, R.K.; Chen, H.H.; Aziz, R.A.

    1977-01-01

    A new two-parameter vapor pressure equation has been derived which, unlike the Salter equation, is shown to be equally applicable to quantum or classical solids and even liquids. The condensed phase enthalpies and entropies are given directly by the fitted parameters with accuracies comparable to those which have been claimed for existing independent calorimetric measurements. Recent vapor pressure data for the solid and liquid phases of argon, krypton, and xenon are analyzed in this manner, and the results are compared with the available calorimetric data. New values for the cohesive energy at T=0 are also derived for these substances

  6. Strategy generator for optimal xenon oscillation control: Based on a new concept of axial offsets

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro; Horimoto, Toshiaki

    1993-01-01

    Recently a new concept for controlling xenon oscillations has been used to optimize the control procedure for stabilizing an oscillation. The concept is based on two additional newly defined axial offsets, AO i and AO x together with the conventional axial offset AO p of axial power distribution. However, as the AOs are evaluated on line, it is impossible to predict the behavior of the AOs in advance. In order to overcome this situation a small auxiliary program has been developed. This program can generate the transients of the three AOs for the free running xenon oscillation. Then the user can input the most favorable conditions to eliminate the xenon oscillation such as total control hours, final AO p or time interval of the control rod movement. And an optimum search for the given final conditions is performed. The program can be used as a tool for a scoping study, the result of which can be obtained in a short time and also very easily

  7. First observation of liquid-xenon proportional electroluminescence in THGEM holes

    International Nuclear Information System (INIS)

    Arazi, L; Itay, R; Landsman, H; Levinson, L; Pasmantirer, B; Rappaport, M L; Vartsky, D; Breskin, A; Coimbra, A E C

    2013-01-01

    Radiation-induced proportional-electroluminescence UV signals, emitted from the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon, were recorded with a PMT for the first time. Significant photon yields were observed with gamma photons and alpha particles using a 0.4 mm thick electrode with 0.3 mm diameter holes; at 2 kV across the THGEM the photon yield was estimated to be ∼ 600 UV photons/electron over 4π. This may pave the way towards the realization of novel single-phase noble-liquid radiation detectors incorporating liquid hole-multipliers (LHM); their concept is presented

  8. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    International Nuclear Information System (INIS)

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-01-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  9. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    Science.gov (United States)

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ˜6km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  10. Xenon lighting adjusted to plant requirements

    Energy Technology Data Exchange (ETDEWEB)

    Koefferlein, M.; Doehring, T.; Payer, H.D.; Seidlitz, H.K. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Oberschleissheim (Germany)

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectral stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.

  11. First Dark Matter Search Results from the XENON1T Experiment

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Gardner, R.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Mariş, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Riedel, B.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thapa, S.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Upole, N.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-11-01

    We report the first dark matter search results from XENON1T, a ˜2000 -kg -target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 ±12 )-kg fiducial mass and in the [5 ,40 ] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 ±0.25 )×10-4 events /(kg ×day ×keVee) , the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV /c2 , with a minimum of 7.7 ×10-47 cm2 for 35 -GeV /c2 WIMPs at 90% C.L.

  12. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  13. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ely, James H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harper, Warren W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heimbigner, Tom R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, Charles W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Humble, Paul H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Madison, Jill C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Panisko, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ripplinger, Mike D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stewart, Timothy L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  14. Determination of atmospheric concentrations of xenon radioisotopes. Progress report

    International Nuclear Information System (INIS)

    Abel, K.H.; Panisko, M.E.; Hensley, W.K.; Bowyer, T.W.; Perkins, R.W.

    1995-07-01

    Determination of radioactive xenon concentrations in the atmosphere over a two year period has been performed as part of a research program to develop real-time measurement capabilities. The initial measurements were made to develop, prove, and validate the authors technical approach, while the longer-term measurements are being undertaken to establish natural background concentrations and variability with time. The results reported were made using noble gas fraction (typically 90% Kr and 10% Xe by weight) gas samples obtained from a commercial air-reduction plant in the northeastern US over a two-year interval beginning in the fall of 1993. The concentrated gas samples were typically obtained during a 6--8 hour interval at the commercial reduction plant and were shipped overnight to their laboratory. Analysis was typically completed approximately 24 hours after sampling. The analytical separation process typically took approximately 6 hours and gamma-ray spectrometric measurements were conducted for intervals ranging from 3 to 16 hours. The technical approach involved removal of potentially interfering radon daughter radionuclides using a molecular sieve at room temperature, followed by cryogenic concentration of noble gases using a chilled (-76 C) activated carbon molecular sieve. During initial measurements both molecular sieve materials were contained in 30 foot x 1/4 inch gas chromatography columns for analytical separations. Krypton was separated from Xenon during the analytical procedure by warming the activated carbon molecular sieve to room temperature after initial noble gas concentration and actively pumping it away. Xenon-133 adsorbed to the activated charcoal molecular sieve was then quantified via its 81 keV gamma-ray using initially a p-type intrinsic germanium detector and later a higher efficiency (64% relative to a 3 inch x 3 inch sodium iodide) n-type intrinsic germanium detector

  15. Occupational exposure to xenon-133 among hospital workers

    International Nuclear Information System (INIS)

    Deschamps, M.

    1984-11-01

    During procedures for pulmonary ventilation studies on patients in hospitals, xenon-133 may escape into ambient air. Measurements of air concentrations were required to permit an evaluation of the exposure to which hospital workers are subjected. Two complementary methods of in situ measurements of air concentrations were employed: a commercial air monitor and evacuated blood sampling tubes. Personal dosimeters (TLDs) were exposed simultaneously with the commercial air monitor, and the results were compared. This report presents the results of the measurements of air concentrations during studies on patients. Substantial leakage of xenon-133 was noted, but workers received less than the maximum permissible dose. Personal dosimeters do not permit accurate evaluation of the skin doses resulting from exposure to xenon-133; measurements of air concentrations are required for such evaluation. A number of procedures are recommended to minimize leakage and personnel exposure

  16. Cerebral blood flow measurement using stable xenon CT with very short inhalation times

    Energy Technology Data Exchange (ETDEWEB)

    Touho, Hajime; Karasawa, Jun; Shishido, Hisashi; Yamada, Keisuke; Shibamoto, Keiji [Osaka Neurological Inst., Toyonaka (Japan)

    1991-02-01

    A noninvasive, simplified method using inhalation of stable xenon (Xe{sup s}) and computed tomographic (CT) scanning to estimate regional cerebral blood flow (rCBF) and regional partition coefficient (r{lambda}) is described. Twenty-four patients with cerebrovascular occlusive disease and six volunteer controls inhaled 30% Xe{sup s} and 70% oxygen for 180 seconds and exhaled for 144 seconds during serial CT scanning without denitrogenation. The end-tidal Xe{sup s} concentration was continuously monitored with a thermoconductivity analyzer to determine the build-up range (A value) and build-up rate constant (K value) for arteries with the curve fitting method. The time-CT number (Hounsfield unit) curve for cerebral tissue during the Xe{sup s} washin and washout phases was used to calculate r{lambda} and rCBF using least squares curve fitting analysis. The resultant r{lambda} and rCBF map demonstrated a reliable distribution between the gray and white matter, and infarcted areas. rCBF was high in gray matter, low in white matter, and much lower in infarcted areas than in white matter. r{lambda} was high in white matter, low in gray matter, and much lower in infarcted areas. Xe{sup s} CT-CBF studies with very short inhalation of 180 seconds is a clinically useful method for evaluation of rCBF in patients with cerebrovascular diseases. (author).

  17. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  18. Sensitivity of gaseous xenon ionisation chambers (1961); Sensibilite des chambres d'ionisation a xenon gazeux (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Schuhl, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [French] Il apparait interessant d'utiliser du xenon comme gaz dans une chambre d'ionisation destinee a mesurer un faisceau d'electrons ou de positons de faible intensite et de grande energie ou pour monitorer un faisceau de gamma. Dans les etudes des electrons de 5 a 50 MeV, le xenon permet de gagner un facteur 4,5 sur l'air pour la sensibilite d'une chambre d'ionisation. (auteur)

  19. Xenon-based Penning mixtures for proportional counters

    International Nuclear Information System (INIS)

    Ramsey, B.D.; Agrawal, P.C.; National Aeronautics and Space Administration, Huntsville, AL

    1989-01-01

    The choice of quench gas can have a significant effect on the gas gain and energy resolution of gas-filed proportional counters. Details are given on the performance obtained with a variety of quench additives of varying ionization potentials for use in xenon-filled systems. It is confirmed that optimum performance is obtained when the ionization potential is closely matched to the first metastable level of xenon (8.3 eV) as is the case with xenon + trimethylamine and xenon + dimethylamine. For these mixtures the Penning effect is at its strongest. (orig.)

  20. Solubility of xenon in liquid sodium

    International Nuclear Information System (INIS)

    Veleckis, E.; Cafasso, F.A.; Feder, H.M.

    1976-01-01

    The solubility of xenon in liquid sodium was measured as a function of pressure (2-8 atm) and temperature (350-600 0 C). Henry's law was obeyed with the value of the Henry's law constant, K/sub H/ = N/sub Xe//P, ranging from 1.38 x 10 -10 atm -1 at 350C, to 1.59 x 10 -8 atm -1 at 600 0 C where N/sub Xe/ and P are the atom fraction and the partial pressure of xenon, respectively. The temperature dependence of solubility may be represented by log 10 lambda = (0.663 +- 0.01) - (4500 +- 73) T -1 , where lambda is the Ostwald coefficient (the volume of xenon dissolved per unit volume of sodium at the temperature of the experiment). The heat of solution of xenon in sodium was 20.6 +- 0.7 kcal/mole, where the standard state of xenon is defined as that of 1 mole of an ideal gas, confined to a volume equal to the molar volume of sodium

  1. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    International Nuclear Information System (INIS)

    Liu Shuhai; Neiger, Manfred

    2003-01-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power

  2. Revised and extended analysis of the odd parity configurations of five-times ionized xenon: Xe VI

    International Nuclear Information System (INIS)

    Churilov, S.S.; Joshi, Y.N.

    2000-01-01

    Xenon spectra were recorded in the 300-1240 A region on a 3 m and a 10.7 normal incidence spectrograph using a modified triggered spark source. The spectrum of five-times ionized xenon (Xe VI) was investigated. The previous analysis of the 5s 2 5p,5s5p 2 , 5s 2 5d and 5s 2 6s configurations [V. Kaufman and J. Sugar (1987), A. Tauheed et al. At. (1992)] was confirmed. Three of the five levels of the 5p 3 configurations [ and 1995] and all the 5p 3 , 5s5p5d and 5s5p6s configurations levels [R. Sarmiento et al. (1999)] have been found to be erroneous. 53 new lines have been classified in the Xe VI spectrum. Twenty nine additional levels belonging to the 5p 3 , 5f, 6p and 5s5p5d odd configurations have been established. Hartree-Fock calculations with relativistic corrections (HFR) and least-square-fitted calculations (LSF) were carried out to interpret the spectrum. (orig.)

  3. Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon

    Science.gov (United States)

    Uvarov, Sergey

    Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.

  4. First Dark Matter Search Results from the XENON1T Experiment.

    Science.gov (United States)

    Aprile, E; Aalbers, J; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arneodo, F; Barrow, P; Baudis, L; Bauermeister, B; Benabderrahmane, M L; Berger, T; Breur, P A; Brown, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Calvén, J; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Diglio, S; Eurin, G; Fei, J; Ferella, A D; Fieguth, A; Fulgione, W; Gallo Rosso, A; Galloway, M; Gao, F; Garbini, M; Gardner, R; Geis, C; Goetzke, L W; Grandi, L; Greene, Z; Grignon, C; Hasterok, C; Hogenbirk, E; Howlett, J; Itay, R; Kaminsky, B; Kazama, S; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Lin, Q; Lindemann, S; Lindner, M; Lombardi, F; Lopes, J A M; Manfredini, A; Mariş, I; Marrodán Undagoitia, T; Masbou, J; Massoli, F V; Masson, D; Mayani, D; Messina, M; Micheneau, K; Molinario, A; Morå, K; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Pizzella, V; Piro, M-C; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Riedel, B; Rizzo, A; Rosendahl, S; Rupp, N; Saldanha, R; Dos Santos, J M F; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Scotto Lavina, L; Selvi, M; Shagin, P; Shockley, E; Silva, M; Simgen, H; Sivers, M V; Stein, A; Thapa, S; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; Vargas, M; Upole, N; Wang, H; Wang, Z; Wei, Y; Weinheimer, C; Wulf, J; Ye, J; Zhang, Y; Zhu, T

    2017-11-03

    We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40]  keV_{nr} energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10^{-4}  events/(kg×day×keV_{ee}), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10  GeV/c^{2}, with a minimum of 7.7×10^{-47}  cm^{2} for 35-GeV/c^{2} WIMPs at 90% C.L.

  5. Chromatographic separation of radioactive noble gases from xenon

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  6. A new liquid xenon scintillation detector for positron emission tomography

    International Nuclear Information System (INIS)

    Chepel, V.Yu.

    1993-01-01

    A new positron-sensitive detector of annihilation photons filled with liquid xenon is proposed for positron emission tomography. Simultaneous detection of both liquid xenon scintillation and ionization current produces a time resolution of < 1 ns and a position resolution in the tangential direction of the tomograph ring is ∼ 1 mm and in the radial direction is ∼ 5 mm. The advantages of a tomograph with new detectors are discussed. New algorithms of Compton scattering can be used. (author)

  7. Direct Dark Matter Detection through the use of a Xenon Based TPC Detector

    Science.gov (United States)

    Daniel, Jonathan; Akerib, Daniel; LZ group at SLAC

    2018-01-01

    The vast majority of matter in the universe is unaccounted for. Only 15% of the universe's mass density is visible matter, while the other 85% is Dark Matter (DM). The Weakly Interacting Massive Particle (WIMP) is currently the frontrunner of the DM candidates. The Large Underground Xenon (LUX) and next generation LUX-ZEPLIN (LZ) experiments are designed to directly detect WIMPs. Both experiments are xenon-based Time Projection Chambers (TPC) used to observe possible WIMP interactions. These interactions produce photons and electrons with the photons being collected in a set of two photomultiplier tube (PMT) arrays and the electrons drifted upwards in the detector by a strong electric field to create a secondary production of photons in gaseous xenon. These two populations of photons are classified as S1 and S2 signals, respectively. Using these signals we reconstruct the energy and position of the interaction and in doing so we can eliminate background events that would otherwise “light up” the detector. My participation in the experiment, while at SLAC, was the creation of the grids that produce the large electric field, along with additional lab activities aimed at testing the grids. While at Stan State, I work on background modeling in order to distinguish a possible WIMP signal from ambient backgrounds.

  8. The atmosphere of Mars - Detection of krypton and xenon

    Science.gov (United States)

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Krypton and xenon have been discovered in the Martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  9. Build up of Radioactive Krypton and Xenon Analysis System

    International Nuclear Information System (INIS)

    Lee, D. K.; Choi, C. S.; Chung, K. H.; Lee, W.; Cho, Y. H.; Lee, C. W.

    2008-03-01

    The objective of this project is to build up an analysis system to measure the activity of the atmospheric radioactive krypton and xenon in Korea. The work scopes of the project include the purchase and the installation of the analysis system to measure the activity of the radioactive krypton and xenon in air, and the establishment of the operation capability of the system through the training of the operator. The system consists of two air sampling systems, and one radioactivity analysis system, which incorporates the enrichment system, the gas chromatography to purify a mixture gas, and the gas proportional counter to count the activity of pure krypton and xenon gas. As planned originally, the establishment of the analysis system has been completed. At present, one air sampler is successfully being operated at a specific site of the South Korea to measure the background radioactivities of Kr-85 and Xe-133 in air. The other air sampler is being reserved at the KAERI in the Daejeon for a emergency like the second nuclear test of the North Korea. During the normal time, the reserved air sampler will be used to collect the air sample for the performance test of the analysis system and the cross analysis for the calibration of the system. The radioactivity analysis system has been installed at the KAERI, and is being used to measure the activity of Kr-85 and Xe-133 in the air sample from a domestic site

  10. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Science.gov (United States)

    Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.; Oliveira, C. A. B.; Henriques, C. A. O.; Escada, J.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Morata, J. A. Hernando; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-01-01

    We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.

  11. Optimization of Xenon Biosensors for Detection of Protein Interactions

    International Nuclear Information System (INIS)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E.

    2005-08-01

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length

  12. Xenon migration in UO{sub 2} under irradiation studied by SIMS profilometry

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, B. [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); AREVA, AREVA NP, 10 rue Juliette Récamier, F-69456 Lyon (France); Moncoffre, N. [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Université de Lyon, Université Lyon 1, IUT Lyon 1, 43 bd du 11 novembre 1918, 69 622 Villeurbanne cedex (France); Bérerd, N. [Université de Lyon, CNRS/IN2P3, Université Lyon 1, Institut de Physique Nucléaire de Lyon, 4 rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Université de Lyon, Université Lyon 1, IUT Lyon 1, 43 bd du 11 novembre 1918, 69 622 Villeurbanne cedex (France); Garnier, C. [AREVA, AREVA NP, 10 rue Juliette Récamier, F-69456 Lyon (France); Raimbault, L. [Ecole des Mines de Paris, Centre de Géosciences, 35 rue Saint Honoré, F-77305 Fontainebleau cedex (France); Sainsot, P. [Université de Lyon, Université Lyon 1, LaMCoS, INSA-Lyon, CNRS UMR5259, F-69621 Villeurbanne cedex (France); and others

    2013-09-15

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with {sup 136}Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400–1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO{sub 2} are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy.

  13. Regional cerebral blood studies by the xenon-133 inhalation method in cases of cerebrovascular diseases

    International Nuclear Information System (INIS)

    Shimomura, Takahide

    1982-01-01

    rCBF was measured 428 times in 191 patients and 15 healthy volunteers by the Xenon-133 inhalation technique. The two-compartment analysis and the estimate of initial slope index were performed. There was no difference in blood flow between the two hemispheres in the 15 healthy volunteers, whose mean age was 36.5 +- 13.5 years (F 1 , right: 83.1 +- 11.4; left: 85.1 +- 12.1; 1Sl, right: 51.6 +- 6.3; left: 52.4 +- 6.0). Good correlation with a correlation coefficient of 0.965 was observed between the value obtained by the Xenon-133 inhalation and intracarotid methods in 14 patients with brain diseases. Reproducibilities of the Xenon-133 inhalation technique by serial measurement of rCBF at intervals of 30 - 40 minutes and 3 - 5 days were almost the same, with a variation coefficient of 3.7% and a correlation coefficient of 0.98. Repeated rCBF measurement by the Xenon-133 inhalation was performed during a long follow-up period of up to 1 year after bypass surgery. In 28 adult patients with occlusive cerebrovascular disease, CBF values of most patients stabilized in normal range within 3 months after the operation. In 12 patients with Moyamoya disease, CBF values were distributed over a wide range preoperatively, and increased gradually and tended to stabilize in the relatively subnormal range within 3 months after operation. This clinical experience indicates that the Xenon-133 inhalation method is a useful and safe procedure for the determination of rCBF, especially for repeated studies in cases with bypass surgery during long postoperative follow-up periods and for measurement of rCBF in child cases. (J.P.N.)

  14. First Axion Results from the XENON100 Experiment

    CERN Document Server

    Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Cardoso, J.M.R.; Colijn, A.P.; Contreras, H.; Cussonneau, J.P.; Decowski, M.P.; Duchovni, E.; Fattori, S.; Ferella, A.D.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L.W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R.F.; Calloch, M. Le; Lellouch, D.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J.A.M.; Lung, K.; Lyashenko, A.; Macmullin, S.; Marrodan Undagoitia, T.; Masbou, J.; Massoli, F.V.; Mayani Paras, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S.E.A.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.

    2014-09-09

    We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \\times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain $g_{Ae}$, to be lower than $1 \\times 10^{-12}$ (90% CL) for masses between 5 and 10 keV/c$^2$.

  15. Cosmogenic activation of xenon and copper

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Kish, Alexander; Piastra, Francesco [University of Zuerich, Department of Physics, Zuerich (Switzerland); Schumann, Marc [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-10-15

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470 m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of {sup 7}Be, {sup 101}Rh, {sup 125}Sb, {sup 126}I and {sup 127}Xe in xenon, out of which only {sup 125}Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only existing dedicated activation measurement, while we observe lower rates for the remaining ones. The specific saturation activities for both samples are also compared to predictions obtained with commonly used software packages, where we observe some underpredictions, especially for xenon activation. (orig.)

  16. Improvements in or relating to trapping and reuse of radioactive xenon

    International Nuclear Information System (INIS)

    Bolmsjoe, M.S.; Persson, B.R.

    1981-01-01

    A method is described suitable for recovering, from a mixture of gases contaning radioactive xenon, a mixture of gases containing an increased concentration of radioactive xenon, which method comprises the steps of passing xenon-containing gas through a bed of activated charcoal to adsorb the xenon therein, thereafter heating the charcoal bed to a temperature within the range of from 200 to 400 0 C, passing a moisture-free sweep gas through the bed when heated to said temperature to desorb xenon therefrom and then collecting the xenon-containing gas thus formed. (author)

  17. Numerical scheme for optimization of xenon transient processes in a reactor. Problem on fast response without a limitation for phase variables

    International Nuclear Information System (INIS)

    Gerasimov, A.S.

    1975-01-01

    A numerical diagram is suggested of minimizing a period of xenon transient process in the reactor without any limitation of xenon-135 concentration. The problem is solved with a computer in a point model. Pontryagin's maximum principle is used so as to check optimization of the transient process

  18. NMR study of hyper-polarized {sup 129}Xe and applications to liquid-phase NMR experiments; Etude de la resonance magnetique nucleaire du Xenon{sup 129} hyperpolarise et applications en RMN des liquides

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D

    2008-07-15

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  19. Potential for large-scale uses for fission-product Xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-03-01

    Of all fission products in spent, low-enrichment-uranium power-reactor fuels, xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the US, radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state-of-the-art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission-product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much-more-voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays, and luminescence - as well as for medicinal diagnostics and therapeutics - fission-product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly hgiher atomic weight, because of the much higher concentrations of the 134 Xe and 136 Xe isotopes. Therefore, fission-product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  20. Performance of a cryogenic system prototype for the XENON1T detector

    International Nuclear Information System (INIS)

    Aprile, E; Budnik, R; Choi, B; Contreras, H A; Giboni, K L; Goetzke, L W; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; Rizzo, A; Shagin, P

    2012-01-01

    We have developed an efficient cryogenic system with heat exchange and associated gas purification system as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 tons of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in series, a heat exchange efficiency better than 96% has been measured.

  1. p-process xenon isotope anomalies in stardust grains from meteorites

    International Nuclear Information System (INIS)

    Ott, U.

    2013-01-01

    Full text: In measurements on 'bulk' samples of meteorites isotopic variations due to the p-process usually have taken a backseat compared to such in s- or r-isotopes, and, in the best case, can be qualitatively attributed to the p-process, with little to no inferences concerning detailed isotopic yields. The situation is different for grains of stardust that survived in primitive meteorites. In fact, isotopically strange xenon was the key feature that led to the first identification of a stardust mineral, nanodiamonds containing xenon with overabundances of up to a factor of ∼2 in both the r-only (≡H-Xe) and p-only (≡L-Xe) isotopes. Relative excesses of the two r-only isotopes ( 134 Xe, 136 Xe) as well as of the two p-only isotopes ( 124 Xe, 126 Xe) are not equal, hence the processes responsible for HL-xenon must differ from the 'average' r- and p-processes as reflected in solar system abundances. However, while considerable effort has been put into explaining H-Xe, there has been little work on the p-side (L-Xe). Relying on scarce nuclear data, Heymann and Dziczkaniec have studied photodisintegration reactions of Xe and Ba seeds in intermediate zones of supernovae and found that the relative production of the p-Xe isotopes depends sensitively on the yield of the (γ, α) reaction on 128 Ba. Another suggestion - applicable to both the r- and p-anomalies in diamond xenon - is that of a 'rapid separation' between stable Xe isotopes and radioactive precursors produced in the 'standard' p- (as well as r-) process. For the p-isotopes to work, this would require the bulk (87%) of 126 Xe to be produced via the 126 Ba precursor, with a half live of ∼100 minutes, in order to explain the high 124 Xe/ 126 Xe. In contrast to diamond xenon, xenon in silicon carbide contains - besides the component from the s-process in their parent AGB stars - 'almost normal' Xe, with indications for 124 Xe/ 126 Xe being few (∼8)% lower than in solar Xe.

  2. Investigation of Power Losses of Two-Stage Two-Phase Converter with Two-Phase Motor

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available The paper deals with determination of losses of two-stage power electronic system with two-phase variable orthogonal output. The simulation is focused on the investigation of losses in the converter during one period in steady-state operation. Modeling and simulation of two matrix converters with R-L load is shown in the paper. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and in application with high frequency voltage sources.

  3. Tomographic reconstruction of the time-averaged density distribution in two-phase flow

    International Nuclear Information System (INIS)

    Fincke, J.R.

