WorldWideScience

Sample records for two-phase time-averaged velocities

  1. Critical transport velocity in two-phase, horizontal pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))

    1991-02-01

    This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.

  2. Velocity and energy relaxation in two-phase flows

    CERN Document Server

    Meyapin, Yannick; Gisclon, Marguerite

    2009-01-01

    In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...

  3. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  4. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Mishima, K. [Kyoto Univ. Kumatori, Research Reactor Institute, Osaka (Japan); Tobita, Y.; Suzuki, T. [O-arai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation (Japan); Matsubayashi, M. [Japan Atomic Energy Institute, Tokai Research Establishment (Japan)

    2001-07-01

    Neutron radiography and PIV (Particle Image Velocimetry) techniques were applied to measurements of velocity field in gas-liquid metal two-phase flow. Visualization and measurements of two-phase flow were conducted using molten lead bismuth and nitrogen gas as working fluids and particles made of gold-cadmium (AuCd{sub 3}) inter-metallic alloy were employed as the tracer. Discrimination method between bubble and tracer images in two-phase flow was developed based on the {sigma}-scaling method. Time-averaged liquid velocity fields, gas velocity fields and void profile were calculated from discriminated images, respectively. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  5. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-10-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, which constitute alpine rock walls, has been denied in prior studies. These studies explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no significant velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimetre-large low-porosity (< 10% metamorphic, magmatic and sedimentary rock samples from permafrost sites with a natural texture (> 100 micro-fissures from 25 °C to −15 °C in 0.3 °C increments close to the freezing point. When freezing, p-wave velocity increases by 11–166% perpendicular to cleavage/bedding and equivalent to a matrix velocity increase from 11–200% coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's two-phase-equation implementing changes in matrix velocity dependent on lithology and demonstrate the general applicability of refraction seismics to differentiate frozen and unfrozen low-porosity bedrock.

  6. Measurement and simulation of the two-phase velocity correlation in sudden-expansion gas-particle flows

    Institute of Scientific and Technical Information of China (English)

    Li-Xing Zhou; Yang Liu; Yi Xu

    2011-01-01

    In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer(PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes(RANS)model and a large-eddy simulation(LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups(30μm,50μm,and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles.From the measurements,theoretical analysis,and simulation,it is found that the two-phase velocity correlation of sudden-expansion flows,like that of jet flows,is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements,theoretical analysis,and numerical simulation all lead to the above-stated conclusions. Quantitatively,the results of the LES are better than those of the RANS model.

  7. Estimation of flow velocity for a debris flow via the two-phase fluid model

    Directory of Open Access Journals (Sweden)

    S. Guo

    2014-06-01

    Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.

  8. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model

    Directory of Open Access Journals (Sweden)

    D. Draebing

    2012-02-01

    Full Text Available P-wave refraction seismics is a key method in permafrost research but its applicability to low-porosity rocks, that constitute alpine rock walls, has been denied in prior studies. These explain p-wave velocity changes in freezing rocks exclusively due to changing velocities of pore infill, i.e. water, air and ice. In existing models, no velocity increase is expected for low-porosity bedrock. We postulate, that mixing laws apply for high-porosity rocks, but freezing in confined space in low-porosity bedrock also alters physical rock matrix properties. In the laboratory, we measured p-wave velocities of 22 decimeter-large low-porosity (<6 % metamorphic, magmatic and sedimentary permafrost rock samples with a natural texture (>100 micro-fissures from 25 °C to –15 °C in 0.3 °C increments close to the freezing point. P-wave velocity increases by 7–78 % when freezing parallel to cleavage/bedding and matrix velocity increases from 5–59 % coincident to an anisotropy decrease in most samples. The expansion of rigid bedrock upon freezing is restricted and ice pressure will increase matrix velocity and decrease anisotropy while changing velocities of the pore infill are insignificant. Here, we present a modified Timur's 2-phase equation implementing changes in matrix velocity dependent on lithology and demonstrate the physical basis for refraction seismics in low-porosity bedrock.

  9. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  10. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  11. Drop volumes and terminal velocities in aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhavasar, P. M.; Jafarabad, K. R.; Pandit, A. B.; Sawant, S. B.; Joshi, J. B. [Bombay Univ. (India). Dept. of Chemical Technology

    1996-12-01

    Two phase aqueous extraction techniques employed in liquid-liquid extraction equipment such as spray columns and plate columns were studied, with particular attention to predicting drop sizes prior to jetting, and their terminal velocity. In the particular system studied, the values obtained by conventional models as found in the literature were considered inapplicable. A generalised model was constructed using video photographic measurements, and a correlation was developed for the terminal velocities of the drops in aqueous two-phase systems. This simplified model was found to be successful in expressing the terminal rise/fall velocities of droplets covering a specific range of Morton numbers (representing physical properties) from 0.00211 to 11050 and Eotvos numbers (representative of drop size) from 0.091 to 288. 22 refs., 6 figs.

  12. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  13. Verification and validation studies of the time-averaged velocity field in the very near-wake of a finite elliptical cylinder

    Science.gov (United States)

    Flynn, Michael R.; Eisner, Alfred D.

    2004-04-01

    This paper presents verification and validation results for the time-averaged, three-dimensional velocity field immediately downstream of a finite elliptic cylinder at a Reynolds number of 1.35 × 10 4. Numerical simulations were performed with the finite element package, Fidap, using the steady state, standard k-epsilon model. The ratio of the cylinder height to the major axis of the elliptical cross section is 5.0; the aspect ratio of the cross section is 0.5625. This particular geometry is selected as a crude surrogate for the human form in consideration of further applied occupational and environmental health studies. Predictions of the velocity and turbulence kinetic energy fields in the very near-wake are compared to measurements taken in a wind tunnel using laser Doppler anemometry. Results show that at all locations where a reliable grid convergence index can be calculated there is not a demonstrable difference between simulated and measured values. The overall topology of the time-averaged flow field is reasonably well predicted, although the simulated near-wake is narrower than the measured one.

  14. Velocity measurements in the liquid metal flow driven by a two-phase inductor

    CERN Document Server

    Pedcenko, A; Priede, J; Gerbeth, G; Hermann, R

    2013-01-01

    We present the results of velocity measurements obtained by ultrasonic Doppler velocimetry and local potential probes in the flow of GaInSn eutectic melt driven by a two-phase inductor in a cylindrical container. This type of flow is expected in a recent modification to the floating zone technique for the growth of small-diameter single intermetallic compound crystals. We show that the flow structure can be changed from the typical two toroidal vortices to a single vortex by increasing the phase shift between the currents in the two coils from 0 to 90 degrees. The latter configuration is thought to be favourable for the growth of single crystals. The flow is also computed numerically and a reasonable agreement with the experimental results is found. The obtained results may be useful for the design of combined two-phase electromagnetic stirrers and induction heaters for metal or semiconductor melts.

  15. Comparison between Normal and HeII Two-phase Flows at High Vapor Velocities

    CERN Document Server

    Van Weelderen, R; Rousset, B; Thibault, P; Wolf, P E

    2006-01-01

    We present results on helium co-current two-phase flow experiments at high vapor velocity obtained with the use of the new CEA/SBT 400 W/1.8 K refrigerator [1]. For vapor velocities larger than typically 4 m/s, a mist of droplets develops from the bulk liquid interface accompanied by an increase in heat transfer at the wall. Experiments were conducted in a 10 m long, 40 mm I.D. straight pipe, both in helium II and in helium I to compare these two situations. The respective roles of vapor density, vapor velocity and liquid level on atomization were systematically investigated. Light scattering experiments were performed to measure sizes, velocities and interfacial areas of droplets in a complete cross section. In-house-made heat transfer sensors located in the mist allowed us to deduce an upper value of the extra cooling power of the dispersed phase. The practical interest of atomized flow for cooling large cryogenic facilities is discussed by considering the balance between increase in heat transfer and press...

  16. Review of critical flow rate, propagation of pressure pulse, and sonic velocity in two-phase media

    Science.gov (United States)

    Hsu, Y.

    1972-01-01

    For single-phase media, the critical discharge velocity, the sonic velocity, and the pressure pulse propagation velocity can be expressed in the same form by assuming isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid due to the existence of interfacial transports of momentum, heat, and mass. Thus, the three velocities should be treated differently and separately for each particular condition, taking into account the various transport processes involved under that condition. Various attempts are reviewed to predict the critical discharge rate or the propagation velocities by considering slip ratio (momentum change), evaporation (mass and heat transport), flow pattern, etc. Experimental data were compared with predictions based on various theorems. The importance is stressed of the time required to achieve equilibrium as compared with the time available during the process, for example, of passing a pressure pulse.

  17. Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    魏文韫; 朱家骅; 夏素兰; 戴光清; 高旭东

    2002-01-01

    Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocity slipbetween gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) × 104 Pa. The relaxationtime corresponding to this transient process is in the range of 0.015-0.090 ms for the two-phase flow formed insidethe LJ and less than 0.5 ms outside the LJ. It demonstrates the unique performance of this system for application tofast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulationsof the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside theLJ. it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach numberdecreases. Due to compression by the shock wave at the end of the L J, the flow pattern becomes two dimensionaland viscous outside the LJ. Laser Doppler velocimeter (LDV) measurements of droplet velocities outside the LJ arein reasonably good agreement with the results of the simulation.

  18. Interfacial area, velocity and void fraction in two-phase slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Kojasoy, G. [Univ. of Wisconsin, Milwaukee, WI (United States); Riznic, J.R. [Atomic Energy Control Board, Ottawa (Canada)

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  19. A Two-Phase Low-velocity Outflow in the Seyfert 1 Galaxy Ark~564

    CERN Document Server

    Gupta, A; Krongold, Y; Nicastro, F

    2013-01-01

    The Seyfert 1 galaxy Ark 564 was observed with Chandra high energy transmission gratings for 250 ks. We present the high resolution X-ray spectrum that shows several associated absorption lines. The photoionization model requires two warm absorbers with two different ionization states (logU=0.39\\pm0.03 and logU=-0.99\\pm0.13), both with moderate outflow velocities (~100 km s^-1) and relatively low line of sight column densities (logNH=20.94 and 20.11 cm^-2). The high ionization phase produces absorption lines of OVII, OVIII, NeIX, NeX, MgXI, FeXVII and FeXVIII while the low ionization phase produces lines at lower energies (OVI & OVII). The pressure--temperature equilibrium curve for the Ark 564 absorber does not have the typical "S" shape, even if the metallicity is super-solar; as a result the two warm-absorber phases do not appear to be in pressure balance. This suggests that the continuum incident on the absorbing gas is perhaps different from the observed continuum. We also estimated the mass outflow ...

  20. Results from transcranial Doppler examination on children and adolescents with sickle cell disease and correlation between the time-averaged maximum mean velocity and hematological characteristics: a cross-sectional analytical study

    Directory of Open Access Journals (Sweden)

    Mary Hokazono

    Full Text Available CONTEXT AND OBJECTIVE: Transcranial Doppler (TCD detects stroke risk among children with sickle cell anemia (SCA. Our aim was to evaluate TCD findings in patients with different sickle cell disease (SCD genotypes and correlate the time-averaged maximum mean (TAMM velocity with hematological characteristics. DESIGN AND SETTING: Cross-sectional analytical study in the Pediatric Hematology sector, Universidade Federal de São Paulo. METHODS: 85 SCD patients of both sexes, aged 2-18 years, were evaluated, divided into: group I (62 patients with SCA/Sß0 thalassemia; and group II (23 patients with SC hemoglobinopathy/Sß+ thalassemia. TCD was performed and reviewed by a single investigator using Doppler ultrasonography with a 2 MHz transducer, in accordance with the Stroke Prevention Trial in Sickle Cell Anemia (STOP protocol. The hematological parameters evaluated were: hematocrit, hemoglobin, reticulocytes, leukocytes, platelets and fetal hemoglobin. Univariate analysis was performed and Pearson's coefficient was calculated for hematological parameters and TAMM velocities (P < 0.05. RESULTS: TAMM velocities were 137 ± 28 and 103 ± 19 cm/s in groups I and II, respectively, and correlated negatively with hematocrit and hemoglobin in group I. There was one abnormal result (1.6% and five conditional results (8.1% in group I. All results were normal in group II. Middle cerebral arteries were the only vessels affected. CONCLUSION: There was a low prevalence of abnormal Doppler results in patients with sickle-cell disease. Time-average maximum mean velocity was significantly different between the genotypes and correlated with hematological characteristics.

  1. Numerical simulation of the effect of void fraction and inlet velocity on two-phase turbulence in bubble-liquid flows

    Institute of Scientific and Technical Information of China (English)

    Lixing Zhou; Rongxian Li; Ruxu Du

    2006-01-01

    There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubble-liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.

  2. Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow

    Science.gov (United States)

    Zhao, An; Han, Yun-Feng; Ren, Ying-Yu; Zhai, Lu-Sheng; in, Ning-De

    2016-03-01

    Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.

  3. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  4. Calculation Analysis of Pressure Wave Velocity in Gas and Drilling Mud Two-Phase Fluid in Annulus during Drilling Operations

    Directory of Open Access Journals (Sweden)

    Yuanhua Lin

    2013-01-01

    Full Text Available Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.

  5. Measurement of Gas and Liquid Velocities in an Air-Water Two-Phase Flow using Cross-Correlation of Signals from a Double Senor Hot-Film Probe

    Energy Technology Data Exchange (ETDEWEB)

    B. Gurau; P. Vassalo; K. Keller

    2002-02-19

    Local gas and liquid velocities are measured by cross-correlating signals from a double sensor hot-film anemometer probe in pure water flow and air water two-phase flow. The gas phase velocity measured in two-phase flow agrees with velocity data obtained using high-speed video to within +/-5%. A turbulent structure, present in the liquid phase, allows a correlation to be taken, which is consistent with the expected velocity profiles in pure liquid flow. This turbulent structure is also present in the liquid phase of a two-phase flow system. Therefore, a similar technique can be applied to measure the local liquid velocity in a two-phase system, when conditions permit.

  6. Experimental study of two-phase fluid flow in two different porosity types of sandstone by P-wave velocity and electrical Impedance measurement

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.

    2015-12-01

    this study, we will discuss this mismatch by using fluid mechanical theory and numerical simulation of two-phase fluid flow in porous geological medium based on experimental results of two different types of sandstone.

  7. Asymptotic Time Averages and Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Muhammad El-Taha

    2016-01-01

    Full Text Available Consider an arbitrary nonnegative deterministic process (in a stochastic setting {X(t,  t≥0} is a fixed realization, i.e., sample-path of the underlying stochastic process with state space S=(-∞,∞. Using a sample-path approach, we give necessary and sufficient conditions for the long-run time average of a measurable function of process to be equal to the expectation taken with respect to the same measurable function of its long-run frequency distribution. The results are further extended to allow unrestricted parameter (time space. Examples are provided to show that our condition is not superfluous and that it is weaker than uniform integrability. The case of discrete-time processes is also considered. The relationship to previously known sufficient conditions, usually given in stochastic settings, will also be discussed. Our approach is applied to regenerative processes and an extension of a well-known result is given. For researchers interested in sample-path analysis, our results will give them the choice to work with the time average of a process or its frequency distribution function and go back and forth between the two under a mild condition.

  8. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe

    Directory of Open Access Journals (Sweden)

    Yeon-Gun Lee

    2017-05-01

    Full Text Available In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  9. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  10. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad

    2013-01-01

    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  11. 制冷剂汽液两相区音速的计算与分析%Calculation and Analysis of Sound Velocity in Vapor-liquid Two-phase Refrigerant Flow

    Institute of Scientific and Technical Information of China (English)

    王艳庭; 张华

    2011-01-01

    Sound velocity of fluid is important thermodynamic parameter. But viewing from the existing literature, there is a lack of sound velocity data. This paper presents the calculation of sound velocity for the adiabatic two-phase flow of refrigerant through capillary tube based on homogenous equilibrium model. According to the definition of sound velocity a=√δρ/δρ and Martin-Hou equation of state the sound velocity is obtained using the finite difference method. The sound velocities of three refrigerants, R22, R134a, R744, have been calculated in this paper. The calculation results have been validated by published experimental data and showed fair agreement with the experimental data with an error band of 4%. According to the calculated two-phase sound velocity data, the sonic curves were drawn in the pressure-enthalpy diagram. The data and curves show that the sound velocity increases with the entropy at the same pressure. From the triple point pressure sound velocity on the isentropic curve increases firstly and then decreases. Sound velocity on the isenthalpic curve decreases monotonically for R134a and R744. But the sound velocity of R22 increases firstly then decreases.%流体的音速是流体重要的热力学参数,从现有文献看,制冷剂两相区的音速数据缺乏.采用均相流模型,从马丁-侯状态方程出发,根据绝热音速的定义α=√(e)p/(e)pad,利用有限差分方法得到了常用的制冷剂R22、R134a、R744两相区的等熵绝热音速数据,并用文献中的两相区音速实验结果对其进行了验证,表明两者音速误差在4%以内.根据计算出的两相区音速数据,利用相关软件在lgp-h图里面绘制了等音速线,对两相区音速数据进行了分析讨论.数据显示相同压力下,随着熵值的增大,音速值逐渐变大;自三相点压力至饱和压力等熵线上的音速会出现先增大后减小的现象;等焓线上的音速,R134a、R744单调递减,R22先增大后减小.

  12. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.

    2013-10-10

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013

  13. Unbiased Cultural Transmission in Time-Averaged Archaeological Assemblages

    CERN Document Server

    Madsen, Mark E

    2012-01-01

    Unbiased models are foundational in the archaeological study of cultural transmission. Applications have as- sumed that archaeological data represent synchronic samples, despite the accretional nature of the archaeological record. I document the circumstances under which time-averaging alters the distribution of model predictions. Richness is inflated in long-duration assemblages, and evenness is "flattened" compared to unaveraged samples. Tests of neutrality, employed to differentiate biased and unbiased models, suffer serious problems with Type I error under time-averaging. Finally, the time-scale over which time-averaging alters predictions is determined by the mean trait lifetime, providing a way to evaluate the impact of these effects upon archaeological samples.

  14. Time averaging, ageing and delay analysis of financial time series

    Science.gov (United States)

    Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf

    2017-06-01

    We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.

  15. Multi-needle capacitance probe for non-conductive two-phase flows

    Science.gov (United States)

    Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.

    2016-07-01

    Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.

  16. Ensemble vs. time averages in financial time series analysis

    Science.gov (United States)

    Seemann, Lars; Hua, Jia-Chen; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2012-12-01

    Empirical analysis of financial time series suggests that the underlying stochastic dynamics are not only non-stationary, but also exhibit non-stationary increments. However, financial time series are commonly analyzed using the sliding interval technique that assumes stationary increments. We propose an alternative approach that is based on an ensemble over trading days. To determine the effects of time averaging techniques on analysis outcomes, we create an intraday activity model that exhibits periodic variable diffusion dynamics and we assess the model data using both ensemble and time averaging techniques. We find that ensemble averaging techniques detect the underlying dynamics correctly, whereas sliding intervals approaches fail. As many traded assets exhibit characteristic intraday volatility patterns, our work implies that ensemble averages approaches will yield new insight into the study of financial markets’ dynamics.

  17. Time averages, recurrence and transience in the stochastic replicator dynamics

    CERN Document Server

    Hofbauer, Josef; 10.1214/08-AAP577

    2009-01-01

    We investigate the long-run behavior of a stochastic replicator process, which describes game dynamics for a symmetric two-player game under aggregate shocks. We establish an averaging principle that relates time averages of the process and Nash equilibria of a suitably modified game. Furthermore, a sufficient condition for transience is given in terms of mixed equilibria and definiteness of the payoff matrix. We also present necessary and sufficient conditions for stochastic stability of pure equilibria.

  18. Recent advances in phase shifted time averaging and stroboscopic interferometry

    Science.gov (United States)

    Styk, Adam; Józwik, Michał

    2016-08-01

    Classical Time Averaging and Stroboscopic Interferometry are widely used for MEMS/MOEMS dynamic behavior investigations. Unfortunately both methods require an extensive measurement and data processing strategies in order to evaluate the information on maximum amplitude at a given load of vibrating object. In this paper the modified strategies of data processing in both techniques are introduced. These modifications allow for fast and reliable calculation of searched value, without additional complication of measurement systems. Through the paper the both approaches are discussed and experimentally verified.

  19. Forecasts of time averages with a numerical weather prediction model

    Science.gov (United States)

    Roads, J. O.

    1986-01-01

    Forecasts of time averages of 1-10 days in duration by an operational numerical weather prediction model are documented for the global 500 mb height field in spectral space. Error growth in very idealized models is described in order to anticipate various features of these forecasts and in order to anticipate what the results might be if forecasts longer than 10 days were carried out by present day numerical weather prediction models. The data set for this study is described, and the equilibrium spectra and error spectra are documented; then, the total error is documented. It is shown how forecasts can immediately be improved by removing the systematic error, by using statistical filters, and by ignoring forecasts beyond about a week. Temporal variations in the error field are also documented.

  20. Reynolds transport theorem for a two-phase flow

    Science.gov (United States)

    Collado, Francisco J.

    2007-01-01

    Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.

  1. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  2. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan

    2007-01-01

    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  3. Particle modulations to turbulence in two-phase round jets

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang

    2009-01-01

    The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.

  4. Off-Axis Orbits in Realistic Helical Wigglers Fixed Points and Time Averaged Dynamical Variables

    CERN Document Server

    ThomasDonohue, John

    2004-01-01

    Many years ago Fajans, Kirkpatrick and Bekefi studied off-axis orbits in a realistic helical wiggler, both experimentally and theoretically. They found that as the distance from the axis of symmetry to the guiding center increased, both the mean axial velocity and the precession frequency of the guiding center varied. . They proposed a clever semi-empirical model which yielded an excellent description of both these variations. We point out that a approximate model proposed by us several years ago can be made to predict these delicate effects correctly, provided we extend our truncated quadratic Hamiltonian to include appropriate cubic terms. We develop an argument similar to the virial theorem to compare time averaged and fixed-point values of dynamical variables. Illustrative comparisons of our model with numerical calculation are presented.

  5. 基于静电传感器气/固两相流流速互相关测量%Flow Velocity Measurements of Gas-Solid Two Phase Flow With Electrostatic Sensors and Cross-Correlation Method

    Institute of Scientific and Technical Information of China (English)

    阚哲; 邵富群; 李庆华

    2012-01-01

    The probe shielding design provides a guarantee to measured signals, and this increases the similarity degree of the two measurement signals during the electrostatic sensor design. Meanwhile the choice of PVC tube can also effectively increase the sensitivity of the probe. The question of electrostatic shielding was focused on, and improving the shielding effect is to increase the similarity of the two measurement signals and improve velocity precision. With the shielding experiments it can explain the shielding design is very important to the probe making, and it obtains better measuring results. In the experiments the principle of cross-correlation noise immunity are probed, and the flow velocity was measured with same high at different radial position. Under the guidance of the cross - correlation theory, electrostatic theory and experiment, the experimental device has good repeatability and high measurement accuracy, and repeatability error is in + 2%. Within 2~7 m/s the flow velocity measuring experiment is done, and measurement results of the repeatability error are less than +2%.%在静电传感器电极设计中,电极屏蔽设计可有效获取被测信号的保障,并可以提高互相关速度测量中的两路测量信号的相似度.同时,PVC传送管的选择也可以有效提高电极的灵敏度.通过改进电极屏蔽效果来提高两路测量信号的相似度,进而提高相关测速精度.通过电极屏蔽实验,说明了屏蔽在电极设计中重要性,验证了互相关原理的抗噪声能力,并在同一高度测量得到传送管不同径向位置的流体速度.本实验装置具有较好的重复性和较高的测量精度,在2~7 m/s内进行了流速测量,测量结果的重复性误差在±2%以内.

  6. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    Science.gov (United States)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  7. Two-phase viscoelastic jetting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  8. Two Phase Flow and Space-Based Applications

    Science.gov (United States)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  9. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  10. Parameterization of Time-Averaged Suspended Sediment Concentration in the Nearshore

    Directory of Open Access Journals (Sweden)

    Hyun-Doug Yoon

    2015-11-01

    Full Text Available To quantify the effect of wave breaking turbulence on sediment transport in the nearshore, the vertical distribution of time-averaged suspended sediment concentration (SSC in the surf zone was parameterized in terms of the turbulent kinetic energy (TKE at different cross-shore locations, including the bar crest, bar trough, and inner surf zone. Using data from a large-scale laboratory experiment, a simple relationship was developed between the time-averaged SSC and the time-averaged TKE. The vertical variation of the time-averaged SSC was fitted to an equation analogous to the turbulent dissipation rate term. At the bar crest, the proposed equation was slightly modified to incorporate the effect of near-bed sediment processes and yielded reasonable agreement. This parameterization yielded the best agreement at the bar trough, with a coefficient of determination R2 ≥ 0.72 above the bottom boundary layer. The time-averaged SSC in the inner surf zone showed good agreement near the bed but poor agreement near the water surface, suggesting that there is a different sedimentation mechanism that controls the SSC in the inner surf zone.

  11. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  12. Spatially Homogeneous Entanglement for Matter-Wave Interferometry Created with Time-Averaged Measurements

    CERN Document Server

    Cox, Kevin C; Wu, Baochen; Thompson, James K

    2016-01-01

    We demonstrate a method to generate spatially homogeneous entangled, spin-squeezed states of atoms appropriate for maintaining a large amount of squeezing even after release into the arm of a matter-wave interferometer or other free space quantum sensor. Using an effective intracavity dipole trap, we allow atoms to move along the cavity axis and time average their coupling to the standing wave used to generate entanglement via collective measurements, demonstrating 11(1) dB of directly observed spin squeezing. Our results show that time averaging in collective measurements can greatly reduce the impact of spatially inhomogeneous coupling to the measurement apparatus.

  13. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  14. Two-phase flow studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kestin, J.; Maeder, P.F.

