Sample records for two-phase thermal control

  1. Dynamic characteristics of two-phase thermal control system for spacecraft (United States)

    Malozemov, Vladimir V.; Kudryavtseva, Natal'ya S.; Antonov, Viktor A.; Zagar, Oleg V.; Chernobaev, Nikolaj N.


    This paper deals with review of the issues associated with modelling the dynamic processes in the spacecraft two-phase thermal control systems. The work presents the results of modelling the nonstationary conditions of the evaporative and condensation heat exchangers functioning, investigates their response to the characteristic external influences. Disclosed are the results of the computer-aided modelling the two-phase thermal control system with a pump. The dynamic characteristics of the change in the inputs of pressures, temperatures and vapor content of a coolant in various branches of the system, as well as the lengths of the heat transfer zones in the evaporator and condenser under effect of the typical disturbing actions are obtained. The attained transients are analyzed.

  2. Two-Phase Flow Research on the ISS for Thermal Control Applications (United States)

    Motil, Brian J.


    With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.

  3. Development of a Thermal Control System with Mechanically Pumped CO2 Two-Phase Loops for the AMS-02 Tracker on the ISS

    CERN Document Server

    Alberti, G; Ambrosi, G; Bardet, M; Battiston, R; Borsini, S; Cao, J F; Chen, Y; van Es, J; Gargiulo, C; Guo, K H; Guo, L; He, Z H; Huang, Z C; Koutsenko, V; Laudi, E; Lebedev, A; Lee, S C; Li, T X; Lin, Y L; Lv, S S; Menichelli, M; Miao, J Y; Mo, D C; Ni, J Q; Pauw, A; Qi, X M; Shue, G M; Sun, D J; Sun, X H; Tang, C P; Verlaat, B; Wang, Z X; Weng, Z L; Xiao, W J; Xu, N S; Yang, F K; Yeh, C C; Zhang, Z; Zwartbol, T


    To provide a stable thermal environment for the AMS-Tracker, a thermal control system based on mechanically pumped CO2 two-phase loops was developed. It has been operating reliably in space since May 19, 2011. In this article, we summarize the design, construction, tests, and performance of the AMS-Tracker thermal control system (AMS-TTCS).

  4. Thermal test results of the two-phase thermal bus technology demonstration loop (United States)

    Edelstein, Fred; Liandris, Maria; Rankin, J. Gary


    A two-phase heat transport system, the Thermal Bus Technology Demonstrator, has been built and tested for NASA Johnson Space Center for application on Space Station. The loop is a separated two-phase system that uses evaporator flow control valves and liquid condenser flooding to achieve temperature control. Both ambient and thermal vacuum tests have been completed in NASA's Chamber A, initially using Freon-11 and then ammonia as the working fluid. Overall, the tests were quite successful, with the bus achieving all major test objectives, including operation at 19.5 kW and set points at 35 F (1.7 C), 70 F (21.1 C) and 104 F (40.0 C), load sharing, asymmetrical heating and isothermality around the loop. Low plate to vapor temperature drops were obtained for the monogroove cold plate using ammonia and are indicative of the high evaporative film coefficients obtainable with this design.

  5. Thermal performance of closed two-phase thermosyphon using nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Khandekar, Sameer; Mehta, Balkrishna [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Joshi, Yogesh M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)


    Nanofluids, stabilized suspensions of nanoparticles typically <100 nm in conventional fluids, are evolving as potential enhanced heat transfer fluids due to their improved thermal conductivity, increase in single phase heat transfer coefficient and significant increase in critical boiling heat flux. In the present paper, we investigate the overall thermal resistance of closed two-phase thermosyphon using pure water and various water based nanofluids (of Al{sub 2}O{sub 3}, CuO and laponite clay) as working fluids. We observe that all these nanofluids show inferior thermal performance than pure water. Furthermore, we observe that the wettability of all nanofluids on copper substrate, having the same average roughness as that of the thermosyphon container pipe, is better than that of pure water. A scaling analysis is presented which shows that the increase in wettability and entrapment of nanoparticles in the grooves of the surface roughness cause decrease in evaporator side Peclet number that finally leads to poor thermal performance. (author)

  6. Instrument Thermal Test Bed - A unique two phase test facility (United States)

    Swanson, Theodore; Didion, Jeffrey


    The Instrument Thermal Test Bed (ITTB) is a modular, large-scale test facility which provides a medium for ground testing and flight qualification of spacecraft thermal control components and system configurations. The initial 'shade-down' operations are discussed herein. Operational parameters and performance characteristics were determined and quantified on a preliminary basis. The ITTB was successfully operated at evaporator power loads ranging from 600 W to 9600 W as well as in both capillary pumped and series hybrid pumped modes.

  7. Capillary Two-Phase Thermal Devices for Space Applications (United States)

    Ku, Jentung


    This is the presentation file for an invited seminar for Department of Mechanical and Aerospace Engineering at the Case Western Reserve University. The seminar is scheduled for April 1, 2016.Description: This presentation will discuss operating principles and performance characteristics of heat pipes (HPs) and loop heat pipes (LHPs) and their application for spacecraft thermal control. Topics include: 1) HP operating principles; 2) HP performance characteristics; 3) LHP pressure profiles; 4) LHP operating temperature; 5) LHP operating temperature control; and 6) Examples of using HPs and LHPs on NASA flight projects.

  8. Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology (United States)


    HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results

  9. Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface

    Directory of Open Access Journals (Sweden)

    S. Siddiqa


    Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.

  10. Design of an ammonia two-phase Prototype Thermal Bus for Space Station (United States)

    Brown, Richard F.; Gustafson, Eric; Parish, Richard


    The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.

  11. Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller

    Institute of Scientific and Technical Information of China (English)

    Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu


    A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.

  12. Use of two-phase flow heat transfer method in spacecraft thermal system (United States)

    Hye, A.


    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  13. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.


    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  14. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions (United States)

    Wei, Yikun; Qian, Yuehong


    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  15. Modelling of transient two-phase heat transfer for spacecraft thermal management (United States)

    Shyy, W.


    A computational method for predicting the two-phase transient fluid flow and heat transfer characteristics within a reservoir of the capillary-pumped-loop, intended to be used for spacecraft thermal management, has been developed. The model is based on the enthalpy formulation in an axisymmetric configuration. The reservoir operates under a constant thermodynamic pressure by allowing mass exchange between the reservoir and the outside loop. Both 1 g and 0 g environments have been considered to assess the effects of gravity on the reservoir performance. Depending on the gravity level, the power input and the reservoir orientation, three different convection modes have been identified, namely, the thermocapillary mode, the buoyancy mode, and the rapid-expansion mode (caused by interface movement). The impact of these modes on the performance of the reservoir and the associated physical phenomena have been discussed.

  16. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail:; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril


    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  17. Effective thermal conductivity of real two-phase systems using resistor model with ellipsoidal inclusions

    Indian Academy of Sciences (India)

    Jagjiwanram; Ramvir Singh


    A theoretical model has been developed for real two-phase system assuming linear flow of heat flux lines having ellipsoidal particles arranged in a three-dimensional cubic array. The arrangement has been divided into unit cells, each of which contains an ellipsoid. The resistor model has been applied to determine the effective thermal conductivity (ETC) of the unit cell. To take account of random packing of the phases, non-uniform shape of the particles and non-linear flow of heat flux lines in real systems, incorporating an empirical correction factor in place of physical porosity modifies an expression for ETC. An effort is made to correlate it in terms of the ratio of thermal conductivities of the constituents and the physical porosity. Theoretical expression so obtained has been tested on a large number of samples cited in the literature and found that the values predicted are quite close to the experimental results. Comparison of our model with different models cited in the literature has also been made.

  18. Space qualification of an experimental two-phase flow thermal management system (United States)

    Koonmen, James P.; Carswell, Lisa C.; Kvansnak, Michael A.


    The Weapons Laboratory will launch a space experiment in March 1991 to investigate the effects of extended microgravity on two-phase (liquid/vapor) flow. The qualification process for the experimental flight system hardware differs significantly from the process used for complex, high cost, long life space systems. Some development, qualification, and acceptance tests normally included in the test program of an operational space system were omitted because of the low program cost and low consequence of experiment failure. Key environment and functional qualification tests were performed, however, in an effort to reduce the risk of failure inherent in any space mission. The environmental qualification program included short duration vacuum chamber tests, reduced gravity missions onboard a National Aeronautics and Space Administration (NASA) test aircraft, and a complete series of shock and vibration tests. The functional qualification program centered on thermal-hydraulic system performance tests and a complete check-out of the unique telemetry system used to retrieve the experimental data from the payload. The test program also contains a number of acceptance and prelaunch validation tests to be performed as final verification of payloads readiness for spaceflight.

  19. Upgrading of the thermal performance of two-phase closed thermosyphon (TPCT) using fusel oil (United States)

    Sözen, Adnan; Menlik, Tayfun; Gürü, Metin; Aktaş, Mustafa


    This study investigates how fusel oil affect the thermal performance of a two-phase closed thermosyphon (TPCT) at various states of operation. The present study experimentally demonstrated the effect of using fusel oil comprised of various types of alcohols (1.1 % ethyl alcohol, 74.7 % amyl alcohol, 11.3 % isobutyl alcohol, 4.9 % butyl alcohol and 3.8 % propyl alcohol and 4 % water) in varying ratios on improving the performance of the TPCT. Fusel oil has been obtained from fermentation plants as a by product. A straight copper tube with an inner diameter of 13 mm, outer diameter of 15 mm and length of 1 m was used as the TPCT. The fusel oil was filled up 33.3 % (44.2 ml) of the volume of the TPCT. Three heating power levels (200, 300 and 400 W) were used in the experiments with three different flow rates of cooling water (5, 7.5 and 10 g/s) used in the condenser for cooling the system. An increase of 17.64 % was achieved in efficiency of TPCT when fusel oil was used to replace deionized water at a heat load of 200 W and with a cooling water flow rate of 10 g/s.

  20. Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, N., E-mail: [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)


    Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.

  1. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach (United States)

    Singh Dhillon, Navdeep; Pisano, Albert P.


    A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.

  2. Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges. (United States)

    Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R


    Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.

  3. Non-thermal equilibrium two-phase flow for melt migration and ascent (United States)

    Schmeling, Harro; Marquart, Gabriele


    We develop a theory for heat exchange between a fluid phase in a solid porous matrix where the temperature of the fluid and of the matrix are different, i. e. not in thermal equilibrium. The formulation considers moving of the fluid within the porous matrix as well as moving of the matrix in an Eulerian grid. The theory can be applied to melts in partially molten rocks, particularly aiming at the transitional regime between melt percolation and flow through dikes, as well as to brine transport in porous rocks. The theory involves the energy conservation equations for the fluid and the solid phase which are coupled by a heat exchange term. We derive an expression based on a Fourier decomposition of a periodic half-waves for a macroscopic description of the non-equal temperatures in the fluid and the solid considering the relative volumetric fractions and surface to volume relations of the pores. We present a formulation for the heat exchange between the two phases taking into account different thermal conductivities of the fluid and the solid and considering the temporal evolution of the heat exchange. The latter leads to a convolution integral in case of a resting matrix. The evolution of the temperature in both phases with time is derived upon inserting the heat exchange term in the energy equations. We test the theory for a simple 1D case of sudden temperature difference between fluid and solid and vary fluid fractions and differential velocities between fluid and solid to obtain the requisites for the maximum Fourier coefficient and the time increments for numerical integration. The necessary time increments are small (between 10^-3 d2 / κ to 10^-5 d^2/ κ, where d is a scaling length, e.g. the pore radius and κ is a scaling diffusivity, e.g. the mean diffusivity) and strongly depend on the fluid fraction. The maximum Fourier coefficient need to be as high as 500 to resolve properly the sudden heat exchange between fluid and solid. Our results agree well with

  4. Optimal Control of Partially Miscible Two-Phase Flow with Applications to Subsurface CO2 Sequestration

    KAUST Repository

    Simon, Moritz


    Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.

  5. Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor

    Directory of Open Access Journals (Sweden)

    K.krishna Rao (PG student


    Full Text Available This paper presents vector controlled of single phase induction motor. some problems are with vector controlled SPIM.As SPIM’s are typically to maintain speed and also about the complex implementation of vector controlled SPIM.the implemantion of the proposed vector controlled TPIM compared to the vector controlled SPIM. The general modal sutable for vector control of the unsymmentrical two phase induction motor and also stator flux oriented controlled strategies are analized. the comparative performance of both has been presented in this work with help of a practical three phase motor.

  6. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.


    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  7. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.


    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  8. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  9. Experimental analysis on adjusting performance of vapor-liquid two-phase flow controller

    Institute of Scientific and Technical Information of China (English)

    LI Hui-jun; TU Shan


    The vapor-liquid self-adjusting controller is an innovative automatic regulating valve. In order to ensure adjusted objects run safely and economically, the controller automatically adjusts the liquid flux to keep liquid level at a required level according to physical properties of vapor-liquid two-phase fluid. The adjusting mechanics, the controller' s performance and influencing factors of its stability have been analyzed in this paper. The theoretical analysis and successful applications have demonstrated this controller can keep the liquid level steady with good performance. The actual application in industry has shown that the controller can satisfactorily meet the requirement of industrial production and has wide application areas.

  10. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil


    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  11. Lattice-Boltzmann-based two-phase thermal model for simulating phase change


    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.


    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum l...

  12. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform (United States)

    Bugby, David C.; Farmer, Jeffery T.; OConnor, Brian F.; Wirzburger, Melissa J.; Abel, Elisabeth D.; Stouffer, Chuck J.


    This paper describes a novel thermal control system for the Warm Electronics Box (WEB) on board a small lunar surface lander intended to support science activities anywhere on the lunar surface for an extended duration of up to 6 years. Virtually all lander electronics, which collectively dissipate about 60 W in the reference mission, are contained within the WEB. These devices must be maintained below 323 K (with a goal of 303 K) during the nearly 15-earth-day lunar day, when surface temperatures can reach 390K, and above 263 K during the nearly 15-earth-day lunar night, when surface temperatures can reach 100K. Because of the large temperature swing from lunar day-to-night, a novel thermal switching system was required that would be able to provide high conductance from WEB to radiator(s) during the hot lunar day and low (or negligible) conductance during the cold lunar night. The concept that was developed consists of ammonia variable conductance heat pipes (VCHPs) to collect heat from WEB components and a polymer wick propylene loop heat pipe (LHP) to transport the collected heat to the radiator(s). The VCHPs autonomously maximize transport when the WEB is warm and autonomously shut down when the WEB gets cold. The LHP autonomously shuts down when the VCHPs shut down. When the environment transitions from lunar night to day, the VCHPs and LHP autonomously turn back on. Out of 26 analyzed systems, this novel arrangement was able to best achieve the combined goals of zero control power, autonomous operation, long life, low complexity, low T, and landed tilt tolerance.

  13. Two phase capillary pumped heat transfer in the Instrument Thermal Test Bed (United States)

    Didion, Jeffrey R.; Martins, Mario S.


    An experimental study of the thermal performance of two evaporators installed in the Instrument Thermal Test Bed (ITTB) was conducted. The ITTB was operated as a capillary pumped loop (CPL) with a transport length of approximately 12 meters. Empirical determinations of a general start up procedure, overall heat transfer coefficient, and minimum operating power were accomplished for each evaporator. Additionally, a detailed thermal model was developed for the High Power Spacecraft Thermal Management (HPSTM) evaporator and validated.

  14. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management (United States)

    Didion, Jeffrey R.


    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  15. Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media (United States)

    Fan, J.; Weitz, D.


    Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.

  16. Exergetical Analysis of Organic Flash Cycle with Two-Phase Expander for Recovery of Finite Thermal Reservoirs

    Institute of Scientific and Technical Information of China (English)

    Chul Ho Han; Kyoung Hoon Kim


    In this work exergetical performance analysis is carried out based on the second law of thermodynamics for organic flash cycle (OFC) using a two-phase expander instead of throttle expansion in order to recover efficiently finite thermal reservoirs.The exergy destructions (anergies) at various components of the system are theoretically investigated as well as the exergy efficiency.Results show that the anergy of heat exchanger or two-phase expander decreases while the anergy of throttle valve increases with increasing flash temperature,and the exergy efficiency has an optimum value with respect to the flash temperature.Under the optimal conditions with respect to the flash temperature,exergy efficiency increases with the heating temperature and the component having the largest exergy destruction varies with the flash temperature or heating temperature.

  17. A speed estimation of sensorless control for asymmetrical parameter type two-phase induction motor drives

    Directory of Open Access Journals (Sweden)

    Nuttapong Muangchan


    Full Text Available This paper presents the concept of a speed estimation of sensorless control for asymmetrical parameter type two-phase induction motor drive, by using the adaptive observer system. The motor speed is estimated on the rotor-flux reference frame to simplicity for application. The design guideline of the gain of speed estimate system for a motor has speed change. The experimental results for all test conditions show that the responses of current, torque and speed are stable for the entire operating region.

  18. Lattice-Boltzmann-based two-phase thermal model for simulating phase change. (United States)

    Kamali, M R; Gillissen, J J J; van den Akker, H E A; Sundaresan, Sankaran


    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum limit one recovers the well known macroscopic energy conservation equation for the mixtures. Heats of reaction, the enthalpy change associated with the phase change, and the diffusive transport of enthalpy are all taken into account; but the dependence of enthalpy on pressure, which is usually a small effect in most nonisothermal flows encountered in chemical reaction systems, is ignored. The energy equation is coupled to the LB equations for species transport and pseudopotential interaction forces through the EOS by using the filtered local pseudotemperature field. The proposed scheme is validated against simple test problems for which analytical solutions can readily be obtained.

  19. Mathematical Modeling of Thermal Modes of Closed Two-Phase Thermosyphons with Refrigerant R600A

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov A.S.


    Full Text Available Numerical analysis using the software package ANSYS FLUENT has been carried out. Characteristic temperature distribution, streamlines and velocity vectors for various heat loads have been obtained. The study found the possibility of using the software package for analysis of the energy transfer processes at high thermal loads.

  20. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform (United States)

    Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.


    Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.

  1. Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids. (United States)

    Kondaraju, Sasidhar; Lee, Joon Sang


    Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have developed a numerical model which can estimate the enhancement in both the thermal conductivity and convective heat transfer in nanofluids. It also aids in understanding the mechanism of heat transfer enhancement. The study reveals that the nanoparticle dispersion in fluid medium and nanoparticle heat transport phenomenon are equally important in enhancement of thermal conductivity. However, the enhancement in convective heat transfer was caused mainly due to the nanoparticle heat transport mechanism. Ability of this model to be able to understand the mechanism of convective heat transfer enhancement distinguishes the model from rest of the available numerical models.

  2. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures. (United States)

    Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H


    We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

  3. Two-phase strategy of controlling motor coordination determined by task performance optimality. (United States)

    Shimansky, Yury P; Rand, Miya K


    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  4. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S


    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations.

  5. Ventless pressure control of two-phase propellant tanks in microgravity (United States)

    Kassemi, Mohammad; Panzarella, Charles H.


    This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.

  6. Prediction of Flow Regimes and Thermal Hydraulic Parameters in Two-Phase Natural Circulation by RELAP5 and TRACE Codes

    Directory of Open Access Journals (Sweden)

    Viet-Anh Phung


    Full Text Available In earlier study we have demonstrated that RELAP5 can predict flow instability parameters (flow rate, oscillation period, temperature, and pressure in single channel tests in CIRCUS-IV facility. The main goals of this work are to (i validate RELAP5 and TRACE capabilities in prediction of two-phase flow instability and flow regimes and (ii assess the effect of improvement in flow regime identification on code predictions. Most of the results of RELAP5 and TRACE calculation are in reasonable agreement with experimental data from CIRCUS-IV. However, both codes misidentified instantaneous flow regimes which were observed in the test with high speed camera. One of the reasons for the incorrect identification of the flow regimes is the small tube flow regime transition model in RELAP5 and the combined bubbly-slug flow regime in TRACE. We found that calculation results are sensitive to flow regime boundaries of RELAP5 which were modified in order to match the experimental data on flow regimes. Although the flow regime became closer to the experimental one, other predicted thermal hydraulic parameters showed larger discrepancy with the experimental data than with the base case calculations where flow regimes were misidentified.

  7. Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant (United States)

    Sabharwall, Piyush

    Two hydrogen production processes, both powered by Next Generation Nuclear Plant (NGNP), are currently under investigation at the Idaho National Laboratory. The first is high-temperature steam electrolysis utilizing both heat and electricity and the second is thermo-chemical production through the sulfur-iodine process primarily utilizing heat. Both processes require high temperature (>850°C) for enhanced efficiency; temperatures indicative of NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100m. There are several options to transferring multi-megawatt thermal power over such a distance. One option is simply to produce only electricity, transfer by wire to the hydrogen plant, and then reconvert the electric energy to heat via Joule or induction heating. Electrical transport, however, suffers energy losses of 60-70% due to the thermal to electric conversion inherent in the Brayton cycle. A second option is thermal energy transport via a single-phase forced convection loop where a fluid is mechanically pumped between heat exchangers at the nuclear and hydrogen plants. High temperatures, however, present unique materials and pumping challenges. Single phase, low pressure helium is an attractive option for NGNP, but is not suitable for a single purpose facility dictated to hydrogen production because low pressure helium requires higher pumping power and makes the process very inefficient. A third option is two-phase heat transfer utilizing a high temperature thermosyphon. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. Thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. For process heat, intermediate heat exchangers (IHX) are desired to transfer heat from

  8. Thermal-gravitational modeling and scaling of two-phase heat transport systems from micro-gravity to super-gravity levels (United States)

    Delil, A. A. M.


    Earlier publications extensively describe NLR research on thermal-gravitational modeling and scaling of two-phase heat transport systems for spacecraft applications. These publications on mechanically and capillary pumped two-phase loops discuss pure geometric scaling, pure fluid to fluid scaling, and combined (hybrid) scaling of a prototype system by a model at the same gravity level, and of a prototype in micro-gravity environment by a scale-model on earth. More recent publications include the scaling aspects of prototype two-phase loops for Moon or Mars applications by scale-models on earth. Recent work, discussed here, concerns extension of thermal-gravitational scaling to super-g acceleration levels. This turned out to be necessary, since a very promising super-g application for (two-phase) heat transport systems will be cooling of high-power electronics in spinning satellites and in military combat aircraft. In such aircraft, the electronics can be exposed during maneuvres to transient accelerations up to 120 m/s2. The discussions focus on ``conventional'' (capillary) pumped two-phase loops. It can be considered as introduction to the accompanying article, which focuses on pulsating and oscillating devices. .

  9. Evaluation of the thermal performance of a solar water heating thermosyphon versus a two-phase closed thermosyphon using different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Ordaz-Flores, A. [Posgrado en Ingenieria (Energia), Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Garcia-Valladares, O.; Gomez, V.H. [Centro de Investigacion en Energia, Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)


    A water heating closed two-phase thermosyphon solar system was designed and built. The system consists of a flat plate solar collector coupled to a thermotank by a continuous copper tubing in which the working fluid circulates. The working fluid evaporates in the collector and condensates in the thermotank transferring its latent heat to the water through a coil heat exchanger. The tested fluids are acetone and R134a. The thermal performance of the proposed systems is compared with a conventional solar water thermosyphon under the same operating conditions. Advantages of a two-phase system include the elimination of freezing, fouling, scaling and corrosion. Geometry and construction materials are the same except for the closed circuit presented in the two-phase system. Data were collected from temperature and pressure sensors throughout the two systems. Early results suggest that R134a may provide a better performance than acetone for this kind of systems. (orig.)

  10. Experimental and Computational Study of Two-phase (Air–Palm Oil Flow through Pipe and Control Valve in Series

    Directory of Open Access Journals (Sweden)

    Arivazhagan M.


    Full Text Available The contact of two or more immiscible liquids is encountered widely in the chemical and petroleum industries. Studies on operating characteristics of control valves with two phase flow have not been given much attention in the literature despite its industrial importance during design and selection as well as plant operations .The present work attempts to study experimentally the effect of two phase flow on pressure drop across pipe and control valve in series and compare with simulated results. Two-phase computational fluid dynamics (CFD calculations, using commercial CFD package FLUENT 6.2.16, were employed to calculate the simulated the pressure drop in Air–Palm oil flow in pipes and control valves. The Air flow rate varied from 25 to100 l/h flow rate. For constant valve position and Air flow rate, the Palm oil flow rate was varied from 50 to 150 l/h. The numerical results were validated against experimental data. The prediction of the pressure drop characteristics in pipe and valve were within an average error of about ± 3 %. A comparison of experimental and computed profiles was found to be in good agreement.

  11. Effect of Inertial Force on Thermal Elastohydrodynamic Lubrication of Oil Film Bearing in Rolling Mill Lubricated by the Oil-water Two-phase Flow (United States)

    Wang, Tao; Wang, You-Qiang; Wang, Jian; Fan, Xiao-Meng


    The oil film bearing in rolling mill as the research object in this paper is established oilwater two-phase flow of thermal elastohydrodynamic lubrication (EHL) model with the inertia force and thermal effect of the Reynolds equation. The oil film bearing in rolling mill in oil-water two-phase flow is analyzed the effect on the pyrolysis with considering inertia force, and the lubricant film pressure, film thickness with the changes in the relationship between water content, rolling force and spindle speed. The results showed that the lubricant film thickness is increased and carrying capacity is also increased with considering inertial force. With the increase of water content, lubricant film thickness is increased and the carrying capacity is decreased.

  12. Predicting the influence of compressibility and thermal and flow distribution asymmetry on the frequency-response characteristics of multitube two-phase condensing flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Kobus, C.J.; Wedekind, G.L.; Bhatt, B.L.


    An equivalent single-tube model concept was extended to predict the frequency-response characteristics of multitube two-phase condensing flow systems, complete with the ability to predict the influence of compressibility and thermal and flow distribution asymmetry. The predictive capability of the equivalent single-tube model was verified experimentally with extensive data that encompassed a three-order-of-magnitude range of frequencies, and a wide range of operating parameters.

  13. Characterization and Testing of Novel Two-Phase Working Fluids for Spacecraft Thermal Management Operating Between 300 Deg. C and 400 Deg. C. (United States)


    Determining the Pure Component Parameters in the Redlich - Kwong -Soave Equation of State," Chemical Engineering Science, 35, 1725, 1980. 100 80. J.M...suitability for this application . Extensive literature reviews, thermophysical property surveys, and surveys of compound availability on the aromatic...and testing of novel two-phase working fluids for spacecraft thermal management applications between 300’C and 400"C. The main application of these

  14. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard


    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  15. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C. [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)


    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  16. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach (United States)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru


    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  17. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model

    Energy Technology Data Exchange (ETDEWEB)

    Sheikholeslami, Mohsen; Domiri Ganji, Davood [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Younus Javed, M. [National University of Sciences and Technology, College of Electrical and Mechanical Engineering Islamabad (Pakistan); Ellahi, R., E-mail: [Department of Mechanical Engineering, University of California Riverside, Bourns Hall A373 (United States); Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad (Pakistan)


    In this study, effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied. The significant effects of Brownian motion and thermophoresis have been included in the model of nanofluid. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations. These equations, subjected to the associated boundary conditions are solved numerically using the fourth-order Runge–Kutta method. The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number, thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. Results show that Nusselt number has direct relationship with radiation parameter and Reynolds number while it has reverse relationship with other active parameters. It can also be found that concentration boundary layer thickness decreases with the increase of radiation parameter. - Highlights: • This paper analyses thermal radiation on magnetohydrodynamic nanofluid. • Fourth-order Runge–Kutta method is used. • The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. • Comparison is also made with the existing literature.

