IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS
Institute of Scientific and Technical Information of China (English)
TANG Xuelin; QIAN Zhongdong; WU Yulin
2004-01-01
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
Approaches for Subgrid Parameterization: Does Scaling Help?
Yano, Jun-Ichi
2016-04-01
Arguably the scaling behavior is a well-established fact in many geophysical systems. There are already many theoretical studies elucidating this issue. However, the scaling law is slow to be introduced in "operational" geophysical modelling, notably for weather forecast as well as climate projection models. The main purpose of this presentation is to ask why, and try to answer this question. As a reference point, the presentation reviews the three major approaches for traditional subgrid parameterization: moment, PDF (probability density function), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in the atmosphere and the oceans. The PDF approach is intuitively appealing as it directly deals with a distribution of variables in subgrid scale in a more direct manner. The third category, originally proposed by Aubry et al (1988) in context of the wall boundary-layer turbulence, is specifically designed to represent coherencies in compact manner by a low--dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (POD, or empirical orthogonal functions, EOF) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. The mass-flux formulation that is currently adopted in majority of atmospheric models for parameterizing convection can also be considered a special case of the mode decomposition, adopting the segmentally-constant modes for the expansion basis. The mode decomposition can, furthermore, be re-interpreted as a type of Galarkin approach for numerically modelling the subgrid-scale processes. Simple extrapolation of this re-interpretation further suggests us that the subgrid parameterization problem may be re-interpreted as a type of mesh-refinement problem in numerical modelling. We furthermore see a link between the subgrid parameterization and downscaling problems along this line. The mode
Aniszewski, Wojciech
2016-01-01
In this paper, a specific subgrid term occurring in Large Eddy Simulation (LES) of two-phase flows is investigated. This and other subgrid terms are presented, we subsequently elaborate on the existing models for those and re-formulate the ADM-{\\tau} model for sub-grid surface tension previously published by these authors. This paper presents a substantial, conceptual simplification over the original model version, accompanied by a decrease in its computational cost. At the same time, it addresses the issues the original model version faced, e.g. introduces non-isotropic applicability criteria based on resolved interface's principal curvature radii. Additionally, this paper introduces more throughout testing of the ADM-{\\tau}, in both simple and complex flows.
Directory of Open Access Journals (Sweden)
Greg Yarwood
2011-08-01
Full Text Available Multi-pollutant chemical transport models (CTMs are being routinely used to predict the impacts of emission controls on the concentrations and deposition of primary and secondary pollutants. While these models have a fairly comprehensive treatment of the governing atmospheric processes, they are unable to correctly represent processes that occur at very fine scales, such as the near-source transport and chemistry of emissions from elevated point sources, because of their relatively coarse horizontal resolution. Several different approaches have been used to address this limitation, such as using fine grids, adaptive grids, hybrid modeling, or an embedded sub-grid scale plume model, i.e., plume-in-grid (PinG modeling. In this paper, we first discuss the relative merits of these various approaches used to resolve sub-grid scale effects in grid models, and then focus on PinG modeling which has been very effective in addressing the problems listed above. We start with a history and review of PinG modeling from its initial applications for ozone modeling in the Urban Airshed Model (UAM in the early 1980s using a relatively simple plume model, to more sophisticated and state-of-the-science plume models, that include a full treatment of gas-phase, aerosol, and cloud chemistry, embedded in contemporary models such as CMAQ, CAMx, and WRF-Chem. We present examples of some typical results from PinG modeling for a variety of applications, discuss the implications of PinG on model predictions of source attribution, and discuss possible future developments and applications for PinG modeling.
Modelling turbulent stellar convection zones: sub-grid scales effects
Strugarek, A; Brun, A S; Charbonneau, P; Mathis, S; Smolarkiewicz, P K
2016-01-01
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We deriv...
Cinlar Subgrid Scale Model for Large Eddy Simulation
Kara, Rukiye
2016-01-01
We construct a new subgrid scale (SGS) stress model for representing the small scale effects in large eddy simulation (LES) of incompressible flows. We use the covariance tensor for representing the Reynolds stress and include Clark's model for the cross stress. The Reynolds stress is obtained analytically from Cinlar random velocity field, which is based on vortex structures observed in the ocean at the subgrid scale. The validity of the model is tested with turbulent channel flow computed in OpenFOAM. It is compared with the most frequently used Smagorinsky and one-equation eddy SGS models through DNS data.
Modeling turbulent stellar convection zones: Sub-grid scales effects
Strugarek, A.; Beaudoin, P.; Brun, A. S.; Charbonneau, P.; Mathis, S.; Smolarkiewicz, P. K.
2016-10-01
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modeled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in the magnetohydrodynamic regime for various dynamo solutions.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
An LES/FDF model was developed by the authors to investigate the SGS effect on the particle motion in the gas-particle two-phase plane wake flow.The simulation results of dispersion rate for different particles were compared with the results without using the FDF model.It was shown that the large eddy structure is the dominant factor influencing the particle diffu-sion in space for small particles(small Stokes-number particles),but for intermediate or large diameter particles,the influence of the sub-grid scale eddies on the dispersion rate is in the same order as that of the large eddies.The sub-grid scale eddies increase the particle dispersion rate in most time,but sometimes they decrease the dispersion rate.The sub-grid scale particle dispersion rate is decided not only by the intensity of sub-grid scale eddies and the Stokes number of the particles,but also by the large eddy structure of the flow field.For the particles in isotropic turbulence,the dispersion rate decreases as the particle diameter increases.
AN IMPROVED DYNAMIC SUBGRID-SCALE STRESS MODEL
Institute of Scientific and Technical Information of China (English)
TANG Xue-ling; QIAN Zhong-dong; WU Yu-lin; LIU Shu-hong; YANG Fan
2004-01-01
According to modeling principle that a model must be more accurate if including more flow information, and based on the Cauchy-Helmholtz theorem and the Smagorinsky model, a second-order dynamic model with double dynamic coefficients was proposed by applying dimension analyses. The Subgrid-Scale (SGS) stress is a function of both strain-rate tensor and rotation-rate tensor. The SIMPLEC algorithm and staggering grid system was applied to give the solution of the discretized governing equations, and for the turbulent flow through a 90° bend, the distributions of velocity and pressure were achieved. The comparison between experimental data and simulation results at a Reynolds number 40000 shows a good agreement and implies that this model is practicable and credible.
Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel
2017-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.
Effects of subgrid-scale modeling on wind turbines flows
Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano
2015-11-01
The increased demand for wind energy had led to a continuous increase in the size of wind turbines and, consequently, of wind farms. A potential drawback of such large clusters lies in the decrease in the efficiency due to the wake interference. Large-Eddy Simulations (LES) coupled with blade models have shown the capability of resolving the unsteady nature of wind turbine wakes. In LES, subgrid-scale (SGS) models are needed to introduce the effect of the turbulence small scales not resolved by the computational grid. Many LES of wind farms employ the classic Smagorinsky model, despite it suffers from some major drawbacks, e.g. (i) the presence of an input tuning parameter and (ii) the wrong behaviour near solid walls. In the present work an analysis of the effects of various SGS models is carried out for LES in which the turbine tower and nacelle are directly simulated with the Immersed Boundaries method. Particular attention is dedicated to the region of separated flow behind the tower where the impact of the SGS models is expected to be important. We focus herein on non-dynamic eddy-viscosity models, which have proven to have a correct behaviour near solid walls. A priori and a posteriori tests are performed for a configuration reproducing an experiment conducted at NTNU. The work is partially supported by the NSF PIRE Award IIA 1243482. TACC is acknowledged for providing computational time.
Subgrid-scale backscatter after the shock-turbulence interaction
Livescu, Daniel; Li, Zhaorui
2017-01-01
The statistics of the subgrid scales (SGS) are studied in the context of Large Eddy Simulations (LES) of turbulence after the interaction with a nominally normal shock wave. In general, in practical applications, the shock wave width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J. Fluid Mech., 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). By using LIA to alleviate the need to resolve the shock wave, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number ≈ 180 are used for an analysis of the SGS backscatter properties. In particular, it is shown that the interaction with the shock wave decreases the asymmetry of the SGS dissipation Probability Density Function (PDF) as the shock Mach number increases, with a significant enhancement in size of the regions and magnitude of backscatter.
Silvis, Maurits H; Verstappen, Roel
2016-01-01
We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is p...
Evapotranspiration and cloud variability at regional sub-grid scales
Vila-Guerau de Arellano, Jordi; Sikma, Martin; Pedruzo-Bagazgoitia, Xabier; van Heerwaarden, Chiel; Hartogensis, Oscar; Ouwersloot, Huug
2017-04-01
In regional and global models uncertainties arise due to our incomplete understanding of the coupling between biochemical and physical processes. Representing their impact depends on our ability to calculate these processes using physically sound parameterizations, since they are unresolved at scales smaller than the grid size. More specifically over land, the coupling between evapotranspiration, turbulent transport of heat and moisture, and clouds lacks a combined representation to take these sub-grid scales interactions into account. Our approach is based on understanding how radiation, surface exchange, turbulent transport and moist convection are interacting from the leaf- to the cloud scale. We therefore place special emphasis on plant stomatal aperture as the main regulator of CO2-assimilation and water transpiration, a key source of moisture source to the atmosphere. Plant functionality is critically modulated by interactions with atmospheric conditions occurring at very short spatiotemporal scales such as cloud radiation perturbations or water vapour turbulent fluctuations. By explicitly resolving these processes, the LES (large-eddy simulation) technique is enabling us to characterize and better understand the interactions between canopies and the local atmosphere. This includes the adaption time of vegetation to rapid changes in atmospheric conditions driven by turbulence or the presence of cumulus clouds. Our LES experiments are based on explicitly coupling the diurnal atmospheric dynamics to a plant physiology model. Our general hypothesis is that different partitioning of direct and diffuse radiation leads to different responses of the vegetation. As a result there are changes in the water use efficiencies and shifts in the partitioning of sensible and latent heat fluxes under the presence of clouds. Our presentation is as follows. First, we discuss the ability of LES to reproduce the surface energy balance including photosynthesis and CO2 soil
Two-phase methanization of food wastes in pilot scale.
Lee, J P; Lee, J S; Park, S C
1999-01-01
A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.
Silvis, Maurits H
2015-01-01
Assuming a general constitutive relation for the turbulent stresses in terms of the local large-scale velocity gradient, we constructed a class of subgrid-scale models for large-eddy simulation that are consistent with important physical and mathematical properties. In particular, they preserve symmetries of the Navier-Stokes equations and exhibit the proper near-wall scaling. They furthermore show desirable dissipation behavior and are capable of describing nondissipative effects. We provided examples of such physically-consistent models and showed that existing subgrid-scale models do not all satisfy the desired properties.
Scaling of Two-Phase Systems Across Gravity Levels Project
National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...
A dynamic subgrid-scale model for the large eddy simulation of stratified flow
Institute of Scientific and Technical Information of China (English)
刘宁宇; 陆夕云; 庄礼贤
2000-01-01
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’ s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.
A dynamic subgrid-scale model for the large eddy simulation of stratified flow
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa's eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis.
Subgrid-scale model for radiative transfer in turbulent participating media
Soucasse, L.; Rivière, Ph.; Soufiani, A.
2014-01-01
The simulation of turbulent flows of radiating gases, taking into account all turbulence length scales with an accurate radiation transport solver, is computationally prohibitive for high Reynolds or Rayleigh numbers. This is particularly the case when the small structures are not optically thin. We develop in this paper a radiative transfer subgrid model suitable for the coupling with direct numerical simulations of turbulent radiating fluid flows. Owing to the linearity of the Radiative Transfer Equation (RTE), the emission source term is spatially filtered to define large-scale and subgrid-scale radiation intensities. The large-scale or filtered intensity is computed with a standard ray tracing method on a coarse grid, and the subgrid intensity is obtained analytically (in Fourier space) from the Fourier transform of the subgrid emission source term. A huge saving of computational time is obtained in comparison with direct ray tracing applied on the fine mesh. Model accuracy is checked for three 3D fluctuating temperature fields. The first field is stochastically generated and allows us to discuss the effects of the filtering level and of the optical thicknesses of the whole medium, of the integral length scale, and of the cutoff wave length. The second and third cases correspond respectively to turbulent natural convection of humid air in a cubical box, and to the flow of hot combustion products inside a channel. In all cases, the achieved accuracy on radiative powers and wall fluxes is about a few percents.
Modelling the impact of sub-grid scale emission variability on upper-air concentration
Directory of Open Access Journals (Sweden)
S. Galmarini
2007-08-01
Full Text Available The long standing issue of sub-grid emission heterogeneity and its influence to upper air concentration is addressed here and a subgrid model proposed. The founding concept of the approach is the assumption that average emission acts as source terms of average concentration, while emission fluctuations are source for the concentration variance. The model is based on the derivation of the sub-grid contribution of emission and the use of the concentration variance equation to transport it in the atmospheric boundary layer. The model has been implemented in an existing mesoscale model and the results compared with Large-Eddy Simulation data for ad-hoc simulation devised to test specifically the parametrization. The results show and excellent agreement of the models. For the first time a time evolving error bar reproducing the sub-grid scale heterogeneity of the emissions and the way in which it affects the concentration has been shown. The concentration variance is presented as an extra attribute to better define the mean concentrations in a Reynolds-average model. The model has applications from meso to global scale and that go beyond air quality.
Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?
Yano, Jun-Ichi
2016-07-01
Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.
Structural subgrid-scale modeling for large-eddy simulation:A review
Institute of Scientific and Technical Information of China (English)
Hao Lu; Christopher J Rutland
2016-01-01
Accurately modeling nonlinear interactions in turbulence is one of the key challenges for large-eddy simu-lation (LES) of turbulence. In this article, we review recent studies on structural subgrid scale modeling, focusing on evaluating how well these models predict the effects of small scales. The article discusses a priori and a posteriori test results. Other nonlinear models are briefly discussed, and future prospects are noted.
Kessar, M.; Balarac, G.; Plunian, F.
2016-10-01
In this work, the accuracy of various models used in large-eddy simulations (LES) of incompressible magnetohydrodynamic (MHD) turbulence is evaluated. Particular attention is devoted to the capabilities of models to reproduce the transfers between resolved grid- and subgrid-scales. The exact global balance of MHD turbulent flows is first evaluated from direct numerical simulation (DNS) database. This balance is controlled by the transfers between scales and between kinetic and magnetic energies. Two cases of forced homogeneous isotropic MHD turbulent flows are considered, with and without injecting large scale helicity. The strong helical case leads to domination of the magnetic energy due to an inverse cascade [A. Brandenburg, Astrophys. J. 550(2), 824 (2001); N. E. Haugen et al., Phys. Rev. E 70(1), 016308 (2004)]. The energy transfers predicted by various models are then compared with the transfer extracted from DNS results. This allows to discriminate models classically used for LES of MHD turbulence. In the non-helical case, the Smagorinsky-like model [M. L. Theobald et al., Phys. Plasmas 1, 3016 (1994)] and a mixed model are able to perform stable LES, but the helical case is a more demanding test and all the models lead to unstable simulations.
Tran, Steven; Sahni, Onkar; RPI Team
2015-11-01
Large eddy simulations (LES) provide high fidelity in which the large-scale turbulent structures are resolved while their interactions with the subgrid scales are modeled. In a Smagorinsky-based LES approach, the unresolved stresses are modeled using an eddy viscosity which in-turn involves a model parameter that is unknown a priori and varies in space and time for complex problems. Therefore, dynamic procedures are employed to determine this parameter where averaging is applied to make the procedure robust. When applicable, spatial averaging is applied across homogeneous directions. However, for complex flows the Lagrangian subgrid-scale model employing averaging over pathlines becomes attractive. In contrast to the dynamic Smagorinsky model, variational multiscale (VMS) models have also been developed for LES. In this study, we investigate dynamic mixed models for LES based on the combinations of the Lagrangian subgrid-scale model and the residual-based VMS (RBVMS) approach to study complex, inhomogeneous turbulent flows on unstructured meshes. Applications range from flow through a channel to flow over an airfoil at a moderate angle of attack. Experimental and DNS data are used to make comparisons.
Incorporating the influence of sub-grid heterogeneity in regional-scale contaminant transport models
Baeumer, Boris; Schumer, Rina
2013-01-01
Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multi-dimensional regional-scale transport. The underlying concept is based on previous observations that solutions to space-fractional ADEs, which can describe super-diffusive dispersion, can be obtained by transforming solutions of classical ADEs. The transformations are equivalent to randomizing particle travel time or relative velocity for each model time step. Here, the time randomizing procedure known as subordination is applied to flow...
Application of DDES and IDDES with shear layer adapted subgrid length-scale to separated flows
Guseva, E. K.; Garbaruk, A. V.; Strelets, M. Kh
2016-11-01
A comparative study is conducted of the original versions of Delayed Detached- Eddy Simulation (DDES) and Improved DDES (IDDES) and these approaches combined with “shear-layer-adapted” (SLA) subgrid length-scale proposed recently for resolving the issue of delayed RANS-to-LES transition in separated shear layers in global hybrid RANS-LES approaches. Computations were carried out of two separated flows: a transonic flow past M 219 cavity and a subsonic flow over NASA wall mounted hump. Results of the computations suggest that the use of the SLA subgrid length-scale considerably accelerates transition to resolved three-dimensional turbulence in the separated shear layers and substantially improves agreement with the experimental data.
Modeling of the subgrid-scale term of the filtered magnetic field transport equation
Balarac, Guillaume; Kosovichev, Alexander; Brugière, Olivier; Wray, Alan; Mansour, Nagi
2010-01-01
Accurate subgrid-scale turbulence models are needed to perform realistic numerical magnetohydrodynamic (MHD) simulations of the subsurface flows of the Sun. To perform large-eddy simulations (LES) of turbulent MHD flows, three unknown terms have to be modeled. As a first step, this work proposes to use a priori tests to measure the accuracy of various models proposed to predict the SGS term appearing in the transport equation of the filtered magnetic field. It is proposed to evaluate the SGS ...
Subgrid-scale heat flux modeling for large eddy simulation of turbulent mixed convection
Morar, Dejan
2014-01-01
In the present work, new subgrid-scale (SGS) heat flux model for large eddy simulation (LES) of turbulent mixed convection is developed. The new model explicitly includes the buoyancy production term. It is based on the algebraic equations and dynamic procedure is applied to calculate model coefficients. An experiment on turbulent mixed convection to water in a vertical duct is used for validation of the model.
2011-01-01
Three-dimensional numerical simulation of SOFC anode polarization is conducted with a structure obtained by a focused ion beam and scanning electron microscope (FIB-SEM). Electronic, ionic and gaseous transports with electrochemical reaction are considered. A sub-grid scale model is newly developed and effectively used to evaluate the transport flux in the porous structure. The proposed SGS model shows its potential to reasonably evaluate the transport flux considering the microstructure smal...
Filter length scale for continuum modeling of subgrid physics
Simeonov, Julian; Calantoni, Joseph
2014-11-01
Modeling the wide range of scales of geophysical processes with direct numerical simulations (DNS) is currently not feasible. It is therefore typical to explicitly resolve only the large energy-containing scales and to parameterize the unresolved small scales. One approach to separate the scales is by means of spatial filters and here we discuss practical considerations regarding the choice of a volume averaging scale L. We use a macroscopically homogeneous scalar field and quantify the smoothness of the filtered field using a noise metric, ν, defined by the standard deviation of the filtered field normalized by the domain-averaged value of the field. For illustration, we consider the continuum modeling of the particle phase in discrete element method (DEM) simulations and the salt fingers in DNS of double-diffusive convection. We find that ν2 follows an inverse power law dependence on L with an exponent and coefficients proportional to the domain-averaged field value. The empirical power law relation can aid in the development of continuum models from fully resolved simulations while also providing uncertainty estimates of the modeled continuum fields.
Subgrid-scale models for large-eddy simulation of rotating turbulent flows
Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel
2016-11-01
This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.
Fang, L.; Sun, X. Y.; Liu, Y. W.
2016-12-01
In order to shed light on understanding the subgrid-scale (SGS) modelling methodology, we analyze and define the concepts of assumption and restriction in the modelling procedure, then show by a generalized derivation that if there are multiple stationary restrictions in a modelling, the corresponding assumption function must satisfy a criterion of orthogonality. Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion. This study is expected to inspire future research on generally guiding the SGS modelling methodology.
Wong, M.; Ovchinnikov, M.; Wang, M.; Larson, V. E.
2014-12-01
In current climate models, the model resolution is too coarse to explicitly resolve deep convective systems. Parameterization schemes are therefore needed to represent the physical processes at the sub-grid scale. Recently, an approach based on assumed probability density functions (PDFs) has been developed to help unify the various parameterization schemes used in current global models. In particular, a unified parameterization scheme called the Cloud Layers Unified By Binormals (CLUBB) scheme has been developed and tested successfully for shallow boundary-layer clouds. CLUBB's implementation in the Community Atmosphere Model, version 5 (CAM5) is also being extended to treat deep convection cases, but parameterizing subgrid-scale vertical transport of hydrometeors remains a challenge. To investigate the roots of the problem and possible solutions, we generate a high-resolution benchmark simulation of a deep convection case using a cloud-resolving model (CRM) called System for Atmospheric Modeling (SAM). We use the high-resolution 3D CRM results to assess the prognostic and diagnostic higher-order moments in CLUBB that are in relation to the subgrid-scale transport of hydrometeors. We also analyze the heat and moisture budgets in terms of CLUBB variables from the SAM benchmark simulation. The results from this study will be used to devise a better representation of vertical subgrid-scale transport of hydrometeors by utilizing the sub-grid variability information from CLUBB.
Scaling analysis of gas-liquid two-phase flow pattern in microgravity
Lee, Jinho
1993-01-01
A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.
Dynamical modeling of sub-grid scales in 2D turbulence
Laval, Jean-Philippe; Dubrulle, Bérengère; Nazarenko, Sergey
2000-08-01
We develop a new numerical method which treats resolved and sub-grid scales as two different fluid components evolving according to their own dynamical equations. These two fluids are nonlinearly interacting and can be transformed one into another when their scale becomes comparable to the grid size. Equations describing the two-fluid dynamics were rigorously derived from Euler equations [B. Dubrulle, S. Nazarenko, Physica D 110 (1997) 123-138] and they do not involve any adjustable parameters. The main assumption of such a derivation is that the large-scale vortices are so strong that they advect the sub-grid scales as a passive scalar, and the interactions of small scales with small and intermediate scales can be neglected. As a test for our numerical method, we performed numerical simulations of 2D turbulence with a spectral gap, and we found a good agreement with analytical results obtained for this case by Nazarenko and Laval [Non-local 2D turbulence and passive scalars in Batchelor’s regime, J. Fluid Mech., in press]. We used the two-fluid method to study three typical problems in 2D dynamics of incompressible fluids: decaying turbulence, vortex merger and forced turbulence. The two-fluid simulations performed on at 128 2 and 256 2 resolution were compared with pseudo-spectral simulations using hyperviscosity performed at the same and at much higher resolution. This comparison shows that performance of the two-fluid method is much better than one of the pseudo-spectral method at the same resolution and comparable computational cost. The most significant improvement is observed in modeling of the small-scale component, so that effective inertial interval increases by about two decades compared to the high-resolution pseudo-spectral method. Using the two-fluid method, we demonstrated that the k-3 tail always exists for the energy spectrum, although its amplitude is slowly decreasing in decaying turbulence.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Heng; Gustafson, William I.; Wang, Hailong
2014-04-29
Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactions contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.
Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM1
Liang, Yishuang; Wang, Lanning; Zhang, Guang Jun; Wu, Qizhong
2016-08-01
Turbulent drag caused by subgrid orographic form drag has significant effects on the atmosphere. It is represented through parameterization in large-scale numerical prediction models. An indirect parameterization scheme, the Turbulent Mountain Stress scheme (TMS), is currently used in the National Center for Atmospheric Research Community Earth System Model v1.0.4. In this study we test a direct scheme referred to as BBW04 (Beljaars et al. in Q J R Meteorol Soc 130:1327-1347, 2004. doi: 10.1256/qj.03.73), which has been used in several short-term weather forecast models and earth system models. Results indicate that both the indirect and direct schemes increase surface wind stress and improve the model's performance in simulating low-level wind speed over complex orography compared to the simulation without subgrid orographic effect. It is shown that the TMS scheme produces a more intense wind speed adjustment, leading to lower wind speed near the surface. The low-level wind speed by the BBW04 scheme agrees better with the ERA-Interim reanalysis and is more sensitive to complex orography as a direct method. Further, the TMS scheme increases the 2-m temperature and planetary boundary layer height over large areas of tropical and subtropical Northern Hemisphere land.
Institute of Scientific and Technical Information of China (English)
ZHONG; Fengquan(仲峰泉); LIU; Nansheng(刘难生); LU; Xiyun(陆夕云); ZHUANG; Lixian(庄礼贤)
2002-01-01
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.
Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures
Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen
Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.
Study of unsteady cavitation on NACA66 hydrofoil using dynamic cubic nonlinear subgrid-scale model
Directory of Open Access Journals (Sweden)
Xianbei Huang
2015-11-01
Full Text Available In this article, we describe the use of a new dynamic cubic nonlinear model, a new nonlinear subgrid-scale model, for simulating the cavitating flow around an NACA66 series hydrofoil. For comparison, the dynamic Smagorinsky model is also used. It is found that the dynamic cubic nonlinear model can capture the turbulence spectrum, while the dynamic Smagorinsky model fails. Both models reproduce the cavity growth/destabilization cycle, but the results of the dynamic cubic nonlinear model are much smoother. The re-entrant jet is clearly captured by the models, and it is shown that the re-entrant jet cuts the cavity into two parts. In general, the dynamic cubic nonlinear model provides improvement over the dynamic Smagorinsky model for the calculation of cavitating flow.
Rotating Turbulent Flow Simulation with LES and Vreman Subgrid-Scale Models in Complex Geometries
Directory of Open Access Journals (Sweden)
Tao Guo
2014-07-01
Full Text Available The large eddy simulation (LES method based on Vreman subgrid-scale model and SIMPIEC algorithm were applied to accurately capture the flowing character in Francis turbine passage under the small opening condition. The methodology proposed is effective to understand the flow structure well. It overcomes the limitation of eddy-viscosity model which is excessive, dissipative. Distributions of pressure, velocity, and vorticity as well as some special flow structure in guide vane near-wall zones and blade passage were gained. The results show that the tangential velocity component of fluid has absolute superiority under small opening condition. This situation aggravates the impact between the wake vortices that shed from guide vanes. The critical influence on the balance of unit by spiral vortex in blade passage and the nonuniform flow around guide vane, combined with the transmitting of stress wave, has been confirmed.
Nogueira, M.; Barros, A. P.; Miranda, P. M. A.
2013-09-01
Rain and cloud fields produced by fully nonlinear idealized cloud resolving numerical simulations of orographic convective precipitation display statistical multiscaling behavior, implying that multifractal diagnostics should provide a physically robust basis for the downscaling and sub-grid scale parameterizations of moist processes. Our results show that the horizontal scaling exponent function (and respective multiscaling parameters) of the simulated rainfall and cloud fields varies with atmospheric and terrain properties, particularly small-scale terrain spectra, atmospheric stability, and advective timescale. This implies that multifractal diagnostics of moist processes for these simulations are fundamentally transient, exhibiting complex nonlinear behavior depending on atmospheric conditions and terrain forcing at each location. A particularly robust behavior found here is the transition of the multifractal parameters between stable and unstable cases, which has a clear physical correspondence to the transition from stratiform to organized (banded and cellular) convective regime. This result is reinforced by a similar behavior in the horizontal spectral exponent. Finally, our results indicate that although nonlinearly coupled fields (such as rain and clouds) have different scaling exponent functions, there are robust relationships with physical underpinnings between the scaling parameters that can be explored for hybrid dynamical-statistical downscaling.