    1980-08-01

    Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)

  15. Experimental study of two phase flow in inclined channel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)

  16. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  17. Passive magnetic bearing systems stabilizer/bearing utilizing time-averaging of a periodic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Post, Richard F

    2017-10-03

    A high-stiffness stabilizer/bearings for passive magnetic bearing systems is provide where the key to its operation resides in the fact that when the frequency of variation of the repelling forces of the periodic magnet array is large compared to the reciprocal of the growth time of the unstable motion, the rotating system will feel only the time-averaged value of the force. When the time-averaged value of the force is radially repelling by the choice of the geometry of the periodic magnet array, the Earnshaw-related unstable hit motion that would occur at zero rotational speed is suppressed when the system is rotating at operating speeds.

  18. Analysis of transient gas-liquid two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio

    1999-07-01

    Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)

  19. Inverse methods for estimating primary input signals from time-averaged isotope profiles

    Science.gov (United States)

    Passey, Benjamin H.; Cerling, Thure E.; Schuster, Gerard T.; Robinson, Todd F.; Roeder, Beverly L.; Krueger, Stephen K.

    2005-08-01

    Mammalian teeth are invaluable archives of ancient seasonality because they record along their growth axes an isotopic record of temporal change in environment, plant diet, and animal behavior. A major problem with the intra-tooth method is that intra-tooth isotope profiles can be extremely time-averaged compared to the actual pattern of isotopic variation experienced by the animal during tooth formation. This time-averaging is a result of the temporal and spatial characteristics of amelogenesis (tooth enamel formation), and also results from laboratory sampling. This paper develops and evaluates an inverse method for reconstructing original input signals from time-averaged intra-tooth isotope profiles. The method requires that the temporal and spatial patterns of amelogenesis are known for the specific tooth and uses a minimum length solution of the linear system Am = d, where d is the measured isotopic profile, A is a matrix describing temporal and spatial averaging during amelogenesis and sampling, and m is the input vector that is sought. Accuracy is dependent on several factors, including the total measurement error and the isotopic structure of the measured profile. The method is shown to accurately reconstruct known input signals for synthetic tooth enamel profiles and the known input signal for a rabbit that underwent controlled dietary changes. Application to carbon isotope profiles of modern hippopotamus canines reveals detailed dietary histories that are not apparent from the measured data alone. Inverse methods show promise as an effective means of dealing with the time-averaging problem in studies of intra-tooth isotopic variation.

  20. Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos

    Institute of Scientific and Technical Information of China (English)

    贺凯芬

    2001-01-01

    A time-averaged behaviour is found to be important for investigating the critical behaviour in parameter space for the transition from temporal chaos to spatiotemporal chaos by using an energy representation. Considering any wave solution as a superposition of the steady wave with its perturbation wave, we find that when approaching the critical parameter point the averaged positive interaction energy for the k = 1 mode becomes competitive with the negative one, with the summation displaying a scaling behaviour of power law.

  1. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Directory of Open Access Journals (Sweden)

    Martin Goethe

    2016-03-01

    Full Text Available As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  2. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Science.gov (United States)

    Goethe, Martin; Fita, Ignacio; Rubi, J. Miguel

    2016-03-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  3. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel [Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Fita, Ignacio [Institut de Biologia Molecular de Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain)

    2016-03-15

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  4. Exposing local symmetries in distorted driven lattices via time-averaged invariants

    Science.gov (United States)

    Wulf, T.; Morfonios, C. V.; Diakonos, F. K.; Schmelcher, P.

    2016-05-01

    Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.

  5. Exposing local symmetries in distorted driven lattices via time-averaged invariants.

    Science.gov (United States)

    Wulf, T; Morfonios, C V; Diakonos, F K; Schmelcher, P

    2016-05-01

    Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.

  6. Considerations of the Error Variances of Time-Averaged Estimators for Correlated Processes

    Science.gov (United States)

    1992-12-01

    comments in the preparation of this report. Acces/on For NTIS CRA&I DTIC TAB El Unarnounced LI JustfiiCdIIOin By Dt,’jt’bution I " M TIN I.. AvAvijdbdlty...Y2= . isdA () (6til)uigNT10b)esml .2- H I - LAGLA d Figure 3 Time-averaged autocorrelation function and its variance for an AR(l) 2process; X=-0.7...34 Electronics Letters , vol. 7, no.8, April 22, 1971, pp. 185-186. [16] Wiggins, R., Robinson, E., "Recursive solution to the multichannel filtering

  7. Study of distribution and characteristics of the time average of pressure of a water cushion pool

    Science.gov (United States)

    Guo, Y. H.; Fu, J. F.

    2016-08-01

    When a dam discharges flood water, the plunging flow with greater kinetic energy, will scour the riverbed, resulting in erosion damage. In order to improve the anti-erosion capacity of a riverbed, the cushion pool created. This paper is based on turbulent jet theoryto deduce the semi-empirical formula of the time average of pressure in the impinging portion of the cushion pool. Additionally, MATLAB numerical is used to conduct a simulation analysis according to turbulent jet energy and watercushion depth when water floods into the water cushion pool, to determine the regularities of distribution and related characteristics.

  8. Probe shapes that measure time-averaged streamwise momentum and cross-stream turbulence intensity

    Science.gov (United States)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and apparatus for directly measuring the time-averaged streamwise momentum in a turbulent stream use a probe which has total head response which varies as the cosine-squared of the angle of incidence. The probe has a nose with a slight indentation on its front face for providing the desired response. The method of making the probe incorporates unique design features. Another probe may be positioned in a side-by-side relationship to the first probe to provide a direct measurement of the total pressure. The difference between the two pressures yields the sum of the squares of the cross-stream components of the turbulence level.

  9. Reconstruction of time-averaged temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis

    CERN Document Server

    Liu, L H

    2003-01-01

    A multi-wavelength inversion method is extended to reconstruct the time-averaged temperature distribution in non-axisymmetric turbulent unconfined sooting flame by the multi-wavelength measured data of low time-resolution outgoing emission and transmission radiation intensities. Gaussian, beta and uniform distribution probability density functions (PDF) are used to simulate the turbulent fluctuation of temperature, respectively. The reconstruction of time-averaged temperature consists of three steps. First, the time-averaged spectral absorption coefficient is retrieved from the time-averaged transmissivity data by an algebraic reconstruction technique. Then, the time-averaged blackbody spectral radiation intensity is estimated from the outgoing spectral emission radiation intensities. Finally, the time-averaged temperature is approximately reconstructed from the multi-wavelength time-averaged spectral emission radiation data by the least-squares method. Noisy input data have been used to test the performance ...

  10. Investigations of two-phase flame propagation under microgravity conditions

    Science.gov (United States)

    Gokalp, Iskender

    2016-07-01

    uniformly distributed. Ethanol-air mixtures are used and the experiments are performed under reduced gravity conditions in the Airbus A310 ZERO-G of the CNES, during which a 10-2g gravity level is achieved. The experiments are conducted in a pressure-release type dual chamber which consists of a spherical combustion chamber of 1 L which is centered in a high pressure chamber of 11 L. Propagating flames under various mixture, droplet size and pressure conditions are investigated with various optical techniques. The collected flame images and the deduced flame propagation velocities enabled to establish various flame propagation and cellular instability regimes, mainly depending on the droplet size and droplet density. The experiments also permitted comparisons with gaseous flames having the same global equivalence ratio as the two-phase flames, therefore allowing analyzing clearly the role of the presence of the droplets in the flame propagation process.

  11. Two-Phase Cavitating Flow in Turbomachines

    Directory of Open Access Journals (Sweden)

    Sandor I. Bernad

    2012-11-01

    Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.

  12. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  13. Critical thinking: a two-phase framework.

    Science.gov (United States)

    Edwards, Sharon L

    2007-09-01

    This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.

  14. Experimental study of a two-phase surface jet

    Science.gov (United States)

    Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.

    2013-04-01

    Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.

  15. On the XFEL Schrödinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging

    KAUST Repository

    Antonelli, Paolo

    2014-01-14

    We analyse a nonlinear Schrödinger equation for the time-evolution of the wave function of an electron beam, interacting selfconsistently through a Hartree-Fock nonlinearity and through the repulsive Coulomb interaction of an atomic nucleus. The electrons are supposed to move under the action of a time dependent, rapidly periodically oscillating electromagnetic potential. This can be considered a simplified effective single particle model for an X-ray free electron laser. We prove the existence and uniqueness for the Cauchy problem and the convergence of wave-functions to corresponding solutions of a Schrödinger equation with a time-averaged Coulomb potential in the high frequency limit for the oscillations of the electromagnetic potential. © 2014 Springer-Verlag Berlin Heidelberg.

  16. Thermodynamic formula for the cumulant generating function of time-averaged current.

    Science.gov (United States)

    Nemoto, Takahiro; Sasa, Shin-ichi

    2011-12-01

    The cumulant generating function of time-averaged current is studied from an operational viewpoint. Specifically, for interacting Brownian particles under nonequilibrium conditions, we show that the first derivative of the cumulant generating function is equal to the expectation value of the current in a modified system with an extra force added, where the modified system is characterized by a variational principle. The formula reminds us of Einstein's fluctuation theory in equilibrium statistical mechanics. Furthermore, since the formula leads to the fluctuation-dissipation relation when the linear response regime is focused on, it is regarded as an extension of the linear response theory to that valid beyond the linear response regime. The formula is also related to previously known theories such as the Donsker-Varadhan theory, the additivity principle, and the least dissipation principle, but it is not derived from them. Examples of its application are presented for a driven Brownian particle on a ring subject to a periodic potential.

  17. Applicability of time-averaged holography for micro-electro-mechanical system performing non-linear oscillations.

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-21

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  18. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Directory of Open Access Journals (Sweden)

    Paulius Palevicius

    2014-01-01

    Full Text Available Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  19. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  20. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  1. Time Averaged Transmitter Power and Exposure to Electromagnetic Fields from Mobile Phone Base Stations

    Directory of Open Access Journals (Sweden)

    Alfred Bürgi

    2014-08-01

    Full Text Available Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP, is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot. Averaged over all regions and site types, a UMTS duty factor  for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels.

  2. Time averaged transmitter power and exposure to electromagnetic fields from mobile phone base stations.

    Science.gov (United States)

    Bürgi, Alfred; Scanferla, Damiano; Lehmann, Hugo

    2014-08-07

    Models for exposure assessment of high frequency electromagnetic fields from mobile phone base stations need the technical data of the base stations as input. One of these parameters, the Equivalent Radiated Power (ERP), is a time-varying quantity, depending on communication traffic. In order to determine temporal averages of the exposure, corresponding averages of the ERP have to be available. These can be determined as duty factors, the ratios of the time-averaged power to the maximum output power according to the transmitter setting. We determine duty factors for UMTS from the data of 37 base stations in the Swisscom network. The UMTS base stations sample contains sites from different regions of Switzerland and also different site types (rural/suburban/urban/hotspot). Averaged over all regions and site types, a UMTS duty factor for the 24 h-average is obtained, i.e., the average output power corresponds to about a third of the maximum power. We also give duty factors for GSM based on simple approximations and a lower limit for LTE estimated from the base load on the signalling channels.

  3. XMM-Newton observation of the NLS1 galaxy Ark 564. I. Spectral analysis of the time-average spectrum

    NARCIS (Netherlands)

    Papadakis, I.E.; Brinkmann, W.; Page, M.J.; McHardy, I.; Uttley, P.

    2007-01-01

    Context: .We present the results from the spectral analysis of the time-average spectrum of the Narrow Line Seyfert 1 (NLS1) galaxy Ark 564 from a ~100 ks XMM-Newton observation. Aims: .Our aim is to characterize accurately the shape of the time-average, X-ray continuum spectrum of the source and se

  4. Reconstruction of time-averaged temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. E-mail: liulh_hit@263.net; Man, G.L

    2003-05-01

    A multi-wavelength inversion method is extended to reconstruct the time-averaged temperature distribution in non-axisymmetric turbulent unconfined sooting flame by the multi-wavelength measured data of low time-resolution outgoing emission and transmission radiation intensities. Gaussian, {beta} and uniform distribution probability density functions (PDF) are used to simulate the turbulent fluctuation of temperature, respectively. The reconstruction of time-averaged temperature consists of three steps. First, the time-averaged spectral absorption coefficient is retrieved from the time-averaged transmissivity data by an algebraic reconstruction technique. Then, the time-averaged blackbody spectral radiation intensity is estimated from the outgoing spectral emission radiation intensities. Finally, the time-averaged temperature is approximately reconstructed from the multi-wavelength time-averaged spectral emission radiation data by the least-squares method. Noisy input data have been used to test the performance of the proposed inversion method. The results show that the time-averaged temperature distribution can be estimated with good accuracy, even with noisy input data. The accuracy of the estimation decreases with the increase of turbulent fluctuation intensity of temperature and the effects of assumed PDF on the reconstruction of temperature are small.

  5. Unsteady flow analysis of a two-phase hydraulic coupling

    Science.gov (United States)

    Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.

    2016-06-01

    Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.

  6. Droplet Manipulations in Two Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Arjen M. Pit

    2015-11-01

    Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.

  7. Two phase decision algorithm of replica allocation

    Institute of Scientific and Technical Information of China (English)

    Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi

    2006-01-01

    In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.

  8. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia

    2009-01-01

    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  9. Equations of two-phase flow in spray chamber

    Institute of Scientific and Technical Information of China (English)

    李新禹; 张志红; 金星; 徐杰

    2009-01-01

    The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.

  10. Seismic velocities for hydrate-bearing sediments using weighted equation

    Science.gov (United States)

    Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, William P.

    1996-01-01

    A weighted equation based on the three-phase time-average and Wood equations is applied to derive a relationship between the compressional wave (P wave) velocity and the amount of hydrates filling the pore space. The proposed theory predicts accurate P wave velocities of marine sediments in the porosity range of 40-80% and provides a practical means of estimating the amount of in situ hydrate using seismic velocity. The shear (S) wave velocity is derived under the assumption that the P to S wave velocity ratio of the hydrated sediments is proportional to the weighted average of the P to S wave velocity ratios of the constituent components of the sediment. In the case that all constituent components are known, a weighted equation using multiphase time-average and Wood equations is possible. However, this study showed that a three-phase equation with modified matrix velocity, compensated for the clay content, is sufficient to accurately predict the compressional wave velocities for the marine sediments. This theory was applied to the laboratory measurements of the P and S wave velocities in permafrost samples to infer the amount of ice in the unconsolidated sediment. The results are comparable to the results obtained by repeatedly applying the two-phase wave scattering theory. The theory predicts that the Poisson's ratio of the hydrated sediments decreases as the hydrate concentration increases and the porosity decreases. In consequence, the amplitude versus offset (AVO) data for the bottom-simulating reflections may reveal positive, negative, or no AVO anomalies depending on the concentration of hydrates in the sediments.

  11. Film boiling on spheres in single- and two-phase flows.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  12. IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS

    Institute of Scientific and Technical Information of China (English)

    TANG Xuelin; QIAN Zhongdong; WU Yulin

    2004-01-01

    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  13. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    唐学林; 徐宇; 吴玉林

    2003-01-01

    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  14. Mercury's Time-Averaged and Induced Magnetic Fields from MESSENGER Observations

    Science.gov (United States)

    Johnson, C. L.; Winslow, R. M.; Anderson, B. J.; Purucker, M. E.; Korth, H.; Al Asad, M. M.; Slavin, J. A.; Baker, D. N.; Hauck, S. A.; Phillips, R. J.; Zuber, M. T.; Solomon, S. C.

    2012-12-01

    Observations from MESSENGER's Magnetometer (MAG) have allowed the construction of a baseline, time-averaged model for Mercury's magnetosphere. The model, constructed with the approximation that the magnetospheric shape can be represented as a paraboloid, includes two external (magnetopause and magnetotail) current systems and an internal (dipole) field. We take advantage of the geometry of the orbital MAG data to constrain all but one of the model parameters, and their ranges, directly from the observations. These parameters are then used as a priori constraints in the magnetospheric model, and the remaining parameter, the dipole moment, is estimated from a grid search. The model provides an excellent fit to the MAG observations, with a root-mean-square misfit of less than 20 nT globally. The mean distance from the planetary dipole origin to the magnetopause subsolar point, RSS, is 1.45 RM (where RM = 2440 km) and the mean planetary dipole moment is 190 nT- RM3. Temporal variations in the global-scale magnetic fields result from changes in solar wind ram pressure, Pram, at Mercury that arise from the planet's 88-day eccentric orbit around the Sun and from transient, rapid changes in solar wind conditions. For a constant planetary dipole moment, RSS varies as Pram-1/6. However, magnetopause crossings obtained from several Mercury years of MESSENGER observations indicate that RSS is proportional to Pram-1/a where a is greater than 6, suggesting induction in Mercury's highly conducting metallic interior. We obtain an effective dipole moment that varies by up to ˜15% about its mean value. We further investigate the periodic 88-day induction signature and use the paraboloid model to describe the spatial structure in the inducing magnetopause field, together with estimates for the outer radius of Mercury's liquid core and possible overlying solid iron sulfide layer, to calculate induced core fields. The baseline magnetospheric model is adapted to include the 88-day

  15. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    Science.gov (United States)

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.

  16. Distributional behaviors of time-averaged observables in the Langevin equation with fluctuating diffusivity: Normal diffusion but anomalous fluctuations.

    Science.gov (United States)

    Akimoto, Takuma; Yamamoto, Eiji

    2016-06-01

    We consider the Langevin equation with dichotomously fluctuating diffusivity, where the diffusion coefficient changes dichotomously over time, in order to study fluctuations of time-averaged observables in temporally heterogeneous diffusion processes. We find that the time-averaged mean-square displacement (TMSD) can be represented by the occupation time of a state in the asymptotic limit of the measurement time and hence occupation time statistics is a powerful tool for calculating the TMSD in the model. We show that the TMSD increases linearly with time (normal diffusion) but the time-averaged diffusion coefficients are intrinsically random when the mean sojourn time for one of the states diverges, i.e., intrinsic nonequilibrium processes. Thus, we find that temporally heterogeneous environments provide anomalous fluctuations of time-averaged diffusivity, which have relevance to large fluctuations of the diffusion coefficients obtained by single-particle-tracking trajectories in experiments.

  17. Pressure Loss across Tube Bundles in Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)

    2016-03-15

    An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

  18. Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors

    Science.gov (United States)

    Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng

    2016-12-01

    A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil-water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil-water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J   =  0.038 m s-1, and the water superficial velocity at U Jw   =  0.026 m s-1, and oil superficial velocity at U Jo   =  0.034 m s-1. The influencing factors of uncertainty were analyzed.

  19. Vapor Compressor Driven Hybrid Two-Phase Loop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  20. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    Science.gov (United States)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  1. Thermo-fluid dynamics of two-phase flow

    CERN Document Server

    Ishii, Mamoru; Ishii, Mamoru; Ishii, M

    2006-01-01

    Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.

  2. Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)

  3. Two phase convective heat transfer augmentation in swirl flow with non-boiling

    Energy Technology Data Exchange (ETDEWEB)

    Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)

    1995-10-01

    Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.

  4. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe

    Directory of Open Access Journals (Sweden)

    Park Yu sun

    2011-01-01

    Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  5. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation

    Science.gov (United States)

    Safdari, Hadiseh; Cherstvy, Andrey G.; Chechkin, Aleksei V.; Bodrova, Anna; Metzler, Ralf

    2017-01-01

    We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble- and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.

  6. Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface

    Directory of Open Access Journals (Sweden)

    S. Siddiqa

    2017-01-01

    Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.

  7. Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow

    Science.gov (United States)

    Nakagawa, Masafumi; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones

  8. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    Science.gov (United States)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  9. Instantaneous and time-averaged dispersion and measurement models for estimation theory applications with elevated point source plumes

    Science.gov (United States)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1977-01-01

    Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.

  10. Numerical flow analyses of a two-phase hydraulic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)

    2017-05-15

    We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.

  11. Gas-solid two-phase turbulent flow in a circulating fluidized bed riser: an experimental and numerical study

    NARCIS (Netherlands)

    He, Y.; Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.

    2006-01-01

    Hydrodynamics of gas-particle two-phase turbulent flow in a circulating fluidized bed riser is studied experimentally by Particle Image Velocimetry (PIV) and numerically with the use of a 3D discrete hard sphere particle model (DPM). Mean particle velocities and RMS velocities are obtained and the i

  12. Two-phase flow research. Phase 1: Two-phase nozzle research

    Science.gov (United States)

    Toner, S. J.

    1981-07-01

    Experimental performance of converging-diverging nozzles operating on air-water mixtures is presented for a wide range of parameters. Thrust measurements characterized the performance and photographic documentation was used to visually observe the off-design regimes. Thirty-six nozzle configurations were tested to determine the effects of convergence angle, area ratio, and nozzle length. In addition, the pressure ratio and mass flowrate ratio were varied to experimentally map off-design performance. The test results indicate the effects of wall friction and infer temperature and velocity differences between phases and the effect on nozzle performance. The slip ratio between the phases, gas velocity to liquid velocity, is shown to be below about 4 or 5.

  13. Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle

    Science.gov (United States)

    Simakov, N. N.

    2017-07-01

    A numerical experiment on the simulation of the two-phase flow formed during spraying of a liquid by a nozzle has been described. The radial and axial velocity profiles of the droplets and gas in the free spray and in the two-phase flow through a cylindrical apparatus have been calculated and represented taking into account the early drag crisis of droplets and peculiarities of turbulent friction in the gas, which was detected in previous experiments. The distinguishing feature of the numerical model of the two-phase flow is that it employs the differential equations describing the nonstationary flow of a compressible gas as the initial equations. In transition to their difference analog, the familiar Lax-Wendorff algorithm has been used. A comparison of the results of calculations based on this model with experimental data has demonstrated their concordance.

  14. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    Energy Technology Data Exchange (ETDEWEB)

    Kosar, Ali [Mechatronics Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey)

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  15. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  16. The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution

    Science.gov (United States)

    Malaikah, K. R.

    2013-03-01

    We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem

  17. Next steps in two-phase flow: executive summary

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1980-09-01

    The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)

  18. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow

    Science.gov (United States)

    Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.

    2005-05-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.

  19. Gas-liquid two-phase flow across a bank of micropillars

    Science.gov (United States)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  20. LES/FDF simulation of particle dispersion in a gas-particle two phase plane wake flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A filtered density function (FDF) transport equation was derived for the fluid velocity seen by the particles in gas-particle two-phase flow. An LES/FDF simulation of a two-phase plane wake flow was carried out. The simulation results were compared with both the experimental photograph and the simulation results without using the FDF model, and proved that the LES/FDF model can clearly improve the spatial dispersion of the particle phase.

  1. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2017-07-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  2. On a distinctive feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets

    Science.gov (United States)

    Trifonenkov, A. V.; Trifonenkov, V. P.

    2017-01-01

    This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.

  3. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-04-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  4. Two-Phase Technology at NASA/Johnson Space Center

    Science.gov (United States)

    Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.

  5. Infinite-time average of local fields in an integrable quantum field theory after a quantum quench.

    Science.gov (United States)

    Mussardo, G

    2013-09-06

    The infinite-time average of the expectation values of local fields of any interacting quantum theory after a global quench process are key quantities for matching theoretical and experimental results. For quantum integrable field theories, we show that they can be obtained by an ensemble average that employs a particular limit of the form factors of local fields and quantities extracted by the generalized Bethe ansatz.

  6. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido

    2012-07-01

    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  7. Two-phase flow modelling of sediment suspension in the Ems/Dollard estuary

    Science.gov (United States)

    Xu, Chunyang; Dong, Ping

    2017-05-01

    Understanding and quantifying mud suspension and sediment transport processes are of great importance for effective exploitation and sustainable management of estuarine environments. Event-based predictive models are widely used to identify the key interactions and mechanisms that govern the dynamics involved and to provide the essential parameterisation for assessing the long-term morphodynamic evolution of the estuaries. This study develops a one-dimensional-vertical (1DV) Reynolds averaged two-phase model for cohesive sediments resuspension driven by tidal flows. To capture the time-dependent flocculation process more accurately, a new drag force closure which relates empirically to settling velocity of mud flocs with suspended sediment concentration (SSC) is incorporated into the two-phase model. The model is then applied to simulate mud suspension in the Ems/Dollard estuary during two periods (June and August 1996) of tidal forcing. Numerical predictions of bed shear stresses and sediment concentrations at different elevations above the bed are compared with measured variations. The results confirm the importance of including flocculation effects in calculating the settling velocity of mud flocs and demonstrates the sensitivity of prediction with the settling velocity in terms of flocs concentration. Although the two-phase modelling approach can in principle better capture the essential interactions between fluid and sediment phases, its practical advantages over the simpler single phase approach cannot be confirmed for the data periods simulated, partly because the overall suspended sediment concentration measured is rather low and the interaction between the two phases is weak and also because the uncertainties in the relationship between the settling velocity and flocs concentration.

  8. NUMERICAL SIMULATION ON 2-D WATER-AIR TWO-PHASE FLOW OVER TOP OUTLET

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Flood discharge over top outlet of dam is simu-lated by 2-dimension water-air two-phase mathematical model.Distribution of dynamic pressure, turbulent kinetic energy (k), turbulent dissipation rate (ε) , free water surface and veloci-ty field have been obtained. The simulated results were testedby physical model, which shows that the computed results areidentical with that of the physical model.

  9. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    Science.gov (United States)

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required

  10. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  11. Two-phase flow characteristics during flow boiling of halocarbon refrigerants in micro-scale channels

    Energy Technology Data Exchange (ETDEWEB)

    Arcanjo, Alexandre A.; Freitas, Juliano O.; Tibirica, Cristiano B.; Ribatski, Gherhardt [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    2009-07-01

    Quasi-diabatic two-flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities from 50 to 600 kg/m{sup 2}s and saturation temperatures of 22 deg C, 31 deg C and 41 deg C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream of the heated section were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular. Dryout conditions were also characterized. Local heat transfer results were considered when investigating the presence of stratified flows. The visualized flow patterns were compared against the predictions provided by Barnea et al., Felcar et al. and Revellin and Thome. For the present database, the method recently proposed by Felcar et al. provides the best predictions. Additionally, elongated bubble velocities, frequencies and lengths were determined based on an analysis of high speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature, and is independent of bubble length. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as a linear function of the two-phase superficial velocity. (author)

  12. Detection and characterization of elongated bubbles and drops in two-phase flow using magnetic fields

    Science.gov (United States)

    Wiederhold, A.; Boeck, T.; Resagk, C.