  18. Modeling and simulation of a pseudo-two-phase gas-liquid column reactor for thermal hydrocracking of petroleum heavy fractions

    Directory of Open Access Journals (Sweden)

    E.M. Matos


    Full Text Available This work presents a model to predict the behavior of velocity, gas holdup and local concentration fields in a pseudo-two-phase gas-liquid column reactor applied for thermal hydrocracking of petroleum heavy fractions. The model is based on the momentum and mass balances for the system, using an Eulerian-Eulerian approach. Using the k-epsilon model,fluid dynamics accounts for both laminar and turbulent flows, with discrete small bubbles (hydrogen flowing in a continuous pseudohomogeneous liquid phase (oil and catalyst particles. The petroleum is assumed to be a mixture of pseudocomponents, grouped by similar chemical structural properties, and the thermal hydrocracking is taken into account using a kinetic network based on these pseudocomponents.

  19. Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Kusuma, Mukhsinun Hadi; Putra, Nandy; Imawan, Ficky Augusta [Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia, Kampus (Indonesia); Antariksawan, Anhar Riza [Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN), Kawasan Puspiptek Serpong (Indonesia)


    The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of 0.22°C/W, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

  20. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: A two-phase randomized controlled trial* (United States)

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L.


    Background Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: 1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and 2) whether cessation of ER tramadol produces opioid withdrawal. Methods Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Results Use of breakthrough withdrawal medication differed significantly (ptramadol 200 mg produced significantly lower peak ratings than placebo on ratings of insomnia, lacrimation, muscular tension, and sneezing. Only tramadol 600 mg produced miosis in Phase 1. In Phase 2, tramadol 600 mg produced higher peak ratings of rhinorrhea, irritable, depressed, heavy/sluggish, and hot/cold flashes than placebo. There were no serious adverse events and no signal of abuse liability for tramadol. Conclusions ER tramadol 200 mg modestly attenuated opioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. PMID:23755929

  1. Branch Quality Control of Gas-Liquid Two-Phase Flow Using a Novel T-Junction Type Distributor

    Institute of Scientific and Technical Information of China (English)

    FaChun Liang; Jing Chen; JinLong Wang; Hao Yu


    In order to eliminate mal-distribution and ensure the side arm to produce desirable gas quality a special distributor is proposed. The experimental distributor mainly consists of a straight through section, a gas extraction line, a liquid extraction line and a side arm branch. A gas orifice and a liquid orifice are mounted at the gas and liquid extraction line respectively to control the outlet gas quality. The diameter of the liquid orifice was set to 2�50 mm and three gas orifices with different size ( dG = 2�65, 5�00, 10�00 mm) were tested. The experiments were carried out at an air-water two-phase flow loop. The gas superficial velocity ranged from 6�0 to 20�0 m/s and the liquid superficial velocity was in the range of 0�02-0�18 m/s. Flow patterns such as wave flow, slug flow and annular flow were observed. The gas quality of the side arm branch was found mainly determined by the flow area ratio of the gas orifice to the liquid orifice and independent of gas and liquid superficial velocity, flow patterns and extraction flux.

  2. Two-Phase Technology at NASA/Johnson Space Center (United States)

    Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)


    Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.

  3. JPL Advanced Thermal Control Technology Roadmap - 2008 (United States)

    Birur, Gaj


    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  4. Efforts to explain and control the prolonged thermophilic period in two-phase olive oil mill sludge composting. (United States)

    Manios, Thrassyvoulos; Maniadakis, Konstantinos; Kalogeraki, Maria; Mari, Eirini; Stratakis, Emmanouil; Terzakis, Stelios; Boytzakis, Panagiotis; Naziridis, Yiannis; Zampetakis, Leonidas


    The aim of this paper was to evaluate the use of different bulking agents in different ratios as a means to control, optimise and eventually reduce the duration of the thermophilic period in two-phase olive oil mill sludge (OOMS) composting. The bulking agents used were: (i) olive tree leaves (OTL), (ii) olive tree shredded branches (OTB) and (iii) woodchips (WDC). The selection of these materials was based on their abundance and availability on the island of Crete, the southernmost point of Greece. The ratios studied were: Pile 1, OOMS:OTL in 1:1 v/v; Pile 2, OOMS:WDC in 1:1.5 v/v; Pile 3, OOMS:OTL in 1:2 v/v; Pile 4, OOMS:OTL:OTB in 1:1:1 v/v; and Pile 5, OOMS:OTL:OTB in 1:1:2 v/v. The composting system used was that of windrows with the volume of each pile approximately 20-25 m3. The experiments took place over two consecutive years. A composting turner was used and turnings were performed at one and two week intervals. In each pile a variety of physiochemical parameters were monitored. Temperature remained high in all five trials. Piles 1, 2, 3, 4 and 5 temperatures recorded values of above 50 degrees C for 106, 158, 160, 175 and 183 days, respectively. Volumes were reduced by approximately 67%, 62%, 63%, 80% and 84%, respectively. Temperature remained high, mainly due to the presence in large amounts of oily substances which during their complete oxidation release important amounts of energy and aid the cometabolism of more stable molecules such as lignin. This process is better described as the slow "burning" of a "fuel" mixture in an "engine" than composting. This approach is based on the extensive similarities of this process to that of crude oil sludge or similar waste composting.

  5. osDesign: An R Package for the Analysis, Evaluation, and Design of Two-Phase and Case-Control Studies. (United States)

    Haneuse, Sebastien; Saegusa, Takumi; Lumley, Thomas


    The two-phase design has recently received attention in the statistical literature as an extension to the traditional case-control study for settings where a predictor of interest is rare or subject to missclassification. Despite a thorough methodological treatment and the potential for substantial efficiency gains, the two-phase design has not been widely adopted. This may be due, in part, to a lack of general-purpose, readily-available software. The osDesign package for R provides a suite of functions for analyzing data from a two-phase and/or case-control design, as well as evaluating operating characteristics, including bias, efficiency and power. The evaluation is simulation-based, permitting flexible application of the package to a broad range of scientific settings. Using lung cancer mortality data from Ohio, the package is illustrated with a detailed case-study in which two statistical goals are considered: (i) the evaluation of small-sample operating characteristics for two-phase and case-control designs and (ii) the planning and design of a future two-phase study.

  6. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad


    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  7. Efficiency of two-phase methods with focus on a planned population-based case-control study on air pollution and stroke

    Directory of Open Access Journals (Sweden)

    Strömberg Ulf


    Full Text Available Abstract Background We plan to conduct a case-control study to investigate whether exposure to nitrogen dioxide (NO2 increases the risk of stroke. In case-control studies, selective participation can lead to bias and loss of efficiency. A two-phase design can reduce bias and improve efficiency by combining information on the non-participating subjects with information from the participating subjects. In our planned study, we will have access to individual disease status and data on NO2 exposure on group (area level for a large population sample of Scania, southern Sweden. A smaller sub-sample will be selected to the second phase for individual-level assessment on exposure and covariables. In this paper, we simulate a case-control study based on our planned study. We develop a two-phase method for this study and compare the performance of our method with the performance of other two-phase methods. Methods A two-phase case-control study was simulated with a varying number of first- and second-phase subjects. Estimation methods: Method 1: Effect estimation with second-phase data only. Method 2: Effect estimation by adjusting the first-phase estimate with the difference between the adjusted and unadjusted second-phase estimate. The first-phase estimate is based on individual disease status and residential address for all study subjects that are linked to register data on NO2-exposure for each geographical area. Method 3: Effect estimation by using the expectation-maximization (EM algorithm without taking area-level register data on exposure into account. Method 4: Effect estimation by using the EM algorithm and incorporating group-level register data on NO2-exposure. Results The simulated scenarios were such that, unbiased or marginally biased ( Conclusion In the setting described here, method 4 had the best performance in order to improve efficiency, while adjusting for varying participation rates across areas.

  8. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors. (United States)

    Xu, Zheqi; Lu, Changhai; Riordon, Jason; Sinton, David; Moffitt, Matthew G


    We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.

  9. Adjoint based optimal control of partially miscible two-phase flow in porous media with applications to CO2 sequestration in underground reservoirs

    KAUST Repository

    Simon, Moritz


    © 2014, Springer Science+Business Media New York. With the target of optimizing CO2 sequestration in underground reservoirs, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. Our objective is to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, while time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system, formulate the optimal control problem and derive the continuous adjoint equations. For the discretization we apply a variant of the so-called BOX method, a locally conservative control-volume FE method that we further stabilize by a periodic averaging feature to reduce oscillations. The timestep-wise Lagrange function of the control problem is implemented as a variational form in Sundance, a toolbox for rapid development of parallel FE simulations, which is part of the HPC software Trilinos. We discuss the BOX method and our implementation in Sundance. The MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT, using limited-memory BFGS updates for approximating second derivatives. Finally, we present and discuss different types of optimal control results.

  10. Spacecraft Design Thermal Control Subsystem (United States)

    Miyake, Robert N.


    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  11. Development of nuclear thermal hydraulic verification tests and evaluation technology - Development of the ultrasonic method for two-phase mixture level measurement in nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Kim, Sang Jae; Kim, Hyung Tae; Moon, Young Min [Korea Advanced Institute of Science and Technology, Taejon (Korea)


    An ultrasonic method is developed for the measurement of the two-phase mixture level in the reactor vessel or steam generator. The ultrasonic method is selected among the several non-nuclear two-phase mixture level measurement methods through two steps of selection procedure. A commercial ultrasonic level measurement method is modified for application into the high temperature, pressure, and other conditions. The calculation method of the ultrasonic velocity is modified to consider the medium as the homogeneous mixture of air and steam, and to be applied into the high temperature and pressure conditions. The cross-correlation technique is adopted as a detection method to reduced the effects of the attenuation and the diffused reflection caused by surface fluctuation. The waveguides are developed to reduce the loss of echo and to remove the effects of obstructs. The present experimental study shows that the developed ultrasonic method measures the two-phase mixture level more accurately than the conventional methods do. 21 refs., 60 figs., 13 tabs. (Author)

  12. LPWM控制的正交二相电磁搅拌电源%The Orthogonal Two-phase Electromagnetic Stirring Power Source Based on LPWM Control

    Institute of Scientific and Technical Information of China (English)

    魏毅立; 李铮; 吴振奎; 魏荣利


    This article builds the orthogonal two-phase winding and the DC voltage to link the center of the electromagnetic stirring power source main circuit.The ICBT used number which in the circuit is half of which in two-phase ICBT bridge circuit.Based on bipolar SPWM modulation, the paper proposes positive and negative output current IGBT logic block to open pulse width modulation(LPWM) method,which has a switch for the gate to reduce consumption and improve the PWM switching frequency and the anti-through the advantages of security and reliability.The system control block diagram is constructed through 1-2 transition.The experiment proves that LPWM control method is correct and practical, achieves the LPWM control the application of electromagnetic stirring power.%构建出正交二相绕组与直流电压中心相连接的电磁搅拌电源主回路.该电路采用IGBT的数量是二相分别采用桥式电路时的一半.以双极性SPWM调制方式为基础,提出了以输出电流的正负来开放封锁IGBT的逻辑脉宽调制( LPWM)方式,具有减少门极开关损耗,提高PWM开关频率,增加抗直通安全可靠性等优点.通过1-2变换构造出系统控制框图.最后通过实验证明,LPWM控制方式是正确、可行的,实现了LPWM控制方式在电磁搅拌电源中应用.

  13. Modification of surface hardness for dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound by using energetic ion beam and subsequent thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, H., E-mail: [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Hashimoto, A.; Kaneno, Y. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Semboshi, S. [Kansai-Center, Institute for Materials Research, Tohoku University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Okamoto, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)


    Dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound with the ordered structure was irradiated with 16 MeV Au{sup 5+} ions at room temperature. The observation by a transmission electron microscope has revealed that the lattice structure of this intermetallic compound changes from the ordered structure to the disordered A1 (fcc) structure by the ion irradiation, which accompanies a remarkable decrease in the surface hardness. The annealing treatment at elevated temperatures for the irradiated specimen induces the recovery of surface hardness. The present experimental result shows that the combination of energetic ion irradiation and the thermal treatment could be a means of modification for the workability of dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound.

  14. Optimal control in thermal engineering

    CERN Document Server

    Badescu, Viorel


    This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

  15. Possibilities of Thermal Systems Control

    Directory of Open Access Journals (Sweden)

    Renata WAGNEROVÁ


    Full Text Available This contribution describes different approaches to thermal system control. Not only PID control but also sliding mode controls were used. In addition the different modifications of sliding mode control were used, such as extension with integral element or continuous substitution of sign function. Considering the thermal system allows applying cooling element, the control algorithm using cooling and heating parts was tested too. All designed algorithms were verified with help of computer simulation and also directly on laboratory stand. All used control algorithms ensured required temperature but with different control quality.

  16. Contamination Control for Thermal Engineers (United States)

    Rivera, Rachel B.


    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  17. A computerised screening instrument for adolescent depression: population-based validation and application to a two-phase case-control study. (United States)

    Patton, G C; Coffey, C; Posterino, M; Carlin, J B; Wolfe, R; Bowes, G


    Computer-administered questionnaires have been little explored as a potentially effective and inexpensive alternative to pencil and paper screening tests. A self-administered computerised form of the revised Clinical Interview Schedule (CIS-R) was compared with the Composite International Diagnostic Interview (CIDI) in a two-phase study of 2032 Australian high school students (mean age 15.7 years) drawn from a stratified random sample of 44 schools in the state of Victoria, Australia. Prevalence, sensitivity and specificity were estimated using weighting to compensate for the two-phase sampling. Point prevalence estimates of depression using the CIS-R were 1.8% for males and 5.6% for females--an overall prevalence of 3.2%. Prevalence estimates for depression in the past 6 months using the CIDI were 5.2% for males and 16.9% for females--an overall estimate of 12.1%. The CIS-R had a positive predictive value (PPV) of 0.49 and negative predictive value (NPV) of 0.91 for CIDI depression in the past 6 months. Specificity was very high (0.97) but sensitivity low (0.18), indicating that a majority of those with a CIDI-defined depressive episode in the past 6 months were not recognised at a single screening using the CIS-R. Even so, the CIS-R has proved at least as good as any pencil and paper questionnaire in identifying cases for nested case-control studies of adolescent depression. Further exploration of strategies such as serial screening to enhance sensitivity is warranted.

  18. Construction and execution of experiments at the multi-purpose thermal hydraulic test facility TOPFLOW for generic investigations of two-phase flows and the development and validation of CFD codes - Final report



    The works aimed at the further development and validation of models for CFD codes. For this reason, the new thermal-hydraulic test facility TOPFLOW was erected and equipped with wire-mesh sensors with high spatial and time resolution. Vertical test sections with nominal diameters of DN50 and DN200 operating with air-water as well as steam-water two-phase flows provided results on the evaluation of flow patterns, on the be¬haviour of the interfacial area as well as on interfacial momentum and ...

  19. Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets. (United States)

    Dang, Van Bac; Kim, Sung-Jin


    Generating periodic flows with an oscillator driven only by water-head pressure has potential for the operation of microfluidic systems without any dynamic off-chip controllers. However, its operational characteristic is not well understood due to complex dynamic interactions of the microfluidic components. Here, we focus on the mechanism of a water-head-driven oscillator and analyze the functions of its flow-switching period (T) and flow rate (Q) in a wide range (0.1 s-5.9 h and 2 μL min(-1)-2 mL min(-1)). We show linear control of T and Q by their corresponding fluidic resistors even with the complex and nonlinear relation of the microfluidic components. This allows independent regulation of T and Q within their operational ranges but we found the two parameters mutually constrain their ranges via fluidic resistance. Also, we characterize the control of T by water-head pressure and present operational ranges of input water-head pressure decrease with increasing output water-head pressure. To show its utility, we apply the oscillator to generate droplets with low interfacial tension aqueous two-phase systems. Our study would be useful and provide the foundation for various functions of water-head-driven microfluidic circuits.

  20. 一种高效的两相步进电机控制技术%An Efficient Control Technology of Two-phase Stepper Motor

    Institute of Scientific and Technical Information of China (English)

    张军; 葛悦; 刘超


    Direct at Miniaturization character and long-period requirements for the aerospace product, the high reliability control system of two-phase stepper motor for aerospace is proposed . ATMEL80C32 is used as control chip for the system, PWM modulation circuit SG3525 and H -bridge LMD18200 are used to design the circuit for the control and drive system of stepper motor. This control system also includes closed -loop control of motor-current by current - feedback net. The function of constant -current divided and PWM control is provided for this system. Output of maximal 256 divided segments of the sinusoidal current is testified by experiments result. This system is simple and reliable, and able to meet the high reliability long-period and miniaturization character requirements for aerospace products.%针对航天产品的小型化长寿命特点,设计了一种高可靠的航天用两相步进电机控制电路;系统采用单片机ATMEL80C32作为主控芯片,利用集成度较高的PWM控制芯片SG3525和电机运动控制芯片LMD18200设计驱动控制电路,并与电流反馈网络构成了电机电流的闭环控制,具有恒流正弦细分和PWM控制的功能,试验表明该系统最高可输出256细分的正弦波电流,电路简单可靠,能够满足航天产品高可靠性长寿命及小型化的需求.

  1. Two Phase Technology Development Initiatives (United States)

    Didion, Jeffrey R.


    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight

  2. Energy expenditure at rest and during walking in patients with chronic respiratory failure: a prospective two-phase case-control study.

    Directory of Open Access Journals (Sweden)

    Ernesto Crisafulli

    Full Text Available BACKGROUND: Measurements of Energy Expenditure (EE at rest (REE and during physical activities are increasing in interest in chronic patients. In this study we aimed at evaluating the validity/reliability of the SenseWear®Armband (SWA device in terms of REE and EE during assisted walking in Chronic Respiratory Failure (CRF patients receiving long-term oxygen therapy (LTOT. METHODOLOGY/PRINCIPAL FINDINGS: In a two-phase prospective protocol we studied 40 severe patients and 35 age-matched healthy controls. In phase-1 we determined the validity and repeatability of REE measured by SWA (REEa in comparison with standard calorimetry (REEc. In phase-2 we then assessed EE and Metabolic Equivalents-METs by SWA during the 6-minute walking test while breathing oxygen in both assisted (Aid or unassisted (No-Aid modalities. When compared with REEc, REEa was slightly lower in patients (1351±169 vs 1413±194 kcal/day respectively, p<0.05, and less repeatable than in healthy controls (0.14 and 0.43 coefficient respectively. COPD patients with CRF patients reported a significant gain with Aid as compared with No-Aid modality in terms of meters walked, perceived symptoms and EE. CONCLUSIONS/SIGNIFICANCE: SWA provides a feasible and valid method to assess the energy expenditure in CRF patients on LTOT, and it shows that aided walking results in a substantial energy saving in this population.

  3. Thermal Control Using Electrochromism (United States)

    Vaidyanathan, Hari; Rao, Gopalakrishna


    The applicability of a charge balanced electrochromic device to modulate the frequencies in the thermal infrared region is examined in this study. The device consisted of a transparent conductor, WO3, anode, PMMA/LiClO4 electrolyte, V2O5 cathode and transparent conductor. The supporting structure in the device is SnO2 coated glass and the edges are sealed with epoxy to reduce moisture absorption. The performance evaluation comprised of cyclic voltammetric measurements and determination of transmittance at various wavelengths. The device was subjected to anodic and cathodic polarization by sweeping the potential at a rate of 10 mV/sec from -0.8V to 1.8V. The current versus voltage profile indicated no reaction between -0.5 and +0.5 V. The device is colored green at 1.8 V with a transmittance of 5% at a wavelength, lambda = 900 nm and colorless at -0.8 V with a transmittance of 74% at lambda = 500 nm. The optical modulation is limited to 400-1500 nm and there is no activity in the thermal infrared. The switching time is a function of temperature and time for coloring reaction was slower than the bleaching reaction. The device yielded reproducible values for transmittance when cycled between colored and bleached states by application of 1.8V and -0.8V, respectively.

  4. Study of two-phase flows in reduced gravity (United States)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies

  5. Advanced Thermal Control Flight Experiment. (United States)

    Kirkpatrick, J. P.; Brennan, P. J.


    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  6. Reynolds transport theorem for a two-phase flow (United States)

    Collado, Francisco J.


    Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.

  7. Microgravity Two-Phase Flow Transition (United States)

    Parang, M.; Chao, D.


    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  8. Advanced thermal control for spacecraft applications (United States)

    Hardesty, Robert; Parker, Kelsey


    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  9. Heat transfer and thermal control (United States)

    Crosbie, A. L.

    Radiation heat transfer is considered along with conduction heat transfer, heat pipes, and thermal control. Attention is given to the radiative properties of a painted layer containing nonspherical pigment, bidirectional reflectance measurements of specular and diffuse surfaces with a simple spectrometer, the radiative equilibrium in a general plane-parallel environment, and the application of finite-element techniques to the interaction of conduction and radiation in participating medium, a finite-element approach to combined conductive and radiative heat transfer in a planar medium. Heat transfer in irradiated shallow layers of water, an analytical and experimental investigation of temperature distribution in laser heated gases, numerical methods for the analysis of laser annealing of doped semiconductor wafers, and approximate solutions of transient heat conduction in a finite slab are also examined. Consideration is also given to performance testing of a hydrogen heat pipe, heat pipe performance with gravity assist and liquid overfill, vapor chambers for an atmospheric cloud physics laboratory, a prototype heat pipe radiator for the German Direct Broadcasting TV Satellite, free convection in enclosures exposed to compressive heating, and a thermal analysis of a multipurpose furnace for material processing in space.

  10. Two-phase viscoelastic jetting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J-D; Sakai, S.; Sethian, J.A.


    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  11. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)


    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  12. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)


    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  13. Thermal control structure and garment

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC


    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  14. 基于AT89C52单片机的步进电机控制系统研究%Research of Control System of Two-phase Hybrid Stepping Motor Based on AT89C52 Microcontrollers

    Institute of Scientific and Technical Information of China (English)

    何冲; 王淑红; 侯胜伟; 牛慧文


    The design scheme Based on AT89C52 Microcontrollers of two phase hybrid stepping motor control system is introduced, reflects two phase hybrid stepping motor control method in principle, increase the flexibility of stepping motor control system design. The control system adopts AT89C52 as controller, use BUW49 power tube of double H bridge type circuit as driver, join button control and LCD1602 display. The circuit structure of control system is simple and the thinking design is clearly. Experimental results shows that the control system operation is simple and reliable, it has strong practicability.%本文介绍了基于AT89C52单片机的两相混合式步进电机控制系统的设计方案,增加了步进电机控制系统设计的灵活性。控制系统采用AT89C52单片机作为控制器,由达林顿功率管BUW49组成的双H桥式电路作为驱动器,加入按键控制及LCD1602显示。控制系统的电路结构简单、设计思路清晰。实验表明,控制系统操作简单、运行可靠,具有较强的实用性。

  15. Predictive Thermal Control Technology for Stable Telescope (United States)

    Stahl, H. Philip

    Predictive Thermal Control (PTC) project is a multiyear effort to develop, demonstrate, mature towards TRL6, and assess the utility of model based Predictive Thermal Control technology to enable a thermally stable telescope. PTC demonstrates technology maturation by model validation and characterization testing of traceable components in a relevant environment. PTC's efforts are conducted in consultation with the Cosmic Origins Office and NASA Program Analysis Groups. To mature Thermally Stable Telescope technology, PTC has three objectives: • Validate models that predict thermal optical performance of real mirrors and structure based on their designs and constituent material properties, i.e. coefficient of thermal expansion (CTE) distribution, thermal conductivity, thermal mass, etc. • Derive thermal system stability specifications from wavefront stability requirements. • Demonstrate utility of Predictive Thermal Control for achieving thermal stability. To achieve these objectives, PTC has five quantifiable milestones: 1. Develop a high-fidelity model of the AMTD-2 1.5 meter ULE® mirror, including 3D CTE distribution and reflective optical coating, that predicts its optical performance response to steady-state and dynamic thermal gradients under bang/bang and proportional thermal control. 2. Derive specifications for thermal control system as a function of wavefront stability. 3. Design and build a predictive Thermal Control System for a 1.5 meter ULE® mirror using new and existing commercial-off-the-shelf components that sense temperature changes at the 1mK level and actively controls the mirrors thermal environment at the 20mK level. 4. Validate the model by testing a 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility. 5. Use validated model to perform trade studies to optimize thermo-optical performance as a function of mirror design, material selection, mass, etc. PTC advances

  16. Thermal Imaging Control of Furnaces and Combustors

    Energy Technology Data Exchange (ETDEWEB)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri


    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  17. Transient thermal camouflage and heat signature control (United States)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong


    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  18. Heat transfer, thermal control, and heat pipes (United States)

    Olstad, W. B.


    This volume provides information on recent progress in spacecraft thermal control and the supporting disciplines of conduction, thermal radiation, and heat pipe theory and application. Four problem areas are considered: conduction heat transfer, radiation heat transfer, thermal control, and heat pipes. The topics covered include finite-element methodology for transient conduction/forced-convection thermal analysis; effects of surface finish on thermal contact resistance between different materials; mathematical models for wide-band nongray gas radiation in spherical and cylindrical geometries; thermal design, analysis and testing of the Shuttle remote manipulator arm; porous heat pipe; and transient behavior of liquid trap heat-pipe thermal diodes. Also discussed is the thermal design concept for a high-resolution UV spectrometer.

  19. Two-phase microfluidics: thermophysical fundamentals and engineering concepts (United States)

    Kuznetsov, V. V.


    Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.

  20. Designing a Two-Phase BLDC Motor and Finite-Element Analysis of Designing a Controller in Order to Manoeuvre High-Speed Boats in Marine Turbulences

    Directory of Open Access Journals (Sweden)

    Mehrdad Jafarboland


    Full Text Available High speed boats are small kind of boats which are piloted with boatman.These boats are usually used in strategic commissions like military which fast speeds and good manoeuvrability are of essential importance.Rough sea path, marine turbulences and multi input multi output nonlinear dynamical model of this boats,make it very difficult to pilot and manoeuvre this paper,.two controller are designed and proposed for pursuing desired path and manoeuvring fast speeds.Fuzzy controller is compared with the result of PID controller. Simulation results also indicate that these proposed controllers have suitable responses and can pilot the boat in the best manner.

  1. 两相无槽无刷直流电机的无位置传感器控制%Sensorless control of two-phase slotless brushless DC motor

    Institute of Scientific and Technical Information of China (English)

    钟德刚; 方浩


    In order to eliminate the shortcomings of brushless DC motor control based on hall sensors and realize the sensorless control of two-phase slotless brushless DC motor,the structure of stator and rotor ,the winding connections of two-phase slotless brushless DC motor and the zero-crossing of back EMF detection method were analyzed. The hardware system and software system designs of two-phase slotless brushless DC motor were presented. The test results indicate the feasibility and stability of control system. A simple control circuit, low cost,less torque ripples and high stability are the advantages of the design presented.%为消除无刷直流电机基于霍尔位置传感器控制存在的缺点,实现两相无槽无刷直流电机的无位置传感器控制,首先在分析了两相无槽无刷直流电机的定、转子结构、绕组连接方式以及反电势过零点检测法的工作原理基础上,论述了两相无槽无刷直流电机无位置传感器控制的硬件系统和软件系统的设计方案,并对两相无刷直流电机进行了试验.试验结果证明了系统的可行性、稳定性.结果表明,该控制方案具有线路简单、成本低、转矩脉动小、系统运行稳定等优点.

  2. Thermal processing of foods: control and automation

    National Research Council Canada - National Science Library

    Sandeep, K. P


    .... In addition to validating new control systems, some food companies have started the more difficult task of validating legacy control systems that have been operating for a number of years on retorts or aseptic systems.Thermal Processing...