    1982-01-01

    The technique of reconstructive tomography has been applied to the measurement of time-average density and density distribution in a two-phase flow field. The technique of reconstructive tomography provides a model-independent method of obtaining flow-field density information. A tomographic densitometer system for the measurement of two-phase flow has two unique problems: a limited number of data values and a correspondingly coarse reconstruction grid. These problems were studied both experimentally through the use of prototype hardware on a 3-in. pipe, and analytically through computer generation of simulated data. The prototype data were taken on phantoms constructed of all Plexiglas and Plexiglas laminated with wood and polyurethane foam. Reconstructions obtained from prototype data are compared with reconstructions from the simulated data. Also presented are some representative results in a horizontal air/water flow

  4. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  5. Characterisation of two-phase horizontal flow regime transition by the application of time-frequency analysis methods

    International Nuclear Information System (INIS)

    Seleghim, Paulo

    1996-01-01

    This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: 1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way, 2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe, the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the un-stationary degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between un-stationary and regime transition. The un-stationary degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local-time frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author) [fr

  6. Iodide and xenon enhancement of computed tomography (CT) in multiple sclerosis (MS)

    International Nuclear Information System (INIS)

    Radue, E.W.; Kendall, B.E.

    1978-01-01

    The characteristic findings on computed tomography (CT) in multiple sclerosis (MS) are discussed. In a series of 49 cases plain CT was normal in 21 (43%), cerebral atrophy alone was present in 17 (35%) and plaques were visible in 11 (23%). These were most often adjacent to the lateral ventricles (14 plaques) and in the parietal white matter (10 plaques). CT was performed after the intravenous administration of iodide in 16 of these cases. Two patients with low attenuation plaques were scanned with xenon enhancement; the plaques absorbed less xenon than the corresponding contralateral brain substance and additional, previously isodense plaques were revealed. In one case the white matter absorbed much less xenon than normal and its uptake relative to grey matter was reduced. (orig.) [de

  7. Removing krypton from xenon by cryogenic distillation to the ppq level

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-05-01

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  8. A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum

    International Nuclear Information System (INIS)

    Gavarini, S.; Bes, R.; Millard-Pinard, N.; Peaucelle, C.; Perrat-Mabilon, A.; Gaillard, C.; Cardinal, S.; Garnier, V.

    2011-01-01

    Dense TiN and TiC samples were prepared by hot pressing using micrometric powders. Xenon species (simulating rare gas fission products) were then implanted into the ceramics. The samples were annealed for 1 h at 1500 deg. C under several degraded vacuums with P O 2 varying from 10 -6 to 2x10 -4 mbars. The oxidation resistance of the samples and their retention properties with respect to preimplanted xenon species were analyzed using scanning electron microscopy, grazing incidence x-ray diffraction, Rutherford backscattering spectrometry, and nuclear backscattering spectrometry. Results indicate that TiC is resistant to oxidation and does not release xenon for P O 2 ≤6x10 -6 mbars. When P O 2 increases, geometric oxide crystallites appear at the surface depending on the orientation and size of TiC grains. These oxide phases are Ti 2 O 3 , Ti 3 O 5 , and TiO 2 . Apparition of oxide crystallites is associated with the beginning of xenon release. TiC surface is completely covered by the oxide phases at P O 2 =2x10 -4 mbars up to a depth of 3 μm and the xenon is then completely released. For TiN samples, the results show a progressive apparition of oxide crystallites (Ti 3 O 5 mainly) at the surface when P O 2 increases. The presence of the oxide crystallites is also directly correlated with xenon release, the more oxide crystallites are growing the more xenon is released. TiN surface is completely covered by an oxide layer at P O 2 =2x10 -4 mbars up to 1 μm. A correlation between the initial fine microstructure of TiN and the properties of the growing layer is suggested.

  9. XAS characterisation of xenon bubbles in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P. [CEA Cadarache, DEN/DEC/SESC/LLCC, Bat. 130, 13108 St. Paul Lez Durance (France)], E-mail: martinp@drncad.cea.fr; Garcia, P.; Carlot, G.; Sabathier, C.; Valot, C. [CEA Cadarache, DEN/DEC/SESC/LLCC, Bat. 130, 13108 St. Paul Lez Durance (France); Nassif, V. [CEA Grenoble, DSM/DRFMC/SP2M/NRS, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Proux, O. [Laboratoire de Geophysique Interne et Tectonophysique, UMR CNRS/Universite Joseph Fourier, 1381 rue de la Piscine, Domaine Universitaire, 38400 Saint-Martin-D' Heres (France); Hazemann, J.-L. [Institut Neel, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2008-06-15

    X-ray absorption spectroscopy experiments were performed on a set of uranium dioxide samples implanted with 10{sup 17} xenon cm{sup -2} at 800 keV (8 at.% at 140 nm). EXAFS measurements performed at 12 K showed that during implantation the gas forms highly pressurised nanometre size inclusions. Bubble pressures were estimated at 2.8 {+-} 0.3 GPa at low temperature. Following the low energy xenon implantation, samples were annealed between 1073 and 1773 K for several hours. Stability of nanometre size highly pressurized xenon aggregates in UO{sub 2} is demonstrated up to 1073 K as for this temperature almost no modification of the xenon environment was observed. Above this temperature, bubbles will trap migrating vacancies and their inner pressure is seen to decrease substantially.

  10. Dark matter search with XENON1T

    NARCIS (Netherlands)

    Aalbers, J.

    2018-01-01

    Most matter in the universe consists of 'dark matter' unknown to particle physics. Deep underground detectors such as XENON1T attempt to detect rare collisions of dark matter with ordinary atoms. This thesis describes the first dark matter search of XENON1T, how dark matter signals would appear in

  11. The next enriched xenon observatory. A search for neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Wrede, Gerrit; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The question whether the neutrino could be its own antiparticle is still not answered. The most practical way to test this is the search for the neutrinoless double beta decay. The half-life of this decay is related to the value of a linear combination of the masses of the neutrino mass eigenstates and therefore provides information about the absolute mass scale of neutrinos. The nEXO experiment - the successor of EXO200 - is currently under research and development. The baseline concept comprises a single-phase liquid xenon (LXe) time projection chamber (TPC) filled with about 5 tons of liquid xenon enriched to about 80% Xe-136 as the double beta decay nuclide. In order to fully cover the range of the effective Majorana neutrino mass in the inverted hierarchy scheme, excellent energy resolution is required. Therefore, a position-resolving, low-noise charge readout and very efficient light collection and detection are mandatory. For the purpose of very low background levels radiopure Silicon Photomultipliers (SiPMs) have to be used to detect the scintillation light of LXe. Due to the large half-life a huge detector mass and long term measurement are needed. In this talk the baseline-concept of the experimental setup is presented.

  12. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    Gallin-Martel, M.-L.; Grondin, Y.; Gac, N.; Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F.

    2012-01-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22 Na source placed in the experimental setup.

  13. Xenon-computed tomography of kidney transplants

    International Nuclear Information System (INIS)

    Mutze, S.; Reichmuth, B.; Suess, C.; Lippert, J.; Ewert, R.

    1994-01-01

    Xenon-CT is an established method for determining cerebral perfusion, while applications in other organs are rare. We evaluated the diagnostic potential of measuring the regional Renal Blood Flow (rRBF) in 10 patients with transplanted kidneys by xenon-CT. We found significant differences in the rRBF between the renal medulla and the cortex. There were no differences between normal renal transplants and transplants with chronic rejection. (orig.) [de

  14. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Perez-Ocon, Rafael

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs

  15. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Departamento de Estadistica e I.O., Escuela Politecnica de Linares, Universidad de Jaen, 23700 Linares, Jaen (Spain); Perez-Ocon, Rafael [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)]. E-mail: rperezo@ugr.es

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs.

  16. The potential for large scale uses for fission product xenon

    International Nuclear Information System (INIS)

    Rohrmann, C.A.

    1983-01-01

    Of all fission products in spent, low enrichment, uranium, power reactor fuels xenon is produced in the highest yield - nearly one cubic meter, STP, per metric ton. In aged fuels which may be considered for processing in the U.S. radioactive xenon isotopes approach the lowest limits of detection. The separation from accompanying radioactive 85 Kr is the essential problem; however, this is state of the art technology which has been demonstrated on the pilot scale to yield xenon with pico-curie levels of 85 Kr contamination. If needed for special applications, such levels could be further reduced. Environmental considerations require the isolation of essentially all fission product krypton during fuel processing. Economic restraints assure that the bulk of this krypton will need to be separated from the much more voluminous xenon fraction of the total amount of fission gas. Xenon may thus be discarded or made available for uses at probably very low cost. In contrast with many other fission products which have unique radioactive characteristics which make them useful as sources of heat, gamma and x-rays and luminescence as well as for medicinal diagnostics and therapeutics fission product xenon differs from naturally occurring xenon only in its isotopic composition which gives it a slightly higher atomic weight, because of the much higher concentrations of the 134 X and 136 Xe isotopes. Therefore, fission product xenon can most likely find uses in applications which already exist but which can not be exploited most beneficially because of the high cost and scarcity of natural xenon. Unique uses would probably include applications in improved incandescent light illumination in place of krypton and in human anesthesia

  17. Resonant four-wave mixing processes in xenon

    International Nuclear Information System (INIS)

    Yiu, Y.M.; Bonin, K.D.; McIlrath, T.J.

    1982-01-01

    Two-photon resonantly enhanced four-wave mixing processes in xenon involving the intermediate states were utilized to generate coherent VUV radiation at several discrete wavelengths between 125.9 nm and 101.8 nm. Maximum efficiencies of the order of 10-4 were achieved. The use of these processes for producing tunable VUV output with Xe is given and generation of tunable VUV using two-photon resonances in other rare gases is discussed

  18. The unbearable lightness of being: CDMS versus XENON

    CERN Document Server

    Frandsen, Mads T; McCabe, Christopher; Sarkar, Subir; Schmidt-Hoberg, Kai

    2013-01-01

    The CDMS-II collaboration has reported 3 events in a Si detector, which are consistent with being nuclear recoils due to scattering of Galactic dark matter particles with a mass of about 8.6 GeV and a cross-section on neutrons of about 2 x 10^-41 cm^2. While a previous result from the XENON10 experiment has supposedly ruled out such particles as dark matter, we find by reanalysing the XENON10 data that this is not the case. Some tension remains however with the upper limit placed by the XENON100 experiment, independently of astrophysical uncertainties concerning the Galactic dark matter distribution. We explore possible ways of ameliorating this tension by altering the properties of dark matter interactions. Nevertheless, even with standard couplings, light dark matter is consistent with both CDMS and XENON10/100.

  19. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  20. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  1. Sensitivity of gaseous xenon ionisation chambers (1961)

    International Nuclear Information System (INIS)

    Schuhl, C.

    1960-01-01

    It seems advantageous to fill an ionization chamber with xenon gas when this chamber is used for measuring a low intensity and high energy electron or positron beam, or monitoring a gamma beam. In the study of 5 to 50 MeV electrons, xenon allows for the ionization chamber yield, an improvement of a factor 4,5. (author) [fr

  2. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  3. Removing krypton from xenon by cryogenic distillation to the ppq level

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [Physik-Institut, University of Zurich, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lin, Q. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-05-15

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter {sup 85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon {sup nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10{sup -15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10{sup 5} with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of {sup nat}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. (orig.)

  4. Xenon adsorption on geological media and implications for radionuclide signatures.

    Science.gov (United States)

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Dynamic adsorption property of xenon on activated carbon and carbon molecular sieves

    International Nuclear Information System (INIS)

    Feng Shujuan; Zhou Guoqing; Jin Yuren; Zhou Chongyang

    2010-01-01

    In order to select well adsorptive xenon adsorbent, the dynamic adsorption property of xenon on activated carbon and carbon molecular sieves (CMS) was studied by measuring the xenon dynamic adsorption coefficient as a function velocity of gas, temperature, carrier gas, pressure and concentration of CO 2 . The results show that the highest value of xenon dynamic adsorption coefficient is on CMS1, and the second highest value is on CMS2; when the xenon concentration is less than 10 -5 mol/L or concentration of CO 2 is less than 5 x 10 -5 mol/L, the xenon dynamic adsorption coefficient nearly keeps constant at the specific experimental flow rate. Then the xenon dynamic adsorption coefficient would vary when it was mixed with different kind of carrier gas and become less at more than 5 x 10 -5 mol/L concentration of CO 2 . And the maximal effect factors are temperature and pressure. Therefore, the feasible measures to improve the xenon capability are to cool the adsorbent and increase adsorption pressure. (authors)

  6. Experimental results and first {sup 22}Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gallin-Martel, M.-L., E-mail: mlgallin@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France); Grondin, Y. [Laboratoire TIMC/IMAG, CNRS et Universite Joseph Fourier, Pavillon Taillefer 38706 La Tronche Cedex (France); Gac, N. [Laboratoire L2S, UMR 8506 CNRS - SUPELEC - Univ Paris-Sud, Gif sur Yvette F-91192 (France); Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France)

    2012-08-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a {sup 22}Na source placed in the experimental setup.

  7. Spectral analysis of the 4d96s configuration in eight times ionized xenon, Xe IX

    International Nuclear Information System (INIS)

    Raineri, M.; Gallardo, M.; Reyna Almandos, J.G.

    2006-01-01

    A capillary light source was used to observe the spectrum of eight times ionized xenon, Xe IX, in the vacuum ultraviolet range, 270-2000 A. Sixteen transitions have been identified as combinations between energy levels of the 4d 9 6s with 4d 9 5p configuration, and all 4d 9 6s levels have been determined. The present analysis is based on an accurate extrapolation of energy parameters and experimental energy level values in the Pd I isoelectronic sequence. The energy parameters were obtained with Hartree-Fock relativistic calculations. Least-squares parametric calculation has been carried out to study the fit between experimental and theoretical values

  8. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  9. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    International Nuclear Information System (INIS)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-01-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%. - Highlights: • Co-expansion setup is suitable for producing binary Xe/Ne clusters. • Appropriate temperature, pressure, and mixing ratios should be strictly controlled. • Low mixing ratio, Xe formed in the core and Xe/Ne interfacing in the outer shell. • High mixing ratio, only pure Xe clusters were detected.

  10. Damage of copper by low energy xenon ions

    International Nuclear Information System (INIS)

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  11. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial

    Directory of Open Access Journals (Sweden)

    Michael Veldeman

    2017-09-01

    Full Text Available ObjectiveThe neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH.MethodsSprague-Dawley rats (n = 22 were randomly assigned to receive either Sham surgery (n = 9; divided into two groups or SAH induction via endovascular perforation (n = 13, divided into two groups. Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control. The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest.ResultsA diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040, and dentate gyrus (DG p = 0.040. However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017.ConclusionIn animals treated with 50 vol% xenon (for 1 h after SAH, a less pronounced neuronal damage was

  12. Study of regional lung ventilation and perfusion by xenon 133

    International Nuclear Information System (INIS)

    Lombard, Yves.

    1976-01-01

    The present work consists of a regional lung exploration after injection of xenon 133, dissolved in physiological serum, followed a few minutes later by that of 99m Tc-labelled serumalbumin microspheres. The aim is three fold: first of all to study perfusion and ventilation by xenon 133, next to compare the results obtained after xenon 133 and 99 m Tc-labelled microsphere injection, lastly to establish the value of the technique and its routine application. This examination has not solved all problems of lung exploration by xenon 133. For example we deliberately kept to intraveinous injection of the gas dissolved in physiological serum, leaving aside the breathing test. Xenon 133 scintigraphy in our opinion will not tend to replace 99m Tc-labelled microsphere scintigraphy, which has irreplaceable morphological qualities, but will serve as an excellent complement. The basic advantage of xenon 133 is the regional ventilation estimate it provides allowing any anomaly of the lung parenchyma to be located immediately or conversely the functional value of the healthy lung to be established with a view to a surgical removal of a diseased zone [fr

  13. Isotopic composition of primary xenon and the fission of Pu-244

    Energy Technology Data Exchange (ETDEWEB)

    Levskii, L K

    1983-05-01

    The hypothesis that the origin of xenon on earth is due to the fission of uranium and/or transuranium elements is examined. The isotopic composition of primary xenon on earth is calculated using a model (Levskii, 1980) of the isotopic composition of rare gases which is based on the hypothesis of the heterogeneity of the isotopic composition of the elements of the solar system. The isotopic composition of fission-produced xenon in the atmosphere and solid earth is determined to correspond to the abundance of xenon isotopes as a result of the spontaneous fission of Pu-244 (half-life of 8.2 x 10 to the 7th years). The amount of fission-produced xenon in the atmosphere is shown to amount to about 30 percent (Xe-136). Under certain conditions, the degree of the degassing of the solid earth for xenon is 25 percent, which corresponds to a ratio of Kr-84/Xe-130 45 for the earth as a whole.

  14. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    Science.gov (United States)

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  15. An investigation of two-dimensional, two-phase flow of steam in a cascade of turbine blading by the time-marching method

    International Nuclear Information System (INIS)

    Teymourtash, A. R.; Mahpeykar, M. R.

    2003-01-01

    During the course of expansion in turbines, the steam at first super cools and then nucleated to become a two-phase mixture. This is an area where greater understanding can lead to improved design. This paper describes a numerical method for the solution of two-dimensional two-phase flow of steam in a cascade of turbine blading; the unsteady euler equations governing the overall behaviour of the fluid are combined with equations describing droplet behaviour and treated by Jasmine fourth order runge Kutta time marching scheme which modified to allow for two-phase effects. The theoretical surface pressure distributions, droplet radii and contours of constant wetness fraction are presented and results are discussed in the light of knowledge of actual surface pressure distributions

  16. Transportable Xenon Laboratory (TXL-1) Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  17. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides

    International Nuclear Information System (INIS)

    Barrachina, M.; Villar, M. A.

    1965-01-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs

  18. Polling Systems with Two-Phase Gated Service: Heavy Traffic Results for the Waiting Time Distribution

    NARCIS (Netherlands)

    R.D. van der Mei (Rob); J.A.C. Resing

    2008-01-01

    htmlabstractWe study an asymmetric cyclic polling system with Poisson arrivals, general service-time and switch-over time distributions, and with so-called two-phase gated service at each queue, an interleaving scheme that aims to enforce some level of "fairness" among the different customer

  19. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R [The University of Tennessee, Knoxville (United States)

    1998-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  20. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  1. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  2. Comparative study of the action of two different types of bleaching agents activated by two different types of irradiation fonts: xenon plasma arc lamp and 960 nm diode laser

    International Nuclear Information System (INIS)

    Walverde, Debora Ayala

    2001-01-01

    This in vitro study compares two different types of tooth bleaching agents stimulated with two different irradiation fonts. These fonts accelerate the action of the bleaching agents upon the enamel surface by heating up the materials. We used the xenon plasma arc lamp and a 960 nm fiber-coupled diode laser to irradiate the two materials containing 35% of hydrogen peroxide (Opus White and Opalescence extra). The color of the teeth was measured with a spectrophotometer using the CIELAB color system that gives the numeric values of L * a * b * . (author)

  3. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  4. Muonium formation in xenon and argon up to 60 atmospheres

    International Nuclear Information System (INIS)

    Kempton, J.R.; Senba, M.; Arseneau, D.J.; Gonzalez, A.C.; Pan, J.J.; Tempelmann, A.; Garner, D.M.; Fleming, D.G.

    1991-01-01

    Results of muon polarization studies in xenon and argon up to 60 atm are reported. In argon for pressures up to 10 atm, the muon polarization is best explained by an epithermalcharge exchange model. Above this pressure, the decrease in P D and increase in P L are ascribed to charge neutralization and spin exchange reactions, respectively, in the radiolysis track. Measurements with Xe/He mixtures with a xenon pressure of 1 atm indicate that the lost polarization in the pure xenon at this pressure is due to inefficient moderation of the muon. As the pressure in pure xenon is increased above 10 atm, we find that P L remains roughly constant and P D begins to increase. The lost fraction may be due to the formation of a XeMu Van der Waals type complex, while P D is ascribed to XeMu + formation. This suggests that spur processes appear to be less important in xenon that in argon. (orig.)

  5. Converging xenon shock waves driven by megagauss magnetic fields

    International Nuclear Information System (INIS)

    Shearer, J.W.; Steinberg, D.J.

    1986-07-01

    We attempted to implode a conducting metal linear at high velocity, and our failure to do so led to switching, or rapidly transferring the field from pushing an aluminum conductor to snow-plowing a half-atmosphere of xenon gas. We successfully initiated convergent xenon gas shocks with the use of a magnetohydrodynamic switch and coaxial high-explosive, flux-compression generators. Principal diagnostics used to study the imploding xenon gas were 133 Xe radioactive tracers, continuous x-ray absorption, and neutron output. We compressed the xenon gas about five to sixfold at a velocity of 10 cm/μs at a radius of 4 cm. The snowplow efficiency was good; going from 13- to 4-cm radius, we lost only about 20% of the mass. The temperature of the imploded sheath was determined by mixing deuterium with the xenon and measuring the neutron output. Using reasonable assumptions about the amount, density, and uniformity of the compressed gas, we estimate that we reached temperatures as high as 155 eV. Energy-loss mechanisms that we encountered included wall ablation and Taylor instabilities of the back surface

  6. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  7. Measurement of xenon reactivity in the reactor of the nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Miyoshi, Yoshinori; Gakuhari, Kazuhiko; Okada, Noboru.

    1993-01-01

    This report deals with the measurement of reactivity changes caused by the increase and decrease of xenon concentration in the reactor core of the nuclear ship 'MUTSU' after a change from long-term operation at 70 % to zero power. The change in xenon reactivity was compensated by control-rod movements and the compensated reactivity was measured using a digital reactivity meter. The xenon override peak was recognized five and half hours after the start of power reduction. The equilibrium and peak reactivities of xenon were estimated by reading the initial and peak values of a theoretical curve which was fitted to the measured variation in xenon reactivity. The xenon reactivity results obtained by the present method can be considered to be accurate since no control-rod worth data were used and the measured quantity was the reactivity itself. (author)

  8. Oscillatory solitons and time-resolved phase locking of two polariton condensates

    International Nuclear Information System (INIS)

    Christmann, Gabriel; Tosi, Guilherme; Baumberg, Jeremy J; Berloff, Natalia G; Tsotsis, Panagiotis; Eldridge, Peter S; Hatzopoulos, Zacharias; Savvidis, Pavlos G

    2014-01-01

    When pumped nonresonantly, semiconductor microcavity polaritons form Bose–Einstein condensates that can be manipulated optically. Using tightly-focused excitation spots, radially expanding condensates can be formed in close proximity. Using high time resolution streak camera measurements we study the time dependent properties of these macroscopic coherent states. By coupling this method with interferometry we observe directly the phase locking of two independent condensates in time, showing the effect of polariton–polariton interactions. We also directly observe fast spontaneous soliton-like oscillations of the polariton cloud trapped between the pump spots, which can be either dark or bright solitons. This transition from dark to bright is a consequence of the change of sign of the nonlinearity which we propose is due to the shape of the polariton dispersion leading to either positive or negative polariton effective mass. (paper)

  9. Facility for the separation of krypton and recuperation of xenon

    International Nuclear Information System (INIS)

    Boell-Djoa, S.H.

    1977-01-01

    A facility is described by means of which the fission inert gases krypton 85 and xenon from spent fuel particles can be separated by fractionated freezing-out and subsequent distillation to such an extent that the xenon contains less than 1 ppb krypton 85. Then, in accordance with the stringent regulations, the krypton can be conveyed to definitive storage in special bottles, whereas the xenon can be released for industrial uses. (orig.) [de

  10. Development of a liquid xenon Compton telescope dedicated to functional medical imaging

    International Nuclear Information System (INIS)

    Grignon, C.

    2007-12-01

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  11. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  12. Two-phase flow characteristics in BWRs

    International Nuclear Information System (INIS)

    Katono, Kenichi; Aoyama, Goro; Nagayoshi, Takuji; Yasuda, Kenichi; Nishida, Koji

    2014-01-01

    Reliable prediction of two-phase flow characteristics is important for safety and economy improvements of BWR plants. We have been developing two-phase flow measurement tools and techniques for BWR thermal hydraulic conditions, such as a 3D time-averaged X-ray CT system, an ultrasonic liquid film sensor and a wire-mesh sensor. We applied the developed items in experiments using the multi-purpose steam-water test facility known as HUSTLE, which can simulate two-phase thermal-hydraulic conditions in a BWR reactor pressure vessel, and we constructed a detailed instrumentation database. We validated a 3D two-phase flow simulator using the database and developed the reactor internal two-phase flow analysis system. (author)

  13. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides; Estudio de los productos de fision de periodo corto. Separacion de los radionuclidos de fision del yodo y del xenon

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M; Villar, M A

    1965-07-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs.