    2017-08-01

    We report a method to detect and to measure the size and velocity of elongated bubbles or drops in a dispersed two-phase flow. The difference of the magnetic susceptibilities between two phases causes a force on the interface between both phases when it is exposed to an external magnetic field. The force is measured with a state-of-the-art electromagnetic compensation balance. While the front and the back of the bubble pass the magnetic field, two peaks in the force signal appear, which can be used to calculate the velocity and geometry parameters of the bubble. We achieve a substantial advantage over other bubble detection techniques because this technique is contactless, non-invasive, independent of the electrical conductivity and can be applied to opaque or aggressive fluids. The measurements are performed in an inclined channel with air bubbles and paraffin oil drops in water. The bubble length is in the range of 0.1-0.25 m and the bubble velocity lies between 0.02-0.22 m s-1. Furthermore we show that it is possible to apply this measurement principle for nondestructive testing (NDT) of diamagnetic and paramagnetic materials like metal, plastics or glass, provided that defects are in the range of 10‒2 m. This technique opens up new possibilities in industrial applications to measure two-phase flow parameters and in material testing.

  13. Vibration response of a pipe subjected to two-phase flow: Analytical formulations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Vidal, L. Enrique, E-mail: leortiz@sc.usp.br [Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av., Trabalhador São-carlense, 400, 13566-970 São Carlos, SP (Brazil); Mureithi, Njuki W., E-mail: njuki.mureithi@polymtl.ca [Department of Mechanical Engineering, Polytechnique Montreal, Département de Géniemécanique 2900, H3T 1J7 Montreal, QC (Canada); Rodriguez, Oscar M.H., E-mail: oscarmhr@sc.usp.br [Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av., Trabalhador São-carlense, 400, 13566-970 São Carlos, SP (Brazil)

    2017-03-15

    Highlights: • Analytical formulations for two-phase flow-induced vibration (2-FIV) are presented. • Standard deviation of acceleration pipe response is a function of the square of shear velocity. • Peak frequency is correlated to hydrodynamic mass and consequently to void fraction. • Dynamic pipe response increases with increasing mixture velocity and void fraction. • Hydrodynamic mass in 2-FIV in horizontal pipe is proportional to mixture density. - Abstract: This paper treats the two-phase flow-induced vibration in pipes. A broad range of two-phase flow conditions, including bubbly, dispersed and slug flow, were tested in a clamped-clamped straight horizontal pipe. The vibration response of both transversal directions for two span lengths was measured. From experimental results, an in-depth discussion on the nature of the flow excitation and flow-parameters influence is presented. The hydrodynamic mass parameter is also studied. Experimental results suggest that it is proportional to mixture density. On the other hand, two analytical formulations were developed and tested against experimental results. One formulation predicts the quadratic trend between standard deviation of acceleration and shear velocity found in experiments. The other formulation indicates that the peak-frequency of vibration response depends strongly on void fraction. It provides accurate predictions of peak-frequency, predicting 97.6% of the data within ±10% error bands.

  14. Characteristics of pressure drop for singlephase and two-phase flow across sudden contraction in microtubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Single-phase and gas-liquid two-phase pressure drops caused by a sudden con-traction in microtubes were experimentally investigated at room temperature and atmospheric pressure,using nitrogen and water. The experimental results on pressure drop with a novel measurement method,the tiny gaps on the tubes,were used to characterize the sudden contraction pressure drop for tube diameters from 850 to 330 μm. The ranges of the gas and liquid superficial velocity were 2.55―322.08 and 0.98―9.78 m/s in the smaller tube respectively. In single-phase flow experiments,the contraction loss coefficients were larger than the experimental results from conventional tubes in the laminar flow. While in the turbulent flow,the contraction loss coefficients were slightly smaller than those from conventional tubes and predicted well by Kc=0.5×(1-σ2)0.75. In two-phase flow experiments,the slip flow model with a velocity slip ratio S=(ρL/ρG)1/3 showed a good prediction that reveals the occurrence of velocity slip. An empirical correlation for two-phase flow pressure drops caused by the sudden contraction was developed based on the proposed contraction loss coefficients correlation for single-phase flow and Mar-tinelli factor.

  15. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  16. What types of investors generate the two-phase phenomenon?

    Science.gov (United States)

    Ryu, Doojin

    2013-12-01

    We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.

  17. Tunable two-phase coexistence in half-doped manganites

    Indian Academy of Sciences (India)

    P Chaddah; A Banerjee

    2008-02-01

    We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.

  18. Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)

    2015-06-15

    Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.

  19. Time dependent two phase flows in Magnetohydrodynamics: A ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...

  20. Gravity Independence of Microchannel Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...

  1. Vapor Compressor Driven Hybrid Two-Phase Loop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...

  2. TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS

    African Journals Online (AJOL)

    Ifeanyichukwu Onwuka

    The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.

  3. Transient two-phase performance of LOFT reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  4. Scaling of Two-Phase Systems Across Gravity Levels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...

  5. STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams

    1998-11-18

    Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of

  6. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  7. Relativistic X-ray reverberation modelling of the combined time-averaged and lag-energy spectra in AGN

    CERN Document Server

    Chainakun, P; Kara, E

    2016-01-01

    General relativistic ray tracing simulations of the time-averaged spectrum and energy-dependent time delays in AGN are presented. We model the lamp-post geometry in which the accreting gas is illuminated by an X-ray source located on the rotation axis of the black hole. The spectroscopic features imprinted in the reflection component are modelled using REFLIONX. The associated time delays after the direct continuum, known as reverberation lags, are computed including the full effects of dilution and ionization gradients on the disc. We perform, for the first time, simultaneous fitting of the time-averaged and lag-energy spectra in three AGN: Mrk 335, IRAS 13224-3809 and Ark 564 observed with XMM-Newton. The best fitting source height and central mass of each AGN partly agree with those previously reported. We find that including the ionization gradient in the model naturally explains lag-energy observations in which the 3 keV and 7-10 keV bands precede other bands. To obtain the clear 3 keV and 7-10 keV dips ...

  8. Expensive control of long-time averages using sum of squares and its application to a laminar wake flow

    CERN Document Server

    Huang, Deqing; Lasagna, Davide; Chernyshenko, Sergei; Tutty, Owen

    2016-01-01

    The paper presents a nonlinear state-feedback control design approach for long-time average cost control, where the control effort is assumed to be expensive. The approach is based on sum-of-squares and semi-definite programming techniques. It is applicable to dynamical systems whose right-hand side is a polynomial function in the state variables and the controls. The key idea, first described but not implemented in (Chernyshenko et al., Phil. Trans. R. Soc. A, 372, 2014), is that the difficult problem of optimizing a cost function involving long-time averages is replaced by an optimization of the upper bound of the same average. As such, controller design requires the simultaneous optimization of both the control law and a tunable function, similar to a Lyapunov function. The present paper introduces a method resolving the well-known inherent non-convexity of this kind of optimization. The method is based on the formal assumption that the control is expensive, from which it follows that the optimal control i...

  9. Visualization and research of gas-liquid two phase flow structures in cylindrical channel

    Directory of Open Access Journals (Sweden)

    Stefański Sebastian

    2017-01-01

    Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.

  10. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    Science.gov (United States)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  11. Comparison of Techniques to Estimate Ammonia Emissions at Cattle Feedlots Using Time-Averaged and Instantaneous Concentration Measurements

    Science.gov (United States)

    Shonkwiler, K. B.; Ham, J. M.; Williams, C. M.

    2013-12-01

    Ammonia (NH3) that volatilizes from confined animal feeding operations (CAFOs) can form aerosols that travel long distances where such aerosols can deposit in sensitive regions, potentially causing harm to local ecosystems. However, quantifying the emissions of ammonia from CAFOs through direct measurement is very difficult and costly to perform. A system was therefore developed at Colorado State University for conditionally sampling NH3 concentrations based on weather parameters measured using inexpensive equipment. These systems use passive diffusive cartridges (Radiello, Sigma-Aldrich, St. Louis, MO, USA) that provide time-averaged concentrations representative of a two-week deployment period. The samplers are exposed by a robotic mechanism so they are only deployed when wind is from the direction of the CAFO at 1.4 m/s or greater. These concentration data, along with other weather variables measured during each sampler deployment period, can then be used in a simple inverse model (FIDES, UMR Environnement et Grandes Cultures, Thiverval-Grignon, France) to estimate emissions. There are not yet any direct comparisons of the modeled emissions derived from time-averaged concentration data to modeled emissions from more sophisticated backward Lagrangian stochastic (bLs) techniques that utilize instantaneous measurements of NH3 concentration. In the summer and autumn of 2013, a suite of robotic passive sampler systems were deployed at a 25,000-head cattle feedlot at the same time as an open-path infrared (IR) diode laser (GasFinder2, Boreal Laser Inc., Edmonton, Alberta, Canada) which continuously measured ammonia concentrations instantaneously over a 225-m path. This particular laser is utilized in agricultural settings, and in combination with a bLs model (WindTrax, Thunder Beach Scientific, Inc., Halifax, Nova Scotia, Canada), has become a common method for estimating NH3 emissions from a variety of agricultural and industrial operations. This study will first

  12. A two-dimensional parabolic model for vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br

    2010-07-01

    This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)

  13. Numerical simulation of dense particle-gas two-phase flow using the minimal potential energy principle

    Institute of Scientific and Technical Information of China (English)

    Xiangjun Liu; Xuchang Xu; Wurong Zhang

    2006-01-01

    A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision,break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.

  14. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  15. Study of two-phase flows in reduced gravity

    Science.gov (United States)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies

  16. Experimental study on steam-water two-phase flow frictional pressure drops in helical coils

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.

  17. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  18. Two-phase dusty fluid flow along a cone with variable properties

    Science.gov (United States)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy

    2016-09-01

    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  19. MICROGRAVITY EXPERIMENTS OF TWO-PHASE FLOW PATTERNS ABOARD MIR SPACE STATION

    Institute of Scientific and Technical Information of China (English)

    赵建福; 解京昌; 林海; 胡文瑞; A.V. Ivanov; A.Yu. Belyaev

    2001-01-01

    A first experimental study on two-phase flow patterns at a long-term,steady microgravity condition was conducted on board the Russian Space Station "MIR" in August 1999. Carbogal and air are used as the liquid and the gas phase,respectively. Bubble, slug, slug-annular transitional, and annular flows are observed.A new region of annular flow with lower liquid superficial velocity is discovered,and the region of the slug-annular transitionalfiow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase flow patterns in the present experiments are discussed.

  20. Numerical simulation of air-water two-phase flow over stepped spillways

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xiangju; CHEN; Yongcan

    2006-01-01

    Stepped spillways for significant energy dissipation along the chute have gained interest and popularity among researchers and dam engineers. Due to the complexity of air-water two-phase flow over stepped spillways, the finite volume computational fluid dynamics module of the FLUENT software was used to simulate the main characteristics of the flow. Adopting the RNG k-ε turbulence model, the mixture flow model for air-water two-phase flow was used to simulate the flow field over stepped spillway with the PISO arithmetic technique. The numerical result successfully reproduced the complex flow over a stepped spillway of an experiment case, including the interaction between entrained air bubbles and cavity recirculation in the skimming flow regime, velocity distribution and the pressure profiles on the step surface as well. The result is helpful for understanding the detailed information about energy dissipation over stepped spillways.

  1. Two-phase flow and boiling heat transfer in two vertical narrow annuli

    Energy Technology Data Exchange (ETDEWEB)

    Peng Changhong [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China)]. E-mail: pxm321@163.com; Guo Yun [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Qiu Suizheng [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Jia Dounan [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Nie Changhua [Nuclear Power Institute of China, Chengdu 610041 (China)

    2005-07-01

    Experimental study associated with two-phase flow and heat transfer during flow boiling in two vertical narrow annuli has been conducted. The parameters examined were: mass flux from 38.8 to 163.1 kg/m{sup 2} s; heat flux from 4.9 to 50.7 kW/m{sup 2} for inside tube and from 4.2 to 78.8 kW/m{sup 2} for outside tube; equilibrium mass quality from 0.02 to 0.88; system pressure from 1.5 to 6.0 MPa. It was found that the boiling heat transfer was strongly influenced by heat flux, while the effect of mass velocity and mass quality were not very significant. This suggested that the boiling heat transfer was mainly via nucleate boiling. The data were used to develop a new correlation for boiling heat transfer in the narrow annuli. In the two-phase flow study, the comparison with the correlation of Chisholm [Chisholm, D., 1967. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer 10, 1767-1778] and Mishima and Hibiki [Mishima, K., Hibiki, T., 1996. Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow 22, 703-712] indicated that the existing correlations could not predict the two-phase multiplier in the narrow annuli well. Based on the experimental data, a new correlation was developed.

  2. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  3. A SAS Package for Logistic Two-Phase Studies

    Directory of Open Access Journals (Sweden)

    Walter Schill

    2014-04-01

    Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.

  4. Two-Phase flow instrumentation for nuclear accidents simulation

    Science.gov (United States)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  5. A mechanical erosion model for two-phase mass flows

    CERN Document Server

    Pudasaini, Shiva P

    2016-01-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...

  6. Simulating confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    金晗辉; 夏钧; 樊建人; 岑可法

    2002-01-01

    A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r=50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.

  7. Dynamic Modeling of Phase Crossings in Two-Phase Flow

    DEFF Research Database (Denmark)

    Madsen, Søren; Veje, Christian; Willatzen, Morten

    2012-01-01

    of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...

  8. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  9. Modeling of fluidelastic instability in tube bundle subjected to two-phase cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawadogo, T.P.; Mureithi, N.W.; Azizian, R.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)

    2009-07-01

    Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60%, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5% compared to 26.6% for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)

  10. Paleomagnetic directions from mid-latitude sites in the southern hemisphere (Argentina): Contribution to time averaged field models

    Science.gov (United States)

    Quidelleur, X.; Carlut, J.; Tchilinguirian, P.; Germa, A.; Gillot, P.-Y.

    2009-02-01

    Back-arc volcanism located to the east of the Andean Cordillera was sampled in the Argentina provinces of Mendoza and Neuquen for paleomagnetic time average field and paleosecular investigations. The activity ranges from 2 Ma to very recent time, with a large variety of products, from basalts to highly differentiated lavas. After removal of sites affected by lightning, those with α95 higher than 10°, and combining of nearby sites displaying close directions, we present new paleomagnetic results from 31 flows units belonging to two volcanic massifs: the Payun Matru and the Cerro Nevado. Previous and new K-Ar age determinations constrain the volcanic activity of these massifs from 300 to 0 ka, and from 1.9 to 0.9 Ma, respectively. Most paleomagnetic samples have NRM intensities between about 1 and 20 A/m and depict progressive removal of magnetization components in a consistent fashion during stepwise AF or thermal demagnetization. Nineteen flows yielded a normal direction (declination = 354.8°, inclination = -53.0°, α95 = 6.8°) and 12 flows a reverse direction (declination = 181.0°, inclination = 52.3°, α95 = 5.9°). The combined data yielded a mean direction (declination = 357.3°, inclination = -52.8°, α95 = 4.6°), which is not statistically different from the axial dipole field ( g10) expected at this latitude (36°S). The angular dispersion of virtual geomagnetic poles calculated from flows with normal directions (ASD = 16.5°) compares well with the observed value from global datasets for this site latitude, but flows with reverse directions display a surprisingly low dispersion (ASD = 12.5°). Since most reverse directions were sampled from flows ranging between 1.9 and 0.9 Ma, this can be interpreted as an interval of low paleomagnetic secular variation. Additional data, also with accurate time constraints, are obviously needed to better support this observation. Finally, no convincing evidence for a complex time average field significantly

  11. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase

  12. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  13. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  14. Coal-Face Fracture With A Two-Phase Liquid

    Science.gov (United States)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  15. Two-phase flow in micro and nanofluidic devices

    NARCIS (Netherlands)

    Shui, Lingling

    2009-01-01

    This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping, jet

  16. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V

  17. Experimental Investigation of two-phase nitrogen Cryo transfer line

    Science.gov (United States)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  18. Numerical simulation of two-phase flow in offshore environments

    NARCIS (Netherlands)

    Wemmenhove, Rik

    2008-01-01

    Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for

  19. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Directory of Open Access Journals (Sweden)

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  20. Study on law of negative corona discharge in microparticle-air two-phase flow media

    Directory of Open Access Journals (Sweden)

    Bo He

    2016-03-01

    Full Text Available To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity measurements and ultraviolet observations.

  1. Numerical Investigation of Nanofluid Thermocapillary Convection Based on Two-Phase Mixture Model

    Science.gov (United States)

    Jiang, Yanni; Xu, Zelin

    2017-08-01

    Numerical investigation of nanofluid thermocapillary convection in a two-dimensional rectangular cavity was carried out, in which the two-phase mixture model was used to simulate the nanoparticles-fluid mixture flow, and the influences of volume fraction of nanoparticles on the flow characteristics and heat transfer performance were discussed. The results show that, with the increase of nanoparticle volume fraction, thermocapillary convection intensity weakens gradually, and the heat conduction effect strengthens; meanwhile, the temperature gradient at free surface increases but the free surface velocity decreases gradually. The average Nusselt number of hot wall and the total entropy generation decrease with nanoparticle volume fraction increasing.

  2. SIMULATION OF LOW-CONCENTRATION SEDIMENT-LADEN FLOW BASED ON TWO-PHASE FLOW THEORY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Low concentration sediment-laden flow is usually involved in water conservancy, environmental protection, navigation and so on. In this article, a mathematical model for low-concentration sediment-laden flow was suggested based on the two-phase flow theory, and a solving scheme for the mathematical model in curvilinear grids was worked out. The observed data in the Zhang River in China was used for the verification of the model, and the calculated results of the water level, velocity and river bed deformation are in agreement with the observed ones.

  3. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  4. Two phase flow and heat transfer in porous beds under variable body forces, part 2

    Science.gov (United States)

    Evers, J. L.; Henry, H. R.

    1969-01-01

    Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.

  5. Experimental observation of capillary instabilities of two phase flow in a microfluidic T-junction

    CSIR Research Space (South Africa)

    Mbanjwa, MB

    2010-01-01

    Full Text Available . Table 1 lists the volume and surface force ratios represented in terms of the important dimensionless numbers, for a characteristic two-phase flow in a microchannel with a hydraulic diameter Dh and average velocity V, where ? and ? are fluid density... of transparent PDMS elastomer using soft lithography techniques. The fluids were fed into the microchannel using syringe pumps, which were independently controlled. 10?l/ml (1% v/v) of sorbitan monolaurate (Span 20) surfactant was dissolved in the oil phase...

  6. Plio-Pleistocene paleomagnetic secular variation and time-averaged field: Ruiz-Tolima volcanic chain, Colombia

    Science.gov (United States)

    Sánchez-Duque, A.; Mejia, V.; Opdyke, N. D.; Huang, K.; Rosales-Rivera, A.

    2016-02-01

    Paleomagnetic results obtained from 47 Plio-Pleistocene volcanic flows from the Ruiz-Tolima Volcanic Chain (Colombia) are presented. The mean direction of magnetization among these flows, which comprise normal (n = 43) and reversed (n = 4) polarities, is Dec = 1.8°, Inc = 3.2°, α95 = 5.0°, and κ = 18.4. This direction of magnetization coincides with GAD plus a small persistent axial quadrupolar component (around 5%) at the site-average latitude (4.93°). This agreement is robust after applying several selection criteria (α95 < 10º α95 < 5.5º polarities: normal, reversed, and tentatively transitional). The data are in agreement with Model G proposed by McElhinny and McFadden (1997) and the fit is improved when sites tentatively identified as transitional (two that otherwise have normal polarity) are excluded from the calculations. Compliance observed with the above mentioned time-averaged field and paleosecular variation models, is also observed for many recent similar studies from low latitudes, with the exception of results from Galapagos Islands that coincide with GAD and tend to be near sided.

  7. XMM-Newton observation of the NLS1 Galaxy Ark 564: I. Spectral analysis of the time-average spectrum

    CERN Document Server

    Papadakis, I E; Page, M J; McHardy, I; Uttley, P

    2006-01-01

    We use the data from a recent, 100 ksec XMM-Newton observation of the Narrow Line Seyfert 1 galaxy Ark 564 to obtain its time average, X-ray spectrum. The 3-11 keV spectrum is well fitted by a power-law of slope 2.43. We detect a weak (equivalent width ~80 eV) emission line at ~6.7 keV, which implies emission from ionized iron. There is no compelling evidence for significant broadening of the line.We also detect a possible Doppler shifted absorption line at 8.1 keV. At energies lower than 2 keV, the spectrum is dominated by a smooth soft excess component which can be well fitted either by a two black body components (kT~0.15 and 0.07 keV) or by a black body plus a relativistically blurred photoionized disc reflection model. We detect a broad, shallow flux deficit in the 0.65-0.85 keV band, reminiscent of the iron unresolved transition array (UTA) features. We do not detect neither a strong absorption edge around 0.7 keV nor an emission line around 1 keV. The soft excess emission is consistent with being refle...

  8. SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhuo-xiong; ZHOU Li-xing; LIU Zhi-he

    2006-01-01

    The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingharn fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.

  9. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Ho [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  10. Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system.

    Science.gov (United States)

    Masala, Tatiana; Harvel, Glenn; Chang, Jen-Shih

    2007-11-01

    In this work, a high speed ultrasonic multitransducer pulse-echo system using a four transducer method was used for the dynamic characterization of gas-liquid two-phase separated flow regimes. The ultrasonic system consists of an ultrasonic pulse signal generator, multiplexer, 10 MHz (0.64 cm) ultrasonic transducers, and a data acquisition system. Four transducers are mounted on a horizontal 2.1 cm inner diameter circular pipe. The system uses a pulse-echo method sampled every 0.5 ms for a 1 s duration. A peak detection algorithm (the C-scan mode) is developed to extract the location of the gas-liquid interface after signal processing. Using the measured instantaneous location of the gas/liquid interface, two-phase flow interfacial parameters in separated flow regimes are determined such as liquid level and void fraction for stratified wavy and annular flow. The shape of the gas-liquid interface and, hence, the instantaneous and cross-sectional averaged void fraction is also determined. The results show that the high speed ultrasonic pulse-echo system provides accurate results for the determination of the liquid level within +/-1.5%, and the time averaged liquid level measurements performed in the present work agree within +/-10% with the theoretical models. The results also show that the time averaged void fraction measurements for a stratified smooth flow, stratified wavy flow, and annular flow qualitatively agree with the theoretical predictions.

  11. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  12. Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Grazia Monni

    2013-01-01

    Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.

  13. A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows

    Energy Technology Data Exchange (ETDEWEB)

    Ray A. Berry; Richard Saurel; Fabien Petitpas

    2009-05-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.

  14. An improved large eddy simulation of two-phase flows in a pump impeller

    Institute of Scientific and Technical Information of China (English)

    Xuelin Tang; Fujun Wang; Yulin Wu

    2007-01-01

    An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordi-nate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur-rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consis-tency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body-fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.

  15. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Directory of Open Access Journals (Sweden)

    Ge Y.T.

    2013-04-01

    Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  16. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    Science.gov (United States)

    Fsadni, A.-M.; Ge, Y. T.

    2013-04-01

    The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  17. Experimental Assessment of the Two-Phase Flow in a Large Inclined Channel

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thanh Hung; Song, Ki Won; Revankar, Shripad T; Park, Hyun Sun [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2014-10-15

    In order to assess the cooling performance of the core catcher system, a model facility has been constructed in POSTECH using scaling analysis. This facility consists of horizontal, inclined and vertical section. To investigate the flow parameters in each section, the instrumentation is developed to measure two-phase characteristics such as local void fraction, bubble velocity and bubble size. To date, there has been a considerable amount of research conducted on the internal structure of two-phase flow in pipe. However, the number of attempts made on the experiment regarding large inclined channels has been still limited. One of the reasons for this lack of data is the difficulty in constructing experimental facility. In this paper, the parameters of the flow in the inclined section are presented. The inclined channel is 10 degree from the horizontal with the rectangular cross section of 300 cm{sup 2}. The distributions of local parameters are evaluated through the data of double sensor conductivity probes installed at different locations along the inclined section. The data sets of the structure of two-phase flow in an inclined large channel was acquired. The air was injected through the metal foam installed on the top surface wall of the inclined section. Water level was kept below the top of the inclined section so the amount of water was fixed during the experiment. 9 probes set up at the different locations to get the data of local two-phase parameters. The measurement at each location was conducted in 5 minutes to determine the mean value of each parameter. The result of local void fraction profiles at different locations indicates that the void distribution primarily changes along the height of the inclined section. The slug flow occurs in the channel which results in most bubbles attached to the top surface wall. This fact explains the high local void fraction near the top wall and its rapid decline towards the bottom wall of the inclined section. The

  18. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature.

    Directory of Open Access Journals (Sweden)

    M Ethan MacDonald

    Full Text Available Volume flow rate (VFR measurements based on phase contrast (PC-magnetic resonance (MR imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC, local polynomial correction (LPC, and whole brain polynomial correction (WBPC.Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically.In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC, 58.4% (LPC and 47.7% (WBPC (p < 0.001 across all schemes. Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997. In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels.While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels.

  19. Paleosecular variation and time-averaged field analysis over the last 10 Ma from a new global dataset (PSV10)

    Science.gov (United States)

    Cromwell, G.; Johnson, C. L.; Tauxe, L.; Constable, C.; Jarboe, N.

    2015-12-01

    Previous paleosecular variation (PSV) and time-averaged field (TAF) models draw on compilations of paleodirectional data that lack equatorial and high latitude sites and use latitudinal virtual geomagnetic pole (VGP) cutoffs designed to remove transitional field directions. We present a new selected global dataset (PSV10) of paleodirectional data spanning the last 10 Ma. We include all results calculated with modern laboratory methods, regardless of site VGP colatitude, that meet statistically derived selection criteria. We exclude studies that target transitional field states or identify significant tectonic effects, and correct for any bias from serial correlation by averaging directions from sequential lava flows. PSV10 has an improved global distribution compared with previous compilations, comprising 1519 sites from 71 studies. VGP dispersion in PSV10 varies with latitude, exhibiting substantially higher values in the southern hemisphere than at corresponding northern latitudes. Inclination anomaly estimates at many latitudes are within error of an expected GAD field, but significant negative anomalies are found at equatorial and mid-northern latitudes. Current PSV models Model G and TK03 do not fit observed PSV or TAF latitudinal behavior in PSV10, or subsets of normal and reverse polarity data, particularly for southern hemisphere sites. Attempts to fit these observations with simple modifications to TK03 showed slight statistical improvements, but still exceed acceptable errors. The root-mean-square misfit of TK03 (and subsequent iterations) is substantially lower for the normal polarity subset of PSV10, compared to reverse polarity data. Two-thirds of data in PSV10 are normal polarity, most which are from the last 5 Ma, so we develop a new TAF model using this subset of data. We use the resulting TAF model to explore whether new statistical PSV models can better describe our new global compilation.