  3. Control System of Two-Phase Brushless DC Gyro Motor Based on DSP%基于DSP的两相无刷直流陀螺电机稳速系统

    Institute of Scientific and Technical Information of China (English)

    吴梅锡; 付鲁华; 林玉池


    The research of the influence of gyro motor speed stability on the north-finding result is studied in order to improve the gyro north-finding precision. The paper introduces a two-phase brushless DC gyro motor control system based on TMS320LF2407A. First,it expounds the two-phase brushless DC motor's working principle. Then through the design of the hardware and software system, the close-loop control of two-phase brushless DC gyro motor is realized. The experimental results show that,the system can drive the brushless DC gyro motor well starting,braking and smooth running. The precision of the steady speed is less than 10~6 and the characteristics of the system satisfy the gyroscope demand.%为了进一步提高陀螺仪的寻北精度,分析研究了陀螺电机转速大小和转速精度对寻北结果的影响.在此基础上设计了一种基于TMS320LF2407A的两相无刷直流陀螺电机控制系统,阐述了两相无刷直流电机的工作原理,给出了电机的简化结构及数学模型,并通过对硬件系统和软件算法的设计实现了两相无刷直流陀螺电机的闭环控制.实验结果表明:系统可以很好地完成电机的启动、制动和平稳运行,转速精度优于10-6,满足陀螺仪的工作要求.

  4. Embedded Thermal Control for Spacecraft Subsystems Miniaturization (United States)

    Didion, Jeffrey R.


    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  5. The RESPIRE trials: Two phase III, randomized, multicentre, placebo-controlled trials of Ciprofloxacin Dry Powder for Inhalation (Ciprofloxacin DPI) in non-cystic fibrosis bronchiectasis. (United States)

    Aksamit, Timothy; Bandel, Tiemo-Joerg; Criollo, Margarita; De Soyza, Anthony; Elborn, J Stuart; Operschall, Elisabeth; Polverino, Eva; Roth, Katrin; Winthrop, Kevin L; Wilson, Robert


    The primary goals of long-term disease management in non-cystic fibrosis bronchiectasis (NCFB) are to reduce the number of exacerbations, and improve quality of life. However, currently no therapies are licensed for this. Ciprofloxacin Dry Powder for Inhalation (Ciprofloxacin DPI) has potential to be the first long-term intermittent therapy approved to reduce exacerbations in NCFB patients. The RESPIRE programme consists of two international phase III prospective, parallel-group, randomized, double-blinded, multicentre, placebo-controlled trials of the same design. Adult patients with idiopathic or post-infectious NCFB, a history of ≥2 exacerbations in the previous 12months, and positive sputum culture for one of seven pre-specified pathogens, undergo stratified randomization 2:1 to receive twice-daily Ciprofloxacin DPI 32.5mg or placebo using a pocket-sized inhaler in one of two regimens: 28days on/off treatment or 14days on/off treatment. The treatment period is 48weeks plus an 8-week follow-up after the last dose. The primary efficacy endpoints are time to first exacerbation after treatment initiation and frequency of exacerbations using a stringent definition of exacerbation. Secondary endpoints, including frequency of events using different exacerbation definitions, microbiology, quality of life and lung function will also be evaluated. The RESPIRE trials will determine the efficacy and safety of Ciprofloxacin DPI. The strict entry criteria and stratified randomization, the inclusion of two treatment regimens and a stringent definition of exacerbation should clarify the patient population best positioned to benefit from long-term inhaled antibiotic therapy. Additionally RESPIRE will increase understanding of NCFB treatment and could lead to an important new therapy for sufferers. The RESPIRE trials are registered in, ID number NCT01764841 (RESPIRE 1; date of registration January 8, 2013) and NCT02106832 (RESPIRE 2; date of registration

  6. Time course of the effects of lisdexamfetamine dimesylate in two phase 3, randomized, double‐blind, placebo‐controlled trials in adults with binge‐eating disorder (United States)

    Hudson, James I.; Gasior, Maria; Herman, Barry K.; Radewonuk, Jana; Wilfley, Denise; Busner, Joan


    Abstract Objective This study examined the time course of efficacy‐related endpoints for lisdexamfetamine dimesylate (LDX) versus placebo in adults with protocol‐defined moderate to severe binge‐eating disorder (BED). Methods In two 12‐week, double‐blind, placebo‐controlled studies, adults meeting DSM‐IV‐TR BED criteria were randomized 1:1 to receive placebo or dose‐optimized LDX (50 or 70 mg). Analyses across visits used mixed‐effects models for repeated measures (binge eating days/week, binge eating episodes/week, Yale‐Brown Obsessive Compulsive Scale modified for Binge Eating [Y‐BOCS‐BE] scores, percentage body weight change) and chi‐square tests (Clinical Global Impressions—Improvement [CGI‐I; from the perspective of BED symptoms] scale dichotomized as improved or not improved). These analyses were not part of the prespecified testing strategy, so reported p values are nominal (unadjusted and descriptive only). Results Least squares mean treatment differences for change from baseline in both studies favored LDX over placebo (all nominal p values binge eating days/week, binge‐eating episodes/week, and percentage weight change and at the first posttreatment assessment (Week 4) for Y‐BOCS‐BE total and domain scores. On the CGI‐I, more participants on LDX than placebo were categorized as improved starting at Week 1 in both studies (both nominal p values <  .001). Across these efficacy‐related endpoints, the superiority of LDX over placebo was maintained at each posttreatment assessment in both studies (all nominal p values <  .001). Discussion In adults with BED, LDX treatment appeared to be associated with improvement on efficacy measures as early as 1 week, which was maintained throughout the 12‐week studies. PMID:28481434

  7. Efficacy and Safety of Epratuzumab in Moderately to Severely Active Systemic Lupus Erythematosus: Results From Two Phase III Randomized, Double‐Blind, Placebo‐Controlled Trials (United States)

    Wallace, Daniel J.; Furie, Richard A.; Petri, Michelle A.; Pike, Marilyn C.; Leszczyński, Piotr; Neuwelt, C. Michael; Hobbs, Kathryn; Keiserman, Mauro; Duca, Liliana; Kalunian, Kenneth C.; Galateanu, Catrinel; Bongardt, Sabine; Stach, Christian; Beaudot, Carolyn; Kilgallen, Brian; Gordon, Caroline; Batalov, A.; Bojinca, M.; Djerassi, R.; Duca, L.; Horak, P.; Kolarov, Z.; Milasiene, R.; Monova, D.; Otsa, K.; Pileckyte, M.; Popova, T.; Radulescu, F.; Rashkov, R.; Rednic, S.; Repin, M.; Stoilov, R.; Tegzova, D.; Vezikova, N.; Vitek, P.; Zainea, C.; East, Far; Baek, H.; Chen, Y.; Chiu, Y.; Cho, C.; Chou, C.; Choe, J.; Huang, C.; Kang, Y.; Kang, S.; Lai, N.; Lee, S.; Park, W.; Shim, S.; Suh, C.; Yoo, W.; Armengol, H. Avila; Zapata, F. Avila; Santiago, M. Barreto; Cavalcanti, F.; Chahade, W.; Costallat, L.; Keiserman, M.; Alcala, J. Orozco; Remus, C. Ramos; Roimicher, L.; Abu‐Shakra, M.; Agarwal, V.; Agmon‐Levin, N.; Kadel, J.; Levy, Y.; Mevorach, D.; Paran, D.; Reitblat, T.; Rosner, I.; Shobha, V.; Sthoeger, Z.; Zisman, D.; Ayesu, K.; Berney, S.; Box, J.; Busch, H.; Buyon, J.; Carter, J.; Chi, J.; Clowse, M.; Collins, R.; Dao, K.; Diab, I.; Dikranian, A.; El‐Shahawy, M.; Gaylis, N.; Grossman, J.; Halpert, E.; Huff, J.; Jarjour, W.; Kao, A.; Katz, R.; Kennedy, A.; Khan, M.; Kivitz, A.; Kohen, M.; Lawrence‐Ford, T.; Lawson, J.; Levesque, M.; Lowenstein, M.; Majjhoo, A.; Mcarthur, R.; McLain, D.; Merrill, J.; Murillo, A.; Neucks, S.; Niemer, G.; Noaiseh, G.; Parker, C.; Pantojas, C.; Pattanaik, D.; Petri, M.; Pickrell, P.; Reveille, J.; Roman‐Miranda, A.; Rothfield, N.; Sankoorikal, A.; Sayers, M.; Singhal, A.; Snyder, A.; Striebich, C.; Vo, Q.; von Feldt, J.; Wallace, D.; Wasko, M.; Young, C.; Adelstein, S.; Hall, S.; Littlejohn, G.; Nicholls, D.; Suranyi, M.; Amoura, Z.; Bannert, B.; Behrens, F.; Perez, L.Carreno; Chakravarty, K.; Gonzales, F. Diaz; Davies, K.; Doria, A.; Emery, P.; Fernández‐Nebro, A.; Govoni, M.; Hachulla, E.; Hellmich, B.; Houssiau, F.; Malaise, M.; Margaux, J.; Maugars, Y.; Muñoz‐Fernández, S.; Navarro, F.; Ordi‐Ros, J.; Pellerito, R.; Pena‐Sagredo, J.; Roussou, E.; Schmidt, R. E.; Ucar‐Angulo, E.; Viallard, J‐F.; Westhovens, R.; Worm, M.; Yee, C. S.; Nayiager, S.; Reuter, H.; Spargo, C.; Bazela, B.; Brzosko, M.; Chudzik, D.; Gasztonyi, B.; Geher, P.; Ionescu, R.; Jeka, S.; Kemeny, L.; Kiss, E.; Kotyla, P.; Kovacs, L.; Kovalenko, V.; Kucharz, E.; Kwiatkowska, B.; Leszczynski, P.; Levchenko, E.; Lysenko, G.; Majdan, M.; Mihailov, C.; Nalotov, S.; Nedelciu, M.; Pavel, M.; Raskina, T.; Rebrov, B.; Rezus, E.; Semen, T.; Smakotina, S.; Stanislavchuk, M.; Stanislav, M.; Szombati, I.; Szucs, G.; Udrea, G.; Zajdel, J.; Zon‐Giebel, A.; Bonfiglioli, R.; Bustamante, R.; Klumb, E.; Ramirez, G. Medrano; Neiva, C.; Olguin, M.; Gonzaga, J.Reyes; Scotton, A.; Ayala, S. Sicsik; Ximenes, A.; Sharma, R.; Srikantiah, C.; Aelion, J.; Aranow, C.; Baker, M.; Chadha, A.; Chao, J.; Chatham, W.; Chow, A.; Clay, C.; Cohen‐Gadol, S.; Conaway, D.; Denburg, J.; Escalante, A.; Espinoza, L.; Fiechtner, J.; Fortin, I.; Fraser, A.; Furie, R.; Gladman, D.; Goddard, D.; Goldberg, M.; Gonzalez‐Rivera, R.; Gorman, J.; Griffin, R.; Haaland, D.; Halter, D.; Hemaiden, A.; Hobbs, K.; Joshi, V.; Lim, S.; Kalunian, K.; Karpouzas, G.; Khraishi, M.; Lafyatis, R.; Lee, S.; Lidman, R.; Lue, C.; Mohan, M.; Mease, P.; Mehta, C.; Mizutani, W.; Nami, A.; Nascimento, J.; Neuwelt, C.; Pappas, J.; Pope, J.; Porges, A.; Roane, G.; Rosenberg, D.; Ross, S.; Saadeh, C.; Scoville, C.; Sherrer, Y.; Solomon, M.; Surbeck, W.; Valenzuela, G.; Waller, P.; Alten, R.; Baerwald, C.; Bienvenu, B.; Bombardieri, S.; Braun, J.; Dival, L.; Espinosa, G.; Fernandez, I. Figueroa; Gomez‐Reino, J.; Gordon, C.; Hiepe, F.; Hopkinson, N.; Isenberg, D.; Jacobi, A.; Jorgensen, C.; Guern, V. Le; Paul, C.; Pego‐Reigosa, J. M.; Heredia, J. Rodriguez; Rubbert‐Roth, A.; Sabbadini, M.; Schroeder, J.; Schwarting, A.; Spieler, W.; Valesini, G.; Wollenhaupt, J.; Mendoza, A. Zea; Zouboulis, C.


    Objective Epratuzumab, a monoclonal antibody that targets CD22, modulates B cell signaling without substantial reductions in the number of B cells. The aim of this study was to report the results of 2 phase III multicenter randomized, double‐blind, placebo‐controlled trials, the EMBODY 1 and EMBODY 2 trials, assessing the efficacy and safety of epratuzumab in patients with moderately to severely active systemic lupus erythematosus (SLE). Methods Patients met ≥4 of the American College of Rheumatology revised classification criteria for SLE, were positive for antinuclear antibodies and/or anti–double‐stranded DNA antibodies, had an SLE Disease Activity Index 2000 (SLEDAI‐2K) score of ≥6 (increased disease activity), had British Isles Lupus Assessment Group 2004 index (BILAG‐2004) scores of grade A (severe disease activity) in ≥1 body system or grade B (moderate disease activity) in ≥2 body systems (in the mucocutaneous, musculoskeletal, or cardiorespiratory domains), and were receiving standard therapy, including mandatory treatment with corticosteroids (5–60 mg/day). BILAG‐2004 grade A scores in the renal and central nervous system domains were excluded. Patients were randomized 1:1:1 to receive either placebo, epratuzumab 600 mg every week, or epratuzumab 1,200 mg every other week, with infusions delivered for the first 4 weeks of each 12‐week dosing cycle, for 4 cycles. Patients across all 3 treatment groups also continued with their standard therapy. The primary end point was the response rate at week 48 according to the BILAG‐based Combined Lupus Assessment (BICLA) definition, requiring improvement in the BILAG‐2004 score, no worsening in the BILAG‐2004 score, SLEDAI‐2K score, or physician's global assessment of disease activity, and no disallowed changes in concomitant medications. Patients who discontinued the study medication were classified as nonresponders. Results In the EMBODY 1 and EMBODY 2 trials of epratuzumab, 793

  8. Thermal energy storage apparatus, controllers and thermal energy storage control methods (United States)

    Hammerstrom, Donald J.


    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  9. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes (United States)

    Karimi, Amir


    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  10. Environmental Control Unit with Integral Thermal Storage (United States)


    integrated PCM Heat Exchanger (PHX) to provide thermal energy storage. By storing thermal energy during the hottest part of the day and rejecting this stored...Environmental Control Unit (ECU) that uses an integrated PCM Heat Exchanger (PHX) to provide thermal energy storage. To aid in the development of the PHX... Thermal Storage 5a. CONTRACT NUMBER W911QX-14-C-0014 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Michael C. Ellis Ryan McDevitt 5d

  11. Variable emissivity laser thermal control system (United States)

    Milner, Joseph R.


    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  12. Control of Thermal Meat Processing (United States)

    Griffis, Carl L.; Osaili, Tareq M.

    The recent growth of the market for ready-to-eat (RTE) meat and poultry products has led to serious concern over foodborne illnesses due to the presence of pathogens, particularly Salmonella spp, Listeria monocytogenes and Escherichia coli O157:H7 in meat and poultry products. Emphasis has been placed on thermal processing since heat treatment is still considered the primary means of eliminating foodborne pathogens from raw meat and poultry products (Juneja, Eblen, & Ransom, 2001). Inadequate time/temperature exposure during cooking is a contributing factor in food poisoning outbreaks. Optimal heat treatment is required not only to destroy pathogenic microorganisms in meat and poultry products but also to maintain desirable food quality and product yield.

  13. 农业有机废弃物两相厌氧消化影响因素的稳定性调控%Stable Control of Influence Factor during Two-phase Anaerobic Digestion for Agricultural Organic Waste

    Institute of Scientific and Technical Information of China (English)

    尹芳; 张无敌; 柳静; 杨红


    Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.%两相厌氧消化工艺受产氢调酸、反应温度、底物滞留时间、活性污泥的形成及其颗粒化程度调控,其工艺参数的选取直接关系到系统运行的成败和处理效果的优劣。

  14. Two-Phase flow instrumentation for nuclear accidents simulation (United States)

    Monni, G.; De Salve, M.; Panella, B.


    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  15. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue


    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  16. Two-phase flow studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kestin, J.; Maeder, P.F.


    Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)

  17. Controlling automobile thermal comfort using optimized fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Farzaneh, Yadollah; Tootoonchi, Ali A. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad (Iran)


    Providing thermal comfort and saving energy are two main goals of heating, ventilation and air conditioning (HVAC) systems. A controller with temperature feedback cannot best achieve the thermal comfort. This is because thermal comfort is influenced by many variables such as, temperature, relative humidity, air velocity, environment radiation, activity level and cloths insulation. In this study Fanger's predicted mean value (PMV) index is used as controller feedback. It is simplified without introducing significant error. Thermal models of the cabin and HVAC system are developed. Evaporator cooling capacity is selected as a criterion for energy consumption. Two fuzzy controllers one with temperature as its feedback and the other PMV index as its feedback are designed. Results show that the PMV feedback controller better controls the thermal comfort and energy consumption than the system with temperature feedback. Next, the parameters of the fuzzy controller are optimized by genetic algorithm. Results indicate that thermal comfort level is further increased while energy consumption is decreased. Finally, robustness analysis is performed which shows the robustness of optimized controller to variables variations. (author)

  18. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho


    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  19. Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow (United States)

    Nakagawa, Masafumi; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones

  20. Atmospheric Cloud Physics Laboratory thermal control (United States)

    Moses, J. L.; Fogal, G. L.; Scollon, T. R., Jr.


    The paper presents the development background and the present status of the Atmospheric Cloud Physics Laboratory (ACPL) thermal control capability. The ACPL, a Spacelab payload, is currently in the initial flight hardware development phase for a first flight scheduled in June 1981. The ACPL is intended as a facility for conducting a wide variety of cloud microphysics experimentation under zero gravity conditions. The cloud chambers, which are key elements of the ACPL, have stringent thermal requirements. Thus the expansion chamber inner walls must be uniform to within + or - 0.1 C during both steady-state and transient operation over a temperature range of +30 to -25 C. Design progression of the expansion chamber, from early in-house NASA-MSFC concepts (including test results of a prototype chamber) to a thermal control concept currently under development, is discussed.

  1. Two-Phase Flow Hydrodynamics in Superhydrophobic Channels (United States)

    Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian


    Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.

  2. Liquid-circulating garment controls thermal balance (United States)

    Kuznetz, L. H.


    Experimental data and mathematical model of human thermoregulatory system have been used to investigate use of liquid-circulatory garment (LCG) to control thermal balance. Model proved useful as accurate simulator of such variables as sweat rate, skin temperature, core temperature, and radiative, evaporative, and LCG heat loss.

  3. Controllability analysis of thermally coupled distillation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, S.; Jimenez, A.


    A comparison of the controllability properties of three thermally coupled distillation sequences (Petlyuk, sequence with side rectifier, and sequence with side stripper) using singular value decomposition is developed. Those properties are also compared to the energy consumption required for separating ternary mixtures. The parameters obtained via singular value decomposition show that sequences with a side rectifier or a side stripper have better control properties than the Petlyuk system, although the Petlyuk scheme has lower energy requirements than the systems with side columns.

  4. 两相热法处理Cyanex301-Ag+/Cu2+萃取体系制备纳米Ag2S和微米CuS材料%Preparation of Ag2S Nanoparticles and CuS Microstructures from the Solvent Extraction Systems by a Two-phase Thermal Method

    Institute of Scientific and Technical Information of China (English)

    孙霞; 刘玉炳; 李艳玲; 廖伍平


    以Cyanex 301萃取剂为硫源,分别萃取Ag+和Cu2+,两相热法制备了Ag2S纳米颗粒和CuS微结构,采用X射线粉末衍射、紫外可见光谱、红外光谱以及电子显微镜对产物进行了表征.表明制得的Ag2S和CuS分别为单斜相和六方相.产物粒径随着反应温度的升高而增大,因而可通过加热温度调控产物尺寸,另外还考虑了其它反应条件对产物的影响.%Monoclinic Ag2S nanoparticles and hexagonal CuS microstructures have been successfully prepared from solvent-extraction systems by a two-phase thermal method. In these systems, the extractant Cyanex 301 (di-(2,4,4-trimethylpentyl) dithiophosphinic acid) acts as not only the surfactant but also the sulfur source. The products were characterized by powder X-ray diffraction (XRD) , UV-Visible spectroscopy(UV-Vis) , FT-infrared spectroscopy(FTIR) and transmission/scanning electron microscopy (TEM/SEM). It is found that the size of Ag2S nanoparticles becomes bigger with the increasing temperature and the morphology and size of CuS microstructures can be controlled by the feed concentration or temperature.

  5. Thermal control of the GRASP detector section (United States)

    Roig, P. B.


    The necessity of keeping GRASP telescope (Gamma Ray Astronomy with Spectroscopy and Positioning) detectors at working temperatures within an adequate range (85 + or - 15 K for the germanium and 283 + or - 20 K for CsI) is discussed. Thermal control based in cryogenic liquid tanks is not considered the most suitable solution because of mass and lifetime considerations. Instead of this conventional solution, a concept using a combination of passive and active cooling systems was chosen. It combines the features of a corrugated radiator panel, thermal shields, MLI blankets, and an extra cooling system based on the Stirling cycle engine.

  6. 机械泵驱动两相回路的储液器控温策略研究%Temperature Control Scenario on the Accumulator of a Mechanical Pumped Two-Phase Loop

    Institute of Scientific and Technical Information of China (English)

    莫冬传; 黄臻成; 何振辉; Van Es Johannes; 吕树申


    本文阐述了一种机械泵驱动两相回路的储液器的控温原理,并对待选的两种控温策略进行了解释:一种是基于电压的PI控制,另一种是基于功率的PI控制。文中将它们作了近似等效转换,并用SINDA/FLuINT软件进行模拟。结果显示:当控温点上升时,两种不同控制策略的控温效果大体一致;但当控温点下降时,由于基于功率的PI控制策略包含有Peltier的制冷功能,可以比基于电压的PI控制策略更快到达控温点。另外,基于功率的PI控制策略在死区内的跳跃更少,其应当为优先选择的控制策略。%The temperature control principle on the accumulator of a mechanical pumped two-phase loop has been presented in this paper, and two scenarios have been discussed: one is PI control based on the voltage, and the other is PI control base on the power. Approximate equivalent conversion between the two scenarios has been realized, and simulation has been conducted by using SINDA/FLUINT. The results show that, both the two scenarios have almost the same performance when the set-point is rising; but the accumulator can be much faster to reach the set-point with PI control based on the power when the set-point is decreasing, because it has cooling effect from the peltier. Besides, the skips in the dead-band for the PI control based on the power are less than those of the PI control based on the voltage. PI control based on the power should be the priority scenario to choose.

  7. A SAS Package for Logistic Two-Phase Studies

    Directory of Open Access Journals (Sweden)

    Walter Schill


    Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.

  8. 感应电机软启动初始两相瞬态电流解析与控制%Analysis and Control of Initial Two-phase Transient Current During Soft-starting of Induction Motor

    Institute of Scientific and Technical Information of China (English)

    周振华; 崔学深; 王月欣; 付永长


    针对三相感应电机调压软启动初始时刻不对称过渡过程及电流冲击问题,给出了求解时域电流解析表达式的方法.该方法根据感应电机两相导通时的数学模型,通过频域和时域变换,得到了感应电机初始两相导通时定子电流与电机参数和晶闸管触发角之间的关系,并分析了不同的初始触发角对感应电机定子电流的影响,进而达到精确控制定子电流首半波峰值的目的.以一台2.2kW感应电机为例进行了实测和MATLAB仿真分析对比,验证了电流解析解的正确性.%A method to solve the time-domain current analytical expression is proposed as to the asymmetry of the transition process and the inrush current at the initial time when three-phase induction motor soft-started by an AC voltage controller. Based on the mathematical model when induction motor is switched on two-phase electrical source, through frequency-domain and time-domain transforming, the relationship between stator current and motor parameters, thyristor triggering angle is obtained, and the impact of different triggering angle on stator current of induction motor is analyzed to precisely control its initial half-wave peak value. At the same time, with a 2. 2kW induction motor as an example, the correctness of the analytical solution is verified by comparing experiments data with MATLAB simulation results.

  9. Thermal analysis and control of electronic equipment (United States)

    Kraus, A. D.; Bar-Cohen, A.

    The application of thermal control techniques to the cooling of electronic components is examined from theoretical and practical points of view. The electronic-thermal-control (ETC) problem and the physical and conceptual restraints on its solution are characterized, with a focus on the goal of system reliability. The fundamentals of heat transfer and fluid mechanics are discussed, including steady-state and transient conduction, convection, radiation, phase-change processes, contact resistance, heat exchangers, air handling, and dimensional analysis. Mathematical models and empirical correlations are explored for such ETC techniques as direct air cooling, extended surfaces, cold plates, immersion cooling, heat pipes, and thermoelectric coolers. Specific ETC applications to inertial equipment, transistors, vacuum tubes, microwave equipment, microelectronics, and printed-circuit boards are considered.

  10. Nuclear thermal rocket engine operation and control (United States)

    Gunn, Stanley V.; Savoie, Margarita T.; Hundal, Rolv


    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation.

  11. Orbital Thermal Control of the Mercury Capsule (United States)

    Weston, Kenneth C.


    The approach to orbital thermal control of the Project Mercury capsule environment is relatively unsophisticated compared with that for many unmanned satellites. This is made possible by the relatively short orbital flight of about 4 1/2 hours and by the presence of the astronaut who is able to monitor the capsule systems and compensate for undesirable thermal conditions. The general external features of the Mercury configuration as it appears in the orbital phase of flight are shown. The conical afterbody is a double-wall structure. The inner wall serves as a pressure vessel for the manned compartment, and the outer wall, of shingle type construction, acts as a radiating shield during reentry. Surface treatment of the shingles calls for a stably oxidized surface to minimize reentry temperatures. The shingles are supported by insulated stringers attached to the inner skin. Areas between stringers are insulated by blankets of Thermoflex insulation. This insulation is especially effective at high altitude due to the reduction of its thermal conductivity with decreasing pressure. As a result of the design of the afterbody for the severe reentry conditions, the heat balance on the manned compartment indicates the necessity for moderate internal cooling to compensate for the heat generation due to human and electrical sources. This cooling is achieved by the controlled vaporization of water in the cabin and astronaut-suit heat exchangers.

  12. Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems. (United States)

    Zhang, G; Stillinger, F H; Torquato, S


    Disordered hyperuniform many-particle systems have attracted considerable recent attention, since they behave like crystals in the manner in which they suppress large-scale density fluctuations, and yet also resemble statistically isotropic liquids and glasses with no Bragg peaks. One important class of such systems is the classical ground states of "stealthy potentials." The degree of order of such ground states depends on a tuning parameter χ. Previous studies have shown that these ground-state point configurations can be counterintuitively disordered, infinitely degenerate, and endowed with novel physical properties (e.g., negative thermal expansion behavior). In this paper, we focus on the disordered regime (0 two-phase media by circumscribing each point with a possibly overlapping sphere of a common radius a: the "particle" and "void" phases are taken to be the space interior and exterior to the spheres, respectively. The hyperuniformity of such two-phase media depends on the sphere sizes: While it was previously analytically proven that the resulting two-phase media maintain hyperuniformity if spheres do not overlap, here we show numerically that they lose hyperuniformity whenever the spheres overlap. We study certain transport properties of these systems, including the effective diffusion coefficient of point particles diffusing in the void phase as well as static and time-dependent characteristics associated with diffusion-controlled reactions. Besides these effective transport properties, we also investigate several related structural properties, including pore-size functions, quantizer error, an order metric, and percolation thresholds. We show that these transport, geometrical, and topological properties of our two-phase media derived from decorated stealthy ground states are distinctly different from those of equilibrium hard-sphere systems and spatially uncorrelated overlapping spheres. As the extent of short-range order increases, stealthy disordered

  13. Two-Phase Cavitating Flow in Turbomachines

    Directory of Open Access Journals (Sweden)

    Sandor I. Bernad


    Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.