  14. R and D on a Fast LXe TPC with real-time event reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Dussoni, S., E-mail: simeone.dussoni@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Paul Scherrer Institute PSI, CH-5232 Villigen (Switzerland); Cerri, C.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institute PSI, CH-5232 Villigen (Switzerland); Signorelli, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2013-12-21

    The FOXFIRE project (Feasibility Of a Xenon detector with Front-end for Ionization Real-time Extraction) aims at the realization of a Liquid Xenon TPC optimized for high rate particle physics experiments, in particular in the field of rare event searches, with particles in the 10–100 MeV energy range. Liquid Xenon has several attractive properties to be exploited resulting in superior time and energy resolution, by using the scintillation light readout with suitable photo-detectors. A novel approach with a complementary TPC readout scheme can improve the space resolution to a level of a few hundred microns. We are studying both the feasibility of a light readout with higher granularity by means of Silicon PhotoMultipliers optimized for the Xenon emission spectrum as well as on an innovative micro-fabricated device capable of charge multiplication in liquid phase. The detector will be equipped with a readout electronics capable of online reconstruction of events, allowing the detector to sustain a high rate of interactions.

  15. Studies on adsorption-desorption of xenon on surface of BC-404 plastic scintillator based on soaking method

    Energy Technology Data Exchange (ETDEWEB)

    Yongchun, Xiang [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100080 (China); Tieshuan, Fan [School of Physics, Peking University, Beijing 100080 (China); Chuanfei, Zhang; Fei, Luo; Qian, Wang; Rende, Ze [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China); Qingpei, Xiang, E-mail: xiangqingpei@163.com [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China)

    2017-03-01

    The phoswich coincidence detector is used to verify the CTBT treaty by measuring radioxenon and as such needs to possess high detection sensitivity. However, residual xenon adsorbed onto the surface of β detectors greatly influences subsequent measurements of weak samples. In this study, we investigate the adsorption-desorption behavior of xenon on BC-404 scintillator surfaces with different coating thicknesses using the soaking method. The results present the desorption behavior of xenon on a BC-404 surface for the first time. The calculated adsorption capacity for an uncoated surface is consistent with that from previous studies. However, due to factors such as limitations in coating technology, the effectiveness of coating on reducing the “memory effect” of the detector was poor. The proposed method is suitable for studying the adsorption-desorption behavior of gases on solid surfaces due to its simplicity and flexibility. - Highlights: • We investigate the adsorption-desorption of xenon on coated BC-404 surfaces. • The calculated adsorption capacity on an uncoated surface agrees with other results. • The method can be used to simulate xenon adsorption in phoswich detectors.

  16. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    International Nuclear Information System (INIS)

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A.; Lawrence Berkeley National Lab., CA

    1999-01-01

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of 129 Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved 1 H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the 1 H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective 1 H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon

  17. Dark matter sensitivity of multi-ton liquid xenon detectors

    International Nuclear Information System (INIS)

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura; Kish, Alexander; Selvi, Marco

    2015-01-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10 −49 cm 2 can be probed for WIMP masses around 40 GeV/c 2 . Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei

  18. Postconditioning by xenon and hypothermia in the rat heart in vivo

    NARCIS (Netherlands)

    Schwiebert, Christian; Huhn, Ragnar; Heinen, Andre; Weber, Nina C.; Hollmann, Markus W.; Schlack, Wolfgang; Preckel, Benedikt

    2010-01-01

    Background and objective Hypothermia protects against myocardial reperfusion injury. However, inducing hypothermia takes time, which makes it unsuitable as an emergency treatment. Combining mild hypothermia with low-dose xenon, applied either simultaneously or one after the other, protects the

  19. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  20. Experimental studies on ion mobility in xenon-trimethylamine mixtures

    Science.gov (United States)

    Trindade, A. M. F.; Encarnação, P. M. C. C.; Escada, J.; Cortez, A. F. V.; Neves, P. N. B.; Conde, C. A. N.; Borges, F. I. G. M.; Santos, F. P.

    2017-07-01

    In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V-1s-1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (~0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V-1s-1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.

  1. Xenon as an adjunct in computed tomography

    International Nuclear Information System (INIS)

    Kendall, B.E.; Radue, E.W.; Zilkha, E.; Loh, L.

    1979-01-01

    Nonradioactive xenon was used for enhancement in computed tomography in a series of 18 patients requiring general anesthesia. The method and results are described. The properties of xenon are radically different from those of intravenous iodides, and the enhancement patterns demonstrate different aspects of both normal and abnormal tissues. In our limited experience, it has been of value in those isodense and low attenuation lesions that have not enhanced after intravenous Conray. (orig.) 891 MG/orig. 892 MB [de

  2. Performance test of SAUNA xenon mobile sampling system

    International Nuclear Information System (INIS)

    Hu Dan; Yang Bin; Yang Weigeng; Jia Huaimao; Wang Shilian; Li Qi; Zhao Yungang; Fan Yuanqing; Chen Zhanying; Chang Yinzhong; Liu Shujiang; Zhang Xinjun; Wang Jun

    2011-01-01

    In this article, the structure and basic functions of SAUNA noble gas xenon mobile sampling system are introduced. The sampling capability of this system is about 2.2 mL per day, as a result from a 684-h operation. The system can be transported to designated locations conveniently to collect xenon sample for routine or emergency environment monitoring. (authors)

  3. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  4. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  5. The production of hadrons in the muon scattering on deuterium and xenon nuclei at 480 GeV

    International Nuclear Information System (INIS)

    Soeldner-Rembold, S.

    1992-10-01

    For the present thesis the hadronic final states of 6309 muon-deuterium events and 2064 muon-xenon events in the kinematical range Q 2 >1 (GeV/c) 2 , x>0.002, 0.1 3.5 mrad were studied. The multiplicity distributions of the muon-deuterium events and the muon-xenon events were described by means of the negative binomial distribution in intervals of the c.m. energy W. The two parameters anti n (mean multiplicity) and 1/k show for the muon-deuterium events a linear dependence on ln W 2 . The mean multiplicity anti n on xenon (anti n=10.43±0.19) is distinctly higher than on deuterium (anti n=7.76±0.07). The rapidity distributions of the positively charged and the negatively charged hadrons from muon-deuterium events are very well described by the Monte-Carlo program LUND. In the two-particle rapidity correlation both short-range and long-range correlations can be detected. The two-particle rapidity correlation in the xenon data are different from the deuterium data in the backward range. This difference indicates that the intranuclear cascade takes place in a limited range of small rapidities - relatively independently on the residual fragmentation process. (orig.) [de

  6. Multiscale time-splitting strategy for multiscale multiphysics processes of two-phase flow in fractured media

    KAUST Repository

    Sun, S.; Kou, J.; Yu, B.

    2011-01-01

    The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.

  7. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  8. Two-phase fluid flow measurements in small diameter channels using real-time neutron radiography

    International Nuclear Information System (INIS)

    Carlisle, B.S.; Johns, R.C.; Hassan, Y.A.

    2004-01-01

    A series of real-time, neutron radiography, experiments are ongoing at the Texas A and M Nuclear Science Center Reactor (NSCR). These tests determine the resolving capabilities for radiographic imaging of two phase water and air flow regimes through small diameter flow channels. Though both film and video radiographic imaging is available, the real-time video imaging was selected to capture the dynamic flow patterns with results that continue to improve. (author)

  9. Electron Drift Properties in High Pressure Gaseous Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Simón, A.; et al.

    2018-04-05

    Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and diffusion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent amplification, a 1:2 scale model of the future NEXT-100 detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December 2016. The drift parameters have been measured using $^{83m}$Kr for a range of reduced drift fields at two different pressure regimes, namely 7.2 bar and 9.1 bar. The results have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal diffusion and transverse diffusion.

  10. Spatial xenon oscillation control with expert systems

    International Nuclear Information System (INIS)

    Alten, S.; Danofsky, R.A.

    1993-01-01

    Spatial power oscillations were attributed to the xenon transients in a reactor core in 1958 by Randall and St. John. These transients are usually initiated by a local reactivity insertion and lead to divergent axial flux oscillations in the core at constant power. Several heuristic manual control strategies and automatic control methods were developed to damp the xenon oscillations at constant power operations. However, after the load-follow operation of the reactors became a necessity of life, a need for better control strategies arose. Even though various advanced control strategies were applied to solve the xenon oscillation control problem for the load-follow operation, the complexity of the system created difficulties in modeling. The strong nonlinearity of the problem requires highly sophisticated analytical approaches that are quite inept for numerical solutions. On the other hand, the complexity of a system and heuristic nature of the solutions are the basic reasons for using artificial intelligence techniques such as expert systems

  11. Exposure mode study to xenon-133 in a reactor building

    International Nuclear Information System (INIS)

    Perier, Aurelien

    2014-01-01

    The work described in this thesis focuses on the external and internal dose assessment to xenon-133. During the nuclear reactor operation, fission products and radioactive inert gases, as 133 Xe, are generated and might be responsible for the exposure of workers in case of clad defect. Particle Monte Carlo transport code is adapted in radioprotection to quantify dosimetric quantities. The study of exposure to xenon-133 is conducted by using Monte-Carlo simulations based on GEANT4, an anthropomorphic phantom, a realistic geometry of the reactor building, and compartmental models. The external exposure inside a reactor building is conducted with a realistic and conservative exposure scenario. The effective dose rate and the eye lens equivalent dose rate are determined by Monte-Carlo simulations. Due to the particular emission spectrum of xenon-133, the equivalent dose rate to the lens of eyes is discussed in the light of expected new eye dose limits. The internal exposure occurs while xenon-133 is inhaled. The lungs are firstly exposed by inhalation, and their equivalent dose rate is obtained by Monte-Carlo simulations. A biokinetic model is used to evaluate the internal exposure to xenon-133. This thesis gives us a better understanding to the dosimetric quantities related to external and internal exposure to xenon-133. Moreover the impacts of the dosimetric changes are studied on the current and future dosimetric limits. The dosimetric quantities are lower than the current and future dosimetric limits. (author)

  12. Gravity assisted recovery of liquid xenon at large mass flow rates

    Science.gov (United States)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  13. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    Science.gov (United States)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  14. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  15. Memory Effects Study of Measuring Radioactive Xenon Isotopes With β-γ Coincidence Method

    International Nuclear Information System (INIS)

    Jia Huaimao; Wang Shilian; Wang Jun; Li Qi; Zhao Yungang; Fan Yuanqing; Zhang Xinjun

    2010-01-01

    The β-γ coincidence technique is a kind of the key important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). This paper describes noble gases memory effects of β-γ coincidence detector. Xenon memory effects were measured and its influence on detector's minimum detectable activity (MDA) was evaluated. The methods of reducing xenon memory effects were studied. In conclusion, aluminium coated plastic scintillator and YAP scintillator can remarkably decrease xenon memory effects. (authors)

  16. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    . They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen......Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  17. Measurement of eDsub(L)/μ of electrons in liquid xenon

    International Nuclear Information System (INIS)

    Doke, T.; Suzuki, S.; Shibamura, E.; Masuda, K.

    1983-01-01

    A new method for measuring the spread of electron swarm drifting under uniform electric field in liquid xenon is proposed. This is made by observing the width of scintillation pulse produced by drifting electrons in the vicinity of a thin center wire of a proportional scintillation counter, put in the end part of the electron drift space. From the spread of electron swarm and its drift time, the ratio of longitudinal diffusion coefficient to mobility epsilon sub(L) = eDsub(L)/μ for electrons in liquid xenon is directly obtained. epsilon sub(L) of electron swarms under the various electric fields have been measured and compared with epsilon sub(T) = eDsub(T)/μ previously obtained under the same electric fields. (Authors)

  18. Dynamic adsorption properties of xenon on activated carbons and their structure characterization

    International Nuclear Information System (INIS)

    Liu Suiqing; Liu Jing; Qian Yuan; Zeng Youshi; Du Lin; Pi Li; Liu Wei

    2013-01-01

    Background: In recent years, adsorption of radioactive xenon by activated carbon has been increasingly applied to the treatment of off-gas in nuclear power project. Though pore structure of activated carbon has a great impact on its dynamic adsorption coefficients for xenon, the concerned research is rare. Purpose: It is very necessary to figure out the relationship between the pore structure and the dynamic adsorption coefficients for the purpose of the selection and development of activated carbon. Methods: In this study, the dynamic adsorption coefficients of xenon on four kinds of activated carbons were measured on a dynamic adsorption platform under the condition of 25℃, OMPa (gauge pressure). And these four kinds of activated carbons were characterized by nitrogen adsorption and SEM. Results: The results show that the activated carbon of JH12-16 with the specific surface area of 991.9 m 2 ·g -1 has the largest xenon dynamic adsorption coefficient among these activated carbons. Conclusions: The dynamic adsorption coefficient of xenon on activated carbon doesn't increase with the specific surface area or the pore volume. The mesopore and macropore only play the role of passageway for xenon adsorption. The most suitable pore for xenon adsorption is the pore with the pore size ranged from 0.55 to 0.6 nm. (authors)

  19. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  20. On the spin-dependent sensitivity of XENON100

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-11-15

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  1. On the spin-dependent sensitivity of XENON100

    International Nuclear Information System (INIS)

    Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan

    2012-11-01

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  2. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    Science.gov (United States)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  3. Effect of Xenon Anesthesia Compared to Sevoflurane and Total Intravenous Anesthesia for Coronary Artery Bypass Graft Surgery on Postoperative Cardiac Troponin Release: An International, Multicenter, Phase 3, Single-blinded, Randomized Noninferiority Trial.

    Science.gov (United States)

    Hofland, Jan; Ouattara, Alexandre; Fellahi, Jean-Luc; Gruenewald, Matthias; Hazebroucq, Jean; Ecoffey, Claude; Joseph, Pierre; Heringlake, Matthias; Steib, Annick; Coburn, Mark; Amour, Julien; Rozec, Bertrand; Liefde, Inge de; Meybohm, Patrick; Preckel, Benedikt; Hanouz, Jean-Luc; Tritapepe, Luigi; Tonner, Peter; Benhaoua, Hamina; Roesner, Jan Patrick; Bein, Berthold; Hanouz, Luc; Tenbrinck, Rob; Bogers, Ad J J C; Mik, Bert G; Coiffic, Alain; Renner, Jochen; Steinfath, Markus; Francksen, Helga; Broch, Ole; Haneya, Assad; Schaller, Manuella; Guinet, Patrick; Daviet, Lauren; Brianchon, Corinne; Rosier, Sebastien; Lehot, Jean-Jacques; Paarmann, Hauke; Schön, Julika; Hanke, Thorsten; Ettel, Joachym; Olsson, Silke; Klotz, Stefan; Samet, Amir; Laurinenas, Giedrius; Thibaud, Adrien; Cristinar, Mircea; Collanges, Olivier; Levy, François; Rossaint, Rolf; Stevanovic, Ana; Schaelte, Gereon; Stoppe, Christian; Hamou, Nora Ait; Hariri, Sarah; Quessard, Astrid; Carillion, Aude; Morin, Hélène; Silleran, Jacqueline; Robert, David; Crouzet, Anne-Sophie; Zacharowski, Kai; Reyher, Christian; Iken, Sonja; Weber, Nina C; Hollmann, Marcus; Eberl, Susanne; Carriero, Giovanni; Collacchi, Daria; Di Persio, Alessandra; Fourcade, Olivier; Bergt, Stefan; Alms, Angela

    2017-12-01

    Ischemic myocardial damage accompanying coronary artery bypass graft surgery remains a clinical challenge. We investigated whether xenon anesthesia could limit myocardial damage in coronary artery bypass graft surgery patients, as has been reported for animal ischemia models. In 17 university hospitals in France, Germany, Italy, and The Netherlands, low-risk elective, on-pump coronary artery bypass graft surgery patients were randomized to receive xenon, sevoflurane, or propofol-based total intravenous anesthesia for anesthesia maintenance. The primary outcome was the cardiac troponin I concentration in the blood 24 h postsurgery. The noninferiority margin for the mean difference in cardiac troponin I release between the xenon and sevoflurane groups was less than 0.15 ng/ml. Secondary outcomes were the safety and feasibility of xenon anesthesia. The first patient included at each center received xenon anesthesia for practical reasons. For all other patients, anesthesia maintenance was randomized (intention-to-treat: n = 492; per-protocol/without major protocol deviation: n = 446). Median 24-h postoperative cardiac troponin I concentrations (ng/ml [interquartile range]) were 1.14 [0.76 to 2.10] with xenon, 1.30 [0.78 to 2.67] with sevoflurane, and 1.48 [0.94 to 2.78] with total intravenous anesthesia [per-protocol]). The mean difference in cardiac troponin I release between xenon and sevoflurane was -0.09 ng/ml (95% CI, -0.30 to 0.11; per-protocol: P = 0.02). Postoperative cardiac troponin I release was significantly less with xenon than with total intravenous anesthesia (intention-to-treat: P = 0.05; per-protocol: P = 0.02). Perioperative variables and postoperative outcomes were comparable across all groups, with no safety concerns. In postoperative cardiac troponin I release, xenon was noninferior to sevoflurane in low-risk, on-pump coronary artery bypass graft surgery patients. Only with xenon was cardiac troponin I release less than with total intravenous

  4. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  5. The physical and physiological aspects of xenon isotopes in nuclear medical applicants

    International Nuclear Information System (INIS)

    Bolmsjoe, M.

    1981-11-01

    A method for trapping radioactive xenon waste from nuclear medical departments has been investigated. Adsorption of xenon acivitaded charcoal was found to be an efficient trapping method. A large gain in capacity was found when the trap was refrigerated, and permitted a large number of patient investigations before break-through of xenon occurred. By heating charcoal traps to 250-350 degrees C, adsorbed xenon gas is freed and is thus made available for re-use. A technique for room-air monitoring of xenon-leakage from patient investigations is described, where the room-air is continously pumped through a small charcoal filter, mounted close to a detector. The low gammaenergy of Xe-133, 81 keV, introduces problems for in vivo measurements due to the small differences in the energies of the primary and Compton-scattered photons. Influence of scatter and of hemispheric cross-talk was studied for cerebral blood-flow measurements. It was shown that substantial artefacts are introduced in the calculation of regional gray matter flow. The applicability of the xenon-washout technique for liver blood-flow measurements in rat was investigated. (author)

  6. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Science.gov (United States)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  7. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    Science.gov (United States)

    Szplet, R.; Kalisz, J.; Jachna, Z.

    2009-02-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.

  8. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    International Nuclear Information System (INIS)

    Szplet, R; Kalisz, J; Jachna, Z

    2009-01-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second

  9. A NEM diffusion code for fuel management and time average core calculation

    International Nuclear Information System (INIS)

    Mishra, Surendra; Ray, Sherly; Kumar, A.N.

    2005-01-01

    A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)

  10. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  11. Local regulation of blood flow evaluated simultaneously by 133-xenon washout and laser Doppler flowmetry

    International Nuclear Information System (INIS)

    Engelhart, M.; Petersen, L.J.; Kristensen, J.K.

    1988-01-01

    The laser Doppler flowmeter and the 133-Xenon washout techniques of measuring cutaneous blood flow were compared for measuring the vasoconstrictor response of the hand during orthostatic maneuvres. Important discrepancies were detected for the two methods. When the hand was lowered by 40 cm a 40% decrease in blood flow was detected by the 133-Xenon method, while a 60% decrease was seen by the laser Doppler technique. Lowering the hand by 50 cm resulted in no further blood flow decrease when using the 133-Xenon method, but an 80% blood flow decrease was recorded with the laser Doppler method. A marked decrease in blood flow was recorded by the laser Doppler technique in hands that were sympathectomized or a hand that was subjected to a nerve blockade, strategies which should eliminate the orthostatic vasoconstrictor response of superficial cutaneous vessels. The 133-Xenon technique did not detect any blood flow changes in hands without sympathetic tone. We found the laser Doppler flowmetry technique unsatisfactory for measurement of blood flow changes that occur in nutritional vessels as this method measures total skin blood flow including non-capillary vessels

  12. Nonlinear dynamics of two-phase flow

    International Nuclear Information System (INIS)

    Rizwan-uddin

    1986-01-01

    Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques

  13. Mitigation of {sup 222}Rn induced background in the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan A.

    2017-07-05

    {sup 222}Rn is a major source of background in many rare-event experiments such as the XENON1T dark matter search. The noble gas radon is created by radioactive decay inside all detector materials and emanates into the sensitive liquid xenon target disabling any detector shielding. Subsequent beta-decays of radon progenies are the dominant source of background in the XENON1T experiment. In order to mitigate radon induced background the detector's construction materials have been selected according to dedicated {sup 222}Rn emanation measurements. In the first part of this thesis, we summarize the results of the XENON1T radon screening campaign and present the measurement of the integral radon emanation rate of the fully assembled detector. The development of a radon removal system which continuously purifies the liquid xenon target from the emanated radon is the topic of the second part of this thesis. In order to demonstrate the suitability of cryogenic distillation as a technique to separate radon from xenon, we developed an experimental setup to measure the depletion of radon in xenon boil-off gas after a single distillation step. In the last part of the thesis, we demonstrate the operation of a radon removal system for the XENON100 experiment. For this first test employing a running dark matter detector, we integrated a multiple stage, cryogenic distillation column in the XENON100 gas purification loop. From the evolution of the radon concentration in XENON100, we investigate the distillation column's radon removal capability and discuss the design and application of a radon removal system for XENON1T and the upcoming XENONnT experiment.

  14. Control of spatial xenon oscillations in pressurized water reactors via the Kalman filter

    International Nuclear Information System (INIS)

    Lin, C.; Lin, Y.J.

    1994-01-01

    A direct control method is developed to control the spatial xenon oscillations in pressurized water reactors. The xenon and iodine concentration difference between the top and bottom halves of the core is estimated by using the extended Kalman filter (EKF), which is a closed-loop estimation method. The measurement equation used in the observer is the axial offset measurement equation, which reflects the xenon unbalanced effect on the axial offset. Meanwhile, some of the coefficients of the observer are estimated on-line to reduce estimation error resulting from model error, i.e., simplified xenon and iodine dynamics. Therefore, the estimation can be guaranteed to be accurate, and the success of the estimation does not greatly depend on the accuracy of the observer model. The predicted one-step ahead xenon concentration, by using the EKF, was used to calculate the possible axial offset variation, and then the control rod motion was calculated to compensate for it. The simulation results show that the proposed method successfully controls the xenon oscillations

  15. Reversible, on-demand generation of aqueous two-phase microdroplets

    Science.gov (United States)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya

    2017-08-15

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  16. A semi-analytical treatment of xenon oscillations

    International Nuclear Information System (INIS)

    Zarei, M.; Minuchehr, A.; Ghaderi, R.

    2017-01-01

    Highlights: • A two-group two region kinetic core model is developed employing the eigenvalues separation index. • Poison dynamics are investigated within an adiabatic approach. • The overall nonlinear reactor model is recast into a linear time varying framework incorporating the matrix exponential numerical scheme. • The largest Lyapunov exponent is employed to analytically verify model stability. - Abstract: A novel approach is developed to investigate xenon oscillations within a two-group two-region coupled core reactor model incorporating thermal feedback and poison effects. Group-wise neutronic coupling coefficients between the core regions are calculated applying the associated fundamental and first mode eigenvalue separation values. The resultant nonlinear state space representation of the core behavior is quite suitable for evaluation of reactivity induced power transients such as load following operation. The model however comprises a multi-physics coupling of sub-systems with extremely distant relaxation times whose stiffness treatment inquire costly multistep implicit numerical methods. An adiabatic treatment of the sluggish poison dynamics is therefore proposed as a way out. The approach helps further investigate the nonlinear system within a linear time varying (LTV) framework whereby a semi-analytical framework is established. This scheme incorporates a matrix exponential analytical solution of the perturbed system as a quite efficient tool to study load following operation and control purposes. Poison dynamics are updated within larger intervals which exclude the need for specific numerical schemes of stiff systems. Simulation results of the axial offset conducted on a VVER-1000 reactor at the beginning (BOC) and the end of cycle (EOC) display quite acceptable results compared with available benchmarks. The LTV reactor model is further investigated within a stability analysis of the associated time varying systems at these two stages

  17. Automatic control logics to eliminate xenon oscillation based on Axial Offsets Trajectory Method

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    1996-01-01

    We have proposed Axial Offsets (AO) Trajectory Method for xenon oscillation control in pressurized water reactors. The features of this method are described as such that it can clearly give necessary control operations to eliminate xenon oscillations. It is expected that using the features automatic control logics for xenon oscillations can be simple and be realized easily. We investigated automatic control logics. The AO Trajectory Method could realize a very simple logic only for eliminating xenon oscillations. However it was necessary to give another considerations to eliminate the xenon oscillation with a given axial power distribution. The other control logic based on the modern control theory was also studied for comparison of the control performance of the new control logic. As the results, it is presented that the automatic control logics based on the AO Trajectory Method are very simple and effective. (author)

  18. Effects of temperature and irradiation on the mobility of Xenon in UO2: Profilometric and microstructural study

    International Nuclear Information System (INIS)

    Marchand, B.