Two-phase micro- and macro-time scales in particle-laden turbulent channel flows
Institute of Scientific and Technical Information of China (English)
Bing Wang; Michael Manhart
2012-01-01
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flow anisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number (isotropic) turbulence.Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longer than those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions,while away from the walls the micro Lagrangian time scales are longer.The Lagrangian integral time scales are longer than the Eulerian ones.The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.
Nogueira, M.; Barros, A. P.
2014-12-01
Multifractal behavior holds to a remarkable approximation over wide ranges of spatial scales in orographic rainfall and cloud fields. The scaling exponents characterizing this behavior are shown to be fundamentally transient with nonlinear dependencies on the particular atmospheric state and terrain forcing. In particular, a robust transition is found in the scaling parameters between non-convective (stable) and convective (unstable) regimes, with clear physical correspondence to the transition from stratiform to organized convective orographic precipitation. These results can explain two often reported scaling regimes for atmospheric wind, temperature and water observations. On the one hand, spectral slopes around 2-2.3 arise under non-convective or very weak convective conditions when the spatial patterns are dominated by large-scale gradients and landform. On the other hand, under convective conditions the scaling exponents generally fluctuate around 5/3, in agreement with the Kolmogorov turbulent regime accounting for the intermittency correction. High-resolution numerical weather prediction (NWP) models are able to reproduce the ubiquitous scaling behavior of observed atmospheric fields down to their effective resolution length-scale, below which the variability is misrepresented by the model. The effective resolution is shown to be a transient property dependent on the particular simulated conditions and NWP formulation, implying that a blunt decrease in grid spacing without adjusting numerical techniques may not lead to the improvements desired.Finally, the application of transient spatial scaling behavior for stochastic downscaling and sub-grid scale parameterization of cloud and rainfall fields is investigated. The proposed fractal methods are able to rapidly generate large ensembles of high-resolution statistically robust fields from the coarse resolution information alone, which can provide significant improvements for stochastic hydrological prediction
2012-01-01
Three-dimensional numerical analysis of solid oxide fuel cell (SOFC) anode polarization is conducted with a microstructure obtained by a focused ion beam and scanning electron microscope (FIB-SEM). Electronic, ionic and gaseous transports with electrochemical reaction are considered in the porous anode. A sub-grid scale (SGS) model is newly developed and effectively used to consider the structural information whose characteristic scale is smaller than calculation grid size. The proposed SGS m...
Dynamic Subgrid Scale Modeling of Turbulent Flows using Lattice-Boltzmann Method
Premnath, Kannan N; Banerjee, Sanjoy
2009-01-01
In this paper, we discuss the incorporation of dynamic subgrid scale (SGS) models in the lattice-Boltzmann method (LBM) for large-eddy simulation (LES) of turbulent flows. The use of a dynamic procedure, which involves sampling or test-filtering of super-grid turbulence dynamics and subsequent use of scale-invariance for two levels, circumvents the need for empiricism in determining the magnitude of the model coefficient of the SGS models. We employ the multiple relaxation times (MRT) formulation of LBM with a forcing term for simulation of the grid-filtered dynamics of large-eddies. The dynamic procedure is illustrated for use with the common Smagorinsky eddy-viscosity SGS model. We also discuss proper sampling techniques or test-filters that facilitate implementation of dynamic models in the LBM. For accommodating variable resolutions, we employ locally refined grids in this framework. As examples, we consider the canonical fully developed turbulent channel flow at two different shear Reynolds numbers $Re_{...
Griffin, Brian M.
The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate Probability Density Function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields. Previously, each hydrometeor field was assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced in part one of this two-part project. The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormal shape, are compared to histograms of data taken from Large-Eddy Simulations (LES) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. Finally, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES. Microphysics processes have feedback effects on moisture and heat content. Not only do these processes influence mean values, but also variability and fluxes of moisture and heat content. For example, evaporation of rain below cloud base may produce cold pools. This evaporative cooling may increase the variability in temperature in the below-cloud layer. Likewise, rain production in the moistest part of cloud tends to decrease variability in cloud water. These effects are usually not included in most coarse-resolution weather and climate models, or else are crudely parameterized. In part two of this two-part project, the microphysical effects on moisture and heat content are parameterized using the PDF method. This approach is based on predictive, horizontally-averaged equations for the variances, covariances, and fluxes of moisture and heat
Demaeyer, Jonathan
2016-01-01
A stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012) is tested in the context of a low-order coupled ocean-atmosphere model for which a part of the atmospheric modes are considered as unresolved. A natural separation of the phase-space into an invariant set and its complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. In this case, the fluctuation term is an additive stochastic noise. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained, provided that the coupling is sufficiently weak. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts.
Energy Technology Data Exchange (ETDEWEB)
VOLD, ERIK L. [Los Alamos National Laboratory; SCANNAPIECO, TONY J. [Los Alamos National Laboratory
2007-10-16
A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.
Refined subgrid-scale model for large-eddy simulation of helical turbulence.
Yu, Changping; Xiao, Zuoli
2013-01-01
A refined two-term helical subgrid-scale (SGS) stress model with respect to that suggested by Li et al. [Phys. Rev. E 74, 026310 (2006)] is designed for large-eddy simulation (LES) of helical turbulence. The model coefficients in the new model are verified a priori to be scale invariant in inertial range, which proves that our model is local in scale. A dynamic method based on minimizing the residual resolved energy and helicity dissipations is suggested to simultaneously evaluate the coefficients of the mixed SGS model as the simulation progresses. In addition, an SGS helicity dissipation (or helicity flux) constraint condition is proposed to optimize the mixed two-term model. Both techniques are first tested and validated in the LES of forced isotropic helical turbulence. The statistical results are analyzed and compared with those obtained from the dynamic Smagorinsky model, the traditional dynamic mixed model, and the direct numerical simulation. It is found that the introduction of this dynamic procedure can help overcome the drawback of the traditional dynamic method which can not capture the negative helicity fluxes and SGS dissipations. The probability density functions of the energy flux and the conditioned helicity flux and SGS stress demonstrate that the helicity flux constrained dynamic SGS model can effectively predict the real SGS helical effects on the resolved scales, such as backscatters of energy and helicity, accurate helicity dissipation rate, and so on. The present models are also applied to the simulation of freely decaying isotropic turbulence with no apparent improvement observed in comparison with the traditional SGS models. The underlying reasons for these issues are addressed in detail.
Schmidt, W; Hillebrandt, W; Roepke, F K
2006-01-01
The dynamics of the explosive burning process is highly sensitive to the flame speed model in numerical simulations of type Ia supernovae. Based upon the hypothesis that the effective flame speed is determined by the unresolved turbulent velocity fluctuations, we employ a new subgrid scale model which includes a localised treatment of the energy transfer through the turbulence cascade in combination with semi-statistical closures for the dissipation and non-local transport of turbulence energy. In addition, subgrid scale buoyancy effects are included. In the limit of negligible energy transfer and transport, the dynamical model reduces to the Sharp-Wheeler relation. According to our findings, the Sharp-Wheeler relation is insuffcient to account for the complicated turbulent dynamics of flames in thermonuclear supernovae. The application of a co-moving grid technique enables us to achieve very high spatial resolution in the burning region. Turbulence is produced mostly at the flame surface and in the interior ...
Energy Technology Data Exchange (ETDEWEB)
Burton, G
2007-01-08
Large-eddy simulation of passive scalar mixing by a fully three-dimensional round incompressible turbulent jet is evaluated using the Inertial LES methodology with multifractal subgrid-scale modeling. The Inertial LES approach involves the direct calculation of the inertial term {ovr u{sub i} u{sub j}} in the filtered incompressible Navier-Stokes equation and the scalar flux term {ovr u{sub j} {phi}} in the filtered advection-diffusion equation, using models for the subgrid velocity field u{sup sgs} and the subgrid scalar-concentration field {phi}{sup sgs}. In this work, the models are based on the multifractal structure of the subgrid enstrophy 2Q{sup sgs}(x,t) {triple_bond} {omega}{sup sgs} {center_dot} {omega}{sup sgs} and scalar-dissipation {chi}{sup sgs} (x,t) {triple_bond} D{del}{phi}{sup sgs} {center_dot} {del}{phi}{sup sgs} fields, respectively. No artificial viscosity or diffusivity constructs are applied and no explicit dealiasing is performed. Numerical errors are controlled by the application of an adaptive backscatter limiter. The present work summarizes the initial evaluation of the Inertial LES approach in the context of the round turbulent jet, including examinations of jet self-similarity and the scale-to-scale distribution of kinetic and scalar energy in the jet far field. These inquiries confirm that the Inertial LES method accurately recovers the large scale structure of this complex turbulent shear flow.
Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method
Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.
2014-01-01
A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.
A scale-aware subgrid model for quasi-geostrophic turbulence
Bachman, Scott D.; Fox-Kemper, Baylor; Pearson, Brodie
2017-02-01
This paper introduces two methods for dynamically prescribing eddy-induced diffusivity, advection, and viscosity appropriate for primitive equation models with resolutions permitting the forward potential enstrophy cascade of quasi-geostrophic dynamics, such as operational ocean models and high-resolution climate models with O>(25>) km horizontal resolution and finer. Where quasi-geostrophic dynamics fail (e.g., the equator, boundary layers, and deep convection), the method reverts to scalings based on a matched two-dimensional enstrophy cascade. A principle advantage is that these subgrid models are scale-aware, meaning that the model is suitable over a range of grid resolutions: from mesoscale grids that just permit baroclinic instabilities to grids below the submesoscale where ageostrophic effects dominate. Two approaches are presented here using Large Eddy Simulation (LES) techniques adapted for three-dimensional rotating, stratified turbulence. The simpler approach has one nondimensional parameter, Λ, which has an optimal value near 1. The second approach dynamically optimizes Λ during simulation using a test filter. The new methods are tested in an idealized scenario by varying the grid resolution, and their use improves the spectra of potential enstrophy and energy in comparison to extant schemes. The new methods keep the gridscale Reynolds and Péclet numbers near 1 throughout the domain, which confers robust numerical stability and minimal spurious diapycnal mixing. Although there are no explicit parameters in the dynamic approach, there is strong sensitivity to the choice of test filter. Designing test filters for heterogeneous ocean turbulence adds cost and uncertainty, and we find the dynamic method does not noticeably improve over setting Λ = 1.
Adaptive Multi-Scale Pore Network Method for Two-Phase Flow in Porous Media
Meyer, D. W.; Khayrat, K.; Jenny, P.
2015-12-01
Dynamic pore network simulators are important tools in studying macroscopic quantities in two-phase flow through porous media. However, these simulators have a time complexity of order N2 for N pore bodies, which limits their usage to small domains. Quasi-static pore network simulators, which assume capillary dominated flow, are more efficient with a time complexity of order N log(N), but are unable to capture phenomena caused by viscous effects such as viscous fingering and stable displacement. It has been experimentally observed that, in several flow scenarios, capillary forces are dominant at the pore scale and viscous forces at larger scales. In order to take advantage of this behaviour and to reduce the time complexity of existing dynamic pore network simulators, we propose a multi-scale pore-network method for two phase flow. In our solution algorithm, the pore network is first divided into smaller subnetworks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. Here, a multi-point flux scheme is used. 2) Depending on the local capillary number computed in the subnetwork, either an invasion percolation algorithm or a dynamic network algorithm is used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. 3) The transmissibilities for the meso-scale equation are updated based on the updated fluid configurations in each subnetwork. For this purpose the methodoloy of the existing multi-scale finite volume (MSFV) method is employed. An important feature of the multi-scale pore-network method is that it maintains consistency of both fluid occupancy and fluxes at subnetwork interfaces. Viscous effects such as viscous fingering (see figure) can be captured at a decreased computational cost compared to dynamic pore network
Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation
Directory of Open Access Journals (Sweden)
Thomas von Larcher
2015-04-01
Full Text Available We focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES codes. Our concept is based on the integral conservation laws for mass, momentum and energy of a flow field. We model the space-time structure of the flux correction terms to create a discrete formulation. Advanced methods of time series analysis for the data-based construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach. The reconstruction capabilities of the modelling ansatz are tested against fully 3D turbulent channel flow data computed by direct numerical simulation and, in addition, against a turbulent Taylor-Green vortex flow showing a transition from laminar to a turbulent flow state. The modelling approach for the LES closure is different in both test cases. In the channel flow we consider an implicit LES ansatz. In the Taylor-Green vortex flow, it follows an explicit closure approach. We present here the outcome of our reconstruction tests and show specific results of the non-trivial time series data analysis. Started with a generally stochastic ansatz we found, surprisingly, that the deterministic model part already yields small residuals and is, therefore, good enough to fit the flux correction terms well. In the Taylor-Green vortex flow, we found additionally time-dependent features confirming that our modelling approach is capable of detecting changes in the temporal structure of the flow. The results encourage us to launch a more ambitious attempt at dynamic LES closure along these lines.
Ocean Mixing with Lead-Dependent Subgrid Scale Brine Rejection Parameterization in a Climate Model
Institute of Scientific and Technical Information of China (English)
Meibing Jin; Jennifer Hutchings; Yusuke Kawaguchi; Takashi Kikuchi
2012-01-01
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth (MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.
Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material
Energy Technology Data Exchange (ETDEWEB)
Springer, Harry Keo [Univ. of California, Davis, CA (United States)
2008-07-11
The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed
Effect of large-scale parameters for two-phase flow in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Girgrah, B.
1994-01-01
Important problems in environmental protection and resource management require quantification of parameters at field (large) scale. A numerical model is utilized to construct large-scale capillary pressure (CP) and relative permeability (RP) curves for two-phase flow in heterogeneous porous media. Two-phase flow simulations were performed over a two-dimensional, numerically generated, heterogeneous permeability field. CP and RP curves were constructed for each simulation. The fields ranged in size from 1.25x1.25 m to 5x10 m and had a mean overall log-hydraulic conductivity of [minus]4.6. Flow was vertically downward with the left and right boundaries of the domain remaining impermeable. Following the simulations on heterogeneous fields, homogeneous equivalents were determined and run for sample simulations. The heterogeneous simulations included investigations into the representative elementary volume (REV) for two permeability fields, the effects of fluid properties on CP and RP, and the effects of correlation structure. The equivalent homogeneous simulations explored the feasibility of homogeneous solutions to predict heterogeneous behavior. Results showed that the REVs for fields one and two were a domain size of 50x50 nodes. Fluid property investigations showed that CP decreased when interfacial tension decreased. Structural explorations showed vertical bedding caused an increase in both CP and RP results. A decrease in log-hydraulic conductivity variance caused slight increases in RP and CP. No direct correlation was obtained between homogeneous and heterogeneous flow behavior. A modification could be made to the homogeneous model to allow it to accurately predict heterogeneous flow. 49 refs., 28 figs., 10 tabs.
A dynamic subgrid-scale modeling framework for large eddy simulation using approximate deconvolution
Maulik, Romit
2016-01-01
We put forth a dynamic modeling framework for sub-grid parametrization of large eddy simulation of turbulent flows based upon the use of the approximate deconvolution procedure to compute the Smagorinsky constant self-adaptively from the resolved flow quantities. Our numerical assessments for solving the Burgers turbulence problem shows that the proposed approach could be used as a viable tool to address the turbulence closure problem due to its flexibility.
Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H
2014-07-01
In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.
Energy Technology Data Exchange (ETDEWEB)
Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
Microtomography and pore-scale modeling of two-phase Fluid Distribution
Energy Technology Data Exchange (ETDEWEB)
Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.
2010-10-19
Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.
Scale-up of two-phase flow in heterogeneous chalk. Matrix properties
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-02-01
This investigation presents scale-up of a detailed heterogeneous geostatistical model to a full field reservoir simulation model, considering both single and two-phase flow properties. The model represents a typical low permeability Danish North Sea chalk reservoir and includes capillary pressure and saturation end-point variations. Two new up-scaling methods has been investigated, all based on fine scale simulation on a cross section of the geomodel. The first methods assumes piston style behaviour and a coupled viscosity is introduced into the basic Darcy`s equations. The second method is a modification of the JBN method traditionally applied in analysing results from core flooding experiments, which emerged as the most successful and therefore also the recommended method. 1. In addition to the up scaling work we review the Equivalent Radius Method for capillary pressure normalisation with explicit derivation of type functions for Maastrichtian and Danian chalk types. Implementation of the Equivalent Radiuo Method in the COSI reservoir simulator by an optikal set of key-words. There are six specific results from this work: 1. The equivalent radius method is robust to changes of scale and yields model initialisations by initial and irreducible water saturations on a full field simulation scale that agree well with values derived from averaging on a fine-scale. 2. The residual oil saturations are strongly scale dependent and the description of the residual oil as a function of the irreducible water is not applicable on a full field scale and will lead to an overestimation of the residual oil present in the reservoir. The effective residual oil saturations on a full field-scale must be considered functions of the effective initial water saturations, in order to take into account fine-scale variations in the oil/water contacts. 3. The effective permeability as calculated by statistical averages does not differ seriously from results obtained by fine-grid numerical
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The
Institute of Scientific and Technical Information of China (English)
LIU; Nansheng; LU; Xiyun; ZHUANG; Lixian
2004-01-01
A new dynamic subgrid-scale (SGS) model, which is proved to satisfy the principle of asymptotic material frame indifference (AMFI) for rotating turbulence, is proposed based on physical and mathematical analysis. Comparison with direct numerical simulation (DNS) results verifies that the new SGS model is effective for large eddy simulation (LES) on rotating turbulent flow. The SGS model is then applied to the LES of the spanwise rotating turbulent channel flow to investigate the rotation effect on turbulence characteristics, budget terms in the transport equations of resolved Reynolds stresses, and flow structures near the wall regions of the rotating channel.
Directory of Open Access Journals (Sweden)
S. Jess
2011-03-01
Full Text Available Cloud properties are usually assumed to be homogeneous within the cloudy part of the grid-box, i.e. subgrid-scale inhomogeneities in cloud cover and/or microphysical properties are often neglected. However, precipitation formation is initiated by large particles. Thus mean values are not representative and could lead to a delayed onset of precipitation.
For a more physical description of the subgrid-scale structure of clouds we introduce a new statistical sub-column algorithm to study the impact of cloud inhomogeneities on stratiform precipitation. Each model column is divided into N independent sub-columns with sub-boxes in each layer, which are completely clear or cloudy. The cloud cover is distributed over the sub-columns depending on the diagnosed cloud fraction. Mass and number concentrations of cloud droplets and ice crystals are distributed randomly over the cloudy sub-columns according to prescribed probability distributions. Shapes and standard deviations of the distributions are obtained from aircraft observations.
We have implemented this sub-column algorithm into the ECHAM5 global climate model to take subgrid variability of cloud cover and microphysical properties into account. Simulations with the Single Column Model version of ECHAM5 were carried out for one period of the Mixed-Phase Polar Arctic Cloud Experiment (MPACE campaign as well as for the Eastern Pacific Investigation of climate Processes (EPIC campaign. Results with the new algorithm show an earlier onset of precipitation for the EPIC campaign and a higher conversion of liquid to ice for the MPACE campaign, which reduces the liquid water path in better agreement with the observations than the original version of the ECHAM5 model.
Gottwald, Georg A; Davies, Laura
2015-01-01
Observations of tropical convection from precipitation radar and the concurring large-scale atmospheric state at two locations (Darwin and Kwajalein) are used to establish effective stochastic models to parameterise subgrid-scale tropical convective activity. Two approaches are presented which rely on the assumption that tropical convection induces a stationary equilibrium distribution. In the first approach we parameterise convection variables such as convective area fraction as an instantaneous random realisation conditioned on the large-scale vertical velocities according to a probability density function estimated from the observations. In the second approach convection variables are generated in a Markov process conditioned on the large-scale vertical velocity, allowing for non-trivial temporal correlations. Despite the different prevalent atmospheric and oceanic regimes at the two locations, with Kwajalein being exposed to a purely oceanic weather regime and Darwin exhibiting land-sea interaction, we es...
Grete, P; Schmidt, W; Schleicher, D R G
2016-01-01
Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics (MHD). We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number $\\mathrm{M_s} = 0.2$ to $20$ as reference data for the most extensive \\textit{a priori} tests performed so far in literature. In these tests we explicitly filter the reference data and compare the performance of the new closures against th...
Intermediate scales between simulation and modeling of two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Pigny, Sylvain L., E-mail: sylvain.pigny@cea.f [CEA/DEN, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)
2011-03-15
Research highlights: Simulation and modeling of bubbles are done at high Reynolds number. Intermediate scales between simulation and modeling are of importance. Specific approaches can be envisaged in accurate multiphase codes. An attempt leads to agreement with experimental data. We establish a link between multiphase codes and DNS ones. - Abstract: Phenomena related to two-phase flows in an experiment in which air is injected in the lower part of a tank filled with water are investigated, via the SIMMER-IV software. The Reynolds and Weber numbers of the bubbly flow have high values. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled via classical closure laws. An attempt to represent the formation of individual large bubbles, close to the injector, via direct simulation is done. In a first calculation, the large bubbles break-up is not represented. This phenomenon, the space scale of which is close to the cell size, cannot be simulated, with the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and these phenomena are too large to be modeled via closure laws. The case is therefore useful to underline some basic limits in the potentialities of direct simulation and modeling and to propose an attempt to face the problem. The breakup of bubbles is now represented. Finally the validity of the approach is checked directly by simulating a single bubble experiment. The problem of the convergence between multiphase codes and direct simulation ones is pointed.
Dalman, Rory A. F.; Weltje, Gert Jan
2008-10-01
We present a parameterisation of fluvio-deltaic drainage network evolution and alluvial architecture in a basin-scale 2-DH model. The model setup is capable of producing convergent and divergent channel networks. Major elements are the alluvial-ridge aggradation and the coupled overbank deposition, the dimension and style of the channel belt and the sub-grid stratigraphic expression. Avulsions are allowed to develop out of randomly instigated crevasses. Channel stability is modelled one dimensionally by calculating the flow and sediment transport at prospective avulsion nodes. The ultimate fate of crevasses (failed avulsion, successful avulsion, stable bifurcation) depends on the ratio of cross-valley and in-channel gradients in the local neighbourhood of the grid cell under consideration and on the amount and distribution of the suspended sediment load in the water column. The sub-grid parameterisation yields implicit knowledge of the alluvial architecture, which may be analysed stochastically. Stochastic realisations of the alluvial architecture allow us to investigate the relationship between basin-fill architecture and small-scale alluvial architecture, which is likely to improve geological reservoir modelling of these notoriously complex deposits. Modelling results under conditions of time-invariant forcing indicate significant quasi-cyclic autogenic behaviour of the fluvio-deltaic system. Changes in the avulsion frequency are correlated with the number and length of distributary channels, which are in turn related to alternating phases of progradational and aggradational delta development. The resulting parasequences may be difficult to distinguish from their allogenically induced counterparts.
Weaver, Andrew J.; Wiebe, Edward C.
A coupled model of intermediate complexity is used to examine the importance of the parameterisation of sub-grid scale ocean mixing on the global mean steric sea level rise in global warming simulations. It is shown that when mixing associated with mesoscale eddies is treated in a more physically realistic way than the commonly used horizontal/vertical scheme, quasi-equilibrium projected steric sea level rise is more than two times lower in both 2 × CO2 and 4 × CO2 climates. This occurs despite the invariance of the coupled model climate sensitivity to the particular sub-grid scale mixing scheme employed. During the early phase of the transient integrations thermal expansion differences are smaller, although experiments using the Gent and McWilliams parameterisation for mixing associated with mesoscale eddies approach equilibrium more rapidly once the radiative forcing is held fixed. This reduced expansion commitment reflects a greater decoupling of the surface ocean from the deep ocean, due to a reduction in spurious high latitude convection that occurs when a horizontal/vertical mixing scheme is used.
Hahnke, Sarah; Striesow, Jutta; Elvert, Marcus; Mollar, Xavier Prieto; Klocke, Michael
2014-08-01
A novel anaerobic, mesophilic, hydrogen-producing bacterium, designated strain M2/40(T), was isolated from a mesophilic, two-phase, laboratory-scale biogas reactor fed continuously with maize silage supplemented with 5% wheat straw. 16S rRNA gene sequence comparison revealed an affiliation to the genus Clostridium sensu stricto (cluster I of the clostridia), with Clostridium cellulovorans as the closest characterized species, showing 93.8% sequence similarity to the type strain. Cells of strain M2/40(T) were rods to elongated filamentous rods that showed variable Gram staining. Optimal growth occurred at 35 °C and at pH 7. Grown on glucose, the main fermentation products were H2, CO2, formate, lactate and propionate. The DNA G+C content was 29.6 mol%. The major fatty acids (>10 %) were C(16 : 0), summed feature 10 (C(18 : 1)ω11c/ω9t/ω6t and/or unknown ECL 17.834) and C(18 : 1)ω11c dimethylacetal. Based on phenotypic, chemotaxonomic and phylogenetic differences, strain M2/40(T) represents a novel species within the genus Clostridium, for which we propose the name Clostridium bornimense sp. nov. The type strain is M2/40(T) ( = DSM 25664(T) = CECT 8097(T)).
Vlaykov, Dimitar G; Schmidt, Wolfram; Schleicher, Dominik R G
2016-01-01
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LES), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale (SGS) dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator (W.K. Yeo CUP 1993, ed. Galperin & Orszag) and require no assumptions about the nature of the flow or magnetic field. Thus the scope of their applicability ranges from the sub- to ...
Ciaraldi-Schoolmann, F; Roepke, F K
2013-01-01
A promising model for normal Type Ia supernova (SN Ia) explosions are delayed detonations of Chandrasekhar-mass white dwarfs, in which the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary conditions have been determined recently. The region of detonation initiation cannot be spatially resolved in multi-dimensional full-star simulations of the explosion. We develop a subgrid-scale (SGS) model for DDTs in thermonuclear supernova simulations that is consistent with the currently known constraints. The probability for a DDT to occur is calculated from the distribution of turbulent velocities measured on the grid scale in the vicinity of the flame and the fractal flame surface area that satisfies further physical constraints, such as fuel fraction and fuel density. The implementation of our DDT criterion provides a solid basis for sim...
Nonequilibrium capillarity effects in two-phase flow through porous media at different scales
Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.
2011-01-01
A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments
Two-phase flow-induced forces on bends in small scale tubes
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.
2010-01-01
Two-phase flow occurs in many situations in industry. Under certain circumstances, it can be a source of flow-induced vibrations. The forces generated can be sufficiently large to affect the performance or efficiency of an industrial device. In the worst-case scenario, the mechanical forces that ari
Okong'o, Nora; Bellan, Josette
2005-01-01
Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.
Niceno, B.; Dhotre, M.T.; Deen, N.G.
2008-01-01
In this work, we have presented a one-equation model for sub-grid scale (SGS) kinetic energy and applied it for an Euler-Euler large eddy simulation (EELES) of a bubble column reactor. The one-equation model for SGS kinetic energy shows improved predictions over the state-of-the-art dynamic
Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model
Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank
2017-07-01
Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.
A two-scale second-order moment two-phase turbulence model for simulating dense gas-particle flows
Institute of Scientific and Technical Information of China (English)
Zhuoxiong Zeng; Lixing Zhou; Jian Zhang; Keren Wang
2005-01-01
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the single-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model)in most regions.
Shaffer, S. R.