  14. Control Optimization of Solar Thermally Driven Chillers

    Directory of Open Access Journals (Sweden)

    Antoine Dalibard


    Full Text Available Many installed solar thermally driven cooling systems suffer from high auxiliary electric energy consumption which makes them not more efficient than conventional compression cooling systems. A main reason for this is the use of non-efficient controls with constant set points that do not allow a chiller power modulation at partial-load and therefore lead to unnecessary high power consumption of the parasitics. The aims of this paper are to present a method to control efficiently solar thermally driven chillers, to demonstrate experimentally its applicability and to quantify the benefits. It has been shown that the cooling capacity of a diffusion absorption chiller can be modulated very effectively by adjusting both the temperature and the flow rate of the cooling water. With the developed approach and the use of optimization algorithms, both the temperature and the flow rate can be controlled simultaneously in a way that the cooling load is matched and the electricity consumption is minimized. Depending on the weather and operating conditions, electricity savings between 20% and 60% can be achieved compared to other tested control approaches. The highest savings are obtained when the chiller is operated at partial load. The presented method is not restricted to solar cooling systems and can also be applied to other conventional heating ventilation and air conditioning (HVAC systems.

  15. For solid-liquid two phase softness abrasive flow embedded real-time monitoring and control system%面向固-液两相软性磨粒流嵌入式实时测控系统

    Institute of Scientific and Technical Information of China (English)

    计时鸣; 兰信鸿


    In order to solve the problems of flow pipe is to small to the conventional sensor for solid-liquid two phase softness abrasive flow,a monitoring method based on the vibration signal was proposed. Through the wavelet packet analysis of vibration signal, extraction signal characteristics were gotten. Using object-oriented technology, a kind of measurement and control software framework was developed, combined with finite state machine theory and embedded real-time operating system and programming methods of multitasking. Using Linux and DSP/BIOS RTOS, the double operating system signal processing technology was implemented,a multi-channel high speed data acquisition function was implemented on the intelligence embedded real-time measurement and control platform. The results indicate that it is easy to expand and interactive.%针对固-液两相软性磨粒流精密抛光方法中流道微小,无法采用常规直接信号传感器的问题,提出了一种基于二次信号-加速度振动信号的软性磨粒流监测方法.通过小波包分析提取了振动信号的特征.结合基于有限状态机理论与基于嵌入式实时操作系统的并发多任务的程序设计方法,采用面向对象技术开发了一种测控软件框架.采用Linux和DSP/BIOS RTOS实施了双操作系统信号处理技术,开发实现了一个面向软性磨粒流的,具有通用多通道高速数据采集功能的智能化嵌入式实时测控平台.研究结果表明,该系统具有易扩展与易交互的优点.

  16. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit (United States)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura


    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  17. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong


    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  18. Critical thinking: a two-phase framework. (United States)

    Edwards, Sharon L


    This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.

  19. Porcelain enamel passive thermal control coatings (United States)

    Leggett, H.; King, H. M.


    This paper discusses the development and evaluation of a highly adherent, low solar absorptance, porcelain enamel thermal control coating applied to 6061 and 1100 aluminum for space vehicle use. The coating consists of a low index of refraction, transparent host frit and a high volume fraction of titania as rutile, crystallized in-situ, as the scattering medium. Solar absorptance is 0.21 at a coating thickness of 0.013 cm. Hemispherical emittance is 0.88. The change in solar absorptance is 0.03, as measured in-situ, after an exposure of 1000 equivalent sun hours in vacuum.

  20. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.


    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  1. Thrust Vector Control for Nuclear Thermal Rockets (United States)

    Ensworth, Clinton B. F.


    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  2. Thermal Stress and Residual Stress Control of Thermally Sprayed 80Ni20Cr Coating


    Ishida, Tsuyoshi; Setoguchi, Katsuya; Hiraki, Kunihiro


    In order to find an effective method to control the residual coating stress after thermal spraying, an analysis and experiment were carried out on a cylindrical member of 80Ni20Cr/SUS304. Temperature measurements during the processes of thermal spraying, heating and cold thermal shock were carried out. Using these measured results, thermal stress analyses were perfomed by the finite element method(FEM) and a proposed simplified method for estimating the coating stress. Thermal stress of the c...

  3. Negative thermal expansion materials: technological key for control of thermal expansion


    Koshi Takenaka


    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  4. Low Mass, Two-Phase Thermal Switch Project (United States)

    National Aeronautics and Space Administration — Future human spacecraft will venture far beyond the relatively benign environment of low Earth orbit. They will transit through the deep space, but they may...

  5. Strain-controlled thermal conductivity in ferroic twinned films (United States)

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.


    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices.

  6. Thermal Management Controller for Heat Source Temperature Control and Thermal Management

    Institute of Scientific and Technical Information of China (English)

    HUANGFU Yi; WU Jing-yi; WANG Ru-zhu; LI Sheng


    In many heat recovery processes, temperature control of heat source is often required to ensure safety and high efficiency of the heat source equipment. In addition, the management of recovered heat is important for the proper use of waste heat. To this aim, the concept of thermal management controller (TMC), which can vary heat transfer rate via the volume variation of non-condensable gas, was presented. Theoretical model and experimental prototype were established. Investigation shows that the prototype is effective in temperature control. With water as the working fluid, the vapor temperature variation is only 1.3 ℃ when the heating power varies from 2.5 to 10.0 kW. In variable working conditions, this TMC can automatically adjust thermal allocation to the heat consumer.

  7. Droplet Manipulations in Two Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Arjen M. Pit


    Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.

  8. Two phase decision algorithm of replica allocation

    Institute of Scientific and Technical Information of China (English)

    Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi


    In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.

  9. Investigations of two-phase flame propagation under microgravity conditions (United States)

    Gokalp, Iskender


    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  10. On the nonequilibrium segregation state of a two-phase mixture in a porous column

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....

  11. Controlled Thermal Expansion Coat for Thermal Barrier Coatings (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)


    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  12. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels (United States)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  13. Feedback control of optical beam spatial profiles using thermal lensing

    CERN Document Server

    Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H


    A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

  14. pH值调控对秸秆两阶段厌氧发酵产沼气的影响%Effect of pH Values Control on Biogas Production of Agricultural Straw with Two-phase Anaerobic Fermentation

    Institute of Scientific and Technical Information of China (English)

    陈广银; 曹杰; 叶小梅; 杜静; 常志州


    , and methanogenesis. Large literature search showed that hydrolysis and acidification is the limiting step of biogas production of biosolid wastes. How to improve the hydrolysis and acidification rate of biosolid wastes? Much work has been done, including pretreatment, co-digestion, high efficient microbial inoculants, fermentation process control, et al. PH value is an important factor to hydrolysis and acidification of biosolid wastes. Much work has been done on characteristics of hydrolysis and acidification of biosolid wastes in acidic environment, but there was little information on characteristics of hydrolysis and acidification of biosolid wastes in alkaline environment. In order to evaluate the effect of alkaline environment control on hydrolysis and acidification and subsequent biogas production of agricultural straw, changes of daily biogas yield, methane content, pH value, COD content of hydrolysis and acidogenic phase and characteristics of biogas production of methanogenic phase were studied. The results showed that two-phase anaerobic fermentation of agricultural straw could be operated normally and TS biogas yield and average methane content were 281.28mL/g TSadded and 47.36%, respectively. Cumulative biogas yield of hydrolysis and acidogenic phase, average methane content and cumulative methane yield of treatment of adjusting pH value of hydrolysate to 8.0 daily was improved by 24.51%. 2.5 percent and 29.39%. Adjusting pH value of hydrolysate to 9.5 and 11.0 daily could inhibit biogas production of hydrolysis and acidogenic phase and increase COD content of hydrolysate, but it was bad for biogas production of hydrolysate and cumulative biogas yield of methanogenic phase were only 89.97% and 17.48% to that of CK. Maintaining hydrolysis and acidogenic phase in alkaline environment was beneficial for dissolving out of hemicellulose and lignin but bad to cellulose.

  15. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan


    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...

  16. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Ho [Iowa State Univ., Ames, IA (United States)


    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  17. Pilot point temperature regulation for thermal lesion control during ultrasound thermal therapy. (United States)

    Liu, H L; Chen, Y Y; Yen, J Y; Lin, W L


    The fundamental goal of ultrasound thermal therapy is to provide proper thermal lesion formations for effective tumour treatment. The quality of the therapy depends mostly on its positional precision. To date, most ultrasound thermal therapy treatments have focused on the formation of power or temperature patterns. The non-linear and time-delay effects of thermal dose formation prohibit direct control of the thermal dose distribution. In the paper, the control of thermal lesions by regulation of the temperature of a pilot point is proposed. This scheme utilises the high correlation between temperature elevation and thermal dose at the forward boundary of thermal lesions. To verify the feasibility, a 2D ultrasound phased array system was used to generate thermal lesions of various sizes, and the temperature elevation required to generate a thermal dose threshold was investigated. Results showed that the required temperature elevation was found to be a reasonably constant value of 52.5 degrees C under differing conditions when the focal area was small. When the focal area under consideration was large, the required temperature elevation became a monotonic function of blood perfusion rate, ranging from 49.2 to 52.5 degrees C. When the reference temperature of the pilot point was set at a conservative value (52.5 degrees C), the thermal lesions were controlled precisely under a wide range of blood perfusion and power pattern changes, tested by using a more realistic model that takes into account thermal-induced attenuation and blood perfusion changes. This changed the complex thermal dose control problem into a simple temperature regulation problem, which makes implementation of thermal lesion control easier, giving the scheme a high potential for application to current ultrasound thermal therapy systems.

  18. The Conductive Thermal Control Material Systems for Space Applications Project (United States)

    National Aeronautics and Space Administration — This proposal is submitted to develop and demonstrate the feasibility of processing the space environment stable, multifunctional thermal control material system...

  19. Two-Phase Quality/Flow Meter (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)


    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  20. Methane Lunar Surface Thermal Control Test (United States)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.


    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  1. Thermal stabilization of a microring modulator using feedback control. (United States)

    Padmaraju, Kishore; Chan, Johnnie; Chen, Long; Lipson, Michal; Bergman, Keren


    We describe and demonstrate the use of a feedback control system to thermally stabilize a silicon microring modulator subjected to a thermally volatile environment. Furthermore, we establish power monitoring as an effective and appropriate mechanism to infer the temperature drift of a microring modulator. Our demonstration shows that a high-performance silicon microring-based device, normally inoperable in thermally volatile environments, can maintain error-free performance when a feedback control system is implemented.

  2. Pressure Loss across Tube Bundles in Two-phase Flow

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)


    An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

  3. Experimental study of two-phase flows under reduced gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, T., E-mail: [Purdue Univ., West Lafayette, Indiana (United States); Norwegian Univ. of Science and Tech., Trondheim (Norway); Liu, Y.; Chen, S.-W.; Hibiki, T.; Ishii, M., E-mail:, E-mail:, E-mail: [Purdue Univ., West Lafayette, Indiana (United States); Duval, W., E-mail: [NASA Glenn Research Center, Cleveland, Ohio (United States)


    Study of gas-liquid two-phase flows under reduced gravity conditions is very important for space applications such as active thermal control systems. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to dynamically predict the behavior of such two-phase flows under normal and reduced gravity conditions. As part of a big program experiments were carried out in a 304 mm inner diameter test facility on earth to generate a detailed experimental data base which is required for the evaluation of two-fluid model along with IATE under reduced gravity conditions. In the present case reduced gravity condition is simulated using two-liquids of similar densities. Such a large diameter test section was chosen to study the development of drops to their full. Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using double-sensor conductivity probes. Some of the results are presented here and discussed. (author)

  4. Problems of heat transfer and hydraulics of two-phase media

    CERN Document Server

    Kutateladze, S S


    Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically

  5. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu


    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  6. Droplets formation and merging in two-phase flow microfluidics. (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder


    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  7. Vapor Compressor Driven Hybrid Two-Phase Loop Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  8. Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems


    In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.

  9. Isothermal and aniso-thermal creep in the {alpha} phase domain, {beta} phase domain and {alpha}+{beta} two phase domain in a Zr-1%NbO alloy; Fluage isotherme et anisotherme dans les domaines monophases ({alpha} et {beta}) et biphases ({alpha} et {beta}) d'un alliage Zr-1%NbO

    Energy Technology Data Exchange (ETDEWEB)

    Kaddour, D


    The coupling between phase transformation and mechanical behaviour of a Zr-1%NbO alloy was studied using an original experimental device already used in a previous study devoted to the Zy-4 alloy. The Zr-1%NbO alloy undergoes a phase transformation {alpha} (hc) {r_reversible} (cc) typically between 750 and 1000 C. The transformation temperatures were measured in situ by using the resistivity and dilatometry techniques. The isothermal creep behaviour of fuel cladding tubes was studied, first after heating, in the {alpha} phase domain between 650 and 760 C, in the {beta} phase domain between 960 and 1100 C, as well as in the ({alpha} + {beta}) two phase domain between 800 and 900 C. The results are summarized in Ashby deformation mechanism maps. It is confirmed that the {beta} phase is much more sensitive to creep flow than the {alpha} phase. The effect of microstructure on the isothermal creep flow behaviour was then investigated by first applying a thermal cycle involving either a full or a partial transformation from {alpha} to {beta}. It was investigated both in the {alpha} phase domain, and after direct cooling into the ({alpha} + {beta}) phase domain. The behaviour in aniso-thermal conditions was finally studied at heating and cooling rates of 10 and 200 C/min. In both cases, we showed that there is no significant transformation plasticity in the stress range under investigation ({<=} 5 MPa). A finite element model using Voronoi polyhedra and eventually meshing a film of intergranular {beta} phase was used to describe the behaviour of material in the ({alpha} + {beta}) domain in various microstructural states. The model predictions are in good agreement with the experimental results for the microstructure obtained after cooling, but the model underestimates creep deformation in the as-received state. This difference is probably related to the fact that interface sliding is not taken into account in the model. (author)

  10. Isothermal and aniso-thermal creep in the {alpha} phase domain, {beta} phase domain and {alpha}+{beta} two phase domain in a Zr-1%NbO alloy; Fluage isotherme et anisotherme dans les domaines monophases ({alpha} et {beta}) et biphases ({alpha} et {beta}) d'un alliage Zr-1%NbO

    Energy Technology Data Exchange (ETDEWEB)

    Kaddour, D


    The coupling between phase transformation and mechanical behaviour of a Zr-1%NbO alloy was studied using an original experimental device already used in a previous study devoted to the Zy-4 alloy. The Zr-1%NbO alloy undergoes a phase transformation {alpha} (hc) {r_reversible} (cc) typically between 750 and 1000 C. The transformation temperatures were measured in situ by using the resistivity and dilatometry techniques. The isothermal creep behaviour of fuel cladding tubes was studied, first after heating, in the {alpha} phase domain between 650 and 760 C, in the {beta} phase domain between 960 and 1100 C, as well as in the ({alpha} + {beta}) two phase domain between 800 and 900 C. The results are summarized in Ashby deformation mechanism maps. It is confirmed that the {beta} phase is much more sensitive to creep flow than the {alpha} phase. The effect of microstructure on the isothermal creep flow behaviour was then investigated by first applying a thermal cycle involving either a full or a partial transformation from {alpha} to {beta}. It was investigated both in the {alpha} phase domain, and after direct cooling into the ({alpha} + {beta}) phase domain. The behaviour in aniso-thermal conditions was finally studied at heating and cooling rates of 10 and 200 C/min. In both cases, we showed that there is no significant transformation plasticity in the stress range under investigation ({<=} 5 MPa). A finite element model using Voronoi polyhedra and eventually meshing a film of intergranular {beta} phase was used to describe the behaviour of material in the ({alpha} + {beta}) domain in various microstructural states. The model predictions are in good agreement with the experimental results for the microstructure obtained after cooling, but the model underestimates creep deformation in the as-received state. This difference is probably related to the fact that interface sliding is not taken into account in the model. (author)

  11. Negative thermal expansion materials: technological key for control of thermal expansion. (United States)

    Takenaka, Koshi


    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K(-1). Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  12. New results in gravity dependent two-phase flow regime mapping (United States)

    Kurwitz, Cable; Best, Frederick


    Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .

  13. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)


    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  14. Experimental study on transient behavior of semi-open two-phase thermosyphon

    Institute of Scientific and Technical Information of China (English)

    朱华; 王建新; 张巧惠; 屠传经


    An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.

  15. Thermo-fluid dynamics of two-phase flow

    CERN Document Server

    Ishii, Mamoru; Ishii, Mamoru; Ishii, M


    Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.

  16. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)


    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  17. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail:, E-mail: [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental


    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  18. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration (United States)

    McQuillen, John; Sankovic, John; Lekan, Jack


    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  19. Thermal control system for Space Station Freedom photovoltaic power module (United States)

    Hacha, Thomas H.; Howard, Laura


    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  20. Aqueous Nanofluid as a Two-Phase Coolant for PWR

    Directory of Open Access Journals (Sweden)

    Pavel N. Alekseev


    Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.

  1. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.


    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  2. Thermal control system for SSF sensor/electronics (United States)

    Akau, R. L.; Lee, D. E.


    A thermal control system was designed for the Space Station Freedom (SSF) sensor/electronics box (SSTACK). Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test.

  3. Reduced-gravity two-phase flow experiments in the NASA KC-135 (United States)

    Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.


    An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.

  4. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications (United States)

    Didion, Jeffrey R.


    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  5. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)


    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  6. An experimental investigation on the evaporation and condensation heat transfer of two-phase closed thermosyphons

    NARCIS (Netherlands)

    Jafari, Davoud; Di Marco, Paolo; Filippeschi, Sauro; Franco, Alessandro


    Abstract Two-phase closed thermosyphons (TPCTs) are excellent thermal transfer devices that their integration into heat exchangers has been shown a strong potential for energy savings. The scope of this study is an experimental evaluation of the evaporation and condensation heat transfer of a TPCT

  7. Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured

  8. Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon

    Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become

  9. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids (United States)

    Zeinali Heris, Saeed; Fallahi, Marjan; Shanbedi, Mehdi; Amiri, Ahmad


    In this paper, the effects of different acids on the thermal performance of oxidized carbon nanotubes (CNT)/water nanofluids in a two-phase closed thermosyphon were studied. The structures morphology and functionalization degree were studied concurrently. The results indicated that strong oxidants increased dispersivity of CNT in the nanofluids. In other words, as the number of COOH groups increased in the nanofluids, an upward trend was also observed in the thermal efficiency of the thermosyphon.

  10. Application of vapor-liquid two-phase flow technology in upgrading high/low pressure heater drain system of thermal power plant%汽液两相流技术在火电厂高低压加热器疏水改造中应用

    Institute of Scientific and Technical Information of China (English)



    Aiming at the problems existed in traditional basis pneumatic regulating mode such as the water level of high/low pressure heater becoming out of control, operation of heater with full water level or no water level, water - level fluctuation of heater and so on, the application of vapor - liquid two - phase flow automatic - regulation water level control device in upgrading high/low heater hydrophobic modification system of 125 MW turboset has guaranteed the stability of water level of heater, enhanced the safety of the turboset and saved the fire coal and costs of maintenance.%针对传统的基地式气动调节方式存在的高、低压加热器水位失控,加热器满水位或无水位运行及加热器水位波动大等问题,将汽液两相流自调节水位控制装置应用在125 MW汽轮发电机组高、低加热器疏水改造系统上,保证了加热器的水位稳定性,提高了机组的安全性,节约了燃煤和维护费用.

  11. Brownian Ratchets: Transport Controlled by Thermal Noise (United States)

    Kula, J.; Czernik, T.; Łuczka, J.


    We analyze directed transport of overdamped Brownian particles in a 1D spatially periodic potential that are subjected to both zero-mean thermal equilibrium Nyquist noise and zero-mean exponentially correlated dichotomous fluctuations. We show that particles can reverse the direction of average motion upon a variation of noise parameters if two fundamental symmetries, namely, the reflection symmetry of the spatial periodic structure, and the statistical symmetry of dichotomous fluctuations, are broken. There is a critical thermal noise intensity Dc, or equivalently a critical temperature Tc, at which the mean velocity of particles is zero. Below Tc and above Tc particles move in opposite directions. At fixed temperature, there is a region of noise parameters in which particles of different linear size are transported in opposite directions.

  12. A thermal manikin with human thermoregulatory control: Implementation and validation (United States)

    Foda, Ehab; Sirén, Kai


    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin `Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature ( t eq) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t eq from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t eq. The results showed that the t eq values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode.

  13. A thermal manikin with human thermoregulatory control: implementation and validation. (United States)

    Foda, Ehab; Sirén, Kai


    Tens of different sorts of thermal manikins are employed worldwide, mainly in the evaluation of clothing thermal insulation and thermal environments. They are regulated thermally using simplified control modes. This paper reports on the implementation and validation of a new thermoregulatory control mode for thermal manikins. The new control mode is based on a multi-segmental Pierce (MSP) model. In this study, the MSP control mode was implemented, using the LabVIEW platform, onto the control system of the thermal manikin 'Therminator'. The MSP mode was then used to estimate the segmental equivalent temperature (t(eq)) along with constant surface temperature (CST) mode under two asymmetric thermal conditions. Furthermore, subjective tests under the same two conditions were carried out using 17 human subjects. The estimated segmental t(eq) from the experiments with the two modes and from the subjective assessment were compared in order to validate the use of the MSP mode for the estimation of t(eq). The results showed that the t(eq) values estimated by the MSP mode were closer to the subjective mean votes under the two test conditions for most body segments and compared favourably with values estimated by the CST mode.

  14. Phase change thermal control materials, method and apparatus (United States)

    Buckley, Theresa M. (Inventor)


    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  15. Thermal Vacuum Control Systems Options for Test Facilities (United States)

    Marchetti, John


    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  16. Spacecraft Thermal Control System Not Requiring Power Project (United States)

    National Aeronautics and Space Administration — The thermal management of spacecraft would be enhanced by dynamic control over surface emissivity in the mid-infrared. In this SBIR program, Triton Systems proposes...

  17. CubeSat Form Factor Thermal Control Louvers Project (United States)

    National Aeronautics and Space Administration — Thermal control of small spacecraft, including CubeSats, is a challenge for the next era of NASA spaceflight. Science objectives and components will still require...


    National Aeronautics and Space Administration — The main goal of spacecraft thermal control systems is to maintain internal and external temperature within acceptable boundaries while minimizing impact on vehicle...

  19. Control strategies in a thermal oil - Molten salt heat exchanger (United States)

    Roca, Lidia; Bonilla, Javier; Rodríguez-García, Margarita M.; Palenzuela, Patricia; de la Calle, Alberto; Valenzuela, Loreto


    This paper presents a preliminary control scheme for a molten salt - thermal oil heat exchanger. This controller regulates the molten salt mass flow rate to reach and maintain the desired thermal oil temperature at the outlet of the heat exchanger. The controller architecture has been tested using an object-oriented heat exchanger model that has been validated with data from a molten salt testing facility located at CIEMAT-PSA. Different simulations are presented with three different goals: i) to analyze the controller response in the presence of disturbances, ii) to demonstrate the benefits of designing a setpoint generator and iii) to show the controller potential against electricity price variations.

  20. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova


    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  1. Active Thermal Control Experiments for LISA Ground Verification Testing (United States)

    Higuchi, Sei; DeBra, Daniel B.


    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  2. Mirror with thermally controlled radius of curvature (United States)

    Neil, George R.; Shinn, Michelle D.


    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  3. Two phase exhaust for internal combustion engine (United States)

    Vuk, Carl T [Denver, IA


    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  4. Sliding Mode Thermal Control System for Space Station Furnace Facility (United States)

    Jackson Mark E.; Shtessel, Yuri B.


    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  5. Next steps in two-phase flow: executive summary

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.


    The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)

  6. Two-Phase Flow Field Simulation of Horizontal Steam Generators

    Directory of Open Access Journals (Sweden)

    Ataollah Rabiee


    Full Text Available The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  7. Microgravity two-phase flow regime modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.; Best, F.R.; Faget, N.


    A flow pattern or flow regime is the characteristics spatial distribution of the phases of fluid in a duct. Since heat transfer and pressure drop are dependent on the characteristic distribution of the phases, it is necessary to describe flow patterns in an appropriate manner so that a hydrodynamic or heat transfer theory applicable to that pattern can be chosen. The objective of the present analysis is to create a flow regime map based on physical modeling of vapor/liquid interaction phenomena in a microgravity environment. In the present work, four basic flow patterns are defined: dispersed flow, stratified flow, slug flow, and annular flow. Fluid properties, liquid and vapor flow rates, and pipe size were chosen as the principal parameters. It is assumed that a transition from one flow pattern to another will occur when there is a change in the dominant force which controls that flow pattern. The forces considered in this modeling are surface tension force, both force, inertial force, friction, and turbulent fluctuations.


    Institute of Scientific and Technical Information of China (English)

    Ning Yang; Wei Wang; Wei Ge; Jinghai Li


    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  9. CFD Analysis of Thermal Control System Using NX Thermal and Flow (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)


    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  10. Controlling Thermal Expansion: A Metal-Organic Frameworks Route. (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia


    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  11. Response of two-phase droplets to intense electromagnetic radiation (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.


    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  12. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Hua; JIANG Nan


    Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.

  13. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link (United States)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete


    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  14. The solidification of two-phase heterogeneous materials: Theory versus experiment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; KIM Tongbeum; LU TianJian


    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  15. Evaluating Degradation on Thermal Control Materials for GPM/DPR (United States)

    Ishizawa, Junichiro; Hyakusoku, Yasutoshi; Shimamura, Hiroyuki; Kimoto, Yugo; Kojima, Masahiro

    Thermal control materials such as white paints and germanium-coated polyimide film were evaluated with respect to their space environmental tolerance for materials selection of the Dual-frequency Precipitation Radar of the Global Precipitation Measurement satellite (GPM/DPR). Though peeling off and cracking occurred in one paint material during the thermal shock test, other paints showed good tolerance against thermal shock, atomic oxygen, and ultraviolet ray irradiation. Germanium coating on polyimide film was also verified as high atomic oxygen tolerant barrier. Comparing different thickness germanium coatings, it seems that a 1000 angstrom Germanium film has fewer defects and risk of AO undercutting than a 525 angstrom Germanium film.

  16. Reversible, on-demand generation of aqueous two-phase microdroplets

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya


    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  17. Statistical Design Model (SDM) of satellite thermal control subsystem (United States)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi


    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  18. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)


    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  19. Correlation of thermal mathematical models for thermal control of space vehicles by means of genetic algorithms (United States)

    Anglada, Eva; Garmendia, Iñaki


    The design of the thermal control system of space vehicles, needed to maintain the equipment components into their admissible range of temperatures, is usually developed by means of thermal mathematical models. These thermal mathematical models need to be correlated with the equipment real behavior registered during the thermal test campaign, in order to adapt them to the real state of the vehicle "as built". The correlation of this type of mathematical models is a very complex task, usually based on manual procedures, which requires a big effort in time and cost. For this reason, the development of methodologies able to perform this correlation automatically, would be a key aspect in the improvement of the space vehicles thermal control design and validation. The implementation, study and validation of a genetic algorithm able to perform this type of correlation in an automatized way are presented in this paper. The study and validation of the algorithm have been performed based on a simplified model of a real space instrument. The algorithm is able to correlate thermal mathematical models in steady state and transient analyses, and it is also able to perform the simultaneous correlation of several cases, as for example hot and cold cases.