    2012-01-01

    In France, electricity is mainly produced (78%) through the operation of 58 PWRs (Pressurized Water Reactors). During reactor operation, many fission products (FP) are generated in the fuel which is, in most cases, UO 2 enriched to about 4% in 235 U. Among FPs, gaseous fission products as Xenon and Krypton, are abundantly produced (around 15% stable fission products). Because of their chemical nature, those two gases have a very low solubility in the fuel and therefore tend to form bubbles (to minimize surface tension) and can cause pellets swelling. The formed gas can also be released out of the pellet, and lead to a substantial increase in the pressure within the fuel cladding, thereby limiting the energy production. However, migration mechanisms, traditionally studied indirectly by measuring the amount of gas released after irradiation, are not yet fully understood. It is frequently assumed that atomic diffusion is the only mechanism that can lead to a migration of xenon. The objective of this thesis is to provide direct evidence of the different mechanisms controlling the behavior of Xenon during thermal annealing and irradiation. Therefore, we used ion implantation to introduce Xenon in uranium dioxide samples. After implantation, the Xenon distribution follows a quasi-Gaussian concentration profile (variation of the concentration regard to the depth) located in the first 300 nanometers of the sample. We have performed post-implantation annealing at 1400 C and 1600 C in order to study the impact of the temperature, and irradiation with ions to simulate the impact of fission products in the fuel. Subsequently, concentration depth profiles were measured by ion microprobe (SIMS). Although the feasibility of Xenon measurement has been demonstrated in several articles, no concentration profile had so far been presented in the literature because a classical data processing of SIMS data is not suitable in uranium dioxide. Therefore a new data processing software has

  19. Process for recovering xenon from radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Kishimoto, Tsuneo.

    1980-01-01

    Purpose: To recover pure xenon economically and efficiently by amply removing radioactive krypton mixed in xenon without changing the rectifying capacity of an xenon rectifying system itself. Method: Xe containing radioactive Kr(Kr-85) is rectified to reduce the concentration of radioactive Kr. Thereafter, non-radioactive Kr or Ar is added to Xe and further the rectification is carried out. The raw material Xe from the Xe adsorption system of, for example, a radioactive gaseous waste disposal system is cooled to about 100 0 C by a heat-exchanger and thereafter supplied to a rectifying tower to carry out normal rectification of Xe thereby to reduce the concentration of Kr contained in Xe at the tower bottom to the rectification limit concentration. Then, non-radioactive Kr is supplied via a precooler to the tower bottom to continue the rectification, thus the Xe fractions at the tower bottom, in which the concentration of radioactive Kr is reduced, being compressed and recovered. (Kamimura, M.)

  20. Switching phase states in two van der Pol oscillators coupled by ttochastically time-varying resistor

    OpenAIRE

    Uwate, Y; Nishio, Y; Stoop, R

    2009-01-01

    We explore the synchronization and switching behavior of a system of two identical van der Pol oscillators coupled by a stochastically timevarying resistor. Triggered by the time-varying resistor, the system of oscillators switches between synchronized and anti-synchronized behavior. We find that the preference of the synchronized/antisynchronized state is determined by the ratio of the probabilities of the two resistor states. The length of the phases of maintained resistor states, however, ...

  1. An investigation of axial xenon stability in WWER-1000 reactor designs

    International Nuclear Information System (INIS)

    Doshi, P.K.; Miller, R.W.

    1993-01-01

    The nuclear power plants of the WWER-1000 design have experienced frequent xenon oscillation control problems. In most PWRs, xenon oscillations are largely a problem in the axial direction. An one dimensional core model representative of the WWER-1000 design was set up to examine the controllability of the current design. An investigation of possible improvements to this design was made. There was no indication that xenon oscillations were an inherent problem in WWER-1000 core design. Simple changes to the control rod system coupled with a sound power distribution control strategy that has been proven to be an effective but simple procedure to follow, eliminate xenon control problems. The changes proposed can be implemented in a very cost effective manner. There are no equipment changes needed, existing control rods can be used. Only software changes are required. (Z.S.) 1 tab., 2 figs., 7 refs

  2. Optimal Control Strategy Search Using a Simplest 3-D PWR Xenon Oscillation Simulator

    International Nuclear Information System (INIS)

    Yoichiro, Shimazu

    2004-01-01

    Power spatial oscillations due to the transient xenon spatial distribution are well known as xenon oscillation in large PWRs. When the reactor size becomes larger than the current design, then even radial oscillations can be also divergent. Even if the radial oscillation is convergent, when some control rods malfunction occurs, it is necessary to suppress the oscillation in as short time as possible. In such cases, optimal control strategy is required. Generally speaking the optimality search based on the modern control theory requires a lot of calculation for the evaluation of state variables. In the case of control rod malfunctions the xenon oscillation could be three dimensional. In such case, direct core calculations would be inevitable. From this point of view a very simple model, only four point reactor model, has been developed and verified. In this paper, an example of a procedure and the results for optimal control strategy search are presented. It is shown that we have only one optimal strategy within a half cycle of the oscillation with fixed control strength. It is also shown that a 3-D xenon oscillation introduced by a control rod malfunction can not be controlled by only one control step as can be done for axial oscillations. They might be quite strong limitations to the operators. Thus it is recommended that a strategy generator, which is quick in analyzing and easy to use, might be installed in a monitoring system or operator guiding system. (author)

  3. Xenon thermal behavior in sintered titanium nitride, foreseen inert matrix for GFR

    International Nuclear Information System (INIS)

    Bes, R.

    2010-11-01

    This work concerns the generation IV future nuclear reactors such as gas-cooled fast reactor (GFR) for which refractory materials as titanium nitride (TiN) are needed to surround fuel and act as a fission product diffusion barrier. This study is about Xe thermal behavior in sintered titanium nitride. Microstructure effects on Xe behavior have been studied. In this purpose, several syntheses have been performed using different sintering temperatures and initial powder compositions. Xenon species have been introduced into samples by ionic implantation. Then, samples were annealed in temperature range from 1300 C to 1600 C, these temperatures being the accidental awaited temperature. A transport of xenon towards sample surface has been observed. Transport rate seems to be slow down when increasing sintering temperature. The composition of initial powder and the crystallographic orientation of each considered grain also influence xenon thermal behavior. Xenon release has been correlated with material oxidation during annealing. Xenon bubbles were observed. Their size is proportional with xenon concentration and increases with annealing temperature. Several mechanisms which could explain Xe intragranular mobility in TiN are proposed. In addition with experiments, very low Xe solubility in TiN has been confirmed by ab initio calculations. So, bi-vacancies were found to be the most favoured Xe incorporation sites in this material. (author)

  4. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    Science.gov (United States)

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  5. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  6. Performance analysis of photoresistor and phototransistor for automotive’s halogen and xenon bulbs light output

    Science.gov (United States)

    Rammohan, A.; Kumar, C. Ramesh

    2017-11-01

    Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.

  7. Xenon ventilation-perfusion lung scans. The early diagnosis of inhalation injury

    International Nuclear Information System (INIS)

    Schall, G.L.; McDonald, H.D.; Carr, L.B.; Capozzi, A.

    1978-01-01

    The use of xenon Xe-133 ventilation-perfusion lung scans for the early diagnosis of inhalation injury was evaluated in 67 patients with acute thermal burns. Study results were interpreted as normal if there was complete pulmonary clearance of the radioactive gas by 150 seconds. Thirty-two scans were normal, 32 abnormal, and three technically inadequate. There were three true false-positive study results and one false-negative study result. Good correlation was found between the scan results and various historical, physical, and laboratory values currently used to evaluate inhalation injury. The scans appeared to be the most sensitive method for the detection of early involvement, often being abnormal several days before the chest roentgenogram. Xenon lung scanning is a safe, easy, accurate, and sensitive method for the early diagnosis of inhalation injury and has important therapeutic and prognostic implications as well

  8. Proton and antiproton interactions in hydrogen, argon and xenon at 200 GeV

    International Nuclear Information System (INIS)

    Malecki, P.

    1984-01-01

    The detailed analysis of the production of particles emitted into forward hemisphere in 200 GeV proton and antiproton interactions with hydrogen, argon and xenon targets is presented. Two-particle rapidity correlations and long-range multiplicity correlations are also discussed. (author)

  9. Xenon oscillation control in large PWR using a characteristic ellipse trajectory drawn by three axial offsets

    International Nuclear Information System (INIS)

    Yoichiro, Shimazu

    2007-01-01

    We have proposed a very simple xenon oscillation control procedure based on a characteristic trajectory. The trajectory is drawn by three offsets of power distributions, namely, AOp, AOi and AOx. They are defined as the offset of axial power distribution, the offset of the power distribution under which the current iodine distribution is obtained as the equilibrium and that for xenon distribution, respectively. When these offsets are plotted on X-Y plane for (AOp-AOx, AOi-AOx) the trajectory shows a quite characteristic ellipse (or an elliptic spiral). It shows characteristics such that the center of the ellipse is at the origin, the gradient of the major axis is constant, direction of the trajectory progress is always anti-clock wise, plot goes around the ellipse during a cycle of the xenon oscillation and so on. This characteristic does not change even if the control rods are moved. When the plot is at the origin of the X-Y plane, no xenon oscillation exists. Using the characteristics of the ellipse the xenon oscillation can be eliminated by guiding the plot to the origin with control rod operation. This concept can be applied not only to the axial xenon oscillation but also to the radial xenon oscillation control. Conventionally, the trajectory is drawn based on the xenon dynamics using reactor parameters such as core averaged macroscopic fission cross section, xenon micro absorption cross section, fission yields of iodine and xenon, and so on together with the neutron flux signals. The accuracy is expected to be better. (authors)

  10. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  11. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  12. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem

  13. Sliding Mode Control for Pressurized-Water Nuclear Reactors in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Saadatzi, S.

    2015-01-01

    Highlights: • We present SMC which is a robust nonlinear controller to control the PWR power. • Xenon oscillations are kept bounded within acceptable limits. • The stability analysis has been based on Lyapunov approach. • Simulation results indicate the high performance of this new control. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, sliding mode control (SMC) which is a robust nonlinear controller is designed to control the Pressurized-Water Nuclear Reactor (PWR) power for the load-following operation problem that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The reactor core is simulated based on the two-point nuclear reactor model and one delayed neutron group. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability. Results show that the proposed controller for the load-following operation is sufficiently effective so that the xenon oscillations are kept bounded in the considered region

  14. Evaluation of activated charcoal for dynamic adsorption of krypton and xenon

    International Nuclear Information System (INIS)

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.; Kishore, A.G.

    1975-01-01

    From the standpoint of radiation safety, the release of radioactive krypton and xenon from power reactors should be kept as low as practicable. The decay of shortlived isotopes of krypton and xenon by adsorptive delay on activated charcoal has shown promising results for this purpose. The delay provided by activated charcoal is proportional to the dynamic adsorption coefficients of these gases which are characteristic of the adsorbent. These coefficients were determined for krypton and xenon on indigenous gas-adsorbing activated charcoal at different moisture contents of carrier air stream and activated charcoal, concentrations of krypton around ambient temperatures, to find its suitability for designing adsorber columns. (author)

  15. Spectra of copperlike and zinclike xenon: Xe XXV and Xe XXVI

    International Nuclear Information System (INIS)

    Kaufman, V.; Sugar, J.; Rowan, W.L.

    1988-01-01

    The spectra of highly ionized xenon were generated in a tokamak plasma and photographed in the region 60--350 A with a 2.2-m grazing-incidence spectrograph. The 4s 2 --4s4p transitions of Zn-like xenon (Xe XXV) and all the 4l--4(l+1) transitions of Cu-like xenon (Xe XXVI) were measured with estimated uncertainties of +- 0.005 A. These measurements have been combined with previous wavelength measurements of Xe XXVI to determine energy levels. A value for the ionization energy of Xe 25+ of 6 912 400 +- 3000 cm -1 (857.0 +- 0.4 eV) was derived

  16. Operation and technology development of the radioactive xenon and krypton detection equipment

    International Nuclear Information System (INIS)

    Lee, Wanno; Choi, Sangdo; Ji, Youngyong; Lim, Jong Myoung; Cho, Young Hyun; Kang, Han Beul; Lee, Hoon; Kang, Moon Ja; Choi, Kun Sik

    2013-03-01

    Operation and technology development of the radioactive xenon and krypton detection equipment - Advancement, independence of operation technology for BfS-IAR system(the simultaneous analysis of xenon and krypton) installed after North Korea nuclear tests in 2006 and establishment of background base-line for xenon and krypton radioactivity. - Enhanced detection and analysis capabilities for neighborhood nuclear activities through advanced research of noble gas detection technology. Results of the Project · The operation of xenon and krypton analysis system (BfS-IAR) · Operation of fixed adsorption system. · Operation of portable adsorption system · Exercise of emergency response and proficiency test with SAUNA. · Measurement of noble gas background at specific region in Korea. - Radioxenon levels at Dongdu Cheon is approximately 1.6 mBq/m 3 · Development of automation filling system for absorber cooling

  17. Two-phase flow models in unbounded two-phase critical flows

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; Farello, G.E.

    1985-01-01

    With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions

  18. HEMODYNAMIC EFFECTS OF XENON ANESTHESIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    M. V. Bykov

    2014-01-01

    Full Text Available The study was aimed at hemodynamic effects of xenon on operative interventions in children. Patients and methods: the study involved 30 5-17-year-old children – 10 (33.3% girls and 20 (66.7% boys with ASA score 1-3 admitted for surgical treatment. The children underwent endotracheal anesthesia with xenon-oxygen mixture (Xe:O2 = 60-65:30% and fentanyl (2.5‑3.5  mcg/kg per hour for the following operations: appendectomy – 10 (33.3% patients, herniotomy – 8 (26.7% patients, Ivanissevich procedure – 6 (20.0% patients, plastic surgery of posttraumatic defects of skin and soft tissues – 4 (13.3% patients, abdominal adhesiotomy – 2 (6.7% patients. Central hemodynamics was studied echocardiographically (Philips HD 11, the Netherlands using the Teichholz technique along the cephalocaudal axis (parasternal access. Results: the anesthesia was notable for hemodynamic stability during the operation: as a result, a statistically significant (p < 0.05 increase in systolic, diastolic and mean arterial pressure by 10, 18 and 17%, respectively, was observed. Conclusion: the analysis demonstrated that xenon anesthesia improves lusitropic myocardial function statistically significantly increasing cardiac output by 12% by way of increasing stroke volume by 30%. 

  19. Krypton 81m and xenon 133 for complementary ventilation imaging in pulmonary perfusion studies: a clinical comparison. Chapter 12

    International Nuclear Information System (INIS)

    Weber, P.M.; Remedios, L.V.dos.

    1978-01-01

    Twenty-four patients with suspected pulmonary embolism were studied to determine the relative usefulness of 133 Xe and 81 Krsup(m) as indicators of pulmonary ventilation in complementing perfusion studies. In most cases, where krypton produced results superior to xenon, this could be attributed to better resolution of the 190 keV photon and to the fact that multiple views could be obtained, with each view paired precisely with a corresponding perfusion image, the direct result of the ease of use of krypton and its short 13 second half-life. This was well demonstrated in both of the patients with presumed pulmonary embolism and co-existing other pulmonary disease in which the results with xenon and krypton differed. In each case the mis-match was obscured by closely related areas of delayed xenon wash-out. In those patients where xenon demonstrated greater sensitivity in identifying areas of pulmonary disease, the lesions noted on wash-out appeared as areas of positive activity, while with krypton the defects were always photogenic and, when small probably obscured by scatter from adjacent normal activity. In the patient who might have been improperly categorized as a mis-match without the krypton study, the xenon study may have been normal because of inadequate equilibration time. (author)

  20. Two-dimensional phase fraction charts

    International Nuclear Information System (INIS)

    Morral, J.E.

    1984-01-01

    A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams

  1. TEM study of xenon bubbles evolution in Xe-implanted Cu. Bubbles shape, epitaxial orientation and adsorption phenomenon

    International Nuclear Information System (INIS)

    Guillot, J.; Cartraud, M.; Garem, H.; Templier, C.; Desoyer, J.C.

    1987-01-01

    TEM is used to perform a study of xenon clusters changes in Xe-implanted Cu. After implantation, xenon is gathered into f.c.c. crystalline precipitates with a lattice parameter value of 0.580 nm. During annealing at 600 0 C large (110) facetted bubbles appear (2r≅35 nm) which contain fluid xenon. When cooling down to 100 K, xenon solidifies on bubbles facets in form of a thin membrane. The epitaxial orientations between solid xenon and copper are the same as adsorbed Xe on Cu(110) [fr

  2. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Directory of Open Access Journals (Sweden)

    Joseph S Six

    Full Text Available Hyperpolarized (hp (129Xe and hp (83Kr for magnetic resonance imaging (MRI are typically obtained through spin-exchange optical pumping (SEOP in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129Xe MRI cumbersome. For hp (83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3/min. For hp (83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1 transition was observed and taken into account for the qualitative description of the SEOP process.

  3. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Science.gov (United States)

    Six, Joseph S; Hughes-Riley, Theodore; Stupic, Karl F; Pavlovskaya, Galina E; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) (129)Xe and hp (83)Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129)Xe MRI cumbersome. For hp (83)Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129)Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129)Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3)/min. For hp (83)Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3)/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1) transition was observed and taken into account for the qualitative description of the SEOP process.

  4. A knowledge-based system for control of xenon-induced spatial power oscillations during load-follow operations

    International Nuclear Information System (INIS)

    Chung, Sun-Kyo; Danofsky, R.A.; Spinrad, B.I.

    1988-01-01

    As is well known, large pressurized water reactors (PWRs) are subject to xenon-induced axial power oscillations at some time during a given cycle. Attention to this behavior is required during load-follow operations. A knowledge-based system for controlling xenon-induced spatial power oscillations is described. Experience with a limited set of load-follow patterns has demonstrated that the system is capable of providing advice on appropriate control actions. A simulation model, coupled with a rule-learning process, has been found to be a useful way for determining appropriate weights for the rules that relate power patterns and control actions

  5. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  6. NOTICONA--a nonlinear time-domain computer code of two-phase natural circulation instability

    International Nuclear Information System (INIS)

    Su Guanghui; Guo Yujun; Zhang Jinling; Qiu Shuizheng; Jia Dounan; Yu Zhenwan

    1997-10-01

    A microcomputer code, NOTICONA, is developed, which is used for non-linear analysing the two-phase natural circulation systems. The mathematical model of the code includes point source neutron-kinetic model, the feedback of reactivity model, single-phase and two-phase flow model, heat transfer model in different conditions, associated model, etc. NOTICONA is compared with experiments, and its correctness and accuracy are proved. Using NOTICONA, the density wave oscillation (type I) of the 5 MW Test Heating Reactor are calculated, and the marginal stability boundary is obtained

  7. Terrestrial xenon isotope constraints on the early history of the earth

    International Nuclear Information System (INIS)

    Ozima, M.; Igarashi, G.; Podosek, F.A.

    1985-01-01

    Comparison between 129 I-radiogenic 129 Xe and 244 Pu-fissiogenic 136 Xe components in terrestrial xenon suggests that the Earth's inner region accreted a few tens of millions of years earlier than the outer region from which the atmosphere evolved. The results also indicate that there has been no substantial mixing of the two regions since the Earth's accretion. (author)

  8. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  9. Modification of the axial offsets trajectory method to control xenon oscillation during load following operations

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    1996-01-01

    A new method which can give continuous guidance for controlling axial xenon oscillations in large PWRs has been presented. The method is based on two additional newly defined axial offsets, A Oi and A Ox together with the conventional axial offset of power distribution A Op. A Oi and A Ox are the axial offsets of power distributions which would give the current iodine and xenon distributions under equilibrium conditions, respectively. The information from A Oi, A Ox and A Op are used to display the trajectory of (A Op - A Ox, A Oi - A Ox) in the X-Y plane. The trajectory shows a very characteristic behavior. With the characteristics in mind the xenon oscillation can be controlled quite easily to lead the plot to the origin where three A Os are identical. The method has been proved with the power level constant. However, it is necessary to modify the definition of A Ox so as to apply this method to load following operations. A reasonable way of the modification is described and the results are presented. (author)

  10. Global characteristics of an ATON stationary plasma thruster operating with krypton and xenon

    International Nuclear Information System (INIS)

    Bugrova, A.I.; Lipatov, A.S.; Solomatina, L.V.; Morozov, A.I.

    2002-01-01

    Paper contains the experimental results of operation of the ATON plasma thruster operating with krypton and xenon. It is shown that consumption of a working gas for consumption of a working gas the krypton base thrust is higher in contrast to xenon base one at lower efficiency. In case of krypton use one obtained the efficiency constituting ∼ 60% at specific pulse reaching 3000 s. Jet divergence in case of krypton use is ∼ ± 22 deg in contrast to ∼ ± 11 deg in case of xenon use [ru

  11. Optimal control of xenon concentration by observer design under reactor model uncertainty

    International Nuclear Information System (INIS)

    Cho, Nam Z.; Yang, Chae Y.; Woo, Hae S.

    1989-01-01

    The state feedback in control theory enjoys many advantages, such as stabilization and improved transient response, which could be beneficially used for control of the xenon oscillation in a power reactor. It is, however, not possible in nuclear reactors to measure the state variables, such as xenon and iodine concentrations. For implementation of the optimal state feedback control law, it is thus necessary to estimate the unmeasurable state variables. This paper uses the Luenberger observer to estimate the xenon and iodine concentrations to be used in a linear quadratic problem with state feedback. To overcome the stiffness problem in reactor kinetics, a singular perturbation method is used

  12. Conception and synthesis of new molecular cages for xenon MRI applications

    International Nuclear Information System (INIS)

    Delacour, L.

    2011-01-01

    Non-invasive proton magnetic resonance imaging ( 1 H MRI) is a powerful clinical tool for the detection of numerous diseases. Although MRI contrast agents are often used to improve diagnostic specificity, this technique has limited applications in molecular imaging because of its inherently low sensitivity when compared to nuclear medicine or fluorescence imaging. Laser-polarized 129 Xe NMR spectroscopy is a promising tool to circumvent sensitivity limitations. Indeed, optical pumping increases the nuclear spin polarization of xenon by several orders of magnitude (10 4 to 10 5 ), thus small amounts of gas dissolved in biological tissues (blood, lungs...) can be rapidly detected with an excellent signal-to-noise ratio. In addition, the high polarizability of the xenon electron cloud, which induces a very high sensitivity to its environment, makes this nucleus very attractive for molecular imaging. Detection of biomolecules can be achieved by biosensors, which encapsulate xenon atoms in molecular cages that have been functionalized to bind the desired biological target. Cage molecules such as cryptophanes have high affinity for xenon and thus appear as ideal candidates for its encapsulation. During this PhD thesis we worked on the synthesis and the functionalization of new cryptophanes. (author) [fr

  13. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    Science.gov (United States)

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  14. User's manual for ASTERIX-2: A two-dimensional modular code system for the steady state and xenon transient analysis of a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)

  15. User's manual for ASTERIX-2: a two-dimensional modular-code system for the steady-state and xenon-transient analysis of a pebble-bed high-temperature reactor

    International Nuclear Information System (INIS)

    Lauer, A.; Schwiegk, H.J.; Wu, T.; Cowan, C.L.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analyses from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution

  16. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout

    International Nuclear Information System (INIS)

    Cassata, W.S.; Prussin, S.G.; Knight, K.B.; Hutcheon, I.D.; Isselhardt, B.H.; Renne, P.R.

    2014-01-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. - Highlights: • Radioactive fallout generated by nuclear explosions contains fissiogenic xenon isotopes. • Xe isotopes provide constraints on timescales of fallout formation and the speciation of fission products in the fireball. • Our data indicate that macroscopic fallout forms rapidly (<3 s). • Chemical fractionation trends suggest that fission products may not have been fully oxidized prior to incorporation

  17. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-05-05

    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.

  18. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad

    2013-01-01

    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  19. Krypton and xenon in the atmosphere of Venus

    Science.gov (United States)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  20. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  1. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan....... They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen...... had occlusion of the relevant internal carotid artery. In all 6 patients, CBF studies at 2 and 6 months resembled the acute phase, showing large areas with reduced flow. At the 6 months follow-up, the vasodilatory stress test was repeated, and all but one showed a preserved but reduced vasoreactivity...

  2. Measurement of vascular flow in the brain with the xenon/CT method

    International Nuclear Information System (INIS)

    Wist, A.O.; Cothran, A.; Fatouros, P.P.; Kishore, P.R.S.

    1988-01-01

    The authors are proposing a modification of the xenon/CT method that allows measurement of the flow in the different brain vessels. Based on an improved stable xenon/CT method, they developed several additional algorithms to differentiate the vessel flow from tissue flow and from artifacts and noise, which are based on the height, steepness, and other parameters of the detected flow values. The vessel flow maps, together with the tissue flow maps and new composite flow maps of recent patients, demonstrate that the stable xenon/CT technique can be extended to quantify vascular flow in the brain. The diagnostic capability of this method can be further improved by removing the vessel flow from the flow maps

  3. Radioactive plume from the Three Mile Island accident: xenon-133 in air at a distance of 375 kilometers.

    Science.gov (United States)

    Wahlen, M; Kunz, C O; Matuszek, J M; Mahoney, W E; Thompson, R C

    1980-02-08

    The transit of an air mass containing radioactive gas released from the Three Mile Island reactor was recorded in Albany, New York, by measuring xenon-133. These measurements provide an evaluation of Three Mile Island effluents to distances greater than 100 kilometers. Two independent techniques identified xenon-133 in ambient air at concentrations as high as 3900 picocuries per cubic meter. The local gamma-ray whole-body dose from the passing radioactivity amounted to 0.004 millirem, or 0.004 percent of the annual dose from natural sources.