2015-12-01
A method for representing grid-scale heterogeneous development density for urban climate models from probability density functions of sub-grid resolution observed data is proposed. Derived values are evaluated in relation to normalized Shannon Entropy to provide guidance in assessing model input data. Urban fraction for dominant and mosaic urban class contributions are estimated by combining analysis of 30-meter resolution National Land Cover Database 2006 data products for continuous impervious surface area and categorical land cover. The method aims at reducing model error through improvement of urban parameterization and representation of observations employed as input data. The multi-scale variation of parameter values are demonstrated for several methods of utilizing input. The method provides multi-scale and spatial guidance for determining where parameterization schemes may be mis-representing heterogeneity of input data, along with motivation for employing mosaic techniques based upon assessment of input data. The proposed method has wider potential for geographic application, and complements data products which focus on characterizing central business districts. The method enables obtaining urban fraction dependent upon resolution and class partition scheme, based upon improved parameterization of observed data, which provides one means of influencing simulation prediction at various aggregated grid scales.
Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying
2016-11-01
The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.
Kumar, R.; Samaniego, L. E.; Livneh, B.
2013-12-01
Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked
Zhou, Bowen; Xue, Ming; Zhu, Kefeng
2017-04-01
Compared to the representation of vertical turbulent mixing through various PBL schemes, the treatment of horizontal turbulence mixing in the boundary layer within mesoscale models, with O(10) km horizontal grid spacing, has received much less attention. In mesoscale models, subgrid-scale horizontal fluxes most often adopt the gradient-diffusion assumption. The horizontal mixing coefficients are usually set to a constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. In this work, horizontal turbulent mixing parameterizations using physically based characteristic velocity and length scales are proposed for the convective boundary layer based on analysis of a well-resolved, wide-domain large-eddy simulation (LES). The proposed schemes involve different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The current horizontal mixing formulations are also assessed a priori through the filtered LES results to illustrate their limitations. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes, and further demonstrate the weakness of the current schemes.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng
2016-05-10
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Xiao, Heng; Gustafson, William I.; Hagos, Samson M.; Wu, Chien-Ming; Wan, Hui
2015-06-01
To better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km2. Then the ZM-based parameterization of vertical transport of moist static energy for scales smaller than the subdomain size (w'h'>¯ZM) are compared to those directly calculated from the CRM simulations (w'h'>¯CRM) for different subdomain sizes. The ensemble mean w'h'>¯CRM decreases by more than half as the subdomain size decreases from 128 to 8 km across while w'h'>¯ZM decreases with subdomain size only for strong convection cases and increases for weaker cases. The resolution dependence of w'h'>¯ZM is determined by the positive-definite grid-scale tendency of convective available potential energy (CAPE) in the convective quasi-equilibrium (QE) closure. Further analysis shows the actual grid-scale tendency of CAPE (before taking the positive definite value) and w'h'>¯CRM behave very similarly as the subdomain size changes because they are both tied to grid-scale advective tendencies. We can improve the resolution dependence of w'h'>¯ZM significantly by averaging the grid-scale tendency of CAPE over an appropriately large area surrounding each subdomain before taking its positive definite value. Even though the ensemble mean w'h'>¯CRM decreases with increasing resolution, its variability increases dramatically. w'h'>¯ZM cannot capture such increase in the variability, suggesting the need for stochastic treatment of convection at relatively high spatial resolution (8 or 16 km).
Energy Technology Data Exchange (ETDEWEB)
Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)
2015-12-14
The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.
Ghosh, S; Henry, M P; Sajjad, A; Mensinger, M C; Arora, J L
2000-01-01
Bioconversion of municipal solid waste-sludge blend by conventional high-rate and two-phase anaerobic digestion was studied. RDF (refused-derived fuel)-quality feed produced in a Madison, Wisconsin, USA, MRF (materials-recovery facility) was used. High-rate digestion experiments were conducted with bench-scale digesters under target operating conditions developed from an economic feasibility study. The effects of digestion temperature, RDF content of digester feed, HRT, loading rate, RDF particle size, and RDF pretreatment with cellulase or dilute solutions of NaOH or lime on digester performance were studied. A pilot-scale two-phase digestion plant was operated with 80:20 (weight ratio) RDF-sludge blends to show that this process exhibited a higher methane yield, and produced a higher methane-content digester gas than those obtained by single-stage, high-rate anaerobic digestion.
Decker, Jeremy D.; Hughes, J.D.
2013-01-01
Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.
Mathematical modeling and numerical simulation of two-phase flow problems at pore scale
Directory of Open Access Journals (Sweden)
Paula Luna
2015-11-01
Full Text Available Mathematical modeling and numerical simulation of two-phase flow through porous media is a very active field of research, because of its relevancy in a wide range of physical and technological applications. Some outstanding applications concern reservoir simulation and oil and gas recovery, fields in which a great effort is being paid in the development of efficient numerical methods. The mathematical model used in this work is written as a system comprising an elliptic equation for pressure and a hyperbolic one for saturation. Our aim is to obtain the numerical solution of this model by combining finite element and finite volume techniques, with a second-order non-oscillatory reconstruction procedure to build the values of the velocities at the cell interfaces of the FV mesh from pointwise values of the pressure at the FE nodes. The numerical results are compared to those obtained using the commercial code ECLIPSE showing an appropriate behavior from a qualitative point of view. The use of this FE-FV procedure is not the usual numerical method in petroleum reservoir simulation, since the techniques most frequently used are based on finite differences, even in standard commercial tools.
Energy Technology Data Exchange (ETDEWEB)
Arcanjo, Alexandre A.; Freitas, Juliano O.; Tibirica, Cristiano B.; Ribatski, Gherhardt [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica
2009-07-01
Quasi-diabatic two-flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities from 50 to 600 kg/m{sup 2}s and saturation temperatures of 22 deg C, 31 deg C and 41 deg C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream of the heated section were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular. Dryout conditions were also characterized. Local heat transfer results were considered when investigating the presence of stratified flows. The visualized flow patterns were compared against the predictions provided by Barnea et al., Felcar et al. and Revellin and Thome. For the present database, the method recently proposed by Felcar et al. provides the best predictions. Additionally, elongated bubble velocities, frequencies and lengths were determined based on an analysis of high speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature, and is independent of bubble length. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as a linear function of the two-phase superficial velocity. (author)
Martinez, Luis; Meneveau, Charles
2014-11-01
Large Eddy Simulations (LES) of the flow past a single wind turbine with uniform inflow have been performed. A goal of the simulations is to compare two turbulence subgrid-scale models and their effects in predicting the initial breakdown, transition and evolution of the wake behind the turbine. Prior works have often observed negligible sensitivities to subgrid-scale models. The flow is modeled using an in-house LES with pseudo-spectral discretization in horizontal planes and centered finite differencing in the vertical direction. Turbines are represented using the actuator line model. We compare the standard constant-coefficient Smagorinsky subgrid-scale model with the Lagrangian Scale Dependent Dynamic model (LSDM). The LSDM model predicts faster transition to turbulence in the wake, whereas the standard Smagorinsky model predicts significantly delayed transition. The specified Smagorinsky coefficient is larger than the dynamic one on average, increasing diffusion thus delaying transition. A second goal is to compare the resulting near-blade properties such as local aerodynamic forces from the LES with Blade Element Momentum Theory. Results will also be compared with those of the SOWFA package, the wind energy CFD framework from NREL. This work is supported by NSF (IGERT and IIA-1243482) and computations use XSEDE resources, and has benefitted from interactions with Dr. M. Churchfield of NREL.
Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro
2010-08-15
In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters.
Two-phase air-water flows:Scale effects in physical modeling
Institute of Scientific and Technical Information of China (English)
PFISTER Michael; CHANSON Hubert
2014-01-01
Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical models operating under a Froude similitude systematically underestimate the air entrainment rate and air-water interfacial properties. To limit scale effects, minimal values of Reynolds or Weber number have to be respected. The present article summarizes the physical background of such limitations and their combination in terms of the Morton number. Based upon a literature review, the existing limits are presented and discussed, resulting in a series of more conservative recommendations in terms of air concentration scaling. For other air-water flow parameters, the selection of the criteria to assess scale effects is critical because some parameters (e.g., bubble sizes, turbulent scales) can be affected by scale effects, even in relatively large laboratory models.
Energy Technology Data Exchange (ETDEWEB)
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
2015-09-14
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereas the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.
Kim, SeHyun; Kim, Hyun Mee
2017-03-01
The ensemble prediction system (EPS) is widely used in research and at operation center because it can represent the uncertainty of predicted atmospheric state and provide information of probabilities. The high-resolution (so-called "convection-permitting") limited area EPS can represent the convection and turbulence related to precipitation phenomena in more detail, but it is also much sensitive to small-scale or sub-grid scale processes. The convection and turbulence are represented using physical processes in the model and model errors occur due to sub-grid scale processes that were not resolved. This study examined the effect of considering sub-grid scale uncertainties using the high-resolution limited area EPS of the Korea Meteorological Administration (KMA). The developed EPS has horizontal resolution of 3 km and 12 ensemble members. The initial and boundary conditions were provided by the global model. The Random Parameters (RP) scheme was used to represent sub-grid scale uncertainties. The EPSs with and without the RP scheme were developed and the results were compared. During the one month period of July, 2013, a significant difference was shown in the spread of 1.5 m temperature and the Root Mean Square Error and spread of 10 m zonal wind due to application of the RP scheme. For precipitation forecast, the precipitation tended to be overestimated relative to the observation when the RP scheme was applied. Moreover, the forecast became more accurate for heavy precipitations and the longer forecast lead times. For two heavy rainfall cases occurred during the research period, the higher Equitable Threat Score was observed for heavy precipitations in the system with the RP scheme compared to the one without, demonstrating consistency with the statistical results for the research period. Therefore, the predictability for heavy precipitation phenomena that affected the Korean Peninsula increases if the RP scheme is used to consider sub-grid scale uncertainties
Energy Technology Data Exchange (ETDEWEB)
Premnath, Kannan N [Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, CO 80217 (United States); Pattison, Martin J [HyPerComp Inc., 2629 Townsgate Road, Suite 105, Westlake Village, CA 91361 (United States); Banerjee, Sanjoy, E-mail: kannan.premnath@ucdenver.edu, E-mail: kannan.np@gmail.com [Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031 (United States)
2013-10-15
Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)
Laboratory and field scale modelling of two-phase flow in fractured structures
Energy Technology Data Exchange (ETDEWEB)
Lindgaard, Hanne Foss [The Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Reffstrup, Jan [Technical Univ. of Denmark, Lyngby (Denmark); Kaae Olsen, Niels [Danish Hydraulic Institute, Hoersholm (Denmark)
1996-12-31
The imbibition of water in matrix blocks plays a significant role in oil recovery from certain types of fractured reservoirs with a low permeable, porous matrix. These types of fractured reservoirs have a water-wet matrix, strong capillary forces and an inflow of water: either from an aquifer or as a result of forced water injection. Several chalk reservoirs in the North Sea correspond to this description. This paper presents a comparison between laboratory scale experiments, and numerical studies of water imbibition in a fractured porous media. Both the single and the double porosity/permeability approach have been used to simulate the experiments. (au) EFP-96. 11 refs.
A Dynamic Two-Phase Pore-Scale Model of Imbibition
DEFF Research Database (Denmark)
Mogensen, Kristian; Stenby, Erling Halfdan
1998-01-01
We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle, and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except from the viscosity ratio. We find that contact angle, aspect ratio, and capillary number all have a significant influence on the competition between piston-lice advance, leading to high recovery, and snap-off, causing oil entrapment. Due to significant CPU...
On the formulation of the dynamic mixed subgrid-scale model
Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.
1994-01-01
The dynamic mixed subgrid‐scale model of Zang et al. [Phys. Fluids A 5, 3186 (1993)] (DMM1) is modified with respect to the incorporation of the similarity model in order to remove a mathematical inconsistency. Compared to DMM1, the magnitude of the dynamic model coefficient of the modified model
Formulation of Subgrid Variability and Boundary-Layer Cloud Cover in Large-Scale Models
2007-11-02
soils have been specifically evaluated in terms of a van Genuchten formulation. The CAPS model was originally formulated for inclusion in large...terrestrial atmospheric boundary lay- ers, suitable for inclusion in large-scale models. The ABL mixing scheme (Troen and Mahrt, 1986) includes both...AFGL soil sodel (OSU-PL land-surface scheme) coupled to a boundary layer model developed by Jan Paegle, Univ. Utah. Ciudad Universitaria Pabellon 2
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto
2017-04-01
We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.
Antoine, Michael; Javaux, Mathieu; Bielders, Charles L.
2011-06-01
SummaryThe spatial configuration of micro-topography affects the runoff connectivity at the interrill scale and, therefore, the shape of the hydrograph. In a previous study, we demonstrated the ability of the so-called Relative Surface Connection (RSC) function to capture, at the grid scale, the evolution of the contributing area as a function of the depression storage filling. However, this function neglects the effect of surface detention, which is proportional to the runoff rate and which must be taken into account if one wants to predict correctly the discharge dynamics. Therefore we tested two corrective procedures in association with the RSC function to integrate, at the grid scale, the effects of both depression storage and surface detention dynamics. The weighted-source corrective procedure consists in weighing the effective supply of water between depression storage and runoff using the RSC function. The weighted-surface corrective procedure consists in splitting a single grid into parallel independent strips whose sizes depend on the RSC function and which activate at various times and then participate to the global runoff production. Those methods allowed to mimic in a simple way and at the grid scale synthetical and experimental hydrographs for complex subgrid micro-topographies. The weighted-source and especially the weighted-surface corrective procedures improved the hydrograph prediction compared to the classical approach where runoff only starts when depression storage capacity is full. In a purely numerical framework with four runoff scenarios on highly contrasted micro-topographies, this improvement was reflected in a significant increase of the median Nash and Sutcliffe coefficients E50 ( E50 = 0.29 for the classical approach, E50 = 0.67 for the weighted-source procedure and E50 = 0.94 for the weighted-surface procedure). For the depression storage filling, an alternative to the Linsley equation was found and allowed a better description of
Zacharuk, Matthias; Stamen, Dolaptchiev; Ulrich, Achatz; Ilya, Timofeyev
2016-04-01
Due to the finite spatial resolution in numerical atmospheric models subgrid-scale (SGS) processes are excluded. A SGS parameterization of these excluded processes might improve the model on all scales. To parameterize the SGS processes we choose the MTV stochastic mode reduction (Majda, Timofeyev, Vanden-Eijnden 2001, A mathematical framework for stochastic climate models. Commun. Pure Appl. Math., 54:891-974). For this the model is separated into fast and slow processes. Using the statistics of the fast processes, a SGS parameterization is found. To identify fast processes the state vector of the model is separated into two state vectors. One vector is the average of the full model state vector in a coarse grid cell. The other describes SGS processes which are defined as the deviation of the full state vector from the coarse cell average. If the SGS vector decorrelates faster in time than the coarse grid vector, the interactions of SGS processes in the equation of the SGS processes are replaced by a local Ornstein-Uhlenbeck process. Afterwards the MTV SGS parameterization can be derived. This method was successfully applied on the Burgers-equation (Dolaptchiev et al. 2013, Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation. Theor. Comp. Fluid Dyn., 27:297-317). In this study we consider a more atmosphere like model and choose a model of the one dimensional shallow water equations (SWe). It will be shown, that the fine state vector decorrelates faster than the coarse state vector. Due to the non-polynomial form of the SWe in flux formulation an approximation of all 1/h (h = fluid depth) terms needs to be done, except of the interactions between coarse state vector to coarse state vector. It will be shown, that this approximation has only minor impact on the model results. In the following the model with the local Ornstein-Uhlenbeck process approximation of SGS interactions is analyzed and compared to the
Institute of Scientific and Technical Information of China (English)
2008-01-01
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.
Institute of Scientific and Technical Information of China (English)
TIAN XiangJun; XIE ZhengHui
2008-01-01
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation.The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data assimilation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in consideration of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process,while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heterogeneity and soil water thawing and freezing. With the improvement of soil moisture simulation,the soil temperature-simulated precision can be also improved to some extent.
A Dynamic Subgrid Scale Model for Large Eddy Simulations Based on the Mori-Zwanzig Formalism
Parish, Eric J
2016-01-01
The development of reduced models for complex systems that lack scale separation remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al., which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a methodology for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a novel M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the `dynamic-$\\tau$' model, is that it is parameter-free and has a structural form imp...
Zhou, Mingxing; Liu, Jing
2017-02-01
Designing robust networks has attracted increasing attentions in recent years. Most existing work focuses on improving the robustness of networks against a specific type of attacks. However, networks which are robust against one type of attacks may not be robust against another type of attacks. In the real-world situations, different types of attacks may happen simultaneously. Therefore, we use the Pearson's correlation coefficient to analyze the correlation between different types of attacks, model the robustness measures against different types of attacks which are negatively correlated as objectives, and model the problem of optimizing the robustness of networks against multiple malicious attacks as a multiobjective optimization problem. Furthermore, to effectively solve this problem, we propose a two-phase multiobjective evolutionary algorithm, labeled as MOEA-RSFMMA. In MOEA-RSFMMA, a single-objective sampling phase is first used to generate a good initial population for the later two-objective optimization phase. Such a two-phase optimizing pattern well balances the computational cost of the two objectives and improves the search efficiency. In the experiments, both synthetic scale-free networks and real-world networks are used to validate the performance of MOEA-RSFMMA. Moreover, both local and global characteristics of networks in different parts of the obtained Pareto fronts are studied. The results show that the networks in different parts of Pareto fronts reflect different properties, and provide various choices for decision makers.
Directory of Open Access Journals (Sweden)
J. R. Melton
2014-02-01
Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same
Avissar, Roni; Chen, Fei
1993-01-01
generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.
Avissar, Roni; Chen, Fei
1993-01-01
generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.
On the use of a small-scale two-phase thermosiphon to cool high-power electronics
Schrage, D. S.
1990-01-01
An experimental and analytical investigation of the steady-state thermal-hydraulic operating characteristics of a small-scale two-phase thermosiphon cooling actual power electronics are presented. Boiling heat transfer coefficients and circulation mass velocities were measured while varying heat load and pressure. Both a plain and augmented riser structure, utilizing micro-fins and reentrant cavities, were simultaneously tested. The boiling heat transfer coefficients increased with both increasing heat load and pressure. The mass velocity increased with increasing pressure while both increasing and then decreasing with increasing heat load. The reentrant cavity enhancement factor, a ratio of the augmented-to-plain riser nucleate boiling heat transfer coefficients, ranged from 1 to 1.4. High-speed photography revealed bubbly, slug, churn, wispy-annular and annular flow patterns. The experimental mass velocity and heat transfer coefficient data were compared to an analytical model with average absolute deviations of 16.3 and 26.3 percent, respectively.
A generalized power-law scaling law for a two-phase imbibition in a porous medium
El-Amin, Mohamed
2013-11-01
Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.
Quaas, Johannes
2015-01-01
A simple way to diagnose fractional cloud cover in general circulation models is to relate it to the simulated relative humidity, and allowing for fractional cloud cover above a “critical relative humidity” of less than 100%. In the formulation chosen here, this is equivalent to assuming a uniform “top-hat” distribution of subgrid-scale total water content with a variance related to saturation. Critical relative humidity has frequently been treated as a “tunable” constant, yet it is an observ...
Delil, A. A. M.
2001-02-01
Earlier publications extensively describe NLR research on thermal-gravitational modeling and scaling of two-phase heat transport systems for spacecraft applications. These publications on mechanically and capillary pumped two-phase loops discuss pure geometric scaling, pure fluid to fluid scaling, and combined (hybrid) scaling of a prototype system by a model at the same gravity level, and of a prototype in micro-gravity environment by a scale-model on earth. More recent publications include the scaling aspects of prototype two-phase loops for Moon or Mars applications by scale-models on earth. Recent work, discussed here, concerns extension of thermal-gravitational scaling to super-g acceleration levels. This turned out to be necessary, since a very promising super-g application for (two-phase) heat transport systems will be cooling of high-power electronics in spinning satellites and in military combat aircraft. In such aircraft, the electronics can be exposed during maneuvres to transient accelerations up to 120 m/s2. The discussions focus on ``conventional'' (capillary) pumped two-phase loops. It can be considered as introduction to the accompanying article, which focuses on pulsating and oscillating devices. .
Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M
2008-05-01
Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.
Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck
2014-07-01
Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution
Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko
2014-12-01
Pore-scale forces have a significant effect on the macroscopic behaviour of multiphase flow through porous media. This paper studies the effect of these forces using a new volume-of-fluid based finite volume method developed for simulating two-phase flow directly on micro-CT images of porous media. An analytical analysis of the relationship between the pore-scale forces and the Darcy-scale pressure drops is presented. We use this analysis to propose unambiguous definitions of Darcy-scale viscous pressure drops as the rate of energy dissipation per unit flow rate of each phase, and then use them to obtain the relative permeability curves. We show that this definition is consistent with conventional laboratory/field measurements by comparing our predictions with experimental relative permeability. We present single and two-phase flow simulations for primary oil injection followed by water injection on a sandpack and a Berea sandstone. The two-phase flow simulations are presented at different capillary numbers which cover the transition from capillary fingering at low capillary numbers to a more viscous fingering displacement pattern at higher capillary numbers, and the effect of capillary number on the relative permeability curves is investigated. Overall, this paper presents a new finite volume-based methodology for the detailed analysis of two-phase flow directly on micro-CT images of porous media and upscaling of the results to the Darcy scale.
Maulik, Romit
2016-01-01
In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...
Energy Technology Data Exchange (ETDEWEB)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
2015-01-01
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separation approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.
Recursive renormalization group theory based subgrid modeling
Zhou, YE
1991-01-01
Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.
Directory of Open Access Journals (Sweden)
D. Yamazaki
2009-07-01
Full Text Available This paper proposes an improved method to convert a fine-resolution flow direction map into a coarse-resolution river network map for the use in global river routing models. The proposed method attempts to preserve the river network structure of an original fine-resolution map in upscaling procedures, which has not been achieved by previous methods. It is found that the problem in previous methods is mainly due to the traditional way of describing downstream cells of a river network map with a direction toward one of the eight neighboring cells. Instead in the improved method, the downstream cell can be flexibly located onto any cells in the river network map. The improved method is applied to derive global river network maps at various resolutions. It succeeded to preserve the river network structure of the original flow direction map, and consequently realizes automatic construction of river network maps at any resolutions. This enables both higher-resolution approach in global river routing models and inclusion of sub-grid scale topographic features, such as realistic river meanderings and catchment boundaries. Those advantages of the proposed method are expected to enhance ability of global river routing models, providing ways to represent surface water storage and movement such as river discharge and inundated area extent in much finer-scale than ever modeled.
Hernandez Perez, Francisco E.; Lee, Bok Jik; Im, Hong G.; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.
2016-11-01
Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed using the flamelet-generated manifold technique for tabulation of chemical kinetics and the OpenFOAM framework for computational fluid dynamics. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, feeding a lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The effects of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical predictions are all systematically investigated. Comparisons between numerical results and measured data show a considerable improvement in the prediction of temperature when heat losses are incorporated into the manifold, as compared to the adiabatic one. In addition, further improvements in the LES predictions are achieved by employing SGS models based on transport equations.
Hernandez Perez, Francisco E.
2017-01-05
Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.
Lee, Junhong; Shin, Hyeyum Hailey; Hong, Song-You; Jiménez, Pedro A.; Dudhia, Jimy; Hong, Jinkyu
2015-01-01
paper reports on the first attempt to investigate whether excessive precipitation over mountainous areas, which is a common problem in model simulations, could be remedied by the implementation of a more realistic surface wind field in the high-resolution Weather Research and Forecasting (WRF) model. A series of 48 h short-range forecasts was conducted for the month of July 2006 within the triple-nested WRF configuration, for which the highest resolution of 3 km was focused on areas with complex orography over East Asian monsoonal regions. For accurate surface wind simulations, the subgrid-scale (SGS) orography parameterization scheme was employed. It was found that the simulated surface wind showed negative (positive) bias over mountainous (flat) regions when the SGS orography parameterization was excluded. After inclusion of the SGS orography parameterization, wind speed over mountainous (flat) regions increased (decreased), implying that the bias was mitigated. Moisture divergence (convergence) over the mountains (on the leeward side of the mountains) was induced, and surface latent heat flux increased along the mountain ranges following the improvement in the representation of the surface wind by the inclusion of the SGS orography parameterization. Eventually, excessive precipitation simulated over mountainous areas of East Asia, which is a feature commonly observed in numerical model studies, was alleviated because of the moisture divergence and increased surface latent heat flux.
Vázquez-Villegas, Patricia; Ouellet, Eric; González, Claudia; Ruiz-Ruiz, Federico; Rito-Palomares, Marco; Haynes, Charles A; Aguilar, Oscar
2016-07-05
Aqueous two-phase systems (ATPS) have emerged as an alternative strategy for the recovery and purification of a wide variety of biological products. Typical process development requires a large screening of experimental conditions towards industrial adoption where continuous processes are preferred. In this work, it was proved that under certain flow conditions, ATPS could be formed continuously inside a microchannel, starting from stocks of phase components. Staggered herringbone chaotic micromixers included within the device sequentially and rapidly prepare two-phase systems across an entire range of useful phase compositions. Two-phase diagrams (binodal curves) were easily plotted using the cloud-point method for systems of different components and compared with previously reported curves for each system, proving that phase formation inside the device correlated with the previously reported diagrams. A proof of concept for sample partitioning in such a microdevice was performed with two different experimental models: BSA and red blood cells. Finally, the microdevice was employed to obtain information about the recovery and partition coefficient of invertase from a real complex mixture of proteins (yeast extract) to design a process for the recovery of the enzyme selecting a suitable system and composition to perform the process at bench-scale.
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
Energy Technology Data Exchange (ETDEWEB)
Bogenschutz, Peter [National Center for Atmospheric Research, Boulder, CO (United States); Moeng, Chin-Hoh [National Center for Atmospheric Research, Boulder, CO (United States)
2015-10-13
The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.
Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin
2016-07-01
Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed.
Directory of Open Access Journals (Sweden)
R. G. Stevens
2013-07-01
Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are tens of kilometres and larger. Based on the results of the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM with online TwO Moment Aerosol Sectional (TOMAS microphysics, we have developed a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within sulphur-rich plumes based on parameters commonly available in global- and regional-scale models. Given large-scale mean meteorological parameters ((1 wind speed, (2 boundary-layer height and (3 downward shortwave radiative flux, (4 emissions of SO2 and (5 NOx from the source, (6 mean background condensation sink, (7 background SO2 and (8 NOx concentrations, and (9 the desired distance from the source; the parameterization will predict: (1 the fraction of the emitted SO2 that is oxidized to H2SO4, (2 the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, (3 the mean mass per particle of the newly formed particles, and (4 the number of newly formed particles per kilogram SO2 emitted. The parameterization we describe here should allow for more accurate predictions of aerosol size distributions and a greater confidence in the effects of aerosols in climate and health studies.
Energy Technology Data Exchange (ETDEWEB)
Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)
2015-10-09
The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.
Ahmad, Zahoor; Hanif, Muhammad
2013-01-01
The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...
Subgrid snow depth coefficient of variation within complex mountainous terrain
Sexstone, Graham A.; Fassnacht, Steven R.; López-Moreno, Juan Ignacio; Christopher A. Hiemstra
2016-01-01
Given the substantial variability of snow in complex mountainous terrain, a considerable challenge of coarse scale modeling applications is accurately representing the subgrid variability of snowpack properties. The snow depth coefficient of variation (CVds) is a useful metric for characterizing subgrid snow distributions but has not been well defined by a parameterization for mountainous environments. This study utilizes lidar-derived snow depth datasets from mountainous terrain in Colorado,...