  20. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Rizwan


    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  1. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)



    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  2. Controllable thermal rectification realized in binary phase change composites. (United States)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang


    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  3. Environmental controls on the thermal structure of alpine glaciers

    Directory of Open Access Journals (Sweden)

    N. J. Wilson


    Full Text Available Water entrapped in glacier accumulation zones represents a significant latent heat contribution to the development of thermal structure. It also provides a direct link between glacier environments and thermal regimes. We apply a two-dimensional mechanically-coupled model of heat flow to synthetic glacier geometries in order to explore the environmental controls on flowband thermal structure. We use this model to test the sensitivity of thermal structure to physical and environmental variables and to explore glacier thermal response to environmental changes. In different conditions consistent with a warming climate, mean glacier temperature and the volume of temperate ice may either increase or decrease, depending on the competing effects of elevated meltwater production, reduced accumulation zone extent and thinning firn. For two model reference states that exhibit commonly-observed thermal structures, the fraction of temperate ice is shown to decline with warming air temperatures. Mass balance and aquifer sensitivities play an important role in determining how the englacial thermal regimes of alpine glaciers will adjust in the future.

  4. Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle

    CERN Document Server

    Takenaka, N; Fujii, T; Mizubata, M; Yoshii, K


    Three-dimensional void fraction distribution of air-water two-phase flow in a 4x4 rod-bundle near a spacer was visualized by fast neutron radiography using a CT method. One-dimensional cross sectional averaged void fraction distribution was also calculated. The behaviors of low void fraction (thick water) two-phase flow in the rod bundle around the spacer were clearly visualized. It was shown that the void fraction distributions were visualized with a quality similar to those by thermal neutron radiography for low void fraction two-phase flow which is difficult to visualize by thermal neutron radiography. It is concluded that the fast neutron radiography is efficiently applicable to two-phase flow studies.

  5. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou


    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  6. Critical transport velocity in two-phase, horizontal pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))


    This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.

  7. What types of investors generate the two-phase phenomenon? (United States)

    Ryu, Doojin


    We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.

  8. Tunable two-phase coexistence in half-doped manganites

    Indian Academy of Sciences (India)

    P Chaddah; A Banerjee


    We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.

  9. Automation and control of the MMT thermal system (United States)

    Gibson, J. D.; Porter, Dallan; Goble, William


    This study investigates the software automation and control framework for the MMT thermal system. Thermal-related effects on observing and telescope behavior have been considered during the entire software development process. Regression analysis of telescope and observatory subsystem data is used to characterize and model these thermal-related effects. The regression models help predict expected changes in focus and overall astronomical seeing that result from temperature variations within the telescope structure, within the primary mirror glass, and between the primary mirror glass and adjacent air (i.e., mirror seeing). This discussion is followed by a description of ongoing upgrades to the heating, ventilation and air conditioning (HVAC) system and the associated software controls. The improvements of the MMT thermal system have two objectives: 1) to provide air conditioning capabilities for the MMT facilities, and 2) to modernize and enhance the primary mirror (M1) ventilation system. The HVAC upgrade necessitates changes to the automation and control of the M1 ventilation system. The revised control system must factor in the additional requirements of the HVAC system, while still optimizing performance of the M1 ventilation system and the M1's optical behavior. An industry-standard HVAC communication and networking protocol, BACnet (Building Automation and Control network), has been adopted. Integration of the BACnet protocol into the existing software framework at the MMT is discussed. Performance of the existing automated system is evaluated and a preliminary upgraded automated control system is presented. Finally, user interfaces to the new HVAC system are discussed.

  10. Thermal control system. [removing waste heat from industrial process spacecraft (United States)

    Hewitt, D. R. (Inventor)


    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  11. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna


    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  12. Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)


    Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)

  13. Two-phase flow for fouling control in membranes

    NARCIS (Netherlands)

    Wibisono, Yusuf


    The real challenge of the use of NF/RO spiral-wound membrane modules in water treatment is membrane fouling. Fouling problems in NF/RO systems are more complicated than in low pressure membrane processes, becaused fouling usually occurs on the nanoscale, combined with the complex geometry of spiral-

  14. experimental validation of a dual loop control of two phases ...

    African Journals Online (AJOL)

    Kraa O, Ghodbane H, Saadi R, Ayad M.Y, Becherif M, Bahri M and Aboubou A


    May 1, 2016 ... widely used in order to reduce the input current ripples and the size of passive ... similar to batteries since they both produce a DC voltage by using an ..... to achieve a very good performance for a wide range of load variation.

  15. Lunar Dust Contamination Effects on Lunar Base Thermal Control Systems (United States)

    Keller, John R.; Ewert, Michael K.


    Many studies have been conducted to develop a thermal control system that can operate under the extreme thermal environments found on the lunar surface. While these proposed heat rejection systems use different methods to reject heat, each system contains a similar component, a thermal radiator system. These studies have always considered pristine thermal control system components and have overlooked the possible deleterious effects of lunar dust contamination. Since lunar dust has a high emissivity and absorptivity (greater than 0.9) and is opaque, dust accumulation on a surface should radically alter its optical properties and therefore alter its thermal response compared to ideal conditions. In addition, the non-specular nature of the dust particles will alter the performance of systems that employ specular surfaces to enhance heat rejection. To date, few studies have examined the effect of dust deposition on the normal control system components. These studies only focused on a single heat rejection or photovoltaic system. These studies did show that lunar dust accumulations alter the optical properties of any lunar base hardware, which in turn affects component temperatures, and heat rejection. Therefore, a new study was conducted to determine the effect of lunar dust contamination on heat rejection systems. For this study, a previously developed dust deposition model was incorporated into the Thermal Synthesizer System (TSS) model. This modeling scheme incorporates the original method of predicting dust accumulation due to vehicle landings by assuming that the thin dust layer can be treated as a semitransparent surface slightly above and in thermal contact with the pristine surface. The results of this study showed that even small amounts of dust deposits can radically alter the performance of the heat rejection systems. Furthermore. this study indicates that heat rejection systems be either located far from any landing sites or be protected from dust

  16. Time dependent two phase flows in Magnetohydrodynamics: A ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...

  17. Gravity Independence of Microchannel Two-Phase Flow Project (United States)

    National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...

  18. Vapor Compressor Driven Hybrid Two-Phase Loop Project (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...


    African Journals Online (AJOL)

    Ifeanyichukwu Onwuka

    The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.

  20. Particle modulations to turbulence in two-phase round jets

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang


    The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.

  1. Transient two-phase performance of LOFT reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.H.; Modro, S.M.


    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  2. Scaling of Two-Phase Systems Across Gravity Levels Project (United States)

    National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...

  3. Different Approaches to Control of TISO Thermal System

    Directory of Open Access Journals (Sweden)

    Jaroslava KRÁLOVÁ


    Full Text Available The contribution is aimed on problematic of multivariable control. Multivariable system can be controlled by multivariable controller or we can use decentralized control. Control of thermal system with two inputs and one output is shown in the paper. The goal of paper is to find what sort of results we can get by classical approaches and by more sophisticated strategies. Two discrete-time PID controllers are selected as a representative of classical approach and split-range with discrete-time PID controller is selected as a representative of more sophisticated strategy. Control strategies are compared in the view of control quality and costs, information and knowledge required by control design and application.

  4. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment (United States)

    Fei, T.; Skidmore, A.; Liu, Y.


    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  5. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W. [European Space Agency / ESTEC. Thermal control and life support division (France)


    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  6. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon


    Fadhl, B; Wrobel, LC; Jouhara, H


    Interest in the use of heat pipe technology for heat recovery and energy saving in a vast range of engineering applications has been on the rise in recent years. Heat pipes are playing a more important role in many industrial applications, particularly in improving the thermal performance of heat exchangers and increasing energy savings in applications with commercial use. In this paper, a comprehensive CFD modelling was built to simulate the details of the two-phase flow and heat transfer ph...

  7. Thermal quantitative sensory testing: a study of 101 control subjects. (United States)

    Hafner, Jessica; Lee, Geoffrey; Joester, Jenna; Lynch, Mary; Barnes, Elizabeth H; Wrigley, Paul J; Ng, Karl


    Quantitative sensory testing is useful for the diagnosis, confirmation and monitoring of small fibre neuropathies. Normative data have been reported but differences in methodology, lack of age-specific values and graphical presentation of data make much of these data difficult to apply in a clinical setting. We have collected normative age-specific thermal threshold data for use in a clinical setting and clarified other factors influencing reference values, including the individual machine or operator. Thermal threshold studies were performed on 101 healthy volunteers (21-70 years old) using one of two Medoc Thermal Sensory Analyser II machines (Medoc, Ramat Yishai, Israel) with a number of operators. A further study was performed on 10 healthy volunteers using both machines and one operator at least 3 weeks apart. Thermal threshold detection increases with age and is different for different body regions. There is no significant difference seen in results between machines of the same make and model; however, different operators may influence results. Normative data for thermal thresholds should be applied using only age- and region-specific values and all operators should be trained and strictly adhere to standard protocols. To our knowledge, this is the largest published collection of normal controls for thermal threshold testing presented with regression data which can easily be used in the clinical setting. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Environmental controls on the thermal structure of alpine glaciers

    Directory of Open Access Journals (Sweden)

    N. J. Wilson


    Full Text Available Water entrapped in glacier accumulation zones represents a significant latent heat contribution to the development of thermal structure. It also provides a direct link between glacier environments and thermal regimes. We apply a two-dimensional mechanically-coupled model of heat flow to synthetic glacier geometries in order to explore the environmental controls on flowband thermal structure. We use this model to test the sensitivity of thermal structure to physical and environmental variables and to explore glacier response to potential environmental changes. In different conditions consistent with a warming climate, mean glacier temperature and the volume of temperate ice may either increase or decrease, depending on the competing effects of elevated meltwater production, reduced accumulation zone extent, and thinning firn. For two model reference states that exhibit commonly-observed thermal structures, the volume of temperate ice is shown to decline with warming air temperatures. Mass balance sensitivity plays an important role in determining how the englacial thermal regimes of alpine glaciers will adjust in the future.

  9. Unsteady flow analysis of a two-phase hydraulic coupling (United States)

    Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.


    Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.

  10. Thermally Controlled Comb Generation and Soliton Modelocking in Microresonators

    CERN Document Server

    Joshi, Chaitanya; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L


    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  11. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration (United States)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.


    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  12. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim


    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  13. Weld Nugget Temperature Control in Thermal Stir Welding (United States)

    Ding, R. Jeffrey (Inventor)


    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  14. Using geophysical techniques to control in situ thermal remediation

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M. [Lawrence Livermore National Lab., CA (United States); Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K. [California Univ., Berkeley, CA (United States); Hunter, R. [Infraseismic, Inc., Bakersfield, CA (United States)


    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors.

  15. Control of Thermal Conductance of Peltier Device Using Heat Disturbance Observer (United States)

    Morimitsu, Hidetaka; Katsura, Seiichiro

    Presently in the industry, temperature control and heat flow control are conducted for many thermal devices, including the Peltier device, which facilitates heat transfer on the basis of the Peltier effect. Generally, temperature control compensates for the heat flowing from the external environment, while the heat actively flows into the system during heat flow control. Thus, temperature control and heat flow control differ from each other. However, there have been no detailed discussions on a thermal control process in which the thermal conductance of control ranges between 0 and ∞. This paper focuses on the thermal conductance of control and the construction of a thermal conductance control system for a Peltier device using a heat disturbance observer. When using the thermal conductance controller, the thermal conductance of control is altered, and the system becomes thermally compliant with the external environment. This paper also shows the experimental results that confirm the validity of the proposed control system.

  16. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran


    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  17. Visualization and research of gas-liquid two phase flow structures in cylindrical channel

    Directory of Open Access Journals (Sweden)

    Stefański Sebastian


    Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.

  18. Thermal Storage Power Balancing with Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik


    The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...

  19. Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Dubuffet


    Full Text Available The thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ∂klat /∂T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged Péclet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing

  20. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe


    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  1. Velocity and energy relaxation in two-phase flows

    CERN Document Server

    Meyapin, Yannick; Gisclon, Marguerite


    In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...

  2. A mechanical erosion model for two-phase mass flows

    CERN Document Server

    Pudasaini, Shiva P


    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...

  3. Simulating confined swirling gas-solid two phase jet

    Institute of Scientific and Technical Information of China (English)

    金晗辉; 夏钧; 樊建人; 岑可法


    A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r=50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.

  4. Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi Woong; Yu, Dong In; Kim, Moo Hwan [Pohang University of Science and Technology, Pohang (Korea, Republic of)


    Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethy1-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of two-phase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

  5. Investigation on two-phase flow instability in steam generator of integrated nuclear reactor

    Institute of Scientific and Technical Information of China (English)


    In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.

  6. Dynamic Modeling of Phase Crossings in Two-Phase Flow

    DEFF Research Database (Denmark)

    Madsen, Søren; Veje, Christian; Willatzen, Morten


    of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...

  7. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN


    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  8. Two Phase Flow and Space-Based Applications (United States)

    McQuillen, John


    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  9. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon

    NARCIS (Netherlands)

    Vincent, Charles C.J.; Kok, Jacobus B.W.


    The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial s

  10. Tank Pressure Control Experiment/thermal Phenomena (TPCE/TP) (United States)

    Hasan, M. M.; Knoll, R. H.


    The 'Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP)' is a reflight of the tank pressure control experiment (TPCE), flown on STS-43 in a standard Get-Away Special (GAS) container in August 1991. The TPCE obtained extensive video and digital data of the jet induced mixing process in a partially filled tank in low gravity environments. It also provided limited data on the thermal processes involved. The primary objective of the reflight of TPCE is to investigate experimentally the phenomena of liquid superheating and pool nucleate boiling at very low heat fluxes in a long duration low gravity environment. The findings of this experiment will be of direct relevance to space based subcritical cryogenic fluid system design and operation. Experiment hardware and results from the first TPCE are described in outline and graphic form.

  11. Contribution to the study of the thermal and hydrodynamical properties of a two-phase natural circulation flow of normal helium (He I) for the cooling of superconducting magnets; Contribution a l'etude des proprietes thermiques et hydrodynamiques d'un ecoulement d'helium normal (He I) diphasique en circulation naturelle pour le refroidissement des aimants supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Benkheira, L


    The method of cooling based on the thermosyphon principle is of great interest because of its simplicity, its passivity and its low cost. It is adopted to cool down to 4,5 K the superconducting magnet of the CMS particles detector of the Large Hadron Collider (LHC) experiment under construction at CERN, Geneva. This work studies heat and mass transfer characteristics of two phase He I in a natural circulation loop. The experimental set-up consists of a thermosyphon single branch loop mainly composed of a phase separator, a downward tube, and a test section. The experiments were conducted with varying several parameters such as the diameter of the test section (10 mm or 14 mm) and the applied heat flux up to the appearance of the boiling crisis. These experiments have permitted to determine the laws of evolution of the various parameters characterizing the flow (circulation mass flow rate, vapour mass flow rate, vapour quality, friction coefficient, two phase heat transfer coefficient and the critical heat flux) as a function of the applied heat flux. On the base of the obtained results, we discuss the validity of the various existing models in the literature. We show that the homogeneous model is the best model to predict the hydrodynamical properties of this type of flow in the vapour quality range 0{<=}x{<=}30%. Moreover, we propose two models for the prediction of the two phase heat transfer coefficient and the density of the critical heat flux. The first one considers that the effects of the forced convection and nucleate boiling act simultaneously and contribute to heat transfer. The second one correlates the measured critical heat flux density with the ratio altitude to diameter. (author)

  12. An Iris Mechanism Driven Temperature Control of Solar Thermal Reactors


    Van den Langenbergh, Lode; Ophoff, Cédric; Ozalp, Nesrin


    In spite of their attraction for clean production of fuels and commodities; solar thermal reactors are challenged by the transient nature of solar energy. Control of reactor temperature during transient periods is the key factor to maintain solar reactor performance. Currently, there are few techniques that are being used to accommodate the fluctuations of incoming solar radiation. One of the commonly practiced methods is to adjust the mass flow rate of the feedstock which is very simple to i...

  13. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)



    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Thermally Controlling the Polymeric Cytoskeleton in Living Cells (United States)

    Cheng, Chao-Min; Leduc, Philip


    Cell structure is controlled to a large degree by the cytoskeleton, which is an intracellular polymer network. This cytoskeleton is critical as it strongly influences many cellular functions such as motility, organelle transport, mechanotransduction and mitosis. In our studies, we controlled the thermal environment of living cells and after applying an increase in temperature of only 5 ^oC, we observed a change in the polymer network as the actin filaments depolymerized. Interestingly, when we then lowered the temperature, the actin repolymerized indicating a reversible phase that is controlled by the thermal environment. We characterized the presence of F-actin and G-actin for these phases through analyzing the intensity from immunofluorescent studies for these proteins. The F-actin concentration decreased when increasing the temperature from the initial state and then increased when decreasing the temperature. Although the cell is known to be affected by heat shock responses, this is not a function of just the polymers as they do not exhibit these polymerization characteristics when we probed them as single filaments in vitro. These studies suggest that the cell has distinct phases or patterns while maintaining a reversible equilibrium due to the thermal environment for these networked polymers.

  15. Proportional and Integral Thermal Control System for Large Scale Heating Tests (United States)

    Fleischer, Van Tran


    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  16. Sliding Mode Control of a Thermal Mixing Process (United States)

    Richter, Hanz; Figueroa, Fernando


    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  17. Modeling the behavior of a two-phase flow apparatus in microgravity (United States)

    Baker, Eric W.; Tuttle, Ronald F.


    There are many unknown parameters in two-phase flow in microgravity environment. The database is incomplete and therefore correlations are unknown. This has prompted theoretical and experimental work in the area. A Phillips Laboratory program is currently exploring this area. The Phillips Laboratory experiment is a closed loop rankine cycle with a boiler, condenser/subcooler, accumulator and a pump. The work reported herein attempts to model the Phillips Laboratory Apparatus using a thermal-hydraulic software modeling system called Sim-Tool, developed by Mainstream Engineering. This work also explores the limitations of software modeling a microgravity environment. Results of this modeling effort indicate that Sim-Tool needs further development in order to correctly predict two-phase flow in a microgravity environment.

  18. Two-phase dusty fluid flow along a cone with variable properties (United States)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy


    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  19. Two-Phase Reactions in Microdroplets without the Use of Phase-Transfer Catalysts. (United States)

    Yan, Xin; Cheng, Heyong; Zare, Richard N


    Many important chemical transformations occur in two-phase reactions, which are widely used in chemical, pharmaceutical, and polymer manufacturing. We present an efficient method for performing two-phase reactions in microdroplets sheared by sheath gas without using a phase-transfer catalyst. This avoids disadvantages such as thermal instability, high cost, and, especially, the need to separate and recycle the catalysts. We show that various alcohols can be oxidized to the corresponding aldehydes and ketones within milliseconds in moderate to good yields (50-75 %). The scale-up of the present method was achieved at an isolated rate of 1.2 mg min(-1) for the synthesis of 4-nitrobenzylaldehyde from 4-nitrobenzyl alcohol in the presence of sodium hypochlorite. The biphasic nature of this process, which avoids use of a phase-transfer catalyst, greatly enhances synthetic effectiveness.

  20. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.


    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  1. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.


    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  2. Coal-Face Fracture With A Two-Phase Liquid (United States)

    Collins, E. R., Jr.


    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  3. Two-phase flow in micro and nanofluidic devices

    NARCIS (Netherlands)

    Shui, Lingling


    This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping, jet

  4. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.


    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V

  5. Experimental Investigation of two-phase nitrogen Cryo transfer line (United States)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.


    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  6. Numerical simulation of two-phase flow in offshore environments

    NARCIS (Netherlands)

    Wemmenhove, Rik


    Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for


    Directory of Open Access Journals (Sweden)

    Sit B.M.


    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  8. Alternatives for thermal legionella control; Alternatieven thermische legionellabestrijding

    Energy Technology Data Exchange (ETDEWEB)

    Van Lieshout, M.


    One supplier considers his system a breakthrough in legionella control. Another claims decisively that his system provides the only affordable and effective solution. It is clear that manufacturers have their own way of finding alternatives in those cases where thermal control for complex existing installations prove not to be effective. (mk) [Dutch] De ene leverancier noemt zijn systeem een doorbraak in de legionellabestrijding. Een ander beweert met grote stelligheid dat zijn systeem de enige betaalbare en effectieve oplossing is. Duidelijk is dat fabrikanten op hun eigen manier een oplossing zoeken naar alternatieven, daar waar het thermisch beheer voor complexe bestaande installaties niet effectief blijk te zijn.



    Salas de la Torre, N.; Bazán, D.; Osorio, A.; Cornejo, O.; Reyna, L.; García Pantigozo, M.; Carhuaneho, H.


    The main objective of this work to estab1ish the controlled use of heat as a function of the pH in order to destroy all the microorganisms that are this bacterias anaerobic forced thermopiles and essentially mesófilas. The bacteria more resistant esporulada to 1he heat is Clostridium botulinum and it is considered lndicative microorganísm of the sterellization. Another parameter of very important control is the quality of the matter it prevails that it can resist the operations of thermal prc...

  10. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.


    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  11. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Miaomiao, E-mail:; Short, Michael, E-mail:


    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.

  12. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail:; Moriyama, Kiyofumi; Park, Jin Ho


    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  13. Petrological and two-phase flow modelling of deep arc crust: insights on continental crust formation (United States)

    Riel, Nicolas; Bouilhol, Pierre; van Hunen, Jeroen; Cornet, Julien


    The genesis of felsic crust is generally attributed to two main processes: the differentiation of primary magmas by crystallization within the crust or uppermost mantle and the partial melting of older crustal rocks. The Mixing/Assimilation/Hybridization of these magmas in the deep crust (MASH zone) and their subsequent segregation constitutes the principal process by which continents have become differentiated into a more mafic, residual lower crust and a more felsic and hydrated upper crust. Although this model describes qualitatively how continental crust forms, little is known on the physical and chemical mechanisms occurring at the root of volcanic arcs. To assess the dynamics of partial melting, melt injection and hybridization in the deep crust, a new 2-D two-phase flow code using finite volume method has been developed. The formulation takes into account: (i) melt flow through porosity waves/channels, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases and (iv) injection of mantle-derived melt at the Moho. Our parametric study shows that pressure, heat influx and melt:rock ratio are the main parameters controlling the volume and composition of differentiated magma. Overall the composition of segregated products scatters in two groups: felsic (80-68% SiO2) and intermediate (60-52% SiO2), with an average andesitic composition. The bimodal distribution is controlled by amphibole which buffer the composition of segregated products to high SiO2-content when stable. As the amphibole-out melting reaction is crossed segregated products become intermediate. When compared to available geological evidence, the liquid line of descent of mantle-derived magma do not fit the Mg# versus silica trends of exposed volcanic arcs. Instead our modelling results show that reactive flow of those same magma through a mafic crust is able to reproduce such trends.

  14. Long Duration Life Test of Propylene Glycol Water Based Thermal Fluid Within Thermal Control Loop (United States)

    Le, Hung; Hill, Charles; Stephan, Ryan A.


    Evaluations of thermal properties and resistance to microbial growth concluded that 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture was desirable for use as a fluid within a vehicle s thermal control loop. However, previous testing with a commercial mixture of PG and water containing phosphate corrosion inhibitors resulted in corrosion of aluminum within the test system and instability of the test fluid. This paper describes a follow-on long duration testing and analysis of 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture with inorganic corrosion inhibitors used in place of phosphates. The test evaluates the long-term fluid stability and resistance to microbial and chemical changes

  15. A prototype electrohydrodynamic driven thermal control system (EHD-TCS) (United States)

    Didion, Jeffrey R.


    Goddard Space Flight Center has designed and fabricated a novel, prototype thermal control system operated solely by electrohydrodynamic (EHD) forces. The EHD-TCS consists of an EHD pumping section, transport tubing, a thermal-hydraulic test section, and a condenser section. The prototype loop has been fabricated to characterize the operations of the EHD-TCS and to investigate specific applications of EHD techniques to flow management and heat transfer enhancement. This paper discusses operational issues regarding an EHD conduction pump in the EHD-TCS. In the preliminary testing presented herein, the EHD-TCS loop operated as a single-phase thermal control system. The EHD conduction pump performance is characterized in the following terms: (i) mass flow rate versus applied voltage and applied current and (ii) pressure head developed by the pump as a function of applied voltage and current. Other relevant performance issues such as determination of steady state and operational power requirements are presented. The conduction pump operated reliably with no operational failures for up to 120 hours. Operational differences between static loop and EHD-TCS performance are noted. Hypotheses regarding possible explanations are discussed. The remaining engineering and technical challenges in this development program are outlined. .

  16. Optical Property Evaluation of Next Generation Thermal Control Coatings (United States)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.


    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  17. Space Station thermal test bed status and plans (United States)

    Brady, Timothy K.


    The accomplishments, current status, and future plans of the thermal test bed program for Space Station thermal management are discussed. This program is intended to support the design and development of the thermal control systems for the Space Station. The topics discussed include heat pipe radiator evaluation, modular panel tests, two-phase heat transport, and testing of thermal buses using ammonia as the working fluid.

  18. Numerical analysis of convective heat transfer of nanofluids in circular ducts with two-phase mixture model approach (United States)

    Sert, İsmail Ozan; Sezer-Uzol, Nilay


    Computational fluid dynamics simulations for initially hydro-dynamically fully developed laminar flow with nanofluids in a circular duct under constant wall temperature condition are performed with two-phase mixture model by using Fluent software. Thermal behaviors of the system are investigated for constant wall temperature condition for Al2O3/water nanofluid. Hamilton-Crosser model and the Brownian motion effect are used for the thermal conductivity model of nanofluid instead of the Fluent default model for mixtures which gives extraordinary high thermal conductivity values and is valid for macro systems. Also, thermal conductivity and viscosity of the base fluid are taken as temperature dependent. The effects of nanoparticle volume fraction, nanoparticle size, and inlet Peclet number on the heat transfer enhancement are investigated. The results are compared with single-phase results which give slightly lower heat transfer coefficient values than the results of two-phase mixture model.

  19. [The present status and development of thermal control system of spacesuits for extravehicular activity]. (United States)

    Zhao, C Y; Sun, J B; Yuan, X G


    With the extension of extravehicular activity (EVA) duration, the need for more effective thermal control of EVA spacesuits is required. The specific schemes investigated in heat sink system for EVA are discussed, including radiator, ice storage, metal hydride heat pump, phase-change storage/radiator and sublimator. The importance and requirements of automatic thermal control for EVA are also discussed. Existed automatic thermal control for EVA are reviewed. Prospects of further developments of thermal control of spacesuits for EVA are proposed.

  20. [Research progress of thermal control system for extravehicular activity space suit]. (United States)

    Wu, Z Q; Shen, L P; Yuan, X G


    New research progress of thermal control system for oversea Extravehicular Activity (EVA) space suit is presented. Characteristics of several thermal control systems are analyzed in detail. Some research tendencies and problems are discussed, which are worthwhile to be specially noted. Finally, author's opinion about thermal control system in the future is put forward.

  1. Two-phase relative permeability models in reservoir engineering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, S.; Hicks, P.J.; Ertekin, T.


    A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)

  2. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.


    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  3. Computer simulation of two-phase flow in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.


    Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.

  4. Software for Automated Generation of Reduced Thermal Models for Spacecraft Thermal Control Project (United States)

    National Aeronautics and Space Administration — Thermal analysis is increasingly used in thermal engineering of spacecrafts in every stage, including design, test, and ground-operation simulation. Current...

  5. Two-phase Flow Distribution in Heat Exchanger Manifolds


    Vist, Sivert


    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  6. Viscosity Solutions for the two-phase Stefan Problem

    CERN Document Server

    Kim, Inwon C


    We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.