  4. Online {sup 222}Rn removal by cryogenic distillation in the XENON100 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik-Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-06-15

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant {sup 222}Rn background originating from radon emanation. After inserting an auxiliary {sup 222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the {sup 222}Rn activity concentration inside the XENON100 detector. (orig.)

  5. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    Science.gov (United States)

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  6. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  7. Review of xenon-133 production and related problems; Estudio bibliografico de la produccion de xenon-133 y problemas afines

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M; Ropero, M

    1980-07-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs.

  8. Molecular MRI based on hyper-polarized xenon

    International Nuclear Information System (INIS)

    Tassali, Nawal

    2012-01-01

    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyper-polarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129 Xe MRI-based sensors for the detection of biological events. In this approach, hyper-polarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyper-polarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyper-polarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented. (author) [fr

  9. Timing analysis of two-electron photoemission

    International Nuclear Information System (INIS)

    Kheifets, A S; Ivanov, I A; Bray, Igor

    2011-01-01

    We predict a significant delay of two-electron photoemission from the helium atom after absorption of an attosecond XUV pulse. We establish this delay by solving the time-dependent Schroedinger equation and by subsequently tracing the field-free evolution of the two-electron wave packet. This delay can also be related to the energy derivative of the phase of the complex double-photoionization (DPI) amplitude which we evaluate by using the convergent close-coupling method. Our observations indicate that future attosecond time delay measurements on DPI of He can provide information on the absolute quantum phase and elucidate various mechanisms of this strongly correlated ionization process. (fast track communication)

  10. Status of the 2D Bayesian analysis of XENON100 data

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Stefan [JGU, Staudingerweg 7, 55128 Mainz (Germany)

    2015-07-01

    The XENON100 experiment is located in the underground laboratory at LNGS in Italy. Since Dark Matter particles will only interact very rarely with normal matter, an environment with ultra low background, which is shielded from cosmic radiation is needed. The standard analysis of XENON100 data has made use of the profile likelihood method (a most frequent approach) and still provides one of the most sensitive exclusion limits to WIMP Dark Matter. Here we present work towards a Bayesian approach to the analysis of XENON100 data, where we attempt to include the measured primary (S1) and secondary (S2) scintillation signals in a more complete way. The background and signal models in the S1-S2 space have to be defined and a corresponding likelihood function, describing these models, has to be constructed.

  11. Numerical calculation of two-phase flows

    International Nuclear Information System (INIS)

    Travis, J.R.; Harlow, F.H.; Amsden, A.A.

    1975-06-01

    The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)

  12. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    Science.gov (United States)

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  13. Phase correlation of foreign exchange time series

    Science.gov (United States)

    Wu, Ming-Chya

    2007-03-01

    Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.

  14. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  15. A new approach for treatment of xenon problem

    International Nuclear Information System (INIS)

    Mihailescu, Nicolae

    1999-01-01

    It is known that the fission product xenon 135, with a half life of 9.17 hours, has a very large absorption cross section for thermal neutrons. A small fraction of this nuclear species is formed directly in fission, but the major part results from the decay of iodine 135 with a half life of 6.59 hours. In this paper we shall present the 'fundamental' theory of an 'adiabatic' approach which appears to be promising both in cutting down computational time and in giving additional physical insight into the combined spatial-temporal variations. An adiabatic motivation is implicit in early work on reactor kinetics in which the reactor flux is separated into a product of a time dependent function and a function of all the other relevant variables, including the time; if the latter factor is slowly varying in time the approach is 'adiabatic'. (author)

  16. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  17. An objective indicator for two-phase flow pattern transition

    International Nuclear Information System (INIS)

    Hervieu, E.; Seleghim, P. Jr.

    1998-01-01

    This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author)

  18. Ionization yield from electron tracks in liquid xenon

    International Nuclear Information System (INIS)

    Voronova, T.Ya.; Kipsanov, M.A.; Kruglov, A.A.; Obodovskij, I.M.; Pokachalov, S.G.; Shilov, V.A.; Khristich, E.B.

    1989-01-01

    Methods for calculating coefficients K β , characterizing ionization yield from electron track in liquid xenon are considered. K β calculation is conducted on the base of experimental data on K parameter characterizing ionization yield from a certain combination of photo-, Compton-and Auger electron tracks. K parameter measurements are conducted in liquid xenon at 170 K temperature within 10-30 keV gamma- and X radiation energy ranges. Calculated dependence of K β and K coefficients on the energy in a wide (5-500 keV) range is presented. K β values obtained can be applied for calculating the energy resolution of a gamma-spectrometer and linearity of its calibration characteristics if the electric field intensity in the spectrometer does not exceed some kV/cm

  19. Site blocking in silver-exchanged zeolite Y by carbon monoxide and ethene using xenon adsorption and 129Xe NMR spectroscopy

    Science.gov (United States)

    Boddenberg, B.; Watermann, J.

    1993-03-01

    The adsorption isotherms and 129Xe NMR chemical shifts of xenon in the zeolites NaY, AgY, and in AgY preloaded with ≈ 1 molecule/supercage ethene and carbon monoxide were measured at 25°C. The experimental data reveal the blocking of the silver-cation sites for xenon by the preadsorbed molecules. Ethene and CO are found to block the previously postulated two types of silver-cation species in the supercages of AgY in a different way.

  20. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    International Nuclear Information System (INIS)

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-01-01

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case

  1. Visual Analysis of Inclusion Dynamics in Two-Phase Flow.

    Science.gov (United States)

    Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip

    2018-05-01

    In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.

  2. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  3. The influence of xenon poisoning in high-flux reactors on the choice of control rod speeds (1961); Influence de l'empoisonnement xenon dans les piles a haut flux sur le choix de la vitesse des barres de controle (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - The general laws are restated concerning the changes in xenon and iodine concentrations in thermal neutron reactors, assuming an uniform neutron flux distribution in the core. It is shown how the evolution in the xenon poisoning influences the selection of the control rod speed, at start-up. Certain simple methods of calculation are developed making it possible to resolve the problem of the choice of this speed in the case where the xenon poisoning is taken into account. (author) [French] - On rappelle les lois generales relatives aux evolutions de concentration xenon et iode dans les piles atomiques a neutrons thermiques lorsqu'on suppose une repartition uniforme du flux de neutrons dans le coeur. On montre comment l'evolution de l'empoisonnement xenon influe sur le choix de la vitesse des barres de controle en periode de demarrage. On developpe certaines methodes de calculs simples permettant de resoudre le probleme du choix de la vitesse des barres de controle, dans le cas ou l'on tient compte de l'empoisonnement xenon. (auteur)

  4. Time averaging procedure for calculating the mass and energy transfer rates in adiabatic two phase flow

    International Nuclear Information System (INIS)

    Boccaccini, L.V.

    1986-07-01

    To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de

  5. Control of photon storage time using phase locking.

    Science.gov (United States)

    Ham, Byoung S

    2010-01-18

    A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.

  6. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients

    International Nuclear Information System (INIS)

    Lee, Sang Min; Seo, Joon Beom; Kim, Namkug; Oh, Sang Young; Hwang, Hye Jeon; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-01-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. (orig.)

  7. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Min [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Yonsei University College of Medicine, Gangnam Severance Hospital, Department of Radiology, Research Istitute of Radiological Science, Seoul (Korea, Republic of); Seo, Joon Beom; Kim, Namkug; Oh, Sang Young [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Hwang, Hye Jeon [University of Ulsan College of Medicine, Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Hallym University Sacred Heart Hospital, Department of Radiology, Hallym University College of Medicine, Anyang-si, Gyeonggi-do (Korea, Republic of); Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok [University of Ulsan College of Medicine, Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, Seoul (Korea, Republic of); Kim, Tae Hoon [Yonsei University College of Medicine, Gangnam Severance Hospital, Department of Radiology, Research Istitute of Radiological Science, Seoul (Korea, Republic of)

    2017-07-15

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. (orig.)

  8. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D. [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study.

  9. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    International Nuclear Information System (INIS)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D.

    2012-01-01

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study

  10. XENON100 exclusion limit without considering Leff as a nuisance parameter

    Science.gov (United States)

    Davis, Jonathan H.; Bœhm, Céline; Oppermann, Niels; Ensslin, Torsten; Lacroix, Thomas

    2012-07-01

    In 2011, the XENON100 experiment has set unprecedented constraints on dark matter-nucleon interactions, excluding dark matter candidates with masses down to 6 GeV if the corresponding cross section is larger than 10-39cm2. The dependence of the exclusion limit in terms of the scintillation efficiency (Leff) has been debated at length. To overcome possible criticisms XENON100 performed an analysis in which Leff was considered as a nuisance parameter and its uncertainties were profiled out by using a Gaussian likelihood in which the mean value corresponds to the best fit Leff value (smoothly extrapolated to 0 below 3 keVnr). Although such a method seems fairly robust, it does not account for more extreme types of extrapolation nor does it enable us to anticipate how much the exclusion limit would vary if new data were to support a flat behavior for Leff below 3 keVnr, for example. Yet, such a question is crucial for light dark matter models which are close to the published XENON100 limit. To answer this issue, we use a maximum likelihood ratio analysis, as done by the XENON100 Collaboration, but do not consider Leff as a nuisance parameter. Instead, Leff is obtained directly from the fits to the data. This enables us to define frequentist confidence intervals by marginalizing over Leff.

  11. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Eliasi, H.; Menhaj, M.B.; Davilu, H.

    2011-01-01

    Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.

  12. Enhancement of VUV emission from a coaxial xenon excimer ultraviolet lamp driven by distorted bipolar square voltages

    Energy Technology Data Exchange (ETDEWEB)

    Jou, S.Y.; Hung, C.T.; Chiu, Y.M.; Wu, J.S. [Department of Mechanical Engineering, National Chiao Tung University, Hsinchu (China); Wei, B.Y. [High-Efficiency Gas Discharge Lamps Group, Material and Chemical Research Laboratories, Hsinchu (China)

    2011-12-15

    Enhancement of vacuum UV emission (172 nm VUV) from a coaxial xenon excimer UV lamp (EUV) driven by distorted 50 kHz bipolar square voltages, as compared to that by sinusoidal voltages, is investigated numerically in this paper. A self-consistent radial one-dimensional fluid model, taking into consideration non-local electron energy balance, is employed to simulate the discharge physics and chemistry. The discharge is divided into two three-period portions; these include: the pre-discharge, the discharge (most intense at 172 nm VUV emission) and the post-discharge periods. The results show that the efficiency of VUV emission using the distorted bipolar square voltages is much greater than when using sinusoidal voltages; this is attributed to two major mechanisms. The first is the much larger rate of change of the voltage in bipolar square voltages, in which only the electrons can efficiently absorb the power in a very short period of time. Energetic electrons then generate a higher concentration of metastable (and also excited dimer) xenon that is distributed more uniformly across the gap, for a longer period of time during the discharge process. The second is the comparably smaller amount of ''wasted'' power deposition by Xe{sup +}{sub 2} in the post-discharge period, as driven by distorted bipolar square voltages, because of the nearly vanishing gap voltage caused by the shielding effect resulting from accumulated charges on both dielectric surfaces (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. An objective indicator for two-phase flow pattern transition

    International Nuclear Information System (INIS)

    Hervieua, E.; Seleghim, P. Jr.

    1998-01-01

    This work concerns the development of a methodology the objective of which is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. During the first time, the efforts focused on: (1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; (2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; and (3) the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. During the second time, in order to verify the fundamental assumption, a series of experiments were conducted, the objective of which was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (orig.)

  14. Analysis of reactivity worth for xenon poisoning during restart-up of reactor in iodine pit

    International Nuclear Information System (INIS)

    Li Xaofeng; Chen Wenzhen; Zhu Qian; Xu Guojun

    2009-01-01

    The reactivity worth of xenon poisoning and the densities of 135 I and 135 Xe were derived when the reactor was restarted up in iodine pit. Through the expressions obtained we can find the physics characteristics of reactor restarted up in iodine pit comprehensively and essentially. The results were analyzed and discussed. The reactor power before shutdown, the start-up power, the position where the reactor starts up in iodine pit, and so on, all have effect on the reactivity worth of xenon poisoning, and the different conditions can lead to totally different physics characteristics. In addition, the time when the reactor starts up in iodine pit is a very important factor for nuclear reactors safety. The conclusions are very important to the maneuverability and operation safety of ship nuclear reactors. (authors)

  15. Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3

    International Nuclear Information System (INIS)

    Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.

    2014-11-01

    The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems

  16. Near-infrared scintillation of xenon by 63Ni beta decay

    Science.gov (United States)

    Yoshimizu, Norimasa; Lal, Amit; Pollock, Clifford R.

    2006-07-01

    The near-infrared scintillation of xenon gas by the β decay of 37MBq of Ni63 was studied, in the interest of its use in integrated devices for applications such as optical beacons and wavelength calibration. The emission was imaged and analyzed using Spencer's theory of electron penetration using xenon scattering cross sections derived from Thomas-Fermi theory. The total emission was approximately 2×105photons/s at 20kPa and 1×105photons/s at 100kPa. Spectral data show three dominant peaks at 823, 828, and 882nm as well as the formation of metastable states.

  17. The high pressure xenon lamp as a source of radiation

    International Nuclear Information System (INIS)

    Heerdt, J.A. ter.

    1979-01-01

    An account is given of an investigation into the radiation properties of a commercially available high pressure xenon lamp (type XBO 900 W) in the spectral range 0.3 to 3 μm. The purpose of the study was to find out whether such a lamp can serve as a (secondary) standard of radiation in spectroscopic and radiometric measurements. The main advantades of the xenon lamp over other secondary standards such as the tungsten strip lamp and the anode of a carbon arc lamp are the high temperature of its discharge and the resulting strong radiation over a broad spectral range. (Auth.)

  18. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  19. Review of xenon-133 production and related problems

    International Nuclear Information System (INIS)

    Barrachina, M.; Ropero, M.

    1980-01-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs

  20. Mobility and lifetime of sup 2 sup 0 sup 8 Tl ions in liquid xenon

    CERN Document Server

    Walters, A J

    2003-01-01

    Positively charged sup 2 sup 0 sup 8 Tl ions are transported through liquid xenon using electric fields in the range of 4-10 kV cm sup - sup 1 and for drift distances up to 50 mm. From these measurements we deduce upper limits on the attenuation length for Tl ions in liquid xenon, resulting in a lifetime >5.5 s. In addition to these results, the field independent mobility of Tl bearing species in liquid xenon was measured to be 1.33+-0.04x10 sup - sup 4 cm sup 2 V sup - sup 1 s sup - sup 1. This result, when coupled with those for other species by previous workers, suggests that positive ion mobility in liquid xenon is proportional to the hard-core radius. Applications to Ba ion collection in a double beta decay experiment are also discussed.

  1. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Contreras, H.; Goetzke, L.W.; Fernandez, A.J.M.; Messina, M.; Plante, G.; Rizzo, A. [Columbia University, Physics Department, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Arazi, L.; Budnik, R.; Duchovni, E.; Gross, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Priel, N.; Vitells, O. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Arisaka, K.; Lyashenko, A.; Meng, Y.; Pantic, E.; Teymourian, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Arneodo, F.; Di Giovanni, A. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Auger, M.; Barrow, P.; Baudis, L.; Behrens, A.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F. [University of Zurich, Physik-Institut, Zurich (Switzerland); Balan, C.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos [University of Coimbra, Department of Physics, Coimbra (Portugal); Bauermeister, B.; Fattori, S.; Geis, C.; Grignon, C.; Oberlack, U.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Beltrame, P. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); University of Edinburgh, Edinburgh (United Kingdom); Brown, A.; Lang, R.F.; Macmullin, S.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Brown, E.; Levy, C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Bruenner, S.; Hampel, W.; Kaether, F.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Rauch, L.; Schreiner, J.; Simgen, H.; Weber, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Buetikofer, L.; Coderre, D.; Schumann, M. [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Cussonneau, J.P.; Le Calloch, M.; Masbou, J.; Lavina, L.S.; Thers, D. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Ferella, A.D.; Fulgione, W.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Miguez, B.; Molinario, A.; Trinchero, G. [INFN-Torino and Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P.; Wall, R. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Orrigo, S.E.A. [University of Coimbra, Department of Physics, Coimbra (Portugal); IFIC, CSIC-Universidad de Valencia, Valencia (Spain); Persiani, R. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (FR); Bologna Univ., Department of Physics and Astrophysics, Bologna (IT); INFN, Bologna (IT); Collaboration: XENON Collaboration

    2015-11-15

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. (orig.)

  2. Fragment emission in the interaction of xenon with 1-20 GeV protons

    International Nuclear Information System (INIS)

    Porile, N.T.; Bujak, A.J.; Carmony, D.D.; Chung, Y.H.; Gutay, L.J.; Hirsch, A.S.; Mahi, M.; Paderewski, G.L.; Sangster, T.C.; Scharenberg, R.P.; Stringfellow, B.C.

    1989-01-01

    Differential cross sections for the emission of intermediate mass fragments in the interaction of xenon with 1-20 GeV protons have been measured. The cross sections increase sharply with energy up to 10 GeV and then level off. The energy spectra were fitted with an expression based on the phase transition droplet model and excellent fits were obtained above 9 GeV. Below 6 GeV, the fits show an increasing contribution from another mechanism, believed to be binary breakup. A droplet model fit to the cross sections ascribed to the multi-fragmentation component is able to reproduce their variation with both fragment mass and proton energy

  3. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  4. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  5. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  6. Two kinds of phase transitions in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2012-08-01

    In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.

  7. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  8. Study of the optical properties of the DF2000MA daylight film used in the XENON1T muon veto water tank

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Diego [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    XENON1T is the 3rd stage of a series of experiments performed by the XENON collaboration for the direct detection of dark matter candidates, such as WIMPs. Its projected spin-independent WIMP-nucleon elastic scattering cross-section entails an improvement of two orders of magnitude with respect to Xenon100 and requires, for a fiducial mass of the detector of about 1 ton liquid xenon, a similar reduction in background. In order to minimize the neutron background induced by cosmic ray muons, the XENON1T TPC is placed in the center of a 750 m{sup 3} water tank acting as an active Cherenkov muon veto, the walls of which are clad with the high reflective DF2000MA foil by 3M. The improved setup and results of a dedicated study of the reflective properties of the foil is presented, as well as a measurement of its possible wavelength shifting (WLS) properties. The analysis yields a specular reflectance of ∼ 100% for wavelengths larger than 400 nm, while ∼ 90% of the incoming light with wavelengths smaller than 370 nm is absorbed by the foil. The emission spectra of the WLS are dependent on the absorbed wavelength and show Gaussian shapes, with highest intensities at mean values of ∼ 450 nm emission wavelength.

  9. Topological phase in two flavor neutrino oscillations

    International Nuclear Information System (INIS)

    Mehta, Poonam

    2009-01-01

    We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.

  10. Simplest simulation model for three-dimensional xenon oscillations in large PWRs

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    2004-01-01

    Xenon oscillations in large PWRs are well understood and there have been no operational problems remained. However, in order to suppress the oscillations effectively, optimal control strategy is preferable. Generally speaking in such optimality search based on the modern control theory, a large volume of transient core analyses is required. For example, three dimensional core calculations are inevitable for the analyses of radial oscillations. From this point of view, a very simple 3-D model is proposed, which is based on a reactor model of only four points. As in the actual reactor operation, the magnitude of xenon oscillations should be limited from the view point of safety, the model further assumes that the neutron leakage can be also small or even constant. It can explicitly use reactor parameters such as reactivity coefficients and control rod worth directly. The model is so simplified as described above that it can predict oscillation behavior in a very short calculation time even on a PC. However the prediction result is good. The validity of the model in comparison with measured data and the applications are discussed. (author)

  11. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  12. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  13. Mechanisms of Xenon Effect on Skin and Red Blood Cells

    DEFF Research Database (Denmark)

    Ponomarev, Alexander; Rodin, V.; Gurevich, Leonid

    2017-01-01

    The usage of Xenon (Xe) is known in anesthesia and biobanking areas. It is considered preservation effect of Xe is associated either with clathrate formation - solid gaseous structures or dissolution of Xe molecules in liquid phase without physical state modification (so-called hyperbarium) [1......]. This study is addressed to establish differences between hyberbarium or clathrate Xe actions as well as its applications on various bioobjects with anaerobic - red blood cells (RBCs) and aerobic (skin fragments) metabolism. Xe clathrates and hyperbarium storage were simulated under 277 K and 620-725 k...... to control (15.68 ± 1.11, CI95%). Skin fragments were harvested from rat tails and divided on hyberbarium, clathrate and dimetylsulfoxide cryopreserved as control group and stored for 7 days. Assessment was performed by point-score method including epidermal-dermal integrity various assays and engraftment...

  14. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  15. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  16. Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection

    Science.gov (United States)

    Henriques, C. A. O.; Freitas, E. D. C.; Azevedo, C. D. R.; González-Díaz, D.; Mano, R. D. P.; Jorge, M. R.; Fernandes, L. M. P.; Monteiro, C. M. B.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carríon, J. V.; Cebrían, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Ferrario, P.; Ferreira, A. L.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2017-10-01

    Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm /√{m} to 2.5 mm /√{m}, with high impact on the discrimination efficiency of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.

  17. Review on two-phase flow instabilities in narrow spaces

    International Nuclear Information System (INIS)

    Tadrist, L.

    2007-01-01

    Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries

  18. The performance of GPS time and frequency transfer: comment on ‘A detailed comparison of two continuous GPS carrier-phase time transfer techniques’

    Science.gov (United States)

    Petit, Gérard; Defraigne, Pascale

    2016-06-01

    The paper ‘A detailed comparison of two continuous GPS carrier-phase time transfer techniques’ (Yao et al 2015 Metrologia 52 666) presents the revised RINEX-shift (RRS) method, a technique using ‘classical precise point positioning (PPP)’ solutions on sliding batches and aiming at providing continuous time links. The authors claim the superiority of the RRS technique with respect to ‘classical PPP’ in terms of frequency stability and solving for discontinuities due to data gaps. It is shown here that these conclusions do not rely on physical principles, and are erroneous as they are driven by misinterpreted or corrupted PPP solutions. Using state-of-the-art PPP computation on the same data sets used in Yao et al’s paper (2015 Metrologia 52 666), we show that the stability of RRS is at best similar to that of ‘classical PPP’ (within statistical uncertainties). Furthermore, the RRS method of removing discontinuities in case of data gaps by interpolating the phase data should not be applied systematically as it can cause erroneous clock solutions when the data gaps are associated with a true phase discontinuity.

  19. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company

  20. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, Robert [Paul Scherrer Institute, PSI Villigen 5232 (Switzerland); Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116 (Germany); Mor, Ilan [Soreq NRC, Yavne 81800 (Israel)

    2015-07-15

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  1. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system.

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  2. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Astrid V Fahlenkamp

    Full Text Available Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV. We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis.220 subjects with elevated PONV risk (Apfel score ≥2 undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up.Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02-5.19, p = 0.044. Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138. After xenon, nausea occurred significantly earlier (p = 0.014, was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups.In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea.EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT00793663.

  3. An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Zhaozhao Tang

    2017-12-01

    Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.

  4. Gas purity analytics, calibration studies, and background predictions towards the first results of XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Hasterok, Constanze

    2017-10-25

    The XENON1T experiment aims at the direct detection of the well motivated dark matter candidate of weakly interacting massive particles (WIMPs) scattering off xenon nuclei. The first science run of 34.2 live days has already achieved the most stringent upper limit on spin-independent WIMP-nucleon cross-sections above masses of 10 GeV with a minimum of 7.7.10{sup -47} cm{sup 2} at a mass of 35 GeV. Crucial for this unprecedented sensitivity are a high xenon gas purity and a good understanding of the background. In this work, a procedure is described that was developed to measure the purity of the experiment's xenon inventory of more than three tons during its initial transfer to the detector gas system. The technique of gas chromatography has been employed to analyze the noble gas for impurities with the focus on oxygen and krypton contaminations. Furthermore, studies on the calibration of the experiment's dominating background induced by natural gamma and beta radiation were performed. Hereby, the novel sources of radioactive isotopes that can be dissolved in the xenon were employed, namely {sup 220}Rn and tritium. The sources were analyzed in terms of a potential impact on the outcome of a dark matter search. As a result of the promising findings for {sup 220}Rn, the source was successfully deployed in the first science run of XENON1T. The first WIMP search of XENON1T is outlined in this thesis, in which a background component from interactions taking place in close proximity to the detector wall is identified, investigated and modeled. A background prediction was derived that was incorporated into the background model of the WIMP search which was found to be in good agreement with the observation.