Mu, Yaoming; Sungkorn, Radompon; Toelke, Jonas
2016-09-01
In this paper, we extend pore-morphology-based methods proposed by Hazlett (1995) and Hilpert and Miller (2001) to simulate drainage and imbibition in uniformly wetting porous media and add an (optional) entrapment of the (non-)wetting phase. By improving implementation, this method allows us to identify the statistical representative elementary volume and estimate uncertainty by computing fluid flow properties and saturation distributions of hundreds of subsamples within a reasonable time-frame. The method was utilized to study three different porous medium systems and results demonstrate that morphology-based pore-scale modeling is a viable approach to assess the representative elementary volume with respect to capillary dominated two-phase flow. The focus of this paper is the determination of the representative elementary volume for multiphase-flow properties for a digital representation of a rock.
Energy Technology Data Exchange (ETDEWEB)
Artus, V.
2003-11-01
For two-phase flow in heterogeneous media, the emergence of different flow regimes at large-scale is driven by local interactions between the viscous coupling and the heterogeneity. In particular, when the viscosity ratio is favorable, viscous effects induce a transverse flow that stabilizes the front while flooding. However, most of recent stochastic models neglect the influence of the viscous coupling. We developed a stochastic model for the dynamics of the front, taking the viscous coupling into account. For stable cases, this model relates the statistical properties of the front to the statistical properties of the permeability field. For stable flow in stratified media, we show that the front is stationary by parts in the reservoir. These parts can be identified as large-scale hydrodynamic layers and separately coarsened in the large-scale simulation model. For flows with favorable viscosity ratios in isotropic reservoirs, we show that a stationary front occurs, in a statistical sense. For unfavorable viscosity ratios, the flow is driven by the development of viscous fingering. These different regimes lead to different large-scale saturation profiles that can be matched with a macro-dispersion equation, if the effective convective flux is modified to take into account stabilizing or destabilizing viscous effects. (author)
Theoretical comparison of subgrid turbulence in the atmosphere and ocean
Directory of Open Access Journals (Sweden)
V. Kitsios
2015-12-01
Full Text Available Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities from the subgrid statistics of high resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have alternative scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including: weather, seasonal and climate prediction; transport studies; and understanding natural variability and extreme events.
Examining subgrid models of supermassive black holes in cosmological simulation
Sutter, P M
2010-01-01
While supermassive black holes (SMBHs) play an important role in galaxy and cluster evolution, at present they can only be included in large-scale cosmological simulation via subgrid techniques. However, these subgrid models have not been studied in a systematic fashion. Using a newly-developed fast, parallel spherical overdensity halo finder built into the simulation code FLASH, we perform a suite of dark matter-only cosmological simulations to study the effects of subgrid model choice on relations between SMBH mass and dark matter halo mass and velocity dispersion. We examine three aspects of SMBH subgrid models: the choice of initial black hole seed mass, the test for merging two black holes, and the frequency of applying the subgrid model. We also examine the role that merging can play in determining the relations, ignoring the complicating effects of SMBH-driven accretion and feedback. We find that the choice of subgrid model can dramatically affect the black hole merger rate, the cosmic SMBH mass densit...
Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed
2017-07-01
We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were
Karamchandani, Prakash; Zhang, Yang; Chen, Shu-Yun
2012-12-01
Traditional Eulerian air quality models are unable to accurately simulate sub-grid scale processes, such as the near-source transport and chemistry of point source plumes, because they assume instantaneous mixing of the emitted pollutants within the grid cell containing the release, and neglect the turbulent segregation effects that limit the near-source mixing of emitted pollutants with the background atmosphere (e.g., Kramm and Meixner, 2000). Observations by Dlugi et al. (2010) show that the segregation of chemically reactive species can slow effective second-order reaction rates by as much as 15%, due to inhomogeneous mixing of the reactants. This limitation of traditional grid models applies to both "off-line" models, in which externally derived meteorology is used to drive the chemistry model, and newer "on-line" models, such as the Weather Research and Forecasting model with Chemistry (WRF/Chem), that simulate the emissions, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. While a number of approaches have been used in the past to address this limitation, the approach that has been most effectively used in operational models is the plume-in-grid (PinG) approach, in which a reactive plume model is embedded within the grid model to resolve sub-grid scale plumes. This paper describes the implementation of such a PinG treatment in WRF/Chem, based on a similar extension to the U.S. EPA Community Multi-scale Air Quality (CMAQ) model. The treatment, referred to as Advanced Plume Treatment, has been tested in CMAQ over more than a decade and has been used successfully in both episodic and long-term applications for assessing point source contributions to ozone and particulate matter. This paper presents the application of the PinG version of WRF/Chem for a three-day episode in July 2001, including a model performance evaluation and comparison of model results with and without PinG treatment. The results
Comparison of recent physically-based stochastic subgrid parameterizations
Demaeyer, Jonathan; Vannitsem, Stéphane
2017-04-01
We consider some recent methods of subgrid-scale parameterization used in the context of climate modeling. These methods are developed to take into account (subgrid) processes playing an important role in the correct representation of the atmospheric and climate variability. The variety of available stochastic modeling and reduction methods illustrates how fruitful was the seminal work of Hasselmann about it in the 1970s. However, in view of this variety, one might wonder about their efficiency in different situations. Indeed, depending on the specific purpose that it needs to fulfill, some parameterizations might perform better than others. The present work aims to shed some light on these questions by illustrating these methods on a simple stochastic triad system relevant for the atmospheric and climate dynamics, and for which most of the calculations can be made analytically. We show in particular that the stability properties of the underlying dynamics of the subgrid processes has a considerable impact on their performances.
Grimberg, S J; Hilderbrandt, D; Kinnunen, M; Rogers, S
2015-02-01
Single and two-phase operations were compared at mesophilic operating conditions using a digester system consisting of three 5-m(3) reactors treating food waste generated daily within the university campus kitchens. When normalizing the methane production to the daily feedstock characteristics, significantly greater methane was produced during two-phase mesophilic digestion compared to the single-stage operation (methane yield of 380 vs 446-L CH4 kg VS(-1); 359 vs 481-L CH4 kg COD(-1) removed for single vs two stage operation). The fermentation reactor could be maintained reliably even under very low loading rates (0.79±0.16 kg COD m(-3) d(-1)) maintaining a steady state pH of 5.2. Copyright © 2014 Elsevier Ltd. All rights reserved.
A subgrid parameterization scheme for precipitation
Directory of Open Access Journals (Sweden)
S. Turner
2011-07-01
Full Text Available With increasing computing power, the horizontal resolution of numerical weather prediction (NWP models is improving and today reaches 1 to 5 km. Nevertheless, clouds and precipitation are still subgrid scale processes for most cloud types, such as cumulus and stratocumulus. Subgrid scale parameterizations for water vapor condensation have been in use for many years and are based on a prescribed PDF of relative humidity spatial variability within the grid, thus providing a diagnosis of the cloud fraction. A similar scheme is developed and tested here. It is based on a prescribed PDF of cloud water variability and a threshold value of liquid water content for droplet collection to derive a rain fraction within the model grid. Precipitation of rainwater raises additional concerns relative to the overlap of cloud and rain fractions, however. The scheme is developed following an analysis of data collected during field campaigns in stratocumulus (DYCOMS-II and fair weather cumulus (RICO and tested in a 1-D framework against large eddy simulations of these observed cases. The new parameterization is then implemented in a 3-D NWP model with a horizontal resolution of 2.5 km to simulate real cases of precipitating cloud systems over France.
On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion
Liu, Nan-Suey; Wey, Thomas
2014-01-01
This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.
Pau, G. S. H.; Bisht, G.; Riley, W. J.
2014-09-01
Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June-September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998-2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.
Reynolds transport theorem for a two-phase flow
Collado, Francisco J.
2007-01-01
Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this
Subgrid Combustion Modeling for the Next Generation National Combustion Code
Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher
2003-01-01
In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.
A two-phase scenario for bulge assembly in LCDM cosmologies
Obreja, A; Brook, C; Martínez-Serrano, F J; Doménech-Moral, M; Serna, A; Mollá, M; Stinson, G
2012-01-01
We analyze and compare the bulges of a sample of L* spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputing low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback which drives large scale outflows. In all cases, the marked knee-shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z=0 into old and young according to these two phases, we f...
Directory of Open Access Journals (Sweden)
Weijian Guo
2015-05-01
Full Text Available Spatial variability plays an important role in nonlinear hydrologic processes. Due to the limitation of computational efficiency and data resolution, subgrid variability is usually assumed to be uniform for most grid-based rainfall-runoff models, which leads to the scale-dependence of model performances. In this paper, the scale effect on the Grid-Xinanjiang model was examined. The bias of the estimation of precipitation, runoff, evapotranspiration and soil moisture at the different grid scales, along with the scale-dependence of the effective parameters, highlights the importance of well representing the subgrid variability. This paper presents a subgrid parameterization method to incorporate the subgrid variability of the soil storage capacity, which is a key variable that controls runoff generation and partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern and physical basis, the soil storage capacity is correlated with the topographic index, whose spatial distribution can more readily be measured. A beta distribution is introduced to represent the spatial distribution of the soil storage capacity within the grid. The results derived from the Yanduhe Basin show that the proposed subgrid parameterization method can effectively correct the watershed soil storage capacity curve. Compared to the original Grid-Xinanjiang model, the model performances are quite consistent at the different grid scales when the subgrid variability is incorporated. This subgrid parameterization method reduces the recalibration necessity when the Digital Elevation Model (DEM resolution is changed. Moreover, it improves the potential for the application of the distributed model in the ungauged basin.
Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution
Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.
2016-12-01
Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and
A Unified Detail-Preserving Liquid Simulation by Two-Phase Lattice Boltzmann Modeling.
Guo, Yulong; Liu, Xiaopei; Xu, Xuemiao
2016-02-19
Traditional methods in graphics to simulate liquid-air dynamics under different scenarios usually employ separate approaches with sophisticated interface tracking/reconstruction techniques. In this paper, we propose a novel unified approach which is easy and effective to produce a variety of liquid-air interface phenomena. These phenomena, such as complex surface splashes, bubble interactions, as well as surface tension effects, can co-exist in one single simulation, and are created within the same computational framework. Such a framework is unique in that it is free from any complicated interface tracking/reconstruction procedures. Our approach is developed from the two-phase lattice Boltzmann method with the mean field model, which provides a unified framework for interface dynamics but is numerically unstable under turbulent conditions. Considering the drawbacks of the existing approaches, we propose techniques to suppress oscillation for significant stability enhancement, as well as derive a new subgrid-scale model to further improve stability, faithfully preserving liquid-air interface details without excessive diffusion by taking into account the density variation. The whole framework is highly parallel, enabling very efficient implementation. Comparisons to the related approaches show superiority on stable simulation with detail preservation and multiphase phenomena simultaneously involved. A set of animation results demonstrate the effectiveness of our method.
Stochastic modelling of primitive equation and quasi-geostrophic subgrid turbulence
Frederiksen, Jorgen; Kitsios, Vassili; Dix, Martin; Osbrough, Stacey
2016-04-01
A general method for stochastic and deterministic modelling of subgrid scale turbulence is presented and applied to primitive equation and quasi-geostrophic models of atmospheric and oceanic flows. Dynamical and thermodynamical subgrid-scale parameterisations of eddy drain, net dissipation and stochastic backscatter are calculated for a multi-level primitive equation atmospheric general circulation model. The parameterisations have only moderate variability with height and a cusp behaviour with peaks near the largest retained wavenumber. They are compared with corresponding results for quasi-geostrophic models of the atmosphere and ocean for which the parameterisations are shown to satisfy scaling laws. Large-eddy simulations (LES) with the subgrid terms very closely reproduce the results of higher resolution direct numerical simulations. The method is shown to produce parameterisations and LES with similar skill for three-dimensional turbulence in boundary layer channel flow.
Two-phase viscoelastic jetting
Energy Technology Data Exchange (ETDEWEB)
Yu, J-D; Sakai, S.; Sethian, J.A.
2008-12-10
A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
Advances in LES of Two-phase Combustion （II） LES of Complex Gas-Particle Flows and Coal Combustion
Institute of Scientific and Technical Information of China (English)
周力行; 胡璨元
2012-01-01
Large-eddy simulation （LES） is under its rapid development and is recognized as a possible second gen- eration of CFD methods used in engineering. Large-eddy simulation of two-phase flows and combustion is particu- larly important for engineering applications. Some investigators, including the present authors, give their review on LES of spray combustion in gas-turbine combustors and internal combustion engines. However, up to now only a few papers are related to the state-of-the-art on LES of gas-particle flows and combustion. In this paper a review of the advances in LES of complex gas-particle flows and coal combustion is presented. Different sub-grid scale （SGS） stress models and combustion models are described, some of the main results are summarized, and some research needs are discussed.
Two phase decision algorithm of replica allocation
Institute of Scientific and Technical Information of China (English)
Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi
2006-01-01
In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.
Representing the influence of subgrid topography on hydrology
Energy Technology Data Exchange (ETDEWEB)
Leung, L.R.; Ghan, S.J.
1993-10-01
Estimates of the impact of global climate change on land surface hydrology require climate information on scales far smaller than those explicitly resolved by global climate models of today and the foreseeable future. To bridge the gap between what is required and what is resolved, we propose a subgrid-scale parameterization of the influence of topography on clouds, precipitation, and land surface hydrology. The parameterization represents subgrid variations in surface elevation in terms of discrete elevation classes. Separate cloud and surface processes are calculated for each elevation class. The simulated surface temperature, precipitation, snowpack, and soil moisture for each elevation class can then be distributed according to the spatial distribution of surface elevation within each grid cell. The scheme is being applied to the Pacific Northwest Laboratory`s climate version of the Penn State/NCAR Mesoscale Model. Validation is being addressed by driving the model with observed lateral boundary conditions for the Pacific Northwest and comparing with surface observations. Preliminary results from the simulation will be presented.
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Energy Technology Data Exchange (ETDEWEB)
Boivin, M.
1996-12-31
An investigation of dilute dispersed turbulent two-way coupling two-phase flows has been undertaken with the hemp of Direct Numerical Simulations (DNS) on stationary-forced homogeneous isotropic turbulence. The particle relaxation times range from the Kolmogorov to the Eulerian time scales and the load goes up to 1. The analyses is made within the Eulerian-model framework, enhanced by the National Hydraulics Laboratory Lagrangian approach, which is extended here to include inverse coupling and Reynolds effects. Particles are found to dissipate on average turbulence energy. The spectra of the fluid-particle exchange energy rate show that small particles drag the fluid at high wavenumbers, which explains the observed relative increase of small scale energy. A spectral analysis points as responsible mechanism the transfer of fluid-particle covariance by fluid turbulence. Regarding the modeling, he Reynolds dependency and the load contribution are found crucial for good predictions of the dispersed phase moments. A study for practical applications with Large Eddy Simulations (LES) has yielded: LES can be used two-way coupling two-phase flows provided that a dynamic mixed sub-grid scale model is adopted and the particle relaxation time is larger than the cutoff filter one; the inverse coupling should depend more on the position of this relaxation time with respect to the Eulerian one than to the Kolmogorov one. (author) 67 refs.
A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN {Lambda}CDM COSMOLOGIES
Energy Technology Data Exchange (ETDEWEB)
Obreja, A.; Dominguez-Tenreiro, R.; Brook, C. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Cantoblanco Madrid (Spain); Martinez-Serrano, F. J.; Domenech-Moral, M.; Serna, A. [Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, E-03202 Elche (Spain); Molla, M. [Departamento de Investigacion Basica, CIEMAT, E-28040 Madrid (Spain); Stinson, G., E-mail: aura.obreja@uam.es [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)
2013-01-20
We analyze and compare the bulges of a sample of L {sub *} spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L {sub *} galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Two-phase flow studies. Final report
Energy Technology Data Exchange (ETDEWEB)
Kestin, J.; Maeder, P.F.
1980-08-01
Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)
Hahnke, Sarah; Wibberg, Daniel; Tomazetto, Geizecler; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas
2014-08-20
The bacterium Clostridium bornimense M2/40 is a mesophilic, anaerobic bacterium isolated from a two-phase biogas reactor continuously fed with maize silage and 5% wheat straw. Grown on glucose, it produced H2, CO2, formiate, lactate and propionate as the main fermentation products, of which some compounds serve as substrates for methanogenic Archaea to form methane. Here, the whole genome sequence of the bacterium consisting of two circular replicons is reported. This genome information provides the basis for further studies addressing metabolic features of the isolate and its role in anaerobic biomass degradation.
Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach
Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.
2017-08-01
Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a
Directory of Open Access Journals (Sweden)
J. Tonttila
2013-08-01
Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.
Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations
El-Asrag, Hossam
2010-01-04
We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.
Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations
Iliev, Oleg P.
2010-01-01
We present a two-scale finite element method for solving Brinkman\\'s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation developed for Darcy\\'s equations by Arbogast in [4]. In order to reduce the error along the coarse-grid interfaces we have added a alternating Schwarz iteration using patches around the coarse-grid boundaries. We have implemented the subgrid method using Deal.II FEM library, [7], and we present the computational results for a number of model problems. © 2010 Springer-Verlag Berlin Heidelberg.
Espitia-Saloma, Edith; Vâzquez-Villegas, Patricia; Rito-Palomares, Marco; Aguilar, Oscar
2016-05-01
Aqueous two-phase systems (ATPS) are a liquid-liquid extraction technology with clear process benefits; however, its lack of industrial embracement is still a challenge to overcome. Antibodies are a potential product to be recovered by ATPS in a commercial context. The objective of this work is to present a more integral approach of the different isolated strategies that have arisen in order to enable a practical, generic implementation of ATPS, using human immunoglobulin G (IgG) as experimental model. A microfluidic device is used for ATPS parameters preselection for product recovery. ATPS were continuously operated in a mixer-settler device in one stage, multistage and multistage with recirculation configuration. Single-stage pure IgG extraction with a polyethylene glycol (PEG) 3350-phophates ATPS within continuous operation allowed a 65% recovery. Further implementation of a multistage platform promoted a higher particle partitioning reaching a 90% recovery. The processing of IgG from a cell supernatant culture harvest in a multistage system with top phase recirculation resulted in 78% IgG recovery in bottom phase. This work conjugates three not widely spread methodologies for ATPS: microfluidics, continuous and multistage operation.
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
Two-Phase Cavitating Flow in Turbomachines
Directory of Open Access Journals (Sweden)
Sandor I. Bernad
2012-11-01
Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.
Review of two-phase instabilities
Energy Technology Data Exchange (ETDEWEB)
Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong
1997-06-01
KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs
Critical thinking: a two-phase framework.
Edwards, Sharon L
2007-09-01
This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.
Black hole feeding and feedback: the physics inside the "subgrid"
Negri, Andrea
2016-01-01
Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parameterized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and AGN feedback (radiation...
Pilot Scale Study on Two-phase Anaerobic Digestion Performance of Kitchen Waste%餐厨垃圾两相厌氧消化特性试验研究
Institute of Scientific and Technical Information of China (English)
熊杰; 袁海荣; 王奎升; 朱保宁; 刘研萍; 邹德勋; 党峰; 李秀金
2012-01-01
Two-phase anaerobic digestion performance of kitchen waste was investigated with different organic loading rate (OLR) of 10, 30, 50 and 70 gVS/L, inoculums dosages of 5, 10, 15 and 20 gVS/L, acidification times of 3, 5, 7 and 9 d by orthogonal experiment design. Kitchen waste from campus restaurant was used as feedstock. Results showed that kitchen waste obtained the best acidification results with 30 gVS/L of OLR, 15 gVS/L of inoculums dosage and 5 day of acidification time. The acid yield of kitchen waste was 561.0 mg acetic acid.gVS/L mainly acetate and butyrate. Total biogas yield was 826.7 mL/gVS, which was 8.2% and 1,070.3% higher than ethanol type fermentation of 763.8 mL/gVS in the best condition, and butyrate type fermentation of 70.6 mL/gVS in the worst condition respectively. Therefore OLR, acidification time and inoculums dosage have important influence on acidification and methane of kitchen waste. The study would provide parameters for effective operation and optimal design of anaerobic digestion facility of municipal organic solid waste.%研究了餐厨垃圾两相厌氧消化特性.以北京化工大学餐厨垃圾为原料,分别以不同有机负荷(10、30、50和70 gVS/L)、接种量(5、10、15和20 gVS/L)、酸化时间(3、5、7和9d)考察其对酸化效果的影响,并对酸化出料进行甲烷化产气实验.结果表明,餐厨垃圾最优酸化条件为有机负荷30 gVS/L,酸化时间5d,接种量15 gVS/L.在此条件下,单位负荷产酸率为561.0 mg乙酸gVS,酸化末端产物主要为乙酸和丁酸,单位负荷累积产气量达到826.7 mL/gVS,比乙醇型最佳条件单位负荷累积产气量763.8 mL/gVS高8.2％,比丁酸型最低单位负荷累积产气量70.6 mL/gVS高1 070.3％.有机负荷、酸化时间、接种量依次对餐厨垃圾酸化有重要的影响,并且餐厨垃圾酸化效果和产气性能具有一致性.研究结果可为城市生活垃圾厌氧消化提供设计和运行依据.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Institute of Scientific and Technical Information of China (English)
翟路生; 金宁德
2016-01-01
The void fraction wave is a special physical phenomenon in a gas-liquid two-phase flow system. Understanding the propagation of the void fraction wave is of great significance for uncovering the physical mechanisms in both flow pattern transition and the fluid velocity measurement. In this study, detrended cross-correlation analysis (DCCA) is used to investigate the multi-scale cross-correlation characteristics of the coupled ARFIMA processes. It is found that the DCCA can effectively reveal the multi-scale cross-correlation dynamical behaviors of complex system. Then, we carry out the experimental test in a vertical gas-liquid two-phase flow pipe with small inner diameter. The DCCA is used to detect the cross-correlation characteristics of the void fraction wave on multiple time scales, and the growth rate of the cross-correlation level for the void fraction wave is observed on low time scales. Additionally, the spatial attenuation factor (SAF) of the void fraction wave is calculated to investigate the instability of the wave propagation. The SAF is close to zero under the transitional flow patterns, which means that the void fraction wave is in a stable propagating state. For bubble flows, the void fraction wave presents the attenuation characteristics, whilst the void fraction wave shows the amplification characteristics under the slug and churn flow patterns. Interestingly, the instability behaviors of the void fraction wave are always associated with its multi-scale cross-correlation characteristics. Specifically, the increasing rate of the wave cross-correlation level on low scales is much higher for transitional flow patterns, which is corresponding to the stable propagating characteristic of the void fraction wave. However, when the void fraction wave exhibits attenuation or amplification characteristics under other flow patterns, the increasing rate of the wave cross-correlation level on low scales is much lower.
Cheng, Z.; Hsu, T. J.; Chauchat, J.; Revil-Baudard, T.
2016-12-01
Coastal morphological evolution is caused by a wide range of coupled cross-shore and alongshore sediment transport processes associated with short waves, infragravity waves and wave-induced currents. However, the fundamental transport mechanisms occur within the thin bottom boundary layer and are dictated by turbulence-sediment interaction and inter-granular interactions. Recently, a turbulence-averaged two-phase Eulerian sediment transport model, called sedFoam, was developed and validated for U-tube sheet flows (Cheng et al., 2016). With closures of particle stresses and fluid-particle interactions, the model is able to resolve full profiles of sediment transport from the immobile bed, to the concentrated near-bed transport layer and up to dilute transport without conventional bedload/suspended load assumptions. In this study, we further extend this model with a 3D large eddy simulation (LES) approach, where substantial amount of the turbulence-sediment interaction is directly resolved. In the present LES model, a dynamic Smagorinsky sub-grid stress closure is adopted for both fluid and sediment phases, and the sub-grid contribution to the fluid-particle interactions is included by a sub-grid drift velocity in drag model (Ozel et al., 2013). The model is validated with high-resolution measurements in a unidirectional steady sheet flow experiment (Revil-Baudard et al. 2015). We further apply the LES Eulerian two-phase model to medium and fine sand in oscillatory sheet flows (O'Donoghue & Wright, 2004). The LES model performance for the medium sand is similar to the turbulence-averaged model, except that the LES model seems to be superior to the turbulence-averaged model during acceleration and decelerating phases. In addition, the LES model is able to capture the enhanced transport layer thickness for fine sand, which may be related to the burst events near the flow reversal. We further confirm that this phenomenon is absent for medium sand.
Droplet Manipulations in Two Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Arjen M. Pit
2015-11-01
Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.
Autonomous Operation of Hybrid Microgrid With AC and DC Subgrids
DEFF Research Database (Denmark)
Chiang Loh, Poh; Li, Ding; Kang Chai, Yi
2013-01-01
This paper investigates on power-sharing issues of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac subgrids interconnected by power electronic interfaces. The main challenge here is to manage power flows among all...... sources distributed throughout the two types of subgrids, which is certainly tougher than previous efforts developed for only ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc sources, ac sources, and interlinking...
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Nadiga, B T; Livescu, D
2007-04-01
We demonstrate, in the context of implicit-filtering large eddy simulations (LESs) of geostrophic turbulence, that while the attractor of a well-resolved statistically stationary turbulent flow can be reached in a coarsely resolved LES that is forced by the subgrid scale (SGS) terms diagnosed from the well-resolved computation, the attractor is generically unstable: the coarsely resolved LES system forced by the diagnosed SGS eddy terms has multiple attractors. This points to the importance of interpreting the diagnosed SGS forcing terms in a well-resolved computation or experiment from a combined physical-numerical point of view rather than from a purely physical point of view.
Experimental study of two-phase natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2012-07-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, two sub-grid scale (SGS) models are introduced into the Lattice Boltzmann Method (LBM), i.e., the dynamics SGS model and the dynamical system SGS model, and applied to numerically solving three-dimensional high Re turbulent cavity flows. Results are compared with those obtained from the Smagorinsky model and direct numerical simulation for the same cases. It is shown that the method with LBM dynamics SGS model has advantages of fast computation speed, suitable to simulate high Re turbulent flows. In addition, it can capture detailed fine structures of turbulent flow fields. The method with LBM dynamical system SGS model dose not contain any adjustable parameters, and can be used in simulations of various complicated turbulent flows to obtain correct information of sub-grid flow field, such as the backscatter of energy transportation between large and small scales. A new average method of eliminating the inherent unphysical oscillation of LBM is also given in the paper.
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Loftis, Jon Derek; Hamilton, Stuart E; Forrest, David R
2014-01-01
We present the geospatial methods in conjunction with results of a newly developed storm surge and sub-grid inundation model which was applied in New York City during Hurricane Sandy in 2012. Sub-grid modeling takes a novel approach for partial wetting and drying within grid cells, eschewing the conventional hydrodynamic modeling method by nesting a sub-grid containing high-resolution lidar topography and fine scale bathymetry within each computational grid cell. In doing so, the sub-grid modeling method is heavily dependent on building and street configuration provided by the DEM. The results of spatial comparisons between the sub-grid model and FEMA's maximum inundation extents in New York City yielded an unparalleled absolute mean distance difference of 38m and an average of 75% areal spatial match. An in-depth error analysis reveals that the modeled extent contour is well correlated with the FEMA extent contour in most areas, except in several distinct areas where differences in special features cause sig...
Wey, Thomas
2017-01-01
This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).
Pressure Loss across Tube Bundles in Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)
2016-03-15
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
On restraining convective subgrid-scale production in Burgers’ equation
Helder, Joop; Verstappen, Roel
2008-01-01
Since most turbulent flows cannot be computed directly from the (incompressible) Navier–Stokes equations, a dynamically less complex mathematical formulation is sought. In the quest for such a formulation, we consider nonlinear approximations of the convective term that preserve the symmetry and con
On restraining convective subgrid-scale production in Burgers' equation
Helder, Joop; Verstappen, Roel
2008-01-01
Since most turbulent flows cannot be computed directly from the (incompressible) Navier-Stokes equations, a dynamically less complex mathematical formulation is sought. In the quest for such a formulation, we consider nonlinear approximations of the convective term that preserve the symmetry and con
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...