  7. Recent advances in two-phase flow numerics

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)


    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  8. A Numerical Proof of Concept for Thermal Flow Control

    Directory of Open Access Journals (Sweden)

    V. Dragan


    Full Text Available In this paper computational fluid dynamics is used to provide a proof of concept for controlled flow separation using thermal wall interactions with the velocity boundary layer. A 3D case study is presented, using a transition modeling Shear Stress Transport turbulence model. The highly loaded single slot flap airfoil was chosen to be representative for a light aircraft and the flow conditions were modeled after a typical landing speed. In the baseline case, adiabatic walls were considered while in the separation control case, the top surface of the flaps was heated to 500 K. This heating lead to flow separation on the flaps and a significant alteration of the flow pattern across all the elements of the wing. The findings indicate that this control method has potential, with implications in both aeronautical as well as sports and civil engineering applications.

  9. Controlled rejuvenation of amorphous metals with thermal processing. (United States)

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu


    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr(55)Al(10)Ni(5)Cu(30) bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1T(g), followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.

  10. Estimating disease prevalence in two-phase studies. (United States)

    Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas


    Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.

  11. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group


    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  12. 微型固体姿控发动机微喷管内气粒两相流动规律CFD-DSMC研究%Research on the gas-particle two-phase flow in the micro nozzle of attitude control micro solid rocket motor

    Institute of Scientific and Technical Information of China (English)

    夏广庆; 张斌; 孙得川; 陈茂林


    微型固体姿控发动机在航天领域具有广泛的应用前景.以基于MEMS技术的微喷管为研究对象,首先通过计算微喷管中的克努森数,得到了微喷管中的气相流动状态;然后,采用CFD-DSMC方法,模拟了微喷管中的气粒两相流动,并研究了颗粒相质量分数和粒径对气相流动的影响.结果表明,在所研究的来流条件下,微喷管中的连续介质假设是成立的;气相与颗粒相间的动量和能量交换,导致气相马赫数降低、温度升高,同时也导致颗粒相速度增加、温度降低;颗粒相质量分数和粒径均能显著影响气相的马赫数和温度.%Attitude control micro solid rocket motor has wide application potential in the aerospace field. The gas-particle two-phase flow in the micro nozzle based on the MEMS technology was investigated. Firstly, through calculating the Knudsen number of the micro nozzle, the gas phase flow state in the micro nozzle was obtained. Then the gas-particle two-phase flow in the micro nozzle was simulated by using the method of CFD-DSMC. The influence of particle mass fraction and particle diameter on the gas phase flow was studied. The result shows that the continuum assumption in the micro nozzle is established under the conditions of the defined flow in the study. The exchange of momentum and energy between the gas phase and the particle can not noly reduce the gas phase Mach number and raise the temperature, but also increase the particle phase velocity and decrease the temperature. The particle phase mass fraction and particle diameter can significantly influence the Mach number and temperature of gas phase.

  13. Applying stochastic methods to building thermal design and control

    Energy Technology Data Exchange (ETDEWEB)

    Scartezzini, J.L.; Bottazzi, F.; Nygard-Ferguson, M. (Solar Energy and Building Physics Laboratory, Ecole Polytechnique Federale de Lausanne (CH))


    The object of this project is to develop numerical tools based on stochastic methods, issued from the theory of probability. Two objectives have been identified: I. The development of stochastic simulation techniques for thermal design and analysis of passive solar systems and buildings; II. The development of strategies for predictive controllers which can account for the stochastic behaviour of the weather and the occupants of buildings. The advantage of the stochastic approach is to treat the weather evolution and occupants behaviour by their probabilities. Previously to this work, an important effort was made towards the development of a stochastic approach to numerical simulations of passive solar systems. A smaller project has also treated the application of stochastic methods to predictive building thermal control. Encouraging results were obtained. They gave however rise to questions studied within the framework of this project: Design and analysis (hybrid dynamic simulation, Markovian stochastic simulation), predictive control. Two different institutions of the Swiss Federal Institute of Technology in Lausanne collaborate in this project: The 'Solar Energy and Building Physics Laboratory (LESO-PB)' in the Physics Department and the 'Chair of Operations Research' in the Mathematics Department. This document is a synthesis report of the work carried out within the project 'Application des methodes stochastiques: dimensionnement et regulation (Phase I)'. A detailed description of the results is available in French. (author) 20 figs., 10 refs.

  14. Thermal Control of a Dual Mode Parametric Sapphire Transducer

    CERN Document Server

    Belfi, Jacopo; De Michele, Andrea; Gabbriellini, Gianluca; Mango, Francesco; Passaquieti, Roberto


    We propose a method to control the thermal stability of a sapphire dielectric transducer made with two dielectric disks separated by a thin gap and resonating in the whispering gallery (WG) modes of the electromagnetic field. The simultaneous measurement of the frequencies of both a WGH mode and a WGE mode allows one to discriminate the frequency shifts due to gap variations from those due to temperature instability. A simple model, valid in quasi equilibrium conditions, describes the frequency shift of the two modes in terms of four tuning parameters. A procedure for the direct measurement of them is presented.

  15. Control-structure-thermal interactions in analysis of lunar telescopes (United States)

    Thompson, Roger C.


    The lunar telescope project was an excellent model for the CSTI study because a telescope is a very sensitive instrument, and thermal expansion or mechanical vibration of the mirror assemblies will rapidly degrade the resolution of the device. Consequently, the interactions are strongly coupled. The lunar surface experiences very large temperature variations that range from approximately -180 C to over 100 C. Although the optical assemblies of the telescopes will be well insulated, the temperature of the mirrors will inevitably fluctuate in a similar cycle, but of much smaller magnitude. In order to obtain images of high quality and clarity, allowable thermal deformations of any point on a mirror must be less than 1 micron. Initial estimates indicate that this corresponds to a temperature variation of much less than 1 deg through the thickness of the mirror. Therefore, a lunar telescope design will most probably include active thermal control, a means of controlling the shape of the mirrors, or a combination of both systems. Historically, the design of a complex vehicle was primarily a sequential process in which the basic structure was defined without concurrent detailed analyses or other subsystems. The basic configuration was then passed to the different teams responsible for each subsystem, and their task was to produce a workable solution without requiring major alterations to any principal components or subsystems. Consequently, the final design of the vehicle was not always the most efficient, owing to the fact that each subsystem design was partially constrained by the previous work. This procedure was necessary at the time because the analysis process was extremely time-consuming and had to be started over with each significant alteration of the vehicle. With recent advances in the power and capacity of small computers, and the parallel development of powerful software in structural, thermal, and control system analysis, it is now possible to produce very

  16. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  17. Simulation experiments for hot-leg U-bend two-phase flow phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.


    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions.

  18. The solidification of two-phase heterogeneous materials:Theory versus experiment

    Institute of Scientific and Technical Information of China (English)

    KIM; Tongbeum


    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied.The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores.Experiments using distilled water simulating the aluminum melt to be solidified(frozen)were subsequently conducted to validate the analytical model for two selected porosities(ε),ε=0 and 0.5.Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification.The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores,as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  19. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail:


    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional


    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros


    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  1. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas


    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at

  2. Development and Experimental Evaluation of Passive Fuel Cell Thermal Control (United States)

    Colozza, Anthony J.; Jakupca, Ian J.; Castle, Charles H.; Burke, Kenneth A.


    To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates

  3. Review of Available Data for Validation of Nuresim Two-Phase CFD Software Applied to CHF Investigations

    Directory of Open Access Journals (Sweden)

    D. Bestion


    Full Text Available The NURESIM Project of the 6th European Framework Program initiated the development of a new-generation common European Standard Software Platform for nuclear reactor simulation. The thermal-hydraulic subproject aims at improving the understanding and the predictive capabilities of the simulation tools for key two-phase flow thermal-hydraulic processes such as the critical heat flux (CHF. As part of a multi-scale analysis of reactor thermal-hydraulics, a two-phase CFD tool is developed to allow zooming on local processes. Current industrial methods for CHF mainly use the sub-channel analysis and empirical CHF correlations based on large scale experiments having the real geometry of a reactor assembly. Two-phase CFD is used here for understanding some boiling flow processes, for helping new fuel assembly design, and for developing better CHF predictions in both PWR and BWR. This paper presents a review of experimental data which can be used for validation of the two-phase CFD application to CHF investigations. The phenomenology of DNB and Dry-Out are detailed identifying all basic flow processes which require a specific modeling in CFD tool. The resulting modeling program of work is given and the current state-of-the-art of the modeling within the NURESIM project is presented.

  4. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system (United States)

    Jackson, M. E.


    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  5. Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program (United States)


    efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the

  6. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)


    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  7. Recurrent pyogenic cholangitis : efficacy of two-phase helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ki Ho; Cho, June Sik; Shin, Kyung Sook; Lee, Se Hyo; Yu, Ho Jun; Park, Jin Yong; Kim, Young Min [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)


    To evaluate the usefulness of two-phase helical CT in patients with recurrent pyogenic cholangitis (RPC) for the detection of acute inflammation and assessment of the degree of portal vein (PV) stenosis as a cause of hepatic parenchymal atrophy. We retrospectively reviewed two-phase CT findings in 30 patients with RPC diagnosed by CT, ERCP (endoscopic retrograde cholangiopancreatography), and surgery. Two-phase helical CT scans were obtained 30 sec (arterial phase, AP) and 70 sec (portal phase, PP) after the start of IV administration of contrast material. Without prior information, we analyzed periductal parenchymal and ductal wall enhancement during the AP and PP, and the degree of PV stenosis during the PP. Acute inflammation was diagnosed on the basis of symptoms and laboratory findings. To evaluate the relationship between parenchymal a trophy and PV stenosis, the degree of PV stenosis in affected parenchyma was classified as one of three types (mild, less than 25%; moderate, 25-75%; severe, greater than 75%), as compared with the diameter of normal PV in unaffected parenchyma. Ten of the 30 patients underwent CT during the acute inflammatory stage and 20 during the remission stage. Of the ten patients with acute inflammation, eight (80%) showed transient periductal parenchymal enhancement during the AP (p less than 0.05), which correlated closely with acute inflammation. Only three (15%) of the 20 patients with remission, however, showed transient parenchymal enhancement during this phase, at which time ductal wall enhancement was seen in three (30%) of the ten patients with acute inflammation and in seven (35%) of the 20 who showed remission (p greater than 0.05). There was no significant difference in parenchymal and ductal wall enhancement during the PP between patients with acute inflammation and those who showed remission (p greater than 0.05). Hepatic parenchymal atrophy of the lesion was seen in 24 patients. Among these, PV stenosis was mild in five

  8. Two algorithms for two-phase Stefan type problems

    Institute of Scientific and Technical Information of China (English)

    LIAN Xiao-peng; CHENG Xiao-liang; HAN Wei-min


    In this paper, the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed. An analysis of their convergence is presented and the upper bounds of the convergence rates are derived. Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm, the convergence rate is uniformly bounded away from 1 if τh-2 is kept bounded, where τ is the time step size and h the space mesh size.

  9. Stochastic analysis of particle-fluid two-phase flows

    Institute of Scientific and Technical Information of China (English)


    This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.

  10. Experimental and numerical investigation on two-phase flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ruspini, Leonardo Carlos


    Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non

  11. Two-phase nozzle flow and the subcharacteristic condition

    DEFF Research Database (Denmark)

    Linga, Gaute; Aursand, Peder; Flåtten, Tore


    We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....

  12. Two-Phase Flow Simulations for PTS Investigation by Means of Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Fabio Moretti


    Full Text Available Two-dimensional axisymmetric simulations of pressurized thermal shock (PTS phenomena through Neptune_CFD module are presented aiming at two-phase models validation against experimental data. Because of PTS complexity, only some thermal-hydraulic aspects were considered. Two different flow configurations were studied, occurring when emergency core cooling (ECC water is injected in an uncovered cold leg of a pressurized water reactor (PWR—a plunging water jet entering a free surface, and a stratified steam-water flow. Some standard and new implemented models were tested: modified turbulent k-ε models with turbulence production induced by interfacial friction, models for the drag coefficient, and interfacial heat transfer models. Quite good agreement with experimental data was achieved with best performing models for both test cases, even if a further improvement in phase change modelling would be suitable for nuclear technology applications.

  13. Active thermal figure control for the TOPS II primary mirror (United States)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil


    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  14. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report (United States)

    Wieland, P. O.; Hawk, H. D.


    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  15. Control of Several Emissions during Olive Pomace Thermal Degradation

    Directory of Open Access Journals (Sweden)

    Teresa Miranda


    Full Text Available Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene, sulphur emissions (sulphur dioxide, 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  16. Two-phase electrochemical lithiation in amorphous silicon. (United States)

    Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting


    Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

  17. Acute cholecystitis: two-phase spiral CT finding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)


    To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.

  18. Experimental study of a two-phase surface jet (United States)

    Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.


    Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.

  19. Experimental study of two phase flow in inclined channel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)


    Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)

  20. The Effect of pH Difference Between Two Phases on the Partition of Lysozyme in Aqueous Two-Phase System

    Institute of Scientific and Technical Information of China (English)


    In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.

  1. Preliminary design of the Space Station internal thermal control system (United States)

    Herrin, Mark T.; Patterson, David W.; Turner, Larry D.


    The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.

  2. Airways in Apartment Buildings as a Method of Thermal Control

    Directory of Open Access Journals (Sweden)

    Suslova Anna


    Full Text Available In general, the majority of modern apartment buildings are rather high. Altitude of such structures attains 50 meters. It is clear that for such high structures every extra meter of elevation costs a lot. For this reason, architects are trying to avoid adding attics above the last floor of the buildings. However, attic is not only an architectural element. It is an important part of the thermal control process of the entire building, especially of the apartments located on the last floor. In this article, construction of airways under the roof is suggested and discussed in detail. Airway acts as an attic, but has a significantly lower construction cost due to the lower height. Application of this technology allows providing comfortable microclimate on the living quarters in an economical way.

  3. Self-regulating heater application to Shuttle/Centaur hydrazine fuel line thermal control (United States)

    Unkrich, David B.


    The Shuttle/Centaur high energy upper stage vehicle thermal environments were more severe than previous Centaur vehicle thermal environments, creating need for a new hydrazine fuel line thermal control technique. Constant power heaters did not satisfy power dissipation requirements, because the power required to maintain fuel line thermal control during cold conditions exceeded the maximum power allowable during hot conditions. Therefore, a Raychem Thermolimit self-regulating heater was selected for this application, and was attached to the hydrazine fuel line with Kapton and aluminum foil tapes. Fuel line/heater thermal modeling and subsequent thermal vacuum chamber testing simulated heater thermal performance during all worst-case Shuttle/Centaur thermal environmental conditions. Fuel line temperatures were maintained between the 4C to 71C limits during all analytical and test cases. Finally, the thermal model predictions were correlated with the test data, thereby ensuring that the model would provide satisfactory predictions for future missions and/or vehicles.

  4. Thermal control system and method for a passive solar storage wall

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J.K.E.


    A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  5. Membrane-less micro fuel cell based on two-phase flow (United States)

    Hashemi, S. M. H.; Neuenschwander, M.; Hadikhani, P.; Modestino, M. A.; Psaltis, D.


    Most microfluidic fuel cells use highly soluble fuels and oxidants in streams of liquid electrolytes to overcome the mass transport limitations that result from the low solubility of gaseous reactants such as hydrogen and oxygen. In this work, we address these limitations by implementing controlled two-phase flows of these gases in a set of microchannels electrolytically connected through a narrow gap. Annular flows of the gases reshape the concentration boundary layer over the surface of electrodes and increase the mass-transport limited current density in the system. Our results show that the power density of a two-phase system with hydrogen and oxygen streams is an order of magnitude higher than that of single phase system consisting of liquid electrolytes saturated with the same reactants. The reactor design described here can be employed to boost the performance of MFFCs and put them in a more competitive position compared to membrane based fuel cells.

  6. A Batch Arrival Retrial Queue with Two Phases of Service and Bernoulli Vacation Schedule

    Institute of Scientific and Technical Information of China (English)

    Gautam Choudhury; Kandarpa Deka


    We consider an MX/G/1 queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under a linear retrial policy.In addition,each individual customer is subject to a control admission policy upon the arrival.This model generalizes both the classical M/G/1 retrial queue with arrivals in batches and a two phase batch arrival queue with a single vacation under Bernoulli vacation schedule.We will carry out an extensive stationary analysis of the system,including existence of the stationary regime,embedded Markov chain,steady state distribution of the server state and number of customer in the retrial group,stochastic decomposition and calculation of the first moment.

  7. Contrast enhanced two-phase spiral CT of urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)


    To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was

  8. Stability of stratified two-phase flows in horizontal channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen


    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...

  9. Two-phase flow instability in a parallel multichannel system

    Institute of Scientific and Technical Information of China (English)

    HOU Suxia


    The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.

  10. Response of two-phase droplets to intense electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spann, J.F. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States)); Maloney, D.J.; Lawson, W.F.; Casleton, K.H. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States))


    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 [mu]m) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  11. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін


    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  12. Two phase coexistence for the hydrogen-helium mixture

    CERN Document Server

    Fantoni, Riccardo


    We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.

  13. Phase appearance or disappearance in two-phase flows

    CERN Document Server

    Cordier, Floraine; Kumbaro, Anela


    This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...

  14. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran


    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.


    Institute of Scientific and Technical Information of China (English)

    Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE


    A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.

  16. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.


    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The

  17. Solutal Marangoni instability in layered two-phase flows

    CERN Document Server

    Picardo, Jason R; Pushpavanam, S


    In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...

  18. Two-Phase Algorithm for Optimal Camera Placement

    Directory of Open Access Journals (Sweden)

    Jun-Woo Ahn


    Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.

  19. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)


    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  20. Equations of two-phase flow in spray chamber

    Institute of Scientific and Technical Information of China (English)

    李新禹; 张志红; 金星; 徐杰


    The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.

  1. Transient thermohydraulic modeling of two-phase fluid systems (United States)

    Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.


    This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.

  2. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.


    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  3. Response of two-phase droplets to intense electromagnetic radiation (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.


    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  4. Note on Two-Phase Phenomena in Financial Markets

    Institute of Scientific and Technical Information of China (English)

    JIANG Shi-Mei; CAI Shi-Min; ZHOU Wao; ZHOU Pei-Ling


    The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation phenomenon in Hang-Seng index. It is observed that the bifurcation phenomenon in financial index is not universal, but specific under certain conditions. For Hang-Seng index and randomly generated time series, the phenomenon just emerges when the power-law exponent of absolute increment distribution is between i and 2 with appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours. However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs is far different from real market to artificial data, which may reflect certain market information.

  5. Thirty-two phase sequences design with good autocorrelation properties

    Indian Academy of Sciences (India)

    S P Singh; K Subba Rao


    Polyphase Barker Sequences are finite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difficult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modified Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.

  6. Two-phase methanization of food wastes in pilot scale. (United States)

    Lee, J P; Lee, J S; Park, S C


    A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  7. Two phase continuous digestion of solid manure on-farm

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)


    Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the

  8. Correct numerical simulation of a two-phase coolant (United States)

    Kroshilin, A. E.; Kroshilin, V. E.


    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  9. Supporting universal prevention programs: a two-phased coaching model. (United States)

    Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S


    Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.

  10. Thermoelectric control of shape memory alloy microactuators: a thermal model (United States)

    Abadie, J.; Chaillet, Nicolas; Lexcellent, Christian; Bourjault, Alain


    Microtechnologies and microsystems engineering use new active materials. These materials are interesting to realize microactuators and microsensors. In this category of materials, Shape Memory Alloys (SMA) are good candidates for microactuation. SMA wires, or thin plates, can be used as active material in microfingers. These microstructures are able to provide very important forces, but have low dynamic response, especially for cooling, in confined environment. The control of the SMA phase transformations, and then the mechanical power generation, is made by the temperature. The Joule effect is an easy and efficiency way to heat the SMA wires, but cooling is not so easy. The dynamic response of the actuator depends on cooling capabilities. The thermal convection and conduction are the traditional ways to cool the SMA, but have limitations for microsystems. We are looking for a reversible way of heating and cooling SMA microactuators, based on the thermoelectric effects. Using Peltier effect, a positive or a negative electrical courant is able to pump or produce heat, in the SMA actuator. A physical model based on thermal exchanges between a Nickel/Titanium (NiTi) SMA, and Bismuth/Telluride (Te3Bi2) thermoelectric material has been developed. For simulation, we use a numerical resolution of our model, with finite elements, which takes into account the Peltier effect, the Joule effect, the convection, the conduction and the phase transformation of the SMA. We have also developed the corresponding experimental system, with two thermoelectric junctions, where the SMA actuator is one of the element of each junction. In this paper, the physical model and its numerical resolution are given, the experimental system used to validate the model is described, and experimental results are shown.

  11. International Space Station power module thermal control system hydraulic performance

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, V. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.


    The International Space Station (ISS) uses four photovoltaic power modules (PVMs) to provide electric power for the US On-Orbit Segment. The PVMs consist of photovoltaic arrays (PVAs), orbit replaceable units (ORUs), photovoltaic radiators (PVRs), and a thermal control system (TCS). The PVM TCS function is to maintain selected PVM components within their specified operating ranges. The TCS consists of the pump flow control subassembly (PFCS), piping system, including serpentine tubing for individual component heat exchangers, headers/manifolds, fluid disconnect couplings (FQDCs), and radiator (PVR). This paper describes the major design requirements for the TCS and the results of the system hydraulic performance predictions in regard to these requirements and system component sizing. The system performance assessments were conducted using the PVM TCS fluid network hydraulic model developed for predicting system/component pressure losses and flow distribution. Hardy-Cross method of iteration was used to model the fluid network configuration. Assessments of the system hydraulic performance were conducted based on an evaluation of uncertainties associated with the manufacturing and design tolerances. Based on results of the analysis, it was concluded that all design requirements regarding system performance could be met. The hydraulic performance range, enveloping possible system operating parameter variations was determined.

  12. Sub-thermal to super-thermal light statistics from a disordered lattice via deterministic control of excitation symmetry

    CERN Document Server

    Kondakci, H E; Abouraddy, A F; Christodoulides, D N; Saleh, B E A


    Monochromatic coherent light traversing a disordered photonic medium evolves into a random field whose statistics are dictated by the disorder level. Here we demonstrate experimentally that light statistics can be deterministically tuned in certain disordered lattices, even when the disorder level is held fixed, by controllably breaking the excitation symmetry of the lattice modes. We exploit a lattice endowed with disorder-immune chiral symmetry in which the eigenmodes come in skew-symmetric pairs. If a single lattice site is excited, a "photonic thermalization gap" emerges: the realm of sub-thermal light statistics is inaccessible regardless of the disorder level. However, by exciting two sites with a variable relative phase, as in a traditional two-path interferometer, the chiral symmetry is judiciously broken and interferometric control over the light statistics is exercised, spanning sub-thermal and super-thermal regimes. These results may help develop novel incoherent lighting sources from coherent lase...

  13. Application of stereology for two-phase flow structure validation in fluidized bed reactors

    Directory of Open Access Journals (Sweden)

    Anweiler Stanisław


    Full Text Available Paper describes a novel method for two-phase gas-solid flow structure validation in fluidized bed reactors. Investigation is based on application of stereology techniques. This is an innovative approach in the field of fluidization phenomena research. Study is focused on the analysis of flow structure images, obtained with high-speed visualization of the fluidization process. Fluidization is conducted in transparent narrow channel, where plastic balls are fluidized by air. Applied stereological analysis is grounded on the linear method and on the method of random and directed secants. This enables 2-dimensional image measurement and 3-dimensional stereological extrapolation. The major result is that for each two-phase gas-solid flow structure a set of stereological parameters exists. This enables quantification of the process. It has been found that the observation of inter-relation of all stereological parameters, during the changing of the flow structure, can be used for system control. The basic conclusion is that knowledge about the character of the changes may be used for constant process adjustment for various two phase systems such as gas-solid or gas-liquid.

  14. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)


    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  15. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator Project (United States)

    National Aeronautics and Space Administration — Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats to external environments. We...

  16. Advanced Durable Flexible Ultra Low Outgassing Thermal Control Coatings for NASA Science Missions Project (United States)

    National Aeronautics and Space Administration — This Phase I program proposes to synthesize novel nanoengineered ultra low out gassing elastomers and formulate high temperature capable flexible thermal control...

  17. Rectified Continuous Flow Loop for Thermal Control of Large Deployable Structures and Distributed Loads Project (United States)

    National Aeronautics and Space Administration — Future instruments and platforms for NASA's Earth Science Enterprises will require increasingly sophisticated thermal control technology, and cryogenic applications...

  18. The Deep Crust Magmatic Refinery, Part 1: A Coupled Thermodynamic and Two-phase Flow Model (United States)

    Riel, N., Jr.; Bouilhol, P.; Van Hunen, J.; Velic, M.; Magni, V.


    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To assess the dynamics of this deep magmatic system we developed a new 2-D two-phase flow code using finite volume method. Our formulation takes into account: (i) melt flow through a viscous porous matrix with temperature- and melt-content dependent host-rock viscosity, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases, (iv) injection of fractionated melt from crystallizing basalt at the Moho and (v) chemical advection of both the solid and liquid compositions. Here we present the core of our modelling approach, especially the petrological implementation. We show in details that our thermodynamic model can reproduce well both the sub- and supra solidus phase relationship and composition of the host-rock. We apply our method to an idealized amphibolite lower crust that is affected by a magmatic event represented by the intrusion of a wet mantle melt into the crust at Moho depth. The models [see Bouilhol et al

  19. Statistical descriptions of polydisperse turbulent two-phase flows (United States)

    Minier, Jean-Pierre


    Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results

  20. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing (United States)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.


    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  1. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change (United States)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.


    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  2. A complete two-phase model of a porous cathode of a PEM fuel cell (United States)

    Hwang, J. J.

    This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).

  3. Multiphysics modeling of two-phase film boiling within porous corrosion deposits (United States)

    Jin, Miaomiao; Short, Michael


    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys.

  4. Self-organizing maps applied to two-phase flow on natural circulation loop studies

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Leonardo F.; Cunha, Kelly de P.; Andrade, Delvonei A.; Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Rocha, Marcelo da S.; Masotti, Paulo H.F.; Mesquita, Roberto N. de, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on 'loss of pump power' or 'plant shutdown' accidents. The accuracy of heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital images acquired on natural circulation flow instabilities. This technique will allow the selection of the more important characteristics associated with each flow pattern, enabling a better comprehension of each observed instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The Natural Circulation Facility (Circuito de Circulacao Natural - CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to one and two phase flow under natural circulation conditions. (author)

  5. Two Phase Flow Stability in the HTR-10 Steam Generator

    Institute of Scientific and Technical Information of China (English)

    居怀明; 左开芬; 刘志勇; 徐元辉


    A 10 MW High Temperature Gas Cooled Reactor (HTR-10) designed bythe Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.

  6. Thermal mathematical modelling philosophy for modular and integrated networks used in the Hermes thermal control (United States)

    Petrini, Pierluigi; Martino, Renato; Ruvolo, Giuseppe


    The management of thermal modeling activities, so as to build up an overall Hermes Thermal Mathematical Model (HTMM), is described. This overall thermal model is developed using ESATAN (ESA Thermal Analysis Network) software. This computer code allows the hierarchical linking of the various 'stand alone' submodels of different compartments of the Spaceplane. In the Hermes program these submodels are built and run independently, and to permit a successful integration some key points must be considered: requirements for submodel/compartment development; interface definition between submodels; boundary conditions for each submodel; consistent thermal parameters database; network change facilities; logic implementation to simulate the mission phases to be analyzed; linking of submodels; requirements for post processing; and result interpretation. These aspects are discussed, underlining the major problems encountered and the solutions adopted.