  5. The Shaker Potassium Channel Is No Target for Xenon Anesthesia in Short-Sleeping Drosophila melanogaster Mutants

    Directory of Open Access Journals (Sweden)

    C. Schaper

    2012-01-01

    Full Text Available Background. Xenon seems to be an ideal anesthetic drug. To explore if next to the antagonism at the NMDA-receptor other molecular targets are involved, we tested the xenon requirement in short sleeping Drosophila shaker mutants and in [ℎ38]. Methods. The Drosophila melanogaster strains wildtype Canton-S, [ℎ38], ℎ102 and ℎ, were raised and sleep was measured. Based on the response of the flies at different xenon concentrations, logEC50 values were calculated. Results. The logEC50-values for WT Canton-S were 1.671 (1.601–1.742 95%-confidence intervall; =238; P versus ℎ102 > 0,05, for ℎ 1.711 (1.650–1.773; =242; P versus WT Canton-S > 0,05. The logEC50-value for ℎ102 was 1.594 (1.493–1.694; =261; P versus ℎ > 0.05. The logEC-value of [ℎ38] was 2.076 (1.619–2.532; =207; P versus ℎ 0.05, while [ℎ38] was found to be hyposensitive compared to wildtype (P < 0.05. Conclusions. The xenon requirement in Drosophila melanogaster is not influenced by a single gene mutation at the shaker locus, whereas a reduced expression of a nonselective cation channel leads to an increased xenon requirement. This supports the thesis that xenon mediates its effects not only via an antagonism at the NMDA-receptor.

  6. Review of two-phase water hammer

    International Nuclear Information System (INIS)

    Beuthe, T.G.

    1997-01-01

    In a thermalhydraulic system like a nuclear power plant, where steam and water mix and are used to transport large amounts of energy, there is a potential to create two-phase water hammer. Large water hammer pressure transients are a threat to piping integrity and represent an important safety concern. Such events may cause unscheduled plant down time. The objective of this review is to provide a summary of the information on two-phase water hammer available in the open literature with particular emphasis on water hammer occurrences in nuclear power plants. Past reviews concentrated on studies concerned with preventing water hammer. The present review focuses on the fundamental experimental, analytical, and modelling studies. The papers discussed here were chosen from searches covering up to July 1993. (author)

  7. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Directory of Open Access Journals (Sweden)

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  8. Ostwald ripening in two-phase mixtures

    International Nuclear Information System (INIS)

    Voorhees, P.W.

    1982-01-01

    Experimental measurements of the temperature of a rapidly solidified solid-liquid mixture have been made over a range of volume fractions solid 0.23 to 0.95. These experiments demonstrate the viability of measuring the change in interfacial curvature with time via precision thermometry. The experimental measurements also indicate that there is no radical change in interface morphology over a wide range of volume fractions solid. A solution to the multi-particle diffusion problem (MDP) has been constructed through the use of potential theory. The solution to the MDP was used to describe the diffusion field within a coarsening two-phase mixture consisting of dispersed spherical second-phase particles. Since this theory is based upon the MDP, interparticle diffusional interactions are specifically included in the treatment. As a result, the theory yields, for the first time, insights into the influence of the local distribution of curvature on a particle's coarsening rate. The effect of interparticle interactions on the collective behavior of an ensemble of coarsening particles was also investigated. It was found that any arbitrary distribution of particle radii will tend to a specific time independent distribution when the particle radii are scaled by the average particle radius. Furthermore, it was determined that with increasing volume fraction of coarsening phase, these time independent distributions become broader and more symmetric. It was also found that the ripening kinetics, as measured by the growth rate of the average particle size, increases by a factor of five upon increasing the volume fraction of coarsening phase from zero to 0.5

  9. Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features.

    Science.gov (United States)

    Gao, Zhong-Ke; Jin, Ning-De; Wang, Wen-Xu; Lai, Ying-Cheng

    2010-07-01

    The dynamics of two-phase flows have been a challenging problem in nonlinear dynamics and fluid mechanics. We propose a method to characterize and distinguish patterns from inclined water-oil flow experiments based on the concept of network motifs that have found great usage in network science and systems biology. In particular, we construct from measured time series phase-space complex networks and then calculate the distribution of a set of distinct network motifs. To gain insight, we first test the approach using time series from classical chaotic systems and find a universal feature: motif distributions from different chaotic systems are generally highly heterogeneous. Our main finding is that the distributions from experimental two-phase flows tend to be heterogeneous as well, suggesting the underlying chaotic nature of the flow patterns. Calculation of the maximal Lyapunov exponent provides further support for this. Motif distributions can thus be a feasible tool to understand the dynamics of realistic two-phase flow patterns.

  10. Research on the measurement of the ultraviolet irradiance in the xenon lamp aging test chamber

    Science.gov (United States)

    Ji, Muyao; Li, Tiecheng; Lin, Fangsheng; Yin, Dejin; Cheng, Weihai; Huang, Biyong; Lai, Lei; Xia, Ming

    2018-01-01

    This paper briefly introduces the methods of calibrating the irradiance in the Xenon lamp aging test chamber. And the irradiance under ultraviolet region is mainly researched. Three different detectors whose response wave range are respectively UVA (320 400nm), UVB (275 330nm) and UVA+B (280 400nm) are used in the experiment. Through comparing the measuring results with different detectors under the same xenon lamp source, we discuss the difference between UVA, UVB and UVA+B on the basis of the spectrum of the xenon lamp and the response curve of the detectors. We also point out the possible error source, when use these detectors to calibrate the chamber.

  11. Stratified steady and unsteady two-phase flows between two parallel plates

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2006-01-01

    To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated

  12. Configuration interaction in charge exchange spectra of tin and xenon

    Science.gov (United States)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  13. Mechanism for transient migration of xenon in UO2

    International Nuclear Information System (INIS)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.

    2011-01-01

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO 2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.

  14. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  15. Matrix of response functions for xenon gamma-ray detector

    International Nuclear Information System (INIS)

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  16. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NARCIS (Netherlands)

    Reichard, S.; Lang, R.F.; McCabe, C.; Selvi, M.; Tamborra, I.

    2017-01-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the

  17. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Goo, Jin Mo; Kim, Jong Hyo; Park, Eun-Ah [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Jung, Jae-Woo; Park, Heung-Woo [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of); Cho, Sang-Heon [Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of)

    2012-11-15

    To investigate the dynamic changes in airways in response to methacholine and salbutamol inhalation and to correlate the xenon ventilation index on xenon-enhanced chest CTs in asthmatics. Thirty-one non-smokers (6 normal, 25 asthmatics) underwent xenon-enhanced chest CT and pulmonary function tests. Images were obtained at three stages (basal state, after methacholine inhalation and after salbutamol inhalation), and the total xenon ventilation index (TXVI) as well as airway values were measured and calculated. The repeated measures ANOVA and Spearman's correlation coefficient were used for statistical analysis. TXVI in the normal group did not significantly change (P > 0.05) with methacholine and salbutamol. For asthmatics, however, the TXVI significantly decreased after methacholine inhalation and increased after salbutamol inhalation (P < 0.05). Of the airway parameters, the airway inner area (IA) significantly increased after salbutamol inhalation in all airways (P < 0.01) in asthmatics. Airway IA, wall thickness and wall area percentage did not significantly decrease after methacholine inhalation (P > 0.05). IA of the large airways was well correlated with basal TXVI, FEV{sub 1} and FVC (P < 0.05). Airway IA is the most reliable parameter for reflecting the dynamic changes after methacholine and salbutamol inhalation, and correlates well with TXVI in asthmatics on xenon-enhanced CT. (orig.)

  18. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min [Dept. of Radiology, Seoul National University College of Medicine and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  19. Collateral ventilation quantification using xenon-enhanced dynamic dual-energy CT: Differences between canine and swine models of bronchial occlusion

    International Nuclear Information System (INIS)

    Kim, Eun Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chng Min

    2015-01-01

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 +/- 5.0 Hounsfield units [HU] vs. -2.8 +/- 7.1 HU, p = 0.001; normalized percentage difference, -79.8 +/- 1.8% vs. -5.4 +/- 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  20. Optical measuring techniques and their application to two-phase and three-phase flows

    International Nuclear Information System (INIS)

    Liu Xiaozhi.

    1992-01-01

    First of all it is shown that by an optical system based on the Laser-Doppler technology, which uses a pair of cylindrical waves and two optical detectors, the particle size, speed and refractive index can be measured by means of the signal frequencies. The second optical method to characterize spherical particles in a multi-phase flow is an extended phase-Doppler system. By means of an additional pair of photodetectors it has been possible for the first time to measure the refractive index in addition to speed and particle size. The last part of the paper shows that by a special phase-Doppler anemometry system with only two detectors it is also possible to distinguish between reflecting and refractive particles. By means of such PDA system measurements were made in a gas-fluid-solid three-phase flow directed vertically upwards. (orig./DG) [de

  1. Zak Phase in Discrete-Time Quantum Walks

    OpenAIRE

    Puentes, G.; Santillán, O.

    2015-01-01

    We report on a simple scheme that may present a non-trivial geometric Zak phase ($\\Phi_{Zak}$) structure, which is based on a discrete-time quantum walk architecture. By detecting the Zak phase difference between two trajectories connecting adjacent Dirac points where the quasi-energy gap closes for opposite values of quasi-momentum ($k$), it is possible to identify geometric invariants. These geometric invariants correspond to $|\\Phi_{Zak}^{+(-)}-\\Phi_{Zak}^{-(+)}|=\\pi$ and $|\\Phi_{Zak}^{+(-...

  2. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  3. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  4. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    OpenAIRE

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a ...

  5. Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction

    Science.gov (United States)

    Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime

    2018-03-01

    Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.

  6. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  7. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  8. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    Science.gov (United States)

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  9. Modal analysis of temperature feedback in oscillations induced by xenon

    International Nuclear Information System (INIS)

    Passos, E.M. dos.

    1976-01-01

    The flux oscillations induced by Xenon distribution in homogeneous thermal reactors are studied treating the space dependence through the modal expansion technique and the stability limits against power oscillations and spatial oscillations are determined. The effect of the feedbacks due to Xenon and temperature coefficient on the linear stability of the free system is investigated employing several number of terms in the transient expansion, considering the various sizes of the reactor. The heat transfer model considered includes one term due to cooling proportional to the temperature. A PWR model reactor is utilized for numerical calculations. It is found that a slightly higher temperature feedback coefficient is necessary for stability against power oscillations when larger number of terms in the transient modal expansion is maintained. (author)

  10. Study of nonequilibrium dispersed two phase flow

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.

    1986-01-01

    Understanding the behavior of liquid droplets in a superheated steam environment is essential to the accurate prediction of nuclear fuel rod surface temperatures during the blowdown and reflood phase of a loss-of-coolant-accident (LOCA). In response to this need, this treatise presents several original and significant contributions to the field of thermofluid physics. The research contained herein presents a statistical derivation of the two-phase mass, momentum, and energy-conservation equations using a droplet continuity equation analogous to that used in the Kinetic Theory of Gases. Unlike the Eulerian volume and time-averaged conservation equations generally used to describe dispersed two-phase flow behavior, this statistical averaging approach results in an additional mass momentum or energy term in each of the respective conservation equations. Further, this study demonstrates that current definitions of the volumetric vapor generation rate used in the mass conservation equation are inappropriate results under certain circumstances. The mass conservation equation derived herein is used to obtain a new definition for the volumetric vapor-generation rate. Last, a simple two phase phenomenological model, based on the statistically averaged conservation equations, is presented and solved analytically. It is shown that the actual quality and vapor temperature, under these circumstances, depend on a single dimensionless group

  11. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Sakai, F.; Hata, T.; Oravez, W.T.; Timpe, G.M.; Deville, T.; Solomon, E.

    1988-08-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Llambda) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Llambda values to be normal, introducing the risk of systematic errors, because Llambda values differ throughout normal brain and may be altered by disease. Color-coded maps of Llambda and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 +- 7.7, for subcortical gray matter it was 50.3 +- 13.2 and for white matter it was 18.8 +- 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Llambda and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner.

  12. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  13. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    Science.gov (United States)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  14. Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region

    Science.gov (United States)

    Shibuya, Kengo; Saito, Haruo

    2018-05-01

    We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.

  15. Results from the 1 tonne*year Dark Matter Search with XENON1T

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for the mysterious Dark Matter in the Universe. The XENON1T experiment at LNGS is the world’s largest and most sensitive experiment for the direct detection of WIMPs via nuclear recoils. Details of the experiment and of the achieved unprecedented low background conditions will be covered and new results from a record exposure of 1 tonne x year will be presented for the first time.

  16. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  17. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  18. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  19. Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Takenaka, Daisuke; Kaminaga, Shigeo; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2018-02-01

    The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81m Kr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV 1 ) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. Multivariate logistic regression showed that %FEV 1 was significantly affected (r = 0.77, r 2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). Xenon-enhanced ADCT is more effective than 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.

  20. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  1. The behavior of xenon dynamic adsorption on granular activated carbon packed bed adsorber

    International Nuclear Information System (INIS)

    Chongyang Zhou; Shujuan Feng; Guoqing Zhou; Yuren Jin; Junfu Liang; Jingming Xu

    2011-01-01

    In order to retard radioxenon release into the atmosphere from nuclear power station or to sensitively monitor its concentration to ensure environmental and human safety, it is necessary to know the behavior of xenon dynamic adsorption on granular activated carbon pack bed adsorber. The quantities, including the dynamic adsorption coefficient (k d ), the amount of xenon adsorbed (q), the length of mass transfer zone (L MTZ ) and the length of the unused bed (LUB), used to describe the adsorption behavior, were sorted out and calculated. The factors, including xenon concentrations, pressures and temperatures, to affect these quantities were investigated. The results show that: (1) The values of k d and q decrease with increasing temperatures, but increase with increasing pressures, (2) The values of L MTZ and LUB increase with increasing temperatures or pressures, but are independent of concentrations. Knowledge of these quantities is very helpful for packed bed adsorber operation. (author)

  2. Cerebral blood flow mapping using stable xenon-enhanced CT in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    Numaguchi, Y.; Robinson, A.E.; Carey, J.E.

    1990-01-01

    The cerebral blood flow (CBF) of 25 patients with sickle cell cerebrovascular disease (SCCVD) was examined using a xenon-CT flow mapping method. Brain CT and MR findings were correlated with those of the xenon-CT flow studies. CBF defects on xenon-CT correlated reasonably well with the areas of cortical infarctions on the MR images, but in 27% of the cases, flow defects were slightly larger than the areas of infarctions on the MR images. In deep watershed or basal ganglia infarctions, abnormal CBF was noted about the cerebral cortex near infarctions in 72% of the patients, regardless of infarction sizes on the MR images. However, decreased CBF was recognized in 4 of the 9 children whose MR images were virtually normal. Thus, the extent of flow depletion cannot be predicted accurately by MR imaging alone. Xenon-CT flow mapping proved a safe and reliable procedure for evaluation of the CBF of patients with SCCVD. Although this study is preliminary, it may have a potential in selecting patients for hypertransfusion therapy, as a noninvasive test and for following children with SCCVD during their therapy. Careful correlation of results of CBF with those of MR imaging or of CT is important for objective interpretations of flow mapping images. (orig.)

  3. Regional study of ventilation with inhaled xenon 133 in children

    International Nuclear Information System (INIS)

    Gaultier, C.; Mensch, B.; Gerbeaux, J.

    1975-01-01

    A regional exploration of pulmonary ventilation in a population of 104 infants and children by a study of distribution and washout of xenon 133 inhaled with rebreathing is carried out. The results are expressed by photographs (gamma-camera) and time-activity curves. The indications for regional exploration were oriented by the existence on the straight X-ray film of a localised ventilation disorder (a hyperlucent area or an opacity). This study permitted physiopathological analysis and guided endobronchial examinations. The functional results obtained, complete and explain other methods of exploration of lung function by spirography, ventilatory mechanics, transthoracic electrical measurements and study of lung perfusion with technetium 99m [fr

  4. Random signal tomographical analysis of two-phase flow

    International Nuclear Information System (INIS)

    Han, P.; Wesser, U.

    1990-01-01

    This paper reports on radiation tomography which is a useful tool for studying the internal structures of two-phase flow. However, general tomography analysis gives only time-averaged results, hence much information is lost. As a result, it is sometimes difficult to identify the flow regime; for example, the time-averaged picture does not significantly change as an annual flow develops from a slug flow. A two-phase flow diagnostic technique based on random signal tomographical analysis is developed. It extracts more information by studying the statistical variation of the measured signal with time. Local statistical parameters, including mean value, variance, skewness and flatness etc., are reconstructed from the information obtained by a general tomography technique. More important information are provided by the results. Not only the void fraction can be easily calculated, but also the flow pattern can be identified more objectively and more accurately. The experimental setup is introduced. It consisted of a two-phase flow loop, an X-ray system, a fan-like five-beam detector system and a signal acquisition and processing system. In the experiment, for both horizontal and vertical test sections (aluminum and steel tube with Di/Do = 40/45 mm), different flow situations are realized by independently adjusting air and water mass flow. Through a glass tube connected with the test section, some typical flow patterns are visualized and used for comparing with the reconstruction results

  5. Interfacial area measurements in two-phase flow

    International Nuclear Information System (INIS)

    Veteau, J.-M.

    1979-08-01

    A thorough understanding of two-phase flow requires the accurate measurement of the time-averaged interfacial area per unit volume (also called the time-averaged integral specific area). The so-called 'specific area' can be estimated by several techniques described in the literature. These different methods are reviewed and the flow conditions which lead to a rigourous determination of the time-averaged integral specific area are clearly established. The probe technique, involving local measurements seems very attractive because of its large range of application [fr

  6. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  7. Phenomenological studies of two-phase flow processes for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.; Finsterle, S.; Persoff, P.; Oldenburg, C.

    1994-01-01

    The US civilian radioactive waste management program is unique in its focus on a site in the unsaturated zone, at Yucca Mountain, Nevada. Two-phase flow phenomena can also play an important role in repositories beneath the water table where gas is generated by corrosion, hydrolysis, and biological degradation of the waste packages. An integrated program has been initiated to enhance our understanding of two-phase flow behavior in fractured rock masses. The studies include two-phase (gas-liquid) flow experiments in laboratory specimens of natural rock fractures, analysis and modeling of heterogeneity and instability effects in two-phase flow, and design and interpretation of field experiments by means of numerical simulation. We present results that identify important aspects of two-phase flow behavior on different space and time scales which are relevant to nuclear waste disposal in both unsaturated and saturated formations

  8. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    Science.gov (United States)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  9. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Ivanov, V.L.; Fedotovich, G.V.; Anisenkov, A.V.; Grebenuk, A.A.; Mikhailov, K.Yu.; Kozyrev, A.A.; Shebalin, V.E.; Ruban, A.A.; Bashtovoy, N.S.

    2017-01-01

    This paper describes a procedure of particle identification with the liquid Xenon calorimeter of the CMD-3 detector currently being developed. The procedure uses the boosted decision tree classification method with specific energy losses of charged particles in the liquid Xenon calorimeter as input variables. The efficiency of the procedure is illustrated by an example of the measurement of the cross section of the process e + e − → K + K − in the center-of-mass energy range from 1.8 to 2.0 GeV.

  10. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Science.gov (United States)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  11. Modeling and numerical study of two phase flow

    International Nuclear Information System (INIS)

    Champmartin, A.

    2011-01-01

    This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr

  12. Numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow

    KAUST Repository

    Zhu, Guangpu

    2018-04-17

    In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.

  13. Numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow

    KAUST Repository

    Zhu, Guangpu; Kou, Jisheng; Sun, Shuyu; Yao, Jun; Li, Aifen

    2018-01-01

    In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.

  14. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  15. Heat capacity of xenon adsorbed in nanobundle grooves

    International Nuclear Information System (INIS)

    Chishko, K.A.; Sokolova, E.S.

    2016-01-01

    A model of one-dimensional real gas under external transverse force field is applied to interpret the experimentally observed thermodynamical properties of xenon deposited into groves on the surface of carbon nanobundles. This non-ideal gas model with pair interaction is not quite adequate to describe the dense adsorbates (especially at low temperature limit), but it makes possible to take into account easily the particle exchange between 1D adsorbate and 3D atmosphere which becomes an essential factor since intermediate (for xenon - of order 35 K) up to high (approx 100 K) temperatures. In this paper we treat the 1D real gas with only Lennard-Jones pair interaction, but at presence of exact equilibrium conditions on the atom numbers between low-dimensional adsorbate and three-dimensional atmosphere of the experimental cell. The low-temperature branch of the heat capacity has been fitted separately within the elastic atomic chain model to get the best agreement between theory and experiment in as wide as possible region just from zero temperature. The gas approximation is introduced from the temperatures where the chain heat capacity tends definitely to 1D equipartition law. In this case the principal parameters for both models can be chosen in such a way that the heat capacity C(T) of the chain goes continuously into the corresponding curve of the gas approximation. So, it seems to be expected that adequate interpretation for temperature dependences of the atomic adsorbate heat capacity can be obtained through a reasonable combination of 1D gas and phonon approaches. The principal parameters of the gas approximation (such a desorption energy) found from the fitting between theory and experiment for xenon heat capacity are in good agreement with corresponding data known in literature.

  16. Neon and xenon isotopes in MORB: Implications for the earth-atmosphere evolution

    International Nuclear Information System (INIS)

    Marty, B.

    1989-01-01

    The isotopic composition of neon and xenon measured in MORB glasses confirm significant deviations from atmospheric values. There are 1. 21 Ne excesses with are attributed to nucleogenic reactions in the mantle; 2. 20 Ne/ 22 Ne ratios higher than the air ratio interpreted as an evidence for the occurrence of solar-type Ne at depth; 3. 129 Xe and 131-136 Xe excesses, attributed to both extinct ( 129 I and 244 Pu) and present ( 238 U) radioactivities. Ne and Xe isotopic signatures in the mantle can hardly be explained in the framework of classical models for the atmospheric evolution (which postulate a mantle origin for atmospheric gases) and appeal for at least two sources of gases. Ne isotopic differences between air and MORB appear too large to be accounted for by any reasonable fractionation process in the mantle. They imply either fractionation of neon during hydrodynamic escape of a primary atmosphere or different degrees of mixing between primordial Ne components, which, in turn imply isolation of the surface reservoir (air) and deep reservoir (mantle) from the accretional period (except for mantle outgassing through volcanism, the contribution of which is 41% at best for 20 Ne). 129 I- 129 Xe, 244 Pu- 238 U- 136 Xe systematics for atmospheric and MORB-type xenon suggest that either atmospheric gases derived from a source whose formation was delayed (≥ 17 Ma) with respect to the mean accretion time of the mantle source and/or atmospheric gases and MORB-type gases derived from chemically distinct sources. These features are consistent with heterogeneous accretion models for the Earth. Volatile degassing was probably contemporaneous to accretional events, following impact degassing, and might have been most efficient during the late stages of Earth formation. (orig.)

  17. Research on one-dimensional two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi

    1988-10-01

    In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)

  18. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  19. Two-phase flow and cross-mixing measurements in a rod bundle

    International Nuclear Information System (INIS)

    Yloenen, A.; Prasser, H.-M.

    2011-01-01

    The wire-mesh sensor technique has been used for the first time to study two-phase flow and liquid mixing in a rod bundle. A dedicated test facility (SUBFLOW) was constructed at Paul Scherrer Institut (PSI) in a co-operation with the Swiss Federal Institute of Technology (ETH Zurich). Simultaneous injection of salt water as tracer and air bubbles can be used to quantify the enhancement of liquid mixing in two-phase flow when the results are compared with the single-phase mixing experiment with the same test parameters. The second aspect in the current experiments is the two-phase flow in bundle geometry. (author)

  20. Determination of xenon in irradiated nuclear fuel using a shielded electron microprobe

    International Nuclear Information System (INIS)

    Jenson, E.D.

    1983-06-01

    The technique described produces a semi-quantitative determination of the distribution of xenon present in a section of fuel pin along a predetermined line. The x-ray counting technique chosen is to drive the spectrometer over the peak in small increments, counting at each step, then to integrate the resulting data over the entire peak. Counting times are usually 10 sec at each step and there are 30 to 40 steps over a peak. Interferences and possible loss of Xe due to local heating are discussed. Comparison with independent analysis is presented

  1. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    International Nuclear Information System (INIS)

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Solomon, E.

    1988-01-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Lλ) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Lλ values to be normal, introducing the risk of systematic errors, because Lλ values differ throughout normal brain and may be altered by disease. Color-coded maps of Lλ and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 ± 7.7, for subcortical gray matter it was 50.3 ± 13.2 and for white matter it was 18.8 ± 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Lλ and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner. (orig.)

  2. Measurement of the xi-function of the continuum radiation of xenon plasmas under high pressure

    International Nuclear Information System (INIS)

    Stuck, D.

    1975-01-01

    The xi function of xenon was determined for the spectral region between 260 nm and 800 nm in dependence of pressure and temperature. Three arc currents (i 1 = 50 amp and i 2 = 150 amp, 1 atm; i 3 = 60 amp, 10 atm) and two pressures were applied. None of the existing theories gives the correct experimental values for the whole spectral region. (RW/AK) [de

  3. Synchrotron X-ray diffraction studies of phase transitions in physisorbed monolayers of rare gases on graphite

    International Nuclear Information System (INIS)

    Bohr, J.