A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows
Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi
2016-09-01
Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
Energy Technology Data Exchange (ETDEWEB)
Zamansky, Remi; Vinkovic, Ivana; Gorokhovski, Mikhael, E-mail: ivana.vinkovic@univ-lyonl.fr [Laboratoire de Mecanique des Fluides et d' Acoustique CNRS UMR 5509 Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69134 Ecully Cedex (France)
2011-12-22
Inertial particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects recognized in homogeneous isotropic turbulence, an additional effect is observed due to high and low speed vortical structures aligned with the channel wall. In response to those structures, particles with moderate inertia experience strong longitudinal acceleration variations. DNS is also used in order to assess LES-SSAM (Subgrid Stochastic Acceleration Model), in which an approximation to the instantaneous non-filtered velocity field is given by simulation of both, filtered and residual, accelerations. This approach allow to have access to the intermittency of the flow at subgrid scale. Advantages of LES-SSAM in predicting particle dynamics in the channel flow at a high Reynolds number are shown.
Renormalization group analysis of reduced magnetohydrodynamics with application to subgrid modeling
Longcope, D. W.; Sudan, R. N.
1991-01-01
The technique for obtaining a subgrid model for Navier-Stokes turbulence, based on renormalization group analysis (RNG), is extended to the reduced magnetohydrodynamic (RMND) equations. It is shown that a RNG treatment of the Alfven turbulence supported by the RMHD equations leads to effective values of the viscosity and resistivity at large scales, k yields 0, dependent on the amplitude of turbulence. The effective viscosity and resistivity become independent of the molecular quantities when the RNG analysis is augmented by the Kolmogorov argument for energy cascade. A self-contained system of equations is derived for the range of scales, k = 0-K, where K = pi/Delta is the maximum wave number for a grid size Delta. Differential operators, whose coefficients depend upon the amplitudes of the large-scale quantities, represent in this system the resistive and viscous dissipation.
CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW
Institute of Scientific and Technical Information of China (English)
Ning Yang; Wei Wang; Wei Ge; Jinghai Li
2003-01-01
@@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.
Response of two-phase droplets to intense electromagnetic radiation
Energy Technology Data Exchange (ETDEWEB)
Spann, J.F. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States)); Maloney, D.J.; Lawson, W.F.; Casleton, K.H. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States))
1993-04-20
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 [mu]m) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Subgrid Modeling of AGN-Driven Turbulence in Galaxy Clusters
Scannapieco, Evan
2008-01-01
Hot, underdense bubbles powered by active galactic nuclei (AGN) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive-mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure-hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus bubbles are transformed into hot clouds of mixed material as they move outwards in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive ``mushroo...
Gas-liquid two-phase flow across a bank of micropillars
Krishnamurthy, Santosh; Peles, Yoav
2007-04-01
Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.
Simulation and modeling of two-phase bubbly flows
Energy Technology Data Exchange (ETDEWEB)
Sylvain L Pigny; Pierre F Coste [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)
2005-07-01
Full text of publication follows: Phenomena related to bubbles in two-phase recirculating flows are investigated, via the computational code SIMMER, concerning an experiment in which air is injected in the lower part of a tank filled of water and initially at rest. Averaged mass and momentum transport equations are solved for air and water. Close to the injector, the formation of individual large bubbles is represented in the calculations, via direct simulation. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled, in a statistical way, via classical closure laws. In a first calculation, the splitting of large bubbles is not represented. It is shown that this phenomenon, the space scale of which is close to the cell size, cannot be simulated, in view of the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and the splitting phenomenon is too large to be modeled via closure laws. A specific approach for the intermediate scales is therefore developed to represent it. (authors)
Operational forecasting with the subgrid technique on the Elbe Estuary
Sehili, Aissa
2017-04-01
Modern remote sensing technologies can deliver very detailed land surface height data that should be considered for more accurate simulations. In that case, and even if some compromise is made with regard to grid resolution of an unstructured grid, simulations still will require large grids which can be computationally very demanding. The subgrid technique, first published by Casulli (2009), is based on the idea of making use of the available detailed subgrid bathymetric information while performing computations on relatively coarse grids permitting large time steps. Consequently, accuracy and efficiency are drastically enhanced if compared to the classical linear method, where the underlying bathymetry is solely discretized by the computational grid. The algorithm guarantees rigorous mass conservation and nonnegative water depths for any time step size. Computational grid-cells are permitted to be wet, partially wet or dry and no drying threshold is needed. The subgrid technique is used in an operational forecast model for water level, current velocity, salinity and temperature of the Elbe estuary in Germany. Comparison is performed with the comparatively highly resolved classical unstructured grid model UnTRIM. The daily meteorological forcing data are delivered by the German Weather Service (DWD) using the ICON-EU model. Open boundary data are delivered by the coastal model BSHcmod of the German Federal Maritime and Hydrographic Agency (BSH). Comparison of predicted water levels between classical and subgrid model shows a very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out within less than 10 minutes on standard PC-like hardware. The model is capable of permanently delivering highly resolved temporal and spatial information on water level, current velocity, salinity and temperature for the whole estuary. The model offers also the possibility to
Two phase continuous digestion of solid manure on-farm
Energy Technology Data Exchange (ETDEWEB)
Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)
2007-07-01
Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the
A Study of Low Cloud Climate Feedbacks Using a Generalized Higher-Order Closure Subgrid Model
Firl, Grant J.
One of the biggest uncertainties in projections of future climate is whether and how low cloudiness will change and whether that change will feed back on the climate system. Much of the uncertainty revolves around the difference in scales between the processes that govern low cloudiness and the processes that can be resolved in climate models, a fact that relegates shallow convection to the parameterization realm with varying levels of success. A new subgrid-scale parameterization, named THOR, has been developed in an effort to improve the representation of low cloudiness via parameterization in climate models. THOR uses the higher-order closure approach to determine the statistics describing subgrid-scale processes. These statistics are used to determine a trivariate double-Gaussian PDF among vertical velocity, ice-liquid water potential temperature, and total water specific humidity. With this information, one can diagnose what portion of the grid cell is cloudy, subgrid-scale cloud water content, and subgrid-scale vertical cloud water flux. In addition, samples are drawn from the trivariate PDF in order to drive the microphysics and radiation schemes. Although schemes similar to THOR have been developed over the past decade, THOR includes several novel concepts, like the generalization of the saturation curve to include condensation over both ice and liquid substrates, the determination of the PDF parameters from the given turbulence statistics, the introduction of a stochastic parcel entrainment process for the turbulence length scale, and a sub-column approach for calculating radiative transfer using the PDF. The new model is validated by simulating five test cases spanning a wide range of boundary layer cloud types, from stratocumulus to cumulus and the transition between the two. The results are compared to an ensemble of LES models running the same cases, with particular attention paid to turbulence statistics and cloud structure. For all cloud types tested
Next steps in two-phase flow: executive summary
Energy Technology Data Exchange (ETDEWEB)
DiPippo, R.
1980-09-01
The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-02-01
Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-04-01
The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.
Two-Phase Technology at NASA/Johnson Space Center
Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
Statistical descriptions of polydisperse turbulent two-phase flows
Minier, Jean-Pierre
2016-12-01
Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results
Living between two worlds: two-phase culture systems for producing plant secondary metabolites.
Malik, Sonia; Hossein Mirjalili, Mohammad; Fett-Neto, Arthur Germano; Mazzafera, Paulo; Bonfill, Mercedes
2013-03-01
The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.
Yang, H -Y K; Ricker, P M
2012-01-01
Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modeling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter sensitivity study in a single cluster using several commonly-adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (~20% for Mgas and a factor of ~2 for Lx at R500), whereas Tx, Ysz, and Yx are more robust (~10-20% at R500). To make predictions b...
Thermal performance of closed two-phase thermosyphon using nanofluids
Energy Technology Data Exchange (ETDEWEB)
Khandekar, Sameer; Mehta, Balkrishna [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Joshi, Yogesh M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)
2008-06-15
Nanofluids, stabilized suspensions of nanoparticles typically <100 nm in conventional fluids, are evolving as potential enhanced heat transfer fluids due to their improved thermal conductivity, increase in single phase heat transfer coefficient and significant increase in critical boiling heat flux. In the present paper, we investigate the overall thermal resistance of closed two-phase thermosyphon using pure water and various water based nanofluids (of Al{sub 2}O{sub 3}, CuO and laponite clay) as working fluids. We observe that all these nanofluids show inferior thermal performance than pure water. Furthermore, we observe that the wettability of all nanofluids on copper substrate, having the same average roughness as that of the thermosyphon container pipe, is better than that of pure water. A scaling analysis is presented which shows that the increase in wettability and entrapment of nanoparticles in the grooves of the surface roughness cause decrease in evaporator side Peclet number that finally leads to poor thermal performance. (author)
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Critical transport velocity in two-phase, horizontal pipe flow
Energy Technology Data Exchange (ETDEWEB)
Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))
1991-02-01
This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.
What types of investors generate the two-phase phenomenon?
Ryu, Doojin
2013-12-01
We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
P Chaddah; A Banerjee
2008-02-01
We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Burkholder, Michael B.; Litster, Shawn
2016-05-01
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
Energy Technology Data Exchange (ETDEWEB)
Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2016-05-15
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
Time dependent two phase flows in Magnetohydrodynamics: A ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...
Gravity Independence of Microchannel Two-Phase Flow Project
National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...
TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS
African Journals Online (AJOL)
Ifeanyichukwu Onwuka
The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.
Particle modulations to turbulence in two-phase round jets
Institute of Scientific and Technical Information of China (English)
Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang
2009-01-01
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
Transient two-phase performance of LOFT reactor coolant pumps
Energy Technology Data Exchange (ETDEWEB)
Chen, T.H.; Modro, S.M.
1983-01-01
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong
2016-02-01
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS
Energy Technology Data Exchange (ETDEWEB)
Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams
1998-11-18
Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of
Two Phase Flow Mapping and Transition Under Microgravity Conditions
Parang, Masood; Chao, David F.
1998-01-01
In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.
Analysis of Subgrid Stabilization Method for Stokes-Darcy Problems
Directory of Open Access Journals (Sweden)
Kamel Nafa
2016-01-01
Full Text Available A number of techniques, used as remedy to the instability of the Galerkin finite element formulation for Stokes like problems, are found in the literature. In this work we consider a coupled Stokes-Darcy problem, where in one part of the domain the fluid motion is described by Stokes equations and for the other part the fluid is in a porous medium and described by Darcy law and the conservation of mass. Such systems can be discretized by heterogeneous mixed finite elements in the two parts. A better method, from a computational point of view, consists in using a unified approach on both subdomains. Here, the coupled Stokes-Darcy problem is analyzed using equal-order velocity and pressure approximation combined with subgrid stabilization. We prove that the obtained finite element solution is stable and converges to the classical solution with optimal rates for both velocity and pressure.
Large eddy simulation subgrid model for soot prediction
El-Asrag, Hossam Abd El-Raouf Mostafa
Soot prediction in realistic systems is one of the most challenging problems in theoretical and applied combustion. Soot formation as a chemical process is very complicated and not fully understood. The major difficulty stems from the chemical complexity of the soot formation process as well as its strong coupling with the other thermochemical and fluid processes that occur simultaneously. Soot is a major byproduct of incomplete combustion, having a strong impact on the environment as well as the combustion efficiency. Therefore, innovative methods is needed to predict soot in realistic configurations in an accurate and yet computationally efficient way. In the current study, a new soot formation subgrid model is developed and reported here. The new model is designed to be used within the context of the Large Eddy Simulation (LES) framework, combined with Linear Eddy Mixing (LEM) as a subgrid combustion model. The final model can be applied equally to premixed and non-premixed flames over any required geometry and flow conditions in the free, the transition, and the continuum regimes. The soot dynamics is predicted using a Method of Moments approach with Lagrangian Interpolative Closure (MOMIC) for the fractional moments. Since no prior knowledge of the particles distribution is required, the model is generally applicable. The current model accounts for the basic soot transport phenomena as transport by molecular diffusion and Thermophoretic forces. The model is first validated against experimental results for non-sooting swirling non-premixed and partially premixed flames. Next, a set of canonical premixed sooting flames are simulated, where the effect of turbulence, binary diffusivity and C/O ratio on soot formation are studied. Finally, the model is validated against a non-premixed jet sooting flame. The effect of the flame structure on the different soot formation stages as well as the particle size distribution is described. Good results are predicted with
Study of two-phase flows in reduced gravity
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Energy Technology Data Exchange (ETDEWEB)
Tesfa, Teklu K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leung, Lai-Yung Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2017-02-22
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation, slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Overall the local
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
2017-02-01
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation, slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Overall the local method
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
Velocity and energy relaxation in two-phase flows
Meyapin, Yannick; Gisclon, Marguerite
2009-01-01
In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...
A SAS Package for Logistic Two-Phase Studies
Directory of Open Access Journals (Sweden)
Walter Schill
2014-04-01
Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.
Two-Phase flow instrumentation for nuclear accidents simulation
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
A mechanical erosion model for two-phase mass flows
Pudasaini, Shiva P
2016-01-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...
Simulating confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
金晗辉; 夏钧; 樊建人; 岑可法
2002-01-01
A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r＝50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.
Optimisation of an idealised ocean model, stochastic parameterisation of sub-grid eddies
Cooper, Fenwick C
2014-01-01
An optimisation scheme is developed to accurately represent the sub-grid scale forcing of a high dimensional chaotic ocean system. Using a simple parameterisation scheme, the velocity components of a 30km resolution shallow water ocean model are optimised to have the same climatological mean and variance as that of a less viscous 7.5km resolution model. The 5 day lag-covariance is also optimised, leading to a more accurate estimate of the high resolution response to forcing using the low resolution model. The system considered is an idealised barotropic double gyre that is chaotic at both resolutions. Using the optimisation scheme, we find and apply the constant in time, but spatially varying, forcing term that is equal to the time integrated forcing of the sub-mesoscale eddies. A linear stochastic term, independent of the large-scale flow, with no spatial correlation but a spatially varying amplitude and time scale is used to represent the transient eddies. The climatological mean, variance and 5 day lag-cov...
A LATTICE BOLTZMANN SUBGRID MODEL FOR LID-DRIVEN CAVITY FLOW
Institute of Scientific and Technical Information of China (English)
YANG Fan; LIU Shu-hong; WU Yu-lin; TANG Xue-lin
2005-01-01
In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds number fluid flow applications, a subgrid turbulence model for LBM was introduced based on standard Smagorinsky subgrid model and Lattice Bhatnagar-Gross-Krook (LBGK) model. The subgrid LBGK model was subsequently used to simulate the two-dimensional driven cavity flow at high Reynolds numbers. The simulation results including distribution of stream lines, dimensionless velocities distribution, values of stream function, as well as location of vertex center, were compared with benchmark solutions, with satisfactory agreements.
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Two Phase Flow and Space-Based Applications
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by
Two-phase alkali-metal experiments in reduced gravity
Energy Technology Data Exchange (ETDEWEB)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.
Coal-Face Fracture With A Two-Phase Liquid
Collins, E. R., Jr.
1985-01-01
In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.
Two-phase flow in micro and nanofluidic devices
Shui, Lingling
2009-01-01
This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping, jet
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V
Experimental Investigation of two-phase nitrogen Cryo transfer line
Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.
2017-02-01
A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.
Numerical simulation of two-phase flow in offshore environments
Wemmenhove, Rik
2008-01-01
Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
Energy Technology Data Exchange (ETDEWEB)
Schaffrath, A.; Kruessenberg, A.K.; Weiss, F.P.; Beyer, M.; Carl, H.; Prasser, H.M.; Schuster, J.; Schuetz, P.; Tamme, M.; Zimmermann, W. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Sicherheitsforschung; Hicken, E.F. [Forschungszentrum Juelich (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik
2001-08-01
The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. (orig.)
Monte Carlo simulation of a two-phase flow in an unsaturated porous media
Directory of Open Access Journals (Sweden)
Xu Peng
2012-01-01
Full Text Available Relative permeability is a significant transport property which describes the simultaneous flow of immiscible fluids in porous media. A pore-scale physical model is developed for the two-phase immiscible flow in an unsaturated porous media according to the statistically fractal scaling laws of natural porous media, and a predictive calculation of two-phase relative permeability is presented by Monte Carlo simulation. The tortuosity is introduced to characterize the highly irregular and convoluted property of capillary pathways for fluid flow through a porous medium. The computed relative permeabilities are compared with empirical formulas and experimental measurements to validate the current model. The effect of fractal dimensions and saturation on the relative permeabilities is also discussed
Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.
Directory of Open Access Journals (Sweden)
Z. M. Subin
2014-07-01
Full Text Available Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology, into the Geophysical Fluid Dynamics Laboratory (GFDL land model (LM3. LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-Ti
Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems
Directory of Open Access Journals (Sweden)
Xu Yan
2003-12-01
Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.
Investigations of two-phase flame propagation under microgravity conditions
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets
Energy Technology Data Exchange (ETDEWEB)
Choi, Chi Woong; Yu, Dong In; Kim, Moo Hwan [Pohang University of Science and Technology, Pohang (Korea, Republic of)
2009-12-15
Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethy1-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of two-phase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.
An updated subgrid orographic parameterization for global atmospheric forecast models
Choi, Hyun-Joo; Hong, Song-You
2015-12-01
A subgrid orographic parameterization (SOP) is updated by including the effects of orographic anisotropy and flow-blocking drag (FBD). The impact of the updated SOP on short-range forecasts is investigated using a global atmospheric forecast model applied to a heavy snowfall event over Korea on 4 January 2010. When the SOP is updated, the orographic drag in the lower troposphere noticeably increases owing to the additional FBD over mountainous regions. The enhanced drag directly weakens the excessive wind speed in the low troposphere and indirectly improves the temperature and mass fields over East Asia. In addition, the snowfall overestimation over Korea is improved by the reduced heat fluxes from the surface. The forecast improvements are robust regardless of the horizontal resolution of the model between T126 and T510. The parameterization is statistically evaluated based on the skill of the medium-range forecasts for February 2014. For the medium-range forecasts, the skill improvements of the wind speed and temperature in the low troposphere are observed globally and for East Asia while both positive and negative effects appear indirectly in the middle-upper troposphere. The statistical skill for the precipitation is mostly improved due to the improvements in the synoptic fields. The improvements are also found for seasonal simulation throughout the troposphere and stratosphere during boreal winter.
Energy Technology Data Exchange (ETDEWEB)
Gregoire, O
2008-07-01
In order to simulate nuclear reactor cores, we presently use the 4 equation model implemented within FLICA4 code. This model is complemented with 2 algebraic closures for thermal disequilibrium and relative velocity between phases. Using such closures, means an 'a priori' knowledge of flows calculated in order to ensure that modelling assumptions apply. In order to improve the degree of universality to our macroscopic modelling, we propose in the report to derive a more general 6 equation model (balance equations for mass, momentum and enthalpy for each phase) for 2-phase flows. We apply the up-scaling procedure (Whitaker, 1999) classically used in porous media analysis to the statistically averaged equations (Aniel-Buchheit et al., 2003). By doing this, we apply the double-averaging procedure (Pedras and De Lemos, 2001 and Pinson et al. 2006): statistical and spatial averages. Then, using weighted averages (analogous to Favre's average) we extend the spatial averaging concept to variable density and 2-phase flows. This approach allows the global recovering of the structure of the systems of equations implemented in industrial codes. Supplementary contributions, such as dispersion, are also highlighted. Mechanical and thermal exchanges between solids and fluid are formally derived. Then, thanks to realistic simplifying assumptions, we show how it is possible to derive the original 4 equation model from the full 6 equation model. (author)
Two-phase relative permeability models in reservoir engineering calculations
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, S.; Hicks, P.J.; Ertekin, T.
1999-01-15
A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)
Computer simulation of two-phase flow in nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Wulff, W.
1992-09-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
Computer simulation of two-phase flow in nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Wulff, W.
1992-01-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Avik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sundaresan, Sankaran [Princeton Univ., NJ (United States)
2014-04-23
The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.
Two-phase Flow Distribution in Heat Exchanger Manifolds
Vist, Sivert
2004-01-01
The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Viscosity Solutions for the two-phase Stefan Problem
Kim, Inwon C
2010-01-01
We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Estimating disease prevalence in two-phase studies.
Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas
2003-04-01
Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.
Energy Technology Data Exchange (ETDEWEB)
Saito, Y.; Mishima, K. [Kyoto Univ. Kumatori, Research Reactor Institute, Osaka (Japan); Tobita, Y.; Suzuki, T. [O-arai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation (Japan); Matsubayashi, M. [Japan Atomic Energy Institute, Tokai Research Establishment (Japan)
2001-07-01
Neutron radiography and PIV (Particle Image Velocimetry) techniques were applied to measurements of velocity field in gas-liquid metal two-phase flow. Visualization and measurements of two-phase flow were conducted using molten lead bismuth and nitrogen gas as working fluids and particles made of gold-cadmium (AuCd{sub 3}) inter-metallic alloy were employed as the tracer. Discrimination method between bubble and tracer images in two-phase flow was developed based on the {sigma}-scaling method. Time-averaged liquid velocity fields, gas velocity fields and void profile were calculated from discriminated images, respectively. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)
Characterization of horizontal air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional
The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations
Crain, Robert A; Bower, Richard G; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom; Vecchia, Claudio Dalla; Frenk, Carlos S; McCarthy, Ian G; Helly, John C; Jenkins, Adrian; Rosas-Guevara, Yetli M; White, Simon D M; Trayford, James W
2015-01-01
We present results from thirteen cosmological simulations that explore the parameter space of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation project. Four of the simulations follow the evolution of a periodic cube L = 50 cMpc on a side, and each employs a different subgrid model of the energetic feedback associated with star formation. The relevant parameters were adjusted so that the simulations each reproduce the observed galaxy stellar mass function at z = 0.1. Three of the simulations fail to form disc galaxies as extended as observed, and we show analytically that this is a consequence of numerical radiative losses that reduce the efficiency of stellar feedback in high-density gas. Such losses are greatly reduced in the fourth simulation - the EAGLE reference model - by injecting more energy in higher density gas. This model produces galaxies with the observed size distribution, and also reproduces many galaxy scaling relations. In the remaining nine simulations, a sin...
SPARSE: A Subgrid Particle Averaged Reynolds Stress Equivalent Model: Testing with A Priori Closure
Davis, Sean; Sen, Oishik; Udaykumar, H S
2016-01-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the sub-particle-cloud scale on the averaged motion and velocity of the cloud. The SPARSE (Subgrid Particle Average Reynolds Stress Equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian-Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point particle model. Comparison of a first-order model and SPARSE with the reference simulation in one-dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulenc...
Simulation experiments for hot-leg U-bend two-phase flow phenomena
Energy Technology Data Exchange (ETDEWEB)
Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.
1986-01-01
In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions.
Two-Phase Algorithm for Multi-warehouse and Multi-task Based Logistics Delivery
Institute of Scientific and Technical Information of China (English)
ZHANG Jun-wei; MA Fan-yuan
2005-01-01
To a scaled logistic company, assigning is an important part of logistic, and further development will make the optimized assigning of multi-warehouse and multi-task possible. This paper provided a two-phase multiwarehouse and multi-task based algorithm which has two phases. In the first phase, it combines sweep algorithm,saving algorithm and virtual task point to present a method. And in the second phase it provides an algorithm for the arrangement of goods loading which is based on the constraints of time-window and attributes of goods and vehicle. It uses the computing results of the first phase to form more detailed delivery scheme based on the constraints of time-window and attributes of vehicle and goods.
Two-Phase Reactions in Microdroplets without the Use of Phase-Transfer Catalysts.
Yan, Xin; Cheng, Heyong; Zare, Richard N
2017-02-22
Many important chemical transformations occur in two-phase reactions, which are widely used in chemical, pharmaceutical, and polymer manufacturing. We present an efficient method for performing two-phase reactions in microdroplets sheared by sheath gas without using a phase-transfer catalyst. This avoids disadvantages such as thermal instability, high cost, and, especially, the need to separate and recycle the catalysts. We show that various alcohols can be oxidized to the corresponding aldehydes and ketones within milliseconds in moderate to good yields (50-75 %). The scale-up of the present method was achieved at an isolated rate of 1.2 mg min(-1) for the synthesis of 4-nitrobenzylaldehyde from 4-nitrobenzyl alcohol in the presence of sodium hypochlorite. The biphasic nature of this process, which avoids use of a phase-transfer catalyst, greatly enhances synthetic effectiveness.
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase
Energy Technology Data Exchange (ETDEWEB)
Lin, Guangxing; Qian, Yun; Yan, Huiping; Zhao, Chun; Ghan, Steven J.; Easter, Richard C.; Zhang, Kai
2017-06-16
One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis. The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).
Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program
1979-04-01
efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the
A real two-phase submarine debris flow and tsunami
Energy Technology Data Exchange (ETDEWEB)
Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Recurrent pyogenic cholangitis : efficacy of two-phase helical CT
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ki Ho; Cho, June Sik; Shin, Kyung Sook; Lee, Se Hyo; Yu, Ho Jun; Park, Jin Yong; Kim, Young Min [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)
2000-01-01
To evaluate the usefulness of two-phase helical CT in patients with recurrent pyogenic cholangitis (RPC) for the detection of acute inflammation and assessment of the degree of portal vein (PV) stenosis as a cause of hepatic parenchymal atrophy. We retrospectively reviewed two-phase CT findings in 30 patients with RPC diagnosed by CT, ERCP (endoscopic retrograde cholangiopancreatography), and surgery. Two-phase helical CT scans were obtained 30 sec (arterial phase, AP) and 70 sec (portal phase, PP) after the start of IV administration of contrast material. Without prior information, we analyzed periductal parenchymal and ductal wall enhancement during the AP and PP, and the degree of PV stenosis during the PP. Acute inflammation was diagnosed on the basis of symptoms and laboratory findings. To evaluate the relationship between parenchymal a trophy and PV stenosis, the degree of PV stenosis in affected parenchyma was classified as one of three types (mild, less than 25%; moderate, 25-75%; severe, greater than 75%), as compared with the diameter of normal PV in unaffected parenchyma. Ten of the 30 patients underwent CT during the acute inflammatory stage and 20 during the remission stage. Of the ten patients with acute inflammation, eight (80%) showed transient periductal parenchymal enhancement during the AP (p less than 0.05), which correlated closely with acute inflammation. Only three (15%) of the 20 patients with remission, however, showed transient parenchymal enhancement during this phase, at which time ductal wall enhancement was seen in three (30%) of the ten patients with acute inflammation and in seven (35%) of the 20 who showed remission (p greater than 0.05). There was no significant difference in parenchymal and ductal wall enhancement during the PP between patients with acute inflammation and those who showed remission (p greater than 0.05). Hepatic parenchymal atrophy of the lesion was seen in 24 patients. Among these, PV stenosis was mild in five
Two algorithms for two-phase Stefan type problems
Institute of Scientific and Technical Information of China (English)
LIAN Xiao-peng; CHENG Xiao-liang; HAN Wei-min
2009-01-01
In this paper, the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed. An analysis of their convergence is presented and the upper bounds of the convergence rates are derived. Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm, the convergence rate is uniformly bounded away from 1 if τh-2 is kept bounded, where τ is the time step size and h the space mesh size.