  20. Theoretical analysis and numerical computation of dilute solid/liquid two_phase pipe flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Starting with the kinetic theory for dilute solid/liquid two_phase flow, a mathematical model is established to predict the flow in a horizontal square pipe and the predictions are compared with LDV measurements. The present model predicts correctly two types of patterns of the vertical distribution of particle concentration observed in experiments, and also gives different patterns of the distribution of particle fluctuating energy. In the core region of the pipe, the predicted mean velocity of particles is smaller than that of liquid, but near the pipe bottom the reverse case occurs. In addition, full attention is paid to the mechanism for the vertical distribution of the average properties of particles such as concentration and mean velocity. From the kinetic_theory point of view, the cause of formation for different patterns of the vertical concentration distribution is not only related to the lift force exerted on a particle, but also related to the distribution of particle fluctuating energy.

  1. Measurement of Two Phase Flow in Porous Medium Using High-resolution Magnetic Resonance Imaging

    Institute of Scientific and Technical Information of China (English)

    JIANG Lanlan; SONG Yongchen; LIU Yu; YANG Mingjun; ZHU Ningjun; WANG Xiaojing; DOU Binlin

    2013-01-01

    Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique.The porous medium was a packed bed of glass beads.Spin echo multi sequence was used to measure the distribution of CO2 and water in the porous medium.The intensity images show that the fluid distribution is non-uniform due to its viscosity and pore structure of porous medium.The velocity distribution of fluids is calculated from the saturation of water and porosity of porous medium.The experimental results show that fluid velocities vary with time and position.The capillary dispersion rate donated the effects of capillary,which was largest at water saturations of 0.45.The displacement process is different between in BZ-02 and BZ-2.The final water residual saturation depends on permeability and porosity.

  2. INFLUENCE OF SURFACTANT ON TWO-PHASE FLOW REGIME AND PRESSURE DROP IN UPWARD INCLINED PIPES

    Institute of Scientific and Technical Information of China (English)

    XIA Guo-dong; CHAI Lei

    2012-01-01

    The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous solution are used as the working fluids.The influence of the surfactant on the two-phase flow regime in upward inclined pipes is investigated using the electrical tomographic technique.For 0°,2.5° and 5° pipe inclinations,the surfactant has obvious effect on the transition from the stratified wavy flow to the annular flow,and the range of the stratified smooth flow regime is also extended to higher gas velocities.For 10°pipe inclination,no stratified flow regime is observed in the air/water flow.In the air/surfactant solution system,however,the stratified flow regime can be found in the range of USG =10m/s-28m/s and USL =0.07 m/s-0.2 m/s.For all inclination angles,the changes of the pressure gradient characteristics are accompanied with the flow pattern transitions.Adding surfactant in a two-phase flow would reduce the pressure gradient significantly in the slug flow and annular flow regimes.In the annular flow regime,the pressure gradient gradually becomes free of the influence of the upward inclined angle,and is only dependent on the property of the two-phase flow.

  3. Study of two-phase flows in reduced gravity using ground based experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vasavada, S.; Ishii, M. [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States); Sun, X. [Ohio State University, Department of Mechanical Engineering, Columbus, OH (United States); Duval, W. [NASA Glenn Research Center, Fluid Physics and Transport Branch, Cleveland, OH (United States)

    2007-07-15

    Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59 {sup registered} as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions. (orig.)

  4. Two-phase relative permeability models in reservoir engineering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, S.; Hicks, P.J.; Ertekin, T.

    1999-01-15

    A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)

  5. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-09-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  6. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.

    1992-01-01

    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  7. Two-phase Flow Distribution in Heat Exchanger Manifolds

    OpenAIRE

    Vist, Sivert

    2004-01-01

    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  8. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho

    2013-01-01

    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  9. Viscosity Solutions for the two-phase Stefan Problem

    CERN Document Server

    Kim, Inwon C

    2010-01-01

    We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.

  10. Recent advances in two-phase flow numerics

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  11. Estimating disease prevalence in two-phase studies.

    Science.gov (United States)

    Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas

    2003-04-01

    Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.

  12. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change

    Science.gov (United States)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.

    2016-11-01

    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  13. On intermittent flow characteristics of gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Thaker, Jignesh; Banerjee, Jyotirmay, E-mail: jbaner@gmail.com

    2016-12-15

    Highlights: • Unified correlations for intermittent flow characteristics are developed. • Influence of inflow conditions on intermittent flow characteristics is analysed. • Developed correlations can be used for effective design of piping components. - Abstract: Flow visualisation experiments are reported for intermittent regime of gas–liquid two-phase flow. Intermittent flow characteristics, which include plug/slug frequency, liquid plug/slug velocity, liquid plug/slug length, and plug/slug bubble length are determined by image processing of flow patterns captured at a rate of 1600 frames per second (FPS). Flow characteristics are established as a function of inlet superficial velocity of both the phases (in terms of Re{sub SL} and Re{sub SG}). The experimental results are first validated with the existing correlations for slug flow available in literature. It is observed that the correlations proposed in literature for slug flow do not accurately predict the flow characteristics in the plug flow regime. The differences are clearly highlighted in this paper. Based on the measured database for both plug and slug flow regime, modified correlations for the intermittent flow regime are proposed. The correlations reported in the present paper, which also include plug flow characteristics will aid immensely to the effective design and optimization of operating conditions for safer operation of two-phase flow piping systems.

  14. A complete two-phase model of a porous cathode of a PEM fuel cell

    Science.gov (United States)

    Hwang, J. J.

    This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).

  15. Particle velocimetry analysis of immiscible two-phase flow in micromodels

    Science.gov (United States)

    Roman, Sophie; Soulaine, Cyprien; AlSaud, Moataz Abu; Kovscek, Anthony; Tchelepi, Hamdi

    2016-09-01

    We perform micro-PIV measurements in micromodels using very simple optical equipment combined with efficient image acquisition and processing. The pore-scale velocity distributions are obtained for single-phase flow in porous media with a typical pore size of 5-40 μm at a resolution of 1.8 μm × 1.8 μm vector grid. Because the application of micro-PIV in micromodels is not standard, extensive effort is invested into validation of the experimental technique. The micro-PIV measurements are in very good agreement with numerical simulations of single-phase flows, for which the modeling is well established once the detailed pore geometry is specified and therefore serves as a reference. The experimental setup is then used with confidence to investigate the dynamics of immiscible two-phase flow in micromodels that represent natural complex porous media (e.g., sandstone). For unstable immiscible two-phase flow experiments, micro-PIV measurements indicate that the flow is highly oscillatory long before the arrival of the invading interface. The dynamics are accompanied with abrupt changes of velocity magnitude and flow direction, and interfacial jumps. Following the passage of the front, dissipative events, such as eddies within the aqueous phase, are observed in the micro-PIV results. These observations of complex interface dynamics at the pore scale motivate further measurement of multiphase fluid movement at the sub-pore scale and requisite modeling.

  16. Experimental Study on Two-Phase Flow in Horizontal Rectangular Minichannel with Y-Junction

    Directory of Open Access Journals (Sweden)

    Agus Santoso

    2016-03-01

    Full Text Available An experimental study was conducted to investigate two-phase air-water flow characteristics, in horizontal rectangular minichannel with Y-junction. The width (W, the height (H and the hydraulic diameter (DH of the rectangular cross section for the upstream side of the junction are 4.60 mm, 2.50 mm and 3.24 mm, while those for the downstream side are 2.36 mm, 2.50 mm and 2.43 mm. The entire test section was machined from transparent acrylic block, so that the flow structure could be visualized. Liquid single-phase and air-liquid twophase flow experiments were conducted at room temperature. The flow pattern, the bubble velocity, the bubble length, and the void fraction were measured with a high-speed video camera. Pressure profile upstream and downstream from the junction was also measured for the respective flows, and the pressure loss due to the contraction at the junction was determined from the pressure profiles. Two flow patterns, i.e., slug and annular flows, were observed in the fully-developed region apart from the junction. In the analysis, the frictional pressure drop data, the two-phase frictional multiplier data, bubble velocity data, bubble length data and void fraction data were compared with calculations by some correlations in literatures. In addition, new pressure loss coefficient correlations for the pressure drop at the junction has been proposed. Results of such experiment and analysis are described in the present paper.

  17. Parasitic Currents in Diffuse-Interface Two-Phase Flow Simulations

    Science.gov (United States)

    Milani, Pedro; Mirjalili, Seyedshahabaddin; Mani, Ali

    2016-11-01

    Two phase flow phenomena are important in a wide range of applications, such as bubble generation in ocean waves and droplet dynamics in fuel injectors. Several methods can be used to simulate such phenomena. The focus of this study is the diffuse-interface method, in which the interface is described via a mixing energy and spans a few computational cells, while surface tension is modeled as a force density term on the right-hand side of the momentum equation. The advantages of this method include the ability to easily simulate complex geometries since it does not require special treatment around the interface, and to conserve mass exactly. However, this method suffers from parasitic currents, an unphysical velocity field generated close to the interface due to numerical imprecisions in the surface tension term. This can be a serious problem in low speed flows, where the parasitic currents are significant compared to the velocity scale of the problem. In this study, we consider a wide range of diffuse-interface schemes for two-phase flows, including different options for discrete representation of the surface tension force. By presenting an assessment of each method's performance in scenarios involving parasitic currents, we develop accuracy estimates and guidelines for selection among these models. Supported by the ONR.

  18. Quantification of non-linearities as a function of time averaging in regional air quality modeling applications

    Science.gov (United States)

    Thunis, P.; Clappier, A.; Pisoni, E.; Degraeuwe, B.

    2015-02-01

    Air quality models which are nowadays used for a wide range of scopes (i.e. assessment, forecast, planning) see their intrinsic complexity progressively increasing as better knowledge of the atmospheric chemistry processes is gained. As a result of this increased complexity potential non-linearities are implicitly and/or explicitly incorporated in the system. These non-linearities represent a key and challenging aspect of air quality modeling, especially to assess the robustness of the model responses. In this work the importance of non-linear effects in air quality modeling is quantified, especially as a function of time averaging. A methodology is proposed to decompose the concentration change resulting from an emission reduction over a given domain into its linear and non-linear contributions for each precursor as well as in the contribution resulting from the interactions among precursors. Simulations with the LOTOS-EUROS model have been performed by TNO over three regional geographical areas in Europe for this analysis. In all three regions the non-linear effects for PM10 and PM2.5 are shown to be relatively minor for yearly and monthly averages whereas they become significant for daily average values. For Ozone non-linearities become important already for monthly averages in some regions. An approach which explicitly deals with monthly variations seems therefore more appropriate for O3. In general non-linearities are more important at locations where concentrations are the lowest, i.e. at urban locations for O3 and at rural locations for PM10 and PM2.5. Finally the impact of spatial resolution (tested by comparing coarse and fine resolution simulations) on the degree of non-linearity has been shown to be minor as well. The conclusions developed here are model dependent and runs should be repeated with the particular model of interest but the proposed methodology allows with a limited number of runs to identify where efforts should be focused in order to

  19. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    CERN Document Server

    Zboray, R; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.

  20. A Numerical Simulation of Gas-Particle Two-Phase Flow in a Suspension Bed Using Diffusion Flux Model

    Institute of Scientific and Technical Information of China (English)

    尚智; 杨瑞昌; FUKUDAKenji; 钟勇; 巨泽建

    2003-01-01

    A mathematical model of two-dimensional turbulent gas-particle two-phase flow based on the modified diffusion flux model (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux model, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by κ-ε-κp two-fluid model, which shows a reasonable agreement. It is confirmed that the modified diffusion flux model is suitable for simulating the multi-dimensional gas-particle two-phase flow.

  1. Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke particles) fluid

    Science.gov (United States)

    Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy

    2017-04-01

    The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  2. Quantum Dynamics via Complex Analysis Methods: General Upper Bounds Without Time-Averaging and Tight Lower Bounds for the Strongly Coupled Fibonacci Hamiltonian

    CERN Document Server

    Damanik, David

    2008-01-01

    We develop further the approach to upper and lower bounds in quantum dynamics via complex analysis methods which was introduced by us in a sequence of earlier papers. Here we derive upper bounds for non-time averaged outside probabilities and moments of the position operator from lower bounds for transfer matrices at complex energies. Moreover, for the time-averaged transport exponents, we present improved lower bounds in the special case of the Fibonacci Hamiltonian. These bounds lead to an optimal description of the time-averaged spreading rate of the fast part of the wavepacket in the large coupling limit. This provides the first example which demonstrates that the time-averaged spreading rates may exceed the upper box-counting dimension of the spectrum.

  3. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan); Hazuku, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan)], E-mail: hazuku@kaiyodai.ac.jp; Hibiki, T. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2008-12-15

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions.

  4. Comparison of a Full Second-Order Moment Model and an Algebraic Stress Two-Phase Turbulence Model for Simulating Bubble-Liquid Flows in a Bubble Column

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.

  5. The difficult challenge of a two-phase CFD modelling for all flow regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bestion, D., E-mail: dominique.bestion@cea.fr

    2014-11-15

    Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The

  6. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging.

    Science.gov (United States)

    Teng, Ying; Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong

    2016-09-01

    Gravity drainage characteristics are important to improve our understanding of gas-liquid or liquid-liquid two-phase flow in porous media. Stable or unstable displacement fronts that controlled by the capillary force, viscous force, gravitational force, etc., are relevant features of immiscible two-phase flow. In this paper, three dimensionless parameters, namely, the gravity number, the capillary number and the Bond number, were used to describe the effect of the above mentioned forces on two-phase drainage features, including the displacement front and final displacing-phase saturation. A series of experiments on the downward displacement of a viscous fluid by a less viscous fluid in a vertical vessel that is filled with quartz beads are performed by using magnetic resonance imaging (MRI). The experimental results indicate that the wetting properties at both high and low capillary numbers exert remarkable control on the fluid displacement. When the contact angle is lower than 90°, i.e., the displaced phase is the wetting phase, the average velocity Vf of the interface of the two phases (displacement front velocity) is observably lower than when the displaced phase is the non-wetting phase (contact angle higher than 90°). The results show that a fingering phenomenon occurs when the gravity number G is less than the critical gravity number G'=Δμ/μg. Moreover, the higher Bond number results in higher final displacing-phase saturation, whereas the capillary number has an opposite effect.

  7. Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program

    Science.gov (United States)

    1979-04-01

    efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the

  8. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  9. Recurrent pyogenic cholangitis : efficacy of two-phase helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ki Ho; Cho, June Sik; Shin, Kyung Sook; Lee, Se Hyo; Yu, Ho Jun; Park, Jin Yong; Kim, Young Min [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)

    2000-01-01

    To evaluate the usefulness of two-phase helical CT in patients with recurrent pyogenic cholangitis (RPC) for the detection of acute inflammation and assessment of the degree of portal vein (PV) stenosis as a cause of hepatic parenchymal atrophy. We retrospectively reviewed two-phase CT findings in 30 patients with RPC diagnosed by CT, ERCP (endoscopic retrograde cholangiopancreatography), and surgery. Two-phase helical CT scans were obtained 30 sec (arterial phase, AP) and 70 sec (portal phase, PP) after the start of IV administration of contrast material. Without prior information, we analyzed periductal parenchymal and ductal wall enhancement during the AP and PP, and the degree of PV stenosis during the PP. Acute inflammation was diagnosed on the basis of symptoms and laboratory findings. To evaluate the relationship between parenchymal a trophy and PV stenosis, the degree of PV stenosis in affected parenchyma was classified as one of three types (mild, less than 25%; moderate, 25-75%; severe, greater than 75%), as compared with the diameter of normal PV in unaffected parenchyma. Ten of the 30 patients underwent CT during the acute inflammatory stage and 20 during the remission stage. Of the ten patients with acute inflammation, eight (80%) showed transient periductal parenchymal enhancement during the AP (p less than 0.05), which correlated closely with acute inflammation. Only three (15%) of the 20 patients with remission, however, showed transient parenchymal enhancement during this phase, at which time ductal wall enhancement was seen in three (30%) of the ten patients with acute inflammation and in seven (35%) of the 20 who showed remission (p greater than 0.05). There was no significant difference in parenchymal and ductal wall enhancement during the PP between patients with acute inflammation and those who showed remission (p greater than 0.05). Hepatic parenchymal atrophy of the lesion was seen in 24 patients. Among these, PV stenosis was mild in five

  10. Two algorithms for two-phase Stefan type problems

    Institute of Scientific and Technical Information of China (English)

    LIAN Xiao-peng; CHENG Xiao-liang; HAN Wei-min

    2009-01-01

    In this paper, the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed. An analysis of their convergence is presented and the upper bounds of the convergence rates are derived. Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm, the convergence rate is uniformly bounded away from 1 if τh-2 is kept bounded, where τ is the time step size and h the space mesh size.

  11. Stochastic analysis of particle-fluid two-phase flows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.

  12. Experimental and numerical investigation on two-phase flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ruspini, Leonardo Carlos

    2013-03-01

    Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non

  13. Two-phase nozzle flow and the subcharacteristic condition

    DEFF Research Database (Denmark)

    Linga, Gaute; Aursand, Peder; Flåtten, Tore

    2015-01-01

    We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....

  14. Properties of disturbance waves in vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Pravin [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)], E-mail: psawant@purdue.edu; Ishii, Mamoru [Purdue University, School of Nuclear Engineering, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Hazuku, Tatsuya; Takamasa, Tomoji [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Mori, Michitsugu [Tokyo Electric Power Co., Inc., 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)

    2008-12-15

    Disturbance waves play an important role in interfacial transfer of mass, momentum and energy in annular two-phase flow. In spite of their importance, majority of the experimental data available in literature on disturbance wave properties such as velocity, frequency, wavelength and amplitude are limited to near atmospheric conditions (Azzopardi, B.J., 1997. Drops in annular two-phase flow. International Journal of Multiphase Flow, 23, 1-53). In view of this, air-water annular flow experiments have been conducted at three pressure conditions (1.2, 4.0 and 5.8 bar) in a tubular test section having an inside diameter 9.4 mm. At each pressure condition liquid and gas phase flow rates are varied over a large range so that the effects of density ratio, liquid flow rate and gas flow rate on disturbance wave properties can be studied systematically. A liquid film thickness is measured by two flush mounted ring shaped conductance probes located 38.1 mm apart. Disturbance wave velocity, frequency, amplitude and wavelength are estimated from the liquid film thickness measurements by following the statistical analysis methods. Parametric trends in variations of disturbance wave properties are analyzed using the non-dimensional numbers; liquid phase Reynolds number (Re{sub f}), gas phase Reynolds number (Re{sub g}), Weber number (We) and Strouhal number (Sr). Finally, the existing correlations available for the prediction of disturbance wave velocity and frequency are analyzed and a new, improved correlation is proposed for the prediction of disturbance wave frequency. The new correlation satisfactorily predicted the current data and the data available in literature.

  15. New considerations on the mass and energy balances in one-dimensional two-phase flow at steady state

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J. [Zaragoza Univ. (Spain). Dept. de Ingenieria Mecanica; Munoz, M. [Zaragoza Univ. (Spain). Dept. de Ingenieria Mecanica

    1997-08-01

    A new equation to be added to the classical mass balance expressions for two-phase flow is presented. It is based on the definition of new differential control volumes of variable length which are proportional to the gas velocity in a compressible flow. The new equation is equivalent to the gas-solids velocity ratio being constant throughout the duct, and it is used to derive a new expression of the energy balance for a two-phase, non-reacting flow. Through this energy balance, new correlations for the pressure drop in pneumatic conveying lines are obtained, showing an excellent agreement with experimental data from the high-pressure research facility of the Institute of Gas Technology, Chicago, IL. Finally, a more general equation, which is also valid for the mass balance of reacting flows, is supplied. (orig.)

  16. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  17. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2012-07-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  18. Two-phase electrochemical lithiation in amorphous silicon.

    Science.gov (United States)

    Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting

    2013-02-13

    Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

  19. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  20. Acute cholecystitis: two-phase spiral CT finding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.

  1. Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng

    2013-06-20

    We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.

  2. The Effect of pH Difference Between Two Phases on the Partition of Lysozyme in Aqueous Two-Phase System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.

  3. The value of time-averaged serum high-sensitivity C-reactive protein in prediction of mortality and dropout in peritoneal dialysis patients.

    Science.gov (United States)

    Liu, Shou-Hsuan; Chen, Chao-Yu; Li, Yi-Jung; Wu, Hsin-Hsu; Lin, Chan-Yu; Chen, Yung-Chang; Chang, Ming-Yang; Hsu, Hsiang-Hao; Ku, Cheng-Lung; Tian, Ya-Chung

    2017-01-01

    C-reactive protein (CRP) is a useful biomarker for prediction of long-term outcomes in patients undergoing chronic dialysis. This observational cohort study evaluated whether the time-averaged serum high-sensitivity CRP (HS-CRP) level was a better predictor of clinical outcomes than a single HS-CRP level in patients undergoing peritoneal dialysis (PD). We classified 335 patients into three tertiles according to the time-averaged serum HS-CRP level and followed up regularly from January 2010 to December 2014. Clinical outcomes such as cardiovascular events, infection episodes, newly developed malignancy, encapsulating peritoneal sclerosis (EPS), dropout (death plus conversion to hemodialysis), and mortality were assessed. During a 5-year follow-up, 164 patients (49.0%) ceased PD; this included 52 patient deaths (15.5%), 100 patients (29.9%) who converted to hemodialysis, and 12 patients (3.6%) who received a kidney transplantation. The Kaplan-Meier survival analysis and log-rank test revealed a significantly worse survival accumulation in patients with high time-average HS-CRP levels. A multivariate Cox regression analysis revealed that a higher time-averaged serum HS-CRP level, older age, and the occurrence of cardiovascular events were independent mortality predictors. A higher time-averaged serum HS-CRP level, the occurrence of cardiovascular events, infection episodes, and EPS were important predictors of dropout. The receiver operating characteristic analysis verified that the value of the time-average HS-CRP level in predicting the 5-year mortality and dropout was superior to a single serum baseline HS-CRP level. This study shows that the time-averaged serum HS-CRP level is a better marker than a single baseline measurement in predicting the 5-year mortality and dropout in PD patients.

  4. Characteristics of pressure drop for single-phase and two-phase flow across sudden contraction in microtubes

    Institute of Scientific and Technical Information of China (English)

    LI Zhuo; YU Jian; MA ChongFang

    2008-01-01

    Single-phase and gas-liquid two-phase pressure drops caused by a sudden contraction in microtubes were experimentally investigated at room temperature and atmospheric pressure, using nitrogen and water. The experimental results on pressure drop with a novel measurement method, the tiny gaps on the tubes, were used to characterize the sudden contraction pressure drop for tube diameters from 850 to 330 μm. The ranges of the gas and liquid superficial velocity were 2.55-322.08 and 0.98-9.78 m/s in the smaller tube respectively. In single-phase flow experiments, the contraction loss coefficients were larger than the experimental results from conventional tubes in the laminar flow. While in the turbulent flow, the contraction loss coefficients were slightly smaller than those from conventional tubes and predicted well by Kc=0.5×1-σ2)0.75. In two-phase flow experiments, the slip flow model with a velocity slip ratio S=(ρL/ρG)1/3 showed a good prediction that reveals the occurrence of velocity slip. An empirical correlation for two-phase flow pressure drops caused by the sudden contraction was developed based on the proposed contraction loss coefficients correlation for single-phase flow and Martinelli factor.

  5. Studies of efficiency in a perforated rotating disc contactor using a polymer-polymer aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    L. A. Sarubbo

    2005-09-01

    Full Text Available The mass transfer process in a perforated rotating disc contactor (PRDC using a polymer-polymer aqueous two-phase system was investigated. The results show that the efficiency did not show a regular trend with the increase of the dispersed phase velocity and increased with the rotation velocity. The separation efficiency was higher for three rotating discs than for four discs. The increase in tie-line length decreased the efficiency. The separation efficiency reached high values, about 96% under conditions studied in this work.

  6. Interstellar Cloud Formation through Aggregation of Cold Blobs in a Two-Phase Gas Mixture

    Science.gov (United States)

    Kamaya, Hideyuki

    1997-05-01

    We propose a new formation scenario for interstellar clouds through the aggregation of dense cold blobs (phase II [PII]), which drift in a diffuse warm medium (phase I [PI]). We examine how important it is that there exist numerous PII blobs when the properties of such a two-phase flow are studied. First, we solve a one-dimensional shock-tube problem and find that the shock wave in the mixture is considerably damped because of the drag force between the two phases. This is because the PII blobs are left behind the shock front, since their inertia is larger than that of PI, thus suppressing large spatial variations of PI gas via the drag force. The PII blobs thus play the role of anchors. Therefore, mass aggregation by shocks may be ineffective in a two-phase medium. However, the PII blobs can still aggregate through a kind of fluid dynamical instability. We next suppose that the PI gas is accelerated upward by shocks against downward gravity, while the PII blobs are at rest because of balance between the drag force due to PI and gravity. If we put a positive perturbation in the number density of PII blobs, the upward PI flow above the perturbation is decelerated by the enhanced drag force, and the velocity difference between PI and PII is thereby reduced. Then the PII blobs above the perturbation are accelerated downward, since the gravity on PII now dominates the reduced drag force. As a result, the blobs will fall onto this perturbed region, and this region becomes denser and denser. This is the mechanism of the instability. Therefore, we expect efficient cloud formation by this instability in spiral arms, even when galactic shocks are extremely damped.