    1984-01-01

    This study is an investigation of phase transition in monoatomic layers adsorbed on graphite. Such effects can be considered physical realizations of two-dimensional systems. The experimental technique used is synchrotron X-ray diffraction. Systems which have been investigated include the commensurate-incommensurate phase transition in krypton monolayer. By adjusting the spreading pressure in the krypton layer by means of a coadsorbent deuterium gas it has been unambiguously demonstrated that at low temperatures the phase transition is of first order. A melting study of incommensurate argon monolayers demonstrates an experimental verification of the possibility for having a continuous melting transition in two-dimensions. Mixtures of two-components have been investigated for their phases. No (chemical) order-disorder transition is seen. A discussion is given on this lack of a chemical order. This lack is utilized to study the commensurate-incommensurate phase transition driven by average particle size. Finally, a special low-temperature phase is identified in a xenon monlayer which is diluted with freon. (Auth.)

  4. Infrared matrix isolation and ab initio studies on isothiocyanic acid HNCS and its complexes with nitrogen and xenon

    International Nuclear Information System (INIS)

    Wierzejewska, Maria; Wieczorek, Robert

    2003-01-01

    The isothiocyanic acid HNCS (DNCS) and its complexes with nitrogen and xenon have been studied experimentally by FTIR matrix isolation technique and computationally with the use of ab initio calculations at the MP2 level. The spectra show that HNCS (DNCS) interacts specifically with nitrogen forming 1:1 hydrogen bonded complex in argon matrix while non-hydrogen bonded structure is probably formed in solid xenon. Two stable minima were localized on the potential energy surface. One of them involves an almost linear hydrogen bond from NH group of the acid molecule to nitrogen molecule lone pair (structure I) and has an interaction energy ΔE CP equal to -6.85 kJ/mol. The second structure (II) where the nitrogen molecule interacts with the sulfur atom of the HNCS was found to be weaker bound and is characterized by ΔE CP =-1.99 kJ/mol. A low energetic barrier of 5.86 kJ/mol between the structures I and II was found. Both experimental and theoretical results obtained for the Xe···HNCS system point to a structure with the NH group interacting with the xenon atom. An interaction energy ΔE CP for this complex is equal to -3.64 kJ/mol

  5. Interdiffusion of krypton and xenon in high-pressure helium

    International Nuclear Information System (INIS)

    Campana, R.J.; Jensen, D.D.; Epstein, B.D.; Hudson, R.G.; Baldwin, N.L.

    1980-01-01

    The interdiffusion of gaseous fission products in high-pressure helium is an important factor in the control of radioactivity in gas-cooled fast breeder reactors (GCFRs). As presently conceived, GCFRs use pressure-equalized and vented fuel in which fission gases released from the solid matrix oxide fuel are transported through the fuel rod interstices and internal fission product traps to the fuel assembly vents, where they are swept away to external traps and storage. Since the predominant transport process under steady-state operating conditions is interdiffusion of gaseous fission products in helium, the diffusion properties of krypton-helium and xenon-helium couples have been measured over the range of GCFR temperature and pressure conditions ( -1 ) and expected temperature dependence to the 1.66 power (Tsup(1.66)) at lower pressures and temperatures. Additional work is in progress to measure the behaviour of the krypton-helium and xenon-helium couples in GCFR fuel rod charcoal delay traps. (author)

  6. Comparison of the xenon-133 washout method with the microsphere method in dog brain perfusion studies

    International Nuclear Information System (INIS)

    Heikkitae, J.; Kettunen, R.; Ahonen, A.

    1982-01-01

    The validity of the Xenon-washout method in estimation of regional cerebral blood flow was tested against a radioactive microsphere method in anaesthetized dogs. The two compartmental model seemed not to be well suited for cerebral perfusion studies by Xe-washout method, although bi-exponential analysis of washout curves gave perfusion values correlating with the microsphere method but depending on calculation method

  7. Results from the first science run of the ZEPLIN-III dark matter search experiment

    International Nuclear Information System (INIS)

    Lebedenko, V. N.; Bewick, A.; Currie, A.; Davidge, D.; Dawson, J.; Horn, M.; Howard, A. S.; Jones, W. G.; Joshi, M.; Liubarsky, I.; Quenby, J. J.; Sumner, T. J.; Thorne, C.; Walker, R. J.; Araujo, H. M.; Edwards, B.; Barnes, E. J.; Ghag, C.; Murphy, A. St. J.; Scovell, P. R.

    2009-01-01

    The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12 kg two-phase xenon time-projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detector measures both scintillation and ionization produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron-recoil background signals down to ∼10 keV nuclear-recoil energy. An analysis of 847 kg·days of data acquired between February 27, 2008, and May 20, 2008, has excluded a WIMP-nucleon elastic scattering spin-independent cross section above 8.1x10 -8 pb at 60 GeVc -2 with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.

  8. Dense xenon nanoplasmas in intense laser fields

    International Nuclear Information System (INIS)

    Hilse, P.; Moll, M.; Schlanges, M.; Bornath, Th.

    2010-01-01

    Complete text of publication follows. One reason for the on-going interest in laser-cluster interactions is the efficient absorption of the radiation energy of near-infrared femtosecond laser pulses by clusters. Consequently, in laser-cluster experiments the emission of highly charged ions, very energetic electrons, higher harmonics, fast fragments as well at strong x-rays in the multi-keV range is observed. The cluster response is highly nonlinear. Different theoretical models and simulations indicate that resonant collective absorption plays a central role. The rapid expansion of irradiated clusters is essential as, at a certain time, the cluster reaches the density fulfilling the resonance condition. This can occur during a single pulse. A better control can be achieved by dual-pulse laser excitation with varying time delay between two pulses. A further optimization is possible by pulse shaping which is a modern tool in laser experiments. With pulse shaping, the dynamics of the system determined by heating, ionization and expansion can be specifically affected. For an understanding of the underlying physical processes in the dynamics of laser-cluster interaction, a theoretical description is presented using a genetic algorithm and basing on the relatively simple nanoplasma model. Recently, experiments as well as calculations were performed for silver clusters. Highly charged silver ions could be produced very efficiently with a pulse structure consisting of a smaller pre-pulse followed by a larger main pulse. The focus of the present contribution is on xenon clusters and their different behavior compared to metallic clusters as silver. Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft via SFB 652.

  9. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  10. Implementation of an expert system for xenon spatial control in pressurized-water reactors

    International Nuclear Information System (INIS)

    Chung, S.K.

    1988-01-01

    Control of the axial xenon oscillations is a knowledge- and experience-intensive activity for reactor operators. To aid reactor operators in the control of axial xenon oscillations, an advisory expert system was developed. A rule-based expert system shell, INSIGHT2+, was used to build the expert system which was interfaced with a microcomputer-based core control model of a pressurized-water reactor, graphic engine, and data base. A core control model described by one-group diffusion theory with moderator temperature and xenon feedbacks was used to develop heuristic control rules and to test the system. Full- and part-length control rods, boron concentration, and coolant inlet temperature were considered as control variables of the core control model. This expert system consists of a search space: the set of possible power level and power shape patterns. The search space was made by combining the following core state variables: the sign of relative power and axial offset (AO) error, sign of the rate of change of power level and AO, and magnitude of relative power and AO error

  11. Transition from linear to nonlinear sputtering of solid xenon

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    Self-sputtering of solid xenon has been studied with molecular dynamics simulations as a model system for the transition from dominantly linear to strongly nonlinear effects. The simulation covered the projectile energy range from 20 to 750 eV. Within a relatively narrow range from 30 to 250 e...

  12. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    International Nuclear Information System (INIS)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C.

    2013-01-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm ν = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m ββ involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely

  13. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  14. Synchronization effects in two coupled one-dimensional lattices of phase oscillators

    International Nuclear Information System (INIS)

    Pando L, Carlos L.

    2001-03-01

    We study synchronization effects in a model consisting of two identical unidirectionally coupled 1-D arrays of phase oscillators. The master array is in the spatio-temporal chaos regime and the coupling across the two arrays is not strong enough in order to reach complete synchronization. The time series of the distance between the arrays is the main object of our study and this shows on-off intermittency. We can approximate the dynamics of the aforementioned time series with that of a first-order Markov process with two symbols. This model can be implemented in arrays of phase-locked loops (PPL) and Josephson junctions. (author)

  15. Analysis of phase dynamics in two-phase flow using latticegas automata

    International Nuclear Information System (INIS)

    Ohashi, H.; Hashimoto, Y.; Tsumaya, A.; Chen, Y.; Akiyama, M.

    1998-01-01

    In this paper, we describe lattice gas automaton models appropriate for two-phase flow simulation and their applications to study various phase dynamics of two-fluid mixtures. Several algorithms are added to the original immiscible Lattice Gas model to adjust surface tension and to introduce density difference between two fluids. Surface tension is controlled by the collision rules an difference in density is due to nonlocal forces between automaton particles. We simulate the relative motion of the dispersed phase in another continuous fluid. Deformation and disintegration of rising drops are reproduced. The interaction between multiple drops is also observed in calculations. Furutre, we obtain the transition of the two-phase flow pattern from bubbly, slug to annular flow. Density difference of two phase is one of the key ingredients to generate the annular flow pattern

  16. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  17. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  18. Waiting Endurance Time Estimation of Electric Two-Wheelers at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Mei Huan

    2014-01-01

    Full Text Available The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders’ waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  19. Waiting endurance time estimation of electric two-wheelers at signalized intersections.

    Science.gov (United States)

    Huan, Mei; Yang, Xiao-bao

    2014-01-01

    The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders' waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  20. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    International Nuclear Information System (INIS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  1. Near-intrinsic energy resolution for 30–662 keV gamma rays in a high pressure xenon electroluminescent TPC

    International Nuclear Information System (INIS)

    Álvarez, V.; Borges, F.I.G.M.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Dias, T.H.V.T.; Díaz, J.

    2013-01-01

    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 136 Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7–20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT–DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ search

  2. Electron Impact Excitation Cross Sections of Xenon for Optical Plasma Diagnostic

    National Research Council Canada - National Science Library

    Srivastava, Rajesh

    2007-01-01

    In this project the researcher had taken up the calculation of xenon apparent emission-excitation cross sections for emission lines that have diagnostic value in the analysis of Xe-propelled electric thruster plasmas...

  3. Entropy analysis on non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Karwat, H.; Ruan, Y.Q.

    1995-01-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships

  4. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  5. WE-AB-202-07: Ventilation CT: Voxel-Level Comparison with Hyperpolarized Helium-3 & Xenon-129 MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, B; Marshall, H; Hughes, P; Stewart, N; Horn, F; Collier, G; Norquay, G; Hart, K; Swinscoe, J; Hatton, M; Wild, J; Ireland, R [University of Sheffield, Sheffield (United Kingdom)

    2016-06-15

    Purpose: To compare the spatial correlation of ventilation surrogates computed from inspiratory and expiratory breath-hold CT with hyperpolarized Helium-3 & Xenon-129 MRI in a cohort of lung cancer patients. Methods: 5 patients underwent expiration & inspiration breath-hold CT. Xenon-129 & {sup 1}H MRI were also acquired at the same inflation state as inspiratory CT. This was followed immediately by acquisition of Helium-3 & {sup 1}H MRI in the same breath and at the same inflation state as inspiratory CT. Expiration CT was deformably registered to inspiration CT for calculation of ventilation CT from voxel-wise differences in Hounsfield units. Inspiration CT and the Xenon-129’s corresponding anatomical {sup 1}H MRI were registered to Helium-3 MRI via the same-breath anatomical {sup 1}H MRI. This enabled direct comparison of CT ventilation with Helium-3 MRI & Xenon-129 MRI for the median values in corresponding regions of interest, ranging from finer to coarser in-plane dimensions of 10 by 10, 20 by 20, 30 by 30 and 40 by 40, located within the lungs as defined by the same-breath {sup 1}H MRI lung mask. Spearman coefficients were used to assess voxel-level correlation. Results: The median Spearman’s coefficients of ventilation CT with Helium-3 & Xenon-129 MRI for ROIs of 10 by 10, 20 by 20, 30 by 30 and 40 by 40 were 0.52, 0.56, 0.60 and 0.68 and 0.40, 0.42, 0.52 and 0.70, respectively. Conclusion: This work demonstrates a method of acquiring CT & hyperpolarized gas MRI (Helium-3 & Xenon-129 MRI) in similar breath-holds to enable direct spatial comparison of ventilation maps. Initial results show moderate correlation between ventilation CT & hyperpolarized gas MRI, improving for coarser regions which could be attributable to the inherent noise in CT intensity, non-ventilatory effects and registration errors at the voxel-level. Thus, it may be more beneficial to quantify ventilation at a more regional level.

  6. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil

    2016-01-01

    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  7. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    Science.gov (United States)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  8. Phase transitions in two dimensions

    International Nuclear Information System (INIS)

    Henderson, D.

    1980-01-01

    Although a two-dimensional solid with long-range translational order cannot existin the thermodynamic limit (N → ∞, V →∞, N/V finite) macroscopic samples of two-dimensional solids can exist. In this work, stability of the phase was determined by the usuar method of equating the pressure and chemical potential of the phases. (A.C.A.S.) [pt

  9. A comparison of the economics of xenon 127, xenon 133 and krypton 81m for routine ventilation imaging of the lungs

    International Nuclear Information System (INIS)

    Nimmo, M.J.; Merrick, M.V.; Millar, A.M.

    1985-01-01

    The authors have compared the cost of providing routine lung ventilation scintigraphy using 127 Xe with other radioactive gases in 100 patients. The physical properties of 127 Xe permit a logical imaging sequence where a ventilation study is only carried out if indicated by perfusion scintigraphy which is performed first. With 133 Xe, all patients must be ventilated prospectively, or a preselection carried out based on radiographic appearances at the time of imaging. This results in a greater number of ventilation studies than with 127 Xe. Despite the greater cost per study of 127 Xe, the overall cost of providing a routine diagnostic service with this gas is no more than that of using 133 Xe in selected patients. The cost of ventilating all patients prospectively with 133 Xe is considerably greater than using 127 Xe only when indicated by abnormal perfusion images. If ventilation imaging is to be available at all times, either isotope of xenon costs very much less than 81 Krsup(m). It is concluded that 127 Xe is the radiopharmaceutical of choice for routine lung ventilation scintigraphy. (author)

  10. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    Science.gov (United States)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  11. The Hip Fracture Surgery in Elderly Patients (HIPELD study: protocol for a randomized, multicenter controlled trial evaluating the effect of xenon on postoperative delirium in older patients undergoing hip fracture surgery

    Directory of Open Access Journals (Sweden)

    Coburn Mark

    2012-09-01

    Full Text Available Abstract Background Strategies to protect the brain from postoperative delirium (POD after hip fracture are urgently needed. The development of delirium often is associated with the loss of independence, poor functional recovery, and increased morbidity, as well as increases in length of hospital stay, discharges to nursing facilities, and healthcare costs. We hypothesize that xenon may reduce the burden of POD, (i by avoiding the need to provide anesthesia with a drug that targets the γ-amino-butyric acid (GABAA receptor and (ii through beneficial anesthetic and organ-protective effects. Methods and design An international, multicenter, phase 2, prospective, randomized, blinded, parallel group and controlled trial to evaluate the incidence of POD, diagnosed with the Confusion Assessment Method (CAM, in older patients undergoing hip fracture surgery under general anesthesia with xenon or sevoflurane, for a period of 4 days post surgery (primary outcome is planned. Secondary objectives are to compare the incidence of POD between xenon and sevoflurane, to evaluate the incidence of POD from day 5 post surgery until discharge from hospital, to determine the time to first POD diagnosis, to evaluate the duration of POD, to evaluate the evolution of the physiological status of the patients in the postoperative period, to evaluate the recovery parameters, to collect preliminary data to evaluate the economical impact of POD in the postoperative period and to collect safety data. Patients are eligible if they are older aged (≥ 75 years and assigned to a planned hip fracture surgery within 48 h after the hip fracture. Furthermore, patients need to be willing and able to complete the requirements of this study including the signature of the written informed consent. A total of 256 randomized patients in the 10 participating centers will be recruited, that is, 128 randomized patients in each of the 2 study groups (receiving either xenon or sevoflurane

  12. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    Science.gov (United States)

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  13. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  14. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  15. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

    International Nuclear Information System (INIS)

    Minato, Akihiko; Naitoh, Masanori

    1987-01-01

    A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

  16. Characterization of the two-phase Taylor Couette flow

    International Nuclear Information System (INIS)

    Mehel A; Gabillet B; Djeridi H

    2005-01-01

    The focus of the present study concerns the effects of a dispersed phase on the structure of a quasi periodic Couette Taylor flow. The two phase flow patterns are investigated experimentally for the Taylor number Ta=780. Small bubbles (0.035 times as small as the gap) are generated by agitation of the upper free surface. Larger bubbles (0.15 times as small as the gap) are produced by injection at the bottom of the apparatus associated with a pressure drop. Void fraction, bubble size and velocity are measured, as well as the azimuthal and axial velocity components of the liquid. A premature transition to turbulence is pointed out and discussed according to the bubble size and their localization in the gap. (authors)

  17. Parallel Computing Characteristics of Two-Phase Thermal-Hydraulics code, CUPID

    International Nuclear Information System (INIS)

    Lee, Jae Ryong; Yoon, Han Young

    2013-01-01

    Parallelized CUPID code has proved to be able to reproduce multi-dimensional thermal hydraulic analysis by validating with various conceptual problems and experimental data. In this paper, the characteristics of the parallelized CUPID code were investigated. Both single- and two phase simulation are taken into account. Since the scalability of a parallel simulation is known to be better for fine mesh system, two types of mesh system are considered. In addition, the dependency of the preconditioner for matrix solver was also compared. The scalability for the single-phase flow is better than that for two-phase flow due to the less numbers of iterations for solving pressure matrix. The CUPID code was investigated the parallel performance in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the interface cells. As increasing the number of mesh, the scalability is improved. For a given mesh, single-phase flow simulation with diagonal preconditioner shows the best speedup. However, for the two-phase flow simulation, the ILU preconditioner is recommended since it reduces the overall simulation time

  18. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    International Nuclear Information System (INIS)

    Fraser, I.S.; McCarron, G.; Hutton, B.; Macey, D.

    1987-01-01

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates

  19. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, I.S.; McCarron, G.; Hutton, B.; Macey, D.

    1987-01-01

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintained until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates.

  20. ZEPLIN-II limits on WIMP-nucelon interactions

    International Nuclear Information System (INIS)

    Alner, G. J.; Bungau, C.; Camanzi, B.; Durkin, T.; Edwards, B.; Lewin, J. D.; Luescher, R.; Preece, R. M.; Smith, N. J. T.; Smith, P. F.; Sumner, T. J.; Thorne, C.; Araujo, H. M.; Bewick, A.; Davidge, D.; Dawson, J.; Howard, A. S.; Jones, W. G.; Joshi, M.; Lebedenko, V. N.

    2009-01-01

    ZEPLIN II is a two-phase xenon detector designed to detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Following the first 31-day underground run in Boulby Mine, UK, the collaboration published dark matter limits in January 2007; the first such limits using two-phase xenon technology. We outline the key detector design, performance and results here.

  1. Scalar Aharonov–Bohm Phase in Ramsey Atom Interferometry under Time-Varying Potential

    Directory of Open Access Journals (Sweden)

    Atsuo Morinaga

    2016-08-01

    Full Text Available In a Ramsey atom interferometer excited by two electromagnetic fields, if atoms are under a time-varying scalar potential during the interrogation time, the phase of the Ramsey fringes shifts owing to the scalar Aharonov–Bohm effect. The phase shift was precisely examined using a Ramsey atom interferometer with a two-photon Raman transition under the second-order Zeeman potential, and a formula for the phase shift was derived. Using the derived formula, the frequency shift due to the scalar Aharonov–Bohm effect in the frequency standards utilizing the Ramsey atom interferometer was discussed.

  2. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  3. Reactor vessel and core two-phase flow ultrasonic densitometer

    International Nuclear Information System (INIS)

    Arave, A.E.

    1979-01-01

    A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia. Separate effects tests and two-phase flow tests have been conducted to characterize the detector. Tests show the detector can perform in a 343 0 C pressurized water reactor environment and measure the average density of the media surrounding the sensor

  4. Thermo-fluid dynamics of two-phase flow

    CERN Document Server

    Ishii, Mamoru; Ishii, Mamoru; Ishii, M

    2006-01-01

    Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.

  5. Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon

    OpenAIRE

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.

  6. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  7. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    Science.gov (United States)

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  8. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  9. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  10. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  11. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    Science.gov (United States)

    2016-09-14

    Pumping is provided by four single-stage cryogenic panels (single-stage cold heads at 25 K) and one 50 cm two stage cryogenic pump (12 K). This vacuum...test chamber has a mea- sured pumping speed of 36 kL/s on xenon. The Hall thruster used in this study is a medium power laboratory Hall effect...The first compo- nent passes through a krypton opto-galvanic cell and is terminated by a beam dump . The opto-galvanic cell current is capacitively

  12. Xenon spatial oscillation in nuclear power reactors:an analytical approach through non linear modal analysis

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2005-01-01

    It was proponed recently to apply an extension of Lyapunov's first method to the non-linear regime, known as non-linear modal analysis (NMA), to the study of space-time problems in nuclear reactor kinetics, nuclear power plant dynamics and nuclear power plant instrumentation and control(1). The present communication shows how to apply NMA to the study of Xenon spatial oscillations in large nuclear reactors. The set of non-linear modal equations derived by J. Lewins(2) for neutron flux, Xenon concentration and Iodine concentration are discussed, and a modified version of these equations is taken as a starting point. Using the methods of singular perturbation theory a slow manifold is constructed in the space of mode amplitudes. This allows the reduction of the original high dimensional dynamics to a low dimensional one. It is shown how the amplitudes of the first mode for neutron flux field, temperature field and concentrations of Xenon and Iodine fields can have a stable steady state value while the corresponding amplitudes of the second mode oscillates in a stable limit cycle. The extrapolated dimensions of the reactor's core are used as bifurcation parameters. Approximate analytical formulae are obtained for the critical values of this parameters( below which the onset of oscillations is produced), for the period and for the amplitudes of the above mentioned oscillations. These results are applied to the discussion of neutron flux and temperature excursions in critical locations of the reactor's core. The results of NMA can be validated from the results obtained applying suitable computer codes, using homogenization theory(3) to link the complex heterogeneous model of the codes with the simplified mathematical model used for NMA

  13. Synchrotron 4-dimensional imaging of two-phase flow through porous media.

    Science.gov (United States)

    Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A

    2016-01-01

    Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.

  14. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  15. Design of Solid Form Xenon-124 Target for Producing I-123 Radioisotope Using Computer Simulation Techniques

    International Nuclear Information System (INIS)

    Kamali Moghaddam, K.; Sadeghi, M.; Kakavand, T.; Shokri Bonab, S.

    2006-01-01

    Recently in Cyclotron and Nuclear Medicine Department of NRCAM, at Atomic Energy organization of Iran (AEOI), a system for producing 1-123 via Xe-124 gas target technology, has been constructed and installed. One of the major problems in this system is the highly expensive cost of the enriched Xenon-124 gas. Therefore, saving this gas inside the system is very important. Unfortunately, by accidental rupture of the window foil or bad function of O-rings, the whole Xenon gas will escape from the system immediately. In this paper, by using computer codes; ALICE91, SRIM and doing some calculations we are going to demonstrate our latest effort for feasibility study of producing I-123 with the above mentioned reactions, but using Xe-124 solid target instead. According to our suggested design, a conical shaped irradiation vessel made of copper with 1 mm thickness, 1 cm outlet diameter, 5 cm length and 12 deg. angle at summit can be fixed inside a liquid nitrogen housing chamber. The Xenon-124 gas will be sent to the inside of this very cold conical trap and eventually deposited on its surface in solid form. Our calculation shows that during bombardment with 17-28 MeV proton energy, the thickness of solidified Xenon layer will remain around .28 mm. Likewise; thermo-dynamical calculation shows that in order to prevent the evaporation of solidified Xenon, the maximum permissible proton beam current for this system should be less than 1.4 μA. According to these working conditions, the production yield of I-123 can be predicted to be around 150 mCi/μAh. (authors)

  16. Central upwind scheme for a compressible two-phase flow model.

    Science.gov (United States)

    Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  17. Central upwind scheme for a compressible two-phase flow model.

    Directory of Open Access Journals (Sweden)

    Munshoor Ahmed

    Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  18. Measurement of regional cerebral blood flow with the Xenon-133 inhalation procedure in patients with cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, A.