Stochastic analysis of particle-fluid two-phase flows
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non
Two-phase nozzle flow and the subcharacteristic condition
DEFF Research Database (Denmark)
Linga, Gaute; Aursand, Peder; Flåtten, Tore
2015-01-01
We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....
Enhancing the representation of subgrid land surface characteristics in land surface models
Directory of Open Access Journals (Sweden)
Y. Ke
2013-03-01
Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid Plant Functional Types (PFTs and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0° with three maximum-allowed total number of classes Nclass of 24, 18 and 12 representing different computational burdens over the North America (NA continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational
Zhang, G; Stillinger, F H; Torquato, S
2016-12-28
Disordered hyperuniform many-particle systems have attracted considerable recent attention, since they behave like crystals in the manner in which they suppress large-scale density fluctuations, and yet also resemble statistically isotropic liquids and glasses with no Bragg peaks. One important class of such systems is the classical ground states of "stealthy potentials." The degree of order of such ground states depends on a tuning parameter χ. Previous studies have shown that these ground-state point configurations can be counterintuitively disordered, infinitely degenerate, and endowed with novel physical properties (e.g., negative thermal expansion behavior). In this paper, we focus on the disordered regime (0 two-phase media by circumscribing each point with a possibly overlapping sphere of a common radius a: the "particle" and "void" phases are taken to be the space interior and exterior to the spheres, respectively. The hyperuniformity of such two-phase media depends on the sphere sizes: While it was previously analytically proven that the resulting two-phase media maintain hyperuniformity if spheres do not overlap, here we show numerically that they lose hyperuniformity whenever the spheres overlap. We study certain transport properties of these systems, including the effective diffusion coefficient of point particles diffusing in the void phase as well as static and time-dependent characteristics associated with diffusion-controlled reactions. Besides these effective transport properties, we also investigate several related structural properties, including pore-size functions, quantizer error, an order metric, and percolation thresholds. We show that these transport, geometrical, and topological properties of our two-phase media derived from decorated stealthy ground states are distinctly different from those of equilibrium hard-sphere systems and spatially uncorrelated overlapping spheres. As the extent of short-range order increases, stealthy disordered
A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations
Bachmann, Lisa K; Hirschmann, Michaela; Prieto, M Almudena; Remus, Rhea-Silvia
2014-01-01
In large scale cosmological hydrodynamic simulations simplified sub-grid models for gas accretion onto black holes and AGN feedback are commonly used. Such models typically depend on various free parameters, which are not well constrained. We present a new advanced model containing a more detailed description of AGN feedback, where those parameters reflect the results of recent observations. The model takes the dependency of these parameters on the black hole properties into account and describes a continuous transition between the feedback processes acting in the so-called radio-mode and quasar-mode. In addition, we implement a more detailed description of the accretion of gas onto black holes by distinguishing between hot and cold gas accretion. Our new implementations prevent black holes from gaining too much mass, particularly at low redshifts so that our simulations are now very successful in reproducing the observed present-day black hole mass function. Our new model also suppresses star formation in ma...
A two-phase solid/fluid model for dense granular flows including dilatancy effects
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Two-phase electrochemical lithiation in amorphous silicon.
Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting
2013-02-13
Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Acute cholecystitis: two-phase spiral CT finding
Energy Technology Data Exchange (ETDEWEB)
Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)
1998-07-01
To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.
Experimental study of a two-phase surface jet
Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.
2013-04-01
Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.
Experimental study of two phase flow in inclined channel
Energy Technology Data Exchange (ETDEWEB)
Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)
1997-07-01
Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.
Two-phase PIV measurements of particle suspension in a forced impinging jet
Mulinti, Rahul; Kiger, Ken
2010-11-01
The condition of rotorcraft brownout is characterized by intense dust suspension that is uplifted during landing and takeoff operations in regions covered with loose sediment. To predict particle suspension and sedimentation within coupled particle-laden flows, detailed characterization of the micro-scale mechanics is needed within a prototypical flow that captures the essence of the rotorcraft/ground wake interactions. Two-phase PIV has been used to study the interaction of a sediment bed made of glass spheres with characteristic flow structures reminiscent from flow within a rotor wake. In order to make reliable simultaneous two-phase PIV measurements, a phase discrimination algorithm from a single two-phase image has been implemented. The validity of the separation is checked by processing images that consisted only of the very small tracer particles, or only the dispersed phase particles, and examining how much "cross-talk" was present between the phases. The mobilization and wall-normal flux of particulates by the vortex-wall interaction will be reported for several different operational conditions, and correlated to the local vortex conditions.
An improved large eddy simulation of two-phase flows in a pump impeller
Institute of Scientific and Technical Information of China (English)
Xuelin Tang; Fujun Wang; Yulin Wu
2007-01-01
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordi-nate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur-rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consis-tency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body-fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
Carrara, Mark David
2006-04-01
The overall objective of this dissertation is the development of a modeling and simulation approach for turbulent two-phase chemically reacting flows. A new full velocity-scalar filtered mass density function (FMDF) formulation for large eddy simulation (LES) of a separated two-phase flow is developed. In this formulation several terms require modeling that include important conditionally averaged phase-coupling terms (PCT). To close the PCT a new derivation of the local instantaneous two-phase equations is presented and important identities are derived relating the PCT to surface averages. The formulation is then applied for two particle laden flow cases and solved using a full particle based Monte-Carlo numerical solution procedure. The first case is a temporally developing counter-current mixing layer dilutely seeded with evaporating water droplets. Validation studies reveal excellent agreement of the full particle method to previous hybrid FDF studies and direct numerical simulations for single-phase flows. One-way coupled simulations reveal that the overall dispersion is maximized with unity Stokes number droplets. Two-way coupled simulations reveal the advantages of two FDF approaches where the subgrid variation of droplet properties are explicitly taken into account. Comparisons of the fully-coupled FDF approach are compared to more approximate means of determining phase-coupling based on filtered properties and local and compounded global errors are assessed. The second case considered is the combustion aluminum particles. A new mechanistic model for the ignition and combustion of aluminum particulate is developed that accounts for unsteady heating, melting, heterogeneous surface reactions (HSR) and quasi-steady burning. Results of this model agree well with experimental data for overall burn rates and ignition times. Two-phase simulations of aluminum particulate seeded mixing layer reveal the variations in flame radius resulting in local extinguishment
The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy
Directory of Open Access Journals (Sweden)
Harry V. Wang
2014-03-01
Full Text Available Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE, was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model’s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15–20 cm and 5%–7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS’ Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.
Sub-Grid Modeling of Electrokinetic Effects in Micro Flows
Chen, C. P.
2005-01-01
Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this
Evaluation of a vortex-based subgrid stress model using DNS databases
Misra, Ashish; Lund, Thomas S.
1996-01-01
The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971).
An experimental study of single-phase and two-phase flows in microchannels
Chung, Peter Mang-Yu
Recent literature on pressure drop and flow rate measurements in microchannels indicate that both the liquid and gas flow may deviate significantly from convention. Thus, an evaluation was made of the friction factor constant for laminar flow and critical Reynolds number for the laminar-to-turbulent flow transition. Experiments were performed to study the single-phase flow behaviour of water or nitrogen gas through a 100 mum circular microchannel. The liquid flow data were well predicted by the conventional friction factor equations for larger channels, and the critical Reynolds number was close to tradition. For single-phase gas flow, the measured friction factor agreed with theory if the effect of compressibility was considered. Rarefaction did not contribute to the experimental results. The effect of scaling on two-phase flow was investigated to identify micro-scale phenomena. Experiments were conducted with a mixture of nitrogen gas and water in circular channels of 530--50 mum diameter. The two-phase flow was characterized by the flow patterns, void fraction, and frictional pressure drop. In the 530 and 250 mum channels, the flow characteristics were typical of those obtained in minichannels. In the 100 and 50 mum channels, the flow behaviour was unconventional---the occurrence of slug flow dominated, the void fraction-volumetric quality relationship departed from tradition, and mass flux no longer influenced the two-phase frictional multiplier. Unique to these channels, the slug flow exhibited a ring-shaped liquid film or serpentine-like gas core. The sizing effect indicates that the critical diameter for a microchannel lies between 250 and 100 mum. A new model is proposed to expose physical insight into the observed flow patterns. To investigate the effect of channel geometry on two-phase microchannel flow, the same experiment was conducted in a 96 mum square microchannel and the data were compared with those obtained in the 100 mum circular microchannel
Contrast enhanced two-phase spiral CT of urinary bladder
Energy Technology Data Exchange (ETDEWEB)
Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)
1997-10-01
To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was
Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi
2015-01-01
three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.
Stability of stratified two-phase flows in horizontal channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen
2016-01-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...
Two-phase microfluidics: thermophysical fundamentals and engineering concepts
Kuznetsov, V. V.
2016-10-01
Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.
Two-phase flow instability in a parallel multichannel system
Institute of Scientific and Technical Information of China (English)
HOU Suxia
2009-01-01
The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Two phase coexistence for the hydrogen-helium mixture
Fantoni, Riccardo
2015-01-01
We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.
Phase appearance or disappearance in two-phase flows
Cordier, Floraine; Kumbaro, Anela
2011-01-01
This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...
Two-phase flow simulation of aeration on stepped spillway
Institute of Scientific and Technical Information of China (English)
CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran
2004-01-01
Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.
A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE
2003-01-01
A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.
Emerging Two-Phase Cooling Technologies for Power Electronic Inverters
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.
2005-08-17
In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The
Solutal Marangoni instability in layered two-phase flows
Picardo, Jason R; Pushpavanam, S
2015-01-01
In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...
Two-Phase Algorithm for Optimal Camera Placement
Directory of Open Access Journals (Sweden)
Jun-Woo Ahn
2016-01-01
Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Equations of two-phase flow in spray chamber
Institute of Scientific and Technical Information of China (English)
李新禹; 张志红; 金星; 徐杰
2009-01-01
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.
Transient thermohydraulic modeling of two-phase fluid systems
Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.
2012-11-01
This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Note on Two-Phase Phenomena in Financial Markets
Institute of Scientific and Technical Information of China (English)
JIANG Shi-Mei; CAI Shi-Min; ZHOU Wao; ZHOU Pei-Ling
2008-01-01
The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation phenomenon in Hang-Seng index. It is observed that the bifurcation phenomenon in financial index is not universal, but specific under certain conditions. For Hang-Seng index and randomly generated time series, the phenomenon just emerges when the power-law exponent of absolute increment distribution is between i and 2 with appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours. However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs is far different from real market to artificial data, which may reflect certain market information.
Thirty-two phase sequences design with good autocorrelation properties
Indian Academy of Sciences (India)
S P Singh; K Subba Rao
2010-02-01
Polyphase Barker Sequences are ﬁnite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difﬁcult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modiﬁed Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.
Prediction of gas-liquid two-phase flow regime in microgravity
Lee, Jinho; Platt, Jonathan A.
1993-01-01
An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.
Correct numerical simulation of a two-phase coolant
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Supporting universal prevention programs: a two-phased coaching model.
Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S
2013-06-01
Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.
Particle velocimetry analysis of immiscible two-phase flow in micromodels
Roman, Sophie; Soulaine, Cyprien; AlSaud, Moataz Abu; Kovscek, Anthony; Tchelepi, Hamdi
2016-09-01
We perform micro-PIV measurements in micromodels using very simple optical equipment combined with efficient image acquisition and processing. The pore-scale velocity distributions are obtained for single-phase flow in porous media with a typical pore size of 5-40 μm at a resolution of 1.8 μm × 1.8 μm vector grid. Because the application of micro-PIV in micromodels is not standard, extensive effort is invested into validation of the experimental technique. The micro-PIV measurements are in very good agreement with numerical simulations of single-phase flows, for which the modeling is well established once the detailed pore geometry is specified and therefore serves as a reference. The experimental setup is then used with confidence to investigate the dynamics of immiscible two-phase flow in micromodels that represent natural complex porous media (e.g., sandstone). For unstable immiscible two-phase flow experiments, micro-PIV measurements indicate that the flow is highly oscillatory long before the arrival of the invading interface. The dynamics are accompanied with abrupt changes of velocity magnitude and flow direction, and interfacial jumps. Following the passage of the front, dissipative events, such as eddies within the aqueous phase, are observed in the micro-PIV results. These observations of complex interface dynamics at the pore scale motivate further measurement of multiphase fluid movement at the sub-pore scale and requisite modeling.
Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation
Directory of Open Access Journals (Sweden)
Tingting Wu
2016-01-01
Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.
Self-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling
Directory of Open Access Journals (Sweden)
Jorgen S. Frederiksen
2012-04-01
Full Text Available A new statistical dynamical closure theory for general inhomogeneous turbulent flows and subgrid modeling is presented. This Self-Energy (SE closure represents all eddy interactions through nonlinear dissipation or forcing ‘self-energy’ terms in the mean-field, covariance and response function equations. This makes the renormalization of the bare dissipation and forcing, and the subgrid modeling problem, transparent. The SE closure generalizes the quasi-diagonal direct interaction closure to allow for more complex interactions. The SE closure is applicable to flows in different geometries, is exact near maximum entropy states corresponding to canonical equilibrium, and provides a framework for deriving simpler realizable closures.
Chao, Winston C.
2015-01-01
The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.
A numerical study of steady-state two-phase flow in porous media
Energy Technology Data Exchange (ETDEWEB)
Knudsen, Henning Arendt
2002-07-01
Two-phase flow in porous media means the simultaneous flow of two phases, say two liquids, e.g., oil and water. This flow is restrained to be within a porous medium. For example sandstone and limestone are typical porous stones that can contain oil and gas in nature. In the extraction of oil from reservoirs, oil is usually displaced by water. So on a large scale we can consider it to be a displacement process. However, on pore scale the ''mix'' and flow processes are complicated. Idealistically, one might consider the search for truth a sufficient motivation for work in this field. Nevertheless, from an economic and technological point of view, enhanced oil recovery is the main motivation for the study of two-phase flow in porous media. Luckily, there are additional systems in real world that falls into this category. One such system is the flow of water and pollutants in aquifers. General knowledge in the field might be beneficial for preserving ground water reserves in the future. In the laboratory one often encounters artificially made porous media. For example glass beads between two glass plates. Therein, one of the phases flowing may be a mixture of glycerol and water. The other phase can be air which then is the non-wetting phase; air does not wet glass. It can also be silicone oil, and in that case the water/glycerol is normally the nonwetting phase. There are other possibilities. In general, laboratory studies are performed on systems on pore scale. The flow properties on the various length scales found in flow systems in nature depend on these properties on pore scale. The so-called upscaling problem concerns how to relate pore scale properties with properties on larger scales. The scope of this thesis is the study of properties on pore scale. The upscaling problem, which is a large research field in itself, is thus outside the scope of this thesis. The results of Paper 3 is an exception since they may infer also to larger scales than
Adaptive, multi-domain techniques for two-phase flow computations
Uzgoren, Eray
Computations of immiscible two-phase flows deal with interfaces that may move and/or deform in response to the dynamics within the flow field. As interfaces move, one needs to compute the new shapes and the associated geometric information (such as curvatures, normals, and projected areas/volumes) as part of the solution. The present study employs the immersed boundary method (IBM), which uses marker points to track the interface location and continuous interface methods to model interfacial conditions. The large transport property jumps across the interface, and the considerations of the mechanism including convection, diffusion, pressure, body force and surface tension create multiple time/length scales. The resulting computational stiffness and moving boundaries make numerical simulations computationally expensive in three-dimensions, even when the computations are performed on adaptively refined 3D Cartesian grids that efficiently resolve the length scales. A domain decomposition method and a partitioning strategy for adaptively refined grids are developed to enable parallel computing capabilities. Specifically, the approach consists of multilevel additive Schwarz method for domain decomposition, and Hilbert space filling curve ordering for partitioning. The issues related to load balancing, communication and computation, convergence rate of the iterative solver in regard to grid size and the number of sub-domains and interface shape deformation, are studied. Moreover, interfacial representation using marker points is extended to model complex solid geometries for single and two-phase flows. Developed model is validated using a benchmark test case, flow over a cylinder. Furthermore, overall algorithm is employed to further investigate steady and unsteady behavior of the liquid plug problem. Finally, capability of handling two-phase flow simulations in complex solid geometries is demonstrated by studying the effect of bifurcation point on the liquid plug, which
Experimental Assessment of the Two-Phase Flow in a Large Inclined Channel
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Thanh Hung; Song, Ki Won; Revankar, Shripad T; Park, Hyun Sun [Pohang University of Science and Technology, Pohang (Korea, Republic of)
2014-10-15
In order to assess the cooling performance of the core catcher system, a model facility has been constructed in POSTECH using scaling analysis. This facility consists of horizontal, inclined and vertical section. To investigate the flow parameters in each section, the instrumentation is developed to measure two-phase characteristics such as local void fraction, bubble velocity and bubble size. To date, there has been a considerable amount of research conducted on the internal structure of two-phase flow in pipe. However, the number of attempts made on the experiment regarding large inclined channels has been still limited. One of the reasons for this lack of data is the difficulty in constructing experimental facility. In this paper, the parameters of the flow in the inclined section are presented. The inclined channel is 10 degree from the horizontal with the rectangular cross section of 300 cm{sup 2}. The distributions of local parameters are evaluated through the data of double sensor conductivity probes installed at different locations along the inclined section. The data sets of the structure of two-phase flow in an inclined large channel was acquired. The air was injected through the metal foam installed on the top surface wall of the inclined section. Water level was kept below the top of the inclined section so the amount of water was fixed during the experiment. 9 probes set up at the different locations to get the data of local two-phase parameters. The measurement at each location was conducted in 5 minutes to determine the mean value of each parameter. The result of local void fraction profiles at different locations indicates that the void distribution primarily changes along the height of the inclined section. The slug flow occurs in the channel which results in most bubbles attached to the top surface wall. This fact explains the high local void fraction near the top wall and its rapid decline towards the bottom wall of the inclined section. The
Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.
Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E
2011-01-01
The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production
Creep of Two-Phase Microstructures for Microelectronic Applications
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)
1998-12-01
The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a
Extension of the low diffusion particle method for near-continuum two-phase flow simulations
Institute of Scientific and Technical Information of China (English)
Su Wei; He Xiaoying; Cai Guobiao
2013-01-01
The low diffusion (LD) particle method,proposed by Burt and Boyd,is modified for the near-continuum two-phase flow simulations.The LD method has the advantages of easily coupling with the direct simulation Monte Carlo (DSMC) method for multi-scale flow simulations and dramatically reducing the numerical diffusion error and statistical scatter of the equilibrium particle methods.Liquid-or solid-phase particles are introduced in the LD method.Their velocity and temperature updating are respectively,calculated from the motion equation and the temperature equation according to the local gas properties.Coupling effects from condensed phase to gas phase are modeled as momentum and energy sources,which are respectively,equal to the negative values of the total momentum and energy increase in liquid or solid phase.The modified method is compared with theoretical results for unsteady flows,and good agreements are obtained to indicate the reliability of the one-way gas-to-particle coupling models.Hybrid LD-DSMC algorithm is implemented and performed for nozzle discharging gas-liquid flow to show the prospect of the LDDSMC scheme for multi-scale two-phase flow simulations.
Ensemble Distribution for Immiscible Two-Phase Flow in Two-Dimensional Networks
Savani, Isha; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex
2016-01-01
An ensemble distribution has been constructed to describe steady immiscible two-phase flow of two incompressible fluids in a network. The system is ergodic. The distribution relates the time that a bubble of the non-wetting fluid spends in a link to the local volume flow. The properties of the ensemble distribution are tested by two-phase flow simulations at the pore-scale for capillary numbers ranging from 0.1 to 0.001. It is shown that the distribution follows the postulated dependence on the local flow for Ca = 0.01 and 0.001. The distribution is used to compute the global flow performance of the network. In particular, we find the expression for the overall mobility of the system using the ensemble distribution. The entropy production at the scale of the network is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. The distribution can be used to obtain macroscopic variables from local network information, for a practical range of capillary...
Tomei, M Concetta; Annesini, M Cristina; Rita, Sara; Daugulis, Andrew J
2008-10-01
The objectives of this work were to demonstrate the potential of a two-phase sequencing batch reactor in degrading xenobiotics and to evaluate the kinetic parameters leading to a mathematical model of the system. 4-Nitrophenol (4NP), a typical representative of substituted phenols, was selected as the target xenobiotic; this compound has never been remediated in a two-phase bioreactor before. Partition tests were conducted to determine the most appropriate partitioning solvent, and among the three investigated solvents (1-undecanol, 2-undecanone and oleyl alcohol), 2-undecanone was chosen because of its favourable partition coefficient and its negligible emulsion-forming tendencies. Moreover, the selected solvent showed satisfactory biocompatibility characteristics with respect to the biomass, with only minor effects on the intrinsic microbial kinetics. Kinetic tests were then performed in a sequencing batch reactor (2-l volume) operated in both conventional one- and two-phase configurations, with the two-phase system showing a significant improvement in the process kinetics in terms of reduced inhibition and increased maximum removal rate. The obtained kinetic parameters suggest that the two-phase sequencing batch system may find full-scale application, as the maximum removal rate k(max) (approximately 3 mg 4NP mgVSS(-1) day(-1)) is of the same order of magnitude of heterotrophic bacteria operating in wastewater treatment plants.
Particle migration in two-phase, viscoelastic flows
Jaensson, Nick; Hulsen, Martien; Anderson, Patrick
2014-11-01
Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
Criteria for guaranteed breakdown in two-phase inhomogeneous bodies
Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.
2017-08-01
Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.
Diagnosing Traffic Anomalies Using a Two-Phase Model
Institute of Scientific and Technical Information of China (English)
Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu
2012-01-01
Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.
Aqueous Nanofluid as a Two-Phase Coolant for PWR
Directory of Open Access Journals (Sweden)
Pavel N. Alekseev
2012-01-01
Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.
Stability of stratified two-phase flows in horizontal channels
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
Microporous silica gels from alkylsilicate-water two phase hydrolysis
Energy Technology Data Exchange (ETDEWEB)
Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program
1994-12-31
Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.
Pressure transient analysis of two-phase flow problems
Energy Technology Data Exchange (ETDEWEB)
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1986-04-01
This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.
Two-Phase Flow Hydrodynamics in Superhydrophobic Channels
Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian
2015-11-01
Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.
An automated two-phase system for hydrogel microbead production.
Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali
2012-09-01
Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.
Two-Phase Flow Field Simulation of Horizontal Steam Generators
Directory of Open Access Journals (Sweden)
Ataollah Rabiee
2017-02-01
Full Text Available The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.
Unsteady flow analysis of a two-phase hydraulic coupling
Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.
2016-06-01
Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1996-05-01
The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs.
Numerical flow analyses of a two-phase hydraulic coupling
Energy Technology Data Exchange (ETDEWEB)
Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)
2017-05-15
We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.
Experimental and numerical studies of two-phase microfluidic flows
CSIR Research Space (South Africa)
Mbanjwa, MB
2010-09-01
Full Text Available Flow of immiscible fluids is important in microfluidics for applications such as generation of emulsions and vesicles, drug delivery capsules, cell encapsulation and chemical reactions. The behaviour of these flows differs from large scale flows...
Directory of Open Access Journals (Sweden)
D. Bestion
2009-01-01
Full Text Available The NURESIM Project of the 6th European Framework Program initiated the development of a new-generation common European Standard Software Platform for nuclear reactor simulation. The thermal-hydraulic subproject aims at improving the understanding and the predictive capabilities of the simulation tools for key two-phase flow thermal-hydraulic processes such as the critical heat flux (CHF. As part of a multi-scale analysis of reactor thermal-hydraulics, a two-phase CFD tool is developed to allow zooming on local processes. Current industrial methods for CHF mainly use the sub-channel analysis and empirical CHF correlations based on large scale experiments having the real geometry of a reactor assembly. Two-phase CFD is used here for understanding some boiling flow processes, for helping new fuel assembly design, and for developing better CHF predictions in both PWR and BWR. This paper presents a review of experimental data which can be used for validation of the two-phase CFD application to CHF investigations. The phenomenology of DNB and Dry-Out are detailed identifying all basic flow processes which require a specific modeling in CFD tool. The resulting modeling program of work is given and the current state-of-the-art of the modeling within the NURESIM project is presented.
Two-phase analysis in consensus genetic mapping.
Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A
2012-05-01
Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the
Two-phase behavior and compression effects in the PEFC gas diffusion medium
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL
2009-01-01
A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.
Experimental Studies of Two-Phase Round Turbulent Jet Coherent Structures
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Coherent structures of a two-phase round turbulent jet have been studied experimentally. The flow profiles at different Reynold's numbers and various positions from the jet exit are visualized using a sheet laser source. The jets include two types,an air jet laden with incense smoke and an air jet laden with two kinds of solid particles, glass beads and catalytic cracking beads. The developments of both the large eddy structures of the round turbulent jet and the local particle dispersion in the vortex structures were recorded with a high-speed movie camera. Free and excited jet conditions were tested. Analysis of the video pictures suggests a critical intrinsic frequency exists in the helical coherent structures of the air phase. In the spectral space the clockwise and counter-clockwise helical structures occupy different positions. Large scale structures exsit in the two-phase jet. The patterns are similar to those of the air jet with the Stokes numbers in the range of 1-8.32.
Flow visualization study of inverted U-bend two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ishii, M.; Kim, S.B.; Lee, R.
1986-12-01
A hot-leg U-bend experiment was performed. The experimental condition simulated the two-phase flow in a B and W primary loop during a small break loss of coolant accident or during some other abnormal transients. The loop design was based on the scaling criteria developed previously and the loop was operated either in a natural circulation mode or in a forced circulation mode using nitrogen gas and water. The two-phase flow regimes at the hot-leg were identified on the basis of visual observation. The phase separation at the top of the inverted U-bend was observed at low gas flow rate. The void fractions were measured using differential pressure transducers and compared with the prediction from the drift-flux model. The natural circulation flow interruption occurred in two different modes, namely, quasi-periodic and semi-permanent modes. This phenomenon is mainly dependent on the difference in the hydrostatic head in the riser and downcomer, and the flow regime at hot-leg. Besides this flow interruption phenomenon, dynamic flow instabilities of considerable amplitudes have been observed.
Parasitic Currents in Diffuse-Interface Two-Phase Flow Simulations
Milani, Pedro; Mirjalili, Seyedshahabaddin; Mani, Ali
2016-11-01
Two phase flow phenomena are important in a wide range of applications, such as bubble generation in ocean waves and droplet dynamics in fuel injectors. Several methods can be used to simulate such phenomena. The focus of this study is the diffuse-interface method, in which the interface is described via a mixing energy and spans a few computational cells, while surface tension is modeled as a force density term on the right-hand side of the momentum equation. The advantages of this method include the ability to easily simulate complex geometries since it does not require special treatment around the interface, and to conserve mass exactly. However, this method suffers from parasitic currents, an unphysical velocity field generated close to the interface due to numerical imprecisions in the surface tension term. This can be a serious problem in low speed flows, where the parasitic currents are significant compared to the velocity scale of the problem. In this study, we consider a wide range of diffuse-interface schemes for two-phase flows, including different options for discrete representation of the surface tension force. By presenting an assessment of each method's performance in scenarios involving parasitic currents, we develop accuracy estimates and guidelines for selection among these models. Supported by the ONR.
Continuous aqueous two-phase extraction of human antibodies using a packed column.
Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R
2012-01-01
The performance of a pilot scale packed differential contactor was evaluated for the continuous counter-current aqueous two-phase extraction (ATPE) of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant (CS) enriched with pure protein. Preliminary studies have been firstly performed in order to select the dispersed phase (phosphate-rich or polyethylene glycol 3350 Da (PEG)-rich phase) and the column packing material. The PEG-rich phase has been selected as the dispersed phase and the stainless steel as the preferred material for the column packing bed since it was not wetted preferentially by the selected dispersed phase. Hydrodynamic studies have been also performed, and the experimental results were successfully adjusted to the Richardson-Zaki and Mísek equations, typically used for the conventional organic-aqueous two-phase systems. An experimental set-up combining the packed column with a pump mixer-settler stage showed to have the best performance and to be advantageous when compared to the IgG batch extraction. An IgG recovery yield of 85% could be obtained with about 50% of total contaminants and more than 85% of contaminant proteins removal. Mass transfer studies have revealed that the mass transfer was controlled by the PEG-rich phase. A higher efficiency could be obtained when using an extra pump mixer-settler stage and higher flow rates.
48 CFR 36.301 - Use of two-phase design-build selection procedures.
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....
24 CFR 115.201 - The two phases of substantial equivalency certification.
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF
Directory of Open Access Journals (Sweden)
C. Montzka
2017-07-01
Full Text Available Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC and hydraulic conductivity (HCC curves are typically derived from soil texture via pedotransfer functions (PTFs. Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller–Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem–van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based
On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant
Barrett, John W; Nürnberg, Robert
2013-01-01
We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.
Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions
Wei, Yikun; Qian, Yuehong
2011-11-01
A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.
An accurate two-phase approximate solution to the acute viral infection model
Energy Technology Data Exchange (ETDEWEB)
Perelson, Alan S [Los Alamos National Laboratory
2009-01-01
During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.
Two-phase flow patterns for flow condensation in small-diameter tubes
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Two-phase flow patterns have been observed visually to investigate the effects of tube diameter, mass flux and tube inclination on flow condensation in small-diameter tubes. For horizontal or inclined small-diameter tubes, gravity-domination is decreased by shear stress and surface tension on phase change interface, which weakens the stratification of condensate and vapor flow due to the action of gravity perpendicular to flow direction. As decreasing the tube diameter from 5.79 mm to 2.18 mm, the annular or sub-annular flows become prevailing in flow regime map. The existing flow regime maps for macro scale cannot predict the experimental data in the present study.
Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area
El-Amin, Mohamed
2015-06-01
In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.
Evolution of Defect Structure of Two-Phase Titanium Alloy Under Active Load
Kunitsyna, T. S.; Teplyakova, L. A.; Kashin, A. D.
2017-09-01
The paper deals with the defect structure of two-phase VT6 titanium alloy and studies its evolution under plastic deformation within the wide range. It is found that the defect structure of this alloy before loading is a multi-level system with such scale-level elements as grain, colony, lamella, α- and β-lamellas, microtwins, and dislocation substructure. During plastic deformation, the evolution of the dislocation subsystem is observed. The sequence of substructural transformations with deformation is identified in this paper. The scalar dislocation density is measured in both phases and its dependence on the degree of deformation is detected. In particular, it is shown that the fracture of VT6 titanium alloy is caused by the similar value of scalar dislocation density achieved both in α- and β-phases.
An experimental and numerical investigation of crossflow effects in two-phase displacements
DEFF Research Database (Denmark)
Cinar, Y.; Jessen, Kristian; Berenblyum, Roman;
2006-01-01
In this paper, we present flow visualization experiments and numerical simulations that demonstrate the combined effects of viscous and capillary forces and gravity segregation on crossflow that occurs in two-phase displacements in layered porous media. We report results of a series of immiscible....... The experiments also illustrate the complex interplay of capillary, gravity, and viscous forces that controls crossflow. The experimental results confirm that the transition ranges of scaling groups suggested by Zhou et al. (1994) are appropriate/valid. We report also results of simulations of the displacement...... (IFT) by varying the isopropanol concentration. Experiments were performed for a wide range of capillary and gravity numbers. The experimental results illustrate the transitions from flow dominated by capillary pressure at high IFT to flow dominated by gravity and viscous forces at low IFT...
A new set of equations describing immiscible two-phase flow in homogeneous porous media
Hansen, Alex; Bedeaux, Dick; Kjelstrup, Signe; Savani, Isha; Vassvik, Morten
2016-01-01
Based on a simple scaling assumption concerning the total flow rate of immiscible two-phase flow in a homogeneous porous medium under steady-state conditions and a constant pressure drop, we derive two new equations that relate the total flow rate to the flow rates of each immiscible fluid. By integrating these equations, we present two integrals giving the flow rate of each fluid in terms of the the total flow rate. If we in addition assume that the flow obeys the relative permeability (generalized Darcy) equations, we find direct expressions for the two relative permeabilities and the capillary pressure in terms of the total flow rate. Hence, only the total flow rate as a function of saturation at constant pressure drop across the porous medium needs to be measured in order to obtain all three quantities. We test the equations on numerical and experimental systems.
Simulation of heterogeneous two-phase media using random fields and level sets
Institute of Scientific and Technical Information of China (English)
George STEFANOU[1,2
2015-01-01
The accurate and efficient simulation of random heterogeneous media is important in the framework of modeling and design of complex materials across multiple length scales. It is usually assumed that the morphology of a random microstructure can be described as a non-Gaussian random field that is completely defined by its multivariate distribution. A particular kind of non-Gaussian random fields with great practical importance is that of translation fields resulting from a simple memory-less transformation of an underlying Gaussian field with known second-order statistics. This paper provides a critical examination of existing random field models of heterogeneous two-phase media with emphasis on level-cut random fields which are a special case of translation fields. The case of random level sets, often used to represent the geometry of physical systems, is also examined. Two numerical examples are provided to illustrate the basic features of the different approaches.
Instrument Thermal Test Bed - A unique two phase test facility
Swanson, Theodore; Didion, Jeffrey
1991-01-01
The Instrument Thermal Test Bed (ITTB) is a modular, large-scale test facility which provides a medium for ground testing and flight qualification of spacecraft thermal control components and system configurations. The initial 'shade-down' operations are discussed herein. Operational parameters and performance characteristics were determined and quantified on a preliminary basis. The ITTB was successfully operated at evaporator power loads ranging from 600 W to 9600 W as well as in both capillary pumped and series hybrid pumped modes.
Towards a Subgrid Model of Planetary Boundary Layers Based on Direct Statistical Simulation
Skitka, Joseph; Fox-Kemper, Baylor; Marston, Brad
2015-11-01
Reliable weather and climate modeling requires the accurate simulation of Earth's oceanic and atmospheric boundary layers. However, long duration turbulence-resolving simulation is centuries beyond the reach of present day computers, hence subgrid modeling is required. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants offers the prospect of building improved subgrid schemes. In contrast to other earlier statistical approaches, DSS makes no unphysical assumptions about the homogeneity, isotropy, or locality of correlations. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. Wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also investigate whether or not basis reduction can be achieved by proper orthogonal decomposition (POD) of the second cumulant. Supported in part by NSF DMR-1306806 and NSF CCF-1048701.
Autonomous Operation of Hybrid Microgrid with AC and DC Sub-Grids
DEFF Research Database (Denmark)
Loh, Poh Chiang; Blaabjerg, Frede
2011-01-01
This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage...... the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc...... sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid....
Domain decomposition parallel computing for transient two-phase flow of nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Ryong; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Choi, Hyoung Gwon [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
KAERI (Korea Atomic Energy Research Institute) has been developing a multi-dimensional two-phase flow code named CUPID for multi-physics and multi-scale thermal hydraulics analysis of Light water reactors (LWRs). The CUPID code has been validated against a set of conceptual problems and experimental data. In this work, the CUPID code has been parallelized based on the domain decomposition method with Message passing interface (MPI) library. For domain decomposition, the CUPID code provides both manual and automatic methods with METIS library. For the effective memory management, the Compressed sparse row (CSR) format is adopted, which is one of the methods to represent the sparse asymmetric matrix. CSR format saves only non-zero value and its position (row and column). By performing the verification for the fundamental problem set, the parallelization of the CUPID has been successfully confirmed. Since the scalability of a parallel simulation is generally known to be better for fine mesh system, three different scales of mesh system are considered: 40000 meshes for coarse mesh system, 320000 meshes for mid-size mesh system, and 2560000 meshes for fine mesh system. In the given geometry, both single- and two-phase calculations were conducted. In addition, two types of preconditioners for a matrix solver were compared: Diagonal and incomplete LU preconditioner. In terms of enhancement of the parallel performance, the OpenMP and MPI hybrid parallel computing for a pressure solver was examined. It is revealed that the scalability of hybrid calculation was enhanced for the multi-core parallel computation.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J; Sakaguchi, Koichi; LIU, Xiaohong
2016-01-01
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into ac...
Assessing the use of subgrid land model output to study impacts of land cover change
Schultz, Natalie M.; Lee, Xuhui; Lawrence, Peter J.; Lawrence, David M.; Zhao, Lei
2016-06-01
Subgrid information from land models has the potential to be a powerful tool for investigating land-atmosphere interactions, but relatively few studies have attempted to exploit subgrid output. In this study, we modify the configuration of the Community Land Model version CLM4.5 so that each plant functional type (PFT) is assigned its own soil column. We compare subgrid and grid cell-averaged air temperature and surface energy fluxes from this modified case (PFTCOL) to a case with the default configuration—a shared soil column for all PFTs (CTRL)—and examine the difference in simulated surface air temperature between grass and tree PFTs within the same grid cells (ΔTGT). The magnitude and spatial patterns of ΔTGT from PFTCOL agree more closely with observations, ranging from -1.5 K in boreal regions to +0.6 K in the tropics. We find that the column configuration has a large effect on PFT-level energy fluxes. In the CTRL configuration, the PFT-level annual mean ground heat flux (G) differs substantially from zero. For example, at a typical tropical grid cell, the annual G is 31.8 W m-2 for the tree PFTs and -14.7 W m-2 for grass PFTs. In PFTCOL, G is always close to zero. These results suggest that care must be taken when assessing local land cover change impacts with subgrid information. For models with PFTs on separate columns, it may be possible to isolate the differences in land surface fluxes between vegetation types that would be associated with land cover change from other climate forcings and feedbacks in climate model simulations.
Experimental investigation of two-phase flow in rock salt
Energy Technology Data Exchange (ETDEWEB)
Malama, Bwalya [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Howard, Clifford L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2014-07-01
This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.
Experimental Investigation of Two-Phase Flow in Rock Salt
Energy Technology Data Exchange (ETDEWEB)
Malama, Bwalya; Howard, Clifford L.
2014-07-01
This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.
Two-phase materials for high-temperature service
CSIR Research Space (South Africa)
Nabarro, FRN
2000-09-01
Full Text Available viewed on the scale of the precipitate particles The structure consists of cubes of the g0 phase, an ordered L12 structure based on Ni3Al, stacked in a simple cubic array in a matrix of g, a disordered face- centred cubic lattice, also nickel-based. The g... occurs in <110> directions on {111} planes. In the disordered g phase, with lattice parameter a, the repeat distance, which is the Bur- gers vector of a single dislocation, is 1/2 a <110>. In the ordered g0 structure, the repeat distance is a <110>. If a...
Two Phase Flow Stability in the HTR-10 Steam Generator
Institute of Scientific and Technical Information of China (English)
居怀明; 左开芬; 刘志勇; 徐元辉
2001-01-01
A 10 MW High Temperature Gas Cooled Reactor (HTR-10) designed bythe Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.
Soares, Ruben R G; Azevedo, Ana M; Van Alstine, James M; Aires-Barros, M Raquel
2015-08-01
For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes.
Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H
2015-06-07
We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.
Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media
El-Amin, Mohamed
2013-04-01
In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.
Shamoon, D.; Lasquellec, S.; Brosseau, C.
2017-07-01
Understanding the collective, low-frequency dielectric properties of heterostructures is a major goal in condensed matter. In 1935, Bruggeman [Ann. Phys. Lpz. 24, 636 (1935)] conceived the concept of an effective medium approximation (EMA) involving a decoupling between the low-order statistics of the electric field fluctuations and the characteristic length scales. We report on and characterize, via finite element studies, the low-order statistics effective permittivity of two-phase 2D and 3D random and deterministic heterostructures as geometry, phase permittivity contrast, and inclusion content are varied. Since EMA analytical expressions become cumbersome even for simple shapes and arrangements, numerical approaches are more suitable for studying heterostructures with complex shapes and topologies. Our numerical study verifies the EMA analytic predictions when the scales are well-separated. Our numerical study compares two approaches for calculating effective permittivity by explicit calculations of local average fields and energy as geometry, phase permittivity contrast, and inclusion content are varied. We study the conditions under which these approaches give a reliable estimate of permittivity by comparing with 2D/3D EMA analytical models and duality relation. By considering 2D checkerboards which consist of a multitude of contiguous N × N square cells, the influence of the internal length scale (i.e., N) on permittivity is discussed.
Directory of Open Access Journals (Sweden)
Valavanides M.S.
2012-11-01
Full Text Available Scope of present article is to present the research efforts (implementing experimental study, theoretical analysis and modeling taken towards the development of a complete theory for steady-state concurrent two-phase flow in porous media (the DeProF theory. The current state of progress is outlined and open problems are addressed. First attempts are traced back in the 1980s with the analysis, description and modeling of phenomena governing two-phase flow in pore scale. Appropriate simulators extending over hundreds and/or thousands of pores (network scale were developed in the following decade (1990s; in parallel, extensive experimental research work identified three prototype/elementary flows comprising the average macroscopic flow, namely connected-oil pathway flow, ganglion dynamics and drop traffic flow and mapped their relative contribution to the macroscopic flow in terms of the process parameters. Efforts to provide a consistent physical rationale to explain the experimental observations, i.e. the map of prototype flow regimes, laid the grounds for developing the DeProF (Decomposition in Prototype Flows theory. Amongst the main results/features of the DeProF theory was the identification of the actual operational and system parameters of the process and the introduction – according to ergodicity principles – of the domain of physically admissible internal flow arrangements of the average macroscopic flow. Use of the respective mechanistic model as a simulation tool (in the 2000s revealed many characteristic properties of the sought process. Important is the existence of optimum operating conditions in the form of a smooth and continuous locus in the domain of the process operational parameters. This characteristic remained in latency within the relative permeability curves, until recently unveiled by the DeProF theory. Research efforts continue in the present (2010s by elaborating appropriate physical considerations based on
Two-phase flow interfacial structures in a rod bundle geometry
Paranjape, Sidharth S.
Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one
The difficult challenge of a two-phase CFD modelling for all flow regimes
Energy Technology Data Exchange (ETDEWEB)
Bestion, D., E-mail: dominique.bestion@cea.fr
2014-11-15
Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The
See, Evan J.
Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and
Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system
Directory of Open Access Journals (Sweden)
S. Ramachandran
2008-09-01
Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran
2016-10-01
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functional differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua
2016-02-01
Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.
A pore-scale model of two-phase flow in water-wet rock
Energy Technology Data Exchange (ETDEWEB)
Silin, Dmitriy; Patzek, Tad
2009-02-01
A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.
Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management
Didion, Jeffrey R.
2016-01-01
This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.
Two-Phase Extraction (TPE) Pilot-Scale Test Technology Evaluation Report
1995-11-01
John Roe and Mr. Jim Pedrick ) were contacted and indicated that they would not be providing any comments. If you have any questions regarding the... Pedrick , Nellis AFB (3) Mike Thompson, Radian Suzanne Felice, Radian Jeff Lawrence, Radian Bill Buchans, Radian James Machin, Radian Project File I I I 1
A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two Phase Flow
Zhang, Tao
2017-06-09
To improve the research methods in petroleum industry, we develop a fast algorithm to simulate droplet motions in oil and water two phase flow, using phase field model to describe the phase distribution in the flow process. An efficient partial difference equation solver—Shift-Matrix method is applied here, to speed up the calculation coding in high-level language, i.e. Matlab and R. An analytical solution of order parameter is derived, to define the initial condition of phase distribution. The upwind scheme is applied in our algorithm, to make it energy decay stable, which results in the fast speed of calculation. To make it more clear and understandable, we provide the specific code for forming the coefficient matrix used in Shift-Matrix Method. Our algorithm is compared with other methods in different scales, including Front Tracking and VOSET method in macroscopic and LBM method using RK model in mesoscopic scale. In addition, we compare the result of droplet motion under gravity using our algorithm with the empirical formula common used in industry. The result proves the high efficiency and robustness of our algorithm and it’s then used to simulate the motions of multiple droplets under gravity and cross-direction forces, which is more practical in industry and can be extended to wider application.
Experimental investigation on front morphology for two-phase flow in heterogeneous porous media
Heiß, V. I.; Neuweiler, I.; Ochs, S.; FäRber, A.
2011-10-01
In this work, we studied the influence of heterogeneities, fluid properties, and infiltration rates on front morphology during two-phase flow. In our experiments, a sand box, 40 cm × 60 cm × 1.2 cm, was packed with two different structures (either random or periodic) composed of 25% coarse material and 75% fine material. The infiltration process was characterized by the capillary number, Ca, and the viscosity ratio, M, between the fluids. The displacing and the displaced fluid had the same densities, such that gravity effects could be neglected. Similar to the pore scale, the stability of the front depends on the relation between M and Ca. However, on the scale under study, depending on the structure, zones of immobilized wetting fluid developed during drainage. The lifetime of these zones depended on the flow regime. Here we show that immobilized zones have an influence on the length of the transition zone, which could lead to a different time behavior than for that of the front width.
Apparent and Actual Dynamic Contact Angles in Confined Two-Phase Flows
Omori, Takeshi; Kajishima, Takeo
2016-11-01
To accurately predict the fluid flow with moving contact lines, it has a crucial importance to use a model for the dynamic contact angle which gives contact angles on the length scale corresponding to the spacial resolution of the fluid solver. The angle which a moving fluid interface forms to a solid surface deviates from an actual (microscopic) dynamic contact angle depending on the distance from the contact line and should be called an apparent (macroscopic) dynamic contact angle. They were, however, often undistinguished especially in the experimental works, on which a number of empirical correlations between a contact angle and a contact line velocity have been proposed. The present study is the first attempt to measure both apparent and actual contact angles from the identical data sets to discuss the difference and the relationship between these two contact angles of difference length scales. The study is conducted by means of numerical simulation, solving the Navier-Stokes equation and the Cahn-Hilliard equation under the generalized Navier boundary condition for the immiscible two-phase flow in channels. The present study also illustrates how the system size and the physical properties of the adjoining fluid affect the apparent and the actual dynamic contact angles. JSPS KAKENHI Grant No. 15K17974.
Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions
DEFF Research Database (Denmark)
Sarlak, Hamid; Meneveau, C.; Sørensen, Jens Nørkær
2015-01-01
A series of simulations are carried out to evaluate specific features of the Large Eddy Simulation (LES) technique in wind turbine wake interactions. We aim to model wake interactions of two aligned model rotors. The effects of the rotor resolution, actuator line force filter size, and Reynolds...
Large Eddy Simulation of Stratified Turbulent Channel Flow with a Dynamic Subgrid Scale Model
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
1 Ｉｎｔｒｏｄｕｃｔｉｏｎ Ｔｕｒｂｕｌｅｎｔｈｅａｔｔｒａｎｓｆｅｒｏｃｃｕｒｓｉｎｔｈｅｐｒｅｓｅｎｃｅｏｆｔｈｅｒ ｍａｌｓｔｒａｔｉｆｉｃａｔｉｏｎｉｎｍａｎｙｉｍｐｏｒｔａｎｔｅｎｇｉｎｅｅｒｉｎｇａｎｄｇｅｏｐｈｙｓｉｃａｌｆｌｏｗｓ ,ｗｈｅｒｅ ,ａｓａｎｅｘａｍｐｌｅ ,ａｓｔａｂｌｅｓｔｒａｔ ｉｆｉｃａｔｉｏｎｏｃｃｕｒｓｎｅａｒｔｈｅｃｏａｓｔａｎｄａｎｕｎｓｔａｂｌｅｓｔｒａｔｉｆｉｃａ ｔｉｏｎｏｃｃｕｒｓｉｎａｃｏｎｖｅｃｔｉｖｅｌｙｄｒｉｖｅｎａｔｍｏｓｐｈｅｒｅ .Ｍｅａｎ ｗｈｉｌｅ ,ｔｈｅｔｕｒｂｕｌｅｎｔｆｌｏｗｃｏｕｐｌｅｄｗｉｔｈｈｅａｔｔｒａｎｓｆｅｒｉｓｉｍｐｏｒｔａｎｔｉｎｔｈｅｒｅｓｅａｒｃｈｏｆｔｕｒｂｕｌｅｎｃｅｔｈｅｏｒｙ .ＢａｓｅｄｏｎｔｈｅＲｉｃｈａｒｄｓｏｎｎｕｍｂｅｒ (Ｒｉ) ,ｗｅｃａｎｄｉｖｉｄｅｔｕｒｂｕｌｅｎｔｆｌｏｗｓｗｉｔｈｈｅａｔｔｒａｎｓｆｅｒｉｎｔｏｔｈｒｅｅｒｅｇｉｍｅｓ ,ｗｈｉｃｈａｒｅｔｕｒｂｕｌｅｎｔｆｌｏｗｓｗｉｔｈ ｐａｓｓｉｖｅｈｅａｔｔｒａｎｓｆｅｒ (Ｒｉ =0 ) ,ｓｔａｂｌｙｓｔｒａｔｉｆｉｅ...
New subgrid-scale models for large-eddy simulation of Rayleigh-Bénard convection
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2016-09-01
At the crossroad between flow topology analysis and the theory of turbulence, a new eddy-viscosity model for Large-eddy simulation has been recently proposed by Trias et al.[PoF, 27, 065103 (2015)]. The S3PQR-model has the proper cubic near-wall behaviour and no intrinsic limitations for statistically inhomogeneous flows. In this work, the new model has been tested for an air turbulent Rayleigh-Benard convection in a rectangular cell of aspect ratio unity and n span-wise open-ended distance. To do so, direct numerical simulation has been carried out at two Rayleigh numbers Ra = 108 and 1010, to assess the model performance and investigate a priori the effect of the turbulent Prandtl number. Using an approximate formula based on the Taylor series expansion, the turbulent Prandtl number has been calculated and revealed a constant and Ra-independent value across the bulk region equals to 0.55. It is found that the turbulent components of eddy-viscosity and eddy-diffusivity are positively prevalent to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. On the other hand, the new eddy-viscosity model is preliminary tested for the case of Ra = 108 and showed overestimation of heat flux within the boundary layer but fairly good prediction of turbulent kinetics at this moderate turbulent flow.
Large Eddy Simulation Using a Transport Equation for the Subgrid-Scale Stress Tensor
2007-03-22
1,O:NZ+l) Integer ::num, tagl ,tag2, cpul,cpu2 Real ::tmpl,tmp2 num (NY+2)*(NZ+2) cpul =CPU -info(l) cpu2 =CPU -info(2) tagi tag+1 tag2 =tag+2...Sending right y-z plane sbuffx-r(O:NY+l,O:NZ+1) = var(NX,O:NY+1,O:NZ+l) 39 call mpi~isend (sbuffx -r,num,datasize,cpul, tagl ,MPI_COMMWORLD, handle-sx(1...mpi_irecv (rbuffx -l,num,datasize,cpu2, tagl ,MPI COMM WORLD, handle-rx(2) ,ierr) End Subroutine SendBCX Nonblocking MPI recieve - x Subroutine RecvBCX
Final Report: Systematic Development of a Subgrid Scaling Framework to Improve Land Simulation
Energy Technology Data Exchange (ETDEWEB)
Dickinson, Robert Earl [Univ. of Texas, Austin, TX (United States)
2016-07-11
We carried out research to development improvements of the land component of climate models and to understand the role of land in climate variability and change. A highlight was the development of a 3D canopy radiation model. More than a dozen publications resulted.
Accounting for subgrid scale topographic variations in flood propagation modeling using MODFLOW
DEFF Research Database (Denmark)
Milzow, Christian; Kinzelbach, W.
2010-01-01
To be computationally viable, grid-based spatially distributed hydrological models of large wetlands or floodplains must be set up using relatively large cells (order of hundreds of meters to kilometers). Computational costs are especially high when considering the numerous model runs or model time...
CALCULATION ON TWO-PHASE FLOW TRANSIENTS AND THEIR EXPERIMENTAL RESEARCH
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.
48 CFR 570.105-2 - Two-phase design-build selection procedures.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY General 570.105-2 Two..., you must use the two-phase design-build selection procedures in section 303M of the Federal Property...
Two-phase flow experimental studies in micro-models (Utrecht Studies in Earth Sciences 034)
Karadimitriou, N.K.
2013-01-01
The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of interfa
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.
Solutions of Green s function for Lamb s problem of a two-phase saturated medium
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.
Symmetrical components and power analysis for a two-phase microgrid system
DEFF Research Database (Denmark)
Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede
2014-01-01
This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...
Majhi, Bijoy Kumar; Jash, Tushar
2016-12-01
Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.
Dahms, Rainer N.
2016-04-01
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing
Analysis of transient gas-liquid two-phase natural circulation
Energy Technology Data Exchange (ETDEWEB)
Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio
1999-07-01
Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)
A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW
Institute of Scientific and Technical Information of China (English)
GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da
2006-01-01
Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.
Sun, S.
2011-01-01
The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.
Directory of Open Access Journals (Sweden)
Jisheng Kou
2011-01-01
Full Text Available The temporal discretization scheme is one important ingredient of efficient simulator for two-phase flow in the fractured porous media. The application of single-scale temporal scheme is restricted by the rapid changes of the pressure and saturation in the fractured system with capillarity. In this paper, we propose a multi-scale time splitting strategy to simulate multi-scale multi-physics processes of two-phase flow in fractured porous media. We use the multi-scale time schemes for both the pressure and saturation equations; that is, a large time-step size is employed for the matrix domain, along with a small time-step size being applied in the fractures. The total time interval is partitioned into four temporal levels: the first level is used for the pressure in the entire domain, the second level matching rapid changes of the pressure in the fractures, the third level treating the response gap between the pressure and the saturation, and the fourth level applied for the saturation in the fractures. This method can reduce the computational cost arisen from the implicit solution of the pressure equation. Numerical examples are provided to demonstrate the efficiency of the proposed method.
Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke
2016-11-01
Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production.
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Energy Technology Data Exchange (ETDEWEB)
Minier, Jean-Pierre, E-mail: Jean-Pierre.Minier@edf.fr [EDF R and D, Mécanique des Fluides, Energie et Environnement, 6 quai Watier, 78400 Chatou (France); Chibbaro, Sergio [Sorbonne Universités, Institut Jean Le Rond d’Alembert, UPMC Univ Paris 06, CNRS, UMR7190, F-75005 Paris (France); Pope, Stephen B. [Sibley School of Mechanical and Aerospace Engineering, Cornell University, 254 Upson Hall, Ithaca, New York 14853 (United States)
2014-11-15
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
Homogenization of immiscible compressible two-phase flow in double porosity media
Directory of Open Access Journals (Sweden)
Latifa Ait Mahiout
2016-02-01
Full Text Available A double porosity model of multidimensional immiscible compressible two-phase flow in fractured reservoirs is derived by the mathematical theory of homogenization. Special attention is paid to developing a general approach to incorporating compressibility of both phases. The model is written in terms of the phase formulation, i.e. the saturation of one phase and the pressure of the second phase are primary unknowns. This formulation leads to a coupled system consisting of a doubly nonlinear degenerate parabolic equation for the pressure and a doubly nonlinear degenerate parabolic diffusion-convection equation for the saturation, subject to appropriate boundary and initial conditions. The major difficulties related to this model are in the doubly nonlinear degenerate structure of the equations, as well as in the coupling in the system. Furthermore, a new nonlinearity appears in the temporal term of the saturation equation. The aim of this paper is to extend the results of [9] to this more general case. With the help of a new compactness result and uniform a priori bounds for the modulus of continuity with respect to the space and time variables, we provide a rigorous mathematical derivation of the upscaled model by means of the two-scale convergence and the dilatation technique.