  7. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2016-12-15

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  8. Contrast enhanced two-phase spiral CT of urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)

    1997-10-01

    To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was

  9. Interfacial area and two-phase flow structure development measured by a double-sensor probe

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Waihung; Revankar, S.T.; Ishii, Yoshihiko; Ishii, Mamoru

    1992-06-01

    In this report, we studied the local phasic characters of dispersed flow regime both at the entrance and at the fully developed regions. Since the dispersed phase is distributed randomly in the medium and enclosed in relatively small interfaces, the phasic measurement becomes difficult to obtain. Local probe must be made with a miniaturized sensor in order to reduce the interface distortion. The double-sensor resistivity probe has been widely used in local void fraction and interface velocity measurements because the are small in comparison with the interfaces. It has been tested and proved to be an accurate local phasic measurement tool. In these experiments, a double-sensor probe was employed to measure the local void fraction and interface velocity in an air-water system. The test section was flow regime can be determined by visualization. Furthermore, local phasic measurements can be verified by photographic studies. We concentrated our study on the bubbly flow regime only. The local measurements were conducted at two axial locations, L/D = 8 and 60, in which the first measurement represents the entrance region where the flow develops, and the second measurement represents the fully developed flow region where the radial profile does not change as the flow moves along the axial direction. Four liquid flow rates were chosen in combination with four different gas injection rates. The superficial liquid velocities were j{sub t} = 1.0, 0.6,0.4, and 0.1 m/s and superficial gas velocities were j{sub g} = 0.0965, 0.0696, 0.0384, and 0.0192 m/s. These combinations put the two-phase flow well in the bubbly flow regime. In this sequence of phenomenological studies, the local void fraction, interface area concentration, sauter mean diameter, bubble velocity and bubble frequency were measured.

  10. Dividing phases in two-phase flow and modeling of interfacial drag

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T.; Rajamaeki, M. [VTT Energy (Finland)

    1997-07-01

    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.

  11. Numerical Simulations of Two-Phase Flow in a Dorr-Oliver Flotation Cell Model

    Directory of Open Access Journals (Sweden)

    Hassan Fayed

    2013-08-01

    Full Text Available Two-phase (water and air flow in the forced-air mechanically-stirred Dorr-Oliver machine has been investigated using computational fluid dynamics (CFD. A 6 m3 model is considered. The flow is modeled by the Euler-Euler approach, and transport equations are solved using software ANSYS-CFX5. Unsteady simulations are conducted in a 180-degree sector with periodic boundary conditions. Air is injected into the rotor at the rate of 2.63 m3/min, and a uniform bubble diameter is specified. The effects of bubble diameter on velocity field and air volume fraction are determined by conducting simulations for three diameters of 0.5, 1.0, and 2.0 mm. Air volume fraction contours, velocity profiles, and turbulent kinetic energy profiles in different parts of the machine are presented and discussed. Results have been compared to experimental data, and good agreement is obtained for the mean velocity and turbulent kinetic energy profiles in the rotor-stator gap and in the jet region outside stator blades.

  12. Numerical simulation of two-phase flow around flatwater competition kayak design-evolution models.

    Science.gov (United States)

    Mantha, Vishveshwar R; Silva, António J; Marinho, Daniel A; Rouboa, Abel I

    2013-06-01

    The aim of the current study was to analyze the hydrodynamics of three kayaks: 97-kg-class, single-rower, flatwater sports competition, full-scale design evolution models (Nelo K1 Vanquish LI, LII, and LIII) of M.A.R. Kayaks Lda., Portugal, which are among the fastest frontline kayaks. The effect of kayak design transformation on kayak hydrodynamics performance was studied by the application of computational fluid dynamics (CFD). The steady-state CFD simulations where performed by application of the k-omega turbulent model and the volume-of-fluid method to obtain two-phase flow around the kayaks. The numerical result of viscous, pressure drag, and coefficients along with wave drag at individual average race velocities was obtained. At an average velocity of 4.5 m/s, the reduction in drag was 29.4% for the design change from LI to LII and 15.4% for the change from LII to LIII, thus demonstrating and reaffirming a progressive evolution in design. In addition, the knowledge of drag hydrodynamics presented in the current study facilitates the estimation of the paddling effort required from the athlete during progression at different race velocities. This study finds an application during selection and training, where a coach can select the kayak with better hydrodynamics.

  13. Exploring the hole cleaning parameters of horizontal wellbore using two-phase Eulerian CFD approach

    Directory of Open Access Journals (Sweden)

    Satish K Dewangan

    2016-03-01

    Full Text Available The present investigation deals with the flow through concentric annulus with the inner cylinder in rotation. This work has got its importance in the petroleum industries in relation to the wellbore drilling. In wellbore drilling, the issue of the hole-cleaning is very serious problem especially in case of the horizontal drilling process. The effect of the various parameters like slurry flow velocity, inner cylinder rotational speed, inlet solid concentration which affect hole cleaning was discussed. Their effect on the pressure drop, wall shear stress, mixture turbulence kinetic energy, and solid-phase velocity and slip velocity were analyzed, which are responsible for solid-phase distribution. Flow was considered to be steady, incompressible and two-phase slurry flow with water as carrier fluid and silica sand as the secondary phase. Eulerian approach was used for modeling the slurry flow. Silica sand was considered of spherical shape with particle size of 180 µm. ANSYS FLUENT software was used for modeling and solution. Plotting was done using Tecplot software and Microsoft Office.

  14. Stability of stratified two-phase flows in horizontal channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen

    2016-01-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...

  15. Two-phase microfluidics: thermophysical fundamentals and engineering concepts

    Science.gov (United States)

    Kuznetsov, V. V.

    2016-10-01

    Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.

  16. Response of two-phase droplets to intense electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spann, J.F. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States)); Maloney, D.J.; Lawson, W.F.; Casleton, K.H. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States))

    1993-04-20

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 [mu]m) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  17. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін

    2010-01-01

    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  18. Two phase coexistence for the hydrogen-helium mixture

    CERN Document Server

    Fantoni, Riccardo

    2015-01-01

    We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.

  19. Phase appearance or disappearance in two-phase flows

    CERN Document Server

    Cordier, Floraine; Kumbaro, Anela

    2011-01-01

    This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...

  20. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran

    2004-01-01

    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.

  1. A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION

    Institute of Scientific and Technical Information of China (English)

    Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE

    2003-01-01

    A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.

  2. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The

  3. Solutal Marangoni instability in layered two-phase flows

    CERN Document Server

    Picardo, Jason R; Pushpavanam, S

    2015-01-01

    In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...

  4. Two-Phase Algorithm for Optimal Camera Placement

    Directory of Open Access Journals (Sweden)

    Jun-Woo Ahn

    2016-01-01

    Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.

  5. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  6. Transient thermohydraulic modeling of two-phase fluid systems

    Science.gov (United States)

    Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.

    2012-11-01

    This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.

  7. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  8. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  9. Note on Two-Phase Phenomena in Financial Markets

    Institute of Scientific and Technical Information of China (English)

    JIANG Shi-Mei; CAI Shi-Min; ZHOU Wao; ZHOU Pei-Ling

    2008-01-01

    The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation phenomenon in Hang-Seng index. It is observed that the bifurcation phenomenon in financial index is not universal, but specific under certain conditions. For Hang-Seng index and randomly generated time series, the phenomenon just emerges when the power-law exponent of absolute increment distribution is between i and 2 with appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours. However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs is far different from real market to artificial data, which may reflect certain market information.

  10. Thirty-two phase sequences design with good autocorrelation properties

    Indian Academy of Sciences (India)

    S P Singh; K Subba Rao

    2010-02-01

    Polyphase Barker Sequences are finite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difficult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modified Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.

  11. A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios

    KAUST Repository

    Xie, Yu

    2016-10-04

    In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.

  12. Two-phase micro- and macro-time scales in particle-laden turbulent channel flows

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Michael Manhart

    2012-01-01

    The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flow anisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number (isotropic) turbulence.Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longer than those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions,while away from the walls the micro Lagrangian time scales are longer.The Lagrangian integral time scales are longer than the Eulerian ones.The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.

  13. Extension of the low diffusion particle method for near-continuum two-phase flow simulations

    Institute of Scientific and Technical Information of China (English)

    Su Wei; He Xiaoying; Cai Guobiao

    2013-01-01

    The low diffusion (LD) particle method,proposed by Burt and Boyd,is modified for the near-continuum two-phase flow simulations.The LD method has the advantages of easily coupling with the direct simulation Monte Carlo (DSMC) method for multi-scale flow simulations and dramatically reducing the numerical diffusion error and statistical scatter of the equilibrium particle methods.Liquid-or solid-phase particles are introduced in the LD method.Their velocity and temperature updating are respectively,calculated from the motion equation and the temperature equation according to the local gas properties.Coupling effects from condensed phase to gas phase are modeled as momentum and energy sources,which are respectively,equal to the negative values of the total momentum and energy increase in liquid or solid phase.The modified method is compared with theoretical results for unsteady flows,and good agreements are obtained to indicate the reliability of the one-way gas-to-particle coupling models.Hybrid LD-DSMC algorithm is implemented and performed for nozzle discharging gas-liquid flow to show the prospect of the LDDSMC scheme for multi-scale two-phase flow simulations.

  14. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Virgínia H.V. Baroncini

    2015-03-01

    Full Text Available Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  15. A Lagrangian-Lagrangian Model for Two-Phase Bubbly Flow around Circular Cylinder

    Directory of Open Access Journals (Sweden)

    M. Shademan

    2014-06-01

    Full Text Available A Lagrangian-Lagrangian model is developed using an in-house code to simulate bubble trajectory in two-phase bubbly flow around circular cylinder. Random Vortex Method (RVM which is a Lagrangian approach is used for solving the liquid phase. The significance of RVM relative to other RANS/LES methods is its capability in directly modelling the turbulence. In RVM, turbulence is modeled by solving the vorticity transport equation and there is no need to use turbulence closure models. Another advantage of RVM relative to other CFD approaches is its independence from mesh generation. For the bubbles trajectory, equation of motion of bubbles which takes into account effect of different forces are coupled with the RVM. Comparison of the results obtained from current model with the experimental data confirms the validity of the model. Effect of different parameters including flow Reynolds number, bubble diameter and injection point on the bubbles' trajectory are investigated. Results show that increase in the Reynolds number reduces the rising velocity of the bubbles. Similar behavior is observed for the bubbles when their diameter was decreased. According to the analysis carried out, present Lagrangian-Lagrangian model solves the issues of mesh generation and turbulence modelling which exist in common two phase flow modelling schemes.

  16. TWO-PHASE FLOW PATTERNS IN A 90° BEND AT MICROGRAVITY

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jianfu; K.S.GABRIEL

    2004-01-01

    Bends are widely used in pipelines carrying single- and two-phase fluids in both ground and space applications. In particular, they play more important role in space applications due to the extreme spatial constraints. In the present study, a set of experimental data of two-phase flow patterns and their transitions in a 90° bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported. Gas and liquid superficial velocities are found to range from (1.0 ~ 23.6)m/s for gas and (0.09 ~ 0.5)m/s for liquid, respectively. Three major flow patterns,namely slug, slug-annular transitional, and annular flows, are observed in this study. Focusing on the differences between flow patterns in bends and their counterparts in straight pipes, detailed analyses of their characteristics are made. The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes, and can be predicted using Weber number models satisfactorily.The reasons for such agreement are carefully examined.

  17. On a regularized family of models for homogeneous incompressible two-phase flows

    CERN Document Server

    Gal, Ciprian G

    2014-01-01

    We consider a general family of regularized models for incompressible two-phase flows based on the Allen-Cahn formulation in n-dimensional compact Riemannian manifolds for n=2,3. The system we consider consists of a regularized family of Navier-Stokes equations (including the Navier-Stokes-{\\alpha}-like model, the Leray-{\\alpha} model, the Modified Leray-{\\alpha} model, the Simplified Bardina model, the Navier-Stokes-Voight model and the Navier-Stokes model) for the fluid velocity suitably coupled with a convective Allen-Cahn equation for the (phase) order parameter. We give a unified analysis of the entire three-parameter family of two-phase models using only abstract mapping properties of the principal dissipation and smoothing operators, and then use assumptions about the specific form of the parametrizations, leading to specific models, only when necessary to obtain the sharpest results. We establish existence, stability and regularity results, and some results for singular perturbations, which as special...

  18. Two-phase methanization of food wastes in pilot scale.

    Science.gov (United States)

    Lee, J P; Lee, J S; Park, S C

    1999-01-01

    A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  19. Two phase continuous digestion of solid manure on-farm

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)

    2007-07-01

    Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the

  20. Correct numerical simulation of a two-phase coolant

    Science.gov (United States)

    Kroshilin, A. E.; Kroshilin, V. E.

    2016-02-01

    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  1. Supporting universal prevention programs: a two-phased coaching model.

    Science.gov (United States)

    Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S

    2013-06-01

    Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.

  2. Numerical simulation of two-phase turbulent flow in hydraulic and hydropower engineering

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In connection with the specific features of high velocity aerated flow generated by hydraulic engineering structures,the mathematical model is developed for high turbulence air-water two-phase flow with the use of twin flow theoretical model in this paper.Furthermore the numerical method is proposed to treat bubbled flows.In addition,on the basis of air-water stratified twin flow model,the new calculation methods and free surface tracking technique are proposed to describe complicated movements of the free surface.Finally,the proposed model is used to calculate artificial aerated flows.The computed results coincide quite well with experimental results.This means that the proposed method can provide solid basis for practical engineering design.

  3. Droplet in micro-channels: A numerical approach using an adaptive two phase flow solver

    CERN Document Server

    Fullana, Jose-Maria; Popinet, Stéphane; Josserand, Christophe

    2015-01-01

    We propose a numerical approach to study the mechanics of a flowing bubble in a constraint micro channel. Using an open source two phase flow solver (Gerris, gfs.sourceforge.net) we compute solutions of the bubble dynamics (i.e. shape and terminal velocity) induced by the interaction between the bubble movement, the Laplace pressure variation, and the lubrication film near the channel wall. Quantitative and qualitative results are presented and compared against both theory and experimental data for small Capillary numbers. We discuss the technical issues of explicit integration methods on small Capillary numbers computations, and the possibility of adding Van der Walls forces to give a more precise picture of the Droplet-based microfluidic problem.

  4. TWO-PHASE FLOW OF HIGHLY CONCENTRATED SLURRY IN A PIPELINE

    Institute of Scientific and Technical Information of China (English)

    NI Fu-sheng; ZHAO Li-juan; MATOUSEK V.; VLASBLOM W. J.; ZWARTBOL A.

    2004-01-01

    Hydraulic transport of sand is one of the key processes in river, lake, harbor and waterway dredging engineering. Understanding the flow resistance, solid distribution, flow stratification, transport economy, etc., in the two-phase flow of sand-water mixture through a pipeline is crucial to the design and operation of power drives of a dredger, and to the construction of a dredging project. This paper presents the intensive laboratory experimental data and physical and numerical analyses on the highly concentrated slurry flow under an extended large range of slurry mean velocities for three narrow-graded sands of different sizes. The investigation indicates that the solids concentration and particle size strongly affect the slurry flow characteristics.

  5. EFFECT OF SURFACTANT ON TWO-PHASE FLOW PATTERNS OF WATER-GAS IN CAPILLARY TUBES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Flow patterns of liquid-gas two-phase flow were experimentally investigated. The experiments were carried out in both vertical and horizontal capillary tubes having inner diameters of 1.60 mm. The working liquid was the mixture of water and Sodium Dodecyl Benzoyl Sulfate (SDBS). The working gas was Nitrogen. For the water/SDBS mixture-gas flow in the vertical capillary tube, flow-pattern transitions occurred at lower flow velocities than those for the water-gas flow in the same tube. For the water/SDBS mixture-gas flow in the horizontal capillary tube, surface tension had little effect on the bubbly-intermittent transition and had only slight effect on the plug-slug and slug-annular transitions. However, surface tension had significant effect on the wavy stratified flow regime. The wavy stratified flow regime of water/SDBS mixture-gas flow expanded compared with that of water-gas.

  6. Two-phase flow interfacial structures in a rod bundle geometry

    Science.gov (United States)

    Paranjape, Sidharth S.

    Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one

  7. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  8. Statistical descriptions of polydisperse turbulent two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre

    2016-12-01

    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results

  9. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel

    Institute of Scientific and Technical Information of China (English)

    M.M.RASHIDI; A.HOSSEINI; I.POP; S.KUMAR; N.FREIDOONIMEHR

    2014-01-01

    The main purpose of this study is to survey numerically comparison of two-phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.

  10. Particle migration in two-phase, viscoelastic flows

    Science.gov (United States)

    Jaensson, Nick; Hulsen, Martien; Anderson, Patrick

    2014-11-01

    Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

  11. Criteria for guaranteed breakdown in two-phase inhomogeneous bodies

    Science.gov (United States)

    Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.

    2017-08-01

    Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.

  12. Diagnosing Traffic Anomalies Using a Two-Phase Model

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu

    2012-01-01

    Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.

  13. Thermal performance of closed two-phase thermosyphon using nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Khandekar, Sameer; Mehta, Balkrishna [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Joshi, Yogesh M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2008-06-15

    Nanofluids, stabilized suspensions of nanoparticles typically <100 nm in conventional fluids, are evolving as potential enhanced heat transfer fluids due to their improved thermal conductivity, increase in single phase heat transfer coefficient and significant increase in critical boiling heat flux. In the present paper, we investigate the overall thermal resistance of closed two-phase thermosyphon using pure water and various water based nanofluids (of Al{sub 2}O{sub 3}, CuO and laponite clay) as working fluids. We observe that all these nanofluids show inferior thermal performance than pure water. Furthermore, we observe that the wettability of all nanofluids on copper substrate, having the same average roughness as that of the thermosyphon container pipe, is better than that of pure water. A scaling analysis is presented which shows that the increase in wettability and entrapment of nanoparticles in the grooves of the surface roughness cause decrease in evaporator side Peclet number that finally leads to poor thermal performance. (author)

  14. Aqueous Nanofluid as a Two-Phase Coolant for PWR

    Directory of Open Access Journals (Sweden)

    Pavel N. Alekseev

    2012-01-01

    Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.

  15. Stability of stratified two-phase flows in horizontal channels

    Science.gov (United States)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  16. Microporous silica gels from alkylsilicate-water two phase hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program

    1994-12-31

    Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.

  17. Pressure transient analysis of two-phase flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.C.; Reynolds, A.C.; Raghavan, R.

    1986-04-01

    This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.

  18. Two-Phase Flow Hydrodynamics in Superhydrophobic Channels

    Science.gov (United States)

    Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian

    2015-11-01

    Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.

  19. An automated two-phase system for hydrogel microbead production.

    Science.gov (United States)

    Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali

    2012-09-01

    Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.

  20. Two-Phase Flow Field Simulation of Horizontal Steam Generators

    Directory of Open Access Journals (Sweden)

    Ataollah Rabiee

    2017-02-01

    Full Text Available The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  1. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  2. Simulation and modeling of two-phase bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Sylvain L Pigny; Pierre F Coste [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: Phenomena related to bubbles in two-phase recirculating flows are investigated, via the computational code SIMMER, concerning an experiment in which air is injected in the lower part of a tank filled of water and initially at rest. Averaged mass and momentum transport equations are solved for air and water. Close to the injector, the formation of individual large bubbles is represented in the calculations, via direct simulation. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled, in a statistical way, via classical closure laws. In a first calculation, the splitting of large bubbles is not represented. It is shown that this phenomenon, the space scale of which is close to the cell size, cannot be simulated, in view of the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and the splitting phenomenon is too large to be modeled via closure laws. A specific approach for the intermediate scales is therefore developed to represent it. (authors)

  3. The value of time-averaged serum high-sensitivity C-reactive protein in prediction of mortality and dropout in peritoneal dialysis patients

    Directory of Open Access Journals (Sweden)

    Liu SH

    2017-08-01

    Full Text Available Shou-Hsuan Liu,1–3,* Chao-Yu Chen,1,* Yi-Jung Li,1,2 Hsin-Hsu Wu,1,2 Chan-Yu Lin,1 Yung-Chang Chen,1 Ming-Yang Chang,1 Hsiang-Hao Hsu,1 Cheng-Lung Ku,2,3 Ya-Chung Tian1 1Kidney Research Center, Department of Nephrology, Lin-Kou Chang Gung Memorial Hospital and Department of Medicine, 2Graduate Institute of Clinical Medical Sciences, 3Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan *These authors contributed equally to this work Purpose: C-reactive protein (CRP is a useful biomarker for prediction of long-term outcomes in patients undergoing chronic dialysis. This observational cohort study evaluated whether the time-averaged serum high-sensitivity CRP (HS-CRP level was a better predictor of clinical outcomes than a single HS-CRP level in patients undergoing peritoneal dialysis (PD. Patients and methods: We classified 335 patients into three tertiles according to the time-averaged serum HS-CRP level and followed up regularly from January 2010 to December 2014. Clinical outcomes such as cardiovascular events, infection episodes, newly developed malignancy, encapsulating peritoneal sclerosis (EPS, dropout (death plus conversion to hemodialysis, and mortality were assessed. Results: During a 5-year follow-up, 164 patients (49.0% ceased PD; this included 52 patient deaths (15.5%, 100 patients (29.9% who converted to hemodialysis, and 12 patients (3.6% who received a kidney transplantation. The Kaplan–Meier survival analysis and log-rank test revealed a significantly worse survival accumulation in patients with high time-average HS-CRP levels. A multivariate Cox regression analysis revealed that a higher time-averaged serum HS-CRP level, older age, and the occurrence of cardiovascular events were independent mortality predictors. A higher time-averaged serum HS-CRP level, the occurrence of cardiovascular events, infection episodes, and EPS were

  4. An improved lattice Boltzmann method for incompressible two-phase flows with large density differences

    Science.gov (United States)

    Inamuro, Takaji; Yokoyama, Takaaki; Tanaka, Kentaro; Taniguchi, Motoki

    2013-11-01

    We propose a new LBM for two-phase fluid flows with high density ratios by improving the pressure computing of Inamuro et al.'s method (2004) [J. Comput. Phys. 198 (2004) 628] without solving the pressure Poisson equation. In the proposed method, the velocity and pressure fields are computed by using a single velocity distribution function even for high density ratios and by adjusting the speed of sound in a high density region to satisfy the continuity equation. In order to show the validity of the method, we apply the method to the simulations of a stationary drop, binary droplet collision, rising bubbles, and a milk crown. In a stationary drop, pressure and density profiles are computed, and the effect of a sound speed on time evolution of the pressure field in the drop. In the simulations of a binary droplet collision and rising bubbles, the computed results by the proposed method are compared with those by Inamuro et al.'s method (2004). A thin sheet and tiny drops can be computed in the simulation of a milk crown.

  5. Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2011-12-01

    Full Text Available The problem of two-phase unsteady MHD flow between two concentric cylinders of infinite length has been analysed when the outer cylinder is impulsively started. The system of partial differential equations describing the flow problem is formulated taking the viscosity of the particle phase into consideration. Unified closed form expressions are obtained for the velocities and the skin frictions for both cases of the applied magnetic field being fixed to either the fluid or the moving outer cylinder. The problem is solved using a combination of the Laplace transform technique, D’Alemberts and the Riemann-sum approximation methods. The solution obtained is validated by comparisons with the closed form solutions obtained for the steady states which has been derived separately. The governing equations are also solved using the implicit finite difference method to verify the present proposed method. The variation of the velocity and the skin friction with the dimensionless parameters occuring in the problem are illustrated graphically and discussed for both phases.

  6. Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2013-04-01

    In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.

  7. On the use of a small-scale two-phase thermosiphon to cool high-power electronics

    Science.gov (United States)

    Schrage, D. S.

    1990-01-01

    An experimental and analytical investigation of the steady-state thermal-hydraulic operating characteristics of a small-scale two-phase thermosiphon cooling actual power electronics are presented. Boiling heat transfer coefficients and circulation mass velocities were measured while varying heat load and pressure. Both a plain and augmented riser structure, utilizing micro-fins and reentrant cavities, were simultaneously tested. The boiling heat transfer coefficients increased with both increasing heat load and pressure. The mass velocity increased with increasing pressure while both increasing and then decreasing with increasing heat load. The reentrant cavity enhancement factor, a ratio of the augmented-to-plain riser nucleate boiling heat transfer coefficients, ranged from 1 to 1.4. High-speed photography revealed bubbly, slug, churn, wispy-annular and annular flow patterns. The experimental mass velocity and heat transfer coefficient data were compared to an analytical model with average absolute deviations of 16.3 and 26.3 percent, respectively.

  8. 摇摆工况下窄矩形通道内两相沸腾摩擦压降特性%Two-phase frictional pressure drop characteristics of boiling flow in rectangular narrow channel under rolling motion

    Institute of Scientific and Technical Information of China (English)

    陈冲; 高璞珍; 余志庭; 陈先兵

    2015-01-01

    In order to investigate the two-phase frictional pressure drop characteristics of boiling flows in a rectangular narrow channel under rolling motion, a series of thermal hydraulic experiments and theoretical analysis are performed. The results demonstrate that the additional inertial force is imposed on the fluid and the space of experimental loop will vary periodically under rolling motion. The fluctuation amplitude of the two-phase frictional gradient increases with increasing rolling angle and rolling period. The fluctuation amplitude and time average value of the two-phase frictional pressure gradient increase with increasing heat flux, while it decreases with the increase of system pressure. The mass flux varies with the fluctuation of frictional pressure gradient at the same period. The phase change between the fluctuation of mass flux and frictional pressure gradient is approximately equal to 1/4 rolling period due to the velocity difference of the pressure propagation and mass flux increases.%为了研究摇摆工况下窄矩形通道内的两相摩擦压降特性,进行了一系列的热工水力实验和理论分析。结果表明,摇摆工况下流体会受到附加惯性力的作用且实验回路的空间位置也会出现周期性的变化,两相摩擦压降梯度的波动振幅随着摇摆角度和摇摆周期的增加而增加;随着通道热通量的增加或者系统压强的减小,两相摩擦压降梯度的波动振幅和时均值逐渐增加。窄矩形通道内的质量流速随着两相摩擦压降梯度的波动而波动,且具有相同的波动周期,由于流体加速和压力传播的速度不同,流量波动和摩擦压降波动存在约1/4周期的相位差。

  9. Two-phase slug flow in vertical and inclined tubes

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Gas-liquid slug flow is investigated experimentally in vertical and inclined tubes.The non-invasive measuremnts of the gas-liquid slug flow are taken by using the EKTAPRO 1000 High Speed Motion Analyzer.The information on the velocity of the Talyor bubble,the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble are obtained.The experimental results are in good agreement with the available data.