    1985-10-01

    Measurement of regional cerebral blood flow with inhalation of Xenon-133 and recording of regional clearance curves by stationary external detectors permits repeated estimation of bilateral cortical blood flow in resting position and after different activating procedures. Measurements can be performed on an outpatient basis, measurements in critical ill patients are possible as well. Compared to Xenon-133 single photon emission computerized tomography smaller doses can be used. Compared to Iodine-123 amphetamie SPECT actual flow calculation without arterial puncture is possible. Drawbacks of the technique are the two-dimensional imaging, unsufficient indication of the look through phenomenon and non-perfused tissue with zero-flow. However, measurement of rCBF with this technique are helpful in individual diagnosis of the following diseases: transient ischemic attacks with prolonged ischemia, communicating hydrocephalus with normal intracranial pressure, follow up studies in hemodilution, evaluation of patients with polyarterial vascular disease in respect to neurosurgical or vasculosurgical intervention, subarachnoid hemorrhage and head trauma. (orig.).

  19. A Complex Solar Coronal Jet with Two Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Priest, E. R., E-mail: chenjie@bao.ac.cn [Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.

  20. The x-ray emission spectra of multicharged xenon ions in a gas puff laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Dyakin, V.M.; Faenov, A.Ya. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation); Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland); Biemont, E. [Institut de Physique Nucleaire Experimentale, Universite de Liege, Liege (Belgium); Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Nilsen, J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Behar, E.; Doron, R.; Mandelbaum, P.; Schwob, J.L. [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem (Israel)

    1999-01-14

    Emission spectra of multicharged xenon ions produced by a laser gas puff are observed with high spectral resolution in the 8.5-9.5 and 17-19 A wavelength ranges. Three different theoretical methods are employed to obtain 3l-n'l'(n' = 4 to 10) wavelengths and Einstein coefficients for Ni-like Xe{sup 26+}. For the 3d-4p transitions, very good agreement is found between the experimental wavelengths and the various theoretical wavelengths. These accurate energy level measurements can be useful for studying the Ni-like xenon x-ray laser scheme. On the other hand, several intense spectral lines could not be identified as 3l-n'l' lines of Ni-like xenon, despite the very good agreement between the wavelengths and Einstein coefficients calculated for these transitions using the three different methods. (author)

  1. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao

    2014-01-01

    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  2. Numerical modeling of two-phase binary fluid mixing using mixed finite elements

    KAUST Repository

    Sun, Shuyu

    2012-07-27

    Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.

  3. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    International Nuclear Information System (INIS)

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2017-01-01

    Highlights: • Recent advances in hyperpolarized 129Xe MRI are reviewed. • Xenon MRI allows for functional imaging of ventilation, diffusion, and gas exchange. • Xenon’s unique gas exchange imaging capabilities are highlighted. • Applications to obstructive and restrictive lung diseases are presented. • These advances are ready for translation to clinical applications. - Abstract: In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium ( 3 He) and xenon ( 129 Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129 Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129 Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129 Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129 Xe MRI, and (4) propose clinical applications.

  4. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.

    Science.gov (United States)

    Rosendahl, S; Brown, E; Cristescu, I; Fieguth, A; Huhmann, C; Lebeda, O; Murra, M; Weinheimer, C

    2015-11-01

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive (85)Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive (83m)Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of (83m)Kr/Xe = 1.9 ⋅ 10(-15), demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  5. Qualitative behaviour of incompressible two-phase flows with phase ...

    Indian Academy of Sciences (India)

    Jan Prüss

    2017-11-07

    Nov 7, 2017 ... Qualitative behaviour of incompressible two-phase flows with phase ... Germany. 2Graduate School of Human and Environmental Studies, Kyoto University, ... Note that j is a dummy variable as it can be eliminated from the ...

  6. Results from the LUX dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus, E-mail: markus.horn@yale.edu [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Akerib, D.S [Case Western Reserve University, Dept. of Physics, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Araújo, H.M. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Bai, X. [South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City SD 57701 (United States); Bailey, A.J. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Balajthy, J. [University of Maryland, Dept. of Physics, College Park, MD 20742 (United States); Bernard, E. [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Bradley, A. [Case Western Reserve University, Dept. of Physics, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Byram, D. [University of South Dakota, Dept. of Physics, 414E Clark St., Vermillion, SD 57069 (United States); Cahn, S.B. [Yale University, Dept. of Physics, 217 Prospect St., New Haven CT 06511 (United States); Carmona-Benitez, M.C. [University of California Santa Barbara, Dept. of Physics, Santa Barbara, CA (United States); Chan, C.; Chapman, J.J. [Brown University, Dept. of Physics, 182 Hope St., Providence, RI 02912 (United States); Chiller, A.A.; Chiller, C. [University of South Dakota, Dept. of Physics, 414E Clark St., Vermillion, SD 57069 (United States); Currie, A. [Imperial College London, High Energy Physics, Blackett Laboratory, London SW7 2BZ (United Kingdom); Viveiros, L. de [LIP-Coimbra, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Dobi, A. [University of Maryland, Dept. of Physics, College Park, MD 20742 (United States); and others

    2015-06-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search.

  7. Results from the LUX dark matter experiment

    Science.gov (United States)

    Horn, Markus; Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hanhardt, M.; Haselschwardt, S.; Hertel, S. A.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O`Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.; LUX Collaboration

    2015-06-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search.

  8. Results from the LUX dark matter experiment

    International Nuclear Information System (INIS)

    Horn, Markus; Akerib, D.S; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S.B.; Carmona-Benitez, M.C.; Chan, C.; Chapman, J.J.; Chiller, A.A.; Chiller, C.; Currie, A.; Viveiros, L. de; Dobi, A.

    2015-01-01

    The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world's most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search

  9. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  10. Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gun; Dagdan, Banzragch [Hannam Univ., Daejeon (Korea, Republic of)

    2017-03-15

    Two-phase cross flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. The drag force acting on a tube bundle subjected to air/water flow is evaluated experimentally. The cylinders subjected to two-phase flow are arranged in a normal square array. The ratio of pitch to diameter is 1.35, and the diameter of the cylinder is 18 mm. The drag force along the flow direction on the tube bundles is measured to calculate the drag coefficient and the two-phase damping ratio. The two-phase damping ratios, given by the analytical model for a homogeneous two-phase flow, are compared with experimental results. The correlation factor between the frictional pressure drop and the hydraulic drag coefficient is determined from the experimental results. The factor is used to calculate the drag force analytically. It is found that with an increase in the mass flux, the drag force, and the drag coefficients are close to the results given by the homogeneous model. The result shows that the damping ratio can be calculated using the homogeneous model for bubbly flow of sufficiently large mass flux.

  11. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    Science.gov (United States)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  12. In situ measurements of krypton in xenon gas with a quadrupole mass spectrometer following a cold-trap at a temporarily reduced pumping speed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ethan; Rosendahl, Stephan; Huhmann, Christian; Kettling, Hans; Schlak, Martin; Weinheimer, Christian [Muenster Univ. (Germany). Inst. fuer Kernphysik

    2013-07-01

    Liquid xenon detectors have risen to be extremely competitive for dark matter and neutrinoless double-beta decay searches. In order to achieve the required sensitivity, backgrounds must be reduced substantially. One important background is the beta-decay of {sup 85}Kr, which constitutes a uniform internal background in liquid xenon detectors. Cryogenic distillation can be used to reduce the krypton concentration to acceptable levels, but gas diagnostics become incredibly difficult at these ultra-pure levels. A new method for measuring the concentration of krypton in xenon has been developed, expanding on the existing technique of a cold trap and a Residual Gas Analyzer (RGA). By using a liquid nitrogen cold trap, one can take advantage of the difference in vapor pressures of krypton in xenon to freeze most of the xenon gas while allowing the krypton to pass to the measurement chamber. Here, only a few milliliters of xenon is expended in the measurement, while achieving a sensitivity of sub ppb (parts per billion). The key change is the use of a butterfly valve to partially close the opening in front of the turbomolecular pump, thereby reducing the effective pumping speed and enhancing the RGA signal.

  13. Zero-G two phase flow regime modeling in adiabatic flow

    International Nuclear Information System (INIS)

    Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.

    1993-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data

  14. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  15. Determination of the ionisation potential of certain hydrocarbons in the liquid phase

    International Nuclear Information System (INIS)

    Casanovas, J.; Grob, R.; Brunet, G.; Sabattier, R.; Guelfucci, J.P.; Blanc, D.

    1978-01-01

    The first results obtained are presented on the determination of the ionisation potential of four alkanes (n-hexane, n-pentane, cyclopentane and trimethyl-2,2,4 pentane) in the liquid phase. In the gaseous phase, the ionisation potential values of these hydrocarbons are respectively 10.18 eV for n-hexane, 10.35 eV for n-pentane, 10.53 eV for cyclopentane and 9.86 eV for trimethyl-2,2,4 pentane. Consequently rare gas resonance lamps (krypton and Xenon) were made, sealed and excited by an ultra-high frequency wave, which emit photons in the energy field concerned, i.e. from 8.5 eV to 11eV. The energy of the photons emitted by these lamps is respectively 8.44 eV (100%) and 9.57 eV (2%) for xenon and 10.03 eV (100%) and 10.64 eV (5%) for krypton. From the extent of the induced ionisation currents and particularly the value of the ratio of the currents induced by the photons of the krypton and xenon lamps, a minimum value of the ionisation potential drop can be deduced compared with the gas phase of 0.61 eV for n-hexane, 0.78 eV for n-pentane, 0.96 eV for cyclopentane and a maximum value of 1.42 eV for trimethyl-2,2,4 pentane [fr

  16. XBWR, 1-D Xe Transients for BWR in Axial Geometry

    International Nuclear Information System (INIS)

    Forti, G.

    1980-01-01

    1 - Nature of the physical problem solved: 1-D xenon transients for BWRs in axial geometry. 2 - Method of solution: XBWR couples a two group neutron diffusion calculation in plane geometry with a two phase flow cooling channel calculation and the heat conduction in the typical fuel rod. The program allows following any given power time schedule, such as shut-down and restart, day-night power variation etc., while the reactor is being kept critical by control rod movement, variable poisoning of the core, or coolant flow recirculation rate. The xenon and iodine concentrations variation is evaluated pointwise (up to 100 points) by analytical solution for successive fixed time steps. At the end of each time step a new distribution of fluxes, power, voids and temperatures is obtained, which is consistent with the reactor critical condition as it is got by variation of the control parameter taking into account the feedbacks. The new flux distribution is used as input for xenon and iodine concentrations evolution in the next time step

  17. Simultaneous detection of xenon and krypton in equine plasma by gas chromatography-tandem mass spectrometry for doping control.

    Science.gov (United States)

    Kwok, Wai Him; Choi, Timmy L S; So, Pui-Kin; Yao, Zhong-Ping; Wan, Terence S M

    2017-02-01

    Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. ExB Measurements of a 200 W Xenon Hall Thruster (Preprint)

    National Research Council Canada - National Science Library

    Ekholm, Jared M; Hargus, Jr, William A

    2007-01-01

    Angularly resolved ion species fractions of Xe+1, Xe+2, and Xe+3 in a low power xenon Hall thruster Busek BHT-200 plume were measured using an ExB probe under a variety of thruster operating conditions and background pressures...

  19. Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing.

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T

    2014-04-15

    We present a new approach for obtaining significant speedup in the digital processing of extracting unwrapped phase profiles from off-axis digital holograms. The new technique digitally multiplexes two orthogonal off-axis holograms, where the digital reconstruction, including spatial filtering and two-dimensional phase unwrapping on a decreased number of pixels, can be performed on both holograms together, without redundant operations. Using this technique, we were able to reconstruct, for the first time to our knowledge, unwrapped phase profiles from off-axis holograms with 1 megapixel in more than 30 frames per second using a standard single-core personal computer on a MATLAB platform, without using graphic-processing-unit programming or parallel computing. This new technique is important for real-time quantitative visualization and measurements of highly dynamic samples and is applicable for a wide range of applications, including rapid biological cell imaging and real-time nondestructive testing. After comparing the speedups obtained by the new technique for holograms of various sizes, we present experimental results of real-time quantitative phase visualization of cells flowing rapidly through a microchannel.

  20. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-03-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics.

  1. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    International Nuclear Information System (INIS)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-01-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics

  2. DCXE, Time-Dependent Xe Diffusion in Non-Multiplying Slab

    International Nuclear Information System (INIS)

    Horikami, K.; Kawasaki, S.

    1969-01-01

    1 - Nature of physical problem solved: Programme DCXE was designed for the analysis of the diffusion phenomena of xenon in non-multiplying media (slab geometry) and solves the Fick's second diffusion equation with boundary conditions. Initial distribution of xenon in the media at time 0 and 0 value of distribution at both ends of media at any positive time. 2 - Method of solution: Difference approximation is used to solve Fick's second diffusion equation. Strict stability condition is chosen between time and spatial intervals

  3. DCXE, Time-Dependent Xe Diffusion in Non-Multiplying Slab

    Energy Technology Data Exchange (ETDEWEB)

    Horikami, K; Kawasaki, S [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1969-01-01

    1 - Nature of physical problem solved: Programme DCXE was designed for the analysis of the diffusion phenomena of xenon in non-multiplying media (slab geometry) and solves the Fick's second diffusion equation with boundary conditions. Initial distribution of xenon in the media at time 0 and 0 value of distribution at both ends of media at any positive time. 2 - Method of solution: Difference approximation is used to solve Fick's second diffusion equation. Strict stability condition is chosen between time and spatial intervals.

  4. Conception and synthesis of the new cryptophane for the applications in xenon NMR molecular imaging

    International Nuclear Information System (INIS)

    Gao, Bo

    2016-01-01

    Among all the imaging techniques, magnetic resonance imaging (MRI) offers several advantages owing to its low invasiveness, its harmlessness and its spatial in-depth resolution but suffers from poor sensitivity. To address this issue, different strategies were proposed, including the utilization of hyper-polarizable species such as "1"2"9Xe. Xenon is an inert gas with a polarizable electronic cloud which leads to an extreme sensitivity to its chemical environment. Its capacity of being hyper-polarized makes it possible to obtain a significant gain of sensitivity. Nevertheless, xenon has no specificity to any biological target therefore it needs to be encapsulated and vectorized. Different molecular cages were proposed and we are particularly interested in cryptophane which is one of the best candidates for xenon encapsulation. In this context, the objective of this thesis is to design new cryptophanes which can be used as molecular platforms to construct novel "1"2"9Xe MRI biosensors usable for in vivo imaging. To meet this demand, these cryptophanes should be mono-functionalizable and enough soluble in water. In this thesis, the polyethylene glycol (PEG) group is used to improve the poor solubility of the hydrophobic molecular cage. And there is a systematic discussion of how to break the symmetry of cryptophanes and different strategies were attempted to synthesize mono-functionalized cryptophanes. As a result, several PEGylated mono-functionalized cryptophanes were obtained and their properties for encapsulating xenon were tested [fr

  5. Communication: electron transfer mediated decay enabled by spin-orbit interaction in small krypton/xenon clusters.

    Science.gov (United States)

    Zobel, J Patrick; Kryzhevoi, Nikolai V; Pernpointner, Markus

    2014-04-28

    In this work we study the influence of relativistic effects, in particular spin-orbit coupling, on electronic decay processes in KrXe2 clusters of various geometries. For the first time it is shown that inclusion of spin-orbit coupling has decisive influence on the accessibility of a specific decay pathway in these clusters. The radiationless relaxation process is initiated by a Kr 4s ionization followed by an electron transfer from xenon to krypton and a final second ionization of the system. We demonstrate the existence of competing electronic decay pathways depending in a subtle way on the geometry and level of theory. For our calculations a fully relativistic framework was employed where omission of spin-orbit coupling leads to closing of two decay pathways. These findings stress the relevance of an adequate relativistic description for clusters with heavy elements and their fragmentation dynamics.

  6. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  7. Interfacial structures in downward two-phase bubbly flow

    International Nuclear Information System (INIS)

    Paranjape, S.S.; Kim, S.; Ishii, M.; Kelly, J.

    2003-01-01

    Downward two-phase flow was studied considering its significance in view of Light Water Reactor Accidents (LWR) such as Loss of Heat Sink (LOHS) by feed water loss or secondary pipe break. The flow studied, was an adiabatic, air-water, co-current, vertically downward two-phase flow. The experimental test sections had internal hydraulic diameters of 25.4 mm and 50.8 mm. Flow regime map was obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology to minimize the subjective judgment in determining the flow regimes. A four sensor conductivity probe was used to measure the local two phase flow parameters, which characterize the interfacial structures. The local time averaged two-phase flow parameters measured were: void fraction (α), interfacial area concentration (a i ), bubble velocity (v g ), and Sauter mean diameter (D Sm ). The flow conditions were from the bubbly flow regime. The local profiles of these parameters as well as their axial development revealed the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provided a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along the flow field. An interfacial area transport equation was developed for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration were compared with those predicted by the interfacial area transport model. (author)

  8. SPALAX new generation: New process design for a more efficient xenon production system for the CTBT noble gas network.

    Science.gov (United States)

    Topin, Sylvain; Greau, Claire; Deliere, Ludovic; Hovesepian, Alexandre; Taffary, Thomas; Le Petit, Gilbert; Douysset, Guilhem; Moulin, Christophe

    2015-11-01

    The SPALAX (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon) is one of the systems used in the International Monitoring System of the Comprehensive Nuclear Test Ban Treaty (CTBT) to detect radioactive xenon releases following a nuclear explosion. Approximately 10 years after the industrialization of the first system, the CEA has developed the SPALAX New Generation, SPALAX-NG, with the aim of increasing the global sensitivity and reducing the overall size of the system. A major breakthrough has been obtained by improving the sampling stage and the purification/concentration stage. The sampling stage evolution consists of increasing the sampling capacity and improving the gas treatment efficiency across new permeation membranes, leading to an increase in the xenon production capacity by a factor of 2-3. The purification/concentration stage evolution consists of using a new adsorbent Ag@ZSM-5 (or Ag-PZ2-25) with a much larger xenon retention capacity than activated charcoal, enabling a significant reduction in the overall size of this stage. The energy consumption of the system is similar to that of the current SPALAX system. The SPALAX-NG process is able to produce samples of almost 7 cm(3) of xenon every 12 h, making it the most productive xenon process among the IMS systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation into coadsorption of krypton, xenon and water vapor from nuclear power plant gaseous wastes

    International Nuclear Information System (INIS)

    Nakhutin, I.E.; Ochkin, D.V.; Tret'yak, S.A.

    1980-01-01

    Coadsorption of steam, crypton and xenon out of air by CKT-6A activated carbon under equilibrium conditions at different temperature and out of nitrogen flow by the zeolites of NaA, NaX, CaA, CaX, NaM type, ''Molecular sieves 4A'' polish zeolite, KCM silica gel, A-1 alumina gel, CKT-3 activated carbon under dynamic conditions at room temperature was investigated. A considerable moisture effect during the noble gases adsorption by the activated carbon has been revealed. A relative gas humidity in a radiochromatography system where the activated carbon is used must not exceed a value at which polymolecular adsorption begins. The NaA domestic zeolite and ''Molecular sieves 4A'' polish zeolite can be recommended for drying gas in NPP gas cleaning systems. These zeolites have considerable moisture capacity and good dynamic properties: their moisture capacity has a relatively weak dependence on temperature; adsorbents practically do not adsorb crypton and xenon, which is of great importance when equipping the devices with the biological protection. A linear dependence of noble gas passage time through a layer can be practically used to determine an adsorbent poisoning degree [ru

  10. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    International Nuclear Information System (INIS)

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W. Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Stanford U., Phys. Dept.; Applied Plastics Technology, Bristol; Neuchatel U.; SLAC; Colorado State U.; Laurentian U.; Carleton U.; Alabama U.; Moscow, ITEP

    2007-01-01

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector

  11. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    Directory of Open Access Journals (Sweden)

    Mergheni Ali Mohamed

    2008-01-01

    Full Text Available For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .

  12. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  13. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  14. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  15. Numerical simulation of transient, adiabatic, two-dimensional two-phase flow using the two-fluid model

    International Nuclear Information System (INIS)

    Neves Conti, T. das.

    1983-01-01

    A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt

  16. Effect of Cesium and Xenon Seeding in Negative Hydrogen Ion Sources

    International Nuclear Information System (INIS)

    Bacal, M.; Brunteau, A.M.; Deniset, C.; Elizarov, L.I.; Sube, F.; Tontegode, A.Y.; Whealton, J.H.

    1999-01-01

    It is well known that cesium seeding in volume hydrogen negative ion sources leads to a large reduction of the extracted electron current and in some cases to the enhancement of the negative ion current. The cooling of the electrons due to the addition of this heavy impurity was proposed as a possible cause of the mentioned observations. In order to verify this assumption, the authors seeded the hydrogen plasma with xenon, which has an atomic weight almost equal to that of cesium. The plasma properties were studied in the extraction region of the negative ion source Camembert III using a cylindrical electrostatic probe while the negative ion relative density was studied using laser photodetachment. It is shown that the xenon mixing does not enhance the negative ion density and leads to the increase of the electron density, while the cesium seeding reduces the electron density

  17. [Effects of xenon and krypton-containing breathing mixtures on clinical and biochemical blood indices in animals].

    Science.gov (United States)

    Kussmaul', A R; Bogacheva, M A; Shkurat, T P; Pavlov, B N

    2007-01-01

    Effects of 24-hr breathing air mixtures containing xenon (XBM) and krypton (KBM) were compared in terms of hormonal status, and blood biochemical indices and morphology in laboratory animals. Some changes observed in blood and hormone indices could be a nonspecific adaptive response. Hence, we should elicit whether these effects are quickly reversible or long. For several indices krypton was a more favorable factor than xenon. However, some of its effects invite to delve into effects of different krypton concentrations on organism.

  18. Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance

    International Nuclear Information System (INIS)

    Nazri Dagang Ahmad; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi

    2009-01-01

    Since there is much concern about environmental preservation, the authors have paid attention to the uses of mercury in lighting application. They have focused on the application of the xenon low-pressure inductively coupled plasma (ICP) discharge in developing cylindrical type mercury-free light sources. ICP can be operated at low filling gas pressures and demonstrates significant potential in producing high density plasma. Xenon pressure was varied from 0.1 to 100 Torr and the lamp luminance was measured. The gas pressure dependence shows an increase in luminance at pressures below 1 Torr. In order to clarify this behaviour, measurement of plasma parameters was carried out using the double probe method and its relation to lamp luminance is discussed. As the gas pressure is decreased (from 1 to 0.01 Torr), the electron temperature increases while the electron density decreases while at the same time the lamp luminance increases. There are several factors that are believed to contribute to the increase in luminance in the very low pressure region. Increases in luminance are considered to be due to the electron-ion recombination process which brings a strong recombination radiation in continuum in the visible region and also due to the effect of stochastic heating.

  19. Remediation in clay using two-phase vacuum extraction

    International Nuclear Information System (INIS)

    Lindhult, E.C.; Tarsavage, J.M.; Foukaris, K.A.

    1995-01-01

    Soil and groundwater contamination in a tight clay usually requires costly and/or time consuming remediation, due to the inherently low hydraulic conductivity of the soil. However, Dames and Moore is successfully using an innovative, cost-effective two-phase vacuum extraction (VE) technology at a former gasoline service station. Dramatic decreases in BTEX concentrations in onsite and downgradient monitoring wells are apparent

  20. Triple Arterial Phase MR Imaging with Gadoxetic Acid Using a Combination of Contrast Enhanced Time Robust Angiography, Keyhole, and Viewsharing Techniques and Two-Dimensional Parallel Imaging in Comparison with Conventional Single Arterial Phase

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hee [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03087 (Korea, Republic of); Lee, Jeong Min [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03087 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03087 (Korea, Republic of); Yu, Mi Hye [Department of Radiology, Konkuk University Medical Center, Seoul 05030 (Korea, Republic of); Kim, Eun Ju [Philips Healthcare Korea, Seoul 04342 (Korea, Republic of); Han, Joon Koo [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03087 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03087 (Korea, Republic of)

    2016-11-01

    To determine whether triple arterial phase acquisition via a combination of Contrast Enhanced Time Robust Angiography, keyhole, temporal viewsharing and parallel imaging can improve arterial phase acquisition with higher spatial resolution than single arterial phase gadoxetic-acid enhanced magnetic resonance imaging (MRI). Informed consent was waived for this retrospective study by our Institutional Review Board. In 752 consecutive patients who underwent gadoxetic acid-enhanced liver MRI, either single (n = 587) or triple (n = 165) arterial phases was obtained in a single breath-hold under MR fluoroscopy guidance. Arterial phase timing was assessed, and the degree of motion was rated on a four-point scale. The percentage of patients achieving the late arterial phase without significant motion was compared between the two methods using the χ{sup 2} test. The late arterial phase was captured at least once in 96.4% (159/165) of the triple arterial phase group and in 84.2% (494/587) of the single arterial phase group (p < 0.001). Significant motion artifacts (score ≤ 2) were observed in 13.3% (22/165), 1.2% (2/165), 4.8% (8/165) on 1st, 2nd, and 3rd scans of triple arterial phase acquisitions and 6.0% (35/587) of single phase acquisitions. Thus, the late arterial phase without significant motion artifacts was captured in 96.4% (159/165) of the triple arterial phase group and in 79.9% (469/587) of the single arterial phase group (p < 0.001). Triple arterial phase imaging may reliably provide adequate arterial phase imaging for gadoxetic acid-enhanced liver MRI.