  7. Automatic Generation Control Using PI Controller with Bacterial Foraging for both Thermal and Hydro Plants

    Directory of Open Access Journals (Sweden)

    Preeti Hooda,


    Full Text Available The load-frequency control (LFC is used to restore the balance between load and generation in each control area by means of speed control. In power system, the main goal of load frequency control (LFC or automatic generation control (AGC is to maintain the frequency of each area and tie- line power flow within specified tolerance by adjusting the MW outputs of LFC generators so as to accommodate fluctuating load demands. In this paper, attempt is made to make a scheme for automatic generation control within a restructured environment considering effects of contracts between DISCOs and GENCOs to make power system network in normal state where, GENCO used are hydro plants as well as thermal plants. The bacterial foraging optimization technique is being developed, which is applied to AGC in an interconnected four area system.The performance of the system is obtained by MATLAB Simulink tool. The results are shown in frequency and power response for four area AGC system. In this paper we have shown practical work by using thermal and hydro both system at Genco’s side.As reheated system transfer function is being used.

  8. Space station freedom resource nodes internal thermal control system (United States)

    Merhoff, Paul; Dellinger, Brent; Taggert, Shawn; Cornwell, John


    This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2. A SINDA/FLUINT math model of the ITCS is described, and results of analyses for an MTC and a PMC case are shown and discussed.

  9. Embedded microstructures for daylighting and seasonal thermal control (United States)

    Kostro, André; Geiger, Mario; Jolissaint, Nicolas; Gonzalez Lazo, Marina A.; Scartezzini, Jean-Louis; Leterrier, Yves; Schüler, Andreas M.


    A novel concept for an advanced fenestration system was studied and samples were produced to demonstrate the feasibility. The resulting novel glazing will combine the functions of daylighting, glare protection, and seasonal thermal control. Coated microstructures provide redirection of the incident solar radiation, thus simultaneously reducing glare and projecting daylight deep into the room in the same manner as an anidolic mirror-based system. The solar gains are reduced for chosen angles corresponding to aestival elevations of the sun, thereby minimizing heating loads in winter and cooling loads in summer. A ray-tracing program developed especially for the study of laminar structures was used for the optimization of structures with the above mentioned goals. The chosen solution is based on reflective surfaces embedded in a polymer film that can be combined with a standard doubled glazed window. The fabrication of such structures required several steps. The fabrication of a metallic mould with a relative high aspect ratio and mirror polished surfaces is followed by the production of an intermediate Polydimethylsiloxane moulds that was subsequently used to replicate the structure with a UV curable polymer. Selected facets of these samples were then coated with a thin film of highly reflective material in a physical vapour deposition process. Finally, the structures were filled with the same polymer to integrated the mirrors.

  10. Particle migration in two-phase, viscoelastic flows (United States)

    Jaensson, Nick; Hulsen, Martien; Anderson, Patrick


    Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.

  11. Criteria for guaranteed breakdown in two-phase inhomogeneous bodies (United States)

    Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.


    Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.

  12. Diagnosing Traffic Anomalies Using a Two-Phase Model

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu


    Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.

  13. Stability of stratified two-phase flows in horizontal channels (United States)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.


    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  14. Microporous silica gels from alkylsilicate-water two phase hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program


    Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.

  15. Pressure transient analysis of two-phase flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.C.; Reynolds, A.C.; Raghavan, R.


    This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.

  16. An automated two-phase system for hydrogel microbead production. (United States)

    Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali


    Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.

  17. Simulation and modeling of two-phase bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Sylvain L Pigny; Pierre F Coste [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)


    Full text of publication follows: Phenomena related to bubbles in two-phase recirculating flows are investigated, via the computational code SIMMER, concerning an experiment in which air is injected in the lower part of a tank filled of water and initially at rest. Averaged mass and momentum transport equations are solved for air and water. Close to the injector, the formation of individual large bubbles is represented in the calculations, via direct simulation. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled, in a statistical way, via classical closure laws. In a first calculation, the splitting of large bubbles is not represented. It is shown that this phenomenon, the space scale of which is close to the cell size, cannot be simulated, in view of the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and the splitting phenomenon is too large to be modeled via closure laws. A specific approach for the intermediate scales is therefore developed to represent it. (authors)

  18. Analyzing Control Challenges for Thermal Energy Storage in Foodstuffs

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten Juel


    We consider two important challenges that arise when thermal energy is to be stored in foodstuffs. We have previously introduced economic optimizing MPC schemes that both reduce operating costs and offer flexible power consumption in a future Smart Grid. The goal is to utilize the thermal capacity...

  19. 双重介质非饱和两相流岩体热流固损伤模型研究%Study on Thermal Deterioration Model of Liquid and Solid in Double Porous Medium Rock Matrix with Unsaturated Two-phase Flow

    Institute of Scientific and Technical Information of China (English)

    魏长霖; 齐悦


    以孔隙-裂缝双重孔隙介质为研究对象,建立孔隙度与岩体应变数学模型和温度场诱导应力模型.基于Terzaghi有效应力原理,建立注水开采过程温度-流体-岩石骨架的应力分布模型.考虑注水压力和注水温度场应力导致的岩体孔隙-裂隙的变形、成核和增长,采用应变孔隙度定义损伤变量,建立了以Gurson-Tvergaard-Needleman圆柱体胞模型为塑性屈服函数的双重孔隙介质饱和热流固损伤本构模型.以某1口生产井为研究对象,通过有限元软件数值模拟得到:温度场诱导应力、注水压力诱导应力和岩石应力分布规律;应力与损伤变量、应变孔隙度演化规律.新模型对油田注水开采过程中储层孔隙和裂缝的变化提供了新的研究方法和理论依据.%The double porous medium that is a medium between pore and fracture is selected as an object of study. The inductive stress model of thermal field is built, as well as the mathematical model of porosity and rock matrix strain. Based on the Terzaghi effective stress principle, the stress distribution model is built which is the relationship of temperature, liquid and rock skeleton during period of waterflood exploitation. The processes are considered , which are deformation, nucleation and growing of pore and fracture that are induced by stress of injection pressure and injection temperature field stress. The damage variable is defined by strain porosity. The constitutional equation of double pore medium saturated liquid-solid is set up where the Gurson Tvergaard Needleman cylindric representative volume element ( RVE) is taken as plastic yielding function. Take some well in one oil field, the result is concluded form numerical simulation of finite element software, which are induced stresses of thermal field and waterflood pressure and rock stress distribution rule, together with evolving regulations of stress and damage variable and strain porosity. The new model

  20. Experimental Investigations of Two-Phase Cooling in Microgap Channel (United States)


    network [35]. The thermal test dies are fabricated using a five-inch type-P silicon wafer with orientation 111. The dies are 625 µm thick and are...37Pb solder bumps . Table 1 includes the dimensions (measured) of the microgap and the test conditions used. A transparent (a type of polycarbonate

  1. Exact solution of two phase spherical Stefan problem with two free boundaries (United States)

    Kavokin, Alexey A.; Nauryz, Targyn; Bizhigitova, Nazerke T.


    Solution of the heat equation in a spherical domain with two free boundaries (two-phase Stefan problem) when one of the subdomains degenerates at the initial time is considered. The use of conventional finite-difference methods in these cases is not expedient because of the degenerate domain. The solution is found in the form of combination of Integral Error functions series, [M. Sarsengeldin, and S. Kharin, Filomat, (2016), (in Press)] and then recurrent solvability of nonlinear algebraic equations for determining the coefficients of the series is proved. Such problems are of practical interest for the simulation of laser material processing as well for the modeling of thermal effects of electric arc that ignites during the opening of electric contacts [S. N. Kharin, and M. Sarsengeldin, Influence of contact materials on phenomena in a short electrical arc, in Key Engineering Materials, Trans tech publications, Islamabad, Pakistan, 2012, pp. 321-329].

  2. Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon (United States)

    Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu

    A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.

  3. Gas Control and Thermal Modeling Methods for Pressed Pellet and Fast Rise Thin-Film Thermal Batteries (United States)


    heat paper.3,4 Similar pyrotechnically heated mixtures of ~22/78 wt % Zr /BaCrO4 heat powder plus additional BaCrO4 powder should be effective in...fractions – Control – Full Run – Showing H2 – No Zr /BaCrO4 ..............................6 Fig. 2 Pressed pellet thermal battery operating gas atmosphere...fractions – Control – Full Run – Not Showing H2 – No Zr /BaCrO4 .......................6 Fig. 3 Pressed pellet thermal battery operating gas

  4. Loop Heat Pipe with Thermal Control Valve for Passive Variable Thermal Link Project (United States)

    National Aeronautics and Space Administration — Future Lunar Landers and Rovers will require variable thermal links that can reject heat during daytime, and passively shut-off during lunar night. During the long...

  5. Loop Heat Pipe with Thermal Control Valve for Passive Variable Thermal Link Project (United States)

    National Aeronautics and Space Administration — Loop heat pipes (LHPs) can provide variable thermal conductance needed to maintain electronics and batteries on Lunar/Martian rovers/landers within desired...

  6. Software for Automated Generation of Reduced Thermal Models for Spacecraft Thermal Control Project (United States)

    National Aeronautics and Space Administration — Thermal analysis is increasingly used in the engineering of spacecrafts at every stage, including design, test, and ground-operation simulation. Currently used...

  7. 0-π phase-controllable thermal Josephson junction (United States)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco


    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.


    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams


    Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of

  9. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido


    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  10. Experimental observation of capillary instabilities of two phase flow in a microfluidic T-junction

    CSIR Research Space (South Africa)

    Mbanjwa, MB


    Full Text Available . Table 1 lists the volume and surface force ratios represented in terms of the important dimensionless numbers, for a characteristic two-phase flow in a microchannel with a hydraulic diameter Dh and average velocity V, where ? and ? are fluid density... of transparent PDMS elastomer using soft lithography techniques. The fluids were fed into the microchannel using syringe pumps, which were independently controlled. 10?l/ml (1% v/v) of sorbitan monolaurate (Span 20) surfactant was dissolved in the oil phase...

  11. Numerical flow analyses of a two-phase hydraulic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)


    We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.

  12. Two Phase Flow Mapping and Transition Under Microgravity Conditions (United States)

    Parang, Masood; Chao, David F.


    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  13. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao


    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  14. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study. (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X; Guo, Shaohui; Chen, Chunmao


    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  15. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao


    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  16. Controllable magnetic thermal rectification in a SMM dimmer with the Dzyaloshinskii-Moriya interaction (United States)

    Xu, Ai-Hua; Liu, Juan; Luo, Bo


    Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.

  17. Integral Radiators for Next Generation Thermal Control Systems Project (United States)

    National Aeronautics and Space Administration — Integral radiators integrate the primary structural system and the thermal rejection system into a dual function subsystem allowing for reduced weight. The design of...

  18. Electrochemical-Driven Fluid Pump for Spacecraft Thermal Control Project (United States)

    National Aeronautics and Space Administration — With the increasing power demands and longer life spans of space vehicles, their thermal management becomes ever more critical. Accompanying this is an unprecedented...

  19. Electrochemical-Driven Fluid Pump for Spacecraft Thermal Control Project (United States)

    National Aeronautics and Space Administration — With the increasing power demands and longer life spans of space vehicles, their thermal management becomes ever more critical. Accompanying this is an unprecedented...

  20. Single-Sided Digital Microfluidic (SDMF Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling

    Directory of Open Access Journals (Sweden)

    Sung-Yong Park


    Full Text Available Digital microfluidics (DMF driven by electrowetting-on-dielectric (EWOD has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without additional mechanical components such as pumps, microchannels, and capillary wicks. However, a typical sandwiched configuration in DMF devices only allows sensible heat transfer, which seriously limits heat rejection capability, particularly for high-heat-flux thermal dissipation. In this paper, we present a single-sided digital microfluidic (SDMF device that enables not only effective liquid handling on a single-sided surface, but also two-phase heat transfer to enhance thermal rejection performance. Several droplet manipulation functions required for two-phase cooling were demonstrated, including continuous droplet injection, rapid transportation as fast as 7.5 cm/s, and immobilization on the target hot spot where heat flux is locally concentrated. Using the SDMF platform, we experimentally demonstrated high-heat-flux cooling on the hydrophilic-coated hot spot. Coolant droplets were continuously transported to the target hot spot which was mitigated below 40 K of the superheat. The effective heat transfer coefficient was stably maintained even at a high heat flux regime over ~130 W/cm2, which will allow us to develop a reliable thermal management module. Our SDMF technology offers an effective on-chip cooling approach, particularly for high-heat-flux thermal management based on two-phase heat transfer.

  1. Ultrasound therapy applicators for controlled thermal modification of tissue (United States)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.


    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high

  2. Two-phase analysis in consensus genetic mapping. (United States)

    Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A


    Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the

  3. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating

    NARCIS (Netherlands)

    Logtenberg, Hella; Lopez-Martinez, Maria J.; Feringa, Ben L.; Browne, Wesley R.; Verpoorte, Elisabeth


    An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by

  4. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.


    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  5. 48 CFR 36.301 - Use of two-phase design-build selection procedures. (United States)


    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....

  6. 24 CFR 115.201 - The two phases of substantial equivalency certification. (United States)


    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....

  7. Control over emissivity of zero-static-power thermal emitters based on phase changing material GST

    CERN Document Server

    Du, Kaikai; Lyu, Yanbiao; Ding, Jichao; Lu, Yue; Cheng, Zhiyuan; Qiu, Min


    Controlling the emissivity of a thermal emitter has attracted growing interest with a view towards a new generation of thermal emission devices. So far, all demonstrations have involved sustained external electric or thermal consumption to maintain a desired emissivity. Here control over the emissivity of a thermal emitter consisting of a phase changing material Ge2Sb2Te5 (GST) film on top of a metal film is demonstrated. This thermal emitter shows broad wavelength-selective spectral emissivity in the mid-infrared. The peak emissivity approaches the ideal blackbody maximum and a maximum extinction ratio of above 10dB is attainable by switching GST between the crystalline and amorphous phases. By controlling the intermediate phases, the emissivity can be continuously tuned. This switchable, tunable, wavelength-selective and thermally stable thermal emitter will pave the way towards the ultimate control of thermal emissivity in the field of fundamental science as well as for energy-harvesting and thermal contro...

  8. SHAFT78: a two-phase multidimensional computer program for geothermal reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Schroeder, R.C.; Witherspoon, P.A.; Zerzan, J.M.


    The computer program SHAFT78 was developed to compute two-phase flow phenomena in geothermal reservoirs. The program solves transient initial-value problems with prescribed boundary-conditions in up to three space dimensions. The solution method is an explicit-implicit IFD approach which does not distinguish between 1, 2, or 3-D coordinate systems and allows a flexible choice of the shape of the discrete grid elements. The mass-and-energy equations are formulated in conservative form. The stability and convergence of the algorithm is controlled by an automatic choice of time steps - partially controlled by the user. Although the program has been developed for use in simulating production and injection in geothermal reservoirs, there are other two-phase problems for which it is either immediately applicable, or for which it can be modified to be applicable. All fluid parameters, such as viscosity, heat capacity, heat conductivity, etc., can be specified as functions of temperature and pressure, and all parameters can vary with position. The program can handle up to seven different anisotropic rocks, with all rock parameters assumed to be independent of position, temperature, and pressure. (MHR)

  9. Temperature control of thermal radiation from composite bodies (United States)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.


    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  10. Reversible control of electrochemical properties using thermally-responsive polymer electrolytes. (United States)

    Kelly, Jesse C; Pepin, Mark; Huber, Dale L; Bunker, Bruce C; Roberts, Mark E


    A thermally responsive copolymer is designed to modulate the properties of an electrolyte solution. The copolymer is prepared using pNIPAM, which governs the thermal properties, and acrylic acid, which provides the electrolyte ions. As the polymer undergoes a thermally activated phase transition, the local environment around the acid groups is reversibly switched, decreasing ion concentration and conductivity. The responsive electrolyte is used to control the activity of redox electrodes with temperature.

  11. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)


    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  12. On the Two-Phase Structure of Protogalactic Clouds

    CERN Document Server

    Lin, D N C


    Within protogalaxies, thermal instability leads to the formation of a population of cool fragments, confined by the pressure of residual hot gas. The hot gas remains in quasi-hydrostatic equilibrium, at approximately the virial temperature of the dark matter halo. It is heated by compression and shock dissipation and is cooled by bremsstrahlung emission and conductive losses into the cool clouds. The cool fragments are photoionized and heated by the extragalactic UV background and nearby massive stars. The smallest clouds are evaporated due to conductive heat transfer from the hot gas. All are subject to disruption due to hydrodynamic instabilities. They also gain mass due to collisions and mergers and condensation from the hot gas due to conduction. The size distribution of the fragments in turn determines the rate and efficiency of star formation during the early phase of galactic evolution. We have performed one-dimensional hydrodynamic simulations of the evolution of the hot and cool gas. The cool clouds ...

  13. On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant

    CERN Document Server

    Barrett, John W; Nürnberg, Robert


    We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.

  14. Experimental research on thermoelectric cooler for imager camera thermal control (United States)

    Hu, Bing-ting; Kang, Ao-feng; Fu, Xin; Jiang, Shi-chen; Dong, Yao-hai


    Conventional passive thermal design failed to satisfy CCD's temperature requirement on a geostationary earth orbit satellite Imager camera because of the high power and low working temperature, leading to utilization of thermoelectric cooler (TEC) for heat dissipation. TEC was used in conjunction with the external radiator in the CCDs' thermal design. In order to maintain the CCDs at low working temperature, experimental research on the performance of thermoelectric cooler was necessary and the results could be the guide for the application of TEC in different conditions. The experimental system to evaluate the performance of TEC was designed and built, consisting of TEC, heat pipe, TEC mounting plate, radiator and heater. A series of TEC performance tests were conducted for domestic and oversea TECs in thermal vacuum environment. The effects of TEC's mounting, input power and heat load on the temperature difference of TEC's cold and hot face were explored. Results demonstrated that the temperature difference of TEC's cold and hot face was slightly increased when TEC's operating voltage reached 80% of rating voltage, which caused the temperature rise of TEC's hot face. It recommended TEC to operate at low voltage. Based on experiment results, thermal analysis indicated that the temperature difference of TEC's cold and hot face could satisfy the temperature requirement and still had surplus.

  15. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions (United States)

    Dahms, Rainer N.


    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  16. Domain decomposition parallel computing for transient two-phase flow of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Choi, Hyoung Gwon [Seoul National University, Seoul (Korea, Republic of)


    KAERI (Korea Atomic Energy Research Institute) has been developing a multi-dimensional two-phase flow code named CUPID for multi-physics and multi-scale thermal hydraulics analysis of Light water reactors (LWRs). The CUPID code has been validated against a set of conceptual problems and experimental data. In this work, the CUPID code has been parallelized based on the domain decomposition method with Message passing interface (MPI) library. For domain decomposition, the CUPID code provides both manual and automatic methods with METIS library. For the effective memory management, the Compressed sparse row (CSR) format is adopted, which is one of the methods to represent the sparse asymmetric matrix. CSR format saves only non-zero value and its position (row and column). By performing the verification for the fundamental problem set, the parallelization of the CUPID has been successfully confirmed. Since the scalability of a parallel simulation is generally known to be better for fine mesh system, three different scales of mesh system are considered: 40000 meshes for coarse mesh system, 320000 meshes for mid-size mesh system, and 2560000 meshes for fine mesh system. In the given geometry, both single- and two-phase calculations were conducted. In addition, two types of preconditioners for a matrix solver were compared: Diagonal and incomplete LU preconditioner. In terms of enhancement of the parallel performance, the OpenMP and MPI hybrid parallel computing for a pressure solver was examined. It is revealed that the scalability of hybrid calculation was enhanced for the multi-core parallel computation.

  17. Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej


    With its young surface, very few impact craters, and the abundance of tectonic and cryovolcanic features, Europa has likely been subjected to relatively recent endogenic activity. Morphological analyses of chaos terrains and double ridges suggest the presence of liquid water within the ice shell a few kilometers below the surface, which may result from enhanced tidal heating. A major issue concerns the thermal/gravitational stability of these water reservoirs. Here we investigate the conditions under which water can be generated and transported through Europa's ice shell. We address particularly the downward two-phase flow by solving the equations for a two-phase mixture of water ice and liquid water in one-dimensional geometry. In the case of purely temperate ice, we show that water is transported downward very efficiently in the form of successive porosity waves. The time needed to transport the water from the subsurface region to the underlying ocean varies between ˜1 and 100 kyr, depending mostly on the ice permeability. We further show that water produced in the head of tidally heated hot plumes never accumulates at shallow depths and is rapidly extracted from the ice shell (within less than a few hundred kiloyears). Our calculations indicate that liquid water will be largely absent in the near subsurface, with the possible exception of cold conductive regions subjected to strong tidal friction. Recently active double ridges subjected to large tidally driven strike-slip motions are perhaps the most likely candidates for the detection of transient water lenses at shallow depths on Europa.

  18. Simultaneous thermal and optical imaging of two-phase flow in a micro-model

    NARCIS (Netherlands)

    Karadimitriou, N.K.; Nuske, P.; Kleingeld, P.J.; Hassanizadeh, S.M.; Helmig, R.


    In the study of non-equilibrium heat transfer in multiphase flow in porous media, parameters and constitutive relations, like heat transfer coefficients between phases, are unknown. In order to study the temperature development of a relatively hot invading immiscible non-wetting fluid and, ultimatel

  19. Two-Dimension Sorting and Selection Algorithm featuring Thermal Balancing Control for Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Máthé, Lászlo; Teodorescu, Remus


    With the aim to solve the unbalanced thermal behavior in the modular multilevel converter, introduced by mismatch in the submodule parameters, a thermal balancing control strategy is proposed here. The proposed solution ensures a balanced junction temperature for the power devices, while...

  20. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)


    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  1. Thermal response simulation for tuning PID controllers in a 1016 mm guarded hot plate apparatus. (United States)

    Thomas, William C; Zarr, Robert R


    A mathematical model has been developed and used to simulate the controlled thermal performance of a large guarded hot-plate apparatus. This highly specialized apparatus comprises three interdependent components whose temperatures are closely controlled in order to measure the thermal conductivity of insulation materials. The simulation model was used to investigate control strategies and derive controller gain parameters that are directly transferable to the actual instrument. The simulations take orders-of-magnitude less time to carry out when compared to traditional tuning methods based on operating the actual apparatus. The control system consists primarily of a PC-based PID control algorithm that regulates the output voltage of programmable power amplifiers. Feedback parameters in the form of controller gains are required for the three heating circuits. An objective is to determine an improved set of gains that meet temperature control criteria for testing insulation materials of interest. The analytical model is based on aggregated thermal capacity representations of the primary components and includes the same control algorithm as used in the actual hot-plate apparatus. The model, accounting for both thermal characteristics and temperature control, was validated by comparisons with test data. The tuning methodology used with the simulation model is described and results are presented. The resulting control algorithm and gain parameters have been used in the actual apparatus without modification during several years of testing materials over wide ranges of thermal conductivity, thickness, and insulation resistance values.

  2. Continuous aqueous two-phase extraction of human antibodies using a packed column. (United States)

    Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R


    The performance of a pilot scale packed differential contactor was evaluated for the continuous counter-current aqueous two-phase extraction (ATPE) of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant (CS) enriched with pure protein. Preliminary studies have been firstly performed in order to select the dispersed phase (phosphate-rich or polyethylene glycol 3350 Da (PEG)-rich phase) and the column packing material. The PEG-rich phase has been selected as the dispersed phase and the stainless steel as the preferred material for the column packing bed since it was not wetted preferentially by the selected dispersed phase. Hydrodynamic studies have been also performed, and the experimental results were successfully adjusted to the Richardson-Zaki and Mísek equations, typically used for the conventional organic-aqueous two-phase systems. An experimental set-up combining the packed column with a pump mixer-settler stage showed to have the best performance and to be advantageous when compared to the IgG batch extraction. An IgG recovery yield of 85% could be obtained with about 50% of total contaminants and more than 85% of contaminant proteins removal. Mass transfer studies have revealed that the mass transfer was controlled by the PEG-rich phase. A higher efficiency could be obtained when using an extra pump mixer-settler stage and higher flow rates.

  3. Survival estimation in two-phase cohort studies with application to biomarkers evaluation. (United States)

    Rebora, Paola; Valsecchi, Maria Grazia


    Two-phase studies are attractive for their economy and efficiency in research settings where large cohorts are available for investigating the prognostic and predictive role of novel genetic and biological factors. In this type of study, information on novel factors is collected only in a convenient subcohort (phase II) drawn from the cohort (phase I) according to a given (optimal) sampling strategy. Estimation of survival in the subcohort needs to account for the design. The Kaplan-Meier method, based on counts of events and of subjects at risk in time, must be applied accounting, with suitable weights, for the sampling probabilities of the subjects in phase II, in order to recover the representativeness of the subcohort for the entire cohort. The authors derived a proper variance estimator of survival by linearization. The proposed method is applied in the context of a two-phase study on childhood acute lymphoblastic leukemia, which was planned in order to evaluate the role of genetic polymorphisms on treatment failure due to relapse. The method has shown satisfactory performance through simulations under different scenarios, including the case-control setting, and proved to be useful for describing results in the clinical example.

  4. Controlling thermal and electrical properties of graphene by strain-engineering its flexural phonons (United States)

    Conley, Hiram; Nicholl, Ryan; Bolotin, Kirill


    We explore the effects of flexural phonons on the thermal and electrical properties of graphene. To control the amplitude of flexural phonons, we developed a technique to engineer uniform mechanical strain between 0 and 1% in suspended graphene. We determine the level of strain, thermal conductivity and carrier mobility of graphene through a combination of mechanical resonance and electrical transport measurements. Depending on strain, we find significant changes in the thermal expansion coefficient, thermal conductivity, and carrier mobility of suspended graphene. These changes are consistent with the expected contribution of flexural phonons.

  5. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew


    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  6. Design of a Driver of Two-phase Hybrid Stepper Motor Based on THB6064H (United States)

    Zeng, Qi


    Stepper motor is a kind of motor which can change electric pulse signal into angular displacement or linear displacement, usually; it must have a driver in order to work effectively. A driver of two-phase hybrid stepper motor based on THB6064H and single-chip of STC89C52 is designed and proposed. The driver is with the function of driving the motor to start and stop, forward and reversal, adjusting the speed of the motor and realizing the step angle subdivided control. Moreover, the maximum output current of the proposed driver achieves 5 amperes which can drive 57 series stepper motor well. Touch keys are used to input the preset data and controlling instructions of the motor, and a 1602LCD display is also adopted to show the basic parameters of the stepper motor in operation.

  7. A modified Rusanov scheme for shallow water equations with topography and two phase flows (United States)

    Mohamed, Kamel; Benkhaldoun, F.


    In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.

  8. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser (United States)

    Aghel, Babak; Rahimi, Masoud; Almasi, Saeed


    The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.

  9. Quality control for thermal building simulations; Keurmerk thermische gebouwsimulaties

    Energy Technology Data Exchange (ETDEWEB)

    Wijsman, A.J.Th.M.; Plokker, W. [TNO Bouw, Delft (Netherlands)


    Within the framework of the IEA (International Energy Agency) Annex 21 (Calculation of Energy and Environmental Performance of Buildings a set of tools has been developed to reduce the - in practice often very broad - differences produced in computerised thermal calculations for buildings and installations. This was followed by the launch of a project aimed at putting the assimilated knowledge and newly developed tools into practice in the Netherlands. The tools (MIS or Model Information System for the documentation of the models and the programmes, BESTEST to test building simulation programmes, and PAM, a Performance Assessment Method with guidelines for the user to translate practical data of the building into input data for the programme) were partly adapted to the Dutch situation and then transferred to four interested Dutch distributors of the computer software used for the thermal calculations. A procedure was also developed for issuing a mark of approval, based on these tools. 2 refs.