  10. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  11. Two-phase boundary layer flow and heat transfer with temperature-dependent viscosity and nonzero pressure gradient

    Energy Technology Data Exchange (ETDEWEB)

    Randelia, R.R.; Sahai, V.

    1987-01-01

    A numerical analysis of a two-phase, laminar boundary layer is carried out using the Keller Box method. The two phases are assumed to be immiscible. The problem considered involves the boundary layer flow of a compressible gas with variable properties over a flat surface in the presence of a thin liquid film with power law temperature dependent viscosity. Both zero and nonzero pressure gradients are considered. The main purpose of the study was to investigate the effect of the presence of the liquid layer on the velocity and temperature distributions. A limited set of results are presented in terms of varying liquid Prandtl numbers, film thickness, and viscosity exponents on these distributions as well as the shear stress and heat transfer parameters at the wall and at the interface between the two fluids.

  12. Two-phase Flow of Liquid-gas in Diesel Fuel Injection System and Their Effect on Engine Performances

    Institute of Scientific and Technical Information of China (English)

    Yongling He; Zhihe Zhao; Jianxin Liu; Huiyong Du; Min Li; Yongping Zong

    2001-01-01

    In this paper, by using high-speed camera, CCD camera, signal and graph acquisition system, and other experimental instruments, investigation on liquid-gas two-phase flow in diesel fuel injection system and their effect on engine performances were made. Emerging and bursting of cavitation in the cavity above pump delivery valve, in injection pipe, and in fuel trough of injector of the fuel injection system were observed and mechanism of cavitation were discussed. Effects of liquid-gas two-phase flow on propagation velocity of pressure wave of the system and on irregular injection were analyzed. Two types of cavitation, long living time cavitation and short living time cavitation, in the cavity above pump delivery valve of diesel fuel injection system were observed.

  13. Numerical simulation of wave impact on a rigid wall using a two--phase compressible SPH method

    CERN Document Server

    Rafiee, Ashkan; Dias, Frédéric

    2013-01-01

    In this paper, an SPH method based on the SPH--ALE formulation is used for modelling two-phase flows with large density ratios and realistic sound speeds. The SPH scheme is further improved to circumvent the tensile instability that may occur in the SPH simulations. The two-phase SPH solver is then used to model a benchmark problem of liquid impact on a rigid wall. The results are compared with an incompressible Level Set solver. Furthermore, a wave impact on a rigid wall with a large entrained air pocket is modelled. The SPH simulation is initialised by the output of a fully non-linear potential flow solver. The pressure distribution, velocity field and impact pressure are then analysed.

  14. The measurement of gas-liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    Science.gov (United States)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-04-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas-liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas-liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas-liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas-liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy.

  15. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  16. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)

    陈宇

    1995-01-01

    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  17. Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: A comparison with electronic speckle pattern interferometry

    DEFF Research Database (Denmark)

    Rohleder, Henrik; Petersen, Paul Michael; Marrakchi, A.

    1994-01-01

    Time-average interferometry is dealt with using four-wave mixing in photorefractive Bi12SiO20. By introducing a proper sinusoidal phase shift in the forward pump beam it is possible to measure the amplitude and phase everywhere on a vibrating object. Quantitative measurements of the phase...... and amplitude of the vibrating structure are demonstrated in photorefractive time average interferometry. The photorefractive interferometer is compared with the performance of a commercial electronic speckle pattern interferometer (ESPI). It is shown that the dynamic photorefractive holographic interferometer...... improves the image quality considerably and is able to extend the measurable range for the acoustic vibration amplitude and frequency compared to what is obtainable with the ESPI equipment. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  18. Two-phase analysis in consensus genetic mapping.

    Science.gov (United States)

    Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A

    2012-05-01

    Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the

  19. Estakhr's Proper-Time Averaged of Material-Geodesic Equations (an umberella term equation for Relativistic Astrophysics, Relativistic Jets, Gamma-Ray Burst, Big Bang Hydrodynamics, Supernova Hydrodynamics)

    Science.gov (United States)

    Estakhr, Ahmad Reza

    2016-10-01

    DJ̲μ/Dτ =J̲ν ∂νU̲μ + ∂νT̲μν +Γαβμ J̲αU̲β ︷ Steady Component + ∂νRμν +Γαβμ Rαβ ︷ Perturbations EAMG equations are proper time-averaged equations of relativistic motion for fluid flow and used to describe Relativistic Turbulent Flows. The EAMG equations are used to describe Relativistic Jet.

  20. Modeling the effect of unsteady flows on the time average flow field of a blade row embedded in an axial flow multistage turbomachine

    Science.gov (United States)

    Adamczyk, John J.

    1996-01-01

    The role of unsteady flow processes in establishing the performance of axial flow turbomachinery was investigated. The development of the flow model, as defined by the time average flow equations associated with the passage of the blade row embedded in a multistage configuration, is presented. The mechanisms for unsteady momentum and energy transport is outlined. The modeling of the unsteady momentum and energy transport are discussed. The procedure for simulating unsteady multistage turbomachinery flows is described.

  1. MODELING TWO-PHASE FLOW IN PULSED FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    Dayou Liu; Guodong Jin

    2003-01-01

    Mathematical models for pulsed fluidization are systematically discussed. Several undetermined constitutive relationships are included in the General Two-Fluid Model (GTFM), the adjustable parameters of which are always chosen at will to some extent. Although there are no adjustable parameters in the Basic Two-Fluid Model (BTFM), its eigenvalues are complex numbers and it is ill-posed for initial-value problems. The Local Equilibrium Model (LEM), a further simplification of BTFM, is discussed at length. Although the model is very simple, it is highly capable of simulating complex processes in pulsed fluidization over a broad range of operating parameters, and its numerical results well fit experimental results in both the variation of bed height and the distribution of particle concentration as fluidizing velocity varies.

  2. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Fábio Rizental Coutinho

    2014-05-01

    Full Text Available Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  3. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-11-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  4. Numerical simulation and analysis of solid-liquid two-phase three-dimensional unsteady flow in centrifugal slurry pump

    Institute of Scientific and Technical Information of China (English)

    吴波; 汪西力; 徐海良

    2015-01-01

    Based on RNGk-ε turbulence model and sliding grid technique, solid−liquid two-phase three-dimensional (3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid−liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.

  5. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....

  6. 24 CFR 115.201 - The two phases of substantial equivalency certification.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....

  7. Vibrational Spectra of β″-Type BEDT-TTF Salts: Relationship between Conducting Property, Time-Averaged Site Charge and Inter-Molecular Distance

    Directory of Open Access Journals (Sweden)

    Takashi Yamamoto

    2012-07-01

    Full Text Available The relationship between the conducting behavior and the degree of charge fluctuation in the β″-type BEDT-TTF salts is reviewed from the standpoints of vibrational spectroscopy and crystal structure. A group of β″-type ET salts demonstrates the best model compounds for achieving the above relationship because the two-dimensional structure is simple and great diversity in conducting behavior is realized under ambient pressure. After describing the requirement for the model compound, the methodology for analyzing the results of the vibrational spectra is presented. Vibrational spectroscopy provides the time-averaged molecular charge, the charge distribution in the two-dimensional layer, and the inter-molecular interactions, etc. The experimental results applied to 2/3-filled and 3/4-filled β″-type ET salts are reported. These experimental results suggest that the conducting property, the difference in the time-averaged molecular charges between the ionic and neutral-like sites, the alternation in the inter-molecular distances and the energy levels in the charge distributions are relevant to one another. The difference in the time-averaged molecular charges, ∆ρ, is a useful criterion for indicating conducting behavior. All superconductors presented in this review are characterized as small but finite ∆ρ.

  8. On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2013-01-01

    We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.

  9. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  10. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Weihang Kong

    2016-08-01

    Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  11. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system.

    Science.gov (United States)

    Ko, Wen-Ching; Wang, Hsiu-Ju; Hwang, Jyh-Sheng; Hsieh, Chang-Wei

    2006-03-08

    A surfactant-coated lipase (SCL) prepared by mixing Candida rugosa lipase with emulsifier in ethanol was used to hydrolyze tuna oil in a two-phase aqueous-organic system. Both enzyme (SCL) and substrate (tuna oil) were soluble in the organic phase, and the hydrolysis could occur with water molecules from the aqueous phase. This hydrolysis could promptly proceed compared to that catalyzed by native lipases which only occurred at the interface between the two phases. Michaelis-Menten kinetics in the two-phase reactions showed that the K(m) value of the SCL was half that of the native lipase, while the maximum velocity (V(max)) was 11.5 times higher. The hydrolysis method resulted in enrichment of n-3 polyunsaturated fatty acid (n-3 PUFA) content in glyceride mixtures from 26.4% to 49.8% and DHA from 19.1% to 38.9%. The SCL acted as an efficient hydrolytic catalyst for tuna oil.

  12. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    Science.gov (United States)

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  13. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    Science.gov (United States)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  14. Combining site occupancy, breeding population sizes and reproductive success to calculate time-averaged reproductive output of different habitat types: an application to Tricolored Blackbirds.

    Directory of Open Access Journals (Sweden)

    Marcel Holyoak

    Full Text Available In metapopulations in which habitat patches vary in quality and occupancy it can be complicated to calculate the net time-averaged contribution to reproduction of particular populations. Surprisingly, few indices have been proposed for this purpose. We combined occupancy, abundance, frequency of occurrence, and reproductive success to determine the net value of different sites through time and applied this method to a bird of conservation concern. The Tricolored Blackbird (Agelaius tricolor has experienced large population declines, is the most colonial songbird in North America, is largely confined to California, and breeds itinerantly in multiple habitat types. It has had chronically low reproductive success in recent years. Although young produced per nest have previously been compared across habitats, no study has simultaneously considered site occupancy and reproductive success. Combining occupancy, abundance, frequency of occurrence, reproductive success and nest failure rate we found that that large colonies in grain fields fail frequently because of nest destruction due to harvest prior to fledging. Consequently, net time-averaged reproductive output is low compared to colonies in non-native Himalayan blackberry or thistles, and native stinging nettles. Cattail marshes have intermediate reproductive output, but their reproductive output might be improved by active management. Harvest of grain-field colonies necessitates either promoting delay of harvest or creating alternative, more secure nesting habitats. Stinging nettle and marsh colonies offer the main potential sources for restoration or native habitat creation. From 2005-2011 breeding site occupancy declined 3x faster than new breeding colonies were formed, indicating a rapid decline in occupancy. Total abundance showed a similar decline. Causes of variation in the value for reproduction of nesting substrates and factors behind continuing population declines merit urgent

  15. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    Science.gov (United States)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  16. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  17. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  18. Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces

    Science.gov (United States)

    Turkyilmazoglu, Mustafa

    2017-01-01

    This paper is devoted to the mathematical analysis of a magnetohydrodynamic viscous two-phase dusty fluid flow and heat transfer over permeable stretching or shrinking bodies. The wall boundary is subjected to a linear deformation as well as to a quadratic surface temperature. Such a highly nonlinear phenomenon, for the first time in the literature, is attacked to search for occurrence of exact solutions, whose numerical correspondences are already available for limited wall transpiration velocities. The obtained analytical solutions are found be in perfect line with the numerical computations. Besides this, exact solutions point to the existence of dual solutions for both permeable stretching and shrinking cases, which were not detected from the numerical studies up to date. The existence of such exact solutions and their parameter domain particularly depending on the wall suction or injection are successfully analyzed. The physical outcomes concerning the effects of suspended particles on the momentum and thermal boundary layers well-documented in the open literature can be best understood from the presented exact solutions.

  19. Mathematical modeling and numerical simulation of two-phase flow problems at pore scale

    Directory of Open Access Journals (Sweden)

    Paula Luna

    2015-11-01

    Full Text Available Mathematical modeling and numerical simulation of two-phase flow through porous media is a very active field of research, because of its relevancy in a wide range of physical and technological applications. Some outstanding applications concern reservoir simulation and oil and gas recovery, fields in which a great effort is being paid in the development of efficient numerical methods. The mathematical model used in this work is written as a system comprising an elliptic equation for pressure and a hyperbolic one for saturation. Our aim is to obtain the numerical solution of this model by combining finite element and finite volume techniques, with a second-order non-oscillatory reconstruction procedure to build the values of the velocities at the cell interfaces of the FV mesh from pointwise values of the pressure at the FE nodes. The numerical results are compared to those obtained using the commercial code ECLIPSE showing an appropriate behavior from a qualitative point of view. The use of this FE-FV procedure is not the usual numerical method in petroleum reservoir simulation, since the techniques most frequently used are based on finite differences, even in standard commercial tools.

  20. Buddly, slug, and annular two-phase flow in tight-lattice subchannels

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, Horst-Michael; Bolesch, Charistian; Cramer, Kerstin; Papadopoulos, Petros; Saxena, Abhishek; Zboray, Robert [ETH Zurich, Dept. of Mechanical and Process Engineering (D-MAVT), Zurich (Switzerland); Ito, Daisuke [Kyoto University, Research Reactor Institute, Osaka (Japan)

    2016-08-15

    An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring subchannels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

  1. Cracking kinetics of two-phase stainless steel alloys in hydrogen gas

    Science.gov (United States)

    Perng, T.-P.; Altstetter, C. J.

    1988-01-01

    The kinetics of hydrogen-induced slow crack growth (SCG) under constant load was studied in two stainless steel alloys containing mixtures of bcc and fcc phases. FERRALIUM 255, a duplex stainless steel, consisting of ˜50 pct austenite in a ferrite matrix, was tested in hydrogen gas at 0 to 100 °C with the loading axis both perpendicular and parallel to the rolling direction. In addition, specimens of AISI 301 were deformed in air in different ways to produce various amounts of bcc phase in an austenite matrix prior to testing in H2 gas at room temperature. The kinetics of subcritical slow crack growth (SCG) in these alloys was compared with that for austenitic and for ferritic stainless steels. The SCG rates were rationalized in terms of differences in hydrogen permeation in the two phases. The results confirm that a higher rate of supply and accumulation of hydrogen in the region ahead of the crack tip allows a higher cracking velocity.

  2. Efficient and robust compositional two-phase reservoir simulation in fractured media

    Science.gov (United States)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  3. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    Science.gov (United States)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  4. Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

    Directory of Open Access Journals (Sweden)

    Horst-Michael Prasser

    2016-08-01

    Full Text Available An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI, Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1 a vertical channel modeling a pair of neighboring subchannels; and (2 an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

  5. CFD Simulation of Polydispersed Bubbly Two-Phase Flow around an Obstacle

    Directory of Open Access Journals (Sweden)

    E. Krepper

    2009-01-01

    Full Text Available This paper concerns the model of a polydispersed bubble population in the frame of an ensemble averaged two-phase flow formulation. The ability of the moment density approach to represent bubble population size distribution within a multi-dimensional CFD code based on the two-fluid model is studied. Two different methods describing the polydispersion are presented: (i a moment density method, developed at IRSN, to model the bubble size distribution function and (ii a population balance method considering several different velocity fields of the gaseous phase. The first method is implemented in the Neptune_CFD code, whereas the second method is implemented in the CFD code ANSYS/CFX. Both methods consider coalescence and breakup phenomena and momentum interphase transfers related to drag and lift forces. Air-water bubbly flows in a vertical pipe with obstacle of the TOPFLOW experiments series performed at FZD are then used as simulations test cases. The numerical results, obtained with Neptune_CFD and with ANSYS/CFX, allow attesting the validity of the approaches. Perspectives concerning the improvement of the models, their validation, as well as the extension of their applicability range are discussed.

  6. Optimizing steam flood performance utilizing a new and highly accurate two phase steam measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Huff, B. D.; Warren, P. B. [CalResources LLC (Canada); Whorff, F. [ITT Barton (Canada)

    1995-11-01

    The development of a two phase steam measurement system was documented. The system consists of a `V` cone differential pressure device and a vortex meter velocity device in series through which the steam flows. Temperature and pressure sensors are electronically interfaced with a data logging system. The design was described as being very simple and rugged, consequently, well suited to monitoring in the field.. Steam quality measurements were made in the Kern River Field and the Coalinga Field thermal projects using a surface steam separator. In steam flood operations, steam cost is very high, hence appropriate distribution of the steam can result in significant cost reduction. This technology allows the measurement of steam flow and quality at any point in the steam distribution system. The metering system`s orifice meter was found to have a total average error of 45%, with 25% of that attributable to `cold leg` problem. Installation of the metering system was expected to result in a steam use reduction of 8%, without any impact on production. Steam re-distribution could result in a potential oil production increase of 10%. 12 refs., 8 tabs., 9 figs.

  7. Apparent and Actual Dynamic Contact Angles in Confined Two-Phase Flows

    Science.gov (United States)

    Omori, Takeshi; Kajishima, Takeo

    2016-11-01

    To accurately predict the fluid flow with moving contact lines, it has a crucial importance to use a model for the dynamic contact angle which gives contact angles on the length scale corresponding to the spacial resolution of the fluid solver. The angle which a moving fluid interface forms to a solid surface deviates from an actual (microscopic) dynamic contact angle depending on the distance from the contact line and should be called an apparent (macroscopic) dynamic contact angle. They were, however, often undistinguished especially in the experimental works, on which a number of empirical correlations between a contact angle and a contact line velocity have been proposed. The present study is the first attempt to measure both apparent and actual contact angles from the identical data sets to discuss the difference and the relationship between these two contact angles of difference length scales. The study is conducted by means of numerical simulation, solving the Navier-Stokes equation and the Cahn-Hilliard equation under the generalized Navier boundary condition for the immiscible two-phase flow in channels. The present study also illustrates how the system size and the physical properties of the adjoining fluid affect the apparent and the actual dynamic contact angles. JSPS KAKENHI Grant No. 15K17974.

  8. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies

    Science.gov (United States)

    Kosnik, Matthew A.; Hua, Quan; Kaufman, Darrell S.; Zawadzki, Atun

    2015-03-01

    Carbon-14 calibrated amino acid racemization (14C/AAR) data and lead-210 (210Pb) data are used to examine sediment accumulation rates, stratigraphic order, and the extent of time-averaging in sediments collected from the One Tree Reef lagoon (southern Great Barrier Reef, Australia). The top meter of lagoonal sediment preserves a stratigraphically ordered deposit spanning the last 600 yrs. Despite different assumptions, the 210Pb and 14C/AAR chronologies are remarkably similar indicating consistency in sedimentary processes across sediment grain sizes spanning more than three orders of magnitude (0.1-10 mm). Estimates of long-term sediment accumulation rates range from 2.2 to 1.2 mm yr-1. Molluscan time-averaging in the taphonomically active zone is 19 yrs, whereas below the depth of final burial (~15 cm), it is ~110 yrs/5 cm layer. While not a high-resolution paleontological record, this reef lagoon sediment is suitable for paleoecological studies spanning the period of Western colonization and development. This sedimentary deposit, and others like it, should be useful, albeit not ideal, for quantifying anthropogenic impacts on coral reef systems.

  9. Numerical Thermodynamic Analysis of Two-Phase Solid-Liquid Abrasive Flow Polishing in U-Type Tube

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-08-01

    Full Text Available U-type tubes are widely used in military and civilian fields and the quality of the internal surface of their channel often determines the merits and performance of a machine in which they are incorporated. Abrasive flow polishing is an effective method for improving the channel surface quality of a U-type tube. Using the results of a numerical analysis of the thermodynamic energy balance equation of a two-phase solid-liquid flow, we carried out numerical simulations of the heat transfer and surface processing characteristics of a two-phase solid-liquid abrasive flow polishing of a U-type tube. The distribution cloud of the changes in the inlet turbulent kinetic energy, turbulence intensity, turbulent viscosity, and dynamic pressure near the wall of the tube were obtained. The relationships between the temperature and the turbulent kinetic energy, between the turbulent kinetic energy and the velocity, and between the temperature and the processing velocity were also determined to develop a theoretical basis for controlling the quality of abrasive flow polishing.

  10. 3D NUMERICAL SIMULATION ON WATER AND AIR TWO-PHASE FLOWS OF THE STEPS AND FLARING GATE PIER

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting; WU Chao; LIAO Hua-sheng; HU Yao-hua

    2005-01-01

    A new-style flood discharging dam, which consolidates the flaring gate pier and the stepped spillway for discharging the flood through the dam surface, had been applied in China. The theoretical study on it is in a beginning stage at present. The three-dimensional numerical simulation has not been reported. In this paper, the 3D numerical calculation on the two-phase flow of water and air with discharge per unit width 195m3/s* m is presented . The results indicate that there is negative pressure on the juncture of the spillway surface and the first step. There forms obvious longitudinal and transverse eddies on the steps and the velocity decreases obviously compared with the smooth spillway. The figures of the velocity distributions and the water-air two-phase flows are plotted. The results calculated on the pressure are in agreement with the experimental data. Based on the position of the negative pressure obtained from calculation, measurement points of pressure are arranged in physical model. The experimental results validate the existence of the negative pressure. Being an applied and trial study, the results obtained are of theoretical and practical significance.

  11. Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2008-09-01

    Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

  12. Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J. Enrique [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I, Campus de Riu Sec, Castellon 12071 (Spain); Ozar, Basar [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Jeong, Jae-Jun [Korea Atomic Energy Research Institute, 150 Dukjin, Yuseong, Daejeon 305-353 (Korea, Republic of); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, Mamoru, E-mail: ishii@purdue.ed [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)

    2011-02-15

    In this work radial and axial flow regime development in adiabatic upward air-water two-phase flow in a vertical annulus has been investigated. Local flow regimes have been identified using conductivity probes and neural networks techniques. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The equivalent hydraulic diameter of the flow channel, D{sub H}, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 1080 local flow regimes identifications in 72 flow conditions within a range of 0.01 m/s < < 30 m/s and 0.2 m/s < < 3.5 m/s where and are, respectively, superficial gas and liquid velocities. The local flow regime has been classified into four categories: bubbly, cap-slug, churn-turbulent and annular flows. In order to study the radial and axial development of flow regime the measurements have been performed at five radial locations. The three axial positions correspond to z/D{sub H} = 52, 149 and 230, where z represents the axial position. The flow regime indicator has been chosen as some statistical parameters of local bubble chord length distributions and self-organized neural networks have been used as mapping system. This information has been also used to compare the results given by the existing flow regime transition models. The local flow regime is characterized basically by the void fraction and bubble chord length. The radial development of flow regime shows partial and complete local flow regime combinations. The radial development is controlled by axial location and superficial liquid velocity. The radial flow regime transition is always initiated in the center of the flow channel and it is propagated towards the channel boundaries. The axial development of flow regime is observed in all the flow maps and it is governed by superficial liquid velocity and radial location. The prediction results of the models are compared for each flow regime transition.

  13. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins.

    Science.gov (United States)

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua

    2016-02-01

    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.

  14. Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions

    Science.gov (United States)

    Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.

    1996-01-01

    The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same

  15. Diagnostics of two-phase flows with high concentration of a solid dispersed phase using fiber-optic sensors

    Science.gov (United States)

    Evseev, A. R.

    2016-10-01

    This paper is focused on the physical modeling of two-phase flows with high concentration of the dispersed phase. The fiber-optical sensors and their calibration procedure were developed for bubble concentration measurements in the fluidized bed apparatus (FB). Distributions of bubble concentration in the 2D and 3D FB apparatuses, which determine the quality of fluidization and local density of filling material, were obtained. The techniques of particle velocity and concentration measurements in the circulating fluidized bed (CFB) was developed using three-fiber sensor (the differential scheme of LDA) operated in backscattering regime. Sensor operation was analyzed and the main systematic measurement errors were determined; the original construction of the sensor was designed. The data on the velocity and concentration profiles of dispersed phase in a large-scale CFB apparatus were obtained for fluidization of particles by air. It was found that with increasing circulation velocity in the CFB apparatus, the particle concentration increases in the near-wall region much higher than in the flow core. The method of particle velocity measurements in a liquid was developed using the laser Doppler fiber anemometer (LDFA-1), operating in the backscattering regime. The signal to noise ratio was obtained for particles of different size and material in test measurements. The rates of consolidated precipitation of cryolite particles in a sedimentation apparatus with the inclined walls were measured.

  16. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.

    Science.gov (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S

    2016-12-01

    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations.

  17. An investigation of the role of the time averaged ion beam current density upon the defect densities in thin film SIMOX

    Science.gov (United States)

    Nejim, A.; Marsh, C. D.; Giles, L. F.; Hemment, P. L. F.; Li, Y.; Chater, RJ.; Kilner, J. A.; Booker, G. R.

    1994-02-01

    The effect of the time averaged ion beam current density on the material quality of thin film SIMOX has been investigated. Thin film SOI/SIMOX material has been produced by 200 keV oxygen implantation into 3 in. Fz wafers with a background temperature of 680°C. The dose range of 5 × 10 17-7 × 10 17O+/ cm2 was selected to be near the dose threshold for the formation of a continuous buried oxide after implantation and annealing which is thought to be between 5 × 10 17 and 6 × 10 17 O +/cm 2 for 200 keV [A.E. White et al., Appl. Phys. Lett. 50 (1987) 19; P.L.F. Hemment et al., Vacuum 36 (1986) 877; Y. Li et al., in: Proc. V Int. Symp. on SOI Technology and Devices (The Electrochemical Society, 1992) p. 368 [1-3

  18. Quantitative imaging of nanometric optical path length modulations by time-averaged heterodyne holography in coherent frequency-division multiplexing regime

    CERN Document Server

    Bruno, Francois; Lesaffre, Max; Verrier, Nicolas; Atlan, Michael

    2013-01-01

    We report a demonstration of amplitude and phase imaging of out-of-plane sinusoidal vibration at nanometer scales with a heterodyne holographic interferometer. Time-averaged holograms of a phase-modulated optical field are recorded with an exposure time much longer than the modulation period. Optical heterodyning, a frequency-conversion process aimed at shifting a given radiofrequency optical side band in the sensor bandwidth, is performed with an off-axis and frequency-shifted optical local oscillator. The originality of the proposed method is to make use of a multiplexed local oscillator to address several optical side bands into the temporal bandwidth of the sensor array. This process is called coherent frequency-division multiplexing. It enables simultaneous recording and pixel-to-pixel division of two side band holograms, which permits quantitative mapping of the modulation depth of local optical path lengths yielding small optical phase modulations. Additionally, a linear frequency chirp ensures the ret...