Drift flux modelling for a two-phase system in a flotation column
Energy Technology Data Exchange (ETDEWEB)
Vandenberghe, J.; Choung, J.; Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering
2005-04-01
Mineral and coal industries use flotation columns to improve recovery, upgrade products, save energy and reduce scale. Flotation columns are a proven process equipment that are adaptable to computer process control and offer flexible operation. Once gas is introduced to the bottom of the flotation column, bubbles form and rise throughout the pulp. Hydrophobic particles in the pulp attache to the bubbles, making the density of the bubble particle aggregates less than that of the medium. The bubble zone and the froth zone are the 2 main zones of a flotation column. This study applied the drift flux analysis to a wide range of operating conditions of a two-phase system column in order develop a better empirical relation that can predict the bubbly and froth zone characteristics. Tests were performed with process water taken from a bitumen extraction process at Syncrude Canada Limited with aqueous solutions having low concentrations of methyl isobutyl carbinol at 7.8 or 15.5 ppm. A new correlation for the drift flux system characteristic curve was discovered in this study. The new correlation is applicable for a bubble Reynolds number range of 5 to 70. The numerical equation for this correlation was presented. The bubble and froth zones have different hydrodynamics. Therefore, the method for calculating the Reynolds number in the bubble zone may not be suitable for the froth zone. Therefore, a new equation was proposed to accommodate a wider operating range. 16 refs., 1 tab., 13 figs.
A unified pore-network algorithm for dynamic two-phase flow
Sheng, Qiang; Thompson, Karsten
2016-09-01
This paper describes recent work on image-based network modeling of multiphase flow. The algorithm expands the range of flow scenarios and boundary conditions that can be implemented using dynamic network modeling, the most significant advance being the ability to model simultaneous injection of immiscible fluids under either transient or steady-state conditions using non-periodic domains. Pore-scale saturation distributions are solved rigorously from two-phase mass conservation equations simultaneously within each pore. Results show that simulations using a periodic network fail to track saturation history because periodic domains limit how the bulk saturation can evolve over time. In contrast, simulations using a non-periodic network with fractional flow as the boundary condition can account for behavior associated with both hysteresis and saturation history, and can capture phenomena such as the long pressure and saturation tails that are observed during dynamic drainage processes. Results include a sensitivity analysis of relative permeability to different model variables, which may provide insight into mechanisms for a variety of transient, viscous dominated flow processes.
What are the structural features that drive partitioning of proteins in aqueous two-phase systems?
Wu, Zhonghua; Hu, Gang; Wang, Kui; Zaslavsky, Boris Yu; Kurgan, Lukasz; Uversky, Vladimir N
2017-01-01
Protein partitioning in aqueous two-phase systems (ATPSs) represents a convenient, inexpensive, and easy to scale-up protein separation technique. Since partition behavior of a protein dramatically depends on an ATPS composition, it would be highly beneficial to have reliable means for (even qualitative) prediction of partitioning of a target protein under different conditions. Our aim was to understand which structural features of proteins contribute to partitioning of a query protein in a given ATPS. We undertook a systematic empirical analysis of relations between 57 numerical structural descriptors derived from the corresponding amino acid sequences and crystal structures of 10 well-characterized proteins and the partition behavior of these proteins in 29 different ATPSs. This analysis revealed that just a few structural characteristics of proteins can accurately determine behavior of these proteins in a given ATPS. However, partition behavior of proteins in different ATPSs relies on different structural features. In other words, we could not find a unique set of protein structural features derived from their crystal structures that could be used for the description of the protein partition behavior of all proteins in all ATPSs analyzed in this study. We likely need to gain better insight into relationships between protein-solvent interactions and protein structure peculiarities, in particular given limitations of the used here crystal structures, to be able to construct a model that accurately predicts protein partition behavior across all ATPSs. Copyright Â© 2016 Elsevier B.V. All rights reserved.
Non-equilibrium model of two-phase porous media flow with phase change
Cueto-Felgueroso, L.; Fu, X.; Juanes, R.
2014-12-01
The efficient simulation of multi-phase multi-component flow through geologic porous media is challenging and computationally intensive, yet quantitative modeling of these processes is essential in engineering and the geosciences. Multiphase flow with phase change and complex phase behavior arises in numerous applications, including enhanced oil recovery, steam injection in groundwater remediation, geologic CO2 storage and enhanced geothermal energy systems. A challenge of multiphase compositional simulation is that the number of existing phases varies with position and time, and thus the number of state variables in the saturation-based conservation laws is a function of space and time. The tasks of phase-state identification and determination of the composition of the different phases are performed assuming local thermodynamic equilibrium. Here we investigate a thermodynamically consistent formulation for non-isothermal two-phase flow, in systems where the hypothesis of instantaneous local equilibrium does not hold. Non-equilibrium effects are important in coarse-scale simulations where the assumption of complete mixing in each gridblock is not realistic. We apply our model to steam injection in water-saturated porous media.
Efficient and robust compositional two-phase reservoir simulation in fractured media
Zidane, A.; Firoozabadi, A.
2015-12-01
Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.
Rehmann, Lars; Prpich, George P; Daugulis, Andrew J
2008-10-01
The feasibility of a two-step treatment process has been assessed at laboratory scale for the remediation of soil contaminated with a model mixture of polycyclic aromatic hydrocarbons (PAHs) (phenanthrene, pyrene, and fluoranthene). The initial step of the process involved contacting contaminated soil with thermoplastic, polymeric pellets (polyurethane). The ability of three different mobilizing agents (water, surfactant (Biosolve) and isopropyl alcohol) to enhance recovery of PAHs from soil was investigated and the results were compared to the recovery of PAHs from dry soil. The presence of isopropyl alcohol had the greatest impact on PAH recovery with approximately 80% of the original mass of PAHs in the soil being absorbed by the polymer pellets in 48 h. The second stage of the suggested treatment involved regeneration of the PAH loaded polymers via PAH biodegradation, which was carried out in a solid-liquid two-phase partitioning bioreactor. In addition to the PAH containing polymer pellets, the bioreactor contained a microbial consortium that was pre-selected for its ability to degrade the model PAHs and after a 14 d period approximately 78%, 62% and 36% of phenanthrene, pyrene, and fluoranthene, respectively, had been desorbed from the polymer and degraded. The rate of phenanthrene degradation was shown to be limited by mass transfer of phenanthrene from the polymer pellets. In case of pyrene and fluoranthene a combination of mass transfer and biodegradation rate might have been limiting.
LPS removal from an E. coli fermentation broth using aqueous two-phase micellar system.
Lopes, André M; Magalhães, Pérola O; Mazzola, Priscila G; Rangel-Yagui, Carlota O; de Carvalho, João C M; Penna, Thereza C V; Pessoa, Adalberto
2010-01-01
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. Copyright © 2010 American Institute of Chemical Engineers (AIChE).
Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media
El-Amin, Mohamed
2015-04-01
In this paper, a mathematical model and numerical simulation are developed to describe the imbibition of nanoparticles-water suspension into two-phase flow in a porous medium. The flow system may be changed from oil-wet to water-wet due to nanoparticles (which are also water-wet) deposition on surface of the pores. So, the model is extended to include the negative capillary pressure and mixed-wet relative permeability correlations to fit with the mixed-wet system. Moreover, buoyancy and capillary forces as well as Brownian diffusion and mechanical dispersion are considered in the mathematical model. An example of countercurrent imbibition in a core of small scale is considered. A dimensional analysis of the governing equations is introduced to examine contributions of each term of the model. Several important dimensionless numbers appear in the dimensionless equations, such as Darcy number Da, capillary number Ca, and Bond number Bo. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles using numerical experiments.
Numerical simulation of two-phase flow around flatwater competition kayak design-evolution models.
Mantha, Vishveshwar R; Silva, António J; Marinho, Daniel A; Rouboa, Abel I
2013-06-01
The aim of the current study was to analyze the hydrodynamics of three kayaks: 97-kg-class, single-rower, flatwater sports competition, full-scale design evolution models (Nelo K1 Vanquish LI, LII, and LIII) of M.A.R. Kayaks Lda., Portugal, which are among the fastest frontline kayaks. The effect of kayak design transformation on kayak hydrodynamics performance was studied by the application of computational fluid dynamics (CFD). The steady-state CFD simulations where performed by application of the k-omega turbulent model and the volume-of-fluid method to obtain two-phase flow around the kayaks. The numerical result of viscous, pressure drag, and coefficients along with wave drag at individual average race velocities was obtained. At an average velocity of 4.5 m/s, the reduction in drag was 29.4% for the design change from LI to LII and 15.4% for the change from LII to LIII, thus demonstrating and reaffirming a progressive evolution in design. In addition, the knowledge of drag hydrodynamics presented in the current study facilitates the estimation of the paddling effort required from the athlete during progression at different race velocities. This study finds an application during selection and training, where a coach can select the kayak with better hydrodynamics.
A two-phase model for chronic disease processes under intermittent inspection.
Wu, Ying; Cook, Richard J
2017-06-15
A model is developed for chronic diseases with an indolent phase that is followed by a phase with more active disease resulting in progression and damage. The time scales for the intensity functions for the active phase are more naturally based on the time since the start of the active phase, corresponding to a semi-Markov formulation. This two-phase model enables one to fit a separate regression model for the duration of the indolent phase and intensity-based models for the more active second phase. In cohort studies for which the disease status is only known at a series of clinical assessment times, transition times are interval-censored, which means the time origin for phase II is interval-censored. Weakly parametric models with piecewise constant baseline hazard and rate functions are specified, and an expectation-maximization algorithm is described for model fitting. Simulation studies examining the performance of the proposed model show good performance under maximum likelihood and two-stage estimation. An application to data from the motivating study of disease progression in psoriatic arthritis illustrates the procedure and identifies new human leukocyte antigens associated with the duration of the indolent phase. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena
Kibbey, Timothy P.
2012-01-01
Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.
Two-phase aqueous micellar systems: an alternative method for protein purification
Directory of Open Access Journals (Sweden)
Rangel-Yagui C. O.
2004-01-01
Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.
Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
Energy Technology Data Exchange (ETDEWEB)
Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems
2016-07-15
In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.
Xu, Xianmin
2010-01-01
In this paper, the equilibrium behavior of an immiscible two phase fluid on a rough surface is studied from a phase field equation derived from minimizing the total free energy of the system. When the size of the roughness becomes small, we derive the effective boundary condition for the equation by the multiple scale expansion homogenization technique. The Wenzel and Cassie equations for the apparent contact angles on the rough surfaces are then derived from the effective boundary condition. The homogenization results are proved rigorously by the F-convergence theory. © 2010 Society for Industrial and Applied Mathematics.
Oscillation of a rigid catenary riser due to the internal two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Bordalo, Sergio N.; Morooka, Celso K.; Cavalcante, Cesar C.P. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Matt, Cyntia G.C.; Franciss, Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
2008-07-01
Production of petroleum reservoirs from deep and ultra-deep waters is of paramount importance in Brazil, and several researches are necessary to develop appropriated equipment and risers for those operational conditions. Risers are suspended pipes used to transport the petroleum fluids between the seabed and the floating production unit. The structural flexibility of riser's lines is conferred by its length when compared with the diameter, characterizing it as a slender body. The risers are submitted to large static and dynamic loads originated from its own weight, waves, currents, platform motions and the internal flow. These loadings may threaten, by fatigue, the structural integrity of the system, compromising its useful life, and so they must be considered in the riser's project. There is a large amount of knowledge in the literature about the effects of external loadings on these systems, but the effect of the internal flow remains vastly unexplored. The variation of the flow mass and momentum inside the riser causes a dynamic loading on this system, originating an oscillatory motion. Furthermore, the gas-liquid two-phase flow may assume several flow patterns (bubble, slug, intermittent or annular), each one possessing completely different characteristics. In this work, the influence of the internal flow on the oscillatory motion (whipping motion) of catenary risers is analyzed. To provide a better understanding of this physical phenomenon, a scaled apparatus was designed and built. The material used to manufacture the riser's model was a flexible silicone tube, and air and water were used to simulate the two-phase flow. The instrumentation used to measure the fluids flow rates and the sustaining force at the top of the model was installed in the apparatus. A video acquisition system was used to determine the displacements, and frequency spectrum, of color targets positioned throughout the model, under several flow conditions. The flow patterns
Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology
2007-02-01
HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results
Two phase flow bifurcation due to turbulence: transition from slugs to bubbles
Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2015-09-01
The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.
Numerical simulation of bubbly two-phase flow using the lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Tadashi; Ebihara, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2000-09-01
The two-component two-phase lattice Boltzmann method, in which two distribution functions are used to represent two phases, is used to simulate bubbly flows as one of the fundamental two-phase flow phenomena in nuclear application fields. The inlet flow condition is proposed to simulate steady-state flow fields. The time variation and the spatial distribution of the volume fraction and the interfacial area are measured numerically. The simulation program is parallelized in one direction by the domain decomposition method using the MPI (Message Passing Interface) libraries, and parallel computations are performed on a workstation cluster. (author)
Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured
Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon
Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become
On the nonequilibrium segregation state of a two-phase mixture in a porous column
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
1996-01-01
The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....
DEFF Research Database (Denmark)
Wu, Ying; Cui, Erping; Zuo, Yiru
2016-01-01
The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S r...
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, Eugene
2010-01-01
This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...
New results in gravity dependent two-phase flow regime mapping
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Concurrent two-phase downflow measurement with an induced voltage electro-magnetic flowmeter
Opara, Uroš; Bajsič, Ivan
2015-01-01
With a set of polynomial approximations a possibility is shown of the use of an induced voltage electromagnetic flowmeter in the area of measuring cocurrent two-phase downflow in tubes. The principle of the meter operation remains hereby unchanged
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Reversible, on-demand generation of aqueous two-phase microdroplets
Energy Technology Data Exchange (ETDEWEB)
Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya
2017-08-15
The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor
Directory of Open Access Journals (Sweden)
Li Dan
2015-01-01
Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification
Fu, J. W.; Yang, Y. S.; Guo, J. J.; Ma, J. C.; Tong, W. H.
2008-12-01
The formation and evolution of a two-phase coupled growth microstructure in AISI 304 stainless steel are investigated using a quenching method during directional solidification. It is found that the two-phase microstructure, which is composed of coupled growth of thin lathy delta ferrite (δ) and austenite (γ), forms from the melt first during solidification. As solidification proceeds, the retained liquid transforms into austenite directly. On cooling, the subsequent incomplete solid-state transformation from ferrite to austenite results in the disappearance of the thinner lathy delta ferrite, and the final two-phase coupled growth microstructure is formed. The formation mechanism of the two-phase coupled growth microstructure is analyzed theoretically based on the nucleation and constitutional undercooling (NCU) criterion. Transmission electron microscope (TEM) and EDS analyses were carried out to identify the phases and determine the phase composition, respectively.
Experimental study on transient behavior of semi-open two-phase thermosyphon
Institute of Scientific and Technical Information of China (English)
朱华; 王建新; 张巧惠; 屠传经
2004-01-01
An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.
Dong, S; Wang, X
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S. [SAAS Systemanalyse und Automatisierungsservice GmbH, Possendorf (Germany)
2004-07-01
The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Ilić Sanja M.; Đaković Sanja D.; Cvejić Jelena H.; Antov Mirjana G.; Zeković Zoran P.
2005-01-01
The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Directory of Open Access Journals (Sweden)
Ilić Sanja M.
2005-01-01
Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
CURE OF A MICROGEL-EPOXY RESIN TWO-PHASE POLYMER WITH ETHYLENE DIAMINE
Institute of Scientific and Technical Information of China (English)
SONG Aiteng; HUANG Wei; YU Yunzhao
1992-01-01
The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N- H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N -H to epoxide .This was accounted for the lower apparent activation energy of the curing of the two phase resin.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Numerical investigation of confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.
Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion
Institute of Scientific and Technical Information of China (English)
Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa
2001-01-01
A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.
Numerical investigation of confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
金晗辉; 夏钧; 樊建人; 岑可法
2002-01-01
This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
Directory of Open Access Journals (Sweden)
Park Yu sun
2011-01-01
Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Oppermann, Sebastian; Stein, Florian; Kragl, Udo
2011-02-01
The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.
Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows
Institute of Scientific and Technical Information of China (English)
唐学林; 徐宇; 吴玉林
2003-01-01
The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.
Directory of Open Access Journals (Sweden)
Michal Prazenica
2011-01-01
Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.
Energy Technology Data Exchange (ETDEWEB)
Ordaz-Flores, A. [Posgrado en Ingenieria (Energia), Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Garcia-Valladares, O.; Gomez, V.H. [Centro de Investigacion en Energia, Univ. Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)
2008-07-01
A water heating closed two-phase thermosyphon solar system was designed and built. The system consists of a flat plate solar collector coupled to a thermotank by a continuous copper tubing in which the working fluid circulates. The working fluid evaporates in the collector and condensates in the thermotank transferring its latent heat to the water through a coil heat exchanger. The tested fluids are acetone and R134a. The thermal performance of the proposed systems is compared with a conventional solar water thermosyphon under the same operating conditions. Advantages of a two-phase system include the elimination of freezing, fouling, scaling and corrosion. Geometry and construction materials are the same except for the closed circuit presented in the two-phase system. Data were collected from temperature and pressure sensors throughout the two systems. Early results suggest that R134a may provide a better performance than acetone for this kind of systems. (orig.)
Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco
2016-05-01
We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.
Tecklenburg, Jan; Carrera, Jesus; Dentz, Marco
2016-01-01
We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behaviour using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the firs...
Guo, Yong Xue; Shi, Chang Zhi; Zhang, Lei; Lv, Lin; Zhang, Yue Yong
2016-09-01
A rapid and effective method integrating separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge was developed by combining an aqueous two-phase system extraction with preparative chromatography. An aqueous two-phase system of n-butyl alcohol/KH2 PO4 was chosen from seven systems. The influence of parameters including concentration of KH2 PO4 , n-butyl alcohol concentration, pH, and the ratio of an aqueous two-phase system to crude extract were investigated using a single factor design. Response surface methodology was subsequently used to find the optimal compositions of an aqueous two-phase system. Keeping a solvent-to-solid ratio of 10, the final optimized composition of an aqueous two-phase system was 39.1% w/w n-butyl alcohol and 22.6% w/w KH2 PO4 . Under these conditions a recovery yield of 99.8% and a high partition coefficient of 310.4 were obtained. In a pilot-scale experiment using optimized conditions, 18.79 g of lithospermic acid B with a purity of 70.5% and in a yield of 99.8% was separated from 0.5 kg of crude extract. Subsequently, 9.94 g lithospermic acid B with a purity of 99.3% and recovery yield of 70.3% was obtained with a preparative chromatographic process, and the two-step total recovery was 70.1%.
FOSSIL EVIDENCE FOR THE TWO-PHASE FORMATION OF ELLIPTICAL GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Huang Song [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Peng, Chien Y. [Giant Magellan Telescope Organization, 251 South Lake Avenue, Suite 300, Pasadena, CA 91101 (United States); Li Zhaoyu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States)
2013-05-10
Massive early-type galaxies (ETGs) have undergone dramatic structural evolution over the last 10 Gyr. A companion paper shows that nearby elliptical galaxies with M{sub *} {>=} 1.3 Multiplication-Sign 10{sup 11} M{sub Sun} generically contain three photometric subcomponents: a compact inner component with effective radius R{sub e} {approx}< 1 kpc, an intermediate-scale middle component with R{sub e} Almost-Equal-To 2.5 kpc, and an extended outer envelope with R{sub e} Almost-Equal-To 10 kpc. Here we attempt to relate these substructures with the properties of ETGs observed at higher redshifts. We find that a hypothetical structure formed from combining the inner and middle components of local ellipticals follows a strikingly tight stellar mass-size relation, one that resembles the distribution of ETGs at z Almost-Equal-To 1. Outside of the central kpc, the median stellar mass surface density profiles of this composite structure agree closest with those of massive galaxies that have similar cumulative number density at 1.5 < z < 2.0 within the uncertainty. We propose that the central substructures in nearby ellipticals are the evolutionary descendants of the ''red nuggets'' formed under highly dissipative (''wet'') conditions at high redshifts, as envisioned in the initial stages of the two-phase formation scenario recently advocated for massive galaxies. Subsequent accretion, plausibly through dissipationless (''dry'') minor mergers, builds the outer regions of the galaxy identified as the outer envelope in our decomposition. The large scatter exhibited by this component on the stellar mass-size plane testifies to the stochastic nature of the accretion events.
Verification, validation and application of NEPTUNE-CFD to two-phase Pressurized Thermal Shocks
Energy Technology Data Exchange (ETDEWEB)
Mérigoux, N., E-mail: nicolas.merigoux@edf.fr [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C. [Electricité de France, R& D Division, 6 Quai Watier, 78401 Chatou (France); Bellet, S., E-mail: serge.bellet@edf.fr [Electricité de France, Thermal & Nuclear Studies and Projects Division, 12-14 Avenue Dutriévoz, 69628 Villeurbanne (France)
2017-02-15
Nuclear Power Plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential Pressurized Thermal Shock (PTS) – characterized by a rapid cooling of the Reactor Pressure Vessel (RPV) wall. In this context, NEPTUNE-CFD is developed and used to model two-phase PTS in an industrial configuration, providing temperature and pressure fields required to assess the integrity of the RPV. Furthermore, when using CFD for nuclear safety demonstration purposes, EDF applies a methodology based on physical analysis, verification, validation and application to industrial scale (V&V), to demonstrate the quality of, and the confidence in results obtained. By following this methodology, each step must be proved to be consistent with the others, and with the final goal of the calculations. To this effect, a chart demonstrating how far the validation step of NEPTUNE-CFD is covering the PTS application will be drawn. A selection of the code verification and validation cases against different experiments will be described. For results consistency, a single and mature set of models – resulting from the knowledge acquired during the code development over the last decade – has been used. From these development and validation feedbacks, a methodology has been set up to perform industrial computations. Finally, the guidelines of this methodology based on NEPTUNE-CFD and SYRTHES coupling – to take into account the conjugate heat transfer between liquid and solid – will be presented. A short overview of the engineering approach will be given – starting from the meshing process, up to the results post-treatment and analysis.
Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H
2009-01-01
One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.
Two-phase simulations of the full load surge in Francis turbines
Wack, J.; Riedelbauch, S.
2016-11-01
At off-design conditions, Francis turbines experience cavitation which may reduce the power output and can cause severe damage in the machine. Certain conditions can cause self-excited oscillations of the vortex rope in the draft tube at full load operating point. For the presented work, two-phase simulations are carried out at model scale on a domain ranging from the inlet of the spiral case to the outlet of the draft tube. At different locations, wall pressure measurements are available and compared to the simulation results. Furthermore, the dynamics of the cavity volume in the draft tube cone and at the trailing edge of the runner blades are investigated by comparing with high speed visualization. To account for the selfexcited behaviour, proper boundary conditions need to be set. In this work, the focus lies on the treatment of the boundary condition at the inlet. In the first step, the dynamic behaviour of the cavity regions is investigated using a constant mass flow. Thereafter, oscillations of the total pressure and mass flow rate are prescribed using various frequencies and amplitudes. This methodology enables to examine the response of the cavity dynamics due to different excitations. It can be observed that setting a constant mass flow boundary condition is not suitable to account for the self-excited behaviour. Prescribing the total pressure has the result that the frequency of the vapour volume oscillation is the same as the frequency of the excitation signal. Contrary to that, for an excitation with a mass flow boundary condition, the response of the system is not equal to the excitation.
Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity
Energy Technology Data Exchange (ETDEWEB)
Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho
2016-03-15
Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to
Chacón Rebollo, Tomás
2015-03-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
Energy Technology Data Exchange (ETDEWEB)
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
Snap, Crackle, Pop: sub-grid supernova feedback in AMR simulations of disk galaxies
Rosdahl, Joakim; Dubois, Yohan; Kimm, Taysun; Teyssier, Romain
2016-01-01
We compare 5 sub-grid models for supernova (SN) feedback in adaptive mesh refinement (AMR) simulations of isolated dwarf and L-star disk galaxies with 20-40 pc resolution. The models are thermal dump, stochastic thermal, 'mechanical' (injecting energy or momentum depending on the resolution), kinetic, and delayed cooling feedback. We focus on the ability of each model to suppress star formation and generate outflows. Our highest-resolution runs marginally resolve the adiabatic phase of the feedback events, which correspond to 40 SN explosions, and the first three models yield nearly identical results, possibly indicating that kinetic and delayed cooling feedback converge to wrong results. At lower resolution all models differ, with thermal dump feedback becoming inefficient. Thermal dump, stochastic, and mechanical feedback generate multiphase outflows with mass loading factors $\\beta \\ll 1$, which is much lower than observed. For the case of stochastic feedback we compare to published SPH simulations, and fi...
Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.
2015-09-01
We study capillary trapping in porous media using direct pore-scale simulation of two-phase flow on micro-CT images of a Berea sandstone and a sandpack. The trapped non-wetting phase saturations are predicted by solving the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework to simulate primary drainage followed by water injection. Using these simulations, we analyse the effects of initial non-wetting-phase saturation, capillary number and flow direction on the residual saturation. The predictions from our numerical method are in agreement with published experimental measurements of capillary trapping curves. This shows that our direct simulation method can be used to elucidate the effect of pore structure and flow pattern of capillary trapping and provides a platform to study the physics of multiphase flow at the pore scale.
Dynamic behavior of pipes conveying gas–liquid two-phase flow
Energy Technology Data Exchange (ETDEWEB)
An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)
2015-10-15
Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.
Multi-needle capacitance probe for non-conductive two-phase flows
Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.
2016-07-01
Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.
A new two-phase erosion-deposition model for mass flows
Pudasaini, Shiva P.; Fischer, Jan-Thomas
2016-04-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers
Energy Technology Data Exchange (ETDEWEB)
Brasz, J.J. [United Technologies Carrier, New York, NY (United States)
1999-07-01
Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)
New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions
Braisted, Jon; Kurwitz, Cable; Best, Frederick
2004-02-01
The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.
DSMC simulation of two-phase plume flow with UV radiation
Energy Technology Data Exchange (ETDEWEB)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Design and evaluation of a two-phase turbine for low quality steam--water mixtures
Energy Technology Data Exchange (ETDEWEB)
Comfort, W.J. III
1977-05-16
A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.
Two phase convective heat transfer augmentation in swirl flow with non-boiling
Energy Technology Data Exchange (ETDEWEB)
Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)
1995-10-01
Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.
2015-07-06
portance to the performance of modern wind farms[26], aerodynamics of vegetative canopies[27, 9] and urban environments[28, 29, 5, 4], and geomorphological...and smooth surfaces at ground level. Water Resour. Res., 11:543–550, 1975. [17] P.R. Owen and W.R. Thomson . Heat transfer across rough surfaces. J
Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments
Thome, J R; Park, J E
2009-01-01
An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.
Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle
Simakov, N. N.
2017-07-01
A numerical experiment on the simulation of the two-phase flow formed during spraying of a liquid by a nozzle has been described. The radial and axial velocity profiles of the droplets and gas in the free spray and in the two-phase flow through a cylindrical apparatus have been calculated and represented taking into account the early drag crisis of droplets and peculiarities of turbulent friction in the gas, which was detected in previous experiments. The distinguishing feature of the numerical model of the two-phase flow is that it employs the differential equations describing the nonstationary flow of a compressible gas as the initial equations. In transition to their difference analog, the familiar Lax-Wendorff algorithm has been used. A comparison of the results of calculations based on this model with experimental data has demonstrated their concordance.