  10. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging. (United States)

    Teng, Ying; Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong


    Gravity drainage characteristics are important to improve our understanding of gas-liquid or liquid-liquid two-phase flow in porous media. Stable or unstable displacement fronts that controlled by the capillary force, viscous force, gravitational force, etc., are relevant features of immiscible two-phase flow. In this paper, three dimensionless parameters, namely, the gravity number, the capillary number and the Bond number, were used to describe the effect of the above mentioned forces on two-phase drainage features, including the displacement front and final displacing-phase saturation. A series of experiments on the downward displacement of a viscous fluid by a less viscous fluid in a vertical vessel that is filled with quartz beads are performed by using magnetic resonance imaging (MRI). The experimental results indicate that the wetting properties at both high and low capillary numbers exert remarkable control on the fluid displacement. When the contact angle is lower than 90°, i.e., the displaced phase is the wetting phase, the average velocity Vf of the interface of the two phases (displacement front velocity) is observably lower than when the displaced phase is the non-wetting phase (contact angle higher than 90°). The results show that a fingering phenomenon occurs when the gravity number G is less than the critical gravity number G'=Δμ/μg. Moreover, the higher Bond number results in higher final displacing-phase saturation, whereas the capillary number has an opposite effect.

  11. Near-field radiative thermal control with graphene covered on different materials (United States)

    Wang, Ao; Zheng, Zhiheng; Xuan, Yimin


    Based on the structure of double-layer parallel plates, this paper demonstrates that thermal radiation in near field is greatly enhanced due to near-field effects, exceeding Planck‧s blackbody radiation law. To study the effect of graphene on thermal radiation in near field, the authors add graphene layer into the structure and analyze the ability of graphene to control near-field thermal radiation with different materials. The result indicates that the graphene layer effectively suppresses the near-field thermal radiation between metal plates or polar-dielectric plates, having good ability of thermal insulation. But for doped-silicon plates, depending on the specific models, graphene has different control abilities, suppressing or enhancing, and the control abilities mainly depend on the material graphene is attached to. The authors also summarize some common rules about the different abilities of graphene to control the near-field thermal radiation. In consideration of the thickness of 0.34 nm of monolayer graphene, this paper points out that graphene plays a very important role in controlling the near-field thermal radiation.

  12. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion. (United States)

    Xu, Hang; Pasini, Damiano


    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS.

  13. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion (United States)

    Xu, Hang; Pasini, Damiano


    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS.

  14. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion (United States)

    Xu, Hang; Pasini, Damiano


    The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS. PMID:27721437

  15. Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering

    Indian Academy of Sciences (India)

    M R Nisha; M S Jayalakshmy; J Philip


    Thermal properties of polymeric nanosolids, obtained by condensing the corresponding nanofluids, are investigated using photothermal techniques. The heat transport properties of two sets of polyvinyl alcohol (PVA) based nanosolids, TiO2/PVA and Cu/PVA, prepared by condensing the respective nanofluids, which are prepared by dispersing nanoparticles of TiO2 and metallic copper in liquid PVA, are reported. Two photothermal techniques, the photoacoustic and the photopyroelectric techniques, have been employed for measuring thermal diffusivity, thermal conductivity and specific heat capacity of these nanosolids. The experimental results indicate that thermal conduction in these polymer composites is controlled by heat diffusion through the embedded particles and interfacial scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.

  16. Numerical analysis of influence of heat load on temperature of battery surface with cooling by a two-phase closed thermosyphon

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander


    Full Text Available Numerical analysis of thermal conditions of a two-phase closed thermosyphon using the software package ANSYS FLUENT has been carried out. Time dependence of temperature of heat source surface, which characterize the efficiency of thermosyphon at critical temperatures of batteries have been obtained.

  17. Robust Engineered Thermal Control Material Systems for Crew Exploration Vehicle (CEV) and Prometheus Needs Project (United States)

    National Aeronautics and Space Administration — identified needs for the thermal control and ESD functions of the Prometheus Program's hardware for the heat rejection system for the planned nuclear system. These...

  18. Demonstration of a Plug and Play Approach to Satellite Thermal Control System Development Project (United States)

    National Aeronautics and Space Administration — Mainstream is proposing a methodology to reduce the development time and cost, and improve the reliability of future thermal control systems for the next decade of...

  19. A Module For Thermal Pest Control In Stored Raw Materials Used In ...

    African Journals Online (AJOL)

    A Module For Thermal Pest Control In Stored Raw Materials Used In Feed Mills / Food Manufacturing Industries. ... Journal Home > Vol 3, No 1 (2006) > ... The module is an engineering contraption, which uses steam to raise temperature ...

  20. Hybrid Heat Pipes for High Heat Flux Spacecraft Thermal Control Project (United States)

    National Aeronautics and Space Administration — Grooved aluminum/ammonia Constant Conductance Heat Pipes (CCHPs) are the standard for thermal control in zero-gravity. Unfortunately, they are limited in terms of...

  1. Interior and exterior ballistics coupled optimization with constraints of attitude control and mechanical-thermal conditions (United States)

    Liang, Xin-xin; Zhang, Nai-min; Zhang, Yan


    For solid launch vehicle performance promotion, a modeling method of interior and exterior ballistics associated optimization with constraints of attitude control and mechanical-thermal condition is proposed. Firstly, the interior and external ballistic models of the solid launch vehicle are established, and the attitude control model of the high wind area and the stage of the separation is presented, and the load calculation model of the drag reduction device is presented, and thermal condition calculation model of flight is presented. Secondly, the optimization model is established to optimize the range, which has internal and external ballistic design parameters as variables selected by sensitivity analysis, and has attitude control and mechanical-thermal conditions as constraints. Finally, the method is applied to the optimal design of a three stage solid launch vehicle simulation with differential evolution algorithm. Simulation results are shown that range capability is improved by 10.8%, and both attitude control and mechanical-thermal conditions are satisfied.

  2. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control Project (United States)

    National Aeronautics and Space Administration — MTSA technology specifically addresses the thermal, CO2 and humidity control challenges faced by Portable Life Support Systems (PLSS) to be used in NASA's...

  3. Safe, Non-Corrosive Dielectric Fluid for Stagnating Radiator Thermal Control System Project (United States)

    National Aeronautics and Space Administration — Paragon proposes to develop a single-loop, non-toxic, stagnating active pumped loop thermal control design for NASA's Orion or Lunar Surface Access Module (LSAM)...

  4. Next Generation Advanced Binder Chemistries for High Performance, Environmentally DurableThermal Control Material Systems Project (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase II proposal will develop next generation products for Thermal Control Material Systems (TCMS) an adhesives based on the next generation...

  5. Two phase interleaved buck converter for driving high power LEDs

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig


    increases luminous efficacy of LED compared to PWM dimmed system. Because of the low dynamic resistance of LEDs the duty cycle of the converter does not change greatly with controlled current. By setting the input voltage of the buck converter to around twice the voltage of diode strings, converter can...

  6. Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler (United States)

    Rodriguez-Ruiz, Juan; Rowles, Russell; Greer, Greg


    A procedure was developed to inject thermal filler material (a paste-like substance) inside the power wire bundle coming from solar arrays. This substance fills in voids between wires, which enhances the heat path and reduces wire temperature. This leads to a reduced amount of heat generated. This technique is especially helpful for current and future generation high-power spacecraft (1 kW or more), because the heat generated by the power wires is significant enough to cause unacceptable overheating to critical components that are in close contact with the bundle.

  7. Control and exploitation of thermal distortions in welded T-joints

    Energy Technology Data Exchange (ETDEWEB)

    Keinaenen, H.; Alhainen, J.; Karppi, R.; Verho, M. (VTT Technical Research Centre of Finland, Espoo (Finland))


    The main objective of the DISCO (Control and Exploitation of Thermal Distortions) project was the creation of an overall concept for the control of thermal distortions. The domain of the project was at this stage limited to structural steels and to the processes most important to the participating industry. The project explored the possibility to apply the inherent strain method for modelling thermal deformations by establishing an inherent strain database for major arc welding and thermal cutting situations. The project was executed in close co-operation with Osaka University, Japan, Lappeenranta University of Technology and four Finnish enterprises. The work focused on structural steels representing two strength levels, and GMAW, FCAW, SAW and restrictedly on tandem MAG welding processes. The computational practices were revealed for treating thermal distortions. Further actions included testing and modelling of welded T-joint with various plate thicknesses

  8. A novel intelligent adaptive control of laser-based ground thermal test

    Directory of Open Access Journals (Sweden)

    Gan Zhengtao


    Full Text Available Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance. The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID controller and the conventional PID type fuzzy (F-PID controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  9. A novel intelligent adaptive control of laser-based ground thermal test

    Institute of Scientific and Technical Information of China (English)

    Gan Zhengtao; Yu Gang; Li Shaoxia; He Xiuli; Chen Ru; Zheng Caiyun; Ning Weijian


    Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the pro-posed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  10. Thermal control of electronic equipment by heat pipes; Controle thermique de composants electroniques par caloducs

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.; Schneider, M. [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme; Sartre, V.; Chaker Zaghdoudi, M.; Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France). Centre de Thermique de Lyon, Upresa CNRS


    In the frame of the BRITE-EURAM european programme (KHIEPCOOL project), a literature survey on the main beat pipe and micro heat pipe technologies developed for thermal control of electronic equipment has been carried out. The conventional heat pipes are cylindrical, flat or bellow tubes, using wicks or axial grooves as capillary structures. In the field of micro heat pipes, the component interconnection substrate. The best performances were achieved with Plesch`s axially grooved flat miniature heat pipe, which is able to transfer a heat flux of about 60{sup -2}. Theoretical models have shown that the performance of micro heat pipe arrays increase with increasing tube diameter, decreasing tube length and increasing heat pipe density. The heat pipe technologies are classified and compared according to their geometry and location in the system. A list of about 150 references, classified according to their subjects, is presented. (authors) 160 refs.

  11. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System (United States)

    Gasbarre, J. F.; Dillman, R. A.


    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  12. A Two-Phase Model of Resource Allocation in Visual Working Memory. (United States)

    Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng


    Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated. Allocation may be based on the number of items via stimulus-driven factors, or it may be based on task demands via voluntary control. Previous studies have obtained conflicting results regarding the automaticity versus controllability of such allocation. In the current study, we propose a two-phase allocation model, in which the mental commodity could be allocated only by stimulus-driven factors in the early consolidation phase. However, when there is sufficient time to complete the early phase, allocation can enter the late consolidation phase, where it can be flexibly and voluntarily controlled according to task demands. In an orientation recall task, we instructed participants to store either fewer items at high-precision or more items at low-precision. In 3 experiments, we systematically manipulated memory set size and exposure duration. We did not find an effect of task demands when the set size was high and exposure duration was short. However, when we either decreased the set size or increased the exposure duration, we found a trade-off between the number and precision of VWM representations. These results can be explained by a two-phase model, which can also account for previous conflicting findings in the literature. (PsycINFO Database Record

  13. Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚


    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  14. Thermal control of power supplies with electronic packaging techniques (United States)


    The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.

  15. Implementation of the LAX-Wendroff Method in Cobra-TF for Solving Two-Phase Flow Transport Equations

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K [ORNL; Wang, Dean [ORNL; Ren, Kangyu [University of Massachusetts, Lowell


    COBRA-TF (Coolant Boiling in Rod Arrays Two Fluid), or CTF, is a subchannel code used to conduct the reactor core thermal hydraulic (T/H) solution in both standalone and coupled multi-physics applications. CTF applies the first-order upwind spatial discretization scheme for solving two-phase flow conservation equations. In this work, the second-order Lax-Wendroff (L-W) scheme has been implemented in CTF to solve the two-phase flow transport equations to improve numerical accuracy in both temporal and spatial discretization. To avoid the oscillation issue, a non-linear flux limiter VA (Van Albada) is employed for the convective terms in the transport equations. Assessments have been carried out to evaluate the performance and stability of the implemented second-order L-W scheme. It has been found that the L-W scheme performs better than the upwind scheme for the single-phase and two-phase flow problems in terms of numerical accuracy and computational efficiency.

  16. Electrophoretic Partitioning of Proteins in Two-Phase Microflows

    DEFF Research Database (Denmark)

    Münchow, G.; Hardt, S.; Kutter, Jörg Peter


    conductor and decouples the channel from the electrodes, thus preventing bubble generation inside the separation channel. The experiments show that the electrophoretic transport of proteins between the laminated liquid phases is characterized by a strong asymmetry. When bovine serum albumin (BSA...... control of the formation and arrangement of liquid/liquid phase boundaries. The two immiscible phases which are injected separately into the microchannel are taken from a polyethylene glycol (PEG)-dextran system. The side walls of the channel are partially made of gel material which serves as an ion...

  17. One-phase or two-phase orthodontic treatment? (United States)

    Mir, Carlos Flores


    Data sourcesMedline, Embase, Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), LILACS, BBO,, the National Research Register and Pro-Quest Dissertation Abstracts and Thesis database.Study selectionRandomised controlled trials (RCTs) and controlled trials (CCTs) in children under 11 years at the beginning of treatment for interventions including; interceptive extractions, space maintenance, crossbite correction and habit dissuasion were considered.Data extraction and synthesisTwo reviewers independently extracted data and assessed study quality using the Cochrane Risk of Bias tool. Meta-analysis was possible for 11 comparisons.ResultsTwenty-two studies (18 RCTs, three CCTs) were included with 20 being considered to be at low or unclear risk of bias. For Class II correction in the short-term, meta-analyses demonstrated a statistically significant reduction in ANB (-1.4 degrees, 95 CI: -2.17, -0.64) and overjet (-5.81mm, 95 CI: -6.37, -5.25) with both functional appliances and headgear versus control. For Class II correction in the long-term, however, statistical significance was not found for the same outcomes. Treatment duration was prolonged with both functional appliances (6.85 months, 95 CI: 3.24, 10.45) and headgear (12.47 months, 95 CI: 8.67, 16.26) compared to adolescent treatments. Meta-analyses were not possible for comparisons of other interceptive treatments due to heterogeneity and methodological limitations. The overall quality of the evidence based on the GRADE assessment suggested that the level of evidence was low to moderate.ConclusionsThe results suggest a lack of evidence to prove that early treatment carries additional benefit over and above that achieved with treatment commencing later; however, this does not imply that early treatment is ineffective. The additional cost and burden to the patient, parent and clinician may, therefore, generally negate early treatment

  18. Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system

    Directory of Open Access Journals (Sweden)

    S. Ramachandran


    Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

  19. Design and evaluation of automatic control for human/liquid cooling garment thermal interaction (United States)

    Nyberg, Karen Lujean

    An automatic control system was designed and developed to control the thermal comfort of an astronaut wearing a liquid cooling garment (LCG). Experimental trials were run with test subjects performing arm cranking exercise in an environmental chamber. The thermal control algorithm incorporates the use of carbon dioxide production as a measure of metabolic rate to initiate the control response and mean body temperature, as a function of ear canal and skin temperatures, to provide feedback of the human thermal state to the controller. Nine test subjects each completed three, ninety-minute tests in three different environmental temperatures. Subjective comfort levels were obtained from the subjects throughout each test. Evaluation of subjective comfort level and quantitative energy storage indicates good performance of the controller in maintaining thermal neutrality for the subject over a wide range of environmental and transient metabolic states. The Wissler human thermoregulation model was utilized in the control design process and was used to further analyze the experimental results following testing. Subsequent application of the model allowed evaluation of additional protocols for which the LCG thermal controller may be used in the future.

  20. Layerwise Analysis of Thermal Shape Control in Graded Piezoelectric Beams (United States)

    Lee, Ho-Jun


    A layerwise finite element formulation developed for piezoelectric materials is used to investigate the displacement and stress response of a functionally graded piezoelectric bimorph actuator. The formulation is based on the principles of linear thermopiezoelectricity and accounts for the coupled mechanical, electrical, and thermal response of piezoelectric materials. The layerwise laminate theory is implemented into a linear beam element in order to provide a more accurate representation of the transverse and shear effects that are induced by increased inhomogeneities introduced through-the-thickness by using functionally graded materials. The accuracy of the formulation is verified with previously published experimental results for a piezoelectric bimorph actuator. Additional studies are conducted to analyze the impact of electric and thermal loads on the deflections and stresses in a bimorph actuator. Results of the study help demonstrate the capability of the layerwise theory to provide a more complete representation of shear effects that are no longer negligible even in thin piezoelectric beams. In addition, the effects of varying piezoelectric properties through-the-thickness of the beam are shown to provide additional benefits in minimizing the induced deformations and stresses.

  1. Four-phase or two-phase signal plan? A study on four-leg intersection by cellular automaton simulations (United States)

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui


    The proper setting of traffic signals at signalized intersections is one of the most important tasks in traffic control and management. This paper has evaluated the four-phase traffic signal plans at a four-leg intersection via cellular automaton simulations. Each leg consists of three lanes, an exclusive left-turn lane, a through lane, and a through/right-turn lane. For a comparison, we also evaluate the two-phase signal plan. The diagram of the intersection states in the space of inflow rate versus turning ratio has been presented, which exhibits four regions: In region I/II/III, congestion will propagate upstream and laterally and result in queue spillover with both signal plans/two-phase signal plan/four-phase signal plan, respectively. Therefore, neither signal plan works in region I, and only the four-phase signal plan/two-phase signal plan works in region II/III. In region IV, both signal plans work, but two-phase signal plan performs better in terms of average delays of vehicles. Finally, we study the diagram of the intersection states and average delays in the asymmetrical configurations.

  2. Mathematical modeling of a gas jet impinging on a two phase bath (United States)

    Delgado-Álvárez, J.; Ramírez-Argáez, Marco A.; González-Rivera, C.


    In this work a three phase 3D mathematical model was developed using the Volume Of Fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet impinges on a two phase liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The cavity formed in the liquids by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs these phenomena. The inertial force of the jet and its angle play important roles, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquids.

  3. An experimental and numerical investigation of crossflow effects in two-phase displacements

    DEFF Research Database (Denmark)

    Cinar, Y.; Jessen, Kristian; Berenblyum, Roman;


    In this paper, we present flow visualization experiments and numerical simulations that demonstrate the combined effects of viscous and capillary forces and gravity segregation on crossflow that occurs in two-phase displacements in layered porous media. We report results of a series of immiscible....... The experiments also illustrate the complex interplay of capillary, gravity, and viscous forces that controls crossflow. The experimental results confirm that the transition ranges of scaling groups suggested by Zhou et al. (1994) are appropriate/valid. We report also results of simulations of the displacement...... (IFT) by varying the isopropanol concentration. Experiments were performed for a wide range of capillary and gravity numbers. The experimental results illustrate the transitions from flow dominated by capillary pressure at high IFT to flow dominated by gravity and viscous forces at low IFT...

  4. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight (United States)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip


    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  5. Analysis of heart rate control to assess thermal sensitivity responses in Brazilian toads

    Directory of Open Access Journals (Sweden)

    J.E.S. Natali


    Full Text Available In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR. Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures. Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV and heart rate complexity (HRC. Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi, whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01. These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.

  6. Analysis of heart rate control to assess thermal sensitivity responses in Brazilian toads. (United States)

    Natali, J E S; Santos, B T; Rodrigues, V H; Chauí-Berlinck, J G


    In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.

  7. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins. (United States)

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua


    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.

  8. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection (United States)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias


    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  9. Improving active space telescope wavefront control using predictive thermal modeling (United States)

    Gersh-Range, Jessica; Perrin, Marshall D.


    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  10. Brownian transport controlled by dichotomic and thermal fluctuations (United States)

    Kula, J.; Kostur, M.; Łuczka, J.


    We study transport of Brownian particles in spatially periodic structures, driven by both thermal equilibrium fluctuations and dichotomic noise of zero mean values. Introducing specific scaling, we show that the dimensionless Newton-Langevin type equation governing the motion of Brownian particles is very well approximated by the overdamped dynamics; inertial effects can be neglected because for generic systems dimensionless mass is many orders less than a dimensionless friction coefficient. An exact probability current, proportional to the mean drift velocity of particles, is obtained for a piecewise linear spatially periodic potential. We analyze in detail properties of the macroscopic averaged motion of particles. In dependence on statistics of both sources of fluctuations, the directed transport of particles exhibits such distinctive non-monotonic behavior as: bell-shaped dependence (there exists optimal statistics of fluctuations maximizing velocity) and reversal in the direction of macroscopic motion (there exists critical statistics at which the drift velocity is zero).

  11. Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces (United States)

    Turkyilmazoglu, Mustafa


    This paper is devoted to the mathematical analysis of a magnetohydrodynamic viscous two-phase dusty fluid flow and heat transfer over permeable stretching or shrinking bodies. The wall boundary is subjected to a linear deformation as well as to a quadratic surface temperature. Such a highly nonlinear phenomenon, for the first time in the literature, is attacked to search for occurrence of exact solutions, whose numerical correspondences are already available for limited wall transpiration velocities. The obtained analytical solutions are found be in perfect line with the numerical computations. Besides this, exact solutions point to the existence of dual solutions for both permeable stretching and shrinking cases, which were not detected from the numerical studies up to date. The existence of such exact solutions and their parameter domain particularly depending on the wall suction or injection are successfully analyzed. The physical outcomes concerning the effects of suspended particles on the momentum and thermal boundary layers well-documented in the open literature can be best understood from the presented exact solutions.

  12. Buddly, slug, and annular two-phase flow in tight-lattice subchannels

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, Horst-Michael; Bolesch, Charistian; Cramer, Kerstin; Papadopoulos, Petros; Saxena, Abhishek; Zboray, Robert [ETH Zurich, Dept. of Mechanical and Process Engineering (D-MAVT), Zurich (Switzerland); Ito, Daisuke [Kyoto University, Research Reactor Institute, Osaka (Japan)


    An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring subchannels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

  13. Modeling and testing of two-phase flow in manifolds under microgravity conditions (United States)

    Best, Frederick; Kurwitz, Cable


    Previous work relating to two-phase flow in manifolds has dealt primarily with 1-g phase distribution at each junction. Understanding the redistribution of gas and liquid at each junction in microgravity allows the investigator to calculate specific thermal-hydraulic phenomena in each branch or run. A model was developed at Texas A&M to determine the phasic distribution in an arbitrary manifold. Previously developed phase distribution equations are used to describe the redistribution at a dividing T-junction (Young et al., 1999). Mass flow rate, void fraction, and pressure drop are calculated iteratively for the entire manifold. Output from the model was compared to data taken from tests aboard NASA's KC-135. The test manifold consisted of a run with three branches. The system allowed the output to be directed to a phase separator or to collection bags. The distribution of liquid and gas in each collection bag could be used to determine the mass fraction in each branch and run. Results show good agreement between predicted mass fraction and flight data. .

  14. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Francioso, Ornella, E-mail: [Dipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna (Italy); Rodriguez-Estrada, Maria Teresa [Dipartimento di Scienze degli Alimenti, V.le Fanin 40, 40127 Bologna (Italy); Montecchio, Daniela [Dipartimento di Scienze e Tecnologie Agroambientali, V.le Fanin 40, 40127 Bologna (Italy); Salomoni, Cesare; Caputo, Armando [Biotec sys srl, Via Gaetano Tacconi, 59, 40139 Bologna (Italy); Palenzona, Domenico [Dipartimento di Biologia Evoluzionistica Sperimentale, Via Selmi 3, 40126 Bologna (Italy)


    In the present study, the chemical features of municipal wastewater sludges treated in two-phase separate digesters (one for acetogenesis and the other one for methanogenesis), were characterized by using chemical analysis, stable carbon isotope ratios ({delta}{sup 13}C), HS-SPME-GC-MS, TG-DTA analysis and DRIFT spectroscopy. The results obtained showed that sludges from acetogenesis and methanogenesis differed from each other, as well as from influent raw sludges. Both processes exhibited a diverse chemical pattern in term of VFA and VOC. Additional variations were observed for {delta}{sup 13}C values that changed from acetogenesis to methanogenesis, as a consequence of fermentation processes that led to a greater fractionation of {sup 12}C with respect to the {sup 13}C isotope. Similarly, the thermal profiles of acetogenesis and methanogenesis sludges greatly differed in terms of heat combustion produced. These changes were also supported by higher lipid content (probably fatty acids) in acetogenesis than in methanogenesis, as also shown by DRIFT spectroscopy.

  15. Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

    Directory of Open Access Journals (Sweden)

    Horst-Michael Prasser


    Full Text Available An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI, Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1 a vertical channel modeling a pair of neighboring subchannels; and (2 an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

  16. Optimizing steam flood performance utilizing a new and highly accurate two phase steam measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Huff, B. D.; Warren, P. B. [CalResources LLC (Canada); Whorff, F. [ITT Barton (Canada)


    The development of a two phase steam measurement system was documented. The system consists of a `V` cone differential pressure device and a vortex meter velocity device in series through which the steam flows. Temperature and pressure sensors are electronically interfaced with a data logging system. The design was described as being very simple and rugged, consequently, well suited to monitoring in the field.. Steam quality measurements were made in the Kern River Field and the Coalinga Field thermal projects using a surface steam separator. In steam flood operations, steam cost is very high, hence appropriate distribution of the steam can result in significant cost reduction. This technology allows the measurement of steam flow and quality at any point in the steam distribution system. The metering system`s orifice meter was found to have a total average error of 45%, with 25% of that attributable to `cold leg` problem. Installation of the metering system was expected to result in a steam use reduction of 8%, without any impact on production. Steam re-distribution could result in a potential oil production increase of 10%. 12 refs., 8 tabs., 9 figs.

  17. Two-phase equilibrium and molecular hydrogen formation in damped Lyman-alpha systems

    CERN Document Server

    Liszt, H S


    Molecular hydrogen is quite underabundant in damped Lyman-alpha systems at high redshift, when compared to the interstellar medium near the Sun. This has been interpreted as implying that the gas in damped Lyman-alpha systems is warm. like the nearby neutral intercloud medium, rather than cool, as in the clouds which give rise to most H I absorption in the Milky Way. Other lines of evidence suggest that the gas in damped Lyman-alpha systems -- in whole or part -- is actually cool; spectroscopy of neutral and ionized carbon, discussed here, shows that the damped Lyman-alpha systems observed at lower redshift z $$ 2.8 are warm (though not devoid of H2). To interpret the observations of carbon and hydrogen we constructed detailed numerical models of H2 formation under the conditions of two-phase thermal equilibrium, like those which account for conditions near the Sun, but with varying metallicity, dust-gas ratio, $etc$. We find that the low metallicity of damped Lyman-alpha systems is enough to suppress H2 form...

  18. Advanced thermal management techniques for space power electronics (United States)

    Reyes, Angel Samuel


    Modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Current thermal management techniques are not sufficient for the increasing waste heat dissipation of novel electronic technologies. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. The benefits and limitations of emerging cooling technologies are discussed. These technologies include: liquid pumped devices, mechanically pumped two-phase cooling, capillary pumped evaporative cooling, and thermoelectric devices. Currently, liquid pumped devices offer the most promising alternative for electronics thermal control.

  19. Vehicle Thermal Control with a Variable Area Inlet. (United States)


    empirically derived Nusselt number. Proportional, Proportional-Derivative (PD), and Proportional-Integral-Derivative ( PID ) controllers were built and...tested. The PD and PID controllers did not appear to need any gain scheduling for the varying speed and temperature conditions. Lastly, a general design process was detailed. (AN)

  20. Study on the Interface Effects Based on Two-Dimensional Green's Functions for the Fluid and Pyroelectric Two-Phase Plane under a Line Heat Source

    Directory of Open Access Journals (Sweden)

    Peng-Fei Hou


    Full Text Available Two-dimensional Green's functions for a line heat source applied in the fluid and pyroelectric two-phase plane are presented in this paper. By virtue of the two-dimensional general solutions which are expressed in harmonic functions, six newly introduced harmonic functions with undetermined constants are constructed. Then, all the pyroelectric components in the fluid and pyroelectric two-phase plane can be derived by substituting these harmonic functions into the corresponding general solutions. And the undetermined constants can be obtained by the interface compatibility conditions and the mechanical, electric, and thermal equilibrium conditions. Numerical results are given graphically by contours.