  19. A Preliminary Study on the Reconstruction Algorithm of the Bubble Size to Inspect Two-phase Flows Using Single Cone-beam X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Che Wook; Kim, Song Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    In two-phase flow, the motions of dispersed bubbles influence fluid properties such as heat transfer. In order to analyze how the bubble motion affects the fluid property, various techniques have been developed. An optical method has been used for the analysis of the single-phase flow such as Liquid Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). However, it has some significant application problems which cannot be used for the opaque fluid and two phase flows. Phase-Doppler Method, another optical method, can be applied to the two-phase flow analysis. It is noted that the method also has difficulty to analyze the opaque flows. In a previous study, x-ray PIV method was proposed as the technique to measure the flow velocity and to get the flow vector field. However, there is no appropriate approach to analyze the bubble size for the two phase flows. In this study, a technique to estimate the bubble size by using x-ray is proposed as a preliminary study to develop an algorithm of the two phase flow analysis. In this study, a reconstruction algorithm of bubble size in two-phase flows using single x-ray was proposed. The analysis shows that 3-dimensional bubble size can be estimated by the multichannel detectors with the detection information. Also, a preliminary study on multi-bubble cases was performed. The analysis of the results show that that multiple bubbles can be separated by using the property that is the symmetry of bubbles. This proposed algorithm can detect the bubbles in flow of opaque fluids or nontransparent pipes which cannot be analyzed by optical methods. It is expected that the proposed method can utilized to inspect the bubbles in two-phase bubbly flow.

  20. Gamma-ray attenuation technique for measuring void fraction in horizontal gas-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The measurement of void fraction is of importance to the oil industry and chemical industry. In this article,the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.

  1. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    Energy Technology Data Exchange (ETDEWEB)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  2. Validation of Wall Friction Model in SPACE-3D Module with Two-Phase Cross Flow Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher [Seoul National University, Seoul (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, SPACE-3D was used to simulate the Yang's experiment, and obtained the local variables. Then, the wall friction model used in SPACE-3D was validated by comparing the two-phase cross flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by SPACE-3D to validate the wall friction model in multi-dimensional module. Considering the realistic phenomena in the reactor, however, recent trends in safety analysis codes have tended to adopt multi-dimensional module to simulate the complex flow more accurately. Even though the module was applied to deal the multi-dimensional phenomena, implemented models in that are one-dimensional empirical models. Therefore, prior to applying the multi-dimensional module, the constitutive models implemented in the codes need to be validated. In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multi-dimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the friction models in multi-dimensional module of system analysis codes. Compared with the experiment, SPACE-3D underestimated the liquid film velocity and overestimated the liquid film thickness. From these results, it was clarified that the Wallis correlation which is used as a wall friction model in SPACE-3D overestimates the wall friction. On the other hand, H.T.F.S. correlation which is used as the wall friction in MARS-multiD underestimates the wall friction.

  3. Turbulence-induced bubble collision force modeling and validation in adiabatic two-phase flow using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)

    2017-02-15

    Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The

  4. CALCULATION ON TWO-PHASE FLOW TRANSIENTS AND THEIR EXPERIMENTAL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.

  5. 48 CFR 570.105-2 - Two-phase design-build selection procedures.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY General 570.105-2 Two..., you must use the two-phase design-build selection procedures in section 303M of the Federal Property...

  6. Two-phase flow experimental studies in micro-models (Utrecht Studies in Earth Sciences 034)

    NARCIS (Netherlands)

    Karadimitriou, N.K.

    2013-01-01

    The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of interfa

  7. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  8. NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.

  9. Solutions of Green s function for Lamb s problem of a two-phase saturated medium

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.

  10. Symmetrical components and power analysis for a two-phase microgrid system

    DEFF Research Database (Denmark)

    Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede

    2014-01-01

    This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...

  11. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    Science.gov (United States)

    Majhi, Bijoy Kumar; Jash, Tushar

    2016-12-01

    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.

  12. A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW

    Institute of Scientific and Technical Information of China (English)

    GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da

    2006-01-01

    Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.

  13. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces

    OpenAIRE

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-01-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and th...

  14. The application of axisymmetric lattice Boltzmann two-phase model on simulations of liquid film dewetting

    Science.gov (United States)

    Wang, Lei; Sun, Jianglong

    2017-08-01

    An axisymmetric two-phase lattice Boltzmann method is applied to simulate the dewetting dynamics of a thin liquid film on a substrate. Initially, a circular dry spot exists in the center of the liquid film. A contact line forms around the dry spot and expands outwards. The liquid films dewetting on smooth and rough substrates are investigated. For a smooth substrate, the effects of the contact angle (θeq), Ohnesorge number (Oh), and viscosity ratio (λμ) are studied. It is observed that the contact line recedes with a constant velocity V and that if θeq > 45°, V has a linear relationship with θeq, which has never been mentioned in previous literatures. For a rough substrate, well-distributed pillars are set up to represent the roughness. There are two states for the liquid film dewetting on a rough substrate: Cassie and Wenzel states. By comparison, it is found that the speed of the liquid film dewetting on the rough substrate of the Cassie state is slightly faster than that on the smooth substrate but much faster than that on the rough substrate of the Wenzel state, i.e., Wenzel state can obviously hold back the movement of the receding contact line. The corresponding mechanism is analyzed. The effect of the geometric factors of the pillars on the dewetting speed is discussed in detail. It is indicated that both the width and the depth of the grooves in roughness can significantly affect the dewetting speed. The results are helpful to design structured substrates for controlling the dewetting process of the liquid film.

  15. Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity

    Science.gov (United States)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2016-12-01

    In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem

  16. Development of two-phase Flow Model, 'SOBOIL', for Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum

    2000-03-01

    The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification.

  17. Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods

    Science.gov (United States)

    Bilger, C.; Aboukhedr, M.; Vogiatzaki, K.; Cant, R. S.

    2017-09-01

    Two principal methods have been used to simulate the evolution of two-phase immiscible flows of liquid and gas separated by an interface. These are the Level-Set (LS) method and the Volume of Fluid (VoF) method. Both methods attempt to represent the very sharp interface between the phases and to deal with the large jumps in physical properties associated with it. Both methods have their own strengths and weaknesses. For example, the VoF method is known to be prone to excessive numerical diffusion, while the basic LS method has some difficulty in conserving mass. Major progress has been made in remedying these deficiencies, and both methods have now reached a high level of physical accuracy. Nevertheless, there remains an issue, in that each of these methods has been developed by different research groups, using different codes and most importantly the implementations have been fine tuned to tackle different applications. Thus, it remains unclear what are the remaining advantages and drawbacks of each method relative to the other, and what might be the optimal way to unify them. In this paper, we address this gap by performing a direct comparison of two current state-of-the-art variations of these methods (LS: RCLSFoam and VoF: interPore) and implemented in the same code (OpenFoam). We subject both methods to a pair of benchmark test cases while using the same numerical meshes to examine a) the accuracy of curvature representation, b) the effect of tuning parameters, c) the ability to minimise spurious velocities and d) the ability to tackle fluids with very different densities. For each method, one of the test cases is chosen to be fairly benign while the other test case is expected to present a greater challenge. The results indicate that both methods can be made to work well on both test cases, while displaying different sensitivity to the relevant parameters.

  18. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2016-09-01

    Full Text Available The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  19. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  20. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  1. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems

    2016-07-15

    In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.

  2. Measurement and simulation of the turbulent dispersion of a radioactive tracer in a two-phase flow system

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, F.; Rohde, U.

    1998-10-01

    The turbulent dispersion of a radiotracer in an experimental setup with a natural convection liquid-gaseous flow was investigated. A liquid-gaseous bubbly flow was generated in a narrow tank by injection of pressurized air into water or by catalytic disintegration of H{sub 2}O{sub 2}. Turbulent Prandtl numbers for gas and tracer dispersion were varied. In the case of higher gas superficial velocities (J{sub gas}{approx}5-15 mm/s), a reasonable agreement was achieved between calculated and measured tracer transport velocity and dispersion coefficient values. A nearly linear correlation between j{sub gas} and D was found in agreement with other authors. The calculation results contribute to a better understanding of the phenomena and interpretation of the measurement results as well as to the validation of the CFD code for turbulent two-phase flow applications. Further investigations are necessary to improve the agreement in the cases of H{sub 2}O{sub 2} disintegration and low gas superficial velocities. (orig.)

  3. Branch Quality Control of Gas-Liquid Two-Phase Flow Using a Novel T-Junction Type Distributor

    Institute of Scientific and Technical Information of China (English)

    FaChun Liang; Jing Chen; JinLong Wang; Hao Yu

    2014-01-01

    In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section, a gas extraction line, a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2�50 mm and three gas orifices with different size ( dG = 2�65, 5�00, 10�00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6�0 to 20�0 m/s and the liquid superficial velocity was in the range of 0�02-0�18 m/s. Flow patterns such as wave flow, slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity, flow patterns and extraction flux.

  4. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu

    2017-01-23

    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.

  5. Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity.

    Science.gov (United States)

    Uneyama, Takashi; Miyaguchi, Tomoshige; Akimoto, Takuma

    2015-09-01

    The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD can be utilized to study the long-time relaxation behavior. In this work, we consider a class of Langevin equations which are multiplicatively coupled to time-dependent and fluctuating diffusivities. Various interesting dynamics models such as entangled polymers and supercooled liquids can be interpreted as the Langevin equations with time-dependent and fluctuating diffusivities. We derive a general formula for the RSD of the TAMSD for the Langevin equation with the time-dependent and fluctuating diffusivity. We show that the RSD can be expressed in terms of the correlation function of the diffusivity. The RSD exhibits the crossover at the long time region. The crossover time is related to a weighted average relaxation time for the diffusivity. Thus the crossover time gives some information on the relaxation time of fluctuating diffusivity which cannot be extracted from the ensemble-averaged MSD. We discuss the universality and possible applications of the formula via some simple examples.

  6. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels.

  7. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles

    2016-11-01

    While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.

  8. Online monitoring of gas-solid two-phase flow using projected CG method in ECT image reconstruction

    Institute of Scientific and Technical Information of China (English)

    Qi wang; Chengyi Yang; Huaxiang Wang; Ziqiang Cui; Zhentao Gao

    2013-01-01

    Electrical capacitance tomography (ECT) is a promising technique for multi-phase flow measurement due to its high speed,low cost and non-intrusive sensing.Image reconstruction for ECT is an inverse problem of finding the permittivity distribution of an object by measuring the electrical capacitances between sets of electrodes placed around its periphery.The conjugate gradient (CG) method is a popular image reconstruction method for ECT,in spite of its low convergence rate.In this paper,an advanced version of the CG method,the projected CG method,is used for image reconstruction of an ECT system.The solution space is projected into the Krylov subspace and the inverse problem is solved by the CG method in a low-dimensional specific subspace.Both static and dynamic experiments were carried out for gas-solid two-phase flows.The flow regimes are identified using the reconstructed images obtained with the projected CG method.The results obtained indicate that the projected CG method improves the quality of reconstructed images and dramatically reduces computation time,as compared to the traditional sensitivity,Landweber,and CG methods.Furthermore,the projected CG method was also used to estimate the important parameters of the pneumatic conveying process,such as the volume concentration,flow velocity and mass flow rate of the solid phase.Therefore,the projected CG method is considered suitable for online gas-solid two-phase flow measurement.

  9. Two-phase screw-type engine - problems of the filling process; Zweiphasen-Schraubenmotor - Probleme des Fuellungsvorganges

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Kliem, B. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The two-phase screw-type engine presents itself as a expansion engine in a trilateral-flash-cycle to use waste heat in the lower temperature range, because this displacement engine is able to expand working fluids with a high proportion of liquid. Due to the low critical velocity and the blocking flow, the two-phase flow in the inlet port of the screw-type engine has a great influence on the quality of energy transformation. A novel filling system with rotating short nozzles is presented. Less dissipation during the filling process is expected by this system, because the flash evaporation of the fluid will occur in the working chamber and not in the inlet port of the screw-type engine. (orig.) [Deutsch] Der Zweiphasen-Schraubenmotor besitzt als Expansionsmaschine in Trilateral-Flash-Cycle-Prozessen zur Nutzung von Abwaerme mit niedriger Temperatur deutliche Vorteile, da dieser Maschinentyp in der Lage ist, Arbeitsfluide mit einem hohen Fluessigkeitsanteil zu expandieren. Die Zweiphasenstroemung im Einlassbereich des Schraubenmotors hat aufgrund ihrer geringen kritischen Geschwindigkeit und der damit verbundenen blockierten Stroemung einen signifikanten Einfluss auf die Fuellung der Arbeitskammer und der Energiewandlungsguete des Motors. Ein hier vorgestelltes neuartiges Fuellungssystem mit rotierenden Kurzduesen laesst eine verbesserte Fuellung des Zweiphasen-Schraubenmotors erwarten, da es erst in den Arbeitskammern zur Flashverdampfung kommt. (orig.)

  10. Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology

    Science.gov (United States)

    2007-02-01

    HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results

  11. Two phase flow bifurcation due to turbulence: transition from slugs to bubbles

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2015-09-01

    The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.

  12. Numerical simulation of bubbly two-phase flow using the lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi; Ebihara, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-09-01

    The two-component two-phase lattice Boltzmann method, in which two distribution functions are used to represent two phases, is used to simulate bubbly flows as one of the fundamental two-phase flow phenomena in nuclear application fields. The inlet flow condition is proposed to simulate steady-state flow fields. The time variation and the spatial distribution of the volume fraction and the interfacial area are measured numerically. The simulation program is parallelized in one direction by the domain decomposition method using the MPI (Message Passing Interface) libraries, and parallel computations are performed on a workstation cluster. (author)

  13. Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured

  14. Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon

    Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become

  15. On the nonequilibrium segregation state of a two-phase mixture in a porous column

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....

  16. An Experimental Study on the Flow Characteristics of OilWater Two-Phase Flow in Horizontal Straight Pipes

    Institute of Scientific and Technical Information of China (English)

    刘文红; 郭烈锦; 吴铁军; 张西民

    2003-01-01

    The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe with 40mm ID respectively. No. 46 mechanical oil and tap water were used as working fluids. The superficial velocity ranges of oil and water were: 0.04-1.2m·s-1 and 0.04-2.2 m·s-1, respectively. The flow patterns were identified by visualization and by transient fluctuation signals of differential pressure drop. The flow patterns were defined according to the relative distribution ofoil and water phases in the pipes. Flow pattern maps were obtained for both pipelines. In addition, semi-theoretical transition criteria for the flow patterns were proposed, and the proposed transitional criteria are in reasonable agreement with available data in liquid-liquid systems.

  17. Experimental study on two-phase gas-liquid flow patterns at normal and reduced gravity conditions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Experimental studies have been performed for horizontal two-phase air-water flows at nor-mal and reduced gravity conditions in a square cross-section channel. The experiments at reducedgravity are conducted on board the Russian IL-76 reduced gravity airplane. Four flow patterns, namelybubble, slug, slug-annular transition and annular flows, are observed depending on the liquid and gassuperficial velocities at both conditions. Semi-theoretical Weber number model is developed to includethe shape influence on the slug-annular transition. It is shown that its prediction is in reasonable agree-ment with the experimental slug-annular transition under both conditions. For the case of two-phasegas-liquid flow with large value of the Froude number, the drift-flux model can predict well the observedboundary between bubble and slug flows.

  18. Model investigations 3D of gas-powder two phase flow in descending bed with consideration radial distribution of flow

    Directory of Open Access Journals (Sweden)

    B. Panic

    2013-04-01

    Full Text Available The results of experimental investigations concerning radial distribution of powder accumulation in bed and static pressure were presented in this paper. To realize this research physical model of gas-powder two phase flow with descending bed was projected and constructed. Amounts of “dynamic” and “static” powder accumulated in bed, in dependence on gas velocity and of bed particles were investigated. In 3D model “static” powder (with its radial distribution at the tuyere level and in the higher part of bed was measured. The influence of bed particles, powder and gas radial distribution on values of interaction forces between flow phases in investigated system was defined.

  19. A new linearized theory of laminar film condensation of two phase annular flow in a capillary pumped loop

    Science.gov (United States)

    Hsu, Y. K.; Swanson, T.; Mcintosh, R.

    1988-01-01

    Future large space based facilities, such as Space Station, will require energy management systems capable of transporting tens of kilowatts of heat over a hundred meters or more. This represents better than an order of magnitude improvement over current technology. Two-phase thermal systems are currently being developed to meet this challenge. Condensation heat transfer plays a very important role in this system. The present study attempts an analytic solution to the set of linearized partial differential equations. The axial velocity and temperature functions were found to be Bessel functions which have oscillatory behavior. This result agrees qualitatively with the experimental evidence from tests at both NASA Goddard Space Flight Center and elsewhere.

  20. [CFD numerical simulation onto the gas-liquid two-phase flow behavior during vehicle refueling process].

    Science.gov (United States)

    Chen, Jia-Qing; Zhang, Nan; Wang, Jin-Hui; Zhu, Ling; Shang, Chao

    2011-12-01

    With the gradual improvement of environmental regulations, more and more attentions are attracted to the vapor emissions during the process of vehicle refueling. Research onto the vehicle refueling process by means of numerical simulation has been executed abroad since 1990s, while as it has never been involved so far domestically. Through reasonable simplification about the physical system of "Nozzle + filler pipe + gasoline storage tank + vent pipe" for vehicle refueling, and by means of volume of fluid (VOF) model for gas-liquid two-phase flow and Re-Normalization Group kappa-epsilon turbulence flow model provided in commercial computational fluid dynamics (CFD) software Fluent, this paper determined the proper mesh discretization scheme and applied the proper boundary conditions based on the Gambit software, then established the reasonable numerical simulation model for the gas-liquid two-phase flow during the refueling process. Through discussing the influence of refueling velocity on the static pressure of vent space in gasoline tank, the back-flowing phenomenon has been revealed in this paper. It has been demonstrated that, the more the flow rate and the refueling velocity of refueling nozzle is, the higher the gross static pressure in the vent space of gasoline tank. In the meanwhile, the variation of static pressure in the vent space of gasoline tank can be categorized into three obvious stages. When the refueling flow rate becomes higher, the back-flowing phenomenon of liquid gasoline can sometimes be induced in the head section of filler pipe, thus making the gasoline nozzle pre-shut-off. Totally speaking, the theoretical work accomplished in this paper laid some solid foundation for self-researching and self-developing the technology and apparatus for the vehicle refueling and refueling emissions control domestically.

  1. The 2005 Vazcun Valley Lahar: Evaluation of the TITAN2D Two-Phase Flow Model Using an Actual Event.

    Science.gov (United States)

    Williams, R.; Stinton, A. J.; Sheridan, M. F.

    2005-12-01

    TITAN2D is a depth-averaged, thin-layer computational fluid dynamics (CFD) code, suitable for simulating a variety of geophysical mass flows. TITAN2D output data include pile thickness and flow momentum at each time step for all cells traversed by the flow during the simulation. From this the flow limit, run-out path, pile velocity, deposit thickness, and travel time can be calculated. Results can be visualized in the open source GRASS GIS software or with the built-in TITAN2D viewer. A new two-phase TITAN2D version allows simulation of flows containing various mixtures of water and solids. The purpose of this study is to compare simulations by the two-phase flow version of TITAN2D with an actual event. The chosen natural flow is a small ash-rich lahar (volume approximately 60,000 m3) that occurred on 12 February 2005 in the Vazcún Valley, located on the north-east flank of Volcán Tungurahua, Ecuador. Lahars and pyroclastic flows along this valley could potentially threaten the 20,000 inhabitants living in and near the city of Baños. A variety of data sources exist for this lahar, including: pre- and post-event meter-scale topography, and photographic, video, seismic and acoustic flow monitoring (AFM) records from during the event. These data permit detailed comparisons between the dynamics of the actual lahar and those of the TITAN2D simulated flow. In particular, detailed comparisons are made between run-up heights, flow velocity, inundation area, and deposit area and thickness. Simulations utilize a variety of data derived from field observations such as lahar volume, solid to pore-fluid ratio and pre-event topography. TITAN2D is important in modeling lahars because it allows assessment of the impact of the flows on buildings and infrastructure lifelines located near drainages that descend from volcanoes.

  2. Behavior of cooling jet in the lateral injection in film cooling. 1st Report. ; Time-averaged velocity and temperature field. Span hoko ni fukidasu makureikyaku ni okeru reikyaku kuki no kyodo. 1. ; Jikan heikin sokudoba to ondoba

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, A. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)); Yamamoto, M. (Toyota Motor Corp., Aichi (Japan)); Shizawa, T.; Honami, S. (Science University of Tokyo, Tokyo (Japan). Faculty of Engineering)

    1994-02-25

    In order to improve the gas turbine blade film cooling technology, this paper elucidates flow field and temperature field of secondary air blown out into a span direction; derives the temperature distribution on the wall face; and describes cooling air behavior in film cooling. The wall face temperature distribution measured with a temperature measuring system using liquid crystal has shown relatively good correspondence with the temperature distribution in the vicinity of the wall face as measured by a two-wire probe. Film cooling by blowing air into the span direction has shown good attachment of the secondary air onto the wall face in the secondary air blowing direction. However, in the opposite direction to the air blowing direction, air has attached to the wall face only poorly because of vortex movements of the primary air due to being dragged in. The secondary air has departed from the wall face as the blow-out ratio has been increased, resulting in drop in the cooling efficiency. A 'Z' direction position that the temperature of the secondary air shows a maximum value differs from a 'Z' direction position having a peak in the wall face cooling efficiency, the difference having become more noticeable with increasing blow-out ratio. A region with lower cooling efficiency due to rolling-in of the primary air exists near the blow-out hole, where rolling-in of the primary air is recognized prominently as the blow-out ratio has been increased. 8 refs., 6 figs.

  3. Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase

    CERN Document Server

    Barsky, Eugene

    2010-01-01

    This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...

  4. New results in gravity dependent two-phase flow regime mapping

    Science.gov (United States)

    Kurwitz, Cable; Best, Frederick

    2002-01-01

    Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .

  5. Concurrent two-phase downflow measurement with an induced voltage electro-magnetic flowmeter

    OpenAIRE

    Opara, Uroš; Bajsič, Ivan

    2015-01-01

    With a set of polynomial approximations a possibility is shown of the use of an induced voltage electromagnetic flowmeter in the area of measuring cocurrent two-phase downflow in tubes. The principle of the meter operation remains hereby unchanged

  6. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  7. Detection of Two-Phase Flow Patterns in a Vertical Minichannel Using the Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    Mosdorf Romuald

    2015-06-01

    Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.

  8. Reversible, on-demand generation of aqueous two-phase microdroplets

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya

    2017-08-15

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  9. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  10. Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor

    Directory of Open Access Journals (Sweden)

    Li Dan

    2015-01-01

    Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.

  11. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    Science.gov (United States)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  12. Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification

    Science.gov (United States)

    Fu, J. W.; Yang, Y. S.; Guo, J. J.; Ma, J. C.; Tong, W. H.

    2008-12-01

    The formation and evolution of a two-phase coupled growth microstructure in AISI 304 stainless steel are investigated using a quenching method during directional solidification. It is found that the two-phase microstructure, which is composed of coupled growth of thin lathy delta ferrite (δ) and austenite (γ), forms from the melt first during solidification. As solidification proceeds, the retained liquid transforms into austenite directly. On cooling, the subsequent incomplete solid-state transformation from ferrite to austenite results in the disappearance of the thinner lathy delta ferrite, and the final two-phase coupled growth microstructure is formed. The formation mechanism of the two-phase coupled growth microstructure is analyzed theoretically based on the nucleation and constitutional undercooling (NCU) criterion. Transmission electron microscope (TEM) and EDS analyses were carried out to identify the phases and determine the phase composition, respectively.

  13. Experimental study on transient behavior of semi-open two-phase thermosyphon

    Institute of Scientific and Technical Information of China (English)

    朱华; 王建新; 张巧惠; 屠传经

    2004-01-01

    An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.

  14. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  15. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    OpenAIRE

    Ilić Sanja M.; Đaković Sanja D.; Cvejić Jelena H.; Antov Mirjana G.; Zeković Zoran P.

    2005-01-01

    The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  16. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Ilić Sanja M.

    2005-01-01

    Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  17. CURE OF A MICROGEL-EPOXY RESIN TWO-PHASE POLYMER WITH ETHYLENE DIAMINE

    Institute of Scientific and Technical Information of China (English)

    SONG Aiteng; HUANG Wei; YU Yunzhao

    1992-01-01

    The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N- H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N -H to epoxide .This was accounted for the lower apparent activation energy of the curing of the two phase resin.

  18. Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.

    1982-01-01

    A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.

  19. Numerical investigation of confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.

  20. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Institute of Scientific and Technical Information of China (English)

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa

    2001-01-01

    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  1. Numerical investigation of confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    金晗辉; 夏钧; 樊建人; 岑可法

    2002-01-01

    This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.

  2. CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    Ning Yang; Wei Wang; Wei Ge; Jinghai Li

    2003-01-01

    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  3. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    Science.gov (United States)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  4. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    Science.gov (United States)

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  5. Living between two worlds: two-phase culture systems for producing plant secondary metabolites.

    Science.gov (United States)

    Malik, Sonia; Hossein Mirjalili, Mohammad; Fett-Neto, Arthur Germano; Mazzafera, Paulo; Bonfill, Mercedes

    2013-03-01

    The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.

  6. Design, Modelling and Simulation of Two-Phase Two-Stage Electronic System with Orthogonal Output for Supplying of Two-Phase ASM

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.

  7. Flow regime, void fraction and interfacial area transport and characteristics of co-current downward two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)

    2016-10-15

    are studied. Moreover, the interfacial area concentration and the bubble coalescence and breakup mechanisms are shown to vary in the axial direction as well as with flow rate, flow area and pressure drop. The liquid velocity field, bubble shape and shear stress are studied for a stationary slug bubble with downward liquid flow. Furthermore, the relationship between the plug and foam flow shape profiles, relative velocity, void fraction and gas slug velocity at an elevated pressure of 0.2 MPa studied by Sekoguchi et al. (1996) are also analyzed, together with the five plug flow sub-regime groups located in the low slip and high slip velocity regions. For the annular flow, the relationship between liquid film thickness, entrainment mechanisms, film velocity and shear stress are studied as well. Alike to plug flow, five sub-regimes in the annular flow are also examined along with the bubble and droplet entrainment mechanisms. The paper also discusses the pressure drop for bubbly, slug, foam, falling film and annular flow regimes, with a particular focus on the most accurate interfacial friction factor correlation for annular flow and its applicability for a wide range of pipe diameters. The flow instability of a system such as static and dynamic instability in the presence of a downcomer, for both single and parallel heated channels are examined too. Finally, the most accurate and versatile drift-flux correlation applicable to all downward flow regimes is highlighted and compared to drift-flux type correlations as it will be a stepping stone to attain a more accurate co-current downward flow transition model. Further experimental effort is essential to achieve a strong foothold in the understanding of co-current downward two-phase flow, as it is vital for nuclear engineering applications.

  8. Two-Phase Flow Modelling Perspectives Based on Novel High-Resolution Acoustic Measurements of Uniform Steady Sheet-Flow

    Science.gov (United States)

    Chauchat, J.; Revil-Baudard, T.; Hurther, D.

    2014-12-01

    Sheet flow is believed to be a major process for morphological evolution of natural systems. An important research effort has been dedicated to laboratory and numerical studies of sheet flow regime that have allowed to make some progress in the understanding of the underlying physical processes. Recent advances made in high resolution measurement techniques allows to give new insights into the small scale physical processes. In this contribution, a novel uniform and steady sheet flow dataset based on an Acoustic Concentration and Velocity Profiler (ACVP) is presented. Profile of colocated velocities (streamwise and wall-normal) and sediment concentration has been measured at high-resolution (3 mm ; 78 Hz for the velocities and 4.9 Hz for the concentration). The measured profiles extend over the whole water column, from the free surface down to the fixed bed and an ensemble averaging over eleven realisations of the same experimental conditions has been used to obtain mean profiles of streamwise velocity, concentration, sediment flux and turbulent shear stress. The present experiment corresponds to a Shields number of θ=0.44 and a suspension number of ws/u*=1.1 corresponding to the lower limit of the no-suspension sheet flow regime. The analysis of the mixing length profile allows to identify two layers, a dilute suspension layer dominated by turbulence and a dense moving bed layer dominated by granular interactions. Our measurements show that the Von Karman parameter is reduced by a factor of more than two and that the Schmidt number is almost constant with a mean value of σs=0.44. Frictional and collisional interactions are encountered in the bed layer. Frictional interactions dominate close to the fixed bed interface whereas collisional interactions seems to control the flow at the transition between the dense and dilute layers. The relevancy of different constitutive laws for two-phase flow models are discussed.

  9. An Experimental Study of Air-Solid Two-Phase Flow in a 90° Bend Using LDV System

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    The measurements of he mean streamwise and radial velocities,the associated turbulence and the relative particle densities were made in an air-solid two-phase flow in square sectioned(30mm×30mm) 90° vertical to horizontal bend using laser Doppler velocimetry.The radius ratio of the bedn was 2.0.Glass beads of 100um in diameter were employed to form the solid phase.The measurements of air and solid phases were performed separately at the same bulk velocity 19.34m/s,correaponding to a Reynolds number of 3.87×104.The mass ratio of solid to air was 1.6%,The results indicate that the particle trajectories are very close to straight lines.The streamwise velocity profiles for the gas and the solids cross over near the outer wall with the solids having the higher speed.At θ=30° and 45°,particle-wall collisions happen mostly in the region fromθ=30°to θ=75°,and cause a sudden change in solid velocity,The particles tned to move towards the outer wall in 90°bend,The particle concentration near the outer wall is umch higher than that near the inner wall in the bend,and there are few particles in the inside of the bend.The bend leads to apparent phase separation.atθ=45°,the solids concentrate in the half of the duct near the outer wall,After θ=60° the second peak concentration appears,and goes gradually towards the inner wall.

  10. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes at microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hibiki, T. [Kyoto University, Research Reactor Institute, Osaka (Japan); Takamasa, T. [Tokyo University of Marine Science and Technology, Faculty of Marine Science, Tokyo (Japan); Ishii, M. [Purdue University, School of Nuclear Engineering, West Lafayette IN (United States)

    2004-07-01

    In view of the practical importance of the drift-flux model for two-phase flow analyses at microgravity conditions, the constitutive equations for distribution parameter and drift velocity have been developed for various two-phase flow regimes at microgravity conditions. A comparison of the model with various experimental data over various flow regimes and a wide range of flow parameters taken at microgravity conditions shows a satisfactory agreement. The newly developed drift-flux model has been applied to reduced gravity conditions such as 1.62 and 3.71 cm/s{sup 2}, which correspond to the Lunar and Martian surface gravities, respectively, and the effect of the gravity on the void fraction in two-phase flow systems has been discussed. It appears that the effect of the gravity on the void fraction in 2-phase flow systems is more pronounced for low liquid flow conditions, whereas the gravity effect may be ignored for high liquid velocity conditions.

  11. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  12. Non-thermal equilibrium two-phase flow for melt migration and ascent

    Science.gov (United States)

    Schmeling, Harro; Marquart, Gabriele

    2017-04-01

    We develop a theory for heat exchange between a fluid phase in a solid porous matrix where the temperature of the fluid and of the matrix are different, i. e. not in thermal equilibrium. The formulation considers moving of the fluid within the porous matrix as well as moving of the matrix in an Eulerian grid. The theory can be applied to melts in partially molten rocks, particularly aiming at the transitional regime between melt percolation and flow through dikes, as well as to brine transport in porous rocks. The theory involves the energy conservation equations for the fluid and the solid phase which are coupled by a heat exchange term. We derive an expression based on a Fourier decomposition of a periodic half-waves for a macroscopic description of the non-equal temperatures in the fluid and the solid considering the relative volumetric fractions and surface to volume relations of the pores. We present a formulation for the heat exchange between the two phases taking into account different thermal conductivities of the fluid and the solid and considering the temporal evolution of the heat exchange. The latter leads to a convolution integral in case of a resting matrix. The evolution of the temperature in both phases with time is derived upon inserting the heat exchange term in the energy equations. We test the theory for a simple 1D case of sudden temperature difference between fluid and solid and vary fluid fractions and differential velocities between fluid and solid to obtain the requisites for the maximum Fourier coefficient and the time increments for numerical integration. The necessary time increments are small (between 10^-3 d2 / κ to 10^-5 d^2/ κ, where d is a scaling length, e.g. the pore radius and κ is a scaling diffusivity, e.g. the mean diffusivity) and strongly depend on the fluid fraction. The maximum Fourier coefficient need to be as high as 500 to resolve properly the sudden heat exchange between fluid and solid. Our results agree well with

  13. Measurement of turbulence statistics in single-phase and two-phase flows using ultrasound imaging velocimetry

    Science.gov (United States)

    Gurung, Arati; Poelma, Christian

    2016-11-01

    Ultrasound imaging velocimetry (UIV) has received considerable interest as a tool to measure in non-transparent flows. So far, studies have only reported statistics for steady flows or used a qualitative approach. In this study, we demonstrate that UIV has matured to a level where accurate turbulence statistics can be obtained. The technique is first validated in laminar and fully developed turbulent pipe flow (single-phase, with water as fluid) at a Reynolds number of 5300. The flow statistics agree with the literature data. Subsequently, we obtain similar statistics in turbulent two-phase flows at the same Reynolds number, by adding solid particles up to volume fraction of 3 %. In these cases, the medium is completely opaque, yet UIV provides useable data. The error in the measurements is estimated using an ad hoc approach at a volume load up to 10 %. For this case, the errors are approximately 1.9 and 0.3 % of the centerline velocity for the streamwise and radial velocity components, respectively. Additionally, it is demonstrated that it is possible to estimate the local concentration in stratified flows.

  14. A generalized volumetric dispersion model for a class of two-phase separation/reaction: finite difference solutions

    Science.gov (United States)

    Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut

    2017-03-01

    This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.

  15. Visualization of two-phase gas-liquid flow regimes in horizontal and slightly-inclined circular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia Alves [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: livia@lasme.coppe.ufrj.br; Cunha Filho, Jurandyr; Su, Jian [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program], Emails: cunhafilho@lasme.coppe.ufrj.br, sujian@lasme.coppe.ufrj.br; Faccini, Jose Luiz Horacio [Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: faccini@ien.gov.br

    2010-07-01

    In this paper a flow visualization study was performed for two-phase gas-liquid flow in horizontal and slightly inclined tubes. The test section consists of a 2.54 cm inner diameter stainless steel circular tube, followed by a transparent acrylic tube with the same inner diameter. The working fluids were air and water, with liquid superficial velocities ranging from 0:11 to 3:28 m/s and gas superficial velocities ranging from 0:27 to 5:48 m/s. Flow visualization was executed for upward flow at 5 deg and 10 deg and downward flow at 2:5 deg, 5 deg and 10 deg, as well as for horizontal flow. The visualization technique consists of a high-speed digital camera that records images at rates of 125 and 250 frames per second of a concurrent air-water mixture through a transparent part of the tube. From the obtained images, the flow regimes were identified (except for annular flow), observing the effect of inclination angles on flow regime transition boundaries. Finally, the experimental results were compared with empirical and theoretical flow pattern maps available in literature. (author)

  16. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    Energy Technology Data Exchange (ETDEWEB)

    Deendarlianto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No.2 Yogyakarta 55281 (Indonesia); Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Ousaka, Akiharu [Department of Mechanical Engineering, The University of Tokushima, 2-1 Minami Josanjima, Tokushima 770-8506 (Japan); Indarto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No.2 Yogyakarta 55281 (Indonesia); Kariyasaki, Akira [Department of Chemical Engineering, Fukuoka University, 8-19-1, Jyonan-ku, Fukuoka 814-0180 (Japan); Lucas, Dirk; Vallee, Christophe [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Vierow, Karen; Hogan, Kevin [Department of Nuclear Engineering Texas A and M University, 129 Zachry Engineering Center, 3133 TAMU College Station, TX 77843-3133 (United States)

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined at 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)

  17. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  18. Dynamic behavior of pipes conveying gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)

    2015-10-15

    Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.

  19. A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.

  20. A new two-phase erosion-deposition model for mass flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  1. New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions

    Science.gov (United States)

    Braisted, Jon; Kurwitz, Cable; Best, Frederick

    2004-02-01

    The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.

  2. DSMC simulation of two-phase plume flow with UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  3. Design and evaluation of a two-phase turbine for low quality steam--water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Comfort, W.J. III

    1977-05-16

    A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

  4. Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments

    CERN Document Server

    Thome, J R; Park, J E

    2009-01-01

    An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.

  5. Selective separation and enrichment of proteins in aqueous two-phase extraction system

    Institute of Scientific and Technical Information of China (English)

    Feng Qu; Hao Qin; Min Dong; Dong Xu Zhao; Xin Ying Zhao; Jing Hua Zhang

    2009-01-01

    A simple aqueous two-phase extraction system(ATPS)of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin)were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some proteins showed obviously different partition in two phases.The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics.

  6. Reduced-gravity two-phase flow experiments in the NASA KC-135

    Science.gov (United States)

    Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.

    1988-01-01

    An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.

  7. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  8. On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension

    CERN Document Server

    Rohde, Christian

    2016-01-01

    We consider a sharp-interface approach for the inviscid isothermal dynamics of compressible two-phase flow, that accounts for phase transition and surface tension effects. To fix the mass exchange and entropy dissipation rate across the interface kinetic relations are frequently used. The complete uni-directional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers, that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.

  9. Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants

    Science.gov (United States)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-11-01

    Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.

  10. Adaptive sampling in two-phase designs: a biomarker study for progression in arthritis

    Science.gov (United States)

    McIsaac, Michael A; Cook, Richard J

    2015-01-01

    Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of estimators arising from this design are assessed through simulation, and they are shown to be similar to those from optimal designs. The design procedure is then illustrated through application to a motivating biomarker study in an ongoing rheumatology research program. Copyright © 2015 © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25951124

  11. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    Science.gov (United States)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-11-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  12. An Implicit Numerical Method for the Simulation of Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Lee, Seung-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    An implicit numerical method is presented for the analysis of two-phase flows in PWRs. Numerical stability and efficiency are improved by decoupling energy equations from the pressure equation. All the convection and diffusion terms are calculated implicitly. The proposed numerical method is verified against conceptual two-phase flow problems. An implicit numerical method has been proposed for two-phase calculation where energy equations are decoupled from the pressure equation. Convection and diffusion terms are calculated implicitly. The calculation results are the same for PME-explicit, PM explicit, and PM-implicit. Large time step size has been tested with PM-implicit-c and the results are also the same.

  13. Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LI Qing; LU Wenqiang

    2005-01-01

    A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.

  14. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  15. The solidification of two-phase heterogeneous materials: Theory versus experiment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; KIM Tongbeum; LU TianJian

    2009-01-01

    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  16. Thermodynamic properties and mixing thermodynamic parameters of two-phase metallic melts

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang

    2005-01-01

    Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).

  17. Thermodynamic calculations of a two-phase thermosyphon loop for cold neutron sources

    Science.gov (United States)

    de Haan, Victor-O.; Gommers, René; Rowe, J. Michael

    2017-07-01

    A new method is described for thermodynamic calculations of a two-phase thermosyphon loop based on a one-dimensional finite element division, where each time-step is split up in a change of enthalpy and a change in entropy. The method enables the investigation of process responses for a cooling loop from room temperature down to cryogenic temperatures. The method is applied for the simulation of two distinct thermosyphon loops: a two-phase deuterium and a two-phase hydrogen thermosyphon loop. The simulated process responses are compared to measurements on these loops. The comparisons show that the method can be used to optimize the design of such loops with respect to performance and resulting void fractions.

  18. Two-phase application of multi-objective genetic algorithms in green building design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Rivard, H. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering

    2005-07-01

    The application of multi-objective genetic algorithms for green building design in two phases were presented in order to better help designers in the decision-making process. The purpose is to minimize two conflicting criteria: the life-cycle cost and the life-cycle environmental impact. Environmental impact criteria examined include energy and non-energy natural resources, global warming, and acidification. Variables focus on building envelope-related parameters. The application of multi-objective genetic algorithms is divided into two phases. The first phase intends to help designers in understanding the trade-off relationship between the two conflicting criteria. The second phase intends to refine the performance region that is of the designer's interest. The results after the two-phase application of the multi objective genetic algorithm were then presented. 13 refs., 4 tabs., 3 figs.

  19. OPTIMIZATION DESIGN OF GAS-PARTICLE TWO-PHASE AXIAL-FLOW FAN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of fan with writhed the blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed with its all dynamic characteristic curves and geometric shape. Finally, the conclusion on the effect of particles on fan running is reached, quantitatively and qualitatively, as is expected in the fan industry.

  20. Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model

    Science.gov (United States)

    Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.

    2013-12-01

    The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.

  1. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  2. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  3. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  4. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  5. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    KAUST Repository

    Hou, Jiangyong

    2016-02-05

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  6. The source vector and static displacement field by elastic dislocation on the two-phase saturated medium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Biot's theory about two-phase saturated medium, according to the character of d function, the Green function on two-phase saturated medium by the point source under concentrated force can be derived. By the Betti's theorem for the two-phase saturated medium field, the source vector and static displacement field by elastic dislocation on the two-phase saturated medium were comprehensively discussed.

  7. RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    林建忠; 聂德明

    2003-01-01

    Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.

  8. Investigation on two-phase flow instability in steam generator of integrated nuclear reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.

  9. Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller

    Institute of Scientific and Technical Information of China (English)

    Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu

    2008-01-01

    A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.

  10. A phenomenological model of two-phase (air/fuel droplet developing and breakup

    Directory of Open Access Journals (Sweden)

    Pavlović Radomir R.

    2013-01-01

    Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.

  11. Camomile autofermentation in polyethylene glycol/dextran two-phase system

    Directory of Open Access Journals (Sweden)

    Đaković Sanja D.

    2008-01-01

    Full Text Available The objective of this study was the investigation of the extractive bioconversion of apigenin-7-O-β-glucoside in camomile ligulate flowers into apigenin by autofermentation in polyethylene glycol 6000/dextran 200000 two-phase system. In 22.5% polyethylene glycol/14% dextran aqueous two-phase system the obtained yield of apigenin in the top phase was 96.5%. In the presence of plant material that partiotioned to the interphase, the yield of apigenin in the top phase was 3.5 times higher in comparison to the model system.

  12. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-12

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

  13. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  14. Problems of heat transfer and hydraulics of two-phase media

    CERN Document Server

    Kutateladze, S S

    1969-01-01

    Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically

  15. Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor

    OpenAIRE

    Li Dan

    2015-01-01

    With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-...

  16. Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramirez, Jaime

    1983-06-01

    A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.

  17. Determination of production-shipment policy using a two-phase algebraic approach

    Directory of Open Access Journals (Sweden)

    Huei-Hsin Chang

    2012-04-01

    Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.

  18. The performance of a cryogenic pump for the two-phase flow condition

    OpenAIRE

    YAMADA, HITOSHI; WATANABE, Mitsuo; Hasegawa, Satoshi; Kamijo, Kenjiro; 山田, 仁; 渡辺, 光男; 長谷川, 敏; 上條, 謙二郎

    1985-01-01

    An experimental investigation was carried out in order to obtain the performance characteristics of a cryogenic pump under a two-phase flow condition. The experiment used an oxygen pump with an inducer and liquid nitrogen as the test fluid. The vapor volumetric fraction at the pump inlet was calculated with an assumption of a constant enthalpy process across an orifice which was used to generate the two-phase flow at the pump inlet. The results showed that the pump head rise did hardly decrea...

  19. Characterization of annular two-phase gas-liquid flows in microgravity

    Science.gov (United States)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  20. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    Science.gov (United States)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  1. Studying Sediment Transport in Oscillatory Sheet Flow by using a Large Eddy Simulation Eulerian Two-phase Model

    Science.gov (United States)

    Cheng, Z.; Hsu, T. J.; Chauchat, J.; Revil-Baudard, T.

    2016-12-01

    Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. Recently, a turbulence-averaged two-phase Eulerian sediment transport model, called sedFoam, was developed and validated for U-tube sheet flows (Cheng et al., 2016). With closures of particle stresses and fluid-particle interactions, the model is able to resolve full profiles of sediment transport from the immobile bed, to the concentrated near-bed transport layer and up to dilute transport without conventional bedload/suspended load assumptions. In this study, we further extend this model with a 3D large eddy simulation (LES) approach, where substantial amount of the turbulence-sediment interaction is directly resolved. In the present LES model, a dynamic Smagorinsky sub-grid stress closure is adopted for both fluid and sediment phases, and the sub-grid contribution to the fluid-particle interactions is included by a sub-grid drift velocity in drag model (Ozel et al., 2013). The model is validated with high-resolution measurements in a unidirectional steady sheet flow experiment (Revil-Baudard et al. 2015). We further apply the LES Eulerian two-phase model to medium and fine sand in oscillatory sheet flows (O'Donoghue & Wright, 2004). The LES model performance for the medium sand is similar to the turbulence-averaged model, except that the LES model seems to be superior to the turbulence-averaged model during acceleration and decelerating phases. In addition, the LES model is able to capture the enhanced transport layer thickness for fine sand, which may be related to the burst events near the flow reversal. We further confirm that this phenomenon is absent for medium sand.

  2. A comprehensive neural network model for predicting two-phase liquid holdup under various angles of pipe inclinations

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M. [Petroleum Univ. of Technology, Ahwaz (Iran, Islamic Republic of). Gas Engineering Dept.

    2006-07-01

    Liquid holdup in pipelines refers to the fraction of pipe that is occupied by liquid. Accurate prediction of liquid holdup associated with multiphase flow is important for the design and operation of modern petroleum production systems. Multiphase flow refers to the concurrent flow of 2 or more phases, liquid, solid or gas, where motion affects the interface between the phases. The ability to predict liquid holdup makes it possible to calculate a pressure gradient based on a two-phase friction factor. However, this approach is dependent on the accuracy of flow pattern predictions and is subject to discontinuities in predictions made across flow pattern transition boundaries. Artificial neural networks (ANN) are computing tools that can recognize complex patterns within available data. ANN has been used successfully to solve many difficult engineering problems including multiphase flow problems that involve pressure drop, flow pattern identification and liquid holdup. This study used a 3-layer backpropagation ANN model for predicting the liquid holdup in gas-liquid two-phase flow at all ranges of pipe inclinations. Five independent sets of experimental data were used, covering a wide range of variables such as inclination from horizontal, pipe diameter, gas and liquid superficial velocity, liquid viscosity, density and surface tension. The model is independent of flow pattern determination and uses an individual method for all conditions. Experimental results have shown that the newly developed model can accurately predict liquid holdup in terms of the lowest absolute average percent error, the lowest standard deviation and the highest correlation coefficient. This study confirmed the power of ANN models in solving complicated engineering problems. 28 refs., 5 tabs., 4 figs., 1 appendix.

  3. Comparison of two-phase and three-phase methanol synthesis processes

    NARCIS (Netherlands)

    van de Graaf, G.H; Beenackers, A.A C M

    1996-01-01

    A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The b

  4. Pressure Buildup Analysis for Two-Phase Geothermal Wells: Application to the Baca Geothermal Field

    Science.gov (United States)

    Riney, T. D.; Garg, S. K.

    1985-03-01

    The recently published pressure transient analysis methods for two-phase geothermal wells are employed to analyze the pressure buildup data for several wells located in the Redondo Creek area of the Baca geothermal field in New Mexico. The downhole drilling information and pressure/temperature surveys are first interpreted to locate zones at which fluid enters the well bore from the formation and to estimate the initial reservoir temperature and pressure in these zones. All of the Baca wells considered here induced flashing in the formation upon production. Interpretation of the buildup data for each well considers well bore effects (e.g., phase change in the well bore fluid and location of the pressure sensor with respect to the permeable horizon) and the carbon dioxide content of the fluid and its effects on the phase behavior of the reservoir fluids and differentiates between the single- and two-phase portions of the pressure buildup data. Different straight-line approximations to the two portions (i.e., single- and two-phase) of the data on the Homer plot are used to obtain corresponding estimates for the single- and two-phase mobilities. Estimates for the formation permeability-thickness (kH) product are also given.

  5. Effects of Macroparticle Sizes on Two-phase Mixture Discharge Under DC Voltage

    Institute of Scientific and Technical Information of China (English)

    YAO Wenjun; HE Zhenghao; DENG Heming; WANG Guoli; ZHANG Man; MA Jun; LI Jin; YE Qizheng; HU Hui

    2012-01-01

    The discharge laws of the two-phase mixtures are of significance to the lightning protection and external insulation of HV transmission lines under the influence of severe climatic conditions. The initiation and propagation of discharge and its influence factors are the fundamental problems to be studied.

  6. THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    袁益让

    2002-01-01

    For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estinates in L2 norm are derived to determine the error in the approximate solution.

  7. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon

    NARCIS (Netherlands)

    Vincent, Charles C.J.; Kok, Jacobus B.W.

    1992-01-01

    The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial s

  8. Affinity partitioning of human antibodies in aqueous two-phase systems

    NARCIS (Netherlands)

    Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; de Vries, J.; Korporaal, R.; Verhoef, H. J.; Visser, T. J.; Aires-Barros, M. R.

    2007-01-01

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the t

  9. A Dual-Stage Two-Phase Model of Selective Attention

    Science.gov (United States)

    Hubner, Ronald; Steinhauser, Marco; Lehle, Carola

    2010-01-01

    The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…

  10. A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Ma Ning

    2007-01-01

    Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic,whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.

  11. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de

    2008-01-01

    A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze

  12. Two-Phase Instability Characteristics of Printed Circuit Steam Generator for the Low Pressure Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study.

  13. Comparison of two-phase and three-phase methanol synthesis processes

    NARCIS (Netherlands)

    van de Graaf, G.H; Beenackers, A.A C M

    1996-01-01

    A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The

  14. Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.

  15. A Chebyshev collocation method for solving two-phase flow stability problems

    NARCIS (Netherlands)

    Boomkamp, P.A.M.; Boersma, B.J.; Miesen, R.H.M.; Beijnon, G.V.

    1997-01-01

    This paper describes a Chebyshev collocation method for solving the eigenvalue problem that governs the stability of parallel two-phase flow. The method is based on the expansion of the eigenfunctions in terms of Chebyshev polynomials, point collocation, and the subsequent solution of the resulting

  16. Lamb's integral formulas of two-phase saturated medium for soil dynamic with drainage

    Institute of Scientific and Technical Information of China (English)

    Bo-yang DING; Gai-hong DANG; Jin-hua YUAN

    2010-01-01

    When dynamic force is applied to a saturated porous soil,drainage is common.In this paper,the saturated porous soil with a two-phase saturated medium is simulated,and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem(the reciprocal theorem).According to the basic solution to Biot's equation,Green's function Gij and three terms of Green's function G4i,Gi4,and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented.The displacement field with drainage,the magnitude of drainage,and the pore pressure of the center explosion source are obtained in computation.The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared.Good agreement is observed.

  17. Approaches to myosin modelling in a two-phase flow model for cell motility

    Science.gov (United States)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  18. Theoretical aspects of electrical power generation from two-phase flow streaming potentials

    NARCIS (Netherlands)

    Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.

    A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby

  19. Two-Phase Flow in Rotating Hele-Shaw Cells with Coriolis Effects

    CERN Document Server

    Escher, Joachim; Walker, Christoph

    2011-01-01

    The free boundary problem of a two phase flow in a rotating Hele-Shaw cell with Coriolis effects is studied. Existence and uniqueness of solutions near spheres is established, and the asymptotic stability and instability of the trivial solution is characterized in dependence on the fluid densities.

  20. Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2003-12-01

    